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Abstract pulse of a perfectly elastic collision having a duration that is less than
the controller's sampling period. Khatib and Burdick [5] modeled the
This paper presents strategies for reducing the impact force resultinimpact event as non-instantaneous, but only for a non-redundant ma-
from the collision of a kinematically redundant manipulator with an hipulator. The theories presented in this paper differ from these previ-
object in its environment. The Premultiplier Diagram, a tool used to ous theories in that we model the impact event as having some finite
derive the impact force reduction strategies presented in this paper, iduration for a redundant manipulator. Assuming that the environment
introduced and discussed. Two strategies for reducing impact force arcan be modeled as ideal springs of some constant stiffness, then the im-
then presented. The first strategy involves adding torques to the jointpact force experienced at the end-effector is the product of the stiffness
of the redundant manipulator to impede motion into the object with of the object and the distance the object is compressed (referred to as
which it collides. The second strategy involves choosing the best con‘penetration”). It is clear that minimizing penetration minimizes the
figuration for the impact event. Simulated results from the testing ofimpact force [3], and so our strategies focus on minimizing the pene-

either strategy are presented and discussed. tration of the end-effector into the object. S
In Section 2, we will present the Premultiplier Diagram, a tool
1. Introduction which we will use to construct our impact force minimization strate-

gies. Section 3 introduces the first minimization strategy, which in-
volves adding torques to the joints of the redundant manipulator to
There has been much research in the past decade on the useimpede motion into the object (impact control). In Section 4, we give
kinematically redundant manipulators [11][8][13]. Recently, research our second strategy, which minimizes impact force by choosing the
has been performed on how redundancy can be used to minimize thbest configuration for impact (impact planning). Section 5 shows and
force of impact between the end-effector of a manipulator and an obdiscusses the results under simulation from the testing of both methods.
ject [1][5][12][10][3]. Minimization of the impact force is important, In Section 6, we conclude this paper.
since expensive and hard-to-replace end-effectors can be damaged |
excessive force. A redundant manipulator has an advantage over 2. The Pemultiplier Diagram
non-redundant manipulator for minimizing the force of impact, since it

is capable of contacting a surface in an infinite number of configura-2 1 D . f Redund Manioul
tions. Since different configurations have different attributes (such as2—L-—Dynamics ot Redundant Manipulators

effective mass, effective damping, and effective stiffness in task The dynamic motion of an degrees-of-freedom (DOF) ma-
space), it stands to reason that by altering the configuration, we altenjpulator can be modeled as:

how the manipulator responds during impact. Similarly, since we can _ :

alter the joint configuration of a redundant manipulator without caus- T =H(6) +C(6,0) +G(6) (1)
ing its end-effector to move, we can apply torques which impede mo-whereC andG represent thenk1) Coriolis/centrifugal and gravitation-
tion into the object without affecting joint motions which do not al force vectors, andand® are fx1) joint torque and angle vectors in
contribute to object penetration. This paper addresses both ideas f(oint space, respectively. The matkixis an (xn) inertia matrix. The

minimizing impact force. corresponding equation of the end-effector motion in an m-dimension-
Past work on impact strategies has focused on the instantaal operational space can be written as [5]:
neous effects of impact, where the duration of the impact occurs in ar F=M()P+B(80) +Q(0) )

infinitesimally small period of time. Walker [10] showed that reducing

the instantaneous force of impact can be accomplished by minimizincwhereB andQ are the ifix1) Coriolis/centrifugal and the gravitational
the effective mass of the redundant manipulator. Zheng and Hemanrforces in the operational space &nid an (nx1) generalized operation-
[12] explored the relationship between abrupt changes in generalize@l force vector. The vectd®? is an independentril) operational pa-
joint rate velocities and the intensity of collision during an instanta- rameter.

neous impact event. Cai [1] provided a method for determining the im- The relationship betweenandF is:

t=JF (3)
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The simplest form of the above dynamic equations can be obtainethe environment and the velocity before impact are given, the only vari-
when the joint velocity is zero, the gravitational term is zero, and jointsable we can control is the configuration of the manipulator before im-
are just about to start moving. Then, the above four equations can bpact. For the second case, the impact period is relatively long enough
written as: so that we can actively dissipate the kinetic energy of the manipulator
()T = HO | (b)F = MP . (€)1 = JTF ~andP = J© (5) and manipulate the null motion in a direction to reduce the impact
force. Thus, variables we can control are the configuration before im-
These four equations are substituted into Figure 1, and two generalizepact and the damping term of control. In the remainder of this section,

J the physics of impact for the first case (infinitesimal impact period) are

am @ - A" discussed, and in the following two sections, the second case (relatively

g - — P long impact period) is studied.

i J @ A The dynamic equations (1) and (2) can be integrated over an

infinitesimal time periodAt):
T = HAB and F = MAP (10)

®1 @ 1 where? andE are impulse torques and forces, respectively, defined
H||H M || M oy:

@@ = Jﬁ‘rdt and F = Jﬁ‘th (11)

The Coriolis/centrifugal and gravitational terms are negligibly small
when they are integrated over an infinitesimal time pefib@ Q). The
relationship betweeAB adilP s the same as (3) for dynamics, since

¥ JT - ¥ the Jacobian matrix can be assumed as constant over the infinitesimal
- time period. The relationship between and is obtained by integrating
T = @ T F (4) as:
| AP = JAB (12)

Figure 1. The Dynamic Premultiplier Diagram These relationships are substituted into the Impact Premultipli-

er Diagram in Figure 2, which is the integrated version of the Dynamic
inverses & andJ™) of J andJ", respectively, are introduced to define Premultiplier Diagram in Figure 1. The diagram helps understand the
two undetermined paths (6 and 8). This is the dynamic version of thdémpact physics and also provides a natural solution of the joint velocity
Premultiplier Diagram given in [7]. From this diagram, we can obtain after impact. From this diagram, by the use of Path 6 = Path-35,

the two generalized inverses (g-inverses) and relationships between irwe can derive the velocity change in joint space in terms of the velocity
ertia matricesNl andH) by the use of circuitous paths. For instance, change of the end-effector in operational space:

Path 6 is equivalent to Path-3} -5 , which results in the following: AB = ;-0 = HJ'MAP = JAP (13)

S 6
J =H JM (6) where the subscriptandf mean before and after impact, respectively.
The left side of (6) is obtained by premultiplying the old path by the The same expression of (13) in [1] and [12] proves the correctness of
new path as we follow the circuitous path. Similarly, we can obtain thethe result found by the use of

following: the Impact Premultiplier Diagram. The matdixn (13) equals the in-
T- _ -1 ertia-weighted g-inversi, " in (6). This proves that the inertia-weight-
J = MJH (7 . ; ; . ;
1 T ed g-inverse provides a natural solution for the dynamic resolution of a
M~ =JHJ (8) redundant motion. Equation (13) can be rewritten as:
H = J'MJ ©) AB = JAP (14)
The g-inversel is the inertia matrixH) weighted minimum The relationship between impulse force and velocity change in

norm g-inverse [9]. Hereafted,;* will be used instead to explicitly ~ (10) shows that the impulse force can be reduced by choosing joint an-
show the WeigTht used. Since the inertia matris symmetric and pos-  gles @) which minimize the effective mass. Then the problem can

itive definite,d™ (J4*") is equal to the transpose bf(J*). The g- T

inverse obtained in (6) provides the optimal and natural decompositior a @ -
between the net and null motions of a redundant manipulator becaus AD = AP
the joint torque obtained by the inertia-weighted g-inverse minimizes f I @ i

the interaction between the net and null motions. This implies that the
dynamic controller must be based on the inertia-weighted g-inverse t
achieve the optimal control. This is a result from the cooperation of dy- @
namics and kinematics of a redundant manipulator. The above fou

equations (6)-(9) are still valid for nonzero joint velocity. For more de- H
tail, refer to [6][7].

1
H
2. 2. Physics of Impact

The physics of the impact phenomenon between the end-effec
tor and the environment are discussed in this section. Two different im ¥ JT - ¥
T

pact models exist: first, the case where the impact period is -
infinitesimally small; second, where the impact period is long enough e F
to be controllable. Roughly speaking, stiff environments cause an al @ JT
most zero-duration impact period, whereas soft environments caus
longer impact periods.

For the first case, the velocity of the manipulator after impact

is decided by the velocity before impact, the configuration of the ma-pe stated as thus: to derive the best configuratidrefore impact,

Figure 2: The Impact Premultiplier Diagram




30f6

is given [10]. If the impact happens in thdirection, the impulse force  torque added to retard net motion. Rather than canceling its null com-
can be minimized by obtaining the configuration of a manipulator ponent, which is unwise (no matter how hard we try to minimize null
which minimizesm,. The parametean, can be obtained as: motion, there will almost always be some null joint velocity, which we
m = uTMu (15) will want damped if we wish the system to come to a halt at some
u point), we will derive the net and null components of torque and scale
them in such a way that net damping is increased and null damping is

3. Using Correcting Torgues to Minimize Impact Force decreased.
First, we should note that we wish the system to stop moving
3. 1. Introduction when it reaches its destination. That is, our desired angular velocity is

zero. Any torgue that we add will be a product of the joint damping

i ”With the prSopetr toozls_ tothde;ine m??ri]pullaator p[f)plertieDs mathe-atrix and the joint velocity vector, and therefore, the torque that
matically given in Section 2 in the form of the Premultiplier Diagram, ¢ 114 be added should be:

we can now begin to create strategies to reduce the impact force at tt N . Sy -
end-effector for impact events having some finite duration. In this sec: Tp = Kpe = Ky (83—8) = K6 (16)

tion, we present a method for reducing the impact force by introducing\,\,hereKD is annxn matrix of joint damping terms, ang, is some
correcting torques at the joints to minimize penetration into an objeclgamping torque added to the system.

during impact, thus minimizing the impact force. This type of strategy The decomposition of this torque into its net and null redun-
is known as an impact control strategy, since it is used to control thgancy components is given in [6][7] as:

manipulator during sudden (and perhaps unplanned) collisions with the T 4T 0 T +10

environment. b =3y Tp+d-J Iy Op = Tpp* Tpn (17)

. . Now, we wish to increase the net damping in order to slow

3.2. Basic Assumptions down the forward progress of the manipulator. As mentioned previous-

We will be modeling the impact event for a redundant manip- 1y, the null damping cannot be zero, because we would eventually like
ulator that performs tasks in space, where it would be especially benethe system to come to a complete stop. (In a non-ideal system this
ficial to reduce the impact force. In this model, we will make severalwould not be as big of a problem, since null damping would be caused
initial assumptions. First of all, we assume that objects in the environby joint friction. However, there exist systems which have a very low
ment can be simulated as springs of various stiffness, so that minimizfriction coefficient, and the time that it would take the null motion to
ing penetration into the object will be sufficient for minimizing the cease could be quite long in these systems.) Nevertheless, we do not
impact force. Second, the links of our manipulator will be assumed tcewant high null damping, as previously explained, so we must scale
be rigid. Finally, we assume that the collision event will have some du-down the null component.

ration (i.e. it is not instantaneous). With the direction of the net and null vectors supplied by (17),
we scale each component of the damping torque, to control the amount

3.3. The Corecting Torque applied to the system:

As seen in Section 2, we can decompose the general motion ¢ Tpp = thDp (18)
a redundant manipulator into net motion (joint motion which moves the I = ht (19)
end-effector) and null motion (joint motion which leaves the end-effec- Dh 2°Dh
tor’s position unchanged). Since null motion does not push the end-ef {D = fD + th (20)
fector deeper into the object, there is no reason to reduce it. On th 5 P 5
other hand, net motion will push the end-effector into the object, ancwhereT  is the scaled net damping torqug,, is the scaled null
therefore it must be countered in some manner. This implies the adddamping torque,and is the total damping torque to be added.
tion of some torque to rotate the joints to correct the effects of net mo Because we gesire large net damping and low null damping, it

tion. Because we do not want the end-effector to be forced deeper intfollows thath; should be much larger théw, since increasing, in-
the surface, we require that this torque introduces net motion in the dicreases the net damping torque. An increase in the net damping torque
rection opposite of that in which the end-effector is traveling. This causes the net velocity into the wall to decrease, and the resulting de-
torque will be referred to as the correcting torque. crease in momentum causes the impact force to be reduced.

We can introduce correcting torque as a function of the config- The values oh; andh, should be chosen as appropriate for the
uration (proportional feedback, or stiffness torque), a function of theactuators of the system. For instance, if the valing sftoo high, then
joint velocity (derivative feedback, or damping torque) or a combina-the torque calculated by this method will be too large for the actuators,
tion of the two. Both the stiffness and damping torque terms will haveand saturation will occur. One immediate advantage of this strategy,
a null component and a net component, which induce null and net mchowever, is that actuators can be used to their best advantage to reduce
tion, respectively. However, we only need to retard net motion, ancimpact force. With the null torque component (which is useless for re-
therefore we need concern ourselves only with introducing net stiffnesiducing impact force) reduced, the net torque component can be in-
torque and/or net damping torque. Itis not wise to add a null correctincreased to larger values approaching that of the saturation value of the
torque, since this puts an extra strain on the actuators for no good re@actuator, improving the effectiveness of the impact control strategy.
son. We then have two ways to reduce the impact force. First, we ca In Section 5.3, we present and discuss the results of this impact
cancel the null component of a stiffness correcting torque, since a higicontrol strategy under simulation.
net stiffness torque is sufficient for reducing the impact force, and ap-
ply the resulting torque to the system. Second, we can reduce the si: 4. Using the Configuration to Minimize the Impact Foce
of the null component of a damping torque, increase the size of its ne
component, and apply that torque as well. (Unlike stiffness torque, th(4 1. Introduction
null component of the damping torque should not be set to zero, aswi—————————

be discussed in the next section.) The strategy of the previous section introduced the idea that
For this paper, we shall apply a damping torque as our correctimpact force can be reduced by adding torques to minimize penetration

ing torque. into the surface of the object with which the end-effector collides. We
now introduce a method which instead minimizes the impact force by

3. 4. The Damping Brque finding the configuration of the manipulator which increases effective

] o - ~damping and reduces effective mass before impact.
We will now turn to examining the specifics of the damping Intuitively, there are certain configurations which are less use-
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ful than others when a collision occurs. Hitting a surface while in a(16) that are on the order of4(kgen?)/(secsrad), as shown in Table
configuration which causes a large effective mass at the end-effectcl. If we do not wish to saturate the actuators of the manipulator with
will not be helpful in reducing the impact force, no matter what control torques which are too high for them to handle, then the joint velocities
scheme is used. Similarly, a configuration with low effective dampingresponsible for these torques must be made fairly small, on the order of
will not be of any use, because momentum into the surface must b10* rad/sec or less. Therefore, the torque from the centripetal and
damped. In this section we derive a means for deciding which configCoriolis terms will be comparatively small with respect to the other
urations are useful during a collision, in order to find the best possibletorque terms, since the product of two joint velocities will be very
configuration to minimize impact force. This type of strategy is called small.

an impact planner, since it is a useful strategy for when we plan to mak

: : . o Linki Mass ; d lof 6;.
contact with the environment. This is a generalization of [10]. 1 12.0 kg 1% m "0 '0 9'11
] ) 2 12.0kg 10m 0 0 6,
4. 2. Basic Assumptions 3 11.04 kg 0.92m 0 0 65
. . . . . e-e 0.96 kg 0.08 m 0
As in Section 3, a few assumptions will be made. In addition
to those previously given, we shall assume that a one-dimensional co I, = diag(0.0054, 1.0027, 1.0027) ke¥nac?
lision task can be generalized to a two- or three-dimensional case. W I, = diag(0.0054, 1.0027, 1.0027) kgffnac?
can justify this last assumption by choosing our world and object I3 = diag(0.00497, 0.78117, 0.78117) kdtrad®
frames such that motion is along only one axis, and orthogonal to th le = diag(0.00019, 0.00061, 0.00061) kgtrac®
other two axes. We will also assume that the manipulator has negligi
ble null motion (i.e. the joint trajectory is such that all joint motion is Kp = diag(200,150,100) kg+ff(sec-rad)
contributing to the movement of the end-effector). Table 1: Parameters for the simulated 3DOF planar manipulator.

4. 3. The Configuration-Based Impact Strategy Canceling the aforementioned torque terms from (27), and

. N . . Substituting (16) in for the torque tenmwe are left with:
Assuming, as above, that the gravity in our environment is

zero, the motion of the manipulator during impact is modeled, using the HJLX -1+ JTKex = HJ;X + KDG + JTKex =0 (28)
symbols defined in Section 2, as [2][3]:
T =H(0) 0+C (6, é) —JTFe (22) We can conclude from (28) that the impact event depends upon

, , , three parameters: the mass matrix and the mass-weighted generalized
whereF = K dxis the force of impact (the product of environmental j,yerse of the Jacobian, which are configuration-dependent; the veloc-
stiffness and penetration). N _ ity damping matrix, which is fixed; the angular velocity, which is con-

We can separate the inertial component of the torque into Ney|japle. We can further separate (28) into net and null parts,
term and null terms: introduced in the term having angular velocity. Since we have assumed

I = Hép + Héh +C (8, '9) _‘]TFe (22) the null motion to be negligible, (28) becomes:

+ ., : [ _
We must determine what the net angular acceleration actually HIGX+ KpBp +J Kx = 0 (29)

is. To do this, we recall that task space velocity is given by: The net angular velocity is given by using the pseudoinverse of
X = Jo+J6 (23) the Jacobian as determined from the Premultiplier Diagram, so that:

+ .
We can multiply both sides of the equation by the pseudoin- JpX = 8y (30)
verse of the Jacobian, which we get from the Premultiplier Diagram,,hich we can substitute into (29) to get:
and then solve for the net angular acceleration. This gives us: . + |
.- HIpX+Kpdyx+J Kx =0 (31)

6, = J %X—J,J6 (24)
Next, we normalize (31) so that the coefficient matrix of the ac-

We are concerned with the net terms only, having separated OUcg|eration vector is the identity matrix. To do this, we derive the pseu-
the null terms in equation (22). We can substitute (24) into (22) for thegginyerse of the coefficient matrix of the acceleration from the

net angular acceleration and get: Premultiplier Diagram:
oyt + o - - T ) B
T = HJ X—HJ,JB+H6,+C(6,6) +IJ F,  (25) HIE = B EH = e (32)
Without loss of generality, we can define the position of the 0b-\ye can then rewrite (32) by multiplying through by the inverse of the
ject as being at = 0, and then, with the definition B given in (21),  coefficient of the first term in the equation, so that we get:
equation (25) becomes: ) 3 . T
T = HITR—HI30+ HB, +C(6,0) +I'Kx  (26) _xl+IJH KpdyX+JH I Kx = 0 (33)
_ _ _ JH "J s the, inverse of the effective mass of the manipulator
Fiea”anggn_g this, we get: T [4], while JH "KJ,, simply maps terms involving the ratio of
HJ, Xx-HJ,JO+HB,+C(6,0) —-T+J Kx =10 (27) damping terms to mass terms from joint space to Cartesian space. For
_ S convenience, we simplify (33) as follows:
Equation (27) can be further simplified. We can drop the term .. . -1 _
relating to null acceleration because we have assumed that there is ne X+Ax+M "Kx =0 (34)
ligible null motion. We will assume that the change in the Jacobian is Thus, we have reduced the impact equations to a second-order

negligible, because any one particular joint changes position very littlegjterential equation in terms &f which, since we have defined the lo-
during impact for a sufficiently stiff surface of impact. (Note that this caiion of the object as the zero vector, is simply the penetration of the
does not mean that we can cancel out the terms relating to Cartesi¢ang-effector into the obstacle. Unfortunately, the coefficiertsaof]

variables such as since they are a function of all joint positions, ve- ji5 derivatives are matrices, not scalars. However, the coefficients are
locities, and accelerations, not just one). Finally, we note that the cenigq space matrices, of siz&m. To solve this small problem, we can

tripetal torque terms are dependent on the square of the joint velocitie\e ainly define our world and object frames so that the motion of the
and the Coriolis torque terms are dependent on the product of two joinang-effector is along one of the axes (say, for instancesaks), and
velocities. For our simulated manipulators we have arbitrarily Choserorthogonal to the other axeg&nd2). Since motion is o’rthogt’)nal to

terms for the matrix of damping coefficients introduced in equationthey_ andz-axes, any coefficients involving terms along those axes do
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not contribute to the penetration into the wall in the direction okthe
axis. When we choose our frames this way, (34) becomes (using equi
tion (15)):

X+ax+cx =0 (35)
wherea, is the element oA strictIY along the vector of motionAu)
(sect), andc, is the element df1™Kg strictly along the vector of mo-
tion (UMK ) (se¢?). Khatib and Burdick in [5] offer a similar sec-
ond-order model having, = O (pure oscillation).

We can now find a way to rate configurations based on their
ability to damp the net motion, and thus reduce the impact force. Let u:
assume that the wall is stiff enough so that the poles of (35) are oscil
latory. From basic control theory, then, we would deduce that increas:
the value oh, in the same equation would decrease the penetration intc
the object, and therefore the impact force, since the real location of th
poles would shift to the left. This has the effect of increasing systemnr
damping and decreasing overshoot beyond the object’s outer boundar
We would therefore expect that the configuration having the larges
value ofa, will globally be the configuration causing the least penetra-
tion at impact. The results which show this under simulation are giver
in Section 5.4.

5. Results fom Strategies, under Simulation

5.1. Introduction

In this section, we present the tests performed on the strategie
presented in the previous two sections, and discuss the results. Tt
simulator used for these tests was the NASA Langley Robotics Sys
tems Simulator (ROBSIM), which was modified extensively for use in
this research [3].

5. 2. The Bsting Environment

For these tests, we defined the gravity of the environment to be
zero, and we allowed the end-effector to have only net motion at the
time of impact. These conditions were not necessary from a purely
control point of view, but they allowed us to see more clearly the effects
of our impact force reduction strategies on the joint motions during
simulation.

The characteristics of the simulated three degrees-of-freedon
manipulator used to test the strategy presented in this section are liste
in Table 1. The impact event is pictured in Figure 3.

¥,=0.1 mis:
\ -

Figure 3: The impact event. The wall has a stiffnes&.cf
100,000 n/m.

5. 3. Eesting the Impact Control Strategy

In the impact control strategy given in Section 3, we reduce the
impact force experienced by the end-effector during a collision with an
object by adding a damping torque to the joints, with the sbafson-
trolling the amount of net torque and the scdiarcontrolling the
amount of null torque. We hypothesized that increasing the net torqu
would reduce penetration, while altering the amount of null torque add-
ed to the system should not significantly alter the penetration.

In our simulated three degrees-of-freedom planar manipulator,
increasingh, caused the system to oscillate at a faster rate (without los-
ing contact). At even higher valueshgf the end-effector stayed sunk
into the surface. Figure 4 shows the simulated effect of several differ-
ent values oh,; on the impact response over time.

Position of the end-effector w3, time, for various walues of hl

20004
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& —a— h1 =130
% —o— K1 =300
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Figure 4: The position of the end-effector vs. time for several

values oth;. 8 = (60,-60,-60) degrees.

Increasingh, had very little effect on the impact force, since
null motion does not drive the arm deeper into the surface, and since
our null motion was very small relative to the net motion at the start of
the impact event. The amount of penetration increased only slightly,
even for extremely large valuestef as shown in Figure 5. Similar in-

Maodmun pemwbrabion vs. Tariows yvalues of Ld
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f.2
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.14 -

12
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h2
Figure 5: Penetration vs. several valuebpfor 8 = (60,-60,
60) degrees anlgy = 10.0.

creases and decrease$jrcause much more dramatic changes in the
penetration, as shown in Figure 6. A snhalis desirable if we do not
wish to damp null motion, and if we wish to allow more room for a
large amount of net torque, keeping the saturation limits of the motors
in mind.
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Figure 6: Penetration vs. several valuekqofor 8 = (60,-60,t
60) degrees angh = 0.01. Note change of scale.

40

The results of our simulations clearly show that, for our simu-
lated ideal three degrees-of-freedom planar manipulator, the impact
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control strategy presented in Section 3 allows us to reduce the impaAs hypothesized, the configuration having the highest effective damp-
force between a manipulator and an object. These results are such tting is globally the configuration which yields the least penetration.
we feel we can conclude that this strategy would be effective for reduc(The bifurcation in these graphs comes from the fact that a three de-

ing the impact force for any actual redundant manipulator. grees-of-freedom planar manipulator can make contact with a surface
at a particular angle in two ways: “elbow up” and “elbow down,” with
5. 4. esting the Impact Planner either having different effective damping and effective mass character-
] ] ] ] istics.)
In the impact planner strategy given in Section 4, we reduce the For our simulated ideal redundant manipulators, the strategy

impact force experienced by the end-effector during a collision with anpresented in this section allowed us to reduce the impact force between
object by choosing the configuration most suited to an impact eventy manipulator and an object by changing the configuration of the ma-
We hypothesized that the configuration with the highest effectivenpjpylator in such a way that the effective damping is increased. From
dampinga, should globally be the configuration with the least penetra- these simulation results, we conclude that this strategy would be effec-

tion. (We specify a global maximum because the effective mass alstjye for reducing the impact force for an actual redundant manipulator.
changes as the configuration changes. In our testing, this change in €

fective mass was not as radical as the change seen in the effecti
damping.)

A perhaps more intuitive criterion would be the ratio between
the effective task-space damping and the effective mass:

Summary
In this paper, we have presented and discussed two strategies
for minimizing the force of impact event having some finite duration:
an impact control strategy and an impact planner strategy, which were

Ky = %]K_DlJTg (36) both derived by use of the Premultiplier Diagram. By applying the im-
0T ouT. U pact control strategy to a simulated redundant manipulator, we were
d, = k/m = fu KU/ fu Mug (37)  able to minimize the force of the impact between an end-effector and

o o o an object by applying a damping torque at the time of impact. Our re-
As can be seen in Figure 7, this criterion shows that minimizing the ef-gjtg suggest that net motion should be heavily damped, while null mo-

Maimum penetiation w. ka'ne tion should not, in order that the actuators can be used to the best of
3DOF plany manipulakor their abilities. It was also seen in our simulations of the impact planner
4 strategy that certain configurations were better at minimizing impact
: force than others, and the response of a particular configuration could
% 03 94 be gauged by examining the effective damping of the system. Based
y on these simulation results, we conclude that the strategies presented in
4 044 this paper would be effective at minimizing the force of impact on ac-
§ tual redundant manipulators.
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Figure 8: Globally, the configuration leading to the least pen-
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tering the angle between the wall and the third link of the manipulator.




