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Abstract 

Two experiments were performed contrasting discovery learning with a variety of different 

instructional conditions.   Students learned to solve data-flow isomorphs of the standard algebra 

problems.   In experiment 1, where students practiced each new operation extensively, they 

performed best in a Discovery condition.   The Discovery condition forced participants to 

develop correct semantic characterizations of the algebraic transformations.   In Experiment 2, 

where students practiced each operation minimally, they performed worst in the Discovery 

condition and most of them failed to complete the curriculum.  With less practice students’ 

attempts to discover transformations became less constrained and more random.  This search for 

transformations became so extended that students were unable to remember how they achieved 

transformations and so failed to learn.   These interpretations of the advantages and 

disadvantages of discovery learning were confirmed with a simulation model that was subjected 

to the various learning conditions.  Discovery learning can lead to better learning outcomes only 

when the challenge posed by the demand of discovery does not overcome the student’s 

resources.
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There has been a long history of advocacy of discovery learning including such intellectual 

giants as Rousseau, Dewey & Piaget.  Bruner (1961) is frequently credited as the source for the 

modern research on discovery learning in the last 50 years.  While discovery learning continues 

to have its advocates (e.g., Fuson et al., 1997; Hiebert et al., 1996; Kamii & Dominick, 1998; 

Von Glasersfeld, 1995), there has been accumulating evidence and argument against it (e.g., 

Kirschner et al., 2006; Klahr & Nigiam, 2004; Mayer, 2004; Rittle-Johnson, 2006). Indeed, in 

two of the responses to the Kirschner et al. criticisms of minimally guided learning, the authors 

(Hmselo-Silver et al., 2007 and Schmidt et al, 2007) did not question the claim that minimally 

guided learning was bad. Rather they questioned whether Kirschner et al had it right in 

classifying problem-based inquiry as minimally guided.   The conclusion of the research to be 

reported here is that one cannot make blanket claims about the superiority or inferiority of 

discovery learning.   Rather one must assess carefully the information-processing consequences 

of each learning situation.  A careful reading of the Kirschner et al paper finds such a nuanced 

perspective and they note cases where discovery learning can lead to superior results. We will try 

to develop an understanding of the information-processing consequences of the learning 

conditions we are studying by developing computer simulation models that reproduce the basic 

effects of our experiments. 

 

Many domains have a sufficiently rich combinatorial structure that it is not possible to provide 

students with direct instruction on all possible cases.  They have to generalize what they learn on 

specific cases to new cases.  For instance, in this research after students learn to rewrite (4 + x) + 

3 as 7 + x they are given the problem (5 + x) – 3.  While the majority of students correctly 

generalize to this problem, a significant minority display the error 2 – x.  Making the correct 
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generalization to this case can be viewed as mini-discovery informed by knowledge of the 

constraints of algebra. This research will show that under some circumstances students are better 

situated to make this generalization if they have learned to solve the original problems in a 

discovery mode.  

 

This research is part of an effort to understand the contribution of instructional content in 

cognitive tutors for mathematics.  Figure 1 shows some screen images involving equation 

solving in the Carnegie Learning Tutor.   Presentation-wise these are the simplest parts of the 

algebra curriculum but they reflect the general model of interaction with the Cognitive Tutor.  In 

part (a) the student is presented with the equation 8y = 9-(6y) + 9 = 10 and the student selects an 

operation to perform from a pull-down menu – in this case, the student has erroneously selected 

“Distribute”, will receive feedback, and eventually chose the correct operation of “Add/Subtract 

Terms”.  When this correct operation is chosen, the tutor presents a display like part (b) of Figure 

1 where the student must indicate the result of adding like terms by filling in a series of boxes.  

The resulting equation is represented in part (c) and the student the student must choose a correct 

operation again.  Upon doing so, the tutor once again presents a series of boxes in part (d) where 

the student must indicate the terms being subtracted.  This illustrates the basic cycle in the tutor 

in which the student selects some operation to perform (Figures 1a and 1c) and then executes the 

result of that operation (Figures 1b and 1d) by filling in some boxes.   By isolating the individual 

operations and executions the tutor is able to identify specific difficulties that the student is 

having and provide instruction on those aspects. 
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The research to be reported here uses an experimental system for solution of linear equations that 

had this basic structure.   Figure 2a illustrates the basic interface.  The student selects parts of 

these equations by pointing and clicking with a mouse.  The selected portion is highlighted in red 

and the student picks operations to perform on that portion from the menu buttons to the right. In 

this case the student has chosen the two x-terms, selected “collect”, and a new line has been 

created with green boxes where information is to be entered.   In Figure 2a the student has 

selected the smaller box and is about to type the operator  *. 

 

The curriculum is based on the material in the first four chapters of the classic algebra text by 

Foerster (1990).  The overall interface and interaction structure has been reduced from the 

commercially available tutor to facilitate data analysis and to make it easier to run model 

simulations with.  Nonetheless, the basic character of the interaction is similar.   There are some 

simple help options should a student get stuck:  There is a “hint” button that the student can click 

to receive instruction on what to do next, a button to go back to where the first mistake was 

made, and arrows for moving back and forward in the problem. 

 

For purposes of exploring instructional design an isomorph of algebra was created that can be 

used with adults.   If these adults fail to learn the algebra isomorph (as they do in some 

instructional conditions) it will be at no cost to their competence in real algebra. Figure 2b 

illustrates the data-flow interface for a comparable point to Figure 2a.   Students point to boxes in 

this graph, select operations, and key in results.   The actual motor actions are isomorphic to the 

actions for a linear equation and in many cases physically identical.   Figures 3a and 3b shows 

data-flow equivalents of a relatively simple equation and a relative complex equation in this 
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system.  Part (a) is the isomorph of the equation 5x + 4 = 39 and part (b) is the isomorph of the 

equation (2x – 5x) + 13 + 9x = 67.   In such a diagram, a number comes in the top box, flows 

through a set of arithmetic operations, and the result is the number that appears in the bottom.   

Students are taught a set of graph transformations isomorphic to the transformations on the linear 

equations that result in simplifying the diagram.  In the case of problems like those in Figure 3, 

these simplifications will result in a box with the input value.   This is the equivalent to solving 

for x.   However, some diagrams (e.g. see Figure 4) are the equivalent of expressions to be 

simplified (not equations to be solved) and their simplification requires the equivalent of 

algebra’s collection of like terms and distribution of multiplication over addition.   Anderson 

(2007, Chapter 5) reports a behavioral comparison of children working with linear equations and 

adults working with the data-flow tutor.  While children were a bit more error prone, they 

behaved very similarly.  

 

Experiment 1 

 

The tutor provides students with instruction on each step of a problem that involves a mix of a 

verbal direction and worked example.   The first experiment to be reported here was an attempt 

to assess separately the contribution of the instruction and worked example.  There was a Verbal 

Direction condition in which participants just received abstract verbal instruction without any 

specific directions about how to solve a specific problem and a Direct Demonstration condition 

in which participants were told what to do in a specific case without stating any general 

characterization of the action.   To complete a factorial design we crossed the use of verbal 

direction with direct demonstration.  This created the Both condition that was somewhat like the 
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original condition of Anderson (2007) where both verbal directions are given as well as direct 

demonstration of what to do.  This also created the Discovery condition where there was no 

instruction accompanying the steps.  Many experiments have compared examples, instructions, 

and a combination of the two (e.g., Charney, Reder, & Kusbit, 1990, Cheng, Holyoak, Nisbett, & 

Oliver, 1986; Fong, Krantz, & Nisbett, 1986; Reed & Bolstad, 1991) but experiments have 

tended not to look at situations in which the participants receive no direction as our Discovery 

condition.  

 

Figure 4 illustrates that basic cycle that occurs throughout the curriculum for problem that is 

concerned with collection of like terms (Section 2.6 in the Foerster text).  The problem in Figure 

4 is the data-flow equivalent of 3 + (2x + 7). The first row in Figure 4 shows steps in the 

transformation of the problem from its original form to the equivalent of (7 + 3) + 2x and the 

second row shows steps in transforming this to 10 + 2x. As the curriculum progresses the 

problems became more complex and require more varied transformations but always they had 

the character of the problem illustrated in Figure 4: 

1. The diagram begins in some neutral display (parts a and d) and the student must select 

some boxes to operate on.  Later problems could require selection of as many as 5 boxes 

and there could be a number of alternative correct choices about which sets of boxes to 

operate on next. 

2. The selected boxes would be highlighted (parts b and e) and the student would select 

some operation by clicking a button to the right of the diagram. 

3. The diagram would be transformed with a number of green boxes (parts c and f) and the 

student would type information into these boxes. 
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4. When the boxes were filled in, the diagram would return to a neutral state (parts d and 

g) ready for the next selection of some set of boxes. 

When the transformations were complete the student would click the Next Problem button.  If 

the transformations had been correctly performed the student could go onto the next problem.  If 

there was an error, the student would be informed that she could not go on to the next problem 

but had to correct the error.  The First Mistake button would take the student to the state of the 

diagram before the first mistake.  The “->” and “<-” buttons allowed students to move back or 

forth a single transformation. 

 

The material used in this experiment comes from 12 sections over 4 chapters in the Foerster text 

that covers what is needed to solve linear equations.  The first 1 or 2 problems in each section 

were used for instruction.   The problem in Figure 1 was used for instruction in Section 2.6 on 

combining.  Table 1 shows the instruction that accompanied that accompanied this problem.   

There is some general initial instruction and then instruction that accompanies each state of the 

problem.   The instructional manipulations involved the state-by-state instruction. For Section 

2.6, it will turn out that the most critical transformation is between states like c and d where the 

participant must specify the content of the boxes in a way that preserves the value of the graph 

structure. In the Verbal Direction condition participants would receive instruction like "Find two 

boxes with addition or subtraction and click them" which provided guidance as to how to 

perform the operation of this and similar problems without saying exactly what to do (for 

example in this case, the actual boxes had to be determined by the student). In the Direct 

Demonstration condition participants were told what to do in this specific case without stating 

any general characterization of the action. For instance, arrows would point to the two boxes 
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with the instruction “Click this”.  In the Both condition, participants saw both forms of 

instruction while in the Discovery condition they saw neither. 

 

Participants in the Discovery condition could try various operators and learn from the feedback 

they received.   Specifically, there were the following sorts of feedback (which were also 

available in the other conditions): 

(1) If students tried an inappropriate operator for the boxes chosen they would receive the 

feedback that the operator chosen could not be applied to the boxes selected as in 

“Combine cannot be done with the selected boxes”. 

(2) On the first 1 or 2 problems for which other participants received instruction, if discovery 

participants entered an incorrect result into a green box that result would be rejected with 

the error “Your answer is incorrect”.  On later problems participants in all conditions 

were allowed to make such transformation errors and go on with the problem in an error 

state. If the student made a transformation error and got to the end and asked for the next 

problem they would be presented with the message "Your answer is incorrect. Use the <- 

and -> buttons (or the left and right arrow keys) and the First Mistake button to review 

your work and correct the mistake." 

(3) If at any point they thought they were finished when they were not and asked for the next 

problem they received the message "You are not finished. You need to do more to the 

problem."  

Thus, as in any Discovery condition there was some guidance but it is minimal.  Students get 

some information, sometimes delayed, that their actions are wrong but no information about 
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what the correct actions are.   Also, participants in all conditions saw a general statement of the 

purpose of the section (see initial general instructions in Table 1). 

 

Method 

Participants. Forty undergraduates (23 male and 17 female; M = 23 years, SE = 1.6 years) 

took part in this study. They reported relatively high last algebra grades (24 As, 8 Bs, 4 Cs, 4 

missing). Students participated in three single participant sessions each lasting between one and 

2.5 hours and were paid either per time ($5 per half hour) or by performance ($ 0.07 per correct 

performed operation in the tutor). Ten participants were randomly assigned to each of four 

conditions. 

 

Materials. Altogether, participants solved 174 data-flow problems that require performing at 

least 674 operations.  Below are the 12 sections and a description of the problems in their linear 

algebra equivalent: 

 

� Section 1.1. Evaluating Diagrams (14 problems) teaches students how to evaluate the 

contents of boxes in the data flow diagrams – e.g., rewrite (9 – 4) * 2 as 5 *2 and this as 

10.  

� Section 1.2. Input Boxes (9 problems) teaches students to evaluate a diagram given a 

value for an input box – e.g. rewrite (24 / x) – 1, x = 12 as 24/12 -1 and this as 2 – 1, and 

this as 1. 

� Section 1.7. Finding Input Values (25 problems) teaches students to find the input 

values given single operations – e.g., rewrite x +3 = 8 as x = 8 -3 and this as x = 5. 
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� Section 2.6. Combining Operations (20 problems) teaches students how to combine like 

operations – e.g., rewrite (5 + x) – 3 as (5 – 3) + x and this as 2 + x.  

� Section 2.7. More on Finding Input Values (16 problems) teaches students to find the 

input values given two operations – e.g., 2x + 3 = 19, and to deal with asymmetric 

operators – e.g., rewrite 10 – x = 2 as x = 10 – 2 and this as x = 8. 

� Section 3.1. Reordering Operations (6 problems) teaches students the graph equivalent 

of distribution – e.g., rewrite 5*(x + 2) + 9 as (5x + (5 * 2)) + 9 as (5x + 10) + 9 as (10 + 

9) + 5x as 19 +5x. 

� Section 3.2. Reordering and Subtraction (9 problems) teaches students to use reorder 

with subtraction in problems such as 9 - 2*(x -4). 

� Section 3.4. Combining multiple input boxes (13 problems) teaches students the 

equivalent of collecting variable terms – e.g., rewrite 7x + 5x as (7 + 5)*x as 12x and 

rewrite 5x + (6 – 2x) as 6 + (5 – 2)*x as 6 + 3x. 

� Section 3.5. More on Combining input boxes (12 problems) deals with special cases 

like 2x + x and (6x + 3) – (6 – 2x). 

� Section 4.1. Finding Input Values in more Complex Problems (11 problems) puts the 

operations together building up to solve equations like ((3x + 4) + 5x) + 6x =32. 

� Section 4.2. Finding Input Values in more Harder Problems (21 problems) builds up 

to equations like 3*(2x – 1) + 2*(x + 5) = 55.  

� Section 4.3. Finding Input Values when Two Data Flow Diagrams are Equal (18 

problems) presents equations like 3x + 55 = 8x.  
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Procedure. There are 7 basic operations to be mastered (the 7 buttons to the immediate left 

of the data-flow diagram in Figure 2b). In the first session, participants performed the first five 

sections of the tutor that introduced evaluate, invert (unwind), and combine (collect) operators. 

This session took on average one hour. In the second session, participants performed the next 

four sections introducing reorder (distribute), canonicalize, and undo-minus operators. In the 

third and last session, participants performed the remaining three sections of the tutor extending 

earlier operators and introducing the subtract operator. The second and third sessions took on 

average approximately 1.5 hours. 

The first problem in each section involved guided instruction like that in Table 1.  For 

sections 2.7, 3.4, and 3.5 the second problem in a section also involved guided instruction.   Even 

in sections without guided instruction on the second problem participants would often flounder 

on the second problem and request instruction.   For these reasons, we will treat the first two 

problems as the instructional problems and the remainder as the practice problems.   In all 

conditions but the Discovery condition, participants could click a hint button to request 

instruction on any problem. 

 

Results 

 

Figure 5 shows the mean total time (time from completion of previous to successful clicking of 

Next Problem to complete the current problem) to solve problems in the four conditions for the 

four chapters.   The data are partitioned into performance on the first two instructional problems 

and performance on the remaining practice problems in each section.  There are large differences 

in the time to solve problems in different chapters reflecting the different number of 
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transformations required to solve a problem.   We will ignore the factor of chapter in our 

statistical analyses and simply using graphs like Figure 5 to show that the basic effects replicate 

over chapters.  Therefore, our statistical analyses are 4 x 2 ANOVAs with the factors being 

instructional condition and position in section (first 2 problems versus later problems).  In the 

case of total time, there are no significant effects of instructional condition (F(3,36) = 1.29, p > 

.25; MSE = 2598) or position (F(1,36) = 0.30, MSE = 554) but there is a very strong interaction 

between the two (F(3,36) = 17.99, p < .0001; MSE = 553).  As is apparent from Figure 5, this 

interaction is driven by the fact that the Discovery condition is worst on the initial two problems 

but best on the remaining problems.   A contrast for this effect is highly significant (F(1,36) = 

53.17, p < .0001) while the residual effects in the interaction are not significant (F(2,36) = .40).   

It is not surprising that participants have difficulty on the initial couple of problems in the 

Discovery condition.  What is interesting is their apparently high performance on the remaining 

problems.  Individual t-tests confirm that the Discovery condition is statistically superior to the 

Both and the Verbal Direction conditions (t(18) = 2.78, p < .05 and t(18) = 3.35, p < .005) on the 

rest of the problems in the section, but the difference between Direct Demonstration and 

Discovery does not reach significance (t(18) = 1.40, p  < .20).  

 

The total time to solve problems can be decomposed into the number of transformations that 

participants perform and the time per transformation. These measures are shown in Figure 6.   

Part (a) of Figure 6 shows the number of transformations and, for reference, the minimum 

number of transformations required if performance was always perfect.  There are main effects 

of condition (F(3,36) = 3.62, p < .05; MSE = 0.915), position (F(1,36) = 674.70, p < .0001, MSE 

= 0.474) and a strong interaction between the two (F(3,36) = 7.17, p < .001; MSE = 0.474).  The 
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effect of position just reflects the fact that later problems in a section tended to involve more 

transformations.  The interaction reflects the fact that there is almost no effect of condition on the 

first two problems while the conditions separate on later problems in a section.  Participants do 

not do much more than the minimum number of transformations on the first two problems 

because of the special guidance. On the remaining problems the Discovery condition shows the 

fewest number of transformations. A contrast for this effect is highly significant (F(1,36) = 

19.51, p < .0001) while the residual effects in the interaction are not significant (F(2,36) = 1.00). 

Individual t-tests confirm that the Discovery condition is statistically superior to all conditions on 

the rest of the problems in the sections (Both: t(18) = 4.05, p < .001; Verbal Direction: t(18) = 

3.39, p < .005; Direct Demonstration: t(18) = 3.74, p < .005). 

 

Part (b) of Figure 6 shows the time per transformation1. The effect of condition is not significant 

(F(3,36) = 1.69, p < .05; MSE = 170.15) while the effect of position is (F(1,36) = 136.71, p < 

.0001, MSE = 55.42).  The effect of position reflects the speed up with practice that had been 

documented in Figure 4.  There is again a strong interaction between the two factors (F(3,36) = 

9.62, p < .0001; MSE = 55.42) and again this reflects the fact that the Discovery condition is 

worst on initial problems but best for the rest of the problems in a section. Again, a contrast for 

this effect is highly significant (F(1,36) = 27.34, p < .0001) while the residual effects are not 

(F(2,36) = 0.76).  However, this time the effect mainly comes from the slower performance on 

the initial transformations where participants discover how to perform the new transformations.   

This effect is particularly pronounced for the first two chapters where most of the operations in 

                                                 
1 There is a sharp drop off in time per operation for the first two problems in Chapter 4 because 
this chapter mainly involves putting together operations already taught to solve complex 
equations.  Thus, with one exception, the operations are not new. 
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the first problems are new.  Individual t-tests on the rest of the problems find no significant 

differences between the Discovery condition and other conditions (Both: t(18) = 1.68; Verbal 

Direction: t(18) = 1.72; Direct Demonstration: t(18) = 0.60; all p’s > .10). Thus, the total time 

results for the Discovery condition in Figure 5 reflect a decrease in the number of 

transformations performed (Figure 6a) rather than a speed-up in the time per transformation 

(Figure 6b). 

 

There are two major categories of errors in the tutor.  The first, the operator error, involves 

selecting a wrong operator for the boxes chosen (the transitions from state (b) to state (c) and 

from state (e) to state (f) in Figure 4).  This can reflect either that boxes were selected for which 

no operator applies or that the wrong operator was chosen for an appropriate set of boxes.  If the 

participant selects a correct set of boxes and an appropriate operator, one or more green entry 

boxes will appear as in Figures 5c and 5f.  The second type of error, the transformation error, 

involves entering the wrong values for these boxes.   The tutor will accept these wrong values 

and transition to the next state (e.g., wrong versions of states (d) and (g) in Figure 4).  It is only 

this category that the tutor does not reject and, as a consequence, this is the category that can lead 

to the need for extra transformations when the students try to correct their mistake.  The first 

category will just lengthen the duration of a transformation as the students try again for a 

different box-operator combination and so should impact the performance measure in Figure 6b. 

The second category will increase the number of transformations in Figure 6a.   These two 

categories of errors are presented in Figure 7. 
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Part (a) of Figure 7 shows the mean number of operator errors per problem.  The effect of 

condition is significant (F(3,36) = 6.25, p < .005; MSE = 2.67) while the effect of position is not 

(F(1,36) = 1.04, MSE = 1.98). There is again a strong interaction between the two (F(3,36) = 

20.42, p < .0001; MSE = 1.98) and this time it reflects how poorly the discovery participants are 

doing on the first problems where they have to discover box-operator combinations.   The main 

effect of condition also reflects this effect on the first problems.   Again, a contrast for this effect 

on the first problems is highly significant (F(1,36) = 61.02, p < .0001) while the residual effects 

are not (F(2,36) = 0.12). Individual t-tests on the rest of the problems find no significant 

differences between the Discovery condition and other conditions (Both: t(18) =  -0.16; Verbal 

Direction: t(18) = 0.33; Direct Demonstration: t(18) = 1.18; all p’s > .10). 

 

Part (b) of Figure 7 shows the number of transformation errors. The effect of condition is 

marginally significant (F(3,36) = 2.54, p < .10; MSE = 0.189) while the effect of position is quite 

significant (F(1,36) = 38.16, p < .0001, MSE = 0.152) reflecting the strong guidance provided for 

initial problems.  The interaction of these two factors is again significant (F(3,36) = 4.05, p < 

.05; MSE = 0.152)   The interaction reflects the fact that there is almost no effect of condition in 

the first two problems while the Discovery condition is better on later problems where there is 

more opportunity for wrong transformations. Again, a contrast for this effect is significant 

(F(1,36) = 6.88, p < .05) while the residual effects in the interaction are marginal (F(2,36) = 2.64; 

p < .10). Individual t-tests confirm that the Discovery condition is statistically superior to all 

conditions on the rest of the problems in the sections (Both: t(18) = 2.88, p < .01; Verbal 

Direction: t(18) = 2.48, p < .05; Direct Demonstration: t(18) = 2.56, p < .05).  
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In summary, after the first couple of learning problems the Discovery condition enjoys a 

surprising advantage over the other conditions on the remaining practice problems.   Even if we 

add in the first two problems in each section the Discovery condition is at an advantage:  it takes 

an average of 193 minutes to go through all 174 problems whereas the average in the other 

conditions is 226 minutes – an advantage of over half an hour that is quite significant (t(38) = 

3.40, p < .005).   The advantage of the Discovery condition can be traced to the fewer number of 

transformations that participants have to perform.  This in turn can be traced to the fewer 

mistaken transformations that students make, leading to fewer repairs and less confusion about 

how to correct themselves when they are in an error state. 

 

Detailed Analysis of Transformation Errors Section 2.6 

 

The transformation errors In Figure 7b reflect most fundamentally on an understanding of the 

domain because a transformation error (e.g. transforming the graph equivalent of 3 - x = 2 into x 

= 2 + 3) changes the value of numbers that pass through the diagram.  It is the equivalent of 

changing the value of the solution to an equation or the value of an expression.  To illustrate the 

source of these errors we conducted a detailed analysis of Section 2.6 whose sequence of steps 

was illustrated in Figure 4 and whose instruction was given in Table 1.   It is a relatively simple 

section where the Discovery students showed consistent advantages over the other students.  The 

section consisted of 20 problems.   On the final 18 problems, Discovery students took 24.6 

seconds for solutions compared to 39.2 seconds for the other conditions and they made an 

average of 0.01 transformation errors per problem compared to an average of 0.20 in other 

conditions.  In t-tests, Discovery is better than any of the other conditions on both statistics at 
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significance levels of at least .05.  So, this relatively simple section is a microcosm of the whole 

learning experience. 

 

To understand the advantage of the Discovery participants we need to understand the nature of 

these errors that they are avoiding.  Therefore, we will focus our analysis on transformation 

errors in the other conditions.  Figure 8 shows, problem by problem in the section, the mean 

number of transformation errors by the 30 non-discovery participants and a comparison to the 

predictions of a model that we will describe.   When these participants made an transformation 

error over 95% of the time that error was an error in entering the value of the combination 

(transition from state (c) to state (d) in Figure 4) and over 95% of the time they continued until 

they submitted their wrong answer in state (g), received feedback, and asked what their first error 

was and started over again.   The error rate in Figure 8 is definitely not uniform.   Below we 

discuss the peaks above with a greater than .5 error rate: 

(1) Stated in linear algebraic form, the combine step in problem 4 corresponds to translating 

“(5 + x) - 3” into “(5 - 3) + x”. There were 14 students making errors. One participant 

made two distinct errors and so there were 15 distinct errors altogether. Another student 

repeated the same error 3 times. Not counting repetitions, the errors and their frequencies 

were twelve instances of “(5 - 3) - x”, two instances of “(5 + 3) - x”, and one instance of  

“(5 + 3) + x”. 

(2) Stated in linear algebraic form, the combine step in problem 6 corresponds to translating 

“(15 - x) + 9” into “(15 + 9) - x”.  18 participants made 20 distinct combine errors and 

there were four repetitions of the same error. The non-repeated errors and their 
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frequencies were twelve instances of “(15 - 9) + x”, five instances of “(15 - 9) – x”, and 

three instances of  “(15 + 9) + x”. 

(3) Stated in linear algebraic form, the combine step in problem 17 corresponds to translating 

“(54 * x) / 9” into “(54 / 9) * x”. Six participants made nine distinct combine errors with 

eight repetitions. The non-repeated errors and their frequencies were five instances of 

“(54*9) / x”, two instances of “(54 / 9) / x”, one instance of  “(9 / 54) * x”, and one 

instance of  “(9 * 54) * x”. 

The common feature in the majority of errors that participants make for each of these problems is 

that they use the main operator from the first form as the main operator for the second form  (“-“ 

in case 1 above, “+” in the second case, and “/” in the third case).  This erroneous generalization 

is quite tempting in a data-flow-form representation because the box that holds the main operator 

after the transformation is in the same place on the screen as before the transformation.   Figure 8 

also shows the results we obtained from a simulation model that we will describe in more detail 

after the second experiment.2.  The model had a 50% probability of making an incorrect 

interpretation of the instructions for this transformation.  It only makes errors on those trials for 

which this interpretation leads to the wrong answer.  Each time it makes an error it gets another 

opportunity to reinterpret the instruction.  It slowly is able to correct these errors as it reinterprets 

the instructions and reinforces the correct interpretation.   The correlation between model and 

data is .8 and it is able to capture all the peaks in the data but one. 

 

 

                                                 
2 Instructions on how to run this simulation are available along with the model and the 
experimental software at a website to be revealed when author identity can be revealed.  The 
instructions are in the file read&start.lisp. 



 20 

The simulation does not make such errors in the discovery condition because the only way it can 

decide what to enter is by determining what will preserve the value of graph.  In contrast,  

instructed participants can interpret the verbal directions and demonstrated solutions in multiple 

ways, only some of which always correspond to value-preserving transformations.  This 

difficulty is a fundamental problem in a combinatorial domain like algebra where one cannot 

train each possible algebraic form.  The students must be able to generalize the examples on 

which they receive instruction.  

 

As an indication that some participants in the Instruction conditions are making the correct 

generalizations, Table 2 presents a classification of the 40 participants in the experiment 

according to their condition and the four quartiles for error rates (on transformations on all 

problems in the rest of all sections) .   Participants in all conditions can be found in the top three 

quartiles. Thus, it is not that no participant in the direct Instruction conditions could come to 

correct characterizations of the transformations; it is just that some chose other ways of 

characterizing the transformation.   Discovery learning succeeds in this case because it forces 

participants the only way they can discover the transformations is by exploring operations that 

preserve the semantics of the equations. 

 

Discovery Learning in Detail 

 

Section 1-7 is a good section for illustrating how students discover the transformations in the 

first place.   It involves a relatively simple problem but nonetheless one for which Discovery 

students engage in a fair amount of search on the first problem.   There are two transformations 
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involved.  Part (a) of Figure 9 illustrates the search for the first transformation, the invert 

transformation, which is new to the section.  Part (b) of the figure illustrates the search for the 

evaluation operation, which has been used in the previous two sections, but in response to a 

different graphical structure.   The figure illustrates the various states of the tutor for the first 

problem in section 1-7 and the mean proportion of transitions going from each state to the 

various other states that can be directly reached (first proportions for the experiment, second for 

Experiment 2). Many of the states have transitions going back to that same state.   This is 

because many of the actions that students take do not result in any change to the state of the 

tutor.   The proportion of such no-change actions is given on these circular arrows. 

 

The problem starts out as illustrated in the box in the upper left of Figure 9a.   The only actions 

that participants can perform that result in any state changes are clicking boxes.  Clicking a black 

box selects it and turns it red while clicking a red box unselects it and turns it back to black.  In 

addition to clicking boxes, participants click operation buttons (particularly the invert button) or 

try to type something (particularly the value of the problem, 5). Such actions fail to change the 

state change except for clicking the invert button when both boxes are selected. As can be seen 

the students are wandering almost randomly among the 4 states defined by which of the two 

boxes are red.   If they do select the “invert” operator when the two boxes are red they move to a 

state in which a green box appears.  If they click the green box an entry box will appear and it is 

at this point that they have to enter the critical transformation.  While they only enter the correct 

transformation “8 -3” a little more than 20% of the time, their other choices are anything but 

random.  The only other expressions they enter are “5 + 3” and “3 + 5”.   Their other errors are 

just interface errors as they try to enter one of these expressions.   
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There is some search in part b for the evaluation operation. While they have done evaluation 

operations before, the layout of the boxes is different and it has never been after an invert 

transformation.  To perform the operation they need to select just the box to be evaluated and 

click the evaluate operator. As Figure 9b illustrates, there is some tendency to select the bottom 

box which invalidates the evaluate operator.   When they do click the evaluate operator for the 

correct single box, a little green box appears where the value will go.  At this point they seem 

relatively successfully in applying the rest of the evaluation procedure and in particular, almost 

always correctly make the transformation from 8-3 to 5. 

 

As these figures illustrate, in novel states the participants’ discovery process can be characterized 

as random search among a set of interface actions but semantically informed choices about the 

values to enter for the transformations. While there is this extended search through the interface 

options on this first problem, participants are able to learn enough from this one exploration that 

they are better than participants in the other conditions after this one problem.  

 

Experiment 2 

 

The first experiment seemed to reveal very rapid learning after a single discovery episode.   The 

later problems in a section gave us evidence of what participants had learned but did not seem to 

be important to learning.  For instance, discovery students average 26.85 seconds per 

transformation on the first two problems, 10.89 seconds on the next two, and 11.87 second on the 

last two.  Thus, there seems no speed up after the first two problems.   With respect to the critical 

transformation errors, they are making a low 2.1% transformation errors per opportunity on the 
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second two problems (it is hard to make transformation errors on the very first two because of 

the interface) and 1.7% on the last problems.   So, it would appear that we could have gotten the 

benefit of discovery learning with many fewer problems – that it could have been achieved 

without all of this drill and kill.   However, we suspected that practice was giving participants a 

familiarity with the overall system that enabled them to learn so effectively from discovery.  To 

investigate this, the second experiment greatly reduced the number of problems from 174 to a 45. 

We kept the same first two problems for each of the twelve sections but only used 21 of the 

remaining 152 for an average of about two extra problems per section. We tried to keep the 

number of extra problems approximately in proportion to the original frequency in the full set of 

152. The remaining problems per section were one for Section 1-1, one for sect 1-2, four for 

section 1-7, three for section 2-6, two for section 2-7, none for section 3-1, one for section 3-2, 1 

for section 3-4, two for section 3-5, one for section 4-1, two for section 4-2, and two for section 

4-3. 

 

The experiment was performed to investigate a second issue about the first experiment. 

As Table 1 indicated, even though discovery participants did not receive any instruction about 

how to perform the transformations they were given general instructions about the general 

purpose of the transformations – for instance, that the combine operator served to collapse boxes 

with two + or – operators or two * or / operators.   We wanted to determine the contribution of 

these general instructions to learning.   

 

There were no dramatic differences among the three instruction conditions in the first 

experiment.  Therefore, this experiment just used one of the conditions, contrasted the Direct 
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Demonstration condition to contrast with the Discovery condition. Thus, the design of the 

experiment crossed whether participants were given direct demonstrations or not and whether 

there were global instructions or not.   

 

Method 

Participants. Forty undergraduates (27 male and 13 female; M = 23 years, SE = 2.1 years) took 

part in this study. Students participated in one single session that lasted a maximum of 2.5 hours 

and were paid either per time ($5 per half hour) or by performance ($ 0.07 per correct performed 

operation in the tutor). Ten participants were randomly assigned to each of four conditions. They 

reported relative highly last algebra grades (20 As, 11 Bs, 2 Cs, 7missing data) – a very 

comparable distribution to the first experiment. 

 

Procedure. Except for the fewer problems and the removal of the general instructions for half of 

the participants, the tutor and procedures were the same in this experiment as the previous 

experiment.   

 

Results 

 

Qualitatively, results were very different in the Discovery conditions in this experiment than in 

the previous.  Six participants quit in the Discovery condition with global instructions and four 

participants quit in the Discovery condition without global instructions.   They reached points 

were they felt totally lost and did not want to continue.   No participants quit in the direct 

demonstration conditions of this experiment and none had in any conditions of the previous 
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experiment.  In addition, 3 further participants did not have enough time to complete all the 

problems in the Discovery condition with global instructions and 2 did not have time to complete 

all the problems in the Discovery conditions without global directions.  This means only 1 

participant completed the Discovery condition with global instructions and only 4 completed 

without global instructions.  In the direct demonstration condition, only one participant (without 

global instructions) did not complete the problems in the allotted time.  The difference in number 

of participants completing the experiment is quite significant between the discovery and direct 

demonstration conditions (χ2(1)=19.06, p < .0001).  While there was a slightly greater tendency 

for greater participant loss in the Discovery condition with global instructions this was not 

significant (χ2(1)=2.40).  Figure 10 presents the time per problem for those participants who did 

offer observations to a chapter (number of participants contributing is noted on the figure).  Even 

though the poorest performing participants are being eliminated on later chapters, the discovery 

participants are significantly worse than the direct demonstration participants at the .05 level or 

greater with only one exception (the difference on the remaining problems for Chapter 1).   None 

of the differences between the two direct demonstration conditions were significant and only one 

of the differences between the two Discovery conditions was significant  -- Rest of Chapter 3:  

Global worse that no global (t(18) = 2.23, p < .05).   

 

Interpreting the results for Chapters 3 and 4 is problematical for another reason besides the loss 

of over half the participants in the Discovery condition.   Participants in the Direct 

Demonstration condition were asking for a great many hints as they solve the rest-of-the-section 

problems in these chapters.   In Chapters 1 & 2 they averaged 0.04 hint requests per problem 

while they average 3.76 for Chapters 3&4.   For comparison, instructed participants in 
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Experiment 1 averaged .02 requests on the same problems for Chapters 1 & 2 while they 

averaged 1.25 for Chapters 3&4.  The difference between experiments is not significant for 

Chapters 1&2 (t(48) = 1.41) while it is highly significant for Chapters 3&4 (t(48) = 3.22, p < 

.005).  Participants in the Discovery condition could not ask for hints.   While the problems in 

the Chapters 3 & 4 are longer and more difficult, creating the opportunity for hint requests even 

in the first experiment, the high rate of requests in the second experiment makes one wonder to 

what degree the direct demonstration participants were mastering the material in the later 

chapters.  Both Discovery and Direct Demonstration participants seemed to be suffering from the 

lack of earlier practice when they came to these later chapters. 

 

There were no major effects of the presence of global instructions but there are large effects of 

whether the participants were in a Discovery condition or are receiving directions about the 

individual steps of the problem.  We decided to focus further analysis on this factor.   Since all 

participants completed the first two chapters and hint requests were low for these chapters we 

decided to focus on the first two chapters. All the effects of discovery were already in place for 

these two chapters.   Since the effects in this experiment were in such a contrast with the effects 

in the first experiment, we decided to perform a set of analyses that merged the two experiments.  

As the three instructional conditions of the first experiment showed few differences we decided 

to merge them into a single instructional condition and contrasted them with the Discovery 

condition.   Thus, our analysis consists of 80 participants that could be classified according to 

whether they received instruction or were in a Discovery condition and whether they received 

long practice periods or short practice periods.   Besides these two between-participant factors 

there are the within-participant factors of chapters (1 versus 2) and position (first 2 versus rest).  
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In these analyses we will only look at the problems that participants in the both experiments 

solved in common.   The first two problems were the same in the sections and the later problems 

in the Short condition were a subset of the later problems participants solved in the Long 

condition.  

 

The first thing we wanted to establish is that the Long and Short conditions started out the same 

before the practice manipulation set in.   We can test this by looking at the first two problems for 

Section 1.1.   The mean time to solve these two was 57.3 seconds problems in the Long 

Instruction condition, 50.6 seconds in the Short Instruction condition, 77.9 seconds in the Long 

Discovery condition, and 87.9 second in the Short Discovery condition.  The difference between 

instruction and discovery was highly significant (F(1,76) = 11.19; p < .005) but the effect of 

practice length was not (F(1,76) = .04) nor was the interaction between practice length and 

instruction (F(1,76) = .94). 

 

Figure 11 shows the total time to solve an equation broken out into the 4 binary factors of the 

experiment.  For brevity we will again refrain from reporting statistical tests for chapters, but just 

use this to note that the effects are in the same directions for the two chapters. All the main 

effects are significant but it is the interactions among the other three factors that are critical.   

The interaction between practice and instruction is significant  (F(1,76) = 8.53; p < .005) as is the 

interaction between position in the section and instruction  (F(1,76) = 10.45; p < .005).  The first 

interaction reflects the fact that the Discovery condition is doing much worse in the condition of 

short practice.   The second interaction reflects the fact that the disadvantage of discovery is 

much greater for the first two problems where participants are figuring out the operators.  There 
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is not a significant 3-way interaction between practice, instruction, and position  (F(1,76) = 1.53; 

p > .2).  

 

Figure 12 presents the breakdown of total time to solve a problem into the number of 

transformations that participants perform and the time per transformation. Number of 

transformations (part a of Figure 12) shows the same interaction as total time between practice 

and instruction  (F(1,76) = 5.69; p < .05) but not the interaction between position and instruction  

(F(1,76) = 0.12).  This interaction indicates that participants in the Short Discovery condition are 

considerably more lost on the same problems.  Time per transformation (part b of Figure 12) 

shows the interaction between position and instruction (F(1,76) = 21.19; p < .0001) but not the 

interaction between practice and instruction (F(1,76) = 0.94).   The interaction of instruction with 

position reflects the substantial search participants in the Discovery condition have to engage in 

on the initial problems of a section.  

 

Figure 13 shows a classification of the mean errors of the two main types.  Part (a) shows the 

mean number of operator errors per problem.   There are strong 2-way interactions between 

practice and instruction (F(1,76) = 22.65; p < .0001),  position and instruction  (F(1,76) = 32.44, 

p < .0001), and position and practice (F(1,76) = 15.02; p < .0005).  Moreover, the three-way 

interaction between these factors is highly significant (F(1,76) = 14.81; p < .0005).   By this 

measure participants are having much more difficulty on initial problems in the Short Discovery 

condition than any other condition.  Part (b) of Figure 13 shows the number of transformation 

errors. There are 2-way interactions between practice and instruction (F(1,76) = 6.03; p < .05) 

and position and instruction  (F(1,76) = 8.30, p < .01) Moreover, the three-way interaction 
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between these factors is highly significant (F(1,76) = 16.63; p < .0005).  Participants are making 

many more transformation errors on the Short Discovery condition on the later problems in a 

section.   

 

Figure 14 presents a detailed analysis of behavior on the very first problem in Sections 1.7 and 

2.6 which illustrate something that we think gets to the heart of difficulty participants are 

suffering in the Short Discovery condition.   These two sections are distinguished by the fact that 

they all involve exactly two transformations – the first one is new (invert in Section 1.7 and 

combine in Section 2.6) while the second involves the evaluation transformation that they have 

been practicing from the beginning. Figure 14 displays the number of actions more than the 

minimum required taken by participants in the four conditions for each transformation3.  All the 

two-way interactions are quite significant: between practice and instruction (F(1,76) = 13.17; p < 

.0005),  transformation and practice  (F(1,76) = 12.01, p < .001), and transformation and 

instruction (F(1,76) = 15.09; p < .0005).   Moreover, the three-way interaction among practice, 

instruction, and transformation is quite significant (F(1,76) = 11.54; p < .005).  It is clear that 

participants in the Short Discovery condition are having much greater difficulty with the first 

transformation than are participants in any other condition and much greater difficulty than they 

having with the second transformation.  Of particular note is the comparison of this group with 

                                                 
3 For the transformations in Section 2.6, the minimum number of actions for the first 
transformation (going from state (a) to (d) in Figure 4) is 7: two boxes must be selected to get 
from (a) to (b), the combine operator must be selected to get from (b) to (c), and the two green 
boxes must be separately selected and then the results entered to get from state (c) to (d). The 
minimum number of actions for the second transformation (going from state (d) to (g)) is 4: –one 
box must be selected to get from (d) to (e), the evaluate operator must be selected to get from (e) 
to (f), and the green box must be selected and the result entered to get from state (f) to (g).  The 
corresponding minimum number of actions for Section 1.7 is 5 for the first, invert transformation 
and 4 again for the second, evaluation transformation. 
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the Long Discovery participants.   While they are somewhat worse than the Long Discovery 

participants on the second transformation, the difference is not significant (t(28) = 1.25). On the 

other hand, the difference for the first transformation is very large and significant (t(28) = 3.90; p 

< .001).   

 

From a certain perspective it is surprising that the short participants are showing the deficit on 

the first transformation, which is new, and not the second transformation, which is old.  One 

might have expected that the deficit due to lack of practice would show up on the old 

transformation because they have not had as much practice with it.   One might have thought that 

the new transformation would be equally novel to both groups and that there would have been no 

difference.  However, the short participants wander around a great deal more in trying to 

discover what they need to do to achieve the first transformation in these problems.   We will 

discuss the source of this difference and other differences between the experiments in the 

discussion. 

 

Discussion 

 

Frequently advocates of discovery learning are also critics of “drill and kill” programs that 

involve a lot of practice.   However, we found that discovery students only succeeded when they 

had a lot of practice. The most successful students came from the condition of high practice and 

discovery and the least successful students came conditions of low practice and discovery.   In 

contrast, practice seemed to have little beneficial effect on participants with direct instruction (at 

least for the first two chapters).  
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In an attempt to understand why practice was so important to discovery learning we made some 

modifications to an ACT-R model of this task developed by Anderson (2007). ACT-R (Anderson 

et al., 2004) is a cognitive architecture that has been used to model people’s behaviors in a great 

variety of tasks including categorization, learning algebra and geometry, driving while talking on 

a cell phone, and air traffic control (see http://act-r.psy.cmu.edu/ for the variety of tasks 

researchers have modeled).  By specifying behavioral models within such a framework, one is 

forced to make the theory computationally explicit, thus allowing for true evaluation of the 

theory as well as allowing for predictions in novel circumstances.   According to the ACT-R 

theory, cognition emerges through the interaction of a number of relatively independent modules.  

Each of these modules reflects a set of assumptions derived from the empirical literature.   By 

using the same modules for a wide range of tasks one can test the generality of these assumptions 

 

The original ACT-R student model had simple parsing rules for converting instruction into 

declarative representation of operators for transforming equations.  It also had a set of simple 

inference rules for extracting such representations from worked examples.  ACT-R has a general 

system for using declarative representations of operators to solve problems in any domain (see 

Anderson et al, 2004; Anderson, 2005, 2007; Taatgen et al. in press).  We have made two 

modifications to this model to accommodate the results of this experiment, one for the direct 

Instruction condition and one for the discovery learning condition: 

1. Direct Instruction. To model the transformation errors that participants were making in 

the Instruction condition  we made the interpretation of instructions for the critical 

transformation in section 2.6 random between a correct interpretation of the instruction 

and a superficial characterization of the transformation. This was the basis for the 



 32 

detailed model performance in Figure 8.  Note that this implies, consistent with Figure 

13b, that the difference between the Discovery and Instruction conditions in erroneous 

will first appear in Chapter 2. With this one change the model was able to simulate the 

performance of participants through the first 4 sections of the material.  We would need 

to create further superficial instruction interpretations to simulate the later sections. 

2. Discovery Learning. To model the Discovery condition we had to provide ACT-R with 

a means for discovering the transformations.   We provided the model with a set of 

operators that guessed various actions subject to the constraint that they preserved the 

semantics of the data-flow diagrams (again just for the first 4 sections).  The probability 

that any guessing operator applied in a situation depended on its similarity to that 

situation.   We set these similarities to match the distribution of choices observed in the 

participants, and therefore set different values for the Short and Long conditions for 

Sections 1.7 and 2.6.  The model randomly guessed actions according to these 

probabilities until it eventually found a sequence of actions that produced a successful 

transformation. Since the model less often chose useful operators in the Short condition it 

had to engage in more search before discovering a new transformation.  

 

We ran this model on the first four sections of material (Sections 1.1, 1.2, 1.7, and 2.6).  For 

comparison we also ran the instruction model in the condition of direct demonstration.  Figure 15 

provides a problem-by-problem comparison of the data and model for the various problems in 
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the first four sections4.    In part (a) it compares the data and predictions for the Instruction 

condition and in part (b) it compares the data and predictions for the Discovery condition.  

 

Part (a) of Figure 15 for the Instruction condition can be summarized with four observations: 

1. The largest discrepancy between model and data concerns performance of the 

participants in the Short condition for the last problem in Section 1.7 (without the data 

point the correlation improves from .603 to .764).  Participants are much worse than the 

model predicts and much worse than participants in the Long condition.   For participants 

in the Short condition this is the first problem that has involved a fraction and they have 

difficulty figuring out how to enter fractions into the interface.   Participants in the Long 

condition were able to learn how to enter fractions on earlier problems.   These earlier 

problems are not shown in Figure 15 because that figure only shows the problems in 

common.  The model starts out knowing how to enter fractions and so does not predict 

this difficulty. 

2. The model only predicts one major difference between the Short and Long conditions and 

this prediction is confirmed.  This is the last problem on Section 2.6, which is the only 

opportunity to manifest the operator error analyzed in Figure 8 for the Long Instruction 

condition.   The model and participants in the Short condition are struggling much more 

with this problem than in the Long condition.  They are not having the same difficulty in 

the Long condition because they have had earlier opportunities to learn from cases where 

the major operator is not the same after the transformation.   

                                                 
4 Instructions on how to run this simulation are available along with the model and the 
experimental software at a website to be revealed when author identity can be revealed.  The 
instructions are in the file read&start.lisp. 
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3. For the remaining problems in Figure 14a the model correctly predicts that participants 

are only slightly worse in the Short condition than the example condition.  This slight 

difference reflects the slower retrieval times for the less practiced declarative 

information. 

It seems in cases where there is direct instruction the advantage of practice is just to expose 

participants to cases that were not explicitly covered in the instruction.  

 

Part (b) of Figure 15 for the Discovery condition can be summarized with four observations, all 

but the first are successfully predicted by the model: 

1. As in part (a) participants in the Short condition have problems with the last problem in 

Section 1.7, which is their first encounter with fractions.  This is the same phenomenon as 

observed above in point 2 for the direct demonstration condition. 

2. There is very little difference predicted or observed between the Long and Short 

conditions for the first two sections.  This reflects the fact that participants in the two 

conditions start out approximately equally. 

3. However, the next two sections show substantially worse performance for participants in 

the Short condition on the first problems in these sections.   The model predicts this 

because of the greater search. 

4. The deficits from their struggle with the first problem in a section extend to later 

problems in the section, but the deficits are not as large. The model tries to learn from its 

exploration on the first problem by tracing back its actions when it finally succeeds in 

producing a transformation.   However, when the exploration gets too long the model can 

no longer recall all the past steps (which are stored as elements in ACT-R’s declarative 
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memory).  Therefore, the search for correct operators tends to repeat itself on later 

problems.   Moreover, there are not enough later problems to allow the model completely 

master the material for a section before even more new material is added in later sections.  

So the deficits begin to snowball.  

In summary, the Discovery condition in the Short condition is at two deficits – it is not learning 

as much from the first problems and it does not have enough further problems to remedy this 

first deficit. 

 

The Short Discovery condition involves poorer guesses of operators in searching for a 

transformation.  The differences between the Short and Long Discovery conditions largely result 

from this difference.   We think that in the Long condition discovery participants are learning 

how to discover new transformations.   We think this takes the form of learning what not to do.   

For instance, given the interface it never is a good idea to start a problem by typing anything or 

selecting an operator.  One always starts by selecting boxes in the data-flow diagram.   

Participants in the Long condition have learned this by the time they reach Section 2.6 while 

participants in the Short condition have not.  The learning goes beyond learning to discover 

interface actions.  It also extends to learning the critical transformations.  While subjects in the 

long discovery condition were make the fewest transformation errors in Chapter 2, subjects in 

the short discovery condition were making the most (Figure 13b). 

 

Perhaps the most important outcome of this research is the demonstration of a circumstance 

where discovery leads to superior learning.   This positive outcome depends on two factors: 
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(1) The search involved in discovery was sufficiently constrained that it was possible for 

students to remember what they had done after they finally discovery a successful 

transformation..   With such constraints in place and enough experience with the interface 

to guess good actions, students were able to discover transformations without becoming 

lost. 

(2) Successful discovery depends on attending to the semantics of the domain.    The only 

thing that could guide discovery students as to what to type was the constraint that it had 

to preserve the values of the original data flow diagram.   This forced them to attend to 

the semantics at each discovery point. 

As noted, some participants in non-Discovery conditions seemed to be learning 

transformations that also respected the semantics of the diagrams.   There is nothing magical 

about discovery learning and certainly not about the particular version of the Discovery 

condition that we implemented.   For instance, we expect that we would have found every bit 

as much advantage if participants had been guided at every point except when they had to 

enter values, leaving them only to discover what to type in.  This “semi-discovery” condition 

would have been more efficient.   It has also been proposed (Aleven and Koedinger, 2002; 

Roy & Chi, 2005) that the often-demonstrated advantage of self-explanation is that it 

encourages students to come up with correct characterization of transformations.   Thus, 

requiring participants to generate explanations of the transformations might have been as 

beneficial as the discovery condition.  As argued in the introduction, the implications of a 

careful cognitive analysis of instructional interventions is going to be more nuanced than 

simply supporting blanket claims about the superiority or inferiority of discovery learning. 
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Table 1 

Instruction for Section 2.6 

 

 

 
Verbal Direction Direct Demonstration 

Initial General 

Instructions 

"One can collapse two boxes with + or - into a single box and preserve the value of 

the diagram. One can do the same thing with two boxes with * or /." 

State (a) 
"Find two boxes with addition or subtraction 

and click them" 
"Click-This" Arrows 

State (b) "Click the Button Labeled Combine" "Click-This" Arrow 

"Click the little green box." "Click-This" Arrow 

 "Enter the operator from the box above." "Type +" Arrow 

"Click the green big box." "Click-This" Arrow State (c) 

"Enter the number from the box above, then 

the operator from the box below, and then 

the number from the box below." 
"Type 7+3" Arrow 

State (d) 
"Find a box with two numbers and an 

operator and click it." 
"Click-This" Arrow 

State (e) "Click the Button Labeled Evlauate". "Click-This" Arrow 

"Click the little green box." "Click-This" Arrow 

State (f) 
"Find the answer by evaluating the box above 

and enter it." 
"Type 10" Arrow 

State (g) 
"Your answer is correct type the Next 

Problem button." 
"Click-This" Arrow 
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Table 2 

Distribution of Transformation Errors per Problem 
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Figure Captions 

 

Figure 1. A representation of four steps in the solution of an equation with the algebra tutor: (a) 

Selection of a transformation; (b) Filling in of the transformation; (c) Selection of an evaluation; 

(d) Filling in of the evaluation. 

 

Figure 2. Illustration of the interface for the algebra tutor during the filling in of a transformation. 

(a) The linear representation; (b) The data-flow representation. 

 

Figure 3. The data flow equivalents of (a) 5x + 4 = 39 and (b) (2x – 5x) + 13 + 9x = 67. 

 

Figure 4. A comparison of the performance of an ACT-R model with that of: children learning a 

linear form of algebra and adults learning the data-flow form. The dependent measure is time to 

perform a transformation and the independent variable is the position of the problem in the 

curriculum sequence. From Anderson (2007). 

 

Figure 4.   The steps in the solution of a combine problem from Section 2.6.   The two lines 

reflect the two transformations.  The first line starts with the problem (part a), then a part of the 

graph is selected and highlighted in red (part b), then the combine operation is selected resulting 

in part d, and the parts are filled in resulting in part d. The second line starts with part d from the 

previous line, then a part of the graph is selected for evaluation (part e), the evaluation operation 

is selected resulting in part f, and the value is filled in resulting in part g. 
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Figure 5.  Time to solve problems as a function of instructional condition, chapter, and whether 

the problems were the first instructional problems in a section or later practice problems. 

(Experiment 1) 

 

Figure 6.  (a) Mean time per transformation and (b) mean number of transformations as a 

function of instructional condition, chapter, and whether the problems were the first instructional 

problems in a section or later practice problems. (Experiment 1) 

 

Figure 7.  Mean number of (a) operator errors and (b) transformation errors as a function of 

instructional condition, chapter, and whether the problems were the first instructional problems 

in a section or later practice problems. (Experiment 1) 

 

Figure 8.  Transformation errors on the 20 problems in Section 2.6.  The data is averaged from 

30 participants and the model predictions are based on 1000 simulation runs. (Experiment 1). 

This measure is not bounded above by 1 because participants can make multiple errors. 

 

Figure 9.  Search of discovery students through the problem space for the first problem of 

Section 1.7: (a) The states in performing the first invert transformation; (b) The states in 

performing the second evaluate transformation.  The arcs between states are labeled with the 

proportion of times that participants took that arc in the Discovery condition of Experiment 1 

(long) and the Discovery conditions of Experiment 2 (short). 
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Figure 10.  Time to solve problems as a function of instructional condition, chapter, and whether 

the problems were the first instructional problems in a section or later practice problems.  The 

number of participants out of the original contributing to the last two chapters is given above the 

data point for those chapters. (Experiment 2) 

 

Figure 11.  Time to solve problems in the first two chapters as a function of instructional 

condition and whether the problems were the first instructional problems in a section or later 

practice problems. (Experiments 1 & 2 combined) 

 

Figure 12.  (a) Mean time per transformation and (b) mean number of transformations  as a 

function of instructional condition, chapter, and whether the problems were the first instructional 

problems in a section or later practice problems.  (Experiments 1 & 2 combined) 

 

Figure 13.  (a) Mean number of operator errors and (b) transformation errors as a function of 

instructional condition, chapter, and whether the problems were the first instructional problems 

in a section or later practice problems. (Experiments 1 & 2 combined) 

 

Figure 14.  Mean number actions more than minimum on the first problem in  section as a 

function of instructional condition, section, and transformation.  (Experiments 1 & 2 combined) 

 

Figure 15.   Performance of the Long and Short participants and model predictions on the 

problems in the short curriculum in the first four sections: (a) Direct Demonstration; (b) 

Discovery 
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Figure 1 

(a) (b)

(d)(c)
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Figure 2 

 (a) 
                

(b)  
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Figure 3 
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Figure 5 

 

0

20

40

60

80

100

120

140

160

Ch 1 Ch 2 Ch 3 Ch 4 Ch 1 Ch 2 Ch 3 Ch 4

First Two Problems Rest of Section

T
im
e
 t
o
 S
o
lv
e
 P
r
o
b
le
m
 (
s
e
c
.)

Both

Verbal
Direction

Direct
Demonstration

Discovery



 51 

 Figure 6a 
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Figure 7a 

 

 

 

 

 

 

 

 

 

 

Figure 7b 
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Figure 9a 

 Figure 9b 
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Figure 10 
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Figure 11 
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Figure 12a 
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Figure 13a 

 

 

 

 

 

 

 

 

 

 

 

Figure 13b 
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Figure 14 
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