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Abstract 

 Decentralized multirobot learning refers to 
the use of multiple learning entities to achieve the 
optimal solution for the overall robot system. We 
demonstrate that single-robot learning theory can be 
successfully used with multirobot systems, but with 
certain conditions. The success and the effectiveness 
of this method are potentially affected by various 
factors that we classify into two groups: the nature 
of the robots and the nature of the learning entities. 
Incorrect setup of these factors may lead to 
undesirable results. In this paper, we methodically 
test the effect of varying four common factors 
(reward scope, learning algorithms, diversity of 
robots, and number of robots) in a decentralized 
multirobot system, first in simulation and then on 
real robots. The results show that two of these 
factors, reward scope and learning algorithm, if set 
up incorrectly, can prevent optimal, cooperative 
olutions. s

 
1. Introduction 

Reinforcement learning has been successfully 
used in a single robot in order to make it learn 
traveling through mazes and other tasks. Popular 
learning algorithms, such as Q-learning and TD(λ), 
have proven to be effective methods for making a 
robot adapt itself to the environment. 

The advance of technology makes computer 
parts cheaper and more effective. This makes the use 
of several robots more affordable. Using multiple 
robots to accomplish a task is quite common. 
Multirobot systems potentially have the following 
five major advantages over a single robot: task 
capability, improved system performance, 
distributed sensing, distributed action, and high 
robustness. In [3], we proposed the dynamic task 
selection mechanism, which is a multirobot group 
architecture that promotes robustness. However, it 
still lacks an efficient task allocation mechanism. 
This is the reason why we consider using 

reinforcement learning in our multirobot system. 
Reinforcement learning in multirobot systems is a 
new research area. It is somewhat different from 
distributed artificial intelligence (DAI) and multi-
agent systems (MAS) due to the embodiment of real 
robots and the unsynchronized nature of distributed 
learning entities. We have found few publications 
directly implementing multirobot learning. 
 Some researchers have successfully used 
single-robot learning theory (methods such as Q-
learning) in multirobot systems. Most of this work 
modified the learning in some way, such as special 
rewards, heuristics or subgoals. However, we 
believe that single-robot theory/methods can also be 
used in multirobot systems, but with certain 
adjustments. In this paper, we test several factors 
that potentially have an effect on the final outcome 
of the learning results. We call these factors 
“environmental factors”. This paper continues the 
work in [4], which tested the effect of different 
factors on a surveillance problem. This problem, 
called the multirobot patrolling problem, requires 
cooperation from all robots to guard an area. 
Performance in the multirobot patrolling problem 
depends on the placement of robots and paths they 
take. This paper is the test of the same factors but 
with a different type of task. This paper uses the 
puck-collecting task as a testbed problem, which we 
consider as a prototype for the object manipulation 
tasks. We first did the experiments in simulation and 
then verified some cases with real robots. 

The rest of this paper is organized as 
follows. Section 2 describes previous work. Section 
3 gives our approach by first explaining the 
taxonomy of multirobot learning and the learning 
algorithm that we used. It then describes the puck-
collecting problem and the four factors that we 
investigated. Section 4 gives experimental results 
from simulation and on real robots. Section 5 
presents a discussion of how the factors under 
consideration affect learning, and section 6 gives 
conclusions. 
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2. Previous Work 

Unlike learning in single-robot systems, 
reinforcement learning in decentralized multirobot 
systems is a new research area and has not been 
systematically studied. Nevertheless, some aspects 
and theory of single-robot learning can be applied to 
multirobot systems. For example, some 
reinforcement learning algorithms [9] are still 
suitable for use in multirobot systems, as is Sutton’s 
Dyna architecture [12]. Dyna reuses training data 
and creates a hypothetical world in order to use the 
training data to the fullest extent. There are 
examples of single-robot learning methods being 
applied to multirobot systems with some 
modifications. An example is Mataric’s work [1]. 
With the use of progress estimators, she successfully 
implemented a single-robot learning method on each 
robot and achieved a good result as a team. 

Despite the partial applicability of single-
robot learning, multirobot systems have unique 
features that introduce additional considerations.  
Our previous work [4] is an attempt to test and find 
the factors that have effects on the usage of single-
robot methods in a multirobot system. We used a 
surveillance problem as a testbed. In this paper, we 
followed along the same line as our previous work 
but instead used an object manipulation problem as a 
testbed. The idea is to test the same factors on 
different types of tasks in order to examine the effect 
of these factors in general. For example, one of the 
factors is different learning value functions for 
learning algorithms. We discovered that discounted-
reward-based Q-learning [5], although effective for 
single robots, cannot produce cooperation, for which 
an average-rewards-based scheme such as Monte 
Carlo learning [12] should be used. Another factor is 
the diversity of multirobot teams, which was first 
investigated by Balch [6]. He showed that diversity 
can have an impact on the performance of robot 
teams in some types of tasks. Inspired by his work, 
we included diversity among the factors whose 
impact on learning performance was tested, using a 
hybrid, rather than Balch’s purely reactive 
architecture.  
 
3. Approach 

We begin our approach by discussing the details 
of multirobot architecture and learning algorithms. 
We then systematically study the effect of 

environmental factors on the learning. First, we 
make a taxonomy of these factors based on the 
earlier work of Balch [6] and Dudek et al. [7]. Next, 
we talk about the puck-collecting problem, which is 
the problem testbed for our experiments. Then, each 
of the four environmental factors are discussed in 
detail. We then present the experiments and results 
from both the simulations and the real robots. 
 

3.1. Robot Architecture and Group Architecture 

 When building a multirobot system, one must 
make two architecture decisions: one for the 
individual robots, and one for the group. The 
individual robot architecture choice spans the 
continuum from the reactive to the deliberative. A 
deliberative architecture plans actions in detail based 
on a world model. A reactive architecture is a simple 
mapping of sensor inputs to actions. It does not keep 
a world model or plans. A hybrid architecture is a 
mix of the reactive and deliberative architectures. 
There are two types of group architectures: 
centralized and decentralized. A centralized 
architecture employs a central unit to control the 
operation of the whole system. The central unit can 
be a separate entity or can be one of the robots in the 
group. The duty of the central unit is to get data from 
all robots, plan actions of the whole group, and send 
commands back to the robots. Therefore, all controls 
depend on the central unit. A decentralized 
architecture lacks such a central unit. Each robot has 
to individually plan and control itself. Our 
architecture, the dynamic task selection [3], has a 
hybrid robot architecture and a decentralized group 
architecture. 
 
3.2. Learning Algorithms 

 We use distributed learning entities that run 
asynchronously on each robot. There are two 
learning algorithms investigated in this paper: Q-
learning, which has a discounted-reward value 
function, and the Monte Carlo algorithm (MC), 
which has an average-reward value function. Q 
learning is designed to optimize a robot policy (π) 
that is based on cumulative discounted rewards (Vπ). 
The cumulative discounted reward is the sum of 
rewards that a robot expects to receive after entering 
into a particular state. The discount factor (γ) makes 
rewards that are received in the future fade over 
time. 



  
 
 
where 0 < γ < 1 
 

Q learning defines an evaluation function Q(s,a). 
This function is the maximum cumulative 
discounted reward that can be achieved by starting 
from state s and applying action a as the first action. 
Using Q learning, robots learn and update the Q 
value by the following equation: 

 
 
 

 
where s’ and a’ are the next state and the next 
possible action. 
 

The second learning algorithm tested was the 
Monte Carlo algorithm (MC). It uses probability 
theory to estimate the value of actions from 
experience. Monte Carlo learning is used in episodic 
tasks. The algorithm traces the states that have been 
visited until the end of an episode. It then gives 
credits to those states according to rewards that the 
robots receive. There are two versions of Monte 
Carlo learning: first-visit MC and every-visit MC. 
First-visit MC records average rewards after the first 
visit to each state. Every-visit averages all rewards 
after every visit to each state. The first-visit MC 
algorithm looks like the following. 
 
Q(s,a) ← arbitrary % Q(s,a)  is an average 

reward after the first visit in 
state s, action a 

π(s) ← arbitrary  % π (s) is the policy 
and decision at state s 

Rewards(s,a) ← Empty list 
 
Repeat Forever: 

- Generate an episode using π 
- For each pair s,a appearing in the episode: 

R ← reward following the first 
occurrence of s,a 
Append R to Rewards(s,a) 
Q(s,a) ← average(Rewards(s,a)) 
 

- For each s in the episode 
π(s) ← argmaxa Q(s,a) 

 

 We also use a modified ε-greedy method [12] 
to balance between learning an exploration for both 
algorithms. With the ε-greedy method, a robot will 
try to make random explorations with probability ε. 
For the modified version, the value of ε will 
decrease over time according to the learning 
progress and the amount of rewards that the robot 
gets. 
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3.3. Taxonomy of the environmental factors 

Environmental factors are various characteristics 
that have to be chosen when researchers implement 
learning in multirobot systems. Due to the absence 
of guidelines for systematically specifying these 
factors, researchers currently require trial-and-error 
in choosing them until the desired results are 
achieved. A multirobot learning system has three 
main components: robots, learning algorithms and 
tasks. Our taxonomy is constructed based on the first 
two components. The nature and configuration of the 
robots entails the overall structure of the robot team. 
The nature of the learning entities involves the 
structure of the learning algorithms and rewards. We 
do not make a taxonomy of tasks because tasks are 
user-specific. Tasks can vary indefinitely with 
different aspects according to users’ requirements. 
We instead plan to test the environmental factors on 
different types of multirobot tasks that we consider 
to be prototypes for general multirobot applications. 
In this paper, we conduct experiments with the puck-
collecting problem, which we consider as a 
prototype for the more general object manipulation 
task. 

The nature of the robots involves robot 
architecture (reactive / deliberative / hybrid), group 
architecture (centralized / decentralized), number of 
robots (small-size / large-size), and diversity in 
capabilities (heterogeneous / homogeneous). 

The nature of the learning involves learning 
entities (centralized / decentralized), learning 
algorithms (Q-learning / Monte Carlo), and reward 
scope (local / global). 
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 This paper presents multirobot learning with 
fixed parameters as follows: hybrid robot 
architecture, decentralized group architecture, and 
decentralized learning entities. This paper tests the 
effect of varying the following parameters: number 
of robots, diversity in capabilities, learning 
algorithms, and reward scope. 
 



3.4. The Puck-Collecting Problem 

Our test problem is the puck-collecting problem, 
consisting of two robots and a rectangular field. 
Pucks are distributed randomly at four predefined 
points at the corners of the field. The robots have 
short-range puck detection so that they have to move 
close enough to a puck in order to see it. The robots’ 
task is to investigate and find a puck around these 
points. There is a home region in the middle of the 
field with a bin inside. The robots have to move all 
pucks to the home region and deposit them in the 
bin. Both robots can sense a puck, pick up a puck, or 
drop a puck. The first robot (Robot1) can move to 
and investigate around the points, or it can move to 
the home region and deposit a puck. The second 
robot (Robot2) is restricted to move anywhere but 
staying at the home region. However, it can still 
sense a puck, pick up a puck, or deposit a puck in the 
bin. Depositing a puck in the bin is time-consuming 
for the first robot, but it is easy for the second robot. 
Therefore, although the second robot cannot move 
around, it can play an important role by depositing 
pucks in the bin. The optimal complete sequence is 
that the first robot picks up a puck, comes back to 
the home region, and drops the puck. Then, the 
second robot picks up the puck, and deposits it in the 
bin. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 The Puck-Collecting Problem 

The optimal solution sequence is shown below. 
First, both robots start at the home region. Second, 
Robot1 moves to the point on the upper right hand 
corner. Third, Robot1 picks up a puck. Fourth, 

Robot1 comes back to the home region. Fifth, 
Robot1 drops the puck to the floor. Sixth, Robot2 
picks up the puck. Seventh, Robot2 dumps the puck 
into the home region. 

 
Figure 2 The Optimal Solution of the Problem 

Action Reward 

Move (Time used in second * -100) – 10 

PickPuck (Time used in second * -100) – 10 

DropPuck (Time used in second * -100) – 10 

Dump 

10000 for Robot 1 

30000 for Robot 2 

-10 if unsuccessful  

Wait -10 

 
Parameter values of rewards and costs are shown in 
the table above. All robot actions result in negative 
rewards (cost) except depositing a puck, which gives 
a big positive reward because it is the final goal. The 
cost for picking, dropping, and dumping a puck are 
proportional to the actual time used for each action 
plus an overhead of 10 units. 
 
3.5. Details of Tested Environmental Factors 

1 2 

3 4 

5 6 
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Home 
Region 

x x 
Robot 1 

Puck
Robot 2 

x x 

State = 
{At?, HavePuck, SensePuck} 
 
Action = 
{Goto?, PickPuck, DropPuck, Dump, 
DoNothing} 



 In this paper, we investigate two factors from 
the nature of the learning entities (reward scope and 
learning algorithms) and two factors from the nature 
and configuration of the robots (number and 
diversity). The factors in the nature and 
configuration of the robots that we fix are the hybrid 
robot architecture and the decentralized group 
architecture. The factors in the nature of the learning 
entities that we fix are the decentralized learning 
entities. Each factor varied is detailed below. 
 
3.5.1. Reward Scope 

Rewards are an important component of 
reinforcement learning.  A reward is given to a robot 
when it does something good, e.g., reaching the 
goal. We classified rewards in a similar way to data 
of robots. Robots carry two types of data: local data, 
which are the data used and kept private within each 
robot, and global data, which are the data shared 
among robots by the synchronization mechanism. 
Based on the same principle, there are two reward 
scopes in multirobot learning: local and global. A 
local reward scheme keeps rewards within each 
robot individually, whereas a global reward scheme 
broadcasts rewards generated within each robot to 
all other teammates. Therefore, with a global reward 
scheme, robots receive rewards and punishment 
together, as a team. A local reward scheme is a 
straightforward method that is used in single-robot 
learning. The learning occurs independently in each 
robot without information exchange. A global 
reward scheme, on the other hand, needs to share 
rewards among robots. It can be implemented by 
broadcasting all rewards generated within the robot 
to the teammates. The transmitted rewards are then 
added up to the internal reward for the current 
action. 
 

3.5.2. Learning Algorithms 

Two learning algorithms were tested: Q-
learning, which is based on cumulative discounted 
reward, and Monte Carlo learning, which is based on 
average reward. 
 

3.5.3. Diversity of Robots’ Capabilities 

In a robot team, robots can have the same or 
different capabilities. This property is referred to as 
the diversity of a robot team. Teams consisting of 

robots with the same capabilities are termed 
homogeneous. Teams consisting of robots with 
different capabilities are termed heterogeneous. The 
impact of diversity on robot teams was first 
investigated by Balch [6]. Using a reactive robot 
architecture, he showed that diversity is beneficial in 
some types of tasks, but unsuited to others. This 
inspired our motivation to investigate diversity on 
our multirobot system, which has a hybrid robot 
architecture. In the puck-collecting problem, the 
original setup has one robot with an ability to move 
around and one robot disabled to stay at the home 
region. This is a heterogeneous team. The purpose of 
this setup is to test whether the learning algorithm 
can learn the best cooperative strategy among the 
robots. For a diversity test, we created a 
homogeneous team by using two robots with the 
same capability and reward setup. Both can move to 
all points and can dump a puck with the same reward 
value. 

 
3.5.4. Number of Robots 

We classify this factor into two types: small-size 
(2-3 robots) and large-size (>20 robots). Although 
we do not test the large-size case, we vary the 
number of robots within the small-size range in 
order to test the scalability of the learning 
algorithms. We tested this factor by adding another 
robot that also has the capability to move around the 
points. In total, there are three robots: two are 
identical and one is disabled to stay at the home 
region. 

 
4. Experiments and Results 

4.1. Robot Physical 

We used Pioneer robots models P2DX and P2AT 
from Activmedia Corp. (see Figure 3). Each robot is 
equipped with an onboard PC104 running Linux (for 
computing and learning), sonar sensors (for reactive 
obstacles avoidance), and a wireless LAN 801.11b 
card (for communication). We used an overhead 
camera with a Cognachrome vision board to detect 
robot position (act as a GPS). Each robot was 
marked with two color blobs to determine position 
and orientation. Figure 3 shows one robot marked 
with two red blobs and the other robot marked with 
two blue blobs. The two blobs have different sizes. 
The blobs on the front of the robots are smaller than 
the blobs on the back. We used the blob area (pixel 



count from the camera) to differentiate between the 
front and the back blobs. Then, we used the position 
of the two blobs to calculate the position and 
orientation of each robot. Each robot is programmed 
with fixed low-level reactive behavior, such as 
avoiding obstacles, avoiding other robots, moving to 
a point and manipulating a puck. 
 

 
Figure 3 Two Pioneer Robots on the field 

We used off-the-shelf components to build an easy 
passive gripper attached to the front of each robot. 
The grippers were made of copper rods bending in a 
fork-like shape. The puck was made of two compact 
discs connected together with spacers (see Figure 4). 
The puck was marked with an orange color for 
camera detection. 

 

Figure 4 The Puck and The Passive Gripper 

With this gripper, the robot can pick up a puck by 
moving directly toward it. When the puck is in 
place, the robot can move forward and turn without 
losing the puck. When the robot wants to drop the 
puck, it simply moves backward. 
 
4.2. Simulation and Results 

Our simulation was written in Visual C++. The 
robots had predefined low-level behaviors:  move to 
a point, pick up a puck, drop a puck, dump, and 
wait. The robots were assumed to be equipped with 
GPS, sonar sensors, a passive gripper and a 
communication channel. Learning entities were 
implemented on each robot independently. Each 
robot and the environment ran on separate threads in 

order to simulate the asynchronous timing of the real 
world. Also, there is some chance that the robots  
will miss the puck when they try to pick it up. 

Due to the number of varied factors, we made 
the tests more systematic by first finding a standard 
case which provides the optimal result (robots 
cooperate). Then, we varied the factors one by one 
and made comparison to the standard case. The 
standard case had 2 robots, Monte Carlo learning, a 
heterogeneous team, and a global reward scheme. 
After randomly varying factors and running the 
experiments, we found two types of final results: the 
optimal case where both robots cooperate, and the 
greedy case where Robot1 does all actions by itself. 
In the optimal case, Robot1 passes the puck to 
Robot2, who is good at dumping. In the greedy case, 
Robot1 does not pass the puck but instead dumps the 
puck by itself. Moreover, we found that the effect of 
factors that create the greedy case are dominant 
regardless of the setting of other factors. For 
example, the use of a local reward scheme always 
makes Robot1 greedy no matter what other factors 
are. This suggests that the effects of the four factors 
are independent of one another. Because the learning 
performs random exploration, we ran the experiment 
multiple (10) times for each case to ensure the 
consistency of the results. Each run ended when the 
learning reached a stable state defined by the point 
when the ε value of the modified ε-greedy method 
reduces to zero (meaning no more exploration). The 
results presented below are based on changes in each 
factor compared to the standard case. 
 
• Single robot case 

 The purpose of the single robot case is to 
test the integrity of the simulation and the learning 
algorithm. We use only one robot to patrol the four 
checkpoints. If a puck is found, the robot should 
learn to carry it back the home region and dump it. 
 The results show that both Q-learning and 
Monte Carlo learning can achieve the optimal result 
where the robot goes straight to the puck, picks it up, 
comes back to the home region, and dumps it. Q-
learning has slightly better speed than Monte Carlo 
learning. The plot of cumulative rewards on each 
epoch using the Monte Carlo learning is shown in 
Figure 5. 



Puck-Collecting with 1 Robot
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Figure 5 Puck-Collecting 1 Robot (Simulation) 

 
• Standard case (Cooperation achieved) 

 The standard case designates the case when 
the robots achieve the optimal solution. This is when 
Robot1 picks up a puck and hands over to Robot2, 
which is better at dumping a puck. The parameters 
setup is determined by trial and error until the 
optimal result is achieved. The standard case has 2 
robots, 4 checkpoints, heterogeneous team, Monte 
Carlo learning (average-reward), and a global 
reward scheme. The plot of rewards is shown in 
Figure 6. 
 

Puck-Collecting 2 Robots (Standard Case)
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Figure 6 Puck-Collecting (standard case, simulation) 

 
• Varying learning algorithm value function 

 We compare Q-learning and Monte Carlo 
learning in this experiment. In the reference case, we 
found that using Monte Carlo learning with the right 
setup can achieve the optimal solution. However, 
when using Q-learning with the same setup, we 

discovered that the robots cannot achieve the 
optimal solution. The learning algorithm can achieve 
a stable result but not the optimal one. The final 
results show Robot1 doing the tasks all by itself 
(pick up and dump) without passing the puck to 
Robot2. The results suggest that Q-learning creates a 
greedy strategy on the robots. It makes each robot 
want to be the one who get the big reward. 
Therefore, the level of the total reward as a team will 
be less than that of the standard case. 
 
• Varying reward scope 

 When the reward scope was changed to 
local, the robots fail to achieve cooperation. Similar 
to the local reward case, the results show that the 
first robot will complete the mission all by itself 
without passing the puck to the other robot. The total 
reward within each robot will therefore be lower 
than the cooperative case. The result suggests that 
using a local scheme can prevent the robots from 
cooperating with each other. The plot of total reward 
in the first robot and the second robot are shown in 
Figure 7. 
 

Puck Collecting using Local Reward (Robot 1)
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Puck Collecting using Local Reward (Robot 2)

-30000

-20000

-10000

0

10000

20000

30000

0 50 100 150 200

Epoch

R
ew

ar
d 

Va
lu

e

 
Figure 7 Puck-Collecting (local reward, simulation) 



• Vary diversity in capabilities of robots 

 The reference case has two heterogeneous 
robots because we want to test the cooperative 
behavior that arises from learning. The purpose of 
having two robots with different capability is to see 
whether they can compensate each other’s 
weaknesses. In this experiment, we instead use two 
identical robots. Both of them can go to all 
checkpoints, pick up a puck, drop a puck and dump a 
puck with the same costs. The results show that the 
learning can achieve the optimal solution where one 
of the robots does everything all by itself (there is no 
advantage to hand over the puck because the “dump” 
action costs the same). However, we found a small 
difference in the final results when using different 
reward schemes. For the global reward scheme, the 
final result shows one robot doing the pick-up – 
dump routine and the other robot staying out of the 
way to minimize collision. For the local reward 
scheme, both robots will compete to be the one who 
pick up the puck. The reason behind this behavior is 
that the global reward scheme distributes all rewards 
among robots. That means one robot can also get the 
big reward by letting its teammate do the job. In the 
local reward scheme, whoever gets the puck will get 
the big reward. Therefore, both of them have to 
compete for the puck. 
 
• Varying number of robots 

 In this experiment, we added another robot 
that has full capability of reaching checkpoints. In 
total, there are two robots that can reach all 
checkpoints and one robot that only stays around the 
home region but is good at dumping a puck. The 
result indicates that all three robots can reach the 
optimal solution where one robot does nothing and 
one robot goes picking up a puck to hand over to the 
disabled robot. The learning time also increases 
because there are more robots and there are more 
states to be explored. The plot of reward is similar to 
that of the standard case. 
 
The table below shows the summary of the results. 
 

Factors 
Median 

learn 
time 

(epoch) 

Min Max 

Monte Carlo 66 59 90 Learning 
Algorith

m Q-learning 50 44 73 

Global 66 59 90 Reward 
Scope Local 112 64 127 

Heterogeneous 66 59 90 Diversity 
of robots’ 
capability Homogeneous 92 85 133 

2 robots 66 59 90 Number 
of robots 3 robots 110 94 173 

 

4.3. Real Robot Experiments and Results 

 After simulations, we verified some 
important cases with real robots. All parameters and 
rewards are the same with simulation except the 
decrease rate of randomness in the ε-greedy method. 
We set the decrease rate faster in order to minimize 
the learning time. Other than that, we followed along 
the same line as in simulation: starting with 1 robot 
case, finding a standard case, and experimenting 
with the factors. 
 
• One robot case 

 We started with one robot case, which we 
can easily observe the operation of the robot and 
calibrate the position of the passive gripper. The plot 
of reward log is shown below. 
 

Reward Log for The Puck Collecting 
Problem with 1 robot (real robot)
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Figure 8 Puck-Collecting 1 Robot (real robot) 

The learning converges quite fast (around epoch 
20th). 
 
• Standard case (Cooperation achieved) 

 We try similar parameter setting obtained 
from the simulation to be the standard case. The 
standard case has 2 robots, 2 checkpoints, a 
homogeneous team, Monte Carlo learning (average-
reward), and a global reward scheme. The real 



robots are able to learn cooperation using this 
parameter setup. The plot of rewards is shown 
below. 

Puck-Collecting with real robots (standard case)
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Figure 9 Puck-Collecting Standard Case (real robots) 
• Varying reward scope 

 By changing the reward scope from global 
to local, the robots fail to achieve cooperation. 
Similar to simulations, the result shows that Robot1 
will do everything by itself without passing the puck 
to Robot2. 
 

Puck-Collecting Local Reward (real robots)
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Figure 10 Puck-Collecting (local reward, real robots) 

• Varying the learning algorithm 

 We tested Q-learning with the real robots in 
the puck-collecting problem. The results show that 
the robots fail to achieve cooperation. The robot that 

can move around will be the one who does all tasks 
by itself.  
5. Discussion 

 The results indicate that the setup of 
learning algorithms and the reward scope can affect 
the final results of learning. In this section, we 
analyze the effect of each of the four factors tested. 

The results indicate that Q-learning, which is 
based on discounted reward, fails to achieve 
cooperation while Monte Carlo learning, which is 
based on average reward succeeds. This 
phenomenon is best described by an example. 
Consider the example of two robots with a 
sequential task. The task consists of two parts in 
strict order (similar to the puck-collecting problem). 
Only after the first part is finished can the second 
part begin. Rewards are given to the robots at the 
end of the second part. Both robots use a global 
reward scheme. 
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Figure 11 Time Frame in Continuous Subtasks 

We assume that Robot 1 is more suited to do 
Part 1 than Robot 2. In the best case, Robot 1 
chooses Part 1 and Robot 2 chooses Part 2, which 
will provide a reward of 10 units. The other case is 
when Robot 1 chooses Part 2 and Robot 2 chooses 
Part 1, which will provide a reward of 8 units. 
Suppose the length of Part 2 is three time-steps and 
the discount factor (γ) is 0.9. In the first case, Robot 
1 chooses Part 1 and gets a reward three time-steps 
later of 10*(0.9)3 = 7.3. Robot 2 chooses Part 2 and 
gets a full 10-unit reward immediately. In the second 
case, Robot 2 chooses Part 1 and gets a reward three 
time-steps later of 8*(0.9)3 = 5.8. Robot 1 chooses 

Part 1 Part 2 Before 
the task 

After 
the task 

Time Progress 

Robot 1 does Part 1/Robot 2 does Part 2 
Reward = 10 

 
Robot 1 does Part 2/Robot 2 does Part 1 

Reward = 8 



Part 2 and gets an immediate reward of 8 units. The 
total reward of the first case is 7.3+10 = 17.3 and the 
total reward of the second case is 5.8+8 = 13.8. The 
second case seems inferior, but Robot 1 gets a bigger 
reward (8 instead of 7.3). Therefore, using the 
cumulative discount reward framework, Robot 1 will 
learn the second case, which is a selfish behavior. 

Learning algorithms that are based on an 
average reward framework, such as the Monte Carlo 
algorithm, can solve this problem. With average 
rewards, it does not matter who gets the reward first, 
since the reward will not be discounted. The reward 
that each robot receives is the sum of all rewards 
divided by the number of time-steps. Therefore, all 
robots receive equal rewards. From the previous 
example, if the total number of time-steps is five, all 
robots receive an average reward of 10/5 = 2.0 units 
in the first case and 8/5 = 1.6 units in the second 
case. 
 With a local reward scheme, Robot1 is 
unwilling to pass the puck to Robot2 who is better at 
dumping. This is because, with the local reward 
scheme, the robot that dumps the puck will be the 
only one that gets the big reward and the other robot 
gets nothing. Therefore, this creates a competitive 
situation for both robots to be the one who dump the 
puck. Therefore, Robot1 learns not pass the puck to 
Robot2 and does everything by itself. 
 The diversity among robots does not have 
an effect on the final result. Our experiment shows 
that both homogeneous and heterogeneous teams can 
achieve the optimal solution. The learning algorithm 
can find the way to maximize the total reward in 
both cases. However, the experiment with 
homogeneous team attains higher total reward 
because the higher reward setup for Robot2. 
 The number of robots also has no effect on 
the final solution, but it requires more learning time. 
When there are more robots, there are more states 
and more situations for the robots to learn. This 
shows the scalability of the learning algorithm in our 
multirobot system without any modifications. 
 
6. Conclusions 

 The effectiveness of multirobot learning in 
achieving optimal, cooperative solutions is 
potentially affected by various factors. In earlier 
work [4], we tested the effect of these factors with a 
surveillance task, in which the performance depends 
on the placement of robots. In the current work, we 

test the same factors with the puck-collecting 
problem, in which the performance depends on the 
interactions with pucks. Based on these two tasks, 
we found that the type of learning algorithm and the 
reward scope have a crucial effect on the learning 
results. They can create a greedy strategy which 
gives unacceptable team performance. We also 
found that the diversity of robots and the number of 
robots do not have effects on the final results 
lthough they can affect the learning speed. a
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