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Abstract

An eye-in-hand system visually tracking objects can fail when the manipulator
encounters a kinematic singularity or a joint limit. A solution to this problem is pre-
sented in which objects are visually tracked while the manipulator simultaneously
avoids kinematic singularities and manipulator joint limits by moving in directions
along which the tracking task space is unconstrained or redundant. A manipulability
measure is introduced into the visual tracking objective function, providing an elegant
and robust technique for deriving a control law that visually tracks objects while
accounting for the configuration of the manipulator. Two different tracking strategies,
one using a standard visual tracking strategy and the other using the newly proposed
strategy, are experimentally compared on an actual hand/eye system. The experimen-
tal results demonstrate the effectiveness of the new method by showing that the track-
ing region of a manipulator tracking objects with planar motion can be greatly
increased.

To appear in theInternational Journal of Robotics Research
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1. Introduction

Robotic assembly requires precise calibration of the entire assembly workcell so that parts that are

to be assembled can be placed at positions and orientations within thousandths of an inch of their

desired position and orientation. An alternative to precise calibration is to use sensor feedback

during manipulation. Force feedback is sometimes incorporated into assembly workcells, how-

ever, force feedback can be difficult to use due to instabilities that arise when contact is made and

due to the poor signal-to-noise ratio that force sensors tend to provide. In addition, the use of force

feedback requires that parts be brought near one another before final part mating occurs, thus the

system must still be well calibrated. Visual feedback can help overcome these problems, because

a vision sensor is non-contact and can provide information on a much larger area of the workcell

than a force sensor provides. The effective use of visual feedback combined with force feedback

during manipulation can be used to create robotic manipulation systems that have the ability to

perform precise manipulation tasks within imprecisely calibrated and dynamically varying envi-

ronments.

An important component of a visually guided manipulation system is the visual tracking of

objects with an eye-in-hand system during manipulation. Visual tracking has several other areas

of application as well, including the inspection, grasping, and assembly of parts on moving con-

veyors or in environments that are difficult to calibrate; satellite docking in outer space, autono-

mous vehicle navigation, etc. Although several researchers have studied eye-in-hand visual

servoing, for example (Weiss, Sanderson and Neumann 1987; Allen 1989; Corke and Paul 1989;

Feddema and Lee 1990; Papanikolopoulos, Khosla and Kanade 1991; Espiau, Chaumette and

Rives 1992; Hashimoto and Kimura 1993; Wilson 1993), these proposed visual servoing tech-

niques can be quite difficult to use in practice because of the limited workspace with which

objects can be tracked. These limits occur because of the presence of kinematic singularities

throughout the workspace and the possibility of exceeding physical joint limits during manipula-

tor motion. For the manipulators with which we have performed eye-in-hand visual servoing, the

CMU DDArmII, a Puma 560, and an Adept2, these regions are extremely limited and can be dif-

ficult to determine.

When a manipulator encounters a kinematic singularity during cartesian motion, or when the car-

tesian controller commands a motion which will exceed a joint limit, the visual servoing system

will fail. When visually tracking an object with an eye-in-hand system, it is also important that the

manipulator maintains a configuration that allows motion in all directions of possible object

motion without requiring extremely large joint velocities from any actuator, because the future

motion of the object is either unknown or imprecisely known. This also requires that the manipu-
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lator should not be near singularities. Typically, when visually tracking objects with an eye-in-

hand system it is necessary to constrain the allowable tracking region to regions of the workspace

where there is no danger that the manipulator passes near kinematic singularities or joint limits.

This often places extreme limitations on the trackable workspace. Consider the visual tracking

system shown in Figure 1. If a constant transformation between the camera and object is desired

and the object continues to move in the -X direction, the manipulator will soon reach a singularity

and the system will fail. Had the hand-eye system been initially started from a different configura-

tion, the external singularity would have been reached either sooner, if the camera was initially

placed nearer the object, or later, if the camera started farther from the object. However, if the sys-

tem employs knowledge of the manipulator’s configuration in order to improve the configuration

using any redundancies that may exist, the tracking region can be greatly extended.

We propose a control strategy that uses a cartesian manipulability gradient and a joint limit pen-

alty function that allows an eye-in-hand system to track objects while simultaneously avoiding

kinematic singularities and joint limits continuously. This method improves the manipulator’s

configuration while tracking by using the redundancies with respect to the task that a six DOF

manipulator provides when tracking in a lower dimensional task space. Our results indicate that

the tracking region of an eye-in-hand system can be increased significantly. Section 2 of this paper

describes the modeling, control, and feature tracking of the visual tracking eye-in-hand system.

Singularity and joint limit avoidance are described in Section 3, along with a discussion of the

cartesian manipulability gradient. A description of the implementation of the visual tracking sys-

tem followed by experimental results which demonstrate the effectiveness of this method are

described in Sections 4 and 5, followed by the conclusion.

2. Visual Tracking

2.1. Modeling

The controlled active vision framework is used to model the eye-in-hand system (Papanikolopou-

los, Khosla and Kanade 1991). In formulating the visual tracking model, a full 3D tracking model

is derived, and simplifications to this model are then made for 2D tracking in order to illustrate

and compare different 2D tracking strategies. To model the 3-D visual tracking problem, we

assume a pinhole model for the camera with a frame {C} placed at the focal point of the lens as

shown in Figure 2 (Gremban, Thorpe and Kanade 1988). A feature on an object atP1 with coordi-

nates (Xo,Yo,Zo) in the camera frame projects onto the camera’s image plane by the equations for

1. Bold symbols denote vectors or matrices.
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perspective projection at

in which it is assumed thatZo>>f, wheref is the focal length of the lens. This assumption holds

because the focal length of our camera is 16mm, whileZo is typically larger than 1m. In (1) and

(2), sx andsy are the horizontal and vertical dimensions of the pixels on the CCD array, respec-

tively.

Any displacement of a rigid object can be described by a rotation about an axis and a translation.

If the angle of this rotation is small, the rotation can be characterized by three independent rota-

tions about the X, Y and Z axes. Initially, assume that the camera moves in a static environment

with a translational velocityT=[ ]T and a rotational velocityR=[ωxc ωyc ωzc]
T with respect

to the camera frame {C}. The velocity of pointP in the camera frame {C} induced by camera

motion is then

The velocity of the projection ofP on the image plane ( ) is equivalent to the camera induced

optical flow ofP which we represent by (uc,vc). By explicitly calculating  from (3) and deter-

mining the projection of  on the image plane using (1) and (2), the camera induced optical flow

of the pointP can be determined to be, assuming for the moment that the object is stationary,

(Horn 1986)

The optical flow that can actually be observed on the image plane, however, is due to both the

optical flow induced by camera motion (uc,vc) and the optical flow induced by object motion

(uo,vo). The observed optical flow, which is represented by (u,v), can only be determined for suc-

cessive image frames which are separated in time by a sampling periodT, and can be written as

x
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It can easily be seen that the observed optical flow between successive images can also be repre-

sented by

wherek=kT without loss of generality. Ifu(k) andv(k) are substituted in (6) and (7) with their

equivalent expressions from (8) and (9), then (6) and (7) can be rewritten as

Equations (10) and (11) represent the state equations for the eye-in-hand tracking system and can

be written in state-space form as

where2 AF=I2, EF=TI2, xF(k)∈R2, dF(k)∈R2, andu(k)∈R6. The matrixBF(k)∈R2x6 is

The vectorxF(k)=[x(k) y(k)]T is the state vector and is computed using the SSD algorithm to be

described in Section 2.3. The vectoru(k)=[ ]T represents possible control inputs,

and dF(k)=[uo(k) vo(k)]T is the exogenous deterministic disturbances vector. The elements ofdF

are due to optical flow terms that are induced by unknown object motion. It is possible to use pre-

dictive techniques based on recently observed object motion to estimatedF, as in (Kalata 1992). It

is common in regulator theory, however, to simply assume that unknown signals to be tracked are

considered disturbances to be suppressed. Past work has shown that this is a reasonable assump-

tion for the visual tracking problem (Papanikolopoulos, Khosla and Kanade 1991).

Depending on the constraints placed on target motion and the objective of the visual tracking sys-

tem, more than one feature may be required in order to achieve the system’s goals. For example,

for full 3D tracking in which it is desired to maintain a constant six degree of freedom transforma-

tion between the camera and the target, at least three features are required (Papanikolopoulos and

2. The symbolIn denotes the identity matrix of ordern.
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Khosla 1993). To track an object constrained to move with motion in only three dimensions, such

as planar motion with rotations or 3D translational motion, at least two features are needed. For

objects moving with only two degrees of freedom, such as planar motion without rotations, a sin-

gle feature is sufficient. A generalized state equation for a variable number of features can be writ-

ten as

whereM is the number of features required,A=I2M, E=TI2M, x(k)∈R2M, d(k)∈R2M, andu(k)∈Ri

(i∈{1,2,3,4,5,6}, the number of axes along which tracking occurs). The matrixB(k)∈R2Mxi is

The superscript (j) denotes each of the feature points (j∈{1,2,...,M}). The vectorx(k)=[x(1)(k)

y(1)(k)... x(M)(k) y(M)(k)]T is the new state vector, andd(k)=[uo
(1)(k) vo

(1)(k)... uo
(M)(k) vo

(M)(k)]T

is the new exogenous deterministic disturbances vector.

The system model just presented can be extended to account for system delays, modeling and

control inaccuracies, and measurement noise. See (Papanikolopoulos, Nelson and Khosla 1992)

for a detailed explanation of how this can be accomplished.

2.2. Control

The control objective of an eye-in-hand visual tracking system is to control camera motion in

order to place the image plane coordinates of features on the target at some desired position

despite object motion. The desired image plane coordinates could be changing with time, or they

could simply be the original coordinates at which the features appear when tracking begins. The

control strategy used to achieve the control objective is based on the minimization of an objective

function at each time instant. The objective function places a cost on differences in feature posi-

tions from desired positions, as well as a cost on providing control input, and is of the form

This expression is minimized with respect to the current control inputu(k). In solving foru(k),

(14) is used to replacex(k+1) in (16). The termd(k) in (14) is the optical flow induced by object

motion and is considered a disturbance, thus it is ignored in the formulation. The derivative ofF

x k 1+( ) Ax k( ) B k( )u k( ) Ed k( )+ += (14)

B k( )
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1( )
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BF
M( )
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= (15)
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T
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with respect tou(k) is then taken, set equal to zero, and solved foru(k). The end result yields the

following expression for the control input

The weighting matricesQ andR allow the user to place more or less emphasis on the feature error

and the control input. Their selection effects the stability and response of the tracking system. The

Q matrix must be positive semi-definite, andR must be positive definite for a bounded response.

Although no standard procedure exists for choosing the elements ofQ andR, general guidelines

can be found in (Papanikolopoulos, Nelson and Khosla 1992).

A coupling exists between the number of degrees of freedom with which the object moves in the

camera frame, the number of axes of camera motion that must be commanded by the control

input, and the number of features that must be tracked on the moving object. In general, the num-

ber of features needed per object must be at least half the number of degrees of freedom with

which the object is allowed to move in the camera frame. The number of axes along or about

which the camera is allowed to move, i.e. the number of potentially non-zero control inputs, must

be at least as great as the number of degrees of freedom of object motion. Analysis of the control

law (17) shows why this is true. For the error in the state vector to map to a single control input

vector that will drive the error to zero, the number of states must be at least as great as the number

of desired control inputs. In order to track an object withn degrees of freedom, the camera must

move with n degrees of freedom if a constant transformation between object and camera is

desired. Thus, in general, the number of states must be at least as great as the number of desired

control inputs. It is also necessary that the matrix expression

is of full rank. In (Papanikolopoulos and Khosla 1993), conditions which can cause (18) to lose

rank due to particular feature locations on the image plane are discussed.

The axes of camera motion which are controlled in order to track the object can vary depending

on the requirements of the task. If it is important that the transformation between the object and

the camera remains constant, then the camera must move along and about axes parallel to the

degrees of freedom of allowed object motion. In order to reduce the error in feature positions due

to object motion, it is advantageous to control axes of the camera which are well conditioned with

respect to the axes of object motion. An analysis of the eigenvalues and eigenvectors ofBTB indi-

cate these directions. This is because the eigenvectors ofBTB result in a set of basis vectors for

the row space ofB, which describe the vector space ofℜ(BT), the range ofBT. Directions which

u k( ) B
T

k( )QB k( ) R+ 
 

–
1–
B

T
k( )Q x k( ) xD k 1+( )–[ ]= (17)

B
T

k( )QB k( ) R+ 
  1–

B
T

k( )Q (18)
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contain large eigenvalues are directions in which camera motion induces a relatively large optical

flow on the image plane. These are good directions to use for tracking object motion, since cam-

era motion can more easily compensate for object motion in these directions. For example, for an

object that can move in the Y direction (in the camera frame), camera motion along Y or about X

is well conditioned to drive the state error to zero when the object moves along Y. Motion along or

about Z could also be used to track object motion along Y due to the projective transformation

exhibited by the camera, but inspection of the eigenvalues and eigenvectors ofBTB shows that

camera motion along these axes is poorly conditioned with respect to object motion along Y.

Thus, convergence of feature errors would be slow if these axes of camera motion were used for

tracking. The eigenvalues ofBTB along Z or about any of the three axes are mainly dependent on

the coordinates of the features on the image plane. For robust tracking, axes of motion whose

eigenvalues are mainly dependent on image coordinates are poor choices for the tracking strategy.

In (Nelson and Khosla 1994), a tracking measure calledresolvability is introduced which provides

a technique for measuring the relative ability of different camera-lens-manipulator configurations

to precisely visually servo objects held by a manipulator. This same measure can be used for eye-

in-hand systems.

Previous eye-in-hand systems that track objects with planar motion have not used redundant

tracking motion. For example, an object with 2D planar motion can be tracked by camera motion

along X-Y, along X-Y-ΘX-ΘY, or some other combination of axes, provided that theB matrix rep-

resenting the strategy is well conditioned along X and Y. The former strategy keeps the transfor-

mation from the camera to the object constant, while the later strategy results in a varying depth of

the object in the camera frame during tracking. The advantage of the latter strategy is that the bur-

den of tracking is more evenly distributed among the manipulator’s joints, thus allowing for

potentially faster object motion before exceeding manipulator joint velocity limits. Another

advantage of this strategy is that the tracking axes are redundant, which allows motion along these

axes to be used for more than one objective.

The control law given by (17) applies to any eye-in-hand tracking strategy, though different strat-

egies use different matrices in the equation. For 2D tracking using camera motion along X and Y,

B is reduced to a 2x2 matrix.Q is also 2x2, since only a single feature, thus two states, is needed,

andR is a 2x2 diagonal matrix representing the cost of cartesian control input along both X and Y.

For 2D tracking using X-Y-ΘX-ΘY camera motion,B is 2x4,Q for the single feature is still 2x2,

however,R must be a 4x4 diagonal matrix and allows the user to place a cost effecting relative

motion along all four axes of possible camera motion. If the elements ofR which govern the rota-

tional axes are chosen to be large with respect to the elements representing translation cost, then

the four-axis tracking system performs the same as the two-axis system performs.
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2.3. Feature Tracking

The measurement of the motion of the features on the image plane must be done continuously and

quickly. The method used to measure this motion is based on optical flow techniques and is a

modification of the method proposed in (Anandan 1987). This technique is known as a Sum-of-

Squares-Differences (SSD) optical flow, and is based on the assumption that the intensities around

a feature point remain constant as that point moves across the image plane. The displacement of a

point pa=(x,y) at the next time increment topa′=(x+∆x, y+∆y), is determined by finding the dis-

placement∆x=(∆x,∆y) which minimizes the SSD measure

whereIa andIa′ are the intensity functions from two successive images andW is the window cen-

tered about the feature point which makes up the feature template. For the algorithm imple-

mented,W is 16x16 pixels, and possible displacements of up to∆x=∆y=±32 pixels are considered.

Features on the object that are to be tracked can be selected by the user, or a feature selecting

algorithm can be invoked. Features with strong intensity gradients in perpendicular directions,

such as corners, are typically the best features to select.

In order to decrease the search space, a pyramidal search scheme (Figure 3) has been imple-

mented which first searches a coarse resolution of the image that has 1/16 the area of the original

image, using a feature template in which aW that is originally 32x32 is averaged to 8x8. After

determining where the feature is in the coarse image, a finer resolution image that is 1/4 the origi-

nal spatial resolution is searched with an originalW of 16x16 which is averaged to 8x8 in an area

centered about the location of the minimum SSD measure found in the coarse image. Finally, the

full resolution image and the 16x16 feature template are used to pinpoint the location of the dis-

placed feature.

The pyramidal scheme reduces the time required for the computation of the SSD algorithm by a

factor of five for a single feature over the method of computing the feature locations at the full

resolution alone. However, reliability can be sacrificed when the selected feature loses its tracking

properties (strong perpendicular intensity gradients) at the coarser image resolutions. Since the

search scheme first estimates where the feature is located based on the coarse image, it is critical

that good features at coarse resolutions are tracked. When a user selects features, it is often not

obvious that a particular feature may lose its tracking characteristics at coarse resolutions.

Because of this, an automatic feature selector has been implemented based on (Tomasi and

Kanade 1991) which accounts for the different levels of resolution in the pyramidal search

e pa ∆x,( ) Ia x i y j+,+( ) Ia' x i ∆x+ + y j ∆y+ +,( )–[ ] 2

W
∑= (19)
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scheme.

Depending on the tracking strategy chosen, the depth of the object from the camera may change in

order to maximize the distance the manipulator is from singularities and joint limits. This slowly

changes the size of the feature template based on the projection equations. In order to account for

this change, the feature template can be periodically updated by using the matched feature win-

dow from a recent image as the new feature template.

3. Singularity and Joint Limit Avoidance

When tracking a moving object with an eye-in-hand system or when visually servoing a manipu-

lator using a static camera, it is necessary that robot motion commands be given in cartesian

space. A well-known problem with controlling a manipulator in cartesian space occurs when the

manipulator passes through or near a kinematic singularity, because cartesian based control algo-

rithms employing the Jacobian inverse become numerically unstable and unrealizable at or near

singularities. There are two different types of singularities that a manipulator may encounter. An

internal singularity occurs when two axes of the manipulator become aligned within the bound-

aries of the manipulator’s workspace, and an external singularity occurs when the manipulator

reaches the boundaries of its workspace. When a manipulator encounters either of these singulari-

ties, or when the cartesian controller commands a motion which will exceed a joint limit, the

visual tracking system will fail. When visually tracking an object it is also important that the

manipulator maintains a configuration that allows motion in all directions of possible object

motion without requiring extremely large joint velocities from any actuator, because the future

motion of the object is unknown or imprecisely known. This also requires that the manipulator

should not be near singularities.

Although many researchers have proposed solutions to the singularity avoidance problem, all of

these solutions have drawbacks when applied to the visual tracking problem. This is because (a)

the path of the object being tracked is not known a priori, so the manipulator’s path may not be

planned in advance to avoid singularities as proposed in (Uchiyama, Shimizu and Hakomori

1985), and (b) pseudo-inverse and singularity-robust inverse (Nakamura and Hanafusa 1986) or

damped least-squares methods (Wampler 1986) of cartesian control allow motion to continue near

and even at singularities by approximation of the cartesian path, but the loss of movement in one

or more directions still exists and higher than usual joint velocities may occur. In (Egeland,

Ebdrup and Chiaverini 1990), the damped least-squares method proposed by both (Nakamura and

Hanafusa 1986) and (Wampler 1986) is extended to create a cartesian controller for visual servo-

ing that operates well in the presence of internal singularities. The authors use a damping factor
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derived from an estimate of the smallest singular value of the manipulator Jacobian. Experimental

results show that extremely good tracking accuracy can be maintained despite the presence of

internal kinematic singularities, and joint velocities can be kept relatively low. Two important lim-

itations of this method are that objects which move beyond external singularities cannot be

tracked, and joint limits are not considered. The remainder of this section describes an efficient

and effective method that uses kinematic redundancies to keep manipulators from approaching

external as well as internal singularities while visually tracking. In addition, manipulator motions

which will bring the manipulator near joint limits are also avoided.

3.1. Measures of Manipulability

In order to avoid singularities and joint limits, a measure must be determined in order to compare

different manipulator configurations. Several researchers have proposed several different manipu-

lability measures. One of the first measures proposed was used to evaluate the working region of a

manipulator wrist (Paul and Stevenson 1983), which was considered to be all wrist configurations

satisfying

whereJ is the Jacobian of the wrist andq is the vector of joint angles. The most commonly

referred to measure was proposed by (Yoshikawa 1985) and is

A variance on this measure defines a “transmissibility measure” for force control (Ghosal and

Roth 1988) as

A measure used to compare manipulators of different sizes, different numbers of joints, and which

operate across differently dimensioned task spaces (Kim and Khosla 1991) is

wherem is the dimension of the task space,n is the number of links, andai anddi are the Denavit-

Hartenberg parameters of each link of the manipulator.

Because a measure is desired which indicates nearness to joint limits, as well as nearness to kine-

w q( ) det J q( )( ) 0.5≥= (20)

w q( ) det J q( )J q( )
T

( )=
(21)

w q( ) det J q( )
T
J q( )( )= (22)

w q( )
det J q( )J

T
q( ) 

 m

ai
2

di
2

+ 
 

i 1=

n

∑
--------------------------------------------= (23)
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matic singularities, a variation of the measure first proposed in (Tsai 1986) is used. This measure

combines a penalty function which approaches zero in the vicinity of joint limits, with Yoshika-

wa’s measure which indicates nearness to singular configurations. The original form of this mea-

sure is

wherek is a user defined constant,n is the number of joints,qi is theith joint angle, andqimin and

qimax are the minimum and maximum allowable joint values, respectively, for theith joint.

The experimental eye-in-hand system uses a non-redundant manipulator, therefore,

A continuously differentiable function is desired so a modified form of (24), which also incorpo-

rates (25), is used. The final form of the manipulability measure used to aid in visual tracking is

Figure 4 illustrates the measure for a Puma 560 by varying the fifth joint between its joint limits

while keeping the other five joints stationary. When the fifth joint angle becomes zero the fourth

and sixth joint axes become aligned, and an internal singularity is reached in which a degree of

freedom of end-effector motion is lost. Yoshikawa’s measure correctly indicates the distance of

the manipulator from this singular condition, but the measure also indicates that the manipulator

is optimally configured at±90o, which is near the joint limits. By using the penalty function, the

modified manipulability measure ensures that motion towards the joint limits will be penalized.

The envelope of the penalty function can be easily varied by changing the value of the constantk

in the penalty function

Figure 5 shows the envelope created by different values ofk as the fifth joint of a Puma 560 varies

between its joint limits.
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3.2. Augmenting the Control Objective Function

A variety of methods could be used for integrating the manipulability measure into the visual

tracking strategy. For example, (Nelson and Khosla 1992) presents a hybrid control structure

which uses an unconstrained tracking axis for singularity avoidance. If one uses the task function

approach for visual servoing (Espiau, Chaumette and Rives 1992), the manipulability measure

presented in (26) could be introduced as a secondary task function, also resulting in a hybrid strat-

egy. An effective and more general technique is to introduce the manipulability measure into the

visual tracking objective function given in (16), resulting in the new objective function

whereS is a constant representing the relative cost of maintaining a manipulator configuration

with a low manipulability. Minimizing this objective function with respect to the control input

u(k), results in a control law of the form (see the appendix for the derivation of (29) from (28))

This provides an elegant and robust technique for allowing the system to achieve its primary goal

of visual tracking, while simultaneously allowing the system to operate without the threat of sys-

tem failure due to kinematic singularities or the violation of joint limits. This formulation allows

the hand/eye system geometric characteristics to influence the magnitude of end-effector veloci-

ties commanded to improve the manipulator configuration. For example, if the depth of the object

from the camera becomes large, control inputs of smaller magnitudes will be able to successfully

track the object, due to the projective geometry of the camera-lens system. This is reflected in the

term , which will cause correspondingly small camera velocities for sin-

gularity/joint limit avoidance. Smaller velocities for singularity/joint limit avoidance will allow

the manipulator to approach nearer to poor configurations. This is reasonable since an object mov-

ing far from the camera will not induce camera tracking velocities as large as if the object is close.

Thus, the manipulator can come closer to poor configurations without the threat of entering a sin-

gular configuration or exceeding a joint limit, since the required tracking velocity of the manipu-

lator is expected to have a smaller magnitude. If the object is near the camera, small object

velocities require larger tracking velocities, making it important for the manipulator to maintain

larger distances from singularities and joint limits during operation.

If axes of cartesian motion used for avoiding singularities and joint limits are not properly chosen,

as discussed in Section 2.2, it may not be possible for the hand-eye system to successfully track

(28)F k 1+( ) x k 1+( ) xD k 1+( )–[ ] T
Q x k 1+( ) xD k 1+( )–[ ] u

T
k( )Ru k( ) S

w' q k( )( )
------------------+ +=

(29)u k( ) B
T

k( ) QB k( ) R+ 
 

–
1–

B
T

k( ) Q x k( ) xD k 1+( )–[ ] S

2w' q( )
2

----------------- w' q( )u∇–=

B
T

k( ) QB k( ) R+ 
  1–
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objects while avoiding singularities and joint limits. These situations occur when the same axes

are used for avoiding singularities and joint limits and for tracking, and no redundant tracking

motion is allowed. For these cases, the system responds by tracking object motion until the

manipulability measure becomes low enough that the term

completely dominates the control law (29). The control law will not allow the manipulator to

enter singular configurations or exceed joint limits, but the system will not track the object either.

This type of tracking failure is almost always preferable to failures caused by singularities or joint

limits which may damage the manipulator.

3.3. Calculating the Cartesian Manipulability Gradient

The term  appearing in the control law (29) represents the local gradient of manipulabil-

ity in end-effector velocity space. The actual value of this term represents an end-effector velocity

vector that, if held constant over the next time interval, will move the end-effector in a direction

which maximally increases the manipulability of the manipulator configuration based on the local

manipulability surface. This local gradient can be approximated numerically by determining the

difference between the current manipulability and the manipulability of the robot if it is moved

incrementally along each of the six cartesian axes. For example, thexc velocity component of the

manipulability gradient can be calculated by the following

whereδx=[0.001m 0 0 0 0 0]T. The other five components of the gradient can be calculated in a

similar fashion. The result is a vector which gives the cartesian direction in which the manipulator

should move in order to increase manipulability maximally.

4. Hardware Implementation

The visual tracking algorithms previously described have been implemented on a robotic assem-

bly system consisting of three Puma 560’s called the Troikabot. One of the Pumas has a Sony XC-

77RR camera with a 16mm lens mounted at its end-effector. The camera is connected to a

Datacube Maxtower Vision System.The Pumas are controlled from a VME bus with two Ironics

IV-3230 (68030 CPU) processors, an IV-3220 (68020 CPU) processor which also communicates

S

2w' q( )
2

----------------- w' q( )u∇ (30)

w' q( )u∇

ẋc∂
∂

w'
w' q J

1–
q( )δx+( ) w' q( )–

δx
---------------------------------------------------------T≈ (31)
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with a trackball, a Mercury floating point processor, and a Xycom parallel I/O board communicat-

ing with three Lord force sensors mounted on the Pumas’ wrists. All processors on the controller

VME run the Chimera 3.0 reconfigurable real-time operating system (Stewart, Schmitz and

Khosla 1992). A diagram of the hardware setup is given in Figure 6. The vision system VME

communicates with the controller VME using BIT3 VME-to-VME adapters. The Datacube Max-

tower Vision System calculates the optical flow of the features using the SSD algorithm discussed

in Section 2.3. A special high performance floating- point processor on the Datacube is used to

calculate the optical flow of the feature, and a 68030 board, also on the vision system, computes

the control inputs. An image can be grabbed and displacements for up to five 16x16 features in the

scene can be determined at 30Hz.

The cartesian manipulability gradient as well as the cartesian control inputs are calculated on one

of the control VME’s IV-3230 boards. The control input for tracking and singularity/joint limit

avoidance is sent to the Mercury floating point processor at 30Hz, where a cartesian controller

calculates the proper joint control commands.

A second Puma 560 can be used as a target. The eye-in-hand Puma has no prior knowledge of the

target Puma’s path other than that the object being tracked on the target Puma moves in a plane

approximately parallel to the eye-in-hand Puma’s tool frame. When testing singularity/joint limit

avoidance strategies, however, the range of motion of the second Puma is usually not sufficient to

fully exercise the tracking capabilities of the eye-in-hand system (Nelson and Khosla 1992), so

targets are sometimes placed on small mobile robots that move on the floor.

5. Experimental Results

Eye-in-hand object tracking can be performed using several different strategies. Two common

types of visual tracking which are useful for observing objects with planar translational motion

include pure translational tracking and translational with rotational tracking. The advantage of

pure translational tracking is that it maintains a constant transformation from camera to object. On

the other hand, tracking which uses two translational and two rotational axes allows for faster

object motion, though the depth of the object with respect to the camera changes, and the orienta-

tion of the optical axis of the camera with the plane of object motion is not constant. More impor-

tantly, four axis tracking provides redundancies which can be used to avoid singularities and joint

limits and extend tracking regions.

In this section, we present experimental results from different singularity/joint limit avoidance

strategies. The capabilities of translational tracking of an object moving in X and Y without using
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any type of singularity or joint/limit avoidance is first shown. Next, the tracking capabilities of a

four axis tracker of two axis object motion that uses two of its tracking axes for singularity/joint

limit avoidance is demonstrated. Figure 7 illustrates the experimental setup in its initial configura-

tion for the experimental results presented.

5.1. Two Axis Tracking of 2D Motion without Singularity/Joint Limit
Avoidance

Figures 8 and 9 show the translation of the object and the camera versus time. Three tracking

strategies are shown in the figures. The first strategy used is two-axis tracking without avoidance

of singularities and joint limits. Although the object has a total range of linear motion of 5m, the

eye-in-hand system is able to track the object for just 0.94m. The limitations on the tracking

region for this case are due to both singularities and joint limits. Figure 10 is a plot of the manipu-

lability measurew'(q) (26) of the Puma versus x and shows that at x=0.53m a singularity is

reached. This occurs when joints 2 and 3 of the Puma become aligned. The dashed line in the fig-

ure represents the square of Yoshikawa’s manipulability measure (21), and shows that this term

dominates the modified measure in the +x direction. In the -x direction, the distance to the nearest

singularity actually increases, however, joint 1 reaches a limit on its allowable range after the

object travels only 0.40m. The penalty function (27) dominates the modified manipulability mea-

surew'(q), as shown in Figure 11, and causes the modified measure to quickly descend to zero.

5.2. Four Axis Tracking of 2D Motion with and without Singularity/Joint Limit
Avoidance

In this experiment, the constraints on tracking are reduced in order to decrease the translational

motion requirement of the camera. Tracking is allowed along and about X and Y. For one trial,

singularity avoidance is also allowed along X and Y, so that as the manipulator nears joint limits

or singularities, tracking along X and Y is inhibited and tracking about these axes increases in

magnitude in order to keep the feature at its desired coordinate on the image plane. Figures 8 and

9 show the translation of the object and the estimated translation of the object based on camera

motion according to the equation

where x is the translation of the camera, z is the height of the camera above the plane of object

motion, andθ is the rotation of the camera about its Y axis. For the trial without singularity and

joint limit avoidance, the object can be tracked approximately twice as far as when only two-axis

xest x z
θcos

------------+= (32)
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tracking is allowed, since approximately half the target motion is tracked by translational motion

and half by rotational motion. When singularity and joint limit avoidance are enabled, the track-

ing region is extended until the object being tracked reaches the boundaries of the lab.

For four-axis tracking with singularity and joint limit avoidance, the manipulability of the Puma

remains high as the object is tracked over the entire length of object motion, as Figure 12 illus-

trates. As with the example given in Section 5.1, the manipulator has the potential to enter singu-

lar regions of the workspace or to exceed joint limits. By employing the cartesian manipulability

gradient to guide the arm away from these regions, redundant camera motion can be used to avoid

these regions while simultaneously tracking the object, and the modified manipulability measure

w'(q) (26) remains relatively high. Figure 13 shows that the joint limit penalty function tends to

decrease in the same region as it did during two-axis tracking without singularity or joint limit

avoidance, however, redundant tracking motion is used to keep this function from going to zero.

For all three tracking strategies shown by Figures 8 and 9, the same control law (29) was used

with different gains for each strategy. The cost on feature error was the same for all three strate-

gies with a valueQ=diag(2.0x10-6, 2.0x10-6). For two-axis tracking without singularity or joint

limit avoidance,R=diag(10.0,10.0,106,106) andS=0.0. For four-axis tracking without singularity

and joint limit avoidance,R=diag(10.0,10.0,10.0,10.0) andS=0.0, and with singularity and joint

limit avoidance,R=diag(10.0,10.0,10.0,10.0) andS=0.001. For eachR, Q can be increased to

Q=diag(2.7x10-6, 2.7x10-6) until the system reached a state of instability. ForQ=diag(2.0x10-6,

2.0x10-6), elements ofR below 6.0 result in unstable systems. The value ofS depends mainly on

the maximum speed with which objects being tracked may move. If fast moving objects are to be

tracked, higher values ofS should be used. Smaller values ofS allow the manipulator to approach

nearer singularities and joint limits.

When the object reaches the extreme boundaries of the lab, Figures 8 and 9 show that the estimate

of the position of the object becomes less accurate. This is due to the increasing depth of the

object from the camera at these object positions, as Figure 14 illustrates. At greater depths, errors

in camera calibration become more pronounced. There are several ways in which tracking preci-

sion could have been improved. For the visual servoing experiments performed, camera and lens

manufacturer specifications were used inB in the control law (29). If the camera-lens system was

precisely calibrated, tracking precision could have been improved. A more complex sensor model

would also result in more precise estimates of object motion. The error could be further reduced

by sub-pixel fitting techniques, and larger feature templates would allow correspondingly more

precise object location estimates. With the exception of precisely calibrating the camera and lens,

these techniques for improving the tracking precision of the system would incur an increase in
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computational complexity, thus reducing the sampling rate of the system and decreasing the speed

at which objects could be tracked. Another source of error in estimating object position is from

the imprecisely calibrated tracking manipulator. The estimate of object position is determined

from (32), which assumes that the translation and rotation of the camera can be accurately deter-

mined from manipulator kinematics. The kinematic parameters of the tracking Puma used were

obtained from the literature, rather than from precise calibration of the actual Puma used in the

experiments. As the depth of the object increases, kinematic calibration errors could significantly

impact the estimated depth obtained from (32).

Since the objective of the system is to track the object, the system still operates successfully at

extreme distances as long as features being tracked are not lost. Figure 15 illustrates this by show-

ing the tracking error in pixels versus time for two-axis tracking and four-axis tracking with sin-

gularity and joint limit avoidance. The trials shown correspond to those in Figure 9. For two-axis

tracking, errors are suppressed more slowly than when four tracking axes are used. This is as

expected, since the manipulator uses more degrees of freedom for four-axis tracking. After

approximately five seconds, a joint limit is exceeded for the two-axis case and the system fails.

For the four-axis trial, errors are suppressed more quickly. Although the target travels at an

approximately constant speed of 10cm/sec, the steady-state error continues to decrease because

less control effort is required to suppress tracking errors on the image plane due to the increasing

distance of the target from the camera. Eventually, the target reaches the boundaries of the labora-

tory, and the error is reduced to zero.

Figures 8 and 9 show that the object is tracked by the eye-in-hand system over the object’s entire

linear range of motion using only two translational axes for singularity and joint limit avoidance.

This represents an approximate ten fold increase in the linear tracking region over the two-axis

tracking system. In fact, the increase is even greater, but limitations were placed on the range of

motion of the object due to the 5m width of the Advanced Manipulators Laboratory at Carnegie

Mellon. Upon experimentation, it was discovered that the failure modes of the system tracking

planar motion occurred when the object moves such that the base of the manipulator occludes the

object, or the depth of the object becomes so great that the feature cannot be reliably detected.

Both of these cases are extreme. For planar object motion, two translational axes for singularity

and joint limit avoidance are sufficient, because of the dimensionality of the tracking space. If this

technique is extended to tracking objects with 3D motion, situations may arise in which local min-

ima are reached on the surface of the objective function. These situations could create unavoid-

able singularities or joint limits if tracking and avoidance axes are not properly chosen.
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6. Conclusion

We have demonstrated that singularity and joint limit avoidance using a cartesian gradient of

manipulability which accounts for nearness to joint limits as well as singularities is an effective

method of significantly extending the tracking region of an eye-in-hand visual tracking system.

By introducing a modified measure of manipulability into the control objective function of the

visual tracker, an elegant control law is derived which allows a user to determine, based on the

system requirements, which axes are to be used for tracking and which are to be used for avoiding

singularities and joint limits. Experimental results comparing two different tracking strategies are

presented. These results demonstrate that a tracking system that accounts for the configuration of

the manipulator during tracking allows object motion which is far less constrained than traditional

eye-in-hand tracking systems have previously allowed.

7. Appendix

This appendix presents the derivation of the visual tracking control law that incorporates a manip-

ulability measure representing nearness to singularities and joint limits. The goal is to find an

expression for the control inputu(k) at the current time instant which minimizes the objective

function at the next time instant. The objective function is given by

From the state equation (14), the expression

is obtained and used to rewrite the objective function as

If it is assumed thatB(k), which represents the Jacobian mapping from 3D cartesian camera space

to 2D image space, is slowly varying, the partial derivative ofF(k + 1) with respect tou(k) can be

written as

The minimum ofF(k + 1) is found by rewriting this expression and setting it equal to 0
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Solving foru(k) results in the control law

Rewriting the partial derivative of the reciprocal of the manipulability measure in terms of the

gradient of the manipulability measure, the following can be calculated

The final form of the control law is
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Figure 1. Overhead view of a SCARA-type manipulator visually tracking.
If a constant transformation between the camera and object is desired and
the object continues to move in the -X direction, the manipulator will
soon reach a singularity and the system will fail.
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Figure 2. The pinhole camera model with the image plane moved in front of the
camera to simplify signs in the equations.
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Figure 3. A pyramidal search scheme is used in the SSD optical flow algorithm in
order to increase the overall sampling rate of the system.
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Figure 5. The joint limit penalty function for various values ofk as the fifth joint of a
Puma 560 travels between its joint limits.

k=104

k=105

k=106P

Joint 5 (degrees)



27

Puma B

Force Sensor

Puma A

Force Sensor

Puma C

Force Sensor

Sun 3/260
Workstation

with VME bus
backplane

TRC-005 VME
Interface card

TRC-005 VME
Interface card

TRC-005 VME
Interface card

Parallel
I/O Ports

Ironics IV-3230
Processor

Ironics IV-3220
Processor

Ironics IV-3230
Processor

Mercury
MC3200 Floating

Point Unit

Sun VME Bus

Control VME Bus

Vision VME Bus

VME to VME Adapter

VME to VME Adapter

Datacube Maxtower
Vision System

Ethernet

NFS
File

Server

SGI
Graphics

Workstation
(for simulation)

6 DOF Trackball

Serial Line

Figure 6. The Troikabot system architecture.
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Figure 7. Experimental results were collected using the illustrated setup. The object was
placed on a small mobile robot moving at a constant speed within a five meter wide
workspace. The configuration shown represents the initial conditions of the trials from
which the experimental results presented were obtained.
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Figure 8. Camera and object translation along +x versus time for two-axis visual tracking
without singularity/joint limit avoidance and for four-axis visual tracking with and
without singularity/joint limit avoidance.
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Figure 9. Camera and object translation along -x versus time for two-axis visual tracking
without singularity or joint limit avoidance and for four-axis visual tracking with and
without singularity/joint limit avoidance.
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Figure 10. Manipulability versus x for two-axis visual tracking without singularity or
joint limit avoidance. The dashed line indicates manipulability without the joint limit
penalty function.
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Figure 11. Joint limit penalty functionP versus x for two-axis visual tracking without
singularity or joint limit avoidance.
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Figure 12. Manipulability versus estimated x for four-axis visual tracking with singularity
and joint limit avoidance. The dashed line indicates manipulability without the joint limit
penalty function.
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Figure 13. The joint limit penalty function versus estimated x for four-axis visual tracking
with singularity and joint limit avoidance.
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Figure 14. Depth of the object versus estimated x for four-axis visual tracking with
singularity and joint limit avoidance.
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Figure 15. Feature error versus time for two and four axis tracking for the trial
shown in Figure 9.
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