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Abstract

We present the methods and architecture of ARGUS, a stream processing system implemented atop

commercial DBMSs to support large-scale complex continuous queries over data streams. ARGUS

supports incremental operator evaluations and incremental multi-query plan optimization as new

queries arrive. The latter is done to a degree well beyond the previous state-of-the-art via a suite

of techniques such as query-algebra canonicalization, indexing, and searching, and topological query

network optimization. Building on top of a DBMS, the system provides a value-adding package to the

existing database applications where the needs of stream processing become increasingly demanding.

Compared to directly running the continuous queries on the DBMS, ARGUS achieves well over a

100-fold improvement in performance.

1 Introduction

In wake of the continuous growth of hardware (network bandwidth, computing power, and data storage)
and pervasive computerization of business and personal lives, the need of data stream processing becomes
increasingly demanding. It readily arises from the existing DBMS applications to manage the increasing
data dynamics, and presents new challenges that are not addressed by traditional DBMS technologies.
The two of the prominent challenges are to match continuous queries efficiently, and to optimize multiple
concurrent queries effectively. Along with other challenges has led to the emergence of Data Stream
Management Systems (DSMS), either as integral components of a DBMS (this paper) or as stand-alone
alternatives (most other work).

Efficient continuous query matching requires incrementally evaluating persistent query operators. A
traditional DBMS operator operates on relations and the output is another relation. In contrast, a
DSMS operator operates on streams and the output is another stream (selected, joined, projected, etc.).
Incremental evaluation exploits the continuity of queries over time and avoids re-computation on historical
data. ARGUS implements incremental evaluation methods for various stream operators. At play are
factors of 100X or more in efficiency, making the difference between practical systems and unscalable
concept demonstrations.
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Multiple query optimization (MQO) becomes more compelling for DSMSs to effectively support long-
lived large-scale concurrent continuous queries. Due to the MQO NP-completeness and asynchronous
query arrivals, MQO in DSMSs has to be addressed heuristically and incrementally by adding new queries
Q individually into the active query evaluation plan R. To perform incremental MQO (IMQO), a DSMS
needs to index the existing computation descriptions of R, identify the common computations between
Q and R, choose the optimal sharing paths, and expand R to compute the final results of Q. ARGUS
develops a comprehensive plan computation indexing and searching scheme for doing so. Particularly,
it emphasizes the identification capability, and the large-scale solution. It provides a general systematic
framework to index, search, and present common computations, done to a degree well beyond the previous
approaches.

In terms of identification capability, the scheme recognizes syntactically-different yet semantically-
equivalent predicates with canonicalization, and subsumptions between predicates and predicate sets,
and support self-join which is neglected in previous work. It supports rich predicate syntax by indexing
predicates in CNF forms, and it supports fast search and update by indexing multiple plan topology
connections.

To deal with the large-scale problem, the scheme applies a relational model, instead of a linked data
structure as by previous approaches. All the plan information is stored in the system catalog, a set of
system relations. The advantage is that the relation model is well supported by DBMSs. Particularly,
the fast search and easy update are achieved by DBMS indexing techniques, and the compact storage is
achieved by following the database design methodologies. We focus on select-join-project queries in this
paper. Aggregate [19] and set operations are also implemented, but will not be discussed here.

Further, ARGUS develops two sharing strategies to select the local optimal sharing paths, match-plan
and sharing-selection. ARGUS also incorporates several query optimization techniques including join
order optimization, conditional materialization, minimal column projection, and transitivity inference.
Incorporating these techniques into the IMQO setting presents more challenges, nevertheless provides
significant performance improvement over various types of queries.

ARGUS implements these capabilities atop exiting DBMS systems, such as ORACLE, for immediate
practical utility and to avoid need of replicating standard DBMS functionality. Note that majority of
the ARGUS work, particularly, the indexing scheme and the sharing strategies, are independent to the
underlying execution engine, and are applicable to any plan-based DSMS engines as well.

In this paper, we describe the ARGUS architecture. Section 2 discusses the related work. Section 3
presents two query examples to illustrate the desirable sharing and optimization. Section 4 overviews the
ARGUS architecture and incremental evaluation methods, and describes the query network structures.
Section 5 describes the query network generator architecture, and the incremental sharing procedure.
Section 6 details the indexing scheme and the related searching algorithms. Section 7 presents the two
sharing strategies implemented in ARGUS, match-plan and sharing-selection. Section 8 presents the
evaluation results. Finally, Section 9 concludes with the future work.
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2 Related Work

The related work are presented in three database areas, DSMS, MQO, and view-based query optimization.

2.1 Data Stream Management Systems (DSMS)

Researchers have developed several DSMS prototypes, including STREAM, Aurora, TelegraphCQ, and
NiagaraCQ. These prototypes do not address IMQO to an enough extent, particularly for indexing and
searching the common computations. Also, built from scratch or from DBMS code bases, the prototypes
are not immediately deployable to existing DBMS applications.

Stanford STREAM [23, 5] is a general-purpose DSMS prototype comprised of the plan generator and
the execution engine. It focuses on the engine development, has rich supports on adaptive query processing
[6], and implements resource sharing strategies inside the engine [3]. STREAM does not have the module
to identify and share common computations among multiple queries, nor can it handle self-joins on a
stream (a common operation). The only available sharing is through referencing the same output streams
of previously defined queries, like view references in DBMSs.

Aurora/Borealis [2, 1], a general-purpose DSMS developed by Brandeis, Brown, and MIT, provides
rich supports on distributive processing and tolerance of failures. It supports a procedural language to
specify queries. With this procedural approach, much of the query sharing and optimization work is
pushed to the user side, and thus the system does not have an individual module for it. However, this
approach is not suitable for the large-scale query applications or the applications where the users are not
expected to have extensive knowledge on the internal system.

Berkeley TelegraphCQ [8] is a general-purpose DSMS implementing a very different architecture. The
plan is a set of operators built around Eddies [4], the integrated adaptive query processors. Eddies route
the stream tuples through various operators to compute the final query results. TelegraphCQ [22] supports
IMQO by grouping and indexing individual predicates. [21] describes the strategies to avoid too-much
sharing which produces unnecessary intermediate results. Applying only shallow syntactic analysis, the
indexing scheme does not identify complex common expressions, and thus misses the opportunity to
perform many computation sharing operations.

NiagaraCQ [9, 10] is designed to handle large-scale queries and supports IMQO. Simple selection
predicates are grouped by their expression signatures and evaluated in chains. Equi-join predicates can
also be shared. However, it applies only shallow syntactic analysis and only indexing computations at
predicate level. This simplified approach also confines the sharable plan structures to single predicate
materialization, and restricts the applicable sharing strategies (see Section 7). NiagaraCQ applies a match-
plan strategy. In contrast, ARGUS indexes computation information on the levels of literal predicates, OR
predicates, predicate sets, and topology structures, and implements two sharing strategies, match-plan
and sharing-selection.

Gigascope [11] is a special-purpose DSMS designed for network analysis applications. Nile [16] is
a DSMS prototype on distributed sensor network applications. And CAPE [30] is a DSMS prototype
concerning dynamic query re-optimization. They do not support IMQO.

Other closely related work on IMQO are Gator in Ariel [17] and Trigger Grouping in WebCQ [28].
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Both implemented the chained sharing on simple selection predicates, similar to NiagaraCQ.

2.2 Multiple Query Optimization and View-based Query Optimization

Our IMQO approach, particularly the indexing scheme and the sharing strategies, is also closely related
to but substantially different from the previous approaches targeted to MQO and view-based query opti-
mization (VQO).1 We first discuss the related work to the indexing scheme, then we discuss the related
work to the sharing strategies.

Since MQO and VQO target to different scenarios, their indexing schemes do not suit for IMQO in
DSMSs. MQO focuses on one-shot optimization where queries are assumed to be available all at a time.
Therefore, the plan structures do not need to be indexed, since they are constructed from scratch and are
not needed for future search and updates. In VQO, the plan structures for views also do not need to be
indexed, since they are predetermined and the unmaterialized internal results are not sharable.

In most of these approaches, the common subexpressions are identified by constructing and matching
query graphs [13, 7, 29]. A query graph is a DAG presenting selection/join/projection computations for a
query. The matching has to be performed one query by the other. Signature (table/column references in
predicates) can be hashed for early detection of irrelevant query graphs. However, many, with the same
signature but irrelevant, remain and have to be filtered out by the regular semantic matching. Since it
does not index any plan structure information, it can not be used for IMQO plan indexing.

In the remaining approaches, particularly for the view-matching problem in VQO, a top-down rule-
based filtering method equipped with view-definition indexing is applied [14, 12]. It identifies the sharable
views by filtering out irrelevant ones as soon as possible. The view-definition indexing is different from
our indexing scheme in two ways. It does not index the internal plan structures for view evaluations, since
the internal intermediate results of a view are not materialized and thus not sharable. It also does not
support fast updates since the index is not expected to change frequently over time. In contrast, a shared
continuous query plan contains materialized intermediate results to support the continuous evaluation of
state operators, such as joins, and is expected to change upon new query registrations.

A sharing strategy specifies the procedure of searching the optimal sharing path in a given search
space. In the MQO setting, [27] presents a global search strategy with the A*-search algorithm, and
[26] uses heuristics to reduce the global search space. Their approaches assume that the queries are all
available at the time of optimization, and are not applicable to the IMQO setting. NiagaraCQ implements
an IMQO sharing strategy, match-plan. Match-plan matches a plan optimized for the single new query
with the existing shared query plan from bottom-up. This strategy may fail to identify certain sharable
computations by fixing the sharing path to the pre-optimized plan. ARGUS implements two sharing
strategies, one is match-plan, and the other is sharing-selection. Sharing-Selection identifies sharable
nodes on 2-way joins and locally chooses the optimal one. Actually, match-plan can be viewed as a special
case of sharing-selection by always choosing the join at the lowest level among all sharable 2-way joins.

1View-based query optimization is a query optimization approach that identifies and uses sharable materialized views to
speed up the query evaluation.
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3 Query Examples

We present two query examples to illustrate the desirable sharing and optimization.
Consider a query Q1 on big money transfers for financial fraud detections. The query links big suspi-

cious money transactions of type 1000, and generates an alarm whenever the receiver of a large transaction
(over $1,000,000) transfers at least half of the money further within 20 days using an intermediate bank.
The query can be formulated as a 3-way self-join over the transaction stream F .

SELECT r1.tranid, r2.tranid, r3.tranid

FROM F r1, F r2, F r3
WHERE r2.type code = 1000
AND r3.type code = 1000
AND r1.type code = 1000
AND r1.amount > 1000000 ∗
AND r1.rbank aba = r2.sbank aba

AND r1.benef account = r2.orig account

AND r2.amount > 0.5 ∗ r1.amount ∗
AND r1.tran date <= r2.tran date

AND r2.tran date <= r1.tran date + 20
AND r2.rbank aba = r3.sbank aba

AND r2.benef account = r3.orig account

AND r2.amount = r3.amount ∗
AND r2.tran date <= r3.tran date

AND r3.tran date <= r2.tran date + 20;

We add two predicates that can be inferred automatically by a transitivity inference module [20] from
the three star-marked predicates. They are r2.amount > 500000 and r3.amount > 500000. If the inferred
predicates are selective, the performance could be significantly improved.

We classify the predicates into predicate sets (PredSets) based on the table references:

P1
r1.type code = 1000 AND

r1.amount > 1000000

P2
r2.type code = 1000 AND

r2.amount > 500000

P3
r3.type code = 1000 AND

r3.amount > 500000
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P4

r1.rbank aba = r2.sbank aba AND

r1.benef account = r2.orig account AND

r2.amount > 0.5 ∗ r1.amount AND

r1.tran date <= r2.tran date AND

r2.tran date <= r1.tran date + 20

P5

r2.rbank aba = r3.sbank aba AND

r2.benef account = r3.orig account AND

r2.amount = r3.amount AND

r2.tran date <= r3.tran date AND

r3.tran date <= r2.tran date + 20

Figure 1(a) shows an evaluation plan for this query. A query evaluation plan, also called query network,
is a directed acyclic graph (DAG). A node N presents a set of results 2 that are obtained by evaluating a
PredSet on N ’s parent node(s). Assume the selection PredSets (P1, P2, P3) are very selective, thus the
optimal network should evaluate them first. Because PredSets P2 and P3 are equivalent, they share the
same node S1. Because P2 and P3 subsume P1 (the result set of P1 is always a subset of that of P2 or P3,
or say P1 → P2, and P1 → P3), thus P1 can be better evaluated from node S1 instead of from the source
node F since less data needs to be processed. Assume P4 and P5 are equally selective. Because the input
size to P4 is less than that of P5, P4 is evaluated first for J1.

Query network nodes are associated with PredSets, as shown in Figure 1. Actually, there are multiple
associations depending on which ancestors the PredSets are formulated on. Figure 1 shows the PredSets
formulated on the very original source stream F for illustration. They are different from the PredSets that
are actually used to evaluate on the direct parent node(s) to obtain the results. For example, instead of P1,
the PredSet used to evaluate on node S1 to obtain S2 contains just one predicate r1.amount > 1000000,
and is formulated with regard to S1 column names. In terms of common computation search, we need to
know the very original associations. In terms of constructing the plan executable code, we need to know
the direct parent associations. Thus multiple associations are indexed.

Consider a second query Q2 which is the same to Q1 except the time span is 10 days instead of 20
days. Thus PredSets P4 and P5 are changed to P6 and P7, respectively.

P6

r1.rbank aba = r2.sbank aba AND

r1.benef account = r2.orig account AND

r2.amount > 0.5 ∗ r1.amount AND

r1.tran date <= r2.tran date AND

r2.tran date <= r1.tran date + 10

2As shown in Section 4, N ’s results actually are comprised of two parts.
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F S1 S2 J1 J2

(a) A Self-Join Query Network for Q1

F S1 S2 J1 J2

(b) SharingPlan1: Add a New Query Q2

S3

J4

F S1 S2 J1 J2

(c) SharingPlan2: Add a New Query Q2

S4

P2 , P3 P1 P4 P5

P7

P6

P6 and P7

Figure 1: Sharing Query Networks

P7

r2.rbank aba = r3.sbank aba AND

r2.benef account = r3.orig account AND

r2.amount = r3.amount AND

r2.tran date <= r3.tran date AND

r3.tran date <= r2.tran date + 10

Since P6 is subsumed by P4, P6 can be evaluated from J1 as results of a selection predicate (r2.tran date

<= r1.tran date + 10) to obtain S3 as shown in Figure 1(b). Then P7 is evaluated to obtain final results
in J4. A better sharing choice SharingPlan2 is shown in Figure 1(c) that avoids creating the join node.
Recognizing that J2 provides the superset of Q2’s final results, P6 and P7 are actually evaluated from J2
as a selection PredSet P8 to obtain S4, which is equivalent to J4 in Figure 1(b):

P8
r2.tran date <= r1.tran date + 10 AND

r3.tran date <= r2.tran date + 10

The nodes of the shared plan should not contain all columns from their parent nodes, but only the
columns in the results and the columns that are used for further evaluations. This is called minimal
column projection.

To obtain the shared plans in Figure 1, the system needs to perform transitivity inference to infer
hidden predicates, generate plans for individual queries, identify common computations and sharing paths,
such as SharingPlan2, perform minimal column projection, and construct and extend the shared plan.
The common computations involve predicate and PredSets that are equivalent and/or have subsumption
relationship, and the associations between nodes and their PredSets. The remaining of this paper shows
how ARGUS performs these tasks to construct the shared plans.
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4 System Overview

An ARGUS continuous query is specified in SQL. Sliding windows, a feature commonly used in continuous
queries, can be expressed by range predicates on timestamp attributes. ARGUS assumes the query
conditions in where-clauses are expressed in a conjunctive normal form (CNF).

ARGUS is comprised of two components, Query Network Generator (NetGen) and Execution Engine
(Engine), shown in Figure 2. Upon receiving the request of registering a new continuous query Q, NetGen
parses Q, searches and chooses the sharable computations between Q and the existing query network R,
constructs a shared optimal query evaluation plan, expands the query network to instantiate the plan,
records the network changes in the system catalog, and sends the updated execution code of the query
network to the engine. The engine runs the execution code, and produces new results if newly arrived
stream tuples match the queries. The execution is scheduled periodically, but can also be invoked upon
arrivals of new data.

Stream Tables

Analyst

Input S
tream

s

Query Network
System
Catalog

Sharing
Module

Query
Optimizer

Code
Assembler

Plan
Instantiator

And 
Search

Interface

Register queries

Result streams

Register query network

ARGUS Query Network Generator ARGUS Execution Engine

Parser &
Canonicalizer

Oracle DBMS

Figure 2: Using ARGUS. An analyst registers a query Q with ARGUS. Query Network Generator processes
Q, generates the query network and its execution code, records the information in the System Catalog.
Execution Engine executes the code to monitor the input streams.

The engine is the underlying DBMS query execution engine. We use its primitive supports for rela-
tion operators, but not use its complex query optimization functionality, to evaluate the query network
generated by ARGUS to produce stream results. As we know, to run a query in SQL, a DBMS generates
an optimal logical evaluation plan, then instantiates it to a physical plan, and executes the physical plan
to produce the query results. The logical plan can be viewed as a formula comprised of relation operators
on the querying relations. And the physical plan specifies the actual methods and the procedure to access
the data. When the query is simple, e.g. a selection or an aggregate from one relation, or a 2-way join
or a UNION of two relations, the logical plan is simple and requires almost no effort from the query
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optimizer. An ARGUS query network breaks the multiple complex continuous queries into simple queries,
and the DBMS runs these simple queries to produce the desired query results. Therefore, in ARGUS,
the underlying DBMS is not responsible for optimizing the complex logical plans, but is responsible for
optimizing and executing physical plans for the simple queries.

In the remaining of this section, we describe the query network structures, how it incorporates in-
cremental evaluation methods, and how it is assembled to the code that can be executed by the DBMS
engine. We describe how to generate the query network in the next section. We will not discuss how the
DBMS generates and executes the physical plans.

4.1 Query Network Structure

A query network is a directed acyclic graph (DAG). Figure 3 shows an example, which evaluates four
queries. The upper part evaluates queries Q1 and Q2 described in Section 3, and the lower part evalu-
ates two sharable aggregate-then-join queries. The source nodes (nodes without incoming edges) present
original data streams and non-source nodes present intermediate or final results.

F S1 S2 J1 J2 S3

G1

G2

J3 S4

F

hist
temp

Select From F_temp
Results go to S1_temp

Join S1_temp and S2_hist
Join S1_hist and S2_temp

Join S1_temp and S2_temp
Results go to J1_temp

Re-compute J3_hist from
G1_hist and G2_hist;

Compute J3_tempAggregate F_temp, 
Results go to G2_temp;

Update G2_temp from G2_hist

Incremental Evaluation Non-Incremental Evaluation

Figure 3: Execution of a shared query network. Each node has a historical (hist) table and a temporary
(temp) table, here only those of node F are shown. The callouts show the computations performed to
obtain the new results, to be stored in the nodes temporary table. S nodes are selection nodes, J nodes
are join nodes, and G nodes are aggregate nodes. The network contains two 3-way self-join queries and
two aggregate-then-join queries, and nodes J2, S3, J3, and S4 present their results respectively.

Each network node is associated with two tables of the same schema. One, called historical table,
stores the historical data (original stream data for source nodes, and intermediate/final results for non-
source nodes); and the other, called temporary table, temporarily stores the new data or results which
will be flushed and appended to the historical table later. These tables are DBMS tables, their storage
and access are controlled by the DBMS.
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In principle, we are only interested in temporary data because it presents the new query results.
However, since some operators, such as joins and aggregates, have to visit the history to produce new
results, the historical data has to be retained. It is possible to retain only certain nodes’ historical data
that will be accessed later. However, this has more intricacy when sharing is involved, and is not supported
in current implementation.

An arrow between nodes, or the direct parent association as discussed in Section 3, presents the
evaluation of a set of operators on the parent node(s) to obtain the results stored in the child node.
The operator set could be a set of selection predicates (selection PredSet), a set of join predicates (join
PredSet), a set of GROUPBY expressions, or a set operator (UNION, set difference, etc.). Table 1 shows
the types of the operator sets and their result nodes 3.

Operator Set # of Result Node Type
parents

Selection PredSet 1 Selection node

Join PredSet 2 Join node

GROUPBY Expressions 1 Aggregate node

Set Operator ≥ 2 Set operator node

Table 1: Operator sets and result nodes

The operator sets are stream operator sets. They operate on streams and output other streams. Many
operator sets can be evaluated incrementally on the parents’ temporary tables to produce new results that
populate the result node’s temporary table. For example, the new results of a selection PredSet can be
evaluated solely from the parent’s temporary table, e.g. in Figure 3, S1 temp can be obtained by selecting
from F temp.

For another example, the new results of a 2-way join PredSet can be evaluated by three small joins
from the parents’ historical and temporary tables, e.g. in Figure 3, J1 temp can be obtained by three
joins, S1 temp 1 S2 hist, S1 hist 1 S2 temp, and S1 temp 1 S2 temp. Performing the three small joins
is much faster than performing a large join on the whole data sets, (S1 hist + S1 temp) 1 (S2 hist +
S2 temp), since the temporary tables are much smaller than the historical tables, |S1 temp| ¿ |S1 hist|,
and |S2 temp| ¿ |S2 hist| [20].

For the last example, an aggregate function SUM can be evaluated by adding the new tuple values to
the accumulated old aggregate values instead of revisiting the entire parent historical table, e.g. in Figure
3, G2 temp can be obtained by aggregating F temp tuples and then adding the old aggregate values from
G2 hist to the aggregate values [19].

Some operator sets can not be incrementally evaluated. Examples include holistic aggregates, such as
quantiles [15], and operator sets operating on non-incrementally-evaluated nodes. In the current imple-
mentation, we do not perform incremental evaluation on post-aggregate operators, e.g. the join node J3
in Figure 3. Because the aggregate nodes’ historical tables also need updates, and the system currently
does not trace such updates, the incremental evaluations from aggregate nodes will not produce the cor-
rect results. If the system is extended to support the tracing, the incremental evaluation methods can be
modified to evaluate post-aggregate nodes as well.

3The system only supports 2-way joins now. We plan to extend to support multi-way joins.
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Regardless a node can be incrementally evaluated or not, the way to populate its temporary table can
be expressed by a set of simple SQL queries operating on its parent nodes and/or its own historical table.
In another word, the incremental or non-incremental evaluation methods to populate a node’s temporary
table can be instantiated by simple SQL queries.

Each node is associated with two pieces of code and a runtime Boolean flag. The first code, initializa-

tion code, is a set of DDL statements to create and initialize the historical and temporary tables. It is
executed only once prior to the continuous executions of the query network. The second, execution code,
is a PL/SQL code block that contains the simple queries to populate the temporary table. The Boolean
flag is set to true if new results are produced. To avoid fruitless executions, the queries are executed
conditioning on the new data arrivals in the parent nodes. Particularly, only when at least one parent
flag is true, are the queries executed. There is a finer tuning on execution conditions for incremental joins
depending on which parent’s temporary table is used.

The nodes of the entire query network is sorted into a list by the code assembler. Correspondingly,
we get a list of execution code blocks. This list of code blocks are wrapped in a set of Oracle stored
procedures. These stored procedures are the execution code of the entire query network. To register the
query network, the system runs the initialization codes, then store and compile the execution code. Then
the execution code is scheduled periodical executions to produce new results.

4.2 Code Assembling

The query network is evaluated in a linear fashion, and the nodes need to be sorted. The only sorting
constraint is that the descendant nodes must follow their ancestor nodes, which is called the Minimal
Partial Order (MPO) requirement. Any order that satisfies the MPO requirement is called a Minimal
Partial Order (MPO).

One way to get a MPO list is to traverse the entire network starting from the original stream nodes.
However, since the query network is recorded as a set of node entries in the system catalog relations,
not in linked data structures4, the traversal entails many system catalog accesses and is not efficient.
The traversal algorithm itself is complicated since it needs to support various traversal strategies, e.g.
breadth-first and depth-first, to allow flexible scheduling, which will be implemented in future.

Another way to get a MPO list is to retrieve and sort all node entries with one block system catalog
access as long as each node is associated with a sort ID whose order renders a MPO. On the other hand,
any one-dimensional linear MPO sort ID assignment confines to one restrict unchangeable order, which
will not allow dynamic rescheduling, a useful adaptive processing technique that we plan to support in
future. Such assignment is also hard to maintain when the query network expands, since adding a new
node may entail the assignment update for a significant portion of nodes in the query network.

To address such problems, we introduce a two-dimensional sort ID assignment scheme. A sort ID is a
pair of integers, JoinLevel and SequenceID. The JoinLevel globally defines the depth of a node, and the
SequenceID defines the local order within sub-network graphs. In a query network of only selection and
join nodes, a node’s JoinLevel is its join depth. An original stream node’s JoinLevel is 0. For a node
with two or more parents, a.k.a. a join node or a set operator node, its JoinLevel is 1 plus the maximal

4The reason for doing so is to provide the fast searching and easy updating to the system catalog.
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JoinLevel of its parents. For a node with a single parent, a.k.a. a selection node or an aggregate node, its
JoinLevel is the same to its parent JoinLevel.

Theorem 1 Any connected sub-network graph of the query network whose nodes have the same JoinLevel
must be a tree.

Proof: First, we prove that any non-source node in the sub-graph has a single parent. The non-source
nodes are with regard to the sub-graph, not to the entire query network.

Assume there is one non-source node N that has more than one parents, then at least one of its parents
is also in the sub-graph since N is a non-source node. Assume the parent is M , then M ’s JoinLevel must
be less than N ’s, which contradict to the sub-graph definition.

Second, we prove that there is only one source node in the sub-graph.
Assume there are more than one source nodes in the sub-graph, and two of them are N1 and N2.

Since the sub-graph is connected, and N1 and N2 are source nodes (nodes without incoming edges), so
they must be connected by at least one common descendant N in the sub-graph. Then N has more than
one parent, which is impossible according to above proof.

Now, the sub-graph is a DAG with a single source node, and each non-source node has a single parent,
so the sub-graph is a tree. ¥

The tree is called a local tree. SequenceIDs are defined within local trees. The root node’s SequenceID
is 0, and a child node’s SequenceID is always bigger than its parent’s SequenceID.

When a new node N is created as a leaf node of the tree, its SequenceID is assigned as k plus its
parent’s SequenceID. In the system, we set k = 1000. When a node is inserted into between a parent
node and a child node in a local tree, the new node’s SequenceID is the round-up mean of its parent and
child’s SequenceIDs. So a large k helps future insertions without affecting children’s SequenceIDs. If the
parent and child’s SequenceIDs are consecutive, and thus no unique SequenceID in-between is available
for the new one, then the system increments the SequenceIDs of the child and all its descendants in the
local tree by k.

With JoinLevel and SequenceID defined, a MPO order can be obtained by sorting on the JoinLevels
and then on the SequenceIDs. Since multiple nodes may have the same JoinLevel and SequenceID, there
are ties. Different tie resolution strategies render different MPO orders. In future, we want to apply
additional information (locality) to choose optimal MPOs or rearrange MPOs for dynamic rescheduling.
Such techniques may improve performance significantly when disk page swapping is inevitable and the
data characteristics are changing dramatically. It is noticeable that the two-dimensional assignment is
still stricter than the MPO requirement. For example, a depth-first traversal is a MPO, but violates the
two-dimensional sorting criteria. Studying such legal violations may lead to finer MPO searching.

5 Query Network Generator

We describe ARGUS Query Network Generator in this section. Details on some important problems,
particularly on the indexing scheme and the sharing strategies, are described in the following two sections.

12



ARGUS Query Network Generator (NetGen) generates and updates the shared query network. Given
a new query Q, it constructs an optimal shared evaluation plan, expands the existing query network
with the plan, generates the updated executable code, and register it with the engine. Figure 4 shows
the architecture of NetGen. In the NetGen, the ARGUS manager, a master program, coordinates various
modules to complete the query processing procedure. The procedure accesses the system catalog to lookup
and update the query network information.

System
Catalog

Sharing
Module

Query
Optimizer

Code
Assembler

Plan
Instantiator

ARGUS Query Network Generator (NetGen)

Parser

Canonicalizer

Index & Search
Interface

Query
Rewriter

ARGUS
Manager

SQL
Query

Initialization and execution code

Figure 4: Query Network Generator.

ARGUS indexes all query network related information in the system catalog, a set of DBMS relations.
The indexing scheme involves computation and topology indexing at four layers. First, we index literal
predicates. Second, we index OR predicates (disjunction of literal predicates). Third, we index PredSets
(conjunction of OR predicates). Fourth, we index the associations between the PredSets and the nodes,
and the topological connections between nodes.

5.1 Searching Algorithms

Several algorithms are needed to assemble the retrieved information to formulate the conceptual sharable
computations. Details are described in Section 6. Here we overview the functionalities.

Given a PredSet PQi in the new query Q, the searching goal is to find a sharable node N whose
PredSet PN subsumes PQi, so that PQi is either computed by N , or can be computed from N . We start
the search from PQi’s literal predicates. For each literal predicate ρQijk in an OR predicate pQij of PQi, we
retrieve a set of sharable literal predicates {ρRQijk}. Then an algorithm checks the relationship between
pQij and the system-catalog-indexed OR predicates that contain any of {ρRQijk}. Once the sharable
OR predicates {pRQij} are determined for each OR predicate pQij in PQi, a similar algorithm is called
to find the sharable system-catalog-indexed PredSets {PRQi} for PQi. Then we check the very original
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associations of {PRQi} to identify the sharable nodes {N}. The optimal N will be chosen by a sharing
strategy based on estimated costs.

For aggregate functions, the sharable nodes can be identified by finding the nodes whose GROUPBY
expression set is a superset of that of the query [19]. For set operator nodes, the sharable nodes can be
identified by finding the nodes whose parent set is a subset of the query’s parent set.

5.2 Canonicalization

A literal predicate can be expressed in different ways. For example, t1.a < t2.b can also be expressed
as t2.b > t1.a. A simple string match can not identify such equivalence. To be able to match such
equivalent predicates, we introduce a canonicalization procedure. It converts the syntactically-different yet
semantically-equivalent literal predicates into the same pre-defined canonical form. The literal predicates
are indexed in the canonical forms. Then given a new query Q, its canonicalized literal predicates can be
matched with the system-catalog-indexed canonical literal predicates by the exact string match. Details
on canonicalization are described in Section 6.

5.3 Column Projection

To save the disk space and improve the evaluation performance, only necessary columns should be projected
into node tables. This is called Minimal Column Projection (MCP). The necessary columns include the
columns appearing in the final results and the columns needed for further evaluations. The columns for
further evaluations can be identified by looking at the column references in the not-yet-evaluated predicates
and expressions in the where-clause, the groupby-clause, and the having-clause.

The realization of MCP becomes much more complicated when sharing is involved. When a sharable
node N is identified and chosen, it may not contain all the necessary columns for the new query. We
need to add the missing columns to N . This is called projection enrichment. An intricate problem is that
N ’s parent(s), denoted as a node set {M}, may not contain all the missing columns either. So we also
need to add the missing columns to {M}, then to {M}’s parents, and so on, until all the added columns
to the nodes can be projected from their parents. This branched back-tracing process is called chained
projection enrichment. It is implemented in ARGUS to support both sharing and MCP.

5.4 System Catalog

The system catalog is a set of DBMS relations that record the query network information. There are a set
of algorithms to retrieve and update the relations through SQL queries, including the above mentioned
sharable computation identification algorithms. The relations are classified into three categories: query
network storage, coding storage, query storage, shown in Figure 5.

Query network storage is the biggest and the central category. Design details are described in Section
6. This part indexes computations including canonicalized literal predicates, OR predicates, PredSets,
and GROUPBY expressions (computation relations); it indexes column projection information (projection
relations); and it indexes the associations between the computations and the nodes, and the topological
connections between the nodes (topology relations).
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Query Network Storage
Computation Relations: Topology Relations:

PredIndex SelectionTopolgy
PSetIndex JoinTopology
GroupExprIndex GroupTopology
GroupExprSetIndex UnionTopology

Projection Relations:
JoinColumnMap Coding Storage
SelectionColumnMap LinearNodeTable
GroupColumnMap Query Storage
UnionColumnMap QueryTable

Figure 5: System Catalog.

Coding storage contains one relation, LinearNodeTable, for code assembler to construct the executable
stored procedures. It stores for each node the initialization and execution code blocks, the two-dimensional
sort ID, the Boolean flag, and the parent Boolean flag(s). The code assembler needs to know the Boolean
flags, so that in the corresponding stored procedures, they can be declared and initialized, or can be passed
in as arguments.

Query storage stores the information related to the original continuous queries including the query
texts, and the result tables.

5.5 Sharing Strategies

A sharing strategy specifies the criteria of choosing the optimal sharing path among multiple available
ones. We note that the exhaustive search for a global optimal sharing path is equivalent to MQO and is
NP-complete. Therefore, a practical solution needs to apply a local greedy search strategy to incrementally
construct the locally optimal sharing paths.

ARGUS implements two local sharing strategies, match-plan and sharing-selection. Details are de-
scribed in Section 7. Match-plan is also implemented in NiagaraCQ. It first generates an optimal plan
for the single new query, then matches the sub-plans from bottom to the existing query network. On the
other hand, sharing-selection first identifies the sharable nodes and then chooses the optimal one based
on cost estimates. Match-plan may fail to identify certain sharable computations by fixing the sharing
path to the pre-optimized plan. Sharing-plan does not have such problem. In general, sharing-selection
identifies more sharable paths than match-plan, and constructs more concise query networks which run
faster. This is confirmed by the evaluation.

5.6 Query Optimization

We need a query optimizer. When a query or a part of the query can not be shared from the existing query
network, the query optimizer generates an optimal plan for the unsharable computations. The major goal
is to choose an optimal join order.
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The query optimizer also decides whether or not a selection PredSet is materialized based on a threshold
of its selectivity (default is 0.3). If it is, a selection node is created for the selection PredSet; if it is not,
the selection PredSet is unioned with a join PredSet, and is evaluated there in the unioned PredSet to
obtain the join node. A selection PredSet should be materialized before a join if it is highly selective, since
it significantly reduces the amount of data the join needs to work on; the selection PredSet should not be
materialized if it is not selective, since it does not reduce much of the join data, but occupies more disk
space, and consumes more I/O time on the materialization. The overhead may even exceed the benefit of
reducing the amount of data. Confirmed by the evaluation [20], the conditional materialization provides
finer-tuning toward constructing the optimal query networks.

Transitivity inference is another optimization technique implemented in ARGUS. It is applied after
the query parsing. Transitivity inference explores the transitivity property of comparison operators, such
as >, <, and =, to infer hidden selection predicates. For example, in the example in Section 3, from three
existing predicates, r1.amount > 1000000, r2.amount > r1.amount ∗ 0.5, and r3.amount = r2.amount,
the system can infer two predicates, r2.amount > 500000, and r3.amount > 500000. Confirmed by the
evaluation [20], if the inferred predicates are very selective, they improve the performance significantly by
reducing the amount of the join data.

5.7 Query Registering

We summarize the work flow of registering a new query Q, given the existing query network R.

1. The parser parses the query to a parse tree.

2. The transitivity inference module infers the hidden predicates and adds them to the parse tree.

3. The canonicalizer canonicalizes predicates.

4. The predicate converter groups the predicates into PredSets.

5. The sharing module performs the sharing. It (a) searches the common computations between the
parse tree and the query network R; (b) constructs a sharing plan which describes the optimal
sharing path; (c) calls the plan instantiator to instantiate the sharing plan; (d) and rewrites the
query parse tree to reference the shared node. Then the sharing module works on the rewritten
parse tree until no more sharing can be performed.

6. The query optimizer generates an optimized plan for the remaining unsharable parse tree, calls the
plan instantiator to instantiate the plan.

7. The plan instantiator indexes the computations, topologies, and columns, performs the chained
projection enrichment, generates code blocks, and creates nodes, as so requested by the sharing plan
or the optimized plan.

8. The code assembler assembles the code blocks into executable stored procedures, and registers them
with the execution engine.
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6 Indexing and Searching

We describe the computation indexing scheme and the related searching algorithms in this section.
The computations of a query network is a 4-layer hierarchy. From top to bottom are topology layer,

PredSet layer, OR predicate (ORPred) layer, and literal predicate (literal) layer. The last three layers,
also referred as the three-pred layers, present the computations in CNF forms. And the top layer presents
network topological connections.

S1

P1

S2

P2

ORp1 ORp2 ORp3 ORp4

p1 p2 p3 p4

Figure 6: Computation hierarchy.
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Figure 7: Hierarchy ER model.

Figure 6 shows the hierarchy for the two nodes S1 and S2 in Figure 1. The ORPreds are trivial in
this example. But in general, the ORPred layer is necessary to support full predicate semantics. For the
equivalent PredSets P2 and P3, only P2 is shown. For the equivalent predicates p1 and p3, only p1 is
shown, while p3 is crossed out and dropped from the hierarchy. The dashed arrows between PredSets and
literal predicates indicate subsumptions at these two layers. And the dashed arrow between nodes S1 and
S2 indicates the direct topology connection between them.

Such a hierarchy supports general predicate semantics and general topology structures. An indexing
scheme should efficiently index all relevant information of the hierarchy to support efficient operations on
it including search and update. The hierarchy can be presented in an ER model, as shown in Figure 7.

The reason that we do not use the linked data structure to record the query network is due to its
search and update inefficiency in large-scale query networks. In a linked data structure, the update needs
to perform the search first unless the nodes are indexed, and the search needs to go through every node of
the same querying table(s) to check the relationship between the node’s associated operator set and the
query’s operator sets to decide the sharability.

There are several issues we need to consider before we transform the ER model to the relational
model. Particularly, we want to deal with rich predicate syntax for matching semantically-equivalent literal
predicates, match self-join computations at the three-pred layers, identify subsumptions at the three-pred
layers, and identify complex topological connections. We discuss these issues and their solutions in the
remaining of this section. The solutions are then implemented in the final relational model.
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6.1 Rich Syntax and Canonicalization

A literal predicate can be expressed in different ways. For example, t1.a < t2.b can also be expressed
as t2.b > t1.a. A simple string match can not identify such equivalence. For doing so, we introduce
a canonicalization procedure. It transforms the syntactically-different yet semantically-equivalent literal
predicates into the same pre-defined canonical form. Then the equivalence can be detected by the exact
string match.

There is an intricacy with regard to the canonicalization. We need to identify subsumption relation-
ship between literal predicates. For example, t1.a > 10 subsumes t1.a ≥ 5. The exact match on the
canonicalized predicates can not identify subsumptions. Instead, the subsumption can be identified by a
combination of the exact match on the column references, the operator comparison, and the constant com-
parison. Therefore, we apply a triple-string canonical form, (LeftExpression Operator RightExpression).
LeftExpression is the left side of the canonicalized predicate and is the canonicalized expression contain-
ing all the column references, and RightExpression is the right side and is a constant. The subsumption
identification can be formulated as a system-catalog look-up query on the triple strings.

Due to the extreme rich syntax and unknown semantics, e.g. user-defined functions, a complete
canonicalization procedure is impossible. Previous work [14, 10, 22] apply simple approaches to identify
subsumptions between simple selection predicates (e.g. t1.a > 10 subsumes t1.a > 5), equivalence of equi-
join predicates and literally-matched predicates. This simplification fails to identify many syntactically-
different yet semantically-related predicates that are commonly seen in practice.

Our canonicalization is more general. For example, equivalence between r1.amount > 0.5 ∗ r1.amount

and 2 ∗ r1.amount > r1.amount, and the subsumption between r2.tran date <= r1.tran date + 20
and r2.tran date <= r1.tran date + 10 can be identified by the canonicalization but not the previous
approaches.

The canonicalization applies arithmetic transformations recursively to literal predicates to convert
them to predefined canonical forms. The time complexity is quadratic to the length of the predicates
because of sorting. But the non-linear complexity is not a problem, since the canonicalization is a one-
time operation for just new queries, and the average predicate length is far less than the degree of slowing
down the process noticeably. The canonicalization does not use specific knowledge such as user-defined
functions which may be time-consuming.

For non-comparison predicates, such as LIKE, IN, and NULL test, there are no exchangeable left
and right sides. In such cases, we only canonicalize their subexpressions. We treat range predicates
BETWEEN as two conjunctive comparison predicates. For comparison predicates on char-type data, the
left and right expressions are exchangeable but can not be piled into one single side. In this case, left and
right sides are canonicalized separately.

The canonicalization for numeric comparison predicates is more complex. It is a recursive transfor-
mation procedure. At each recursion, it performs pull-up, flattening, sorting, and constant evaluation. It
flattens and sorts commutable sub-expressions, e.g. a+(c+b) ⇒ a+b+c, and a∗(b∗c) ⇒ a∗b∗c. It pulls
up − over +, and pulls up / over ∗, e.g. a− b+ c− d ⇒ (a+ c)− (b+d), and a/b ∗ c/d ⇒ (a ∗ c)/(b ∗ d). It
pulls up + and − over ∗, e.g. a ∗ (b + c) ⇒ a ∗ b + a ∗ c. And when possible, it merges multiple constants
into one and converts decimal and fractions to integers.
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Following shows the implemented canonicalization procedure on comparison predicates whose data
types allow arithmetic operations.

• If the right side is not 0, move it to the left, e.g. t1.a + 10 < t2.a− 1 ⇒ t1.a + 10− (t1.a− 1) < 0.

• Perform expression canonicalization on the left side.

• If there is a constant divisor or a constant fraction factor, or the constant factors are not relatively
prime, multiply both sides by a proper number to make the factors relatively prime, and change the
operator when the number is negative, e.g. t1.a/2− 1 > 0 ⇒ t1.a− 2 > 0.

• Move the constant term on the left side to the right side. e.g. t1.a− t2.a+9 < 0 ⇒ t1.a− t2.a < −9.

• If the right side is a negative number, the operator is =, and the left side is in the form of
MinusTerm1 − MinusTerm2, change signs of both sides so the right side becomes a positive
number, e.g. t1.a− t2.a = −9 ⇒ t2.a− t1.a = 9.

• Sort operands of commutable operators (+ and ∗) on the left side in the order of alphabet, e.g.
t3.a + t2.a + t1.a ⇒ t1.a + t2.a + t3.a.

Expression canonicalization is a bottom-up recursive transformation procedure performed on an arith-
metic expression, as shown below.

• Gather constant terms and evaluate them, e.g. a+2−1 ⇒ a+1. Involving functions, some constants
may not be evaluated, then do the canonicalization on each function argument, and left the function
call as it is.

• Flattening and sorting commutable sub-expression par-se trees, e.g. a + (c + b) ⇒ a + b + c, and
a ∗ (b ∗ c) ⇒ a ∗ b ∗ c.

• Pull up − over +, and pull up / over ∗, e.g. a−b+c−d ⇒ (a+c)−(b+d), and a/b∗c/d ⇒ (a∗c)/(b∗d).

• Pull up + and − over ∗, e.g. a ∗ (b + c) ⇒ a ∗ b + a ∗ c.

6.2 Self-Join

We need to decide how to reference tables in the canonical forms. In the easy cases where the predicate is
a selection predicate or a join predicate on different tables, any column reference in its canonical form can
be presented as table.column, e.g. F.amount without ambiguity and information loss. The direct table
reference is necessary for applying the fast exact-string match.

However, when a predicate is a self-join predicate, using true table names is problematic. For example,
the self-join predicate r1.benef account = r2.orig account joins two records. The specification of joining
two records is clarified by different table aliases r1 and r2. To retain the semantics of the self-join, we can
not replace the table aliases with their true table names. To avoid the ambiguity or information loss, we
introduce Standard Table Aliases (STA) to reference the tables. We assign T1 to one table alias and T2
to the other. To support multi-way join predicates, we can use T3, T4, and so on.
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Self-joins also present problems in the middle layers (PredSet and ORPred layers). For example, an
ORPred p1 may contain two literal predicates, one is a selection predicate ρ1: F.c = 1000, and the other
a self-join predicate ρ2: T1.a = T2.b. The canonicalized ρ1 references the table directly, and is not aware
of the STA assignment. But when it appears in p1, we must identify its STA with respect to the self-join
predicate ρ2. Therefore, ρ1’s STA, T1 or T2, must be indexed in p1. Similar situation exists in PredSets
where some ORPred is a selection from a single table and some other is a self-join. Thus an ORPred STA
should be indexed in the PredSet in which it appears. The STA assignment must be consistent in the
three-layer hierarchy. Particularly, a PredSet chooses one STA assignment, and propagates it down to the
ORPred layer and the literal layer.

A 2-way self-join PredSet5 has two possible STA assignments. And a k-way self-join has k! assignments.
This means that a search algorithm may try up to k! times to find a match. The factorial issue is intrinsic
to self-join matching, but may be addressed heuristically. In our implementation, supporting 2-way joins,
the search on a self-join PredSet stops when it identifies an equivalent one from the system catalog. If
both assignments lead to identify subsuming PredSets, the one that has less results (indicating a stronger
condition) is chosen. To support multi-way self-joins, STA assignments may be tried one by one until
an equivalent PredSet is found, the assignments are exhausted, or a good-enough one is found based on
heuristics.

6.3 Subsumption at Literal Layer

Subsumptions present in the literal layer, ORPred layer, and PredSet layer. If a condition p2 implies p1,
or say p2 → p1, then p1 subsumes p2. Subsumptions are important for efficient computation sharing, since
evaluating from the results of subsumed conditions processes less data and is more efficient. We want
to identify existing conditions that either subsume or are subsumed by the new condition. The former
directly leads to sharing, while the later can be used to re-optimize the query network.

Identifying subsumptions between PredSets is NP-hard [18, 25]. The hardness originates in the presence
of correlated literal predicates in an ORPred. For example, {t1.a < 4 OR t1.a > 5} subsumes PredSet
{t1.a > 2 AND t1.a < 3}, but there is no polynomial algorithm that can identify such subsumption
in general. On the other hand, without the correlated disjunction, detecting subsumptions is easy. For
example, PredSet {t1.a > 1 AND t1.a < 4} subsumes {t1.a > 2 AND t1.a < 3}, but not {t1.a >

2 AND t1.a < 5}. Both acceptance and rejection can be computed in the linear time. Our subsumption
identification algorithms are also heuristic and linear. The heuristic is the assumption of no correlated
disjunctions.

Functional dependencies held on streams may pose additional subsumptions [5]. Searching all func-
tional dependencies is also NP-complete [24], but heuristic algorithms may exist to find interesting ones
for improving the computation sharing, which will be a future research problem.

This subsection describes how subsumptions at literal layer are detected from the triple-string canonical
forms. And the next subsection describes the heuristic algorithms for doing so at the ORPred layer and
PredSet layer.

5This is also true for literal predicates and ORPreds.
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For LIKE, NULL Test, and IN predicates, no subsumption but only exact matching is performed.
On comparison predicates, both subsumption and equivalence are identified. In the remaining of this
subsection, we look at comparison predicates.

When LeftExpressions are the same, the subsumption between two literals may exist. It is determined
by the operators and the comparison on RightExpressions. For example, ρ1 : t1.a < 1 → ρ2 : t1.a < 2,
but the reverse is not true. We define a comparable relationship between pairs of operators based on the
order of the right sides.

Definition 1 For two literal operators γ1 and γ2 and an order O, we say (γ1, γ2, O) is a subsumable triple
if following is true: for any pair of canonicalized literal predicates ρ1 and ρ2, assume ρ1: L(ρ1)γ1R(ρ1),
and ρ2: L(ρ2)γ2R(ρ2) where L() and R() are the left and right parts respectively. If L(ρ1) = L(ρ2) , and
O(R(ρ1), R(ρ2)) is true (the right parts satisfy the order), then we have ρ1 → ρ2.

γ1 γ2 Order O γ1 γ2 Order O

> >= E < <= E

= >= E = <= E

> >= D > > D

>= >= D >= > D

= > D = >= D

< <= I < < I

<= <= I <= < I

= < I = <= I

Table 2: Subsumable Triples (γ1, γ2, O). E is equal, D is decreasing, and I is increasing.

For example, (<,<, Increasing) is a subsumable triple (ρ1 : t1.a < 1 → ρ2 : t1.a < 2, and O(1, 2) is
true). Table 2 shows the implemented subsumable triples. With this, look-up queries can be formulated
to retrieve the indexed subsumption literals in constant time.

6.4 Subsumption at Middle Layers

Given an ORPred p of a PredSet P in the new query Q, we want to find all ORPreds p′ ∈ RORPred,
such that p is subsumed by, subsumes, or is equivalent to p′, based on the subsumptions identified at the
literal layer. From the results, we find all PredSets P ′ ∈ R, such that P is subsumed by, subsumes, or is
equivalent to P ′.

This subsection describes the algorithm that computes the subsumptions at the middle layers (PredSet
and ORPred layers). We focus on finding the ORPreds that subsume p, then extend the algorithm to
find ORPreds that p subsumes, and finally discuss the similar subsumption algorithms on PredSet layer.
Equivalent is easy given the subsuming and subsumed sets are identified; it is a unique ORPred or PredSet
that is in the intersection of the two sets.

We assume non-redundant ORPred presentations in both queries and the indexed hierarchy. Partic-
ularly, any literal in an ORPred does not subsume any other one in the same ORPred. For example, if
p = {ρ1 OR ρ2} and ρ1 → ρ2, then p is redundant and can be reduced to p = {ρ2}. Similar non-redundancy
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is also assumed on PredSet presentations. Our algorithms guarantee that the non-redundancy holds on
the hierarchy index as long as it holds on queries.

For illustration, we assume that each ORPred has l literal predicates, each literal is subsumed by s

indexed literals, and each literal appears in m non-equivalent ORPreds. l is related to typical types of
queries registered into the system, and thus can be viewed as a constant parameter.

Figure 8 shows that each of the l literals in p is subsumed by s indexed literals, and each indexed
literal belongs to m different ORPreds.
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Figure 8: Subsumption and 2-level hash sets.

According to Section 6.3, given a literal ρi ∈ p, i ∈ [1..l], and any pair of the s literals (ρij , ρih), j ∈
[1..s], h ∈ [1..s], which subsume ρi, a subsumption exists between ρij and ρih, namely, either ρij → ρih or
ρih → ρij is true. Along with the non-redundancy assumption, all s∗m ORPreds {pijk|i ∈ [1..s], k ∈ [1..m]}
are different to each other. Therefore s ∗ m ≤ |RORPred|, where |RORPred| is the number of ORPreds
in R. Generally, s ∗m ¿ |RORPred|, since on average, ρi and its related literals {ρij |j ∈ [1..s]} present
narrow semantics and only appear in a small portion of RORPred.

Note that the ORPreds across different literal predicates, such as pi1j1k1 and pi2j2k2 , i1 6= i2, could be
legitimately equivalent. In fact, we want to identify those ones and check whether they subsume p.

The subsumption algorithm uses a data structures called 2-level hash set. A 2-level hash set S is
a hashed nested set. The set elements, called top-level elements or hash keys, are hashed for constant-
time accesses. The set of these elements is denoted as keys(S). Each element p ∈ keys(S) points to a
bottom-level set whose elements are also hashed and is denoted as S(p). Conceptually, a top-level element
p presents a set identifier, and its nested set S(p) contains the elements that are currently detected as
belonging to set p.

Shown in Figure 8, for each literal ρi, the subsuming literal predicates and their ORPreds form a
2-level hash set Sρi . The ORPreds are the s ∗m unique top level elements, and form the set keys(Sρi).
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Each ORPred points to the set of the literal predicates that belong to it. In Figure 8, the bottom-level
sets are singleton sets whose elements are literals that subsume p.

We define a binary operation Υ -intersection ∩Υ on 2-level hash sets. The purpose is to find the sets,
identified by the top-level keys, that appear in both operand sets, and to merge the currently-detected set
elements in them.

Definition 2 Given two 2-level-hash sets S1 and S2, we say S is the Υ -intersection of S1 and S2, denoted
as S = S1 ∩Υ S2, if and only if following is true: S is a 2-level-hash set, keys(S) = keys(S1) ∩ keys(S2),
and ∀k ∈ keys(S), S(k) = S1(k) ∪ S2(k).

When intersecting two 2-level hash sets S1 and S2, only the common top-level keys, namely, the ones
appearing in both S1 and S2, are preserved; others, appearing in one set, but not the other, are discarded
in the result set. For any preserved key p, its nested set is the union of p’s nested sets in S1 and S2.
Υ -intersection can be computed in the time of O(|keys(S)| ∗Averagep∈keys(S)|S(p)|) where S is either S1

or S2. In Figure 8, the time of Υ -intersecting two hash sets is O(s ∗m).

Algorithm 1 Subsumed ORPreds

input: p, R; output: SubsumedSet(p)

for each literal ρi ∈ p, i ∈ [1..l]
Sρi := {pijk ⇒ {ρij} | ρij ∈ pijk, pijk ∈ RORPred,

ρi → ρij , j ∈ [1..s], k ∈ [1..m]};

I := ∩Υ
l
i=1Sρi ;

SubsumedSet(p) = {};
for each key p′ ∈ keys(I)

if |I(p′)| = |p|
SubsumedSet(p)+ := p′;

The subsumption algorithm shown above finds all ORPreds in RORPred that subsume p. It constructs
Sρi , i ∈ [1..l], Υ -intersects them to I, and checks the satisfying ORPreds in I. |I(p′)| is the number of
elements in I(p′), namely, the number of literals in p′ that subsume some literal in p. And |p| is the
number of literals in p. The check condition |I(p′)| = |p| means that if each literal in p is subsumed by
some literal in p′, then p is subsumed p′. The time complexity is easy to be shown as O(l ∗ s ∗m).

The algorithm Subsume ORPreds that finds all ORPreds in RORPred that p subsumes is very sim-
ilar to Subsumed ORPreds, except that the 2-level hash sets are constructed from the literals that are
subsumed by p’s literals, and the final check condition is |I(p′)| = |p′|, saying that if each literal in p′ is
subsumed by some literal in p, then p′ is subsumed by p.

The algorithms can be easily extended to identify the subsumptions and equivalence at the PredSet
layer. In that case, the top-level hash keys are the PredSet IDs and the bottom-level elements are ORPred
IDs. The final check conditions dictate that a PredSet P is subsumed another P ′ if P is subsumed by all
literal predicates in P ′.
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Assume that each PredSet has k ORPreds, each ORPred is subsumed by t indexed ORPreds, and
each ORPred appears in n different PredSets. The time complexity of the PredSet-layer algorithm is
O(k ∗ l ∗s∗m+k ∗ t∗n) including the k calls of Subsumed ORPreds. Note that t∗n ≤ |R| given the non-
redundancy assumption. |R| is the number of the searchable PredSets in R and is also the number of nodes
in R. Generally, t∗n ¿ |R| since on average the PredSets related to p appear in only a small portion of the
indexed PredSets. Therefore, the algorithm takes only a small portion of time O(k ∗ l∗ |RORPred|+k ∗ |R|)
to compute.

If the sharable PredSets are searched by matching PredSets and ORPreds one by one, the searching
will take the time of O(k2 ∗ l ∗ |R|) since k new ORPreds need to match |R| ∗k existing ORPreds and each
match computes on l literal predicates. Although it is also linear to |R|, the factor is larger and it will be
much slower on large scales.

6.5 Topology Connections

PredSets are associated with nodes. A PredSet P presents the topological connection between the asso-
ciated node N and N ’s ancestors {A}. Namely, the results of N are obtained by evaluating P on {A}.
A node N is associated with multiple PredSets depending on the different ancestors. An important one
is the DPredSet which connects N to its direct parents. DPredSet is used in constructing the execution
code, and needs to be indexed.

Solely relying on DPredSets does not provide the fast searching. In Figure 9(a), assume a selection
PredSet P from stream table B1 can be evaluated from any of S1, S2, S3, S4, and S5, while S5 is the best
one to share. If only DParent is recorded, S5 has to be found by a chained search process that needs to
check the sharability of nodes along the way from B1 to S5. The process also needs to deal with branches,
e.g. in Figure 9(a) searching the descendants of S1 as well.

Same problems exist for join PredSets. In Figure 9(b), assume a self-join P on stream table B1 can be
evaluated from J7. If only DParents are recorded, J7 can not be found immediately. The chained search
process must search all B1’s descendants up to the end of its next join depth. Both chained processes
have the time complexity of linear to the total size of the chains.

One solution is recording all PredSets associated with a node S. Particularly, for any ancestor A of
S, the PredSet between them is recorded. In this approach, the number of PredSets to be recorded is
higher than linear of |R|. Assume the average number of descendants of a node is m, and average number
of branches is k, thus km ≈ |R|. Then the number of PredSets is O(km2). Also the redundant indexing
leads to redundant search.

A better choice is recording only two more PredSets for each node N . These PredSets are associated
with nodes called N ’s SVOA and N ’s JVOAs. Figures 9(c) and 9(d) show the SVOAs and JVOAs for
nodes in (a) and (b).

Definition 3 (SVOA) A selection node N ’s SVOA is N ’s closest ancestor node that is either a join
node or a base stream node. A join node or a base stream node N ’s SVOA is itself. SVOA stands for
selection very original ancestor.

Definition 4 (JVOA) A join node N ’s JVOAs are the closest ancestor nodes that are either join nodes
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Figure 9: Multiple topology connections.

(but not N) or base stream nodes. A selection node N ’s JVOAs are the JVOAs of N ’s SVOA. And a base
stream node’s JVOA is NULL. JVOA stands for join very original ancestor.

SVOAs present local selection chains, and JVOAs present one join depth beyond the local selection
chains. With SVOAs and JVOAs, the chained searches are no longer necessary. Note that SVOAs and
JVOAs present local topological connections within and across one join depth. The common computations
identified at the local level are fed to a sharing strategy to search for optimal sharing paths. In ARGUS,
we implemented two local strategies that perform sharing one join depth a time.

A semantically equivalent predicate may appear in DPredSet, JVOAPredSet, and SVOAPredSet in
different forms for a given node. For example, as shown in Figure 9(b), assume a self-join predicate p1

from stream base table B1 is actually evaluated as a selection predicate from node J4 to obtain J7. Then
for node J7, p1 will appear as the original self-join predicate from B1 in JVOAPredSet, as a selection
predicate from J1 in SVOAPredSet, and as a selection predicate from J4 in DPredSet. Automatic
conversions between these forms are needed and implemented. We also need and implement the union
and difference operations on PredSets, which should ensure the non-redundancy requirement.

6.6 Relational Model for Indexing

Now we consider converting the indexing ER model to the relational model.6 Two adjustments are made.
First, the relations that index literal predicates and ORPreds are merged into one, PredIndexing, based
on the assumption that ORPred are not frequent in queries. This allows a literal predicate to appear
multiple times in PredIndexing if it belongs to different ORPreds. But this redundancy is negligible given
the assumption. The second adjustment is splitting the node topology indexing relation (Node Entity in

6The schema described in this subsection is simplified.
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the ER model) to two, namely, SelectionTopology, and JoinTopology, based on the observation that the
topology connections on selection nodes and on join nodes are quite different.

PredIndex PSetIndex
ORPredID Node1 LeftExpr ORPredID
LPredID Node2 Operator PredSetID
UseSTA STA RightExpr STA

SelectionTopology
Node DirectParent JVOA1
IsDISTINCT DPredSetID JVOA2
SVOA SVOAPredSetID JVOAPredSetID

JoinTopology
Node DirectParent1 JVOA1
IsDISTINCT DirectParent2 JVOA2

DPredSetID JVOAPredSetID

Figure 10: System Catalog Schemas

Figure 10 shows the indexing relation schemas. In PredIndexing, ORPredID is the ORPred identifier,
and LPredID is the sub-identifier of the literal within the ORPred. The combination of ORPredID and
LPredID is the primary key of PredIndex. Node1 and Node2 records the ancestor tables from which the
literal is evaluated. LeftExpression, Operator, and RightExpression are the triple-string canonical form of
the literal. If the literal is a selection predicate in an self-join ORPred, STA is used, otherwise it is NULL.
If the literal is a self-join predicate, or STA is used, the binary attribute UsingSTA is set, otherwise, it is
NULL.

PSetIndex indexes the PredSets. The primary key is the combination of PredSetID and ORPredID,
indicating which ORPred belongs to which PredSet. STA is used when the ORPred is a selection but the
PredSet is a self-join.

In the topology relations, Node is the primary key. The binary IsDISTINCT indicates whether the
duplicates are removed. The remaining attributes are described in Section 6.5. JoinTopology does not
need to index SVOA.

7 Sharing Strategies

Given the sharable nodes identified, various sharing optimization strategies may be applied. We present
two simple strategies, match-plan and sharing-selection. Match-plan matches a plan optimized for the
single new query with the existing query network from bottom-up. This strategy may fail to identify
certain sharable computations by fixing the sharing path to the pre-optimized plan. Sharing-selection
identifies sharable nodes and chooses the optimal sharing path.
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Figures 11 & 12 illustrate the difference between sharing-selection and match-plan. Assume the ex-
isting query network R (Figures 11(a) & 12(a)) performs a join on table B1 and B2, and the results are
materialized in table J1. Assume the new query Q performs two joins, B1 1 B2 and B2 1 B3, and its
optimal plan (Figure 11(b)) performs B2 1 B3 first . From the viewpoint of match-plan, the bottom
join B2 1 B3 is not available in R, thus no sharing is available. It expands R to a new query network
Rm (Figure 11(c)). From sharing-selection, both of the joins (Figure 12(b)) are matched against R to
see whether it has been computed in R. In this example, B1 1 B2 has, while B2 1 B3 has not. Sharing
the results of J1 with B1 1 B2, the network is expanded to Rs (Figure 12(c)) which has less join nodes.
In general, sharing-selection identifies more sharable paths than match-plan, and constructs more concise
query networks which run faster. Actually, the match-plan method can be viewed as a special case of
sharing-selection by applying a constraint: always select from bottom-level predicate sets. Match-plan
and sharing-selection have the same time complexity of O(kl) where k is the average number of branches
of a node, and l is the average number of JoinLevels. l is actually the typical number of joins in queries,
which is a small integer, less than 15, etc.

B2

B1

J1

B3

J2

J3
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B3

J2

J3

B2

B1

J1

(a) Existing query network R

(b) Optimal plan for Q

(c) New query network Rm
by match-plan

Figure 11: Match-Plan.

In both strategies, we need to choose an optimal sharable node at each JoinLevel. We apply a simple
cost model for doing so. The cost of sharing a node S is simply the cost of evaluating the remaining part
of the chosen PredSet P . The cost is defined as the size of S, the number of records to be processed to
obtain the final results of P . For example, in Figure 9(a), assume P can be evaluated from S5 to a new
node. Then the cost of sharing S5 is the table size S5. Now assume S5 is associated with an equivalent
PredSet to P , then no further evaluation is needed, and the cost is 0. It is possible that multiple PredSets
can be shared this way (with cost 0), then future costs are used for choosing among these candidates.
Future cost is still defined as the size of the sharing node. It is so called because it is the number of records
to be processed from the sharing node in the next JoinLevel.
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When a join node J is chosen for sharing, even if it does not provide the final results for the chosen join
PredSet P , we choose not to extend J for P until it is the last join in the query. Instead the remaining
computations are rewritten as a selection PredSet from J , and thus are carried on to the next JoinLevel.
With this sharing choice, we are able to choose the better sharing path as shown in SharingPlan2 in
Section 1. This choice is applied by both sharing-selection and match-plan.
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Given the identified common computations, more complex sharing strategies, e.g. rerouting and re-
structuring, may be applied as well. Rerouting occurs after a new node is created. Once a new node is
created, there may be a set of old nodes that can be evaluated from the new node. Disconnecting the old
nodes from their current DParent(s) and rerouting them to be evaluated from the new one may lead to
a better shared query network. Figure 13(a) shows the rerouting after a new node J2 is created. In this
example, S1 can be better evaluated from J2, i.e. |J2| < |J1|, then S1 and its descendants are rerouted
to J2. Restructuring is reoptimization to local topological structures when new computations are added
into the network. One example is splitting computations in a join PredSet to allow multiple queries to
share the same join results, as shown in Figure 13(b). The choices to perform these topological operations
should be decided by cost models, and are also applicable in adaptive processing. The cost models should
capture the stream distribution changes that outdate the original network, and guide the rerouting and
restructuring procedures for adaptive reoptimization. The sharing strategies presented so far are local
greedy optimizations bounded by join depths. Beyond, more aggressive optimization strategies can be
performed by looking ahead along sharable paths, probably with heuristic pruning.

8 Evaluation Study

The evaluation shows the effectiveness of sharing and canonicalization, and compares the match-plan and
sharing-selection. [20, 19] show the evaluation on incremental query evaluation methods and the aggregate
queries.

The experiments were conducted on an HP PC computer with Pentium(R) 4 CPU 3.00GHz and 1G
RAM, running Windows XP.

Two databases are used. One is the synthesized FedWire money transfer transaction database (Fed)
with 500000 re-cords. And the other is the Massachusetts hospital patient admission and discharge record
database (Med) with 835890 records. Both databases have a single stream with timestamp attributes.

To simulate the streams, in the order of time, we take the first part (300000 records for Fed and
600000 for Med) of the data as historical data, and simulate the arrivals of new data incrementally. Query
networks are evaluated on 10 incremental data sets 11 times for each set. Each incremental data set
contains 4000 new records.

We use 768 queries on Fed and 565 queries on Med. These queries are generated systematically. First,
interesting queries arising from applications are formulated manually as query seeds. The queries are
categorized based on the n-way joins and the semantics of selection and join predicates. Changeable
query constants are identified. Then more queries are generated by varying the constants of the seed
queries. For example, constants such as amount in selection predicates and span of days in join predicates
vary for subsumption sharing on both selection and join nodes. Section 1 presents one type of these
queries.

There are 32 query categories in Fed. They vary in join conditions and the number of self-joins from
2-way up to 5-way self-joins. Results of less-join queries can be shared by more-join queries. There
are 8 query categories in Med. Particularly, 3 big categories, counting for 414 queries in total, monitor
multiple occurrences of various contagious diseases in local areas within a given time window. We measure
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Figure 14: Evaluation. X: number of queries; Y: total execution time in seconds.

the system performance by scaling over the number of queries, where the queries are interleaved by the
categories.

We compare performance of four query network generation configurations, AllSharing, NonJoinS,
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NonCanon, and Match-Plan, as shown in Table 3. Particularly, we conduct three comparisons: 1. join
sharing vs. non-join sharing, i.e. AllSharing vs. NonJoinS; 2. canonicalization vs. non-canonicalization,
i.e. AllSharing vs. NonCanon; and 3. sharing-selection vs. match-plan, i.e. AllSharing vs. MatchPlan.
Figure 14 shows the times to evaluate multiple queries scaling from 100 queries to 768 queries for Fed,
and 565 queries for Med. When comparing sharing-selection and match-plan, we also present a baseline
curve for the configuration of match-plan without canonicalization (MatchPlan NCanon), which simulates
NiagaraCQ’s approach.

Config Join Canoni- Strategy
ID Sharing calize
AllSharing Y Y Sharing-Selection
NonJoinS N Y Sharing-Selection
NonCanon Y N Sharing-Selection
MatchPlan Y Y Match-Plan

Table 3: Network Generation Configurations. Functionality enabled: Y; disabled: N.

Weighted query network size (QNS) is the weighted sum of numbers of various types of nodes in the
network, to roughly present the network size and its execution cost. Selection nodes have less weights
than join nodes, since join is more time consuming. Lower JoinLevel nodes have larger weights, since
they operate on more data tuples. Figures 15(a) and 15(b) show the QNSs of the query networks built
by the different configurations. To correlate them with the actual performance, We also recap AllSharing
and NonJoinS execution times in the figures. The figures indicate that the execution times are linear to
the weighted size of the query networks in general. We also observe the sub-linearity when the network
is very small (Figure 15(a) on Fed), we believe this is due to the fact that the underlying DBMS does a
good job on buffer and cache management on relatively small data sets. We expect that optimizing the
node evaluation order, e.g. grouped evaluation on local trees, will alleviate the I/O bottleneck problem
for large-scale queries. Such cache-aware optimization remains a challenge for future work.

The performance difference between join sharing and non-join sharing is significant. This is because
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sheer repetitive join work is computed multiple times for non-join sharing.
The effect of canonicalization is also significant, particularly on Fed, due to different query char-

acteristics. In Fed queries, there is a significant portion of queries that specify different time win-
dows for join, as shown in the examples in Section 1, such as r2.tran date <= r1.tran date + 20 and
r2.tran date <= r1.tran date + 10. The canonicalization procedure makes it possible to identify the
implication relations between such join predicates. Thus the sharing leads to more significant reduction
in the number of join nodes.

In Figures 14(e) and 14(f), we compare sharing-selection, match-plan, and match-plan without canon-
icalization. It is not surprising that match-plan without canonicalization is worse than the other two
because of the effect of canonicalization. When both perform canonicalization, sharing-selection is still
better than match-plan by identifying more sharing opportunities and constructs smaller query networks.

9 Conclusion

Seeking practical solutions for matching highly dynamic data streams with multiple long-lived continuous
queries becomes increasingly demanding. ARGUS, a stream processing system, addresses this problem
by supporting incremental evaluation, query optimization, and IMQO. Particularly, ARGUS presents a
comprehensive computation indexing scheme to search general sharable computations. It introduces a
canonicalization procedure to index semantically-equivalent predicates. Beyond join order optimization,
ARGUS implements several other optimization techniques, including conditional materialization, minimal
column projection, and transitivity inference. Evaluations on each single technique, shown in this paper
and previous papers [20, 19], demonstrate significant performance improvement over general or specific
queries, up to well over one hundred fold speed up.

ARGUS is built atop of a DBMS to provide the value-adding stream processing functionalities to
existing database applications. However, its architecture is designed in mind to support DSMS engines
as well and will be integrated with DSMSs as they maturate. Further, the architecture is designed to
accommodate adaptive processing techniques, such as query re-optimization, and dynamic rescheduling,
which will be our future work.
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