
Crucial Factors Affecting Decentralized Multirobot Learning
in an Object Manipulation Task

Poj Tangamchit 1 John M. Dolan 2 Pradeep K. Khosla 1,2

 E-mail: poj@andrew.cmu.edu jmd@cs.cmu.edu pkk@cs.cmu.edu
Dept. of Electrical and Computer Engineering 1, The Robotics Institute 2

Carnegie Mellon University, 5000 Forbes Ave. Pittsburgh, PA 15213, USA

Abstract

 Decentralized multirobot learning refers to
the use of multiple learning entities to achieve the
optimal solution for the overall robot system. We
demonstrate that single-robot learning theory can be
successfully used with multirobot systems, but with
certain conditions. The success and the effectiveness
of this method are potentially affected by various
factors that we classify into two groups: the nature
of the robots and the nature of the learning entities.
Incorrect setup of these factors may lead to
undesirable results. In this paper, we methodically
test the effect of varying four common factors
(reward scope, learning algorithms, diversity of
robots, and number of robots) in a decentralized
multirobot system, first in simulation and then on
real robots. The results show that two of these
factors, reward scope and learning algorithm, if set
up incorrectly, can prevent optimal, cooperative
olutions. s

1. Introduction

Reinforcement learning has been successfully
used in a single robot in order to make it learn
traveling through mazes and other tasks. Popular
learning algorithms, such as Q-learning and TD(λ),
have proven to be effective methods for making a
robot adapt itself to the environment.

The advance of technology makes computer
parts cheaper and more effective. This makes the use
of several robots more affordable. Using multiple
robots to accomplish a task is quite common.
Multirobot systems potentially have the following
five major advantages over a single robot: task
capability, improved system performance,
distributed sensing, distributed action, and high
robustness. In [3], we proposed the dynamic task
selection mechanism, which is a multirobot group
architecture that promotes robustness. However, it
still lacks an efficient task allocation mechanism.
This is the reason why we consider using

reinforcement learning in our multirobot system.
Reinforcement learning in multirobot systems is a
new research area. It is somewhat different from
distributed artificial intelligence (DAI) and multi-
agent systems (MAS) due to the embodiment of real
robots and the unsynchronized nature of distributed
learning entities. We have found few publications
directly implementing multirobot learning.
 Some researchers have successfully used
single-robot learning theory (methods such as Q-
learning) in multirobot systems. Most of this work
modified the learning in some way, such as special
rewards, heuristics or subgoals. However, we
believe that single-robot theory/methods can also be
used in multirobot systems, but with certain
adjustments. In this paper, we test several factors
that potentially have an effect on the final outcome
of the learning results. We call these factors
“environmental factors”. This paper continues the
work in [4], which tested the effect of different
factors on a surveillance problem. This problem,
called the multirobot patrolling problem, requires
cooperation from all robots to guard an area.
Performance in the multirobot patrolling problem
depends on the placement of robots and paths they
take. This paper is the test of the same factors but
with a different type of task. This paper uses the
puck-collecting task as a testbed problem, which we
consider as a prototype for the object manipulation
tasks. We first did the experiments in simulation and
then verified some cases with real robots.

The rest of this paper is organized as
follows. Section 2 describes previous work. Section
3 gives our approach by first explaining the
taxonomy of multirobot learning and the learning
algorithm that we used. It then describes the puck-
collecting problem and the four factors that we
investigated. Section 4 gives experimental results
from simulation and on real robots. Section 5
presents a discussion of how the factors under
consideration affect learning, and section 6 gives
conclusions.

mailto:poj@andrew.cmu.edu
mailto:jmd@cs.cmu.edu
mailto:pkk@cs.cmu.edu

2. Previous Work

Unlike learning in single-robot systems,
reinforcement learning in decentralized multirobot
systems is a new research area and has not been
systematically studied. Nevertheless, some aspects
and theory of single-robot learning can be applied to
multirobot systems. For example, some
reinforcement learning algorithms [9] are still
suitable for use in multirobot systems, as is Sutton’s
Dyna architecture [12]. Dyna reuses training data
and creates a hypothetical world in order to use the
training data to the fullest extent. There are
examples of single-robot learning methods being
applied to multirobot systems with some
modifications. An example is Mataric’s work [1].
With the use of progress estimators, she successfully
implemented a single-robot learning method on each
robot and achieved a good result as a team.

Despite the partial applicability of single-
robot learning, multirobot systems have unique
features that introduce additional considerations.
Our previous work [4] is an attempt to test and find
the factors that have effects on the usage of single-
robot methods in a multirobot system. We used a
surveillance problem as a testbed. In this paper, we
followed along the same line as our previous work
but instead used an object manipulation problem as a
testbed. The idea is to test the same factors on
different types of tasks in order to examine the effect
of these factors in general. For example, one of the
factors is different learning value functions for
learning algorithms. We discovered that discounted-
reward-based Q-learning [5], although effective for
single robots, cannot produce cooperation, for which
an average-rewards-based scheme such as Monte
Carlo learning [12] should be used. Another factor is
the diversity of multirobot teams, which was first
investigated by Balch [6]. He showed that diversity
can have an impact on the performance of robot
teams in some types of tasks. Inspired by his work,
we included diversity among the factors whose
impact on learning performance was tested, using a
hybrid, rather than Balch’s purely reactive
architecture.

3. Approach

We begin our approach by discussing the details
of multirobot architecture and learning algorithms.
We then systematically study the effect of

environmental factors on the learning. First, we
make a taxonomy of these factors based on the
earlier work of Balch [6] and Dudek et al. [7]. Next,
we talk about the puck-collecting problem, which is
the problem testbed for our experiments. Then, each
of the four environmental factors are discussed in
detail. We then present the experiments and results
from both the simulations and the real robots.

3.1. Robot Architecture and Group Architecture

 When building a multirobot system, one must
make two architecture decisions: one for the
individual robots, and one for the group. The
individual robot architecture choice spans the
continuum from the reactive to the deliberative. A
deliberative architecture plans actions in detail based
on a world model. A reactive architecture is a simple
mapping of sensor inputs to actions. It does not keep
a world model or plans. A hybrid architecture is a
mix of the reactive and deliberative architectures.
There are two types of group architectures:
centralized and decentralized. A centralized
architecture employs a central unit to control the
operation of the whole system. The central unit can
be a separate entity or can be one of the robots in the
group. The duty of the central unit is to get data from
all robots, plan actions of the whole group, and send
commands back to the robots. Therefore, all controls
depend on the central unit. A decentralized
architecture lacks such a central unit. Each robot has
to individually plan and control itself. Our
architecture, the dynamic task selection [3], has a
hybrid robot architecture and a decentralized group
architecture.

3.2. Learning Algorithms

 We use distributed learning entities that run
asynchronously on each robot. There are two
learning algorithms investigated in this paper: Q-
learning, which has a discounted-reward value
function, and the Monte Carlo algorithm (MC),
which has an average-reward value function. Q
learning is designed to optimize a robot policy (π)
that is based on cumulative discounted rewards (Vπ).
The cumulative discounted reward is the sum of
rewards that a robot expects to receive after entering
into a particular state. The discount factor (γ) makes
rewards that are received in the future fade over
time.

where 0 < γ < 1

Q learning defines an evaluation function Q(s,a).
This function is the maximum cumulative
discounted reward that can be achieved by starting
from state s and applying action a as the first action.
Using Q learning, robots learn and update the Q
value by the following equation:

where s’ and a’ are the next state and the next
possible action.

The second learning algorithm tested was the
Monte Carlo algorithm (MC). It uses probability
theory to estimate the value of actions from
experience. Monte Carlo learning is used in episodic
tasks. The algorithm traces the states that have been
visited until the end of an episode. It then gives
credits to those states according to rewards that the
robots receive. There are two versions of Monte
Carlo learning: first-visit MC and every-visit MC.
First-visit MC records average rewards after the first
visit to each state. Every-visit averages all rewards
after every visit to each state. The first-visit MC
algorithm looks like the following.

Q(s,a) ← arbitrary % Q(s,a) is an average

reward after the first visit in
state s, action a

π(s) ← arbitrary % π (s) is the policy
and decision at state s

Rewards(s,a) ← Empty list

Repeat Forever:

- Generate an episode using π
- For each pair s,a appearing in the episode:

R ← reward following the first
occurrence of s,a
Append R to Rewards(s,a)
Q(s,a) ← average(Rewards(s,a))

- For each s in the episode
π(s) ← argmaxa Q(s,a)

 We also use a modified ε-greedy method [12]
to balance between learning an exploration for both
algorithms. With the ε-greedy method, a robot will
try to make random explorations with probability ε.
For the modified version, the value of ε will
decrease over time according to the learning
progress and the amount of rewards that the robot
gets.

∑
∞

=
+++ =+++=

0
2

2
1 ...)(

i
it

i
ttt rrrrtV γγγπ

3.3. Taxonomy of the environmental factors

Environmental factors are various characteristics
that have to be chosen when researchers implement
learning in multirobot systems. Due to the absence
of guidelines for systematically specifying these
factors, researchers currently require trial-and-error
in choosing them until the desired results are
achieved. A multirobot learning system has three
main components: robots, learning algorithms and
tasks. Our taxonomy is constructed based on the first
two components. The nature and configuration of the
robots entails the overall structure of the robot team.
The nature of the learning entities involves the
structure of the learning algorithms and rewards. We
do not make a taxonomy of tasks because tasks are
user-specific. Tasks can vary indefinitely with
different aspects according to users’ requirements.
We instead plan to test the environmental factors on
different types of multirobot tasks that we consider
to be prototypes for general multirobot applications.
In this paper, we conduct experiments with the puck-
collecting problem, which we consider as a
prototype for the more general object manipulation
task.

The nature of the robots involves robot
architecture (reactive / deliberative / hybrid), group
architecture (centralized / decentralized), number of
robots (small-size / large-size), and diversity in
capabilities (heterogeneous / homogeneous).

The nature of the learning involves learning
entities (centralized / decentralized), learning
algorithms (Q-learning / Monte Carlo), and reward
scope (local / global).

)','(max),(),(
'

asQasrasQ
a

γ+⎯⎯←

 This paper presents multirobot learning with
fixed parameters as follows: hybrid robot
architecture, decentralized group architecture, and
decentralized learning entities. This paper tests the
effect of varying the following parameters: number
of robots, diversity in capabilities, learning
algorithms, and reward scope.

3.4. The Puck-Collecting Problem

Our test problem is the puck-collecting problem,
consisting of two robots and a rectangular field.
Pucks are distributed randomly at four predefined
points at the corners of the field. The robots have
short-range puck detection so that they have to move
close enough to a puck in order to see it. The robots’
task is to investigate and find a puck around these
points. There is a home region in the middle of the
field with a bin inside. The robots have to move all
pucks to the home region and deposit them in the
bin. Both robots can sense a puck, pick up a puck, or
drop a puck. The first robot (Robot1) can move to
and investigate around the points, or it can move to
the home region and deposit a puck. The second
robot (Robot2) is restricted to move anywhere but
staying at the home region. However, it can still
sense a puck, pick up a puck, or deposit a puck in the
bin. Depositing a puck in the bin is time-consuming
for the first robot, but it is easy for the second robot.
Therefore, although the second robot cannot move
around, it can play an important role by depositing
pucks in the bin. The optimal complete sequence is
that the first robot picks up a puck, comes back to
the home region, and drops the puck. Then, the
second robot picks up the puck, and deposits it in the
bin.

Figure 1 The Puck-Collecting Problem

The optimal solution sequence is shown below.
First, both robots start at the home region. Second,
Robot1 moves to the point on the upper right hand
corner. Third, Robot1 picks up a puck. Fourth,

Robot1 comes back to the home region. Fifth,
Robot1 drops the puck to the floor. Sixth, Robot2
picks up the puck. Seventh, Robot2 dumps the puck
into the home region.

Figure 2 The Optimal Solution of the Problem

Action Reward

Move (Time used in second * -100) – 10

PickPuck (Time used in second * -100) – 10

DropPuck (Time used in second * -100) – 10

Dump

10000 for Robot 1

30000 for Robot 2

-10 if unsuccessful

Wait -10

Parameter values of rewards and costs are shown in
the table above. All robot actions result in negative
rewards (cost) except depositing a puck, which gives
a big positive reward because it is the final goal. The
cost for picking, dropping, and dumping a puck are
proportional to the actual time used for each action
plus an overhead of 10 units.

3.5. Details of Tested Environmental Factors

1 2

3 4

5 6

7

Home
Region

x x
Robot 1

Puck
Robot 2

x x

State =
{At?, HavePuck, SensePuck}

Action =
{Goto?, PickPuck, DropPuck, Dump,
DoNothing}

 In this paper, we investigate two factors from
the nature of the learning entities (reward scope and
learning algorithms) and two factors from the nature
and configuration of the robots (number and
diversity). The factors in the nature and
configuration of the robots that we fix are the hybrid
robot architecture and the decentralized group
architecture. The factors in the nature of the learning
entities that we fix are the decentralized learning
entities. Each factor varied is detailed below.

3.5.1. Reward Scope

Rewards are an important component of
reinforcement learning. A reward is given to a robot
when it does something good, e.g., reaching the
goal. We classified rewards in a similar way to data
of robots. Robots carry two types of data: local data,
which are the data used and kept private within each
robot, and global data, which are the data shared
among robots by the synchronization mechanism.
Based on the same principle, there are two reward
scopes in multirobot learning: local and global. A
local reward scheme keeps rewards within each
robot individually, whereas a global reward scheme
broadcasts rewards generated within each robot to
all other teammates. Therefore, with a global reward
scheme, robots receive rewards and punishment
together, as a team. A local reward scheme is a
straightforward method that is used in single-robot
learning. The learning occurs independently in each
robot without information exchange. A global
reward scheme, on the other hand, needs to share
rewards among robots. It can be implemented by
broadcasting all rewards generated within the robot
to the teammates. The transmitted rewards are then
added up to the internal reward for the current
action.

3.5.2. Learning Algorithms

Two learning algorithms were tested: Q-
learning, which is based on cumulative discounted
reward, and Monte Carlo learning, which is based on
average reward.

3.5.3. Diversity of Robots’ Capabilities

In a robot team, robots can have the same or
different capabilities. This property is referred to as
the diversity of a robot team. Teams consisting of

robots with the same capabilities are termed
homogeneous. Teams consisting of robots with
different capabilities are termed heterogeneous. The
impact of diversity on robot teams was first
investigated by Balch [6]. Using a reactive robot
architecture, he showed that diversity is beneficial in
some types of tasks, but unsuited to others. This
inspired our motivation to investigate diversity on
our multirobot system, which has a hybrid robot
architecture. In the puck-collecting problem, the
original setup has one robot with an ability to move
around and one robot disabled to stay at the home
region. This is a heterogeneous team. The purpose of
this setup is to test whether the learning algorithm
can learn the best cooperative strategy among the
robots. For a diversity test, we created a
homogeneous team by using two robots with the
same capability and reward setup. Both can move to
all points and can dump a puck with the same reward
value.

3.5.4. Number of Robots

We classify this factor into two types: small-size
(2-3 robots) and large-size (>20 robots). Although
we do not test the large-size case, we vary the
number of robots within the small-size range in
order to test the scalability of the learning
algorithms. We tested this factor by adding another
robot that also has the capability to move around the
points. In total, there are three robots: two are
identical and one is disabled to stay at the home
region.

4. Experiments and Results

4.1. Robot Physical

We used Pioneer robots models P2DX and P2AT
from Activmedia Corp. (see Figure 3). Each robot is
equipped with an onboard PC104 running Linux (for
computing and learning), sonar sensors (for reactive
obstacles avoidance), and a wireless LAN 801.11b
card (for communication). We used an overhead
camera with a Cognachrome vision board to detect
robot position (act as a GPS). Each robot was
marked with two color blobs to determine position
and orientation. Figure 3 shows one robot marked
with two red blobs and the other robot marked with
two blue blobs. The two blobs have different sizes.
The blobs on the front of the robots are smaller than
the blobs on the back. We used the blob area (pixel

count from the camera) to differentiate between the
front and the back blobs. Then, we used the position
of the two blobs to calculate the position and
orientation of each robot. Each robot is programmed
with fixed low-level reactive behavior, such as
avoiding obstacles, avoiding other robots, moving to
a point and manipulating a puck.

Figure 3 Two Pioneer Robots on the field

We used off-the-shelf components to build an easy
passive gripper attached to the front of each robot.
The grippers were made of copper rods bending in a
fork-like shape. The puck was made of two compact
discs connected together with spacers (see Figure 4).
The puck was marked with an orange color for
camera detection.

Figure 4 The Puck and The Passive Gripper

With this gripper, the robot can pick up a puck by
moving directly toward it. When the puck is in
place, the robot can move forward and turn without
losing the puck. When the robot wants to drop the
puck, it simply moves backward.

4.2. Simulation and Results

Our simulation was written in Visual C++. The
robots had predefined low-level behaviors: move to
a point, pick up a puck, drop a puck, dump, and
wait. The robots were assumed to be equipped with
GPS, sonar sensors, a passive gripper and a
communication channel. Learning entities were
implemented on each robot independently. Each
robot and the environment ran on separate threads in

order to simulate the asynchronous timing of the real
world. Also, there is some chance that the robots
will miss the puck when they try to pick it up.

Due to the number of varied factors, we made
the tests more systematic by first finding a standard
case which provides the optimal result (robots
cooperate). Then, we varied the factors one by one
and made comparison to the standard case. The
standard case had 2 robots, Monte Carlo learning, a
heterogeneous team, and a global reward scheme.
After randomly varying factors and running the
experiments, we found two types of final results: the
optimal case where both robots cooperate, and the
greedy case where Robot1 does all actions by itself.
In the optimal case, Robot1 passes the puck to
Robot2, who is good at dumping. In the greedy case,
Robot1 does not pass the puck but instead dumps the
puck by itself. Moreover, we found that the effect of
factors that create the greedy case are dominant
regardless of the setting of other factors. For
example, the use of a local reward scheme always
makes Robot1 greedy no matter what other factors
are. This suggests that the effects of the four factors
are independent of one another. Because the learning
performs random exploration, we ran the experiment
multiple (10) times for each case to ensure the
consistency of the results. Each run ended when the
learning reached a stable state defined by the point
when the ε value of the modified ε-greedy method
reduces to zero (meaning no more exploration). The
results presented below are based on changes in each
factor compared to the standard case.

• Single robot case

 The purpose of the single robot case is to
test the integrity of the simulation and the learning
algorithm. We use only one robot to patrol the four
checkpoints. If a puck is found, the robot should
learn to carry it back the home region and dump it.
 The results show that both Q-learning and
Monte Carlo learning can achieve the optimal result
where the robot goes straight to the puck, picks it up,
comes back to the home region, and dumps it. Q-
learning has slightly better speed than Monte Carlo
learning. The plot of cumulative rewards on each
epoch using the Monte Carlo learning is shown in
Figure 5.

Puck-Collecting with 1 Robot

-15000

-10000

-5000

0

5000

10000

15000

0 20 40 60 80 100

Epoch

R
ew

ar
d

Va
lu

e

Figure 5 Puck-Collecting 1 Robot (Simulation)

• Standard case (Cooperation achieved)

 The standard case designates the case when
the robots achieve the optimal solution. This is when
Robot1 picks up a puck and hands over to Robot2,
which is better at dumping a puck. The parameters
setup is determined by trial and error until the
optimal result is achieved. The standard case has 2
robots, 4 checkpoints, heterogeneous team, Monte
Carlo learning (average-reward), and a global
reward scheme. The plot of rewards is shown in
Figure 6.

Puck-Collecting 2 Robots (Standard Case)

-50000

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

0 50 100 150 200

Epoch

R
ew

ar
d

Va
lu

e

Figure 6 Puck-Collecting (standard case, simulation)

• Varying learning algorithm value function

 We compare Q-learning and Monte Carlo
learning in this experiment. In the reference case, we
found that using Monte Carlo learning with the right
setup can achieve the optimal solution. However,
when using Q-learning with the same setup, we

discovered that the robots cannot achieve the
optimal solution. The learning algorithm can achieve
a stable result but not the optimal one. The final
results show Robot1 doing the tasks all by itself
(pick up and dump) without passing the puck to
Robot2. The results suggest that Q-learning creates a
greedy strategy on the robots. It makes each robot
want to be the one who get the big reward.
Therefore, the level of the total reward as a team will
be less than that of the standard case.

• Varying reward scope

 When the reward scope was changed to
local, the robots fail to achieve cooperation. Similar
to the local reward case, the results show that the
first robot will complete the mission all by itself
without passing the puck to the other robot. The total
reward within each robot will therefore be lower
than the cooperative case. The result suggests that
using a local scheme can prevent the robots from
cooperating with each other. The plot of total reward
in the first robot and the second robot are shown in
Figure 7.

Puck Collecting using Local Reward (Robot 1)

-50000

-40000

-30000

-20000

-10000

0

10000

20000

0 50 100 150 200

Epoch

R
ew

ar
d

Va
lu

e

Puck Collecting using Local Reward (Robot 2)

-30000

-20000

-10000

0

10000

20000

30000

0 50 100 150 200

Epoch

R
ew

ar
d

Va
lu

e

Figure 7 Puck-Collecting (local reward, simulation)

• Vary diversity in capabilities of robots

 The reference case has two heterogeneous
robots because we want to test the cooperative
behavior that arises from learning. The purpose of
having two robots with different capability is to see
whether they can compensate each other’s
weaknesses. In this experiment, we instead use two
identical robots. Both of them can go to all
checkpoints, pick up a puck, drop a puck and dump a
puck with the same costs. The results show that the
learning can achieve the optimal solution where one
of the robots does everything all by itself (there is no
advantage to hand over the puck because the “dump”
action costs the same). However, we found a small
difference in the final results when using different
reward schemes. For the global reward scheme, the
final result shows one robot doing the pick-up –
dump routine and the other robot staying out of the
way to minimize collision. For the local reward
scheme, both robots will compete to be the one who
pick up the puck. The reason behind this behavior is
that the global reward scheme distributes all rewards
among robots. That means one robot can also get the
big reward by letting its teammate do the job. In the
local reward scheme, whoever gets the puck will get
the big reward. Therefore, both of them have to
compete for the puck.

• Varying number of robots

 In this experiment, we added another robot
that has full capability of reaching checkpoints. In
total, there are two robots that can reach all
checkpoints and one robot that only stays around the
home region but is good at dumping a puck. The
result indicates that all three robots can reach the
optimal solution where one robot does nothing and
one robot goes picking up a puck to hand over to the
disabled robot. The learning time also increases
because there are more robots and there are more
states to be explored. The plot of reward is similar to
that of the standard case.

The table below shows the summary of the results.

Factors
Median

learn
time

(epoch)

Min Max

Monte Carlo 66 59 90 Learning
Algorith

m Q-learning 50 44 73

Global 66 59 90 Reward
Scope Local 112 64 127

Heterogeneous 66 59 90 Diversity
of robots’
capability Homogeneous 92 85 133

2 robots 66 59 90 Number
of robots 3 robots 110 94 173

4.3. Real Robot Experiments and Results

 After simulations, we verified some
important cases with real robots. All parameters and
rewards are the same with simulation except the
decrease rate of randomness in the ε-greedy method.
We set the decrease rate faster in order to minimize
the learning time. Other than that, we followed along
the same line as in simulation: starting with 1 robot
case, finding a standard case, and experimenting
with the factors.

• One robot case

 We started with one robot case, which we
can easily observe the operation of the robot and
calibrate the position of the passive gripper. The plot
of reward log is shown below.

Reward Log for The Puck Collecting
Problem with 1 robot (real robot)

-50000

-40000

-30000

-20000

-10000

0

10000

0 5 10 15 20 25 30 35

Epoch

R
ew

ar
d

Va
lu

e

Figure 8 Puck-Collecting 1 Robot (real robot)

The learning converges quite fast (around epoch
20th).

• Standard case (Cooperation achieved)

 We try similar parameter setting obtained
from the simulation to be the standard case. The
standard case has 2 robots, 2 checkpoints, a
homogeneous team, Monte Carlo learning (average-
reward), and a global reward scheme. The real

robots are able to learn cooperation using this
parameter setup. The plot of rewards is shown
below.

Puck-Collecting with real robots (standard case)

-40000

-30000

-20000

-10000

0

10000

20000

30000

0 20 40 60 80 10

Epoch

R
ew

ar
d

Va
lu

e

0

Figure 9 Puck-Collecting Standard Case (real robots)
• Varying reward scope

 By changing the reward scope from global
to local, the robots fail to achieve cooperation.
Similar to simulations, the result shows that Robot1
will do everything by itself without passing the puck
to Robot2.

Puck-Collecting Local Reward (real robots)

-30000

-25000

-20000

-15000

-10000

-5000

0

5000

10000

0 20 40 60 80 100

Epoch

R
ew

ar
d

Va
lu

e

Figure 10 Puck-Collecting (local reward, real robots)

• Varying the learning algorithm

 We tested Q-learning with the real robots in
the puck-collecting problem. The results show that
the robots fail to achieve cooperation. The robot that

can move around will be the one who does all tasks
by itself.
5. Discussion

 The results indicate that the setup of
learning algorithms and the reward scope can affect
the final results of learning. In this section, we
analyze the effect of each of the four factors tested.

The results indicate that Q-learning, which is
based on discounted reward, fails to achieve
cooperation while Monte Carlo learning, which is
based on average reward succeeds. This
phenomenon is best described by an example.
Consider the example of two robots with a
sequential task. The task consists of two parts in
strict order (similar to the puck-collecting problem).
Only after the first part is finished can the second
part begin. Rewards are given to the robots at the
end of the second part. Both robots use a global
reward scheme.

Reward
given by
the task

Doing the task

Task

Figure 11 Time Frame in Continuous Subtasks

We assume that Robot 1 is more suited to do
Part 1 than Robot 2. In the best case, Robot 1
chooses Part 1 and Robot 2 chooses Part 2, which
will provide a reward of 10 units. The other case is
when Robot 1 chooses Part 2 and Robot 2 chooses
Part 1, which will provide a reward of 8 units.
Suppose the length of Part 2 is three time-steps and
the discount factor (γ) is 0.9. In the first case, Robot
1 chooses Part 1 and gets a reward three time-steps
later of 10*(0.9)3 = 7.3. Robot 2 chooses Part 2 and
gets a full 10-unit reward immediately. In the second
case, Robot 2 chooses Part 1 and gets a reward three
time-steps later of 8*(0.9)3 = 5.8. Robot 1 chooses

Part 1 Part 2 Before
the task

After
the task

Time Progress

Robot 1 does Part 1/Robot 2 does Part 2
Reward = 10

Robot 1 does Part 2/Robot 2 does Part 1

Reward = 8

Part 2 and gets an immediate reward of 8 units. The
total reward of the first case is 7.3+10 = 17.3 and the
total reward of the second case is 5.8+8 = 13.8. The
second case seems inferior, but Robot 1 gets a bigger
reward (8 instead of 7.3). Therefore, using the
cumulative discount reward framework, Robot 1 will
learn the second case, which is a selfish behavior.

Learning algorithms that are based on an
average reward framework, such as the Monte Carlo
algorithm, can solve this problem. With average
rewards, it does not matter who gets the reward first,
since the reward will not be discounted. The reward
that each robot receives is the sum of all rewards
divided by the number of time-steps. Therefore, all
robots receive equal rewards. From the previous
example, if the total number of time-steps is five, all
robots receive an average reward of 10/5 = 2.0 units
in the first case and 8/5 = 1.6 units in the second
case.
 With a local reward scheme, Robot1 is
unwilling to pass the puck to Robot2 who is better at
dumping. This is because, with the local reward
scheme, the robot that dumps the puck will be the
only one that gets the big reward and the other robot
gets nothing. Therefore, this creates a competitive
situation for both robots to be the one who dump the
puck. Therefore, Robot1 learns not pass the puck to
Robot2 and does everything by itself.
 The diversity among robots does not have
an effect on the final result. Our experiment shows
that both homogeneous and heterogeneous teams can
achieve the optimal solution. The learning algorithm
can find the way to maximize the total reward in
both cases. However, the experiment with
homogeneous team attains higher total reward
because the higher reward setup for Robot2.
 The number of robots also has no effect on
the final solution, but it requires more learning time.
When there are more robots, there are more states
and more situations for the robots to learn. This
shows the scalability of the learning algorithm in our
multirobot system without any modifications.

6. Conclusions

 The effectiveness of multirobot learning in
achieving optimal, cooperative solutions is
potentially affected by various factors. In earlier
work [4], we tested the effect of these factors with a
surveillance task, in which the performance depends
on the placement of robots. In the current work, we

test the same factors with the puck-collecting
problem, in which the performance depends on the
interactions with pucks. Based on these two tasks,
we found that the type of learning algorithm and the
reward scope have a crucial effect on the learning
results. They can create a greedy strategy which
gives unacceptable team performance. We also
found that the diversity of robots and the number of
robots do not have effects on the final results
lthough they can affect the learning speed. a

References

[1] Mataric M.J., “Interaction and Intelligent
Behavior”, Ph.D. thesis, MIT EECS, 1994.
[2] Parker L.E., “Heterogeneous Multi-Robot
Cooperation”, Ph.D. thesis, MIT EECS, 1994.
[3] Tangamchit P., Dolan J.M. and Khosla P.K.,
“Dynamic Task Selection: A Simple Structure for
Multirobot Systems”, DARS 2000, pp.483-484.
[4] Tangamchit P., Dolan J.M. and Khosla P.K.,
“Crucial Factors Affecting Cooperative Multirobot
Learning”, to appear in IROS2003
[5] Watkins C.J.C.H., “Learning from Delayed
Rewards”, Ph.D. thesis, King’s College, Cambridge,
UK, 1989.
[6] Balch T., “Behavioral Diversity in Learning
Robot Teams”, Ph.D. thesis, Dept. of Computer
Science, Georgia Tech., 1998.
[7] Dudek G., Jenkin M.R., Milios E. and Wilkes D.,
“A Taxonomy for Multi-Agent Robotics”,
Autonomous Robots 3 (4):375-397, December 1996,
Kluwer Academic Publishers.
[8] Balch T., “Taxonomies of Multirobot Task and
Reward”, Technical Report Robotic Institute, CMU,
1998.
[9] Kaelbling L., Littman M. and Moore A.,
“Reinforcement Learning: A Survey”, Journal of AI
Research 4, pp.237-285, 1996.
[10] Tangamchit P., Dolan J.M. and Khosla P.K.,
“The Necessity of Average Reward in Cooperative
Multirobot Learning”, ICRA 2002.
[11] Fukuda T.,Kawauchi Y., “Cellular Robotics”,
pp. 745-782, Springer-Verlag 1993.
[12] Sutton R.S. and Barto A.G., “Reinforcement
Learning: An Introduction”, MIT Press, Cambridge,
MA, 1998.

	Crucial Factors Affecting Decentralized Multirobot Learning
	in an Object Manipulation Task
	Abstract
	Previous Work

	5. Discussion
	6. Conclusions

