
1

A HUMAN-MACHINE INTERFACE TO SUPPORT RECONFIGURABLE SOFTWARE
ASSEMBLY FOR VIRTUAL LABORATORIES*

Matthew W. Gertz, David B. Stewart**, and Pradeep K. Khosla
Department of Electrical and Computer Engineering
The Robotics Institute at Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

Abstract

Recent developments in reusable and reconfigurable real-
time software make it possible to createvirtual laboratories
wherein applications for a sensor-based control system lo-
cated at a particular location can be created by assembling
software modules designed at other sites, and executed in
combination upon a robotic system at yet another site. Ulti-
mately, such systems will lead to the development ofvirtual
factories, wherein assembly can be performed remotely, us-
ing network-accessible time-shared facilities, from sites
which otherwise would lack the necessary resources to ac-
complish such tasks. The benefits of these virtual laborato-
ries and factories can be greatly enhanced by using
hypermedia mechanisms. We have developed Onika, an
iconically programmed human-machine interface withhy-
permedia capabilities, which interacts with reconfigurable
software to assemble reusable code into applications. Onika
can retrieve and use software modules created at other sites
via hyperlinks, integrating them with modules created lo-
cally. Onika has been fully integrated with the Chimera real-
time operating system in order to control several different
robotic systems at Carnegie Mellon University, both locally
and remotely.

1. Introduction

Transfer and reuse of real-time application software is diffi-
cult and often seemingly impossible due to the incompatibil-
ity between hardware and systems software at different
sites. This has meant that new technology developed at one
site must be “reinvented” at other sites, if in fact it can be in-
corporated at all. Technology transfer, therefore, has been a
very expensive endeavor. With the advent of structured soft-
ware frameworks, such as the one given in [3][13], differ-
ences in systems and code can be eliminated, leading to
greater compatibility between sites. However, a lack of re-
sources at a site can still lead to an inability to incorporate
new ideas and technologies. To alleviate these problems, we
propose the development ofvirtual laboratories to make

both software and hardware readily accessible to researchers
acrossnetworks such as the Internet or the World-Wide
Web. Resources for use in virtual laboratories would be ac-
cessed by usinghypermedia mechanisms [6][5].

We define the virtual laboratory as having the following
qualities:

Distributed software libraries: Reconfigurable
real-time software modules are stored in
object databases at various sites on the net-
work. By usinghyperlinks, retrieval of the
software is transparent to the user regardless
of its location.

Hardware resources: Various sensor-based sys-
tems are accessible via the network on a time-
share basis, so that a multitude of sites have
access to equipment otherwise unavailable.

Interface: Each site wishing to use the shared soft-
ware and hardware resources has a program-
ming environment with hypermedia
capabilities, and which can integrate code
from the distributed software libraries by
searching through a global index and display
real-time feedback from the sensor-based
system on a multimedia workstation.

The advantages of a virtual laboratory include:

Increased technology transfer: Software devel-
oped and debugged at one site can be stored in
a software library, making it immediately
available to other sites.

Zero logical distance: The interface to a virtual
laboratory need not be running on the same
machine, nor even on the same filesystem, as
their communications are all via hyperlinks
across a network. The interface may be run-
ning on a machine across the room, or on
another continent, without diminishing its
ability to control a sensor-based system. Pro-
grammers intimately familiar with their inter-
face need not modify it to control any remote
systems.

* Certain portions of this paper first appeared in Gertz, Stewart, Nelson, and
Khosla, “Iconic Programming and Reconfigurable Software to Support an
Internet-Based Virtual Laboratory,” to be presented at ISRAM: Fifth Inter-
national Symposium on Robotics and Manufacturing, Aug. 15-17, 1994,
Maui, Hawaii.

** EE Department, University of Maryland, College Park, Maryland, 20742

2

Expandability: New hardware (remote or local)
can be integrated into the system and con-
trolled quickly. This can be done by replacing
or adding a software module to an existing
application, and leaving the rest of the mod-
ules in the application untouched.

Transparent simulation: Using reconfigurable soft-
ware modules, any sensor-based real-time pro-
gram can be simulated without changing any
of the real-time code, as each hardware
module has its simulated equivalent readily
available in a software library.

Reduced costs: If a participating site wishes to
expand on the research of another site, but
lacks the proper equipment, they can make use
of the hardware resources available at a cost
substantially lower than purchasing the equip-
ment themselves. Furthermore, the site need
not waste valuable time and money redevelop-
ing code, since it would be available in one of
the software libraries.

Some of the problems which must be overcome include:

Software and hardware incompatibility: This has
been the traditional curtailing technology
transfer in the past. Users wishing to use new
technologies have often had to purchase (and
spend time setting up) entirely new hardware
and operating systems, or else undertake the
tedious task of translating code from one
system to another.

Systems integration: To take advantage of shared
software, the different jobs necessary to com-
plete an application must be integrated in such
a way that routines common to more than one
job need only have one instantiation. Most
real-time operating systems do not support
such capabilities, leaving those often-used
functions to the application programmer, who
must develop results in application-specific
modules instead of reusable library modules.

Lack of remote access to sensor-based systems:
Most laboratories are not geared towards con-
trolling and monitoring sensor-based systems
remotely.

Programming interface: Textual code can be diffi-
cult to interpret, moreso if it is ill-commented.
The functionality of such software retrieved
from remote sites is thus unclear, limiting its
use. Furthermore, controlling and monitoring
the many parallel activities which make up a
single job is an difficult task when done from

a command line interpreter.

To address these problems, the Advanced Manipulators
Laboratory has developed Onika, an iconic programming
and control environment with hypermedia support[2][3][4],
and Chimera, a real-time operating system [11][12] support-
ing reconfigurable reusable real-time software [13].
Whereas there have been other iconic interfaces for pro-
gramming developed in the past [8][1][7], Onika is currently
the only such package which supports reconfigurable soft-
ware and hypermedia capabilities. The combined use of
iconic programming and reusable software has yielded the
following benefits:

Software assembly:Reusable software modules
downloaded from other sites can be immedi-
ately assembled with Chimera, despite any
local differences in naming or programming
conventions. This capability has reduced our
time to get new sensor-based systems on-line
from weeks to hours.

Reconfigurability: Using reconfigurable software,
systems integration is no longer a program.
The software modules are independent of
application, and can be used in a variety of
jobs.

Retrieval via hyperlinks: Onika has the ability to
retrieve and automatically link software mod-
ules from remote libraries into a Chimera exe-
cutable.

Iconically programmed: Onika uses a novel pro-
gram visualization mechanism, in which the
reconfigurable software modules available in
the libraries are displayed as icons having the
appropriate input and output ports according
to their underlying real-time port-based
objects model. The functionality of the mod-
ules is made clear to the user without resorting
to cryptic and ill-commented textual code.
Icons can then be connected together graphi-
cally (and automatically) to form jobs. These
jobs can immediately be run on Chimera with-
out having to write any “glue” code to inte-
grate the modules. The state of the system is
made clear by viewing the application as a
structured collection of icons in an “assembly
window,” and by viewing running feedback
transmitted from Chimera and displayed in a
separate “status” window within Onika.

In the following section, we discuss and give an example of
reconfigurable real-time software.

3

2. Reconfigurable and Reusable Software

This section is intended to give an overview of the frame-
work for developing reconfigurable and reusable software,
which is supported by Chimera and Onika. This framework
is shown in Figure 1.

The lowest level of code normally accessible to an Onika
user within our software framework is thecontrol module,
which is a self-contained port-based object having a certain
number of input ports and output ports [13]. The control
module (ortask; the two are used interchangeably) may be
periodic or aperiodic, and performs functions which are ei-
ther real-time(e.g.compute torque from force) or non-real-
time (e.g.log data to file). When combined into aconfigu-
ration, a set of concurrently-executing control modules per-
forms somejob (e.g.move to point x). These jobs can further
be combined in sequence to form a series of steps forming a
subsystem. An application is defined as one or more sub-
systems executing in parallel to perform some high-level
mission. An application may be composed of other applica-
tions, allowing for hierarchical decomposition of an applica-
tion.

To integrate control modules into a configuration, astate
variable table is used for real-time intertask communication
[10]. Theglobal state variable table stored in shared mem-
ory contains the union of all of the input and output port
variables of all the available modules. Each task has its own
local copy of the table, in which the variables actually used
by the task are kept current. The required input variables are
transferred from the global table to the local table at the be-

job P configuration
programmer
and editor

job R

Configuration R

raw data out

C, math,

libraries

and utility
subroutine

i/o device

raw data in

to/from other
subsystem

job S
job T

to actuatorZfrom sensorY

raw data in

from sensorX

iconic
programming

language

iconic programs (jobs)

graphical interfaces

real-time computational tasks

real-time sensor/actuator interface tasks

graphical
user interface

drivery driverz

Onika

Subsystem W

user

a
b

cfh

g

job Q

special purpose
processorF

i/o device
driverx

i/o device

“control tasks”

Figure 1. The reconfigurable software framework for sensor-based
real-time operating systems. Routines at one level are created by
combining modified reusable routines at the adjacent lower-level.

subroutine calls real-time special purpose processor tasks

d

e

Chimera

ginning of a task’s cycle, and output variables are trans-
ferred from the local table to the global table at the end of a
task’s cycle. Each cycling task is “unaware” of the existence
of other tasks, since all communication is via the state vari-
ables tables. Thus, each task is self-contained and generic,
with its communication paths automatically updated when a
subsystem is reconfigured.

The generic nature of each task within a job allows us to
quickly reconfigure into a subsequent job, reusing tasks
common to both jobs. The change in configurations can be
done eitherstatically or dynamically [10]. Static reconfigu-
ration is primarily performed during the development of a
job’s configuration, where only the tasks needed by the job
are created on Chimera. This may involve trying and reject-
ing certain tasks in favor of others, during the design pro-
cess. Dynamic reconfiguration, on the other hand, is
primarily seen during the transition from one job to the next
in an application. The union of all tasks needed for the entire
application are created on Chimera at initialization, and sim-
ply activated and deactivated as required. Dynamic recon-
figuration can be performed without any loss of cycles.

An example of dynamic reconfiguration: Assume we have
an application in which a PID joint-motion job for a PUMA
560 (shown in Figure 2) is currently running on Chimera,

and the next job in line is a Cartesian-motion program
(shown in Figure 3). The joint job consists of the PUMA
PID module, a gravity compensation module, a differentia-
tor, a joint trajectory module, and a display module (which
reads in current joint values and sends them via a socket to
an external CAD program which displays the simulated ro-
bot on a screen). The Cartesian job also contains the PUMA
PID module, the gravity compensator, the differentiator, and
the display module. However, it does not contain the joint
trajectory module. Instead, it contains a Cartesian trajectory
module, as well as forward kinematics, inverse kinematics,
and a tool module (which helps define the tool frame with
respect to the end-effector). The union of the tasks would
have been created before the application was executed, but
only the tasks involved in the joint motion job would be cy-
cling.

Figure 2. A configuration controlling a PUMA in joint space.

PUMA
hardware
module

gravity
compensation

module

differentiator
module

trajectory
module

q

t

mqr
.

g

DOF
DH

qrjoint

4

To reconfigure between the two jobs, the joint trajectory
module is deactivated, and then the forward and inverse ki-
nematics modules, the Cartesian trajectory module, and the
tool module are activated. Note that neither the gravity com-
pensation module, the PUMA PID module, the differentia-
tor module, nor the display module are affected in any
manner; they continue to cycle through the entire procedure,
untouched.

Reconfiguring between two jobs by hand can be tedious,
however. If the two configurations are very large, an inspec-
tion as to which modules should be deactivated and which
should be left running may be difficult. In the next section,
we discuss how Onika, an iconic visual programming envi-
ronment, can be used to automate the process of reconfigu-
ration.

3. An Iconic Interface for Reconfiguration

In this section, we give a brief overview of Onika and an
example of how it is used to control reconfiguration within
high-level applications.

3.1. Initialization

When Onika is launched, it searches user preferences for hy-
perlink anchors to software libraries. Remote libraries are
downloaded and automatically linked with the local libraries
into a Chimera executable as needed. (If Onika is not located
on the same file system as Chimera, the user can define a
function to transfer the executable to Chimera’s machine.)
Onika links with Chimera via a network, using two sockets.
One socket is “read/write”, and is used to issue commands
to Chimera; acknowledgments or requests for more data are
returned from Chimera on the same socket. The other socket
is “read-only,” and used by Chimera to send signals to On-
ika (these include error signals and special user-defined sig-
nals such as “job completed”).

Onika also searches for user-defined functions during start-
up. If programmers find that they use a certain display pro-
gram frequently (for example), they can easily create a but-
ton which acts as a link to a series of system commands

Figure 3. A configuration controlling an actual PUMA in
Cartesian space. The shaded tasks are those that remain from
the configuration in Figure 1 after reconfiguration.

hardware
module

gravity
compensation

module

differentiator
module

trajectory
module

q

t

mqr
.

g

DOF
DHqr

Cartesian

inverse
kinematics

xm

xr

forward
kinematics

PUMA

which initialize the display program. When pressed, the host
workstation executes these commands either in the back-
ground or in its own window, depending on how the user has
defined it.U-Graph, a graphing/plotting package at Carn-
egie Mellon University, has been incorporated into Onika
using this mechanism to allow users to plot output logged
from their sessions.

3.2. Using the Interfaces

Onika presents two different interfaces to the user. The
lower level is useful for control engineers, and allows direct
manipulation and control of tasks on the Chimera to create
feedback control jobs. The upper level is used by program-
mers who lack control expertise, but who wish to create
goal-oriented applications from the jobs which have been
assembled at the lower level.

3.2.1. The Lower Level Interface

In the lower level interface of Onika (shown in Figure 4),

the user creates jobs by placing icons from the library onto
a job canvas (which automatically spawns them on Chi-
mera). An iconic hyperlink is generated on-the-fly for each
task by Onika during start-up, and is displayed to the user
within a library window. The user can retrieve a variety of
information about any given task by clicking on its icon, and
can also modify the modules through this hyperlink (if al-
lowable). The icon is displayed as a port-based object,
showing its input and output ports clearly, as well as its cur-
rent status, its name, and its frequency.

To assemble a job, the user selects a task’s icon from the li-
brary and inserts it onto theconfiguration canvas. The task
icons automatically interconnect visually with those which
share common data ports already placed into the configura-
tion. The configurations are thus assembled graphically, and
can be saved for later recall. The individual tasks can be
turned on and off with simple mouse-clicks, and killed by
selecting and deleting their icons. Certain task parameters,
such as frequency, can be changed easily, and aliases ap-
plied to I/O ports which do not match the local naming con-
ventions. A status window gives more detailed information
on the current status of real-time tasks and values of state
variables.

Figure 4. The lower level interface. Shown are the configurations
canvas (where tasks are assembled, left), the task library (right), and
the Onika control panel (lower left).

5

The icon of a task module acts as anhyperlink anchor, in
that the textual code of a module, if available, can be viewed
and edited simply by clicking its task icon. The state of the
memory (i.e. corrupted or not) on the CPUs on which the
tasks are cycling can also be determined with a mouse click.
These two modifications are very powerful tools for debug-
ging modules.

Assuming that a configuration has been previously saved,
reconfiguration into its job from the current job can be
achieved within Onika with a simple mouse-click. The user
specifies the configuration which should be loaded from a
file navigator. The saved configuration contains hyperlinks
to the various modules it needs. Onika reads these in, and
compares the links of the two configurations. It then con-
structs the sequence of events necessary to dynamically re-
configure from the current job to the next. These
instructions are sent to Chimera in the form of command
packets, and the real-time operating system reconfigures to
the new job. Onika checks Chimera’s reply to determine if
the configuration was successful, and updates the job canvas
and the status information to reflect the current configura-
tion.

As an actual example of reconfiguration using Onika, we
use the configurations described in Section 2 (shown in
Figure 2 and Figure 3). Figure 5 shows the Onika job canvas

before reconfiguration, with the new configuration being se-
lected. Figure 6 shows the resulting configuration, with the
gravity compensator, the PUMA PID module, the differen-
tiator, and the display module running during the entire re-
configuration. Note that the user chose not to have the new
tasks automatically activated after reconfiguration, and
chose to have Onika completely kill tasks no longer used,
demonstrating the various degrees of control available
within the interface.

3.2.2. The Upper Level

The lower-level programmer can create a pictorial iconic
hyperlink to the job, which can then be stored in an upper-
level library called ajob dictionary. If the job requires some
user input for execution (such as the desired endpoint in a
joint motion job), this information can be pre-saved in a user
I/O object, which is also assigned a pictorial icon and stored

Figure 5. The PUMA joint-control configuration of Figure 2,
spawned on Chimera using Onika. Note that an extra module has
been added to pipe joint values to an external display.

in the dictionary (Figure 7). An upper-level programmer can

combine these pictorial icons to create a goal-oriented appli-
cation. Both jobs and objects can be viewed or edited by
clicking on these pictorial anchors. Syntax and semantics
are made apparent by the color and shape of each icon’s
edges. Jobs and objects are arranged sequentially, fitting to-
gether like puzzle pieces, in order to form an application.
When executed, Onika uses dynamic reconfiguration to
traverse the application. A job which is finished (e.g. the tra-
jectory endpoint has been reached) sends a signal to Onika,
which then proceeds to the next job in the sequence. An ap-
plication can also have an pictorial iconic hyperlink as-
signed to it, so that it can be used in other applications.

Onika’s grammar at the upper level also includes both top
test and bottom test loops, case statements, breakpoints, and
parallel flow ability. For loops and case statements, the “fin-

Figure 6. The current set of tasks after Onika dynamically
reconfigures to the PUMA Cartesian motion job of Figure 3. The
extra module to pipe joint values to an external display was also
a part of the new configuration, as well as a module which
specified an optional tool offset for the hand.

Figure 7. The upper level interface. Pictured are the Onika control
panel (inset), the application workspace (bottom), and the job
dictionary (top).

6

ished” signal of the appropriate job is used to determine
whether a loop should be exited, or which case line the ap-
plication should follow. Breakpoints allow the user to stop
and examine the application’s state before proceeding. Par-
allel execution allows two or more subsystems to operate
concurrently, so that applications involving cooperation be-
tween manipulators can be developed. A synchronization
mechanism (shown in Figure 7) is included which allows

the user to assign similar “tagnames” to job icons in parallel
flows. Two job icons with the same tag are guaranteed to be-
gin execution at the same time, allowing the programmer to
make certain that (for instance) one manipulator will “wait”
while another manipulator completes certain preliminaries.
At any time, the user can abort an application, or force it to
jump to the next job in line. The status of the subsystems and
variables is displayed and updated at various points during
execution of the application.

Both the upper and lower interface of Onika can be used si-
multaneously, to view (for instance) the status of the under-
lying modules called by an executing application. A typical
session of this type is shown in Figure 9.

In the next section, we discuss how Onika and Chimera have
been used to research the concept of a virtual laboratory.

4. A Demonstration of the Virtual Laboratory

4.1. Shared hardware resources

Onika[3][13] and Chimera[10][13] have been used several
times to control a manipulator located hundreds of kilome-
ters from the user, most recently in several demonstrations
to top-level administrators and scientists at Sandia National

Figure 8. An application using synchronization tags. Job icons with
the same “synch tags” are guaranteed to begin execution at the same
time.

(slide 2)

Figure 9.A typical Onika session using both the upper and lower
interface. The user can see the underlying configurations as Onika steps
through the application.

Laboratories. A Sun 4 workstation running X11R5 with
Internet access was made available to us at Sandia, on which
Onika could be launched. The manipulator to be controlled
(a PUMA 560 running in a Chimera environment) was
2,600 kilometers away at Carnegie Mellon University.

Onika can either be run on the same file system as Chimera,
or on a remote filesystem. In the latter case, Onika runs
faster, but must upload any executables it compiles to the
Chimera file system. In the former case, the executable is
created on the same file system as Chimera, but the entire
Onika display must be transmitted over the network to the
host workstation (in this case located at Sandia). Both
schemes have been used in remote demos in the past.

Upon launching, Onika searched the user preferences and
found two hyperlink anchors to libraries which the program-
mer used, one located “locally” at Carnegie Mellon, the
other at Sandia. Using these hyperlinks, Onika downloaded
both libraries from the network. For security reasons, the
programmer was prompted for a password before being able
to access the Sandia library. Once downloaded, Onika
linked the required modules into a Chimera executable,
which was stored in a Chimera-accessible location. Iconic
hyperlinks to the modules were created and displayed in the
library window.

The programmer then launched Chimera, and Onika con-
nected to it with the click of a button. Using modules from
both Sandia and Carnegie Mellon, the programmer created
a joint motion job and activated all of its modules in less
than a minute. Cameras located around the manipulator at
Carnegie Mellon gave the programmer several different
views of the manipulator, as 128x128 greyscale images
were transmitted over the Internet at a rate of 10 Hz. The
setup is pictured in Figure 10.

Subsequently, the programmer used Onika to successfully
demonstrate reconfiguration into (and the execution of) a
pre-saved Cartesian motion job, and execution of an appli-
cation which assembled a small DC motor. A demonstration
of error recovery was also given, during which the “panic
button” of the manipulator was pressed, interrupting a joint
trajectory. Chimera successfully trapped the error, and noti-

Figure 10. Part of the virtual laboratory display as shown to the
Onika programmer.

7

fied Onika. Onika then automatically cleared the error, and
the robot was reactivated and completed its trajectory.

Simulation of an application was successfully demonstrated
by replacing the PUMA modules in an application with a
simulation module and re-executing the same code. A syn-
chronous module within the configurations passed the cur-
rent joint values of the simulated robot to an external
package which displayed graphical representation of the ro-
bot.

Throughout the demonstration, complete control was as-
sumed at Sandia. Researchers on location at Carnegie Mel-
lon were available to “power up” the robot when needed (a
necessary safety precaution during these experimental dem-
onstrations) and to intercede if the robot showed signs of in-
stability in this experimental set-up, but otherwise did not
interfere with the demo in any manner.

4.2. Shared software resources

The nature of the generic software modules in our labora-
tory’s libraries is such that most of the code required to get
new systems operating is already available. Using Onika
and Chimera to assemble and control these modules, a pre-
viously-unused mobile robot (left over from a graduate stu-
dent’s project several years previous) was brought on line
and visual servoing programs executed on it in less than two
days. The only module which needed to be created for the
mobile manipulator was the one that actually communicated
with the robot’s hardware; other modules, such as trajectory,
kinematics, and visual servoing modules, were already
available. A Utah-MIT hand located in our laboratory has
also been brought on line in the same fashion, and no less
than six other systems (including two Adept robots, two
American robots, a Stewart platform, and the Reconfig-
urable Modular Manipulator System [9]) either have been or
will be brought on line over the next several months, bring-
ing a total of eleven systems under shared software control
in our laboratory (Figure 11).

4.3. Technology transfer

The software libraries at Carnegie Mellon were recently
used to launch new robotic systems at the Air Force Logis-
tics Center (AFLC) in Texas. AFLC obtained the Chimera
and Onika software, and, using the available software librar-

Figure 11. A researcher using Onika to control a mobile robot.

(slide 1)

ies, was able to get its systems running immediately after
their hardware was updated for Chimera 3.2. As enhance-
ments to the Chimera real-time operating system and to the
task modules have been made, AFLC has been able to
download and immediately use these upgrades. Other labo-
ratories are currently in the process of obtaining the Chimera
and Onika packages as well. As these sites do research using
the reconfigurable software framework for reusable soft-
ware modules, the task libraries available throughout the
user community continues to grow.

5. Future Work

In the coming months, we plan on refining the user inter-
face, and increasing Onika’s abilities to retrieve and use
shared software. Formal human factors testing on the Onika
interface is underway, with preliminary results indicating
that users with no previous programming or robotics experi-
ence can create simple robot assembly programs using
Onika with less than a half-hour of training. Informal testing
has further shown that the time required for programmers to
assemble existing modules and jobs into a desired applica-
tion is significantly less than that of conventional textual
methods. Onika is currently in beta-test at NIST, and has
been distributed to several other sites which use the Chimera
Real-Time Operating System.

In order for virtual laboratories to become a reality, the fol-
lowing must be addressed:

Real-time networking: Currently, we experience a
delay of five to ten seconds when controlling a
CMU robot from Sandia, since the Internet is
not a real-time network. Such a delay is unac-
ceptable in many cases. Faster lines and better
routing algorithms need to be developed, and
will be, as the super-information highway
begins to take shape.

Dynamic linking of modules: Currently, modules
must be linked into an “executable” before
they can be used in Chimera. This means that
required modules must be downloaded before
Chimera begins executing, rather than during
a Chimera session. Dynamic linking would
allow users to add libraries and modules
during a session.

Selective software sharing: Because of slow net-
work times and static linking, remote libraries
are generally completely downloaded, with
the remote connection to the library then ter-
minated to keep Onika from blocking on long
network delays. It would be better to not
download the actual code until the icon of a
remote module was actually placed into a con-
figuration, thus forming a true distributed soft-
ware library. We are currently developing a

8

version of Onika with enhanced hypermedia
mechanisms to access and retrievespecific
shared software modules on the fly, rather than
at system initialization.

Enhancing simulation capabilities: Currently, our
real-time simulations only address the objects
being controlled. Future real-time simulations
will need to include other objects and obsta-
cles in the manipulator’s environment as well.

Our future research is directed towards making dynamic
linking of modules and selective software sharing a priority,
so as to make virtual laboratories and factories a reality.

6. Conclusion

In the future, virtual laboratories will be a powerful tool in
sensor-based systems research, leading to the development
of “virtual factories” to aid in manufacturing. Access to
hardware and software will no longer be a limiting factor in
determining what research can be pursued, and what new
technology can be implemented. Although more research
and development is required before this scenario can
become a reality, an important starting point towards build-
ing these laboratories along the “super-information high-
way” is the adoption of a software framework which accom-
modates reusable and reconfigurable software modules, as
well as an interface for retrieving and controlling the mod-
ules so that the shared resources can be easily used.

Acknowledgments

The research in this paper is supported, in part, by Sandia
National Laboratories, NASA, and the Dept. of Electrical
and Computer Engineering and The Robotics Institute at
Carnegie Mellon University. Partial funding for Matthew
W. Gertz is provided by NASA Langley Research Center
through a GSRP fellowship. Partial funding for David B.
Stewart is provided by the Natural Sciences and Engineer-
ing Research Council of Canada (NSERC) through a gradu-
ate fellowship. The authors would like to thank Sandia
National Laboratories and AFLC for their cooperation, and
Brad Nelson, Wayne Carriker, Dan Morrow, Darin Ingima-
rson, Richard Voyles, and Marcel Bergerman for their par-
ticipation in demonstrations, their software contributions to
the virtual laboratory development process, and for putting
up with constant revisions during the alpha-test stage.More
information on Chimera and Onika may be obtained by e-
mailing requests to chimera@cmu.edu.

References
[1]Chang, S. K. “Visual Languages: A Tutorial and Survey,”IEEE Soft-

ware, January 1987, pp. 29-39.

[2]Gertz, M.W., Stewart, D. B., and Khosla, P. K. “An Iconic Language for
Sensor-Based Robots,” in Proceedings of SOAR Conference, August
4-6, 1992, Houston, Texas.

[3]Gertz, M.W., Stewart, D. B., and Khosla, P. K. “A Software Architec-
ture-Based Human-Machine Interface for Reconfigurable Sensor-

Based Control Systems,” in Proceedings of 8th IEEE International
Symposium on Intelligent Control, Aug. 25-26, 1993, Chicago, Ill.

[4]Gertz, M.W. and Khosla, P. K. “The Onika User’s Manual,” Program
Documentation, Dept. of Elec. and Comp. Engineering and The Ro-
botics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 (e-
mail chimera@cmu.edu for a copy).

[5]Grøenbæk, K., and Trigg, R.H. “Design Issues for a Dexter-Based Hy-
permedia System,”Communications of the ACM, Vol. 37, No. 2, pp.
40-49, February 1994.

[6]Halasz, F., and Schwartz, M. “The Dexter Hypertext Reference Model:
Hypermedia,”Communications of the ACM, Vol. 37, No. 2, pp. 30-39,
February 1994.

[7] Leifer, L., Van der Loos, M., and Lees, D. “Visual Language Program-
ming: for robot command-control in unstructured environments,”
Proceedings of the Fifth International Conference on Advanced Ro-
botics: Robots in Unstructured Environments, June 19-22, 1991, pp.
31-36, Pisa, Italy.

[8] Myers, B. A. “Taxonomies of Visual Programming and Program Visu-
alization,”Journal of Visual Languages and Computing, 1990 (1), pp.
97-123.

[9]Schmitz, D.E., Khosla, P.K., and Kanade, T. “The CMU reconfigurable
modular manipulator system,” inProceedings of the International
Symposium and Exposition and Exposition on Robots (designated 19th

ISIR), Sydney, Australia, pp. 473-488, November 1988.

[10]Stewart, D. B., Volpe, R. A., and Khosla, P. K. “Integration of software
modules for reconfigurable sensor-based control systems,” in Pro-
ceedings of 1992 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ‘92), Raleigh, North Carolina, July 1992.

[11]Stewart, D. B. and Khosla, P. K.Chimera 3.0 Real-Time Programming
Environment, Program Documentation, Dept. of Elec. and Comp. En-
gineering and The Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213 (e-mailchimera@cmu.edu for a copy).

[12]Stewart, D. B., Schmitz, D. E., and Khosla, P. K. “The Chimera II real-
time operating system for advanced sensor-based robotic applica-
tions,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 22,
no. 6, pp. 1282-1295, November/December 1992.

[13]Stewart, D. B., Volpe, R. A., and Khosla, P. K. “Design of Dynamically
Reconfigurable Real-Time Software using Port-Based Objects,”
Technical Report CMU-RI-TR-93-11, Dept. of Elec. and Comp. En-
gineering and The Robotics Institute, Carnegie Mellon University,
Pittsburgh, PA 15213.

