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Abstract

This paper presents strategies for reducing the impact force resulting
from the collision of a kinematically redundant manipulator with an
object in its environment.  The Premultiplier Diagram, a tool used to
derive the impact force reduction strategies presented in this paper, is
introduced and discussed. Two strategies for reducing impact force are
then presented.  The first strategy involves adding torques to the joints
of the redundant manipulator to impede motion into the object with
which it collides.  The second strategy involves choosing the best con-
figuration for the impact event.  Simulated results from the testing of
either strategy are presented and discussed.

1.  Introduction

There has been much research in the past decade on the use of
kinematically redundant manipulators [11][8][13].  Recently, research
has been performed on how redundancy can be used to minimize the
force of impact between the end-effector of a manipulator and an ob-
ject [1][5][12][10][3].  Minimization of the impact force is important,
since expensive and hard-to-replace end-effectors can be damaged by
excessive force.  A redundant manipulator has an advantage over a
non-redundant manipulator for minimizing the force of impact, since it
is capable of contacting a surface in an infinite number of configura-
tions.  Since different configurations have different attributes (such as
effective mass, effective damping, and effective stiffness in task
space), it stands to reason that by altering the configuration, we alter
how the manipulator responds during impact.  Similarly, since we can
alter the joint configuration of a redundant manipulator without caus-
ing its end-effector to move, we can apply torques which impede mo-
tion into the object without affecting joint motions which do not
contribute to object penetration.  This paper addresses both ideas for
minimizing impact force.

Past work on impact strategies has focused on the instanta-
neous effects of impact, where the duration of the impact occurs in an
infinitesimally small period of time. Walker [10] showed that reducing
the instantaneous force of impact can be accomplished by minimizing
the effective mass of the redundant manipulator.  Zheng and Hemami
[12] explored the relationship between abrupt changes in generalized
joint rate velocities and the intensity of collision during an instanta-
neous impact event. Cai [1] provided a method for determining the im-

pulse of a perfectly elastic collision having a duration that is less than
the controller’s sampling period. Khatib and Burdick [5] modeled the
impact event as non-instantaneous, but only for a non-redundant ma-
nipulator. The theories presented in this paper differ from these previ-
ous theories in that we model the impact event as having some finite
duration for a redundant manipulator.  Assuming that the environment
can be modeled as ideal springs of some constant stiffness, then the im-
pact force experienced at the end-effector is the product of the stiffness
of the object and the distance the object is compressed (referred to as
“penetration”).  It is clear that minimizing penetration minimizes the
impact force [3], and so our strategies focus on minimizing the pene-
tration of the end-effector into the object.

In Section 2, we will present the Premultiplier Diagram, a tool
which we will use to construct our impact force minimization strate-
gies.  Section 3 introduces the first minimization strategy, which in-
volves adding torques to the joints of the redundant manipulator to
impede motion into the object (impact control).  In Section 4, we give
our second strategy, which minimizes impact force by choosing the
best configuration for impact (impact planning).  Section 5 shows and
discusses the results under simulation from the testing of both methods.
In Section 6, we conclude this paper.

2.  The Premultiplier Diagram

2. 1.   Dynamics of Redundant Manipulators

The dynamic motion of ann degrees-of-freedom (DOF) ma-
nipulator can be modeled as:

(1)

whereC andG represent the (nx1) Coriolis/centrifugal and gravitation-
al force vectors, andτ andθ are (nx1) joint torque and angle vectors in
joint space, respectively. The matrixH is an (nxn) inertia matrix.  The
corresponding equation of the end-effector motion in an m-dimension-
al operational space can be written as [5]:

(2)

whereB andQ are the (mx1) Coriolis/centrifugal and the gravitational
forces in the operational space andF is an (mx1) generalized operation-
al force vector. The vectorP is an independent (mx1) operational pa-
rameter.

The relationship betweenτ andF is:

(3)

whereJ is the (nxm) Jacobian matrix. This equation implies that there
exists a joint torque t corresponding to an operational forceF. Howev-
er, the opposite does not apply in general, especially for a redundant
manipulator, for which the joint torque given by (3) controls only the
net motion of the end-effector. The relationship between  and  can
be obtained by differentiating the instantaneous kinematics ( )
with respect to time:

(4)

τ H θ( ) C θ θ̇,( ) G θ( )+ +=

F M θ( ) Ṗ̇ B θ θ̇,( ) Q θ( )+ +=

τ J
T
F=

θ̇̇ Ṗ̇
Ṗ Jθ̇=

Ṗ̇ Jθ̇̇ J̇θ̇+=
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The simplest form of the above dynamic equations can be obtained
when the joint velocity is zero, the gravitational term is zero, and joints
are just about to start moving. Then, the above four equations can be
written as:

, , , and (5)

These four equations are substituted into Figure 1, and two generalized

inverses (J-  andJT-) of J andJT, respectively, are introduced to define
two undetermined paths (6 and 8). This is the dynamic version of the
Premultiplier Diagram given in [7]. From this diagram, we can obtain
the two generalized inverses (g-inverses) and relationships between in-
ertia matrices (M andH) by the use of circuitous paths. For instance,
Path 6 is equivalent to Path 3→4 →5 , which results in the following:

(6)

The left side of  (6) is obtained by premultiplying the old path by the
new path as we follow the circuitous path. Similarly, we can obtain the
following:

(7)

(8)

(9)

The g-inverseJ- is the inertia matrix (H) weighted minimum
norm g-inverse [9].  Hereafter,JH

+ will be used instead to explicitly
show the weight used. Since the inertia matrixH is symmetric and pos-
itive definite,JT-  (JH

+T) is equal to the transpose ofJ- (JH
+). The g-

inverse obtained in (6) provides the optimal and natural decomposition
between the net and null motions of a redundant manipulator because
the joint torque obtained by the inertia-weighted g-inverse minimizes
the interaction between the net and null motions. This implies that the
dynamic controller must be based on the inertia-weighted g-inverse to
achieve the optimal control. This is a result from the cooperation of dy-
namics and kinematics of a redundant manipulator. The above four
equations (6)-(9) are still valid for nonzero joint velocity. For more de-
tail, refer to [6][7].

2. 2.   Physics of Impact

The physics of the impact phenomenon between the end-effec-
tor and the environment are discussed in this section. Two different im-
pact models exist: first, the case where the impact period is
infinitesimally small; second, where the impact period is long enough
to be controllable. Roughly speaking, stiff environments cause an al-
most zero-duration impact period, whereas soft environments cause
longer impact periods.

For the first case, the velocity of the manipulator after impact
is decided by the velocity before impact, the configuration of the ma-
nipulator, and the stiffness of the environment. When the stiffness of

a( ) τ H θ̇̇= b( ) F MṖ̇= c( ) τ J
T
F= Ṗ̇ Jθ̇̇=

Figure 1:  The Dynamic Premultiplier Diagram
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the environment and the velocity before impact are given, the only vari-
able we can control is the configuration of the manipulator before im-
pact. For the second case, the impact period is relatively long enough
so that we can actively dissipate the kinetic energy of the manipulator
and manipulate the null motion in a direction to reduce the impact
force. Thus, variables we can control are the configuration before im-
pact and the damping term of control. In the remainder of this section,
the physics of impact for the first case (infinitesimal impact period) are
discussed, and in the following two sections, the second case (relatively
long impact period) is studied.

The dynamic equations (1) and (2) can be integrated over an
infinitesimal time period (∆t):

 and (10)

where  and  are impulse torques and forces, respectively, defined
by:

  and (11)

The Coriolis/centrifugal and gravitational terms are negligibly small
when they are integrated over an infinitesimal time period (∆t ≅ 0). The
relationship between  and  is the same as (3) for dynamics, since
the Jacobian matrix can be assumed as constant over the infinitesimal
time period. The relationship between  and   is obtained by integrating
(4) as:

(12)

These relationships are substituted into the Impact Premultipli-
er Diagram in Figure 2, which is the integrated version of the Dynamic
Premultiplier Diagram in Figure 1. The diagram helps understand the
impact physics and also provides a natural solution of the joint velocity
after impact. From this diagram, by the use of Path 6 = Path 3→4→5,
we can derive the velocity change in joint space in terms of the velocity
change of the end-effector  in operational space:

(13)

where the subscriptsi andf mean before and after impact, respectively.
The same expression of (13) in [1] and [12] proves the correctness of
the result found by the use of
the Impact Premultiplier Diagram. The matrixJ- in (13) equals the in-
ertia-weighted g-inverseJH

+ in (6). This proves that the inertia-weight-
ed g-inverse provides a natural solution for the dynamic resolution of a
redundant motion. Equation (13) can be rewritten as:

(14)

The relationship between impulse force and velocity change in
(10) shows that the impulse force can be reduced by choosing joint an-
gles (θ) which minimize the effective massM. Then the problem can

be stated as thus:  to derive the best configurationθ  before impact,
which minimizes the impulse force during impact, assuming that

τ̂ H∆θ̇= F̂ M∆Ṗ=

τ̂ F̂

τ̂ τdt
0
∆t∫= F̂ Fdt

0
∆t∫=

∆θ̇ ∆Ṗ

∆Ṗ J∆θ̇=

∆θ̇ θ̇f θ̇i– H
1–
J

T
M∆Ṗ J

-
∆Ṗ= = =

∆θ̇ JH
+ ∆Ṗ=

Figure 2:  The Impact Premultiplier Diagram
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is given [10]. If the impact happens in theu direction, the impulse force
can be minimized by obtaining the configuration of a manipulator
which minimizesmu. The parametermu can be obtained as:

(15)

3.  Using Correcting Torques to Minimize Impact Force

3. 1.   Introduction

With the proper tools to define manipulator properties mathe-
matically given in Section 2 in the form of the Premultiplier Diagram,
we can now begin to create strategies to reduce the impact force at the
end-effector for impact events having some finite duration.  In this sec-
tion, we present a method for reducing the impact force by introducing
correcting torques at the joints to minimize penetration into an object
during impact, thus minimizing the impact force.  This type of strategy
is known as an impact control strategy, since it is used to control the
manipulator during sudden (and perhaps unplanned) collisions with the
environment.

3. 2.   Basic Assumptions

We will be modeling the impact event for a redundant manip-
ulator that performs tasks in space, where it would be especially bene-
ficial to reduce the impact force.  In this model, we will make several
initial assumptions.  First of all, we assume that objects in the environ-
ment can be simulated as springs of various stiffness, so that minimiz-
ing penetration into the object will be sufficient for minimizing the
impact force.  Second, the links of our manipulator will be assumed to
be rigid.  Finally, we assume that the collision event will have some du-
ration (i.e. it is not instantaneous).

3. 3.   The Correcting Torque

As seen in Section 2, we can decompose the general motion of
a redundant manipulator into net motion (joint motion which moves the
end-effector) and null motion (joint motion which leaves the end-effec-
tor’s position unchanged). Since null motion does not push the end-ef-
fector deeper into the object, there is no reason to reduce it.  On the
other hand, net motion will push the end-effector into the object, and
therefore it must be countered in some manner.  This implies the addi-
tion of some torque to rotate the joints to correct the effects of net mo-
tion.   Because we do not want the end-effector to be forced deeper into
the surface, we require that this torque introduces net motion in the di-
rection opposite of that in which the end-effector is traveling.  This
torque will be referred to as the correcting torque.

We can introduce correcting torque as a function of the config-
uration (proportional feedback, or stiffness torque), a function of the
joint velocity (derivative feedback, or damping torque) or a combina-
tion of the two.  Both the stiffness and damping torque terms will have
a null component and a net component, which induce null and net mo-
tion, respectively.  However, we only need to retard net motion, and
therefore we need concern ourselves only with introducing net stiffness
torque and/or net damping torque.  It is not wise to add a null correcting
torque, since this puts an extra strain on the actuators for no good rea-
son. We then have two ways to reduce the impact force.  First, we can
cancel the null component of a stiffness correcting torque, since a high
net stiffness torque is sufficient for reducing the impact force, and ap-
ply the resulting torque to the system.  Second, we can reduce the size
of the null component of a damping torque, increase the size of its net
component, and apply that torque as well.  (Unlike stiffness torque, the
null component of the damping torque should not be set to zero, as will
be discussed in the next section.)

For this paper, we shall apply a damping torque as our correct-
ing torque.

3. 4.   The Damping Torque

We will now turn to examining the specifics of the damping

mu u
T
Mu=

torque added to retard net motion.  Rather than canceling its null com-
ponent, which is unwise (no matter how hard we try to minimize null
motion, there will almost always be some null joint velocity, which we
will want damped if we wish the system to come to a halt at some
point), we will derive the net and null components of torque and scale
them in such a way that net damping is increased and null damping is
decreased.

First, we should note that we wish the system to stop moving
when it reaches its destination.  That is, our desired angular velocity is
zero.  Any torque that we add will be a product of the joint damping
matrix and the joint velocity vector, and therefore, the torque that
should be added should be:

(16)

whereKD is annxn matrix of joint damping terms, andτD is some
damping torque added to the system.

The decomposition of this torque into its net and null redun-
dancy components is given in [6][7] as:

(17)

Now, we wish to increase the net damping in order to slow
down the forward progress of the manipulator.  As mentioned previous-
ly, the null damping cannot be zero, because we would eventually like
the system to come to a complete stop. (In a non-ideal system this
would not be as big of a problem, since null damping would be caused
by joint friction.  However, there exist systems which have a very low
friction coefficient, and the time that it would take the null motion to
cease could be quite long in these systems.)  Nevertheless, we do not
want high null damping, as previously explained, so we must scale
down the null component.

With the direction of the net and null vectors supplied by (17),
we scale each component of the damping torque, to control the amount
applied to the system:

(18)

(19)

(20)

where  is the scaled net damping torque,  is the scaled null
damping torque,and   is the total damping torque to be added.

Because we desire large net damping and low null damping, it
follows thath1 should be much larger thanh2, since increasingh1 in-
creases the net damping torque. An increase in the net damping torque
causes the net velocity into the wall to decrease, and the resulting de-
crease in momentum causes the impact force to be reduced.

The values ofh1andh2 should be chosen as appropriate for the
actuators of the system. For instance, if the value ofh1 is too high, then
the torque calculated by this method will be too large for the actuators,
and saturation will occur.  One immediate advantage of this strategy,
however, is that actuators can be used to their best advantage to reduce
impact force.  With the null torque component (which is useless for re-
ducing impact force) reduced, the net torque component can be in-
creased to larger values approaching that of the saturation value of the
actuator, improving the effectiveness of the impact control strategy.

In Section 5.3, we present and discuss the results of this impact
control strategy under simulation.

4.  Using the Configuration to Minimize the Impact Force

4. 1.   Introduction

The strategy of the previous section introduced the idea that
impact force can be reduced by adding torques to minimize penetration
into the surface of the object with which the end-effector collides.  We
now introduce a method which instead minimizes the impact force by
finding the configuration of the manipulator which increases effective
damping and reduces effective mass before impact.

Intuitively, there are certain configurations which are less use-

τD KDε̇ KD θ̇d θ̇–( ) KDθ̇–= = =

τD J
T
JH

+TτD I J
T
JH

+T
– 

  τD+ τDp τDh+= =

τ̃Dp h1τDp=

τ̃Dh h2τDh=

τ̃D τ̃Dp τ̃Dh+=

τ̃Dp τ̃Dh
τ̃D
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ful than others when a collision occurs.  Hitting a surface while in a
configuration which causes a large effective mass at the end-effector
will not be helpful in reducing the impact force, no matter what control
scheme is used.  Similarly, a configuration with low effective damping
will not be of any use, because momentum into the surface must be
damped.  In this section we derive a means for deciding which config-
urations are useful during a collision, in order to find the best possible
configuration to minimize impact force.  This type of strategy is called
an impact planner, since it is a useful strategy for when we plan to make
contact with the environment.  This is a generalization of [10].

4. 2.   Basic Assumptions

As in Section 3, a few assumptions will be made.  In addition
to those previously given, we shall assume that a one-dimensional col-
lision task can be generalized to a two- or three-dimensional case.  We
can justify this last assumption by choosing our world and object
frames such that motion is along only one axis, and orthogonal to the
other two axes.  We will also assume that the manipulator has negligi-
ble null motion (i.e. the joint trajectory is such that all joint motion is
contributing to the movement of the end-effector).

4. 3.   The Configuration-Based Impact Strategy

Assuming, as above, that the gravity in our environment is
zero, the motion of the manipulator during impact is modeled, using the
symbols defined in Section 2, as [2][3]:

(21)

whereFe = Ke dx is the force of impact (the product of environmental
stiffness and penetration).

We can separate the inertial component of the torque into net
term and null terms:

(22)

We must determine what the net angular acceleration actually
is.  To do this, we recall that task space velocity is given by:

(23)

We can multiply both sides of the equation by the pseudoin-
verse of the Jacobian, which we get from the Premultiplier Diagram,
and then solve for the net angular acceleration.  This gives us:

(24)

We are concerned with the net terms only, having separated out
the null terms in equation (22).  We can substitute (24) into (22) for the
net angular acceleration and get:

(25)

Without loss of generality, we can define the position of the ob-
ject as being atx = 0, and then, with the definition ofFe given in (21),
equation (25) becomes:

(26)

Rearranging this, we get:

(27)

Equation (27) can be further simplified. We can drop the term
relating to null acceleration because we have assumed that there is neg-
ligible null motion. We will assume that the change in the Jacobian is
negligible, because any one particular joint changes position very little
during impact for a sufficiently stiff surface of impact.  (Note that this
does not mean that we can cancel out the terms relating to Cartesian
variables such asx, since they are a function of all joint positions, ve-
locities, and accelerations, not just one). Finally, we note that the cen-
tripetal torque terms are dependent on the square of the joint velocities,
and the Coriolis torque terms are dependent on the product of two joint
velocities.  For our simulated manipulators we have arbitrarily chosen
terms for the matrix of damping coefficients introduced in equation

τ H θ( ) θ̇̇ C θ θ̇,( ) J
T
Fe–+=

τ H θ̇̇p H θ̇̇h C θ θ̇,( ) J
T
Fe–+ +=

ẋ̇ J̇θ̇ Jθ̇̇+=

θ̇̇p JH
+

ẋ̇ JH
+

J̇θ̇–=

τ HJH
+

ẋ̇ HJH
+

J̇θ̇– Hθ̇h C θ θ̇,( ) J
T
Fe+ + +=

τ HJH
+

ẋ̇ HJH
+

J̇θ̇– Hθ̇h C θ θ̇,( ) J
T
Kex+ + +=

HJH
+

ẋ̇ HJH
+

J̇θ̇– Hθ̇h C θ θ̇,( ) τ– J
T
Kex+ + + 0=

(16) that are on the order of 102 (kg•m2)/(sec•rad2), as shown in Table
1.  If we do not wish to saturate the actuators of the manipulator with
torques which are too high for them to handle, then the joint velocities
responsible for these torques must be made fairly small, on the order of
10-1 rad/sec or less.  Therefore, the torque from the centripetal and
Coriolis terms will be comparatively small with respect to the other
torque terms, since the product of two joint velocities will be very
small.

Canceling the aforementioned torque terms from (27), and
substituting (16) in for the torque termτ, we are left with:

(28)

We can conclude from (28) that the impact event depends upon
three parameters: the mass matrix and the mass-weighted generalized
inverse of the Jacobian, which are configuration-dependent; the veloc-
ity damping matrix, which is fixed; the angular velocity, which is con-
trollable.  We can further separate (28) into net and null parts,
introduced in the term having angular velocity.  Since we have assumed
the null motion to be negligible, (28) becomes:

(29)

The net angular velocity is given by using the pseudoinverse of
the Jacobian as determined from the Premultiplier Diagram, so that:

(30)

which we can substitute into (29) to get:

(31)

Next, we normalize (31) so that the coefficient matrix of the ac-
celeration vector is the identity matrix.  To do this, we derive the pseu-
doinverse of the coefficient matrix of the acceleration from the
Premultiplier Diagram:

(32)

We can then rewrite (32) by multiplying through by the inverse of the
coefficient of the first term in the equation, so that we get:

(33)

is the inverse of the effective mass of the manipulator
[4], while  simply maps terms involving the ratio of
damping terms to mass terms from joint space to Cartesian space.  For
convenience, we simplify (33) as follows:

(34)

Thus, we have reduced the impact equations to a second-order
differential equation in terms ofx, which, since we have defined the lo-
cation of the object as the zero vector, is simply the penetration of the
end-effector into the obstacle.  Unfortunately, the coefficients ofx and
its derivatives are matrices, not scalars.  However, the coefficients are
task space matrices, of sizemxm.  To solve this small problem, we can
certainly define our world and object frames so that the motion of the
end-effector is along one of the axes (say, for instance, thex-axis), and
orthogonal to the other axes (y andz).  Since motion is orthogonal to
they- andz-axes, any coefficients involving terms along those axes do

Link i Mass ai di αi θi-1
   1 12.0 kg          1.0 m 0 0 θ1
   2 12.0 kg          1.0 m 0 0 θ2
   3 11.04 kg         0.92 m 0 0 θ3
  e-e 0.96 kg          0.08 m 0

I1 = diag(0.0054, 1.0027, 1.0027) kg•m2/rad2

I2 = diag(0.0054, 1.0027, 1.0027) kg•m2/rad2

I3 = diag(0.00497, 0.78117, 0.78117) kg•m2/rad2

Iee = diag(0.00019, 0.00061, 0.00061) kg•m2/rad2

KD = diag(200,150,100) kg•m2/(sec•rad2)

Table 1:  Parameters for the simulated 3DOF planar manipulator.

HJH
+
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not contribute to the penetration into the wall in the direction of thex-
axis.  When we choose our frames this way, (34) becomes (using equa-
tion (15)):

(35)

whereax is the element ofA strictly along the vector of motion (uTAu)
(sec-1), andcx is the element ofM-1Ke strictly along the vector of mo-
tion (uTM-1Keu) (sec-2).  Khatib and Burdick in [5] offer a similar sec-
ond-order model havingax = 0 (pure oscillation).

We can now find a way to rate configurations based on their
ability to damp the net motion, and thus reduce the impact force. Let us
assume that the wall is stiff enough so that the poles of (35) are oscil-
latory.  From basic control theory, then, we would deduce that increase
the value ofax in the same equation would decrease the penetration into
the object, and therefore the impact force, since the real location of the
poles would shift to the left.  This has the effect of increasing system
damping and decreasing overshoot beyond the object’s outer boundary.
We would therefore expect that the configuration having the largest
value ofax will globally be the configuration causing the least penetra-
tion at impact.  The results which show this under simulation are given
in Section 5.4.

5.  Results from Strategies, under Simulation

5. 1.   Introduction

In this section, we present the tests performed on the strategies
presented in the previous two sections, and discuss the results.  The
simulator used for these tests was the NASA Langley Robotics Sys-
tems Simulator (ROBSIM), which was modified extensively for use in
this research [3].

5. 2.   The Testing Environment

For these tests, we defined the gravity of the environment to be
zero, and we allowed the end-effector to have only net motion at the
time of impact.  These conditions were not necessary from a purely
control point of view, but they allowed us to see more clearly the effects
of our impact force reduction strategies on the joint motions during
simulation.

The characteristics of the simulated three degrees-of-freedom
manipulator used to test the strategy presented in this section are listed
in Table 1.  The impact event is pictured in Figure 3.

5. 3.   Testing the Impact Control Strategy

In the impact control strategy given in Section 3, we reduce the
impact force experienced by the end-effector during a collision with an
object by adding a damping torque to the joints, with the scalarh1 con-
trolling the amount of net torque and the scalarh2 controlling the
amount of null torque.  We hypothesized that increasing the net torque
would reduce penetration, while altering the amount of null torque add-
ed to the system should not significantly alter the penetration.

ẋ̇ axẋ cxx+ + 0=

Figure 3:  The impact event.  The wall has a stiffness ofKe =
100,000 n/m.

In our simulated three degrees-of-freedom planar manipulator,
increasingh1 caused the system to oscillate at a faster rate (without los-
ing contact). At even higher values ofh1, the end-effector stayed sunk
into the surface.  Figure 4 shows the simulated effect of several differ-
ent values ofh1 on the impact response over time.

Increasingh2 had very little effect on the impact force, since
null motion does not drive the arm deeper into the surface, and since
our null motion was very small relative to the net motion at the start of
the impact event.  The amount of penetration increased only slightly,
even for extremely large values ofh2, as shown in Figure 5. Similar in-

creases and decreases inh1 cause much more dramatic changes in the
penetration, as shown in Figure 6.  A smallh2 is desirable if we do not
wish to damp null motion, and if we wish to allow more room for a
large amount of net torque, keeping the saturation limits of the motors
in mind.

The results of our simulations clearly show that, for our simu-
lated ideal three degrees-of-freedom planar manipulator, the impact

Figure 4:  The position of the end-effector vs. time for several
values ofh1. θ = (60,-60,-60) degrees.

Figure 5:  Penetration vs. several values ofh2, for θ = (60,-60,-
60) degrees andh1 = 10.0.

Figure 6:  Penetration vs. several values ofh1, for θ = (60,-60,-
60) degrees andh1 = 0.01.  Note change of scale.



6 of 6

control strategy presented in Section 3 allows us to reduce the impact
force between a manipulator and an object.  These results are such that
we feel we can conclude that this strategy would be effective for reduc-
ing the impact force for any actual redundant manipulator.

5. 4.   Testing the Impact Planner

In the impact planner strategy given in Section 4, we reduce the
impact force experienced by the end-effector during a collision with an
object by choosing the configuration most suited to an impact event.
We hypothesized that the configuration with the highest effective
dampingax should globally be the configuration with the least penetra-
tion.  (We specify a global maximum because the effective mass also
changes as the configuration changes.  In our testing, this change in ef-
fective mass was not as radical as the change seen in the effective
damping.)

A perhaps more intuitive criterion would be the ratio between
the effective task-space damping and the effective mass:

(36)

(37)

As can be seen in Figure 7, this criterion shows that minimizing the ef-

fective mass and maximizing the effective task-space damping reduces
the penetration.  However, it is difficult to pinpoint the best configura-
tion from the use of this criteria, since the highest value ofkx/mx does
not quite correlate to the lowest value of penetration.  To find the best
configuration, we useax as the criteria.

Figure 8 shows a plot of penetration versusax for the simulated
3DOF planar manipulator.  Different values ofax were achieved by al-

tering the angle between the wall and the third link of the manipulator.
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Figure 7: Using the configuration index criterionkx/mx, we
note that maximizing Cartesian damping and minimizing ef-

fective mass tends to reduce penetration.

Figure 8:  Globally, the configuration leading to the least pen-
etration has the highestax.

As hypothesized, the configuration having the highest effective damp-
ing is globally the configuration which yields the least penetration.
(The bifurcation in these graphs comes from the fact that a three de-
grees-of-freedom planar manipulator can make contact with a surface
at a particular angle in two ways:  “elbow up” and “elbow down,” with
either having different effective damping and effective mass character-
istics.)

For our simulated ideal redundant manipulators, the strategy
presented in this section allowed us to reduce the impact force between
a manipulator and an object by changing the configuration of the ma-
nipulator in such a way that the effective damping is increased.  From
these simulation results, we conclude that this strategy would be effec-
tive for reducing the impact force for an actual redundant manipulator.

Summary
In this paper, we have presented and discussed two strategies

for minimizing the force of impact event having some finite duration:
an impact control strategy and an impact planner strategy, which were
both derived by use of the Premultiplier Diagram. By applying the im-
pact control strategy to a simulated redundant manipulator, we were
able to minimize the force of the impact between an end-effector and
an object by applying a damping torque at the time of impact.  Our re-
sults suggest that net motion should be heavily damped, while null mo-
tion should not, in order that the actuators can be used to the best of
their abilities.  It was also seen in our simulations of the impact planner
strategy that certain configurations were better at minimizing impact
force than others, and the response of a particular configuration could
be gauged by examining the effective damping of the system.  Based
on these simulation results, we conclude that the strategies presented in
this paper would be effective at minimizing the force of impact on ac-
tual redundant manipulators.
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