
32-Bit Cyclic Redundancy Codes for Internet Applications

Abstract

Standardized 32-bit Cyclic Redundancy Codes provide
fewer bits of guaranteed error detection than they could,
achieving a Hamming Distance (HD) of only 4 for
maximum-length Ethernet messages, whereas HD=6 is
possible. Although research has revealed improved codes,
exploring the entire design space has previously been
computationally intractable, even for special-purpose
hardware. Moreover, no CRC polynomial has yet been
found that satisfies an emerging need to attain both HD=6
for 12K bit messages and HD=4 for message lengths
beyond 64K bits. This paper presents results from the first
exhaustive search of the 32-bit CRC design space. Results
from previous research are validated and extended to
include identifying all polynomials achieving a better HD
than the IEEE 802.3 CRC-32 polynomial. A new class of
polynomials is identified that provides HD=6 up to nearly
16K bit and HD=4 up to 114K bit message lengths,
providing the best achievable design point that maximizes
error detection for both legacy and new applications,
including potentially iSCSI and application-implemented
error checks.

1. Introduction

Cyclic Redundancy Codes (CRCs) are used in a wide

variety of computer networks and data storage devices to

provide inexpensive and effective error detection capabili-

ties. As data transfer rates and the amount of data stored in-

crease, the need for simple, cheap, and robust error

detection codes increases as well. Thus it is important to be

sure that the CRCs in use are as effective as possible.

Unfortunately, standardized CRC polynomials such as

the CRC-32 polynomial used in the IEEE 802.3 (Ethernet)

network standard [IEEE85] are known to be grossly

suboptimal for important applications. For example, the

802.3 CRC can detect up to three independent bit errors

(Hamming Distance HD=4) in an Ethernet Maximum

Transmission Unit (MTU) having a 1500 byte payload.

But, the theoretical maximum is detection of five independ-

ent bit errors (HD=6) using identical error detection

techniques with a better CRC polynomial.

New standards and applications are continually emerg-

ing that require a high degree of data integrity. While it is

no small matter to refit a widely deployed standard such as

Ethernet to a new error detection scheme, designers of

emerging technology such as iSCSI (a protocol for

Internet-based storage systems [IETF01]) are searching for

improved CRC capabilities. However, no CRC polynomi-

als have been previously identified that satisfy both a desire

for high error detection performance at Ethernet

MTU-length messages as well as good error detection per-

formance for relatively long messages.

The challenge to finding ideal CRCs is that the effective-

ness of any particular code is computationally expensive to

determine, and finding the best code for any particular mes-

sage length among all possible codes has in the past proven

to be computationally intractable. This is particularly true

of message lengths beyond 8K bits, which are commonly

found on general-purpose computer networks and data

storage devices.

In this paper we present the results of the first exhaustive

exploration of the design space for 32-bit CRCs. The entire

set of 1,073,774,592 distinct polynomials has been evalu-

ated for effectiveness for data word sizes of 12112 bits.

A result of completing an exhaustive search is that a de-

finitive list of classes of polynomials that can and cannot

achieve HD better than the 802.3 CRC for MTU-sized mes-

sages has been created. The creation of this list led to the

discovery of a previously unexplored class of polynomial

that combines excellent performance for MTU-sized mes-

sages with good performance for longer messages. This

class of polynomial provides a significantly improved al-

ternative to the CRC currently being considered for iSCSI,

yielding 5 bit error detection (HD=6) for MTU-size pay-

loads and 3 bit error detection (HD=4) to 114K bits. The

class of polynomial previously considered for iSCSI appli-

cations (which was only partially explored by previous

1

Philip Koopman
ECE Department & ICES

Carnegie Mellon University
Pittsburgh, PA, USA
koopman@cmu.edu

Preprint of a regular paper to appear in The International Conference on Dependable Systems and Networks (DSN) 2002.

work) has now been proven to have no polynomials with

HD>4 for MTU-sized messages. Additionally, two new

classes of polynomials have been characterized that are

comparable in effectiveness to previously known results,

but have member polynomials with few feedback taps, po-

tentially simplifying high-speed hardware implementa-

tions.

2. Background

Cyclic redundancy codes (also known sometimes as cy-

clic redundancy checks) have a long history of use for error

detection in computing. [Peterson72] and [Lin83] are

among the commonly cited standard reference works for

CRCs. A treatment more accessible to non-specialists can

be found in [Wells99].

A CRC can be thought of as a (non-secure) digest func-

tion for a data word that can be used to detect data corrup-

tion. Mathematically, a CRC can be described as treating a

binary data word as a polynomial over GF(2) (i.e., with

each polynomial coefficient being zero or one) and per-

forming polynomial division by a generator polynomial

G(x). The generator polynomial will be called a CRC poly-

nomial for short. (CRC polynomials are also known as

feedback polynomials, in reference to the feedback taps of

hardware-based shift register implementations.) The re-

mainder of that division operation provides an error detec-

tion value that is sent as a Frame Check Sequence (FCS)

within a network message or stored as a data integrity

check. Whether implemented in hardware or software, the

CRC computation takes the form of a bitwise convolution

of a data word against a binary version of the CRC polyno-

mial.

Error detection is performed by comparing an FCS com-

puted on a piece of retrieved or received data against the

FCS value originally computed and either sent or stored

with the original data. An error is declared to have occurred

if the stored FCS and computed FCS values are not equal.

However, as with all digital signature schemes, there is a

small, but finite, probability that a data corruption that in-

verts a sufficient number of bits in just the right pattern will

occur and lead to an undetectable error. The minimum

number of bit inversions required to achieve such unde-

tected errors (i.e., the HD value) is a central issue in the de-

sign of CRC polynomials.

The essence of implementing a good CRC-based error

detection scheme is picking the right polynomial. The

prime factorization of the generator polynomial brings with

it certain potential characteristics, and in particular gives a

tradeoff between maximum number of possible detected er-

rors vs. data word length for which the polynomial is effec-

tive. Many polynomials are good for short words but poor

at long words, and the converse. There are relatively few

polynomials that are excellent for medium-length data

words while still being good for relatively long data words.

Unfortunately, prime factorization of a polynomial is not

sufficient to determine the achieved HD value for any par-

ticular message length. A polynomial with a promising

factorization might be vulnerable to some combination of

bit errors, even for short message lengths. Thus,

factorization characteristics suggest potential capabilities,

but specific evaluation is required of any polynomial before

it is suitable for use in a CRC function. While many previ-

ous results for CRC effectiveness have been published, no

previous work has attempted to achieve complete screening

of all possible 32-bit polynomials.

3. Previously known 32-bit CRC polynomials

At a general level, the effectiveness of a CRC can be ex-

pressed as the minimum Hamming Distance (“HD”) of the

codewords created by appending computed CRC values to

network messages or other data words of interest. If all re-

sulting codewords have an inter-codeword Hamming Dis-

tance of at least m bits, then the CRC is guaranteed to detect

all possible errors involving (m-1) or fewer bit inversions.

Typically, a high percentage of bit errors numbering m or

more are detectible. For CRC polynomials divisible by

(x+1), all odd numbers of bit inversions are detected, but all

even numbers of bit inversions suffer an undetected error

rate approximately twice as high as for other polynomials.

Finally, all burst errors of size less than or equal to the num-

ber of bits in the CRC are detected (that property is not the

primary consideration of this work and remains intact for

all the codes we consider).

A critical measurement of CRC effectiveness for general

purpose computing is the HD at an Ethernet MTU message

size of a 12112 bit data word. Thus the search for CRC

polynomials can be concentrated on maximizing achieved

HD for MTU-sized data words.

The IEEE 802.3 standard adopts the CRC polynomial:

x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

(this is irreducible, but not primitive). We represent this

polynomial as a 32-bit hexadecimal number 0x82608EDB.

The leading “8” of this number corresponds to the top four

(x32 through x29) polynomial coefficients, with lower order

bits corresponding to lower order coefficients, down to the

trailing “B,” which refers to the terms (x4+x2+x). The “+1”

term is implicit in this representation, permitting represent-

ing a polynomial of degree 32 using a 32-bit integer as is

common practice in software CRC implementations.

A polynomial’s effectiveness is evaluated by computing

weights for that polynomial. A weight Wi is the number of

occurrences of a combination of i error bits, including bit

errors perturbing the CRC value, that would be undetected

by a given polynomial for a given data word length. For ex-

2

ample, the 802.3 CRC has a weight at message

length=12112 bits of {W2=0; W3=0; W4=223059; ...}. This

means this particular polynomial, when used with a 12112

bit data word, will detect all 2-bit errors, and detect all 3-bit

errors, but fail to detect the 223,059 four-bit possible errors

within
12144

4

12144

4 12140
906 1012

 = = ⋅!

! !
different

possible combinations of 4-bit errors that could occur

across a 12144-bit codeword (slightly more than 1 out of

every 232 possible errors would be undetectable). While

this is a small proportion of errors to go undetected, the in-

creasing amount of data being transmitted and stored

worldwide suggests that higher detection rates are desir-

able, or at least that lower detection rates should not be ac-

cepted without question as longer data words are being sent

and stored.

Weights beyond the first non-zero weight are largely un-

important when evaluating a polynomial for general pur-

pose network applications. That is because, assuming

independent and moderate bit error rates (BERs), each suc-

cessive number of bit errors is less likely to occur by a fac-

tor approximately equal to the BER value. So on a network

with a 10-6 BER, a five-bit error is approximately 106 times

less likely than a four-bit error. Additionally, because a

CRC can always detect 1-bit errors, weights for positions

less than 2 are always zero and thus not reported. (While

situations with high BERs do occur, in most cases other er-

ror detection mechanisms such as message format errors,

bit encoding phase violations, and high level protocol hand-

shake failures also take place. Thus, CRC effectiveness at

moderate BER values at which only a fraction of messages

are corrupted is often the most important networking case

from a practical point of view.)

Figure 1 shows a comparison of the HD values of vari-

ous polynomials identified during the survey discussed in

this paper. All HD values are exactly calculated for data

word lengths up to 128K bits (131072 bits). Similarly, Ta-

ble 1 gives the data word bit lengths stating which HD val-

ues apply to each polynomial. For example, the 802.3

polynomial has a HD greater than or equal to 8 up to a data

word length of 91 bits, HD=7 to 171 bits, HD=6 to 268 bits,

HD=5 to 2974 bits, HD=4 to 91607 bits, and HD=3 to at

least 128K bits.

3

DATA WORD LENGTH (Bits)

H
A

M
M

IN
G

D
IS

T
A

N
C

E
(B

it
s
)

0x992C1A4C {1,1,30}

0xFA567D89 {1,1,15,15}

IEEE 802.3 {32}

0x8F6E37A0 {1,31}
0x90022004 {1,1,30}

0xD419CC15 {32}

0x80108400 {32}

0xBA0DC66B {1,3,28}

2

3

4

8

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

40B Ack Packet 512+40B Packet 1 MTU 2 MTU 4 MTU 8 MTU

2

3

4

5

6

7

8

Figure 1. Error detection capabilities of selected 32-bit CRC polynomials.

Several significant message lengths are marked on Fig-

ure 1. The two most frequently encountered message

lengths on Internet traffic are 40-byte acknowledgment

packets (400 bit data word including 80 bits of protocol

overhead) and acknowledgment packets additionally con-

taining 512 bytes of data (4496 bit data word). The Ether-

net size for an MTU message is a 12112 bit data word (this

forms a 12144 bit codeword including the 32-bit CRC

value). Larger potential message sizes of interest are mul-

tiples of the 1500-byte MTU payload size.

While the general limit to HD that is attainable for an

MTU-size message is 6, actually finding a polynomial that

achieves that performance is computationally very expen-

sive. The starting point for determining a HD value is

based on the exploitation of the linearity of CRCs. Con-

sider the fact that a data corruption is undetectable if and

only if it transforms one codeword (some payload with its

valid FCS value) into a different valid codeword. But be-

cause CRCs are linear, this means that the faulty bits that

have been flipped from the original codeword have to

themselves form a valid codeword. (In other words, the bits

flipped in the message payload have to be compensated for

by bits flipped in the FCS field, and the only way this can

happen is if the entire set of bits flipped is itself a valid

codeword.) This means that the actual data in a message

payload is irrelevant in computing error detection abilities,

which simplifies things greatly. Because each undetectable

error pattern is itself a codeword, this also means that deter-

mining the minimum HD for a polynomial is equivalent to

determining the lowest non-zero weight for that polyno-

mial. Furthermore, the weights of a polynomial give the

number of undetectable errors for corresponding numbers

of error bits.

Thus, there is a relatively simple way to determine the

number of k-bit undetected errors for an r-bit CRC polyno-

mial used to provide error detection for an n-bit payload.

4

HD

IEEE 802.3

0x82608EDB

{32}

Castagnoli

(iSCSI)

0x8F6E37A0

{1,31}

Koopman

0xBA0DC66B

{1,3,28}

Castagnoli

0xFA567D89

{1,1,15,15}

Koopman

0x992C1A4C

{1,1,30}

Koopman

0x90022004

{1,1,30}

Castagnoli

0xD419CC15

{32}

Koopman

0x80108400

{32}

15 8-10

14 8

13

12 11-12 9-20 8-16 8-11 8-16 8-17

11 13-21 18-21

10 22-34 21-47 17-18 12-24 17-26 22-27

9 35-57

8 58-91 48-177 19-152 25-274 27-134 28-58

7 92-171 59-81

6 172-268 178-5243 153-16360 275-32736 135-32737 8-32738 82-1060

5 269-2974 1061-65505 8-65505

4 2975-91607
5244-

131072...

16361-

114663

32737-

65502

32738-

65506

32739-

65506

3
91608-

131072...
...

2 114664+ 65503+ 65507+ 65507+ 65506+ 65506+

Table 1. Message lengths in bits (exclusive of CRC field) for which the specified HD is achieved.

(Computed to data word length of 131072.)

All possible combinations of bit patterns with k bits set in

an r+n wide bit field can be tested to see if they form a code-

word. If no such bit patterns are codewords, then the CRC

has Wk=0 and provides perfect detection of k-bit errors. To

determine the first kmax weights of a polynomial, this enu-

meration can be iterated by increasing k over the range of

{2,..,kmax}. The complexity of each iteration for each poly-

nomial considered is the combinatorial complexity of con-

sidering (n+r) thinks k at a time, which is proportional to:

()n r

k

n r

k n r k

+

 =

+
+ −

!

! () !
. This has a computational

complexity of approximately O((n+r)k) for each value of k

for small values of k, with the kmaxth iteration dominating

the computational complexity.

This computation must be repeated for every possible

r-bit polynomial. Each polynomial has its top bit set. Addi-

tionally, only one of each pair of reciprocal polynomials

need be checked [Peterson72] (reciprocal polynomials are

readily identified by the fact that their coefficients are

bit-reversed from each other). These facts reduce the po-

tential search space from 2r to 2r-2 polynomials, yielding

approximately 230 distinct 32-bit CRC polynomials to be

evaluated. (There are a few more than 230 polynomials be-

cause polynomials that are palindromes are self-reciprocal

and thus do not permit elimination of a companion recipro-

cal polynomial from consideration.) This makes the algo-

rithmic complexity for a complete search O(2r-2(n+r)k)

A pure brute force approach would be dominated by the

computation time required to evaluate all combinations of

12144 bits taken 6 at a time (4.45⋅1021) for each of approxi-

mately 230 candidate polynomials. This requires examina-

tion of more than 4.78⋅1030 bit combination/polynomial

pairs. Even at one billion such pairs per second evaluated

by each of one million parallel processors, this computation

would take 151 million years to complete, and thus is in-

tractable.

Mathematicians have spent many years creating less

computationally intensive approaches. The culmination of

that work for 32-bit CRCs can be found in [Castagnoli93].

Castagnoli et al. evolved Fujiwara’s techniques

[Fujiwara85] based on constructing dual codes. Addi-

tionally, they built special purpose hardware that was able

to evaluate the weights of polynomials that had been care-

fully selected based on prime factorization characteristics.

The complexity of this technique (when implemented with

special-purpose hardware capable of many concurrent op-

erations) for evaluating a polynomial at a given codeword

length is 232 operations. While searching all 230 candidate

polynomials was still intractable, searching selected poly-

nomials from promising classes was feasible, with execu-

tion time reported to be 107 to 215 seconds per polynomial

using a 40 MHz clock. (At this rate, evaluation of all poly-

nomials would have taken in excess of 3600 years on the

single copy of special-purpose hardware available, so only

partial exploration was performed. Performing a massively

parallel distributed computation using otherwise idle com-

puters would be impossible because special-purpose hard-

ware was required to attain this level of computational

speed.)

In describing previous work and results we use the fol-

lowing shorthand notation to represent factorization of a

polynomial: {d1, .., dk}, where each “d” represents the de-

gree of a factor. Thus “{1,3,28}” represents the set of all

polynomials whose irreducible factorization is:

“(x+1)(x3+..+1)(x28+..+1)” (i.e., has irreducible factors of

degrees 1, 3, and 28).

Using their special-purpose hardware, Castagnoli et al.

found optimal (lowest-weight at the lowest HD) polynomi-

als for several factorization classes of 32-bit polynomials.

Three classes of polynomials of those examined are poten-

tially of interest when improving upon the 802.3 CRC. (It

should be noted that Castagnoli’s work was not specifically

intended to address this particular problem. However, it is

the most relevant existing data source available for that pur-

pose.) Those three classes are {1,1,15,15} polynomials,

{32} polynomials, and {1,31} polynomials.

First, [Castagnoli93] reports that the optimal

{1,1,15,15} polynomial is 0xFA567D89=(0x1�0x1�

0x4008�0x642f), which gives HD=6 up to almost 32K bits.

(No polynomial gives HD=6 at exactly 32K bit data word

length.) This polynomial would be suitable for MTU-sized

data words, but does not work well above 32K bit. (The

published polynomial in Table XI of [Castagnoli93] has an

error; it is incorrectly given as 1F6ACFB13, but should

have been 1F4ACFB13, a one-bit difference. The

factorization given in that table yields the correct polyno-

mial that matches one of the polynomials found in our re-

sults. Thus it can be assumed this is merely a minor data

transcription error. The incorrectly published polynomial

has HD=6 up to a length of only 382 bits and so should not

be used.)

Second, [Castagnoli93] reports that a {32} polynomial,

0xD419CC15 (irreducible, although not primitive), gives

HD=5 up to almost 64K bits. (No polynomial gives HD=5

at exactly 64K bit data word length.) This polynomial

would improve upon the 802.3 CRC by one bit of HD, and

extend coverage at HD=5 out to almost 64Kb, making it an

attractive alternative for messages longer than an MTU.

However, it drops to HD=2 above 65505 bits. This polyno-

mial was selected from a restricted class of irreducible

polynomials, but nonetheless achieves the best possible HD

values at 32Kb to 64Kb.

Third, [Castagnoli93] reports that the best evaluated

polynomial of the form {1,31}, where the larger factor is

primitive, is 0x8F6E37A0=(0x1�0x7ADA129F). This

5

code has the promising property of keeping HD=4 out to

very long data words, but only has HD=6 up to less than

half an Ethernet MTU. However, the authors state that the

search was limited by available compute time on the spe-

cial-purpose hardware, and that there was only time to in-

vestigate 47,000 such codes out of 6.93⋅107 possibilities

(there are more {1,31} polynomials than that, but the au-

thors of that study only considered 31-bit polynomials that

were primitive).

The fact that the exploration of {1,31} polynomials was

incomplete leaves open the intriguing possibility that there

might be other, previously unknown, polynomials that

achieve HD=6 for an Ethernet MTU without sacrificing

achieving HD=4 at data words sizes in excess of 64Kb. Ad-

ditionally, there might be other forms of polynomials not

explored that provide other similarly useful message length

vs. error detection capability tradeoff points.

4. An exhaustive search for 32-bit CRCs

While it is easy to argue that retrofitting an existing stan-

dard such as Ethernet is impractical, there always seem to

be new standards being created that might well adopt a su-

perior CRC polynomial. For example, the team creating

the draft iSCSI standard is in the process of designing a pro-

tocol that will involve messages of MTU size or larger and

that will use 32-bit CRCs to assure data integrity of trans-

mitted messages [Satran01].

A study of CRC effectiveness was completed by

Sheinwald et al.[Sheinwald00] as part of the iSCSI defini-

tion effort. That report recommends adoption of

Castagnoli’s {1,31} polynomial 0x8F6E37A0 to achieve

good performance on short data words while not sacrificing

HD=4 performance on longer data words. A good way to

improve upon this selection would be to find a polynomial

with HD=5 (or even HD=6) at 12112 bits that still has

HD=4 to somewhat beyond 64Kb.

4.1. The search technique

Rather than embellish upon existing mathemati-

cally-based approaches, we opted for a brute-force

enumerative approach that could be implemented with high

efficiency on standard computing platforms. Beyond al-

lowing us to build upon mature software that had already

proven itself in use for embedded network error detection

evaluation, using software on conventional computing plat-

forms permitted achieving the following goals:

• Examine all possible polynomials without being limited

to those which have certain theoretical properties.

• Reproduce previous results via an independent

methodology both to validate our approach and

demonstrate reproducibility for previous work. Indeed,

our work discovered an data reporting error in

[Castagnoli93], which might have caused a problem if

someone had simply used the published polynomial

given without investigation of its properties.

Additionally, this validation step provided an

independent check against any transient errors that

might possibly have affected those earlier computations

on special-purpose hardware.

• Attain scalability via using idle computing cycles and

riding the technology curve of standard platforms, both

of which are difficult to achieve with the use of custom

hardware that is required to attain high speed operation

with other approaches.

The software used for the search was very carefully opti-

mized and tuned C++ code running on a Digital Unix

Alphastation platform (Sparcstation and Windows

2000/PC platforms were also used with identical source

code). The software examines all possible combinations of

k bit errors across an n-bit data word plus r-bit FCS field,

with r=32. While previously argued herein (and by previ-

ous publications) that this approach was intractable, suc-

cess was achieved by spending extreme care building the

code for speed and using the following algorithmic com-

plexity-reduction techniques in combination:

• Filtering out polynomials rather than computing exact

weights. Since it was desirable to improve upon the

HD=4 802.3 CRC performance, all polynomials were

first evaluated for non-zero weights for 2-, 3-, and 4-bit

errors. If any of these weights were non-zero, there was

no need to compute weights for 5 and 6 bit errors.

• Early bailout of weight evaluation. Furthermore,

there is no need to compute exact weights for 2, 3, and 4

bits for most polynomials. This is because the first

non-zero contribution to a weight dooms a polynomial

to failure, so there is no point in continuing the weight

computation. Thus, only one undetected pattern of

errors need be found for any polynomial at a given

length, with a result of terminating evaluation of a

polynomial and filtering it out of consideration. Because

only a tiny fraction of polynomials has HD>4 at 12112

bit data word length, this permitted short-circuiting the

computation of almost all polynomials quite quickly

compared to complete computation.

• Exploiting common behavior of error detection

failures. After the first few thousand polynomials were

checked, it was determined that the majority of

polynomials had at least one undetected error that

involved bits in the FCS field. Therefore errors with one

or two FCS bits inverted were tried first, speeding the

average time to encountering an undetected error. (It

should be emphasized that all reported polynomials with

HD>4 were the result of exact weight computations.

6

This approach merely maximizes the filtering speed by

looking for likely undetected error cases first.)

• Filtering with increasing lengths. Because the cost of

filtering each candidate is in the worst case O((n+r)4) to

filter for 4-bit error vulnerabilities, polynomials can be

first filtered at a shorter length n. For example,

evaluating polynomials for HD>4 at length 1024 is

almost 17,500 times faster than at length 12112 bits, and

successfully filters the overwhelming majority of

polynomials evaluated. Because the HD of a

polynomial can only stay equal or be reduced with

increasing data word length n, any polynomial filtered at

a short length can be removed from consideration before

filtering the remaining polynomials for that same HD at

longer lengths.

• Inverse filtering with decreasing lengths. Once

candidate polynomials are identified via filtering,

inverse filtering can be applied to determine a maximum

length at which any of a set of polynomials achieves a

particular HD value. Iterative evaluations decrease

lengths to establish successively shorter upper length

bounds. Runs at long lengths reject all polynomials

quickly using the early-out filtering approach, providing

a firm upper length bound by proving no polynomials

examined achieve the desired HD value. Reducing that

bound until run time increases dramatically gives a good

detection tool to find the maximum length for which the

HD being filtered for can be achieved. (An example is

provided below.)

Thus, significant speedup was achieved by using a vari-

ety of filtering techniques to avoid computing exact

weights, and instead using an early-out approach to detect

non-zero weights without completing full weight calcula-

tions. Nonetheless, filtering preserves the property that all

results reported at the end of the process are exact. While

this discussion is in the context of MTU-sized messages,

the techniques are generally applicable to any CRC selec-

tion process.

An example of the somewhat subtle tradeoffs involved

in using these filtering techniques in combination is the cre-

ation of the data shown in Figure 1 and Table 1. Consider

the task of determining precisely where the 802.3 polyno-

mial from Figure 1 transitions from HD=5 to HD=4. Given

knowledge that this transition cannot happen at a payload

size greater than 64K bits, a reasonable baseline method to

do this might be to perform a classical binary subdivision

search for the transition over a span up to 64K bits, looking

for successively smaller intervals in which the lower of two

message lengths has HD=5 and the upper of two message

lengths tested has HD=4.

A straightforward approach would be to compute the

first 5 weights of the polynomial for each length considered

in the search and then evaluate them. If we assume that

64K bit payloads have HD=4, then the first point to

evaluate in a binary subdivision search might be 32K bits.

Evaluating the first 5 weights at 32K bits takes a long time

(we estimate it would take more than 5 months, which is far

longer than we were willing to wait for a test run to com-

plete).

A speedup can be obtained by realizing that computing

the value of the fifth weight is unnecessary. In fact, all that

need be done is compute the first four weights (this is a use

of the filtering technique previously described). If all four

weights are zero for that length, then it is certain that HD≥5.

If any of the first four weights are non-zero, then HD≤4.

Thus the break point from HD=4 to HD=5 can be found

simply by looking for the shortest length at which the fourth

weight becomes non-zero. Computing only the first four

weights at 32K bits takes approximately 7 minutes – a sub-

stantial speedup.

A further improvement can be made by implementing

early bailout. With early bailout, the evaluation software is

modified to check the computation of weights periodically

to detect any of weights 2 through 4 being non-zero, with

the computation bailing out as soon as that happens. The

result is not a precise weight value, but rather a logical flag

that is true if any of weights 4 or less is non-zero, and false

if all of them are zero. Because this is actually the only in-

formation needed to perform the search for the break-point

(namely, deciding whether HD is above 4 or not), this result

suffices. The execution time now depends on the particular

polynomial and order of evaluation. Adding the exploita-

tion of common behavior optimization as well to provoke a

bail-out as early as possible results in an execution time of

less than 7 seconds at 32K bits, compared to 7 minutes with

just filtering. Note that this optimization is probabilistic,

and depends on the particular polynomial being tested as

well as message lengths. But it works very well in practice,

especially when there are a large number of undetectable

errors that are spread throughout the evaluation space for

any particular polynomial.

Given that evaluations of longer payloads can still take a

significant amount of time in the context of examining a

billion polynomials, a further improvement is to evaluate

the polynomial at HD=4 for 256 bits, 512 bits, 1K bits, 2K

bits, and so on until the HD=5 to HD=4 break point is strad-

dled (filtering with increasing lengths). Exact evaluation at

4K bits for HD=4 takes less than 6 seconds, and evaluation

at 2K bits takes less than 1.5 seconds, straddling the break

point. This means that a search exploiting increasing

lengths followed by a binary search to narrow results within

the first interval spanning the break point succeeds in less

than a minute of total CPU time. This approach also takes

less time than a full binary subdivision search even though

it generally requires a few more evaluations, because the

7

evaluations performed are concentrated on smaller sized

payloads and thus run quickly.

The final optimization of inverse filtering relies upon a

further exploitation of the early-out evaluation speedup to

provide prediction of results via monitoring of execution

time as well as fast computation of upper length bounds.

Consider evaluating the 802.3 polynomial at the break

point being discovered, i.e. at lengths of 2974 bits and 2975

bits with early-out evaluation. Evaluation of the first four

weights at 2974 bits takes 2.7 seconds to determine that all

four are zero. However, evaluation at 2975 bits takes only

1.9 seconds to determine that there is at least one unde-

tected 4-bit error at that length. Full evaluation to find out

there is in fact exactly one such undetected error takes the

full 2.7 seconds at 2975 bits, but the early-out approach

does not have to complete the full computation since it hap-

pens to find the undetected error 1.9 seconds into the com-

putation. This illustrates that early-out location of an

undetected error at a longer length can be faster than

discovering that all errors are detected at a shorter length.

Thus, a search that biases its selections to increase the

probability that it will look above a break point rather than

below it will tend to run faster. In this particular case the

speed differential is small enough that the results of em-

ploying this technique are not clear-cut. But at longer mes-

sage lengths the results are significant. An application of

particular importance is attempting to find the highest

length at which no possible polynomial provides a particu-

lar HD as opposed to a search that evaluates many polyno-

mials offering a particular HD.

As a further example of an opportunity for inverse filter-

ing, computing that HD<6 for 0xBA0DC66B at 16361 bits

takes 7.4 seconds via finding at least one non-zero weight

among the first five weights. But confirming that at 16360

bits has HD=6 would take approximately 19 days. Thus

when finding this breakpoint, the binary subdivision search

strategy was modified to abort an evaluation after 30 sec-

onds and to consider long execution time to be an implicit

confirmation of HD=6 for any particular length, homing in

on 16361 as the shortest length with HD<6. Then a single

calculation at a length of 16360 can be permitted to run to

completion in order to confirm the result.

Of course many combinations of these filtering tech-

niques are possible. An important one for this work was

first obtaining a list of HD=5 and HD=6 polynomials at

Ethernet MTU data word lengths (as a filtering step based

on increased lengths). Then this small list of polynomials

was inverse filtered with lengths working downward from

128K bits to find the maximum data word lengths for HD=5

and HD=6 without having to actually compute complete

HD values.

4.2. Experimental results

In the end, even with all the filtering and computational

techniques that could be brought to bear, the enumeration

of all billion possible 32-bit polynomials was a formidable

task. The initial filtering lasted from late May to early Sep-

tember 2001 and made use of otherwise idle workstations.

Approximately 50 Alphastations (an even mix of 400 MHz

and 500 MHz processors) were kept running continuously

for over three months, and 30 UltraSparc machines were

used intermittently for two months. When the computa-

tions had been completed, all polynomials with HD>4 at a

12112 bit data word length had been discovered via filter-

ing out polynomials failing to have zero 2-, 3-, and 4-bit

weights.

The average computation rate was approximately two

polynomials filtered per second per CPU. This filtering

technique implemented on a general purpose workstation

was an order of magnitude more efficient than exact evalua-

tion using special purpose hardware as reported in

[Castagnoli93]. Specifically, filtering was more than 200

times faster in absolute terms, but took advantage of newer

technology with a 10-time faster clock speed for an overall

speedup of more than 20 on a clock-for-clock basis. The

time required to filter any particular polynomial was vari-

able because it depended on how long it took to encounter

the first non-zero weight, but the vast majority of polyno-

mials benefitted from examining errors involving one or

two bits in the FCS field first.

Further filtering at HD=5 of those polynomials left

21,292 polynomials with HD=6 at 12112 bit message

lengths. Evaluating the precise weight of each HD=6 poly-

8

Factors Size of Factors
Distinct

Polynomials

3 {1,1,30} 658

3 {1,3,28} 448

4 {1,1,15,15} 9887

4 {1,1,2,28} 895

4 {1,3,14,14} 4154

5 {1,1,1,1,28} 448

5 {1,1,2,14,14} 2639

6 {1,1,1,1,14,14} 2263

Table 2. Number of polynomials having HD=6 at

MTU length for different irreducible

factorizations.

nomial is still impractical, but is expected to become practi-

cal in a few years with faster workstations.

Of the HD=5 polynomials, the {1,1,15,15} class investi-

gated by Castagnoli et al. was verified to indeed provide its

claimed properties. Further filtering analysis indicated that

the class {1,1,30} had similar properties. A potentially use-

ful polynomial reported in Table 1 is 0x90022004=

(0x1�0x1�0x2FFF5FFE), which is the polynomial with the

fewest non-zero coefficients that attains HD=6 up to almost

32Kb. (Having only five non-zero coefficients may help in

creating high-speed combinational logic implementation of

CRCs by reducing logic synthesis minterms.)

0x992C1A4C=(0x1�0x1� 0x2D095216) was also selected

for characterization as a representative {1,1,30} polyno-

mial and has error detection performance comparable to

Castagnoli’s {1,1,15,15} polynomial.

As it turns out, all polynomials with HD=6 were divisi-

ble by (x+1) as shown in Table 2. This gives them the prop-

erty of incorporating an implicit parity bit, enabling them to

detect all odd number of bit errors.

No polynomials were found that best Castagnoli’s {32}

primitive polynomial at or above 12112 in terms of HD.

Due to computational resource limitations, filtering was not

attempted on the very large number of primitive 32-bit

polynomials to see if there were one with HD>4 at a length

beyond 1060 bits. However, it is certain that none has

HD>4 at 12112 bits because all {32} polynomials found at

that length are irreducible but non-primitive. The {32}

polynomial 0x80108400 was identified as a polynomial

with the minimum possible number of non-zero coeffi-

cients that achieved HD=5 up to nearly 64Kb.

Inverse filtering was used to ensure that there were no

possible polynomials of any class with HD=6 at or above

32739 bits and no polynomials with HD=5 at or above

65507 bits of data word length. The newly found polyno-

mials reported in Table 1 extend one or two bits of data

word length past the Castagnoli polynomials at HD=5 or

HD=6, although this is only a negligible improvement for

most applications.

4.3. A better iSCSI candidate polynomial

An example of an application for a new 32-bit CRC

polynomial is iSCSI. iSCSI is a work in progress, but the

point of discussing it is to demonstrate that new polynomi-

als can and are being sought after for new standards as well

as demonstrate a concrete opportunity for improvement

over existing recommended 32-bit polynomials.

[Sheinwald00] concludes that [Castagnoli93]’s {1,31}

polynomial 0x8F6E37A0 presents a good tradeoff between

being no worse than the 802.3 CRC for MTU-size mes-

sages, and maintaining HD=4 up to large data word sizes.

And in fact, this polynomial is in the draft versions of iSCSI

documents (e.g., [Satran01]).

Given that single Ethernet-sized packets are likely to be

transported on an iSCSI network in addition to packed

multi-MTU data storage packets protected by a single

CRC, it would seem there is an advantage to having HD=6

error detection coverage for MTU-sized data words in addi-

tion to maintaining the HD=4 detection achieved by the

iSCSI polynomial for long messages. Improved error de-

tection performance can be achieved by using the {1,3,28}

polynomial 0xBA0DC66B=(0x1�0x6�0x82CA9A0) de-

scribed in Table 1. This polynomial achieves HD=6 up to

almost 16Kb and HD=4 up to 114,663 bits, which is more

than 9 times an Ethernet MTU data word size and suffi-

ciently large for iSCSI purposes. Thus, the use of this

newly evaluated polynomial class offers an opportunity for

improved error detection for an emerging standard.

4.4. Other potential applications

Stone et al. [Stone00] discovered that corrupted network

packets are far more prevalent than might be anticipated

from bit error rates alone, with CRCs being relied upon to

detect corrupted data once every few thousand packets. As

a solution they strongly urge use of an application-level er-

ror checking code to supplement network error checking.

The polynomials described in this paper offer a variety of

length vs. error detection performance tradeoffs for such

application usage.

Another potential application for a 32-bit CRC polyno-

mial that has both HD=6 for Ethernet MTU length mes-

sages and HD=4 to longer lengths is for jumbo packets in

Gigabit Ethernet. Currently available Gigabit Ethernet

cards seem to support a de facto standard of 9000-byte

jumbo packet payload sizes (data word size of 72112 bits),

and such an approach is entering consideration for stan-

dardization. These jumbo packets use the existing IEEE

802.3 polynomial. It might possibly be argued that since

new interface cards have to be designed to operate at high

bit rates, these new cards could have both the legacy poly-

nomial for slower speed backward compatible messages

plus a new polynomial for high-speed messages. Unfortu-

nately there is probably already enough hardware already

built for Gigabit Ethernet that doing so is unrealistic. But

the opportunity might well remain for the next generation

of Ethernet cards beyond 1 Gigabit per second speeds.

4.5. Validation

Software validation was accomplished by a combination

of reproducing known results for exhaustive searches of 8-

and 16-bit polynomials, creating unit and system test pro-

grams, comparing answers obtained with “simple” code to

9

optimized code, and comparing results to existing publica-

tions for 32-bit polynomials.

Two key invariants unrelated to the software

implementation were monitored. Polynomials divisible by

(x+1) were checked to ensure that all odd-numbered

weights computed were in fact zero, even though the soft-

ware did not exploit this fact when performing evaluations.

Additionally, weight values were ensured to be non-de-

creasing when computed over increasing payload lengths.

(This weight check revealed a 32-bit counter overflow

problem in an early version of the code. That problem

would not have affected the results presented herein even if

it had not been fixed; but finding it provided some reassur-

ance that results were being monitored quite closely.)

5. Conclusions

An exhaustive search of all possible 32-bit CRC polyno-

mials has revealed the existence of a class of polynomials

that provides an excellent combination of error detection

performance for long and short network messages. Arepre-

sentative of that polynomial class is: 0xBA0DC66B

(x32+x30+x29+x28+x26+x20+x19+x17+x16+x15+x11+x10+x7+x6

+x4+x2+x+1) = (x+1)(x3+x2+1)(x28+x22+x20+x19+x16+x14

+x12+x9+x8+x6 +1). This polynomial achieves HD=6 be-

yond one Ethernet MTU (to a 16,360 bit data word length)

and HD=4 to 114,663 bits, which is more than 9 times the

length of an Ethernet MTU. This gives two additional bits

of error detection ability at MTU-sized data words com-

pared to the Ethernet CRC standard polynomial while not

sacrificing HD=4 capability for data word sizes up to and

beyond 72K bits.

Beyond the discovery of new polynomials, this work re-

produces results using direct evaluation of error detection

capability that were previously only obtainable using math-

ematically based techniques. The results contained herein

have been found to be consistent with a variety of previ-

ously reported results, including results previously created

via special-purpose hardware. The availability of a more

efficient search capability on standard hardware platforms

opens up the possibility of identifying optimal polynomials

that are customized to the particular message lengths of

specific applications and special-purpose communication

networks.

Finally, because complete coverage of all possible poly-

nomials was obtained, certain classes of polynomials have

been conclusively ruled out as viable for providing HD=6

coverage for MTU-size data words. This includes all 32-bit

primitive polynomials and all polynomials that are not di-

visible by (x+1). One unexpected finding was a publication

error in the only previously published polynomial that

achieved HD=6 for MTU-size data words.

Application of these results is possible in newly emerg-

ing network and data storage standards such as Internet

SCSI protocols as well as application-level CRCs that pro-

vide increased data integrity checks.

6. Acknowledgments

Significant use was made of equipment donated by Digi-

tal Equipment Corporation (now Compaq). Additional

equipment support was provided by Intel.

7. References

[Castagnoli93] Castagnoli, G., Braeuer, S. & Herrman, M.,

"Optimization of Cyclic Redundancy-Check Codes with 24 and

32 Parity Bits", IEEE Trans. on Communications, Vol. 41, No. 6,

June 1993.

[Fujiwara85] Fujiwara, T., Kasami, T., Kitai, A. & Lin, S., "On

the undetected error probability for shortened hamming codes",

IEEE Trans. on Communications, vol. 33, no. 6, 1985, pp.

570-573.

[IEEE85] IEEE standards for local area networks: carrier sense

multiple access with collision detection (CSMA/CD) access

method and physical layer specifications, ANSI/IEEE Std

802.3-1985.

[IETF01] Internet Engineering Task Force, “IP Storage (ips)

Charter,” http://www.ietf.org/html.charters/ips-charter.htm,

accessed Nov. 10, 2001.

[Lin83] Lin, Shu & d. Costello, Error Control Coding,

Prentice-Hall, 1983.

[Peterson72] Peterson, W. & E. Weldon, Error-Correcting

Codes, MIT Press, Second Edition, 1972.

[Satran01] Satran, J. et al., “iSCSI”, Internet-Draft work in

progress, http://www.ietf.org/internet-drafts/draft-ietf-ips-iscsi

-08.txt, Sept. 30 2001, accessed Nov. 10, 2001.

[Sheinwald00] Sheinwald, D., et al., “iSCSI CRC/Checksum

Considerations”, Internet-Draft work in progress, http://search.

ietf.org/internet-drafts/draft-sheinwald-iscsi-crc-00.txt, May 7,

2001, accessed Nov. 10, 2001.

[Stone00] Stone, J. & Partridge, C., “When the CRC and TCP

checksum disagree”, ACM SIGCOMM Computer

Communication Review: Proc. of the conference on Applications,

Technologies, Architectures, and Protocols for Computer

Communication, Aug. 2000, pp. 309-319.

[Wells99] Wells, R., Applied coding and information theory for

engineers, Prentice-Hall, 1999.

10

