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Abstract 

In most problem-solving activities, feedback is received at the 
end of an action sequence. This creates a credit-assignment 
problem where the learner must associate the feedback with 
earlier actions, and the interdependencies of actions require 
the learner to either remember past choices of actions 
(internal state information) or rely on external cues in the 
environment (external state information) to select the right 
actions. We investigated the nature of explicit and implicit 
learning processes in the credit-assignment problem using a 
probabilistic sequential choice task with and without external 
state information. We found that when explicit memory 
encoding was dominant, subjects were faster to select the 
better option in their first choices than in the last choices; 
when implicit reinforcement learning was dominant subjects 
were faster to select the better option in their last choices than 
in their first choices. However, implicit reinforcement 
learning was only successful when distinct external state 
information was available. The results suggest the nature of 
learning in credit assignment: an explicit memory encoding 
process that keeps track of internal state information and a 
reinforcement-learning process that uses state information to 
propagate reinforcement backwards to previous choices. 
However, the implicit reinforcement learning process is 
effective only when the valences can be attributed to the 
appropriate states in the system – either internally generated 
states in the cognitive system or externally presented stimuli 
in the environment. 

Introduction 
Consider a person navigating in a large office building. The 
person has to decide when to turn left or right at various 
hallway intersections. The sequence of decisions is 
interdependent – e.g., turning left at a particular hallway 
intersection will affect the decisions at the next 
intersections. The person may therefore need to keep track 
of previous actions to inform what actions to take in the 
future. In reality, memory of previous actions (internal state 
information) may not be necessary as people can explicitly 
seek information in the environment (external state 
information) to know where one is located or which 
direction to go to reach a destination (Fu & Gray, 2006). 
Learning to navigate is therefore likely to involve both the 
retention of internal state information (memory) and the 

recognition of external state information (signs on the 
walls). Indeed, many have argued that real-world skills 
often involve the interplay between cognition (internal), 
perception, and action (external) that the understanding of 
these interactive skills requires careful study of how internal 
(memory) and external information (cues in the 
environment) are processed in the learning processes 
(Ballard, 1997; Fu & Gray, 2000; 2004; Gray & Fu, 2004; 
Larkin, 1989; Gray, Sims, Fu, & Schoelles, in press). 

The navigation problem above is an example of one of the 
most difficult situations in skill learning: when the learner 
has to perform a sequence of actions but only gets feedback 
on their success at the end of the sequence (e.g., when the 
destination is reached). This creates a credit-assignment 
problem, in which the learner has to assign credits to earlier 
actions that are responsible for eventual success. When 
actions are interdependent, either memory of previous 
actions or recognition of the correct problem state in the 
external environment is required to properly assign credits 
to the appropriate actions. In this article, we present results 
from an experiment in which we study how people learn to 
solve the credit-assignment problem in a simple but 
challenging example of such a situation. Our focus is on the 
recent proposal that humans exhibit two distinct learning 
processes and we apply it to learning of action sequences 
with delayed feedback: an explicit process (with awareness) 
that requires memory for actions and outcomes, and an 
implicit process (without awareness) that does not require 
such memory. We will first review research in some related 
areas that informed the design of our experiment. 

Explicit and Implicit Learning 
Probability Learning and Classification 
There have been numerous studies on the learning of the 
probabilistic relationship between choices and their 
consequences. The simplest situation is the probability-
learning experiment in which subjects guess which of the 
alternatives occurs and then receives feedback on their 
guesses (e.g., Estes, 1964). One robust finding is that 
subjects often “probability match”; that is, they will choose 
a particular alternative with the same probability that it is 
reinforced (e.g., Friedman et al., 1964). This leads many to 
propose that probability matching is the result of an implicit 
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habit-learning mechanism that accumulates information 
about the probabilistic structure of the environment (e.g., 
Graybiel, 1995). One important characteristic of this kind of 
habit learning is that information is acquired gradually 
across many trials, and seems to be independent of 
declarative memory as amnesic patients were found to 
perform normally in a probabilistic classification task 
(Knowlton, Squire, Gluck, 1994). However, for non-
amnesic human subjects, it is difficult to determine whether 
probabilistic classification is independent of the use of 
declarative memory. Since declarative memory is dominant 
in humans, it has been argued that learners often initially 
engage in explicit memory encoding in which they seek to 
remember sequential patterns even when there are none 
(Yellott, 1969). Researchers argue that true probabilistic 
trial-by-trial behavior only appears after hundreds of trials – 
perhaps by then subjects give up the idea of explicitly 
encoding patterns and the implicit habit-learning process 
becomes dominant (Estes, 2002; Vulkan, 2000).  

Recent research on complex category learning has also 
provided interesting results suggesting multiple learning 
systems (Allen and Brooks, 1991; Ashby, Queller, and 
Berretty, 1999; Waldron and Ashby, 2001). For example, 
Waldron and Ashby (2001) showed that while a concurrent 
Stroop task significantly impaired learning of an explicit 
rule that distinguished between categories by a single 
dimension, but did not significantly delay learning of an 
implicit rule that requires integration of information from 
multiple dimensions.  
Sequence Learning 
The explicit/implicit distinction has also been investigated 
through a paradigm called sequence learning (e.g., 
Cleeremans & McClelland, 1991; Cohen, Ivry, Keele, 1990; 
Curran & Keele, 1993; Mathews, et al., 1989; Nissen & 
Bullemer, 1987; Sun, Slusarz, Terry, 2005; Willingham, 
Nissen, & Bullemer, 1989).  In a typical experiment subjects 
have to press a sequence of keys as indicated by a sequence 
of lights. A certain pattern of button presses recurs regularly 
and subjects give evidence of learning this sequence by 
being able to press the keys for this sequence faster than a 
random sequence. Although there have been slightly 
different definitions to capture the details of the 
implicit/explicit distinction, the key factor seems to be the 
idea that implicit learning occurs as a facilitation of test 
performance without concurrent awareness of what is being 
learned (Reber, 1989; Sun, et al., 2005; Willingham, 1998, 
but see Shanks & St. John, 1994). However, there seems to 
be a limit on what the implicit process can learn. For 
example, Cohen et al. (1990), found that when explicit 
learning is suppressed by a distractor task, subjects could 
only learn simple pairwise transitions, but failed to learn 
higher order hierarchical structures in the sequence.  

In neither probability learning nor the typical sequence-
learning task is there any doubt about the correctness of a 
single action. In probability learning there is a single action 
after which feedback is received. In the typical sequence 
learning experiment there is a sequence of actions but there 
is immediate feedback after each action and usually a 
deterministic relationship between response and correctness. 

Neither of these paradigms then reflects the complexity of 
the credit-assignment problem that people frequently face in 
real life. We combine research from both areas by studying 
how people learn to assign credits to different actions in a 
probabilistic sequential choice task, in which sequences of 
actions are executed before feedback on whether they are 
correct or not is received, and a particular action sequence is 
correct only with a certain probability. 
Reinforcement Learning  
Learning from delayed feedback often involves the temporal 
credit-assignment problem in which learners must apportion 
credit and blame to each of the actions that resulted in the 
final outcome of the sequence. The temporal credit 
assignment problem is often done by some form of 
reinforcement learning (e.g., Sutton & Barto, 1998). 
Recently, psychological research have found that in many 
learning situations, neural activities in the basal ganglia 
correlate well with the predictions of reinforcement learning 
(e.g., Schultz, Dayan, & Montague, 1997). Elsewhere we 
also show that it produces a wide range of behavioral data in 
the probability-learning literature and in other delayed 
feedback learning situations (Fu & Anderson, in press). The 
role of the basal ganglia is also closely related to the habit-
learning (procedural) system in which past response-
outcome information is accumulated through experience 
(e.g., Graybiel, 1995).  Such learning is also believed to be 
distinct from the explicit memory (declarative) system (e.g., 
Poldrack, et al., 2001; Daw, Niv, & Dayan, 2005). 

The basic prediction of reinforcement learning is that 
when feedback is received after a sequence of actions, only 
the last action in the sequence will receive feedback but that 
on later trials its value will then propagate back to early 
actions. By itself this mechanism cannot learn in cases 
where success depends on the sequence of actions rather 
than the individual actions. Memories of previous actions or 
observations are required to disambiguate the states of the 
world (e.g., McCallum, 1995). This implies that the 
cognitive agent needs to explicitly adopt some forms of 
memory encoding strategies to retain relevant information in 
memory for future choices.  

In our experiment, we study the implicit reinforcement 
learning process and the explicit memory process in a 
probabilistic sequential choice task. The task is specifically 
designed to distinguish between the two processes and we 
have strong predictions about the outcome in the two 
condition:  When the implicit reinforcement learning 
process is dominant, learning of items closer to the feedback 
will be faster than those farther away.  When the explicit 
memory encoding process is dominant, learning of items 
presented earlier will be faster. We also predict that implicit 
learning requires distinct state information to propagate 
credits back to earlier choices. In other words, when state 
information is absence, implicit learning will fail to learn 
the dependency between actions. 

The Experiment 
A probabilistic sequential choice task is designed in which 
we predict different behavioral patterns when subjects are 
engaged in explicit and implicit learning processes.  
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Subjects were told that they were in a room and they had to 
choose one of the two colors presented on the screen to go 
to the next room. After making two choices, subjects would 
either reach an exit or a dead-end. Subjects were instructed 
to choose the colors that would lead them to the exit as often 
as possible. Figure 1 shows an example of the task. In room 
1, if they chose “red” they would go to room 2 with 
probability 0.8 and to room 3 with probability 0.2. The 
probabilities were reversed if “blue” was chosen. After the 
first choice, if subjects were in room 2, if they choose 
“yellow” there was a 0.6 probability of going to an exit and 
0.4 probability of going to a dead end. Again, the 
probabilities were reversed if “green” was chosen. If 
subjects were in room 3, choosing “yellow” would lead to 
an exit with probability 0.2 and to a dead end with 
probability 0.8. Choosing “green” would lead to an exit with 
probability 0.4 and that to a dead end with probability 0.6. 
Note that if “red” is chosen, “yellow” is more likely to lead 
to an exit than “green”; but if “blue” is chosen, “green” is 
more likely than “yellow”. The choice of colors in the 
second choice is therefore dependent on the first choice.  

 
 

 
 
 
 
 
 
Figure 1. The probabilistic sequential task. The circled 
numbers represent room numbers, and the numbers next to 
the arrows represent transition probabilities. Note that in 
room 3, regardless of what is chosen, there is a higher 
probability that it will lead to a dead-end compared to room 
2. The actual colors were randomly selected from eight 
colors (red, green, yellow, blue, brown, gray, magenta, and 
orange) for each subject. 

One strategy in this task was to conduct a “tree-
searching” by explicitly encoding the choices in memory 
and observing their outcomes. In this task, the probabilities 
were chosen such that, even if subjects randomly chose a 
color in the second choice, the probability that choosing 
“red” would eventually lead to an exit was higher than that 
for choosing “blue” (it can be easily shown that the 
marginal probabilities were 0.46 and 0.34 for choosing 
“red” and “blue” respectively). On the other hand, if 
subjects randomly chose a color in the first choice, the 
probabilities that choosing “yellow” or “green” would lead 
to an exit were equal (it can be shown that the marginal 
probability would both be 0.4). The task was designed such 
that when engaged in explicit memory encoding and 
searching, the first choices would be learned faster than the 
second choice, as it was more likely that the memory traces 
of the better first choice would be strengthened faster than 
those for the better second choice. 

To study the nature of the implicit learning process, we 
introduced a “2-back” secondary task to suppress the 
otherwise dominant explicit memory encoding process. The 
secondary task required subjects to listen to a continuous 
stream of numbers (from 0 to 9) from the speakers. Starting 

from the third number, subjects had to press the control key 
on the keyboard if the number is identical to the numbers 
two numbers before. For example, if they heard the numbers 
0, 3, 2, 3, and 0, they had to press the control key the second 
time they heard 3. The numbers were presented once every 
two seconds. Subjects had to maintain their performance at 
80% or better at the 2-back task while performing the 
probabilistic sequential task.  

From earlier discussion, the basic prediction of the 
implicit reinforcement-learning process is that actions close 
to the feedback will acquire value first and then their value 
will propagate back to early actions. Thus, in contrast to the 
explicit memory encoding process, learning of the choices 
closer to the feedback will be faster than earlier choices. 
However, in the probabilistic sequential choice task, since 
the choices were designed to be dependent, it was 
impossible to learn the second choice before learning which 
color was better in first choice. We therefore need to 
provide some external state information for subjects to learn 
to recognize their current state in the second choice (i.e., 
whether they were in room 2 or room 3 in Figure 1), so that 
it is possible for them to learn the second choice before the 
first choice as predicted by the implicit reinforcement 
learning process. In addition, since the implicit learning 
process does not require explicit memory encoding, the 
prediction is that subjects may be able to learn to choose the 
more likely colors without concurrent awareness of them. 

To study the effect of external state information on the 
learning of the two choices, we placed half of the subjects in 
the distinct condition and the other half to the ambiguous 
condition. In the distinct condition, in addition to the two 
colors, there was also a distinct object in room 2 and 3 (e.g., 
a computer in room 2 and a telephone in room 3). Subjects 
did not see the object in the ambiguous condition. Our 
expectation was that in the distinct condition, the presence 
of the object would help subjects to identify which room 
they were in.  This would allow them to choose the more 
likely color in the second choice set even without explicit 
memory of their first choice. In the ambiguous condition, 
choosing the more likely second color would require 
internal state information encoded by explicit memory. 

Method 
52 subjects in the Carnegie Mellon University community 
were recruited for the experiment. Four of the subjects could 
not maintain the 2-back task performance at 80% and were 
excluded. Subjects received a base payment of $8 plus a 
bonus payment of up to $7 depending on performance. Half 
of the remaining 48 subjects were assigned to the single-task 
group and the other half to the dual-task group; and subjects 
in each group were further divided into the distinct and 
ambiguous conditions. Subjects started with an initial score 
of 10 points. When an exit was reached, 5 points would be 
added to the final score; when a dead-end was reached, 1 
point would be deducted from the final score. Subjects were 
paid one cent for each point in the total score for the bonus 
payment. Each subject finished 20 10-trial blocks. At the 
end of the experiment, subjects were asked to write down 
any strategy they used and whether they thought that any of 
the colors was more likely lead to the exit. 

Red Blue

Yellow Green Yellow Green

0.6

0.8

0.4 0.40.2

0.8

1

2 3

Exit

Red Blue

Yellow Green Yellow Green

0.6

0.8

0.4 0.40.2

0.8

1

2 3
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Results  
Subjects who could write down the more likely colors in all 
three rooms (thus the choice dependency) were placed in the 
aware group; otherwise they were placed in the not-aware 
group (see Table 1).  In the dual task condition, most of the 
subjects could not write down the more likely colors in any 
of the rooms, while subjects in the single task condition 
could write down the more likely colors in at least two of 
the rooms (we chose not to include them in the aware group 
as they apparently were not aware of the choice dependency 
between the two choices). 

Table 1. Number of subjects who wrote down the more 
likely colors in each of the experimental condition. All = all 
rooms, none = none of the rooms, R1 = room 1 only, and R1 
& R2 = room 1 and 2 only, etc. In the ambiguous condition, 
subjects were not aware of the distinction of room 2 and 3. 

 Single Dual 
Rooms Distinct Ambiguous Distinct Ambiguous 

All 9 7 2 1 
R1 & R2 2 4 0 1 
R1 & R3 0 1 0 0 
R2 & R3 1 0 2 1 

R1 0 0 0 0 
R2 0 -- 1 -- 
R3 0 -- 0 -- 

none 0 0 7 9 
 
A 2 (first/second choice) x 2 (awareness) x 2 (single/dual 

task) x 2 (distinct/ambiguous condition) ANOVA on the 
choice proportions on the more likely colors shows that the 
main effects of awareness and condition were significant 
(F(1,40)=12.21, MSE=0.19, p<0.001; F(1,40)=5.33, 
MSE=0.19, p <0.05 respectively); learning was better in the 
aware group than the not-aware group, and was better in the 
distinct condition than the ambiguous condition. There were 
significant choice x awareness x condition and choice x 
awareness interactions (F(1,40)=8.79, MSE=0.088, p < 0.01 
and F(1,40)=18.68, MSE=0.088, p < 0.001 respectively). 
No other interaction involving choice was significant. Since 
the main effect of task was not significant (F(1,40)=0.95, 
MSE=0.21, p=0.34), nor was any of its interaction, the 
results were collapsed across tasks in Figure 2, which shows 
the mean choice proportions of the more likely colors in 
each 20-trial block. Consistent with our expectation, in the 
distinct condition, subjects in the aware group learned the 
first choice faster than the second choice while subjects in 
the not-aware group learned the second choice faster than 
the first choice. In the ambiguous condition, subjects in the 
aware group also learned the first choice faster than the 
second choice. However, in contrast to the distinct 
condition, subjects in the not-aware group were not 
significantly above chance throughout the 10 20-trial blocks 
for, indicating that they failed to learn implicitly when state 
information was absent.  

The main effect of blocks was significant (F(9,360)=6.86, 
MSE= 0.019, p < 0.001). The blocks x awareness x 
condition interaction was significant (F(9,360)=3.70, 
MSE=0.019, p < 0.001). No other interaction involving 
blocks was significant. The significant interaction could be 

explained by the fact that, except the not-aware group in the 
ambiguous condition, subjects significantly increased their 
choice proportions of the more likely colors across trials. 
Indeed, the last four blocks of both choices were 
significantly above chance for all but the not-aware group in 
the ambiguous condition.  

The results were consistent with the proposed distinct 
learning processes in the probabilistic sequential choice 
task. As reflected by our awareness measure, in the single-
task condition, most of the subjects explicitly remembered 
the outcomes of the choices and were aware of the choice 
dependencies. Consistent with our expectation, subjects in 
the aware group presumably conducted a tree-searching 
strategy, and learned the first choice faster than the second 
choice. In the dual-task condition, since the explicit 
encoding of past experiences was suppressed, most of the 
subjects were not aware of the most likely colors. 
Nevertheless, in the distinct condition, subjects increasingly 
selected the more likely colors, demonstrating learning of 
the dependency between the choices1. Consistent with the 
reinforcement-learning mechanism, learning of the second 
choice was faster than the first choice, despite the 
asymmetry of choice probabilities in the design of the task. 
The result also suggests that reinforcement learning does not 
require explicit memory encoding and concurrent awareness 
to learn the choice dependency.  

In the ambiguous condition, the dependency between 
choices could only be learned if subjects remembered the 
first choice when making the second choice. Most subjects 
in the single-task condition were aware of the better colors 
in both choices and chose them increasingly often across 
trials. This suggests that subjects in the aware group did 
learn the dependency of choices. Similar to the subjects in 
the aware group in the distinct condition, learning of the 
first choice was faster than the second choice. In the dual-
task condition, the suppression of the memory encoding of 
the first choice significantly hampered the discovery of the 
dependency. Subjects failed to learn to choose the better 
colors above chance level. Apparently, reinforcement 
learning failed when the final states (i.e., room 2 and room 
3) were indistinguishable, as both internal and external cues 
were not available. It suggests distinct states information is 
essential for the proper propagation of credits to earlier 
state-action pairs.  

. 

                                                           
1 Note that if subjects were not aware of the choice dependency 
and always chose one of the more likely colors in the second 
choice set (i.e., chose “yellow” in both room 2 and 3 using the 
example shown in Figure 1), the choice proportion would have 
been 80% of the choice proportion of the more likely color in the 
first choice (i.e., approximately 0.8 x 0.8 = 0.64 in the last 3 
blocks). Since the second choice proportions were higher than 
0.64, subjects had learned to choose the more likely colors in both 
room 2 and room 3 – i.e., they had learned the dependency 
between the choices.  
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Figure 2. Choice proportions of the colors that were more likely to lead to the exit in the distinct and ambiguous conditions in 
each of the 20-trial blocks. Using the example shown in Figure 1, “first” would be the choice proportions of “red”, and 
“second” would be the sum of the choice proportions of “yellow” and “green” in room 2 and room 3 respectively. 

 

Discussions 
The primary questions addressed by the study are (1) 
whether there are explicit and implicit modes of learning in 
probabilistic sequential choice tasks, as suggested by the 
literature on probability learning and sequence learning, if 
so (2) whether the implicit learning process is consistent 
with the credit-assignment mechanism in reinforcement 
learning, and (3) whether explicit external state information 
is required to propagate credits back to earlier actions when 
the actions are interdependent as predicted by the 
reinforcement learning process. Results from the experiment 
seem to answer all three questions in the affirmative. 

In an uncertain environment, people learn to choose the 
right actions by identifying states of the cognitive system 
and the environment associated with positive and negative 
valence. In most situations, the states consist of 
combinations of internally encoded responses and externally 
presented stimuli. In most situations, the explicit, goal-
directed tree-searching strategy seems dominant, which 
allows people to encode responses and their outcomes 
internally. The internally encoded state information then 
guides future selection of actions. We found that in addition 
to this dominant explicit encoding process, an implicit 
reinforcement learning process allows learning by 
monitoring the outcomes of responses (positive or negative 
valences). However, this implicit reinforcement learning 
process is effective only when the valences can be attributed 
to the appropriate states in the system – either internally 
generated states in the cognitive system or externally 
presented stimuli in the environment.  

 The probabilistic sequential choice task used in the 
experiments, although simple, contains essential 
components in interactive skill learning, in which a 
sequence of actions are performed before reinforcement on 

the full course of action is received. Solving the credit-
assignment problem is crucial for learning in this kind of 
situation, as the delayed feedback has to propagate back to 
the appropriate actions that are responsible for the desirable 
or undesirable outcome. The reinforcement-learning process 
provides a straightforward explanation of how feedback 
propagates back to earlier actions. Initially, only the action 
that leads to outcome gets credit or blame.  The next time 
some of that credit/blame propagates back to the previous 
actions.  Eventually, credit/blame can find its way back to 
critical early actions in a long chain of actions leading to a 
reward. The effectiveness of this process, however, depends 
on whether the effects of these actions are independent of 
each other. When the actions are interdependent, either 
distinct external state information or memory of earlier 
actions is required to ensure the proper assignment of credits 
for effective skill learning.  
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