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Abstract

Seam tracking is currently accomplished by special features of the robot and a priori knowledge of scam
geometry. In this paper we demonstrate the feasibility of tracking a scam in real-time. A gencral-purpose
scam tracking algorithm is developed for implementation on a robot with six degrees-of-frecedom.  The
algorithm is motivated by a physical interpretation of the T, and dT6 matrices, and the assumption that 3-1D
scam data arc available. In the past, the d’l‘6 matrix and inverse Jacobian solutions have been used to
compute the differential changes in the joint angles. By using the inverse Jacobian, an iterative algorithm is
introduced to compute both large and small changes in the joint variables. The versatile scam tracking
algorithm can be applied to a multitude of robotic scam tracking activities such as gluing, surface grinding

and flame cutting.






1. Introduction

Manufacturing operations such as robotic welding, gluing, sealing and surface grinding require trajectory
control of the tool mounted on the end-effector of the robot. While the kinematic control algorithm
developed in this paper is applicable to a multitude of manufacturing operations, robotic arc welding
nomenclature is used. The tool is called the welding torch, and the tool trajectory is defined by the weld
scam. The fundamental problem is to position a welding gun with the proper translational and rotational
positions with respect to a curved weld scam in three dimensional (3-1) space. A scam in space can be traced
by a five degree-of-freedom robot. Since reat-time scam tracing requires that both the sensor and torch trace
the sean, a six degree-of-freedom robot is required. Automation of the welding process thus demands a rabot
with six degrees-of-frcedom and acceptable performance in terms of speed and accuracy. The control task

also demands a real-time algorithin to guide the robot in a fixed geomnetrical relationship to the contour.

Automation of the welding process can be divided into two distinct components :

o Scam data acquisition and interpretation by a sensor system ; and

o Guidance and control of the robot to traverse the scam. while maintaining the proper ortentation
and position.

Since the scam data constitiite the 3-1 coordinates of the scam, a visual sensory device (such as a light stripe
imaging device) can be used to obtain thic scam data. Mcethods tor oblaining 3-D) data ivom 2-1) images have
been developed [Apin 82]. Having obtained and interpreted the scam data, the control systeny must grride the
robot to traverse the seam and place the requisite amount of weld material along the path, The towch position

arnd aditude must be controlled precisely to ensuie acceptable weld quality.

Scam wracking is currently accomplished by cxploiting a special feature of the robot or limiting the
application to a particular type of a scam. Bollinger and Harrison [Bollinger 71] describe the principles and
techniques of aspatial scam tracking system. In this application, the scawm is constrained to lic on a cylindrical
surface.  Tomizuka, er al [Tomizuka 80] propose a preview control strategy for two-axis welding torch
positioning and velocity control. “Thie scheme is only applicable for two-axis control and hence constrains the
seam o lic in a plane. Furthermore, the scheme cannot be implemented on a general purpose six degree-of-

frecdom robot.

One of the first successful demonstrations of computer vision to arc welding is the NASA weld skate [Hill
80} This system has been implemented on a special-purpose robot and requires special edge preparation to
operate properly. The system is incapable of making any determination regarding the joint fit-up. The
principle of structured illuniination has been employed by Kawasaki Heavy Industrics of Japan [Masaki 79] to

develop a visual seam tracking system, ‘The approach used for image analysis is zraining-by-showing. A sct of



typical images is acquired in a teaching operation prior to welding and stored in the memory of the processor.
As real-time images are acquired, a scarch is conducted (through the set of trained images) until a match is
found. During the matching process. the positional displacement between the two images is computed and
used to correct the position of the torch. "The system has been designed specifically for the ship building
industry and henee operates only on fillet joints. The system does not utilize part fic-up information for scam

tracking.

An cxample of welding-by-teaching is the system described by Masaki, er ol [Masaki 81] which has a visual
scam tracking capability. The robot is taught the reference path for the end-effector and the reference image
for the image processor. In the teach mode, two passes arc required for cach work picce, one for sensing and

one for welding. The path for the welding operation is generated from the sensing pass information,

Current robot welding systemis arc thus suitable for large batches of parts which are cut and fit to tight
tolerances. The robot must trace and weld a scam, within acceptable tolerance Himits, on such closely fit parts.
Another limiting factor for a semi-automated welding system is the robot programming and set-up time in the
shop when ihe part is clianged. These constraints may be cased through the introduction of a CAD/CAM
data basce in which the welding trajectories and speed. weave patternn, wire feed rate, voltage and current are
stored for cach welding part and thea retiteved as required. Unpredictable fit-up and loose part tolerances

create the need for a real-time guidance and control algorithm,

The objective of this paper is to introduce a versatile scam tracing algorithm that demonstrates the
feasibility of tracking a scam in recal-time.  The gencral purpose scam tracing algorithin can be
implementabled on any robot with six degrees-of-freedom.  The algorithm is motivated by the physical

interpretation of the forward solution, or I, matrix [Paul 81] and the inverse Jacobian.  To facilitate

6
implemientation of the inverse Jacobian solutions, an iterative algorithm is developed to compute the
differential changes in the joint variables from the d'l‘() matrix. To rcduce significantly the on-line
computational requirciments, the concept of a modified d'!'() matrix is also introduced.  To evaluate the
performance of the scam tracing algorithm, a functional simulation package (for the Cyrol robot in our
laboratory) has been implemented. "The outputs of the simulation are the joint position and veloeity set-

points for the robot control system.

The puper is organized as follows. The Y inematics of the Cyro robot (including the forward and reverse
solutions , and the Jacobian and inverse Jacobian) are developed in Section 2, The foundations for the scam

tracking algorithm arc laid in Section 3. Focus is on the specification of the 'l‘b matrices at the sample points

1(ﬁ‘yro is atrademark of the Advanced Robotics Corporation.



along the scam and planning the motion of the torch. To reduce the computational requircments of the
algorithm for real-time applications, the concept of the modified d’l‘() matrix is introduced in Scection 4, and an
itcrative algorithm to compute both large and small changes in the joint coordinates is then developed. 'The
computational requirements are enumerated o indicate the potential for the real-time implemientation of the
algorithm. The salient features of the simulator, which has been implemented to evaluate the performance of
the scam tracing algorithm, are presented in Scection 5. Simulation experiments for representative test cases
arc then highlighted in Section 6. Finally, in Section 7. conclusions are drawn from the simulation

experiments, and the paper is summarized.

2. Kinematics of the Cyro Robot

The forward solution (or 'l‘b matrix) of the robot, from the base frame to the trch (or end-cffector) frame, is
developed using homogeneeus transformations [Paul 81]. The homogenecous transformations, relating two
successive coordinate frames, arc only a function of the six joint coordinates. Thus, knowledge of all of the six

joint coordinates fcads o the transformation {or forward sotution) from the base frame to the torch frame,

To develop the homogencous transformation or A matrices, a coordinate frame is embedded in cach of the
six finks of the robot, using the Denavit-Hartenberg convention [Denavit 5], 'The coordinate {rames are
shown in Figure 1, Joints 1, 2 and 6 ar= revolute, and joints 3. 4 and S are prismatic. The coordinates of the
revolute joints arc 0!‘ 02 and 0(): and the coordinates of the prismatic joints are Xqe 7y and ¥s- The subscripts
ob the coordinates indicate the joint number; the basc is link zero. The base coordinate frame is fixed at the
center of the table of the robot and coincides with the first coordinate frame. When all of the six joint
coordinates are zero, the axes for joint 1 (table) and joint 6 (tL)I‘Ch) are parallel and the robot becomes singular.
In the algorithm, the manipulator is assumced to be at the zero position.  Without loss of generality, the
constant offsets of the robot are assumed to be zero. A counter-clockwise rotation of the revolute joints is
considered o be positive, and translation of the prismatic joints along the positive z-axis is considered to be

positive.

The fink parameters of the Cyro robot are listed in Table 1, and the forward soiution is displayed in Table 2.
Having obtained the Torward solution, the values of the joint coordinates that led to the I matrix can be
computed. This reverse solution [Paul 817 is required {by the simulator) to relate the 'l'() matrix to the present

values of the joint coordinates. The reverse solution is listed in Table 3.

The differential changes in the cartesian coordinates of the torch are related to the differential changes in
the joint coordinates through the manipulator Jacobian [Whitney 72, Paul 81]. Each column of the Jacobian

matrix Jis a differential translation and rotation vector, The column vectors of
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arc listed in Table 4.

In seam tracing, sensory data can be utilized to determine the incremental change in the position of the
seam from differential changes in the clements of the 'F' matrix. The differential change matrix d'1 is thus
available o plan the incremental motions of the torch. It thus becomes imperative to find the inverse
Jacobian (or incremental changes in the joint coordinates) which produce the specified incremental change in
the T matrix.

Nurmerical inversion of the Jacobian [Whitney 72] is computationally intensive and hence is not suitable for
real-time control applications. Incremental changes in the jni«iu coordinates can be obtained from a Taylor
serics expansion of the reverse solution. Such an approach leads to analytical formulae for the dilferential
joint coordinates which are functions of the clements of the 'l'b and d’l'h matrices [Paul 811 Analytical
formulac for the diftferential joint coordinates. which are obtained by differentinting the reverse sotution (in

Table 3), are listed in "lable S.

3. Kinematic Seam Tracking Control

The contiol task is to fill a volume with weld material while maintaining the proper position and orientation
of the toreh with respect to the scam. While traversing the seam, the tip of the torch traces a curve in 3-1
space. If the discrete points on the curve to be traced and the surface contatning the curve are identified, the

T matrices can be generated for cach pointon the discretized curve,

Specilication of the 'I‘b matrices at the sample points of the discretized curve accomplishes the seam tracing

task. The 'l'() matrix is

()4\ a,‘( pX

1.‘(
oo, &, Dy
"I,

1
N noooapf o ¥
Lo = [y 00 l} :ll 0, a, D,

0 0 0 1
and represents the position aud orientation of the torch shown in Figure 2. "The erigin of the describing
coordinate frame is located at the tip of the torch and is described by the vector p with respect to the base
trame.  The three unit vectors n, o and a, which describe the orientation relative to the base frame, are
directed as follows [Paul 31} The 7-uxis of the describing frame lies along the direction that the torch
approaches the surface (containing the curve to be traced) and is called the approach vector a. The y-axis of

the deseribing frame lies along the direction of the boom holding the caiiera and s called the orientation



vector 0. The normal vector nis then chosen to form a right-handed sct of vectors and is computed as
i =Uxd

The vectors n, 0 and a describing the orientation of the torch and the vector p describing the position can be

specified independently. 'Fhe control task can thus be split into two independent components :
o ‘fracing acurve in -1 space; and

e NMaintaining proper orientation of the torch with respect to the surface which contains the curve to
be traced.

The volume to be filled with the weld material is contained within two surfaces (of metal) which are to be
joined together. The surfaces may be non-overlapping, as in the case of a bult joint (in Figure 3), or

overlapping as in the case of a lap joint or a fitlet joint.

Let nmibe acurve (in 31 space) which lies on the surface S and is to be tiaced by the tip of the torch. 'The
surface .S may have a varying slope. Henceforth, the curve m will be termed the miid-seam. The mid-scam is
discretived length-wise. Tt m, be the vector (with respect to the base franie) pointing to the i-th sample point
m, on the mid-scam. “T'he discretization is specified to allow a piccewise lincar approximation of the curve m
between two adjacent sample poimts, 1f the surface (in the vicinity ot the two sample points m, and m l) is
also diseretized, then a piecewise planar approximation of S is obtained. 1.ot /’i denote the plane (containing
the points m,and m, . ) The dircction cosines of the planc specily the oricntation of the torch which is held
constant for the duration of travel from m, tom, .

The position of the torch is specified by the coordinates of the sample points. The foregoing description of
the position and the orientation of the torch completes the formulation of the 'l‘b matrix at the sample points.

The ensuing scction specifies the 'l'b matrix for butt, lap and fillet joints.

3.1. Specification of the Tb Matrix
Having interpreted physically the clements of the 'l'() matrix, the next step is to generate numerical values of

the clements of the T, matrix in terms of the coordinates of the sample points obtained front the sensor

6
system. Since a light stripe projector and a solid state camera are assumed to be used as the sensory device,
the 3-1 courdinates of the points on the surfaces to be joined are mapped into pisels in the camera image.
IMigure 4 shows a typical camera image (at the i-th sampling instant) obtained trom a butt joint. The break
points in the camera images of the suiface indicate the discontinuity in the actual surfaces to be welded. To

specify the curve to be traced, it is essential to extract 3-1) coordinates of the break points in the images. The
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information regarding the orientation of the surfaces, in the vicinity of the break points, can be obtained by
extracting the coordinates of one additional point on cach surface. The break points are cailed v, and v, for
the butt joint shown in Figure 3. 'The additional points on cach of the two surfaces are catled p, and g,
respectively. ‘The subscript i denotes the sampling instant. ‘The coordinates of the sample points are specitied
with respect to the base frame of the robot, and N I S and q, are the vectors from the origin of the base
framce to the points Py U v and q, respectively, 'The edges formed by the sample p()inis { it | q, boA w, }
and { v, bare denoted by p. g, w, and v, respectively,

\, matrix requires knowledge of the sample points along the mid-scam. Fora

butt joint, the requirement that the torch be placed exactly in the middle across the « and v edges forees the x,

Tospecify the p vector of the 'l

y and 7 coordinates of the mid-scam to be computed as:

N Uy + vy
xi "
2
Uy +vy
m,; = 5
Lty
21 )

(h

For both lap and fitlet joints. torch stand-off is an important consideration for obtaining a quality weld. fet
the desired torch stand-off be characterized by the parameter s, where s ranges from 0 to 1. "The coordinates

of the mid-seam are then computed as

My = Uy + SV, )
My =y +5(vyi—uy)
My = Uy -+ s{v,;—uy;

()
Thep,, Py and p, components of the '1‘6 matrix are
Py = My ()
by = 1, (;t)
p, =1, %)

and specify comipletely the last column of the Tc matrix.

Practical secams have edges with slowly-varying slopes. Since the sunple points are assumed to lie close to

cach other (typically separated by 1 mm), the edges between two sample points can be approximated by a



straight line. This approximation leads to a planc which passcs through at least three of the four sample
points (p, p; e 9 9y ]). The direction cosines of the planc arc also the direction cosines of a vector normal
to the planc. Since the torch is required to be perpendicular to the fictitions scam surface, the direction
cosines of the approach vector a are specified as the negative of the direction cosines of the normal to the

planc.

The values of the components of the orientation vector o are computed under the following constraint.
When the torch and the camera are on the scam, both should track the secam. "This condition guarantees that
sample points witl not be lost i the slope of the mid-edge (at the point of the torch) differs from the slope at
the point-of-view of the camera. Let M be a constant shift in the number of sample points between the torch
and the camera. Figure 2 shows that the o vector is perpendicular to the a vector and points along the
direction of the arm holding the camera. If the camera is traveling in the direction of the line joining M
and m, . then the robot system will never Jose track of the scam, unless the slope experiences large changes

or discontinuities along the scarn.

Uhe equation of a plane passing through three of the four points (pi e Piener G e G, . p) can now be
specitied, and the angle between the planes at the camera and the torch points can be determined. H'()\l. My
v ) and (}\), f,. v,) are the direction cosines of the two planes, then the cosine of angle ¢ between the plancs

1S

cos{( @) =N A -+ pipy ey

(0)
The vector a joining the points Mmoo and m . N along the mid-cdge is computed as
@ =N — MyN-
(N

The projection of the vector a onto the torch plane is chosen to be the o vector and is normalized to be of unit

length. Having obtained the normalized o and a vectors, the n vector is computed as

T =dxd
(8)

to specify completely the Ty matrix at the sample points.

While traversing from the i-th to the (i-+ I)-th point, the orientation of the torch and consequently the n, o
and a vectors remain constant. The p vector in the 'I'() matrix changes lincarly because of the straight ling

approximation between the two peoints. To maintain a continuous speed and acceleration at the end points of



the segment, the motion of the torch is planned.

3.2. Planning the Motion of the Torch

The motion of the tip ol the torch, in traversing a segment, is composed of two parts:
e Motion atong the segment, and
o ‘Transition between segments.
To make a smooth transition between segments, it is desirable to maintain a continuous velocity and
acceleration at the transition points, To specify the transition equations, a fourth-order curve is it between

the point where a transition starts and the point indicating the end of the transition [Paul 811 the equations
2 |

for the transition trajectorics and velocities are outlined in Section 3.3,

Let M be the total number of transition steps in which the desired change in '1’6 is to occur. The differential

changes in the n, 0 and a vectors at cach transition point are

Aan =1

il =
Al M
9)
L day -4
A(‘ - ..’bv/l -
(10)
e — 3
Ad :i(wlrz/l O
(11)

where the subscripts 1 and (i+1) denote the i-th and (i4 1)-th segments, respectively. The An, Ao and Aa
vectors are then added to the current m, o and a vectors, respectively, and normalized to unit length, to
produce the n, 0 and a vectors at the next segment, .ot 0,8, and n. o, be the vectors of the 'l‘() matrix
at the present and next segments, respectively: and let the subscript N indicate that these vectors have been

normalized o unit tength. The n.o. and a vectorsare thus computed as follows :

if, =(if, +4n)y
(12)

8, =(¢, +A40)y
(13)



@y = (3, + An)y
(14)

Having computed the three component vectors (n, o and a) of 'I'() at the next segment, the [irst three
columns of the differential change matrix d'l‘() are determined, and the fourth column (or dp vector) can be
computed from the transition trajectory to specify the differential translation. The differential change matrix

dt isthen
8}

dn, do, da, dp,
dn, doy da, dp,
dlg= dn, do, da, dp,
o 0 0 90
(15)
where the differential vector components (dn, do, da and dp) of the d'!‘b matrix represent the corresponding

change in the vecter components {n, 0, a and p) of the 'l‘() matrix.

Having gencrated the present 'I'() matrix and d'T, matrix to reach the next point, the inverse Jacobian (in
Table 5) is used to compute irerarively the dificrential changes in the joint coordinates. The inverse Jacobian
solutions are derived under the assumption that the changes in the joint variables leading to the specified T
matrix are small. 1o overcome the practical fact that this assumption is nof always satisfied in scam tracing
applicacions, an iterative technique is developed to compute the changes in the joint variables. The velocity
set-poines during the transition are obtained by dividing the incremental values of the joint variables by the
time required to make the incremental change. The transition ends when the torch reaches the point 1 on the
scgment B-C in Figure 5. At this point, the torch has the required orientation and velocity to track the

(i )-th scgment 1-C without crror. 'This motion is called motion-along-the-segment.

During the maotion of the torch, along the segment, the n, 0 and a vectors of the robot remain constant. "The

updared d'l'() matrix is specitied as:

00 0 dp,
’ 000 dpy
To=ln 0 0 ap,
000 0

(16)

where dp,, dpy and dp, are the differential changes in the x, y and z coordinates of the (i-+1)-th transition
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point.  When the torch reaches the next transition point, the process of planning the motion of the torch,

along the segiment and during the transition, is repeated to plan the motion for the next segment.

3.3. The Transition Curves

A transition segment is iltustrated in Figure 5. The transition starts at point A in the i-th scgment and ends
at point 1) in the (i4-1)-th segment. Maintaining a continuous velocity and acceleration at the points A and D
appears o require that six boundary conditions be satisfied. A lifth-order polynomial (with six parameters)
would then be needed to approximate the cartesian transition curve. .S'ynmm(ry of the transition guarantees
that a quartic polynomial can approximate the cartesian ransition curve (Paul 81|‘)'. To facilitie the
development, let 7 be the transition time and ‘T be the time required to traverse the segment B-C. "'he tiine of
traved (1) across a segment is computed by dividing the volume of the weld matcerial (to be deposited along
the segment) by the weld-wire volumetric feed-rate, which is assumed to be constant. The ratio (7/1) is

specificd by the enginceer (in Scction 6). L.t the normalized time-step parameter h be defined according to

(n

where t denotes the sunaing time variable (-7 <t < 7).

I ¢t the fourth-order polynomnial approximating the cartesian transition scgment be
X(h) =0 A0 F a0 Bh + By
where the five parameters (,Bi fori = 0w 4) must be selected for X(h) to satisfy the boundary conditions

{Paul 81 :

X(0) =A ¢ X(1) :(C—B),—} +B
) . (18)
X(0) = 2(B-A) : X(1) :2((,‘—13)771;,
(19)
X(0) =0 X(1) =0
(20)

where the dor denotes difterentiation with respect to h. (The initial acceleration condition X(0) = 0 leads to

ﬁz =0)

The cartesian position, velocity and accecleration of the toreh on the transition curve (as functions of the

normalized tiime-step paramerer h) are

The transition cquations are reproduced here because of the typographical errors in the cited reference,
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X(h) = *(AC% ~ABR! 2(Ac,—["T —ABW +2(AB)h +A
. . , 21
X(h) = —4(AC-,I—, — AB)D? +(>(AC,~I,— — AB)R? +2(AB)
(22)
and
X(h) = ~-12(AC% —ABR? + 12(AC-,'I’~. —AB)h
(23)

where AB = (B- A)yand AC = (C - B).

Fquation (21) defines the cartesian position of the torch (in terms of the normalized time-step paramelter h)
and is used to evaluate the coordinates of the transition point. ‘The welding toreh transits from the present
segment to the next and maintains a continuous velocity and acceleration at the cnd points (A and D) in Figure
5) of the transition segments. Equation (21) is used to compute the position of the torch during the transition,

In the next scction. the n, o and a vectors for the transition are formulated.

4. The Madificd dT Matrix

The d'l"b matrix specifics an incremental change in the oricntation and position of the torch induced by
incremental changes in the joint coordinates.  Scam tracing requires incremental changes {(in the base
coordinates) in both the position and orientation of the torch. Since the changes in the base and the joint
coorhinates arc related through the nonlinear inverse Jacobian coordinate transformation, a small change in
the position and orientation of the torch in the base coordinates may require a large change in the joint
variables. This realization hampers application of the inverse Jacobian to compute the differential changes in

the joint coordinates from the d'l‘() matrix.

‘The goal of this section is to introduce the concept of a modilied d'['() matrix and an derative algorithm
which doces not restrict the nature of changes in the joint variables that led to the specified d'l'() matrix [Khosla
83]. Ifthe changes are incremental (as assumed for the derivation of the inverse tacobian), then the algorithm
comverges in the fust iteration.  In the case of large changes, the algorithm converges rapidly (in typically 2-3
iterations for the examples highlighted in Section 6) to the appropriate differential changes in the joint
coordinates. "The 'I'() matrix at the next point is computed by adding the present ’I‘6 matrix to the modified
d't, matrix. This approach reduces computation time because computing the next ’l'() matrix does not require

the forward solution.

et R and S be two points on the mid-seain transition segment between the points A and D (in Figure 6).



et the position and the orientation of the torch at points R and S be specified by Teg and T, respectively.

let los be such that the change d'1 o 0 Im{ lcads to l()S. I'hus,

Tos =Ter +dTg
(24)
It is also possible to reach 'l'()S from 'I'()R through a transformation C (in the base coordinates) which consists

of a translation along the x, y and z axes followed by a rotation 8 along an axis k. Thus,

Tos = CTep
(25)

where

C = Trans{x.y. 2} Rot(k . 8)
(26)

l.ct N O and g, be the component veetors of the 'I'()R matrix specifying the orientation of the torch at the

point R, and ng, o, and a, be the corresponding vectors of the 'I'bS matrix.  From (24), the cotresponding

SS S
differential veciors dn, do and da are

dn = g = Hp

27)
do = u_; -~ ()k'

(28)
da = (lg - (IER.

(29)

While traveling from point A to point 1D {in Figure 5), the d’l'() matrices should be computed to preserve the

oR should be computed from d1 6

according to (24). Geometrically, the loci of the n, 0 and a vectors of a 'l'() matrix should be a sphere of unit

physical stgnificance of the '!'b matrices at the transition points. Thus, T
radius.

Figure 6 depicts the total desired change in cach of the n, 0 and a vectors, while traversing from point A to
point D (in Figure §) in M steps. The comiponents An, Ao and Aa, computed from (30)-(32), are shown in
Figure 6. The arc of the unit circle represents the loci of the n, o and a vectors during the transition. 1.ct
)y (Og)

points A and D. The subscript u indicates that the vectors are unnormalized. 'The vectors Nee O and a, are

and (nR)u be the unnormalized vectors whose tips lic on the point R’ on the straight ling joining

u’ u

obtained by normalizing the magnitude of the corresponding vectors to unit length,
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The unnormalized vectors of the 'l'bS matrix arc computed as

(n,), =(n), +6n

(30)
(0,), =(0,), +d0

(R19)
(a,), Ha,), +8a

(32)

and then normualized to obtain the n and ag veetors. The right-hand sides of (27)-(29) arc thereby

s 9
specificd completely, and the difterential vectors of the d'l'b matrix can be computed to preserve the physical

significance of the 1 matrix.

Having obtained the dn, do and da vectors of the d'l'() matrix in (15), it remains to compute the dp vector to

specify completely the matrix. ‘I'he vector dp is computed as

dp =Ps P

where the vectors Pr and pg are obtained from (21).

By construction, the d'T, matrix satisfics (26). Since the magaitudes of the changes in the joint variables are
not constrained in the derivation of the dT matrix, the computed dF, marrix satisfies (27). Thus, the T

matrix at the next point S cain be obtained by adding the "I matrix at the present point R to the computed

6

dt matrix (and consequently there s no need o compute the '|‘6 matrix at the point S from the updated
values of the joint variables when the torch reaches the point S). 'The real-time computational requirements

of this construction are detailed in Scction S.

4.1. An Iterative Algorithm to Compute the Differential Changes

In applications, such as scam tracing (in which the sample points lic at incremental distances along the
scam), the required changes in the joint variables may not be incremental. A practical example involves
tracing a scam which has large slope variations, The :l'l'() matrix is rclated (o the changes in the joint variables
through the inverse Jacobian which, in turn, is derived under the assuinption of small changes in the joint
variables. Muany of the scams occurring in practice have slowly varying slopes and application of the inverse
Jacobian to make the incremental motions is computationally advantageous. In practice, the scam may
exhibit farge slope changes at a few points, and the solution obtained (for the differential changes in the joint
coordinates to rcach the next point) from the inverse Jacobian may exhibit significant crrors. "The torch is
thus placed at the incorrect point on the scam, and a large crror (in the position and oticntation of the torch)

i5 introduced.  To overcome this problem, an iterative algorithm is introduced. A block-diagriun of the



14

iterative algorithin is shown in Figure 7.

. . - . o . . . ~ . . ryr * IR . ~
The algorithm begins at i = 0 with the initialization of the following variables: l() (I() matrix of the next

point), 'I‘bi (current 'l'h matrix), and iy (current valucs of the joint variables).
The algorithm implemented at the i-th iteration is :

aTg =T =T

(33)
dgi o1 =) [d g 1)

(34)
Qi +1 = GiHdqin

(35)
Tei=tainl

(36)
A =Dl il

(37

where J7' s the inverse Jacobian (in "Fable 5) for the computation of the differential changes in the joint

variables from d'l’(i and 4y (in contrast to the symbolic or numerical inversion of the Jacobian matrix); I
, N

denotes the operation of computing the 'l"h matrix {in Table 2); and D signifies the compuiation (delay) time

for the forward solution,
Upon substituting (34) into (35),

Gv1 =g +IdTeq 1]
(38)

and hence,

dgi 1 = (a1 —q) =T [dTeqi 4 4]
(39)
Equation (39), and consequently the algorithm depicted in Figure 7, is the Newton-Raphson method

{Atkinson 78] for solving the inverse Jacobian system of nonlincar equations {in 'Table 9).

The atgorithm converges (in theory) when «ff of the components of the d'l'bi matrix in the block-diagram (in
Figurce 7) arc zero. In practice, the algorithm is assumed to converge when cach of the clements of d'l'b.1 is less
than a pre-sct tolerance, The computed vector 7 contains the desired set-points (in the joint variables) to
rcach the next position. When the desired changes in the joint variables are small, the algorithm converges in

onc iteration and reduces to obtaining the inverse differential solutions from the inverse Jacobian (in Table 5).
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For the seams tested with the simulator, the algorithm always converged in a maximum of three iterations
(when the preset tolerance was set equal to zero). The computational requirements of the scam tracing

algorithm arc outlined in the next scction.

5. Computational Requirements

The computations required to follow the scam from the present sample point to the niext are outlined in
Table 6. The number of iterations required for the transition point computation and iterative algorithm
(33y-(37) are denoted by N\ and Nz* respectively. (FFor the scams traced by the simulator, typical values are
found to be N, = 2and N2 = 1.) Exccution times of the 8087 hardwarce instructions [intel 83] are listed in
Table 7. These floating point operation times (including the times required to load and store the operand) are
used Lo estimate the lime required to move the torch from one sample point to the next. Typical times (shown
in Table 6) range from 24 to 29 milliseconds, which correspond to sampling rates of 35-40 Hz. IFor most

welding applications, a sampling frequency of 10 Hz appears to be adequate.

These computational estimates are based upon the matrix kinematic modeling of manipulators used
throughout his paper. Matrix representations of rotations are highly redundant.  Quaternions [Beceler
72, Hamilton 69] offer a convenient representation for rotations and can reduce both the storage requirements
and computational load {Tavior 79 'The authors estimate that the quaternion hnplementation of the scam

tracking algoridun would increase the achicvable sampling rate o 60 Hz.

5. Simulation

To evatuate the algorvithm, a software simulator has been developed (in the C programming language on a
VAX 11/780) for the six degree-of-freedom Cyro robot in our laboratory. The simulation is initialized by
retrieving seam data (as coordinates of sample points) from a data file, The first two sampled cross-sections of
the scam arc uscd o compute the desired '1'6 matrix of the robot at the first point on the mid-scam and to
compute the joint position and velocity set-points to reach the desired destination. Upon reaching the first
point on the mid-seam, the algorithm computes the coordinates of the transition point on this segment (for
the ratio 7771 which is cutered by the engineer at the start of the simulation) and the total time 1 required to
traverse the next segment. "the 1 matrices at the present and next sample points arc used to generate the
joint position and velocity set points by the algorithm in (33)-(37). 'The trajectory from the beginning to end
of the transition is computed from (21), and the joint position and velocity set-points are computed to follow
the interpolated curve. Upon reaching the end of the transition, the process is repeated {for cach transition
point), until the Tast sample point is rcached. The simulation is then terminated and the speciticd curve is

traced.
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To achicve a quality weld, the lag or lead angle of the torch must be controlled adaptively. In the case of
fillet and lap joints, the torch stand-off must also be controlled.  Since an adaptive controller for these
parameters remains to be developed, we have included (in our simulator) the facility to specify these control

parameters at the beginning of the simulation.

In the software simulator, the torch can be rotated about rwo axes. The first is about an axis parallel to the
direction of travel and the sccond is about an axis perpendicudar to the direction of travel (in the plane of the
first axis). “T'his capability allows control over the lead or lag angle of the torch,  lacility o specity the
stand-olt for lap and fillet joints has also been incorporated. “Iie simulator has tracked butt, lap and fillet

joints and the experimental results are highlighted in the next section.

7. Experimental Results

The scam tracking algorithm approximates the curve between sample points by a straight-line.  To
emphasize the effect of lincar interpolation and the choice of sampling distance on the tracking accuracy, the
simulator tracked a sinusoidol curve (with uniform spacings of 30 and 10 degrees). The simulation results are
depicted in Figures 8 and 9, respectively, As the sampling distance is decreased, the tracked curve approaches
the actual curve, ‘The maximum tracking crror ( which occurs for h = 0.5) is

— } “_I__ _— ,,J_
c~16AL,l, 16.\1}

and depends upon AB, AC and the ratio 771, For a particular scam and sample points, AB and AC arce
constant and the tracking crror (with respect to the interpolated curve) is a Jfinear function of the ratio /1.
The simulation experiments illustrate that accurate tracking can be achieved by judiciously selecting the

sample points and maintaining the ratio (7/71) of transition time to scgment time as smail as possible.

8. Conclusions

A gencral-purpose real-time scam tracing algorithm, for implementation on any six degree-of-freedom
rehot, is proposed. The algorithm (which requiies knowledge of only one-point-ahead to track a scam) can be
applicd to a multitude of robotic scam tracking activitics such as sluing, surface grinding and flame cutting,
The algorithm incorporates the physical interpretation of the 'I'G and d'l'() matrices to realize scam tracking. 'To
reduce the computational requirements, the paper introduces the concept of a modified (l'l'b matrix. ‘The
inverse Jacobian solution is generalized (according to Newton’s method) w compute both large and small

changes in the joint coordinates.

To test the efficacy of the proposed scam tracing algorithin, a simulator has been written and tested on a
VAX 11/780. 'T'he simulation cesults are highlighted in Scction 7 of [Khosla 83]. The tracking accuracy is a

function of the sampling distance because of the straight-ling approximiation between two successive sample
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points, and the tracking crror increases with the incrcase in ratio of the transition time to the segment travel

time.

Fature activity will focus on the adaptive control of the weld parameters and dynamic robot control,
Successful practical implementation will depend upon the availability of faster processors and  the

experimental performance evaluation of the algorithm.
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Figure 1: Link Coordinate Frames of the CYRO Robot
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Figure 4 Camera Image of a Butt Joint
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Note- The generic vector g symbolizes the
normal (n), orientation (o) and approach
(a) vectors.

Figure 6: Locii of n, 0 and a Vectors
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Figure 7. Block Diagram of the Iterative Algorithm
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Figure 8: Sinusoidal Seam Tracking (30 degrees sampling interval)
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Figure 9: Sinusoidal Seam Tracking (10 degrees sampling interval)
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Link | Variable [ a a d
1 6 o, 90| 0 [ -R.
2 6, 690 (-90|-H| L
3 X3 90 90 | 0 | x3
4 24 90 90 0 24
3 ys 0 010 |y
6 [ (3 0 0 0

Definition of the Parameters
8 is the angle of rotation about the zaxis
a is the angle of rotation about the x-axis

a is the length of translation along the x-axis

d is the length of translation along the z-axis
Table 1: Link Parameters of the CYRO Robot

GGG +58 —CC,Se + $1G —GCiS; Ci(4S; +x3C; —HSy) -S;( - ys +L)
SIGG -GS —81GS ~CiC =518 Si(zS; +x3C —HS) +Cy( ~ys +1)
-85 2S¢ -G (G —x35; —HG) ~R
0 0 0 1

o=

Table 2: Forward Solution of the CYRO Robot
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Joint coordinate | Analytical Expression LConditions
6 azanzl"—’l Te(2,3)> 0
ax
& atanZl —ay] Ts(2,3)X 0
—dx
+
6, atan? ~{Ca; +S14))
(—a,)
X3 C1Cyp, +51Czpy - S,p, —SHR
z4 C1Sap; + 515w, +Cap;, +CaR +H
Ys S1px — Clpy +L
0,
6 alanZ[ 6> 0
_nl
0 atan2l 2| +180° 8< 0
Z
NOMENCLATURE

C; is the Cosine of the i-th joint angle

S; is the Sine of the i-th joint angle

atan2 is the double argument arc tangent function

Table 3;: Reverse Kinematic Solution of the CYRO Robot
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GGG +5,Sg)(var)) +(5,CC - C1S¢)(var2)
~«C,CaS¢ +5,Ce)(var]) +(=SCaSe - C;Cg)(var2)
CISI(\'al'l) - Slsz(varZ)
oTe S
26, -5G
S5
-G,
|
— CyCe(var3) + S,C¢(vard)
C3S¢(vard) - 5;Ce(vard)
9T Si(var3) —Cy(vard)
3'0:=I — S,
-G
0
r
C‘s‘ 6
P 0
aTs | 0 o |
o510 My
1o oz =r 0
0 0
& ;
0
ﬂ_ 0 aT6 0
a)'s 7 g 8—06_ 0
0
0, |
NOMENCLATURE

varl =85y(2,S; +x;C; —HS;) +Cy( —ys +L)
var2 =Cy(S; +x3C; —HS) +85)( —ys +L)
vard = - 2,C; +x35; +HG
vard =z,8; +x,C; ~HS;

Table 4 Column Vectors of the Jacobian matrix
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DIFFERENTIAL JOINT COORDINATES

(- Syda, +C day)
(Cla, + .S'lay)

6 - NC,d(NS,) — NS,d(NC5)
2 (NS,)? +(NCp)?

dé=

dzy =C2A1d6; + S,A; + Cydp, — S,43d 6>

dys = C1p,d 8 +Sydp, + S1p,d6 — Cydp,

Cedo, + Sgdn,

d06 - S6az _C6”z

NOMENCLATURE
NCy; = —a,
d(NCy) = ~da,
NS; = ~Cia;, — Siay
d(NSy = S1a,d6, — Cday, —C1a,db, — S\da,
Ay =Cp; +S1py

Ay = =S1p,d6, + Cidp, +C1pydb + S1dp,

Table 5: Inverse Jacobian of the CYRO Robot
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: : TIMIS in
STEP > -+ TP eoy millisee
Find the mid-scam
Butt Joint (1) 3 3 0.384
Lap/Fillet Joint (2) 3 6 0.462
Compute scgment travel time 'l
Butt Joint 23 39 1 5 Joll
Iap/lillet Joint 32 6l 1 0 5.256
Find transition point
Butt Joint 23*N 39*N, N, S*N 7.222
Lap/Fillet Joint 32*N 4 61*N,y N1 O6*N 10.512
Computation of
a Vector 9 14 S 1 Lol11
o Vector  (6)-(7) 15 11 3 1 1.675
n Vector  (8) 3 6 0.462
Compute dT , Matrix 12 0.576
Normalization 9 4 3 3 1.125
Tterative algorithm (33) - (37) 66*N 54*N, 6*N, | 7.200
Total
Buit Joint 62423 N 180+ 39" N5 N | 104N, | 6N, | 23872
+66*N; +54*N,
73+23*Ni |108+39*N, :
) v . 11 10+N <IND 28.885
Lap/Fillet Joint F66*N, | 54N, 15+N, | 6*N,

Table 6:  Computational Requirements of the Scam ‘tracing Algorithm
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Function Time(us)
Multiply 27
Add 17
Divide 39
Square Root 36
Tangent 90
Exponentiation 100
Load 10
Store 21

Table 7: Execution Times of the 8086/8087 Microprocessor(5 MHz Clock) [Intel 83]



