Presented at IEEE Conference on Robotics and Automation Philadelphia, April, 1988

Superquadric Artificial Potentials for Obstacle Avoidance and Approach

Pradeep Khosla
Department of Electrical and Computer Engineering

Richard Volpe
Department of Physics

Carnegie-Mellon University
Pittsburgh. Pennsylvania 15213

Abstract

Previous use of artificial potensials has demonstrased the need for an obstacle avoidarce potential that closely madels he obstacle. yet does not tenerate bocal minima in the wortspace of the manipulator. Recently we proposed a new elliptical porential function which satisfies these requiremenes for rectanguler objects in spherically symmetric atrractive wells. In this paper we present a mew obstacle avoidance potensial based on superquadrics. The superquadric formulation is a senerallzation of the elliprical potensial function method, and there. fore is viablefor a much lerger class of object shopes. As with elliprical potentials, a modified form of he superquadric porential provides safe approach soward abjects. We have implemensed the avoidance and approach porentialt in simulations and the results exhibit an improvenens over exiscing polental sohenes. The simulations also employ an algorithon that eliminates collisions with obstacles by calculating the repulsive forces exerted on links. based on the shortest distance to an object.

1 Introduction

An arificial potential is a mathematical description of the potential energy within the workspace of a manipulator. Regioas in the wortspace that are to be avoided are modelied by repulsive potentials (energy peaks), and the region to which the end effector is to move is modelled by \ddagger atractive polenial (energy valley). The addition of repulsive and auractive potentials provides the desired workspace energy lopology. Thus, for each point in the real workspace of the manipulator there is a modelled velue of potential energy and an associated gradient or force. This force causes the end effector of the manipulator to move through its environment in a manner which is directly responsive to the modelied potential energy function of that environment.

The major interest in artificial potential models has been in realizing obstacle avoidance schemes [$10.12,11,13,8,14$]. In an unobstructed enviroament, a simple bowi-staped auracive potential will drive the manipulator to its center. But this porentill will not suffice in an obsinucted envirooment Repulsive porential hills must be added to the auractive porential a the locations of obmacles, as in Figure 1. The addivion of repulsive potentials provides obstacle avoidence capebility.

But the addition of maractive and repulsive potentials can expose a major problem with arificial pocentids: the presence of local minima in the potential function. Any local minimum can cause the manipulevor to experience no set arificial force, and thereby stop at an uninvended location A robus arificial potential model of the enviroament will have no local minima (11.14).

We have proposed a second use of antificial porentials - obsacle approsch (14]. Instead of having a potential function po to infinity al the object surface (as with the avoidence potential), the porential can go smoothly to a finite value. As the manipulator moves toward the object, it grins potential energy, loses kinetic energy, and slows down. Thus the approach porenial determines the necessary deceleration forces that will provide a safe contuct velocity at the surface.

Previously, we have presented a elliptical potential function that can be used for both obatacle avoidance and object approach. This function is useful for rectangular objects bo this paper we present a superquadric fomulation for use with more general object shapes [3.2]. Firs, bowever, the history of the pocential approsch is outlined, and some of the problems indicued. Then, our new porenial function is described and its advantages are highlighted. Finally, the developed pocential is employod in simulations of wo and three link manipulators.

Currenaly, the proposed arificial potential scheme is being experimentally implemented and evaluated on the CMU DD ARM II.

2 Attributes of Artificial Potentials

As was stmed earlier, potentials may be divided into two types: aruractive and repulsive porentials.

Auracive pocenials are generilly quadraic wells [9.7.11]. As we have oullined previously, quadratic wells are beneficial for two reasoas [14]. Fira, a quadratic well provides a linear conarol law with constant gain; and secood, all serblizing potentials are quadratic for small displacements.

Figure 1: A repulsive potential added to an alurecive well.

A conical well has also been proposed [1]. It is quadratic to a given range and then increases linearly:

$$
U(x)= \begin{cases}\mid x \cdot x, & |x|<1 \tag{1}\\ 2| | x \mid-l, & |x| \geq 1\end{cases}
$$

where l is a constant and I is the posivion yector. This conical well provides a constanl oazriude, centrally atrocive, fore field for (aze dirnness. While. for 50 لit disences, ite sability of a quadracic well is utilized.

The second enegory of porenids, repulsive potenids, ar nee. essary to repel the ranipulator away fror obstacles that obstruct its
 recomized that a repulsive potential sould have a limited range of influence [1,9]. This preverses an object fron affecting ibe motion of i e moigulator wion is is far away froce the objec. Also, the porenid function and its derivaive must change smoolly and never becorre discontinuous Ill.

Many proposed repulsive porentials bave spherical symnetry, One increases subically with radid disunce inside of a circular threshold range [1]. Asouber has a Gauscian shape [11]. These porentials are useful for surrounding objects with spherical symmetry and singutrilies in the wortsper Also, when 1 d 8 spherically symmetric atuactive well bey will 00 oreate a local minimum (as will be denonerried subsequeady). But o spherically symmetric repulsive polenidal does not follow be conlow' of polybedral objects. For instance. an oblong object surrounded by a sphere eftectively eliminates much anore volute from he wortox than is necessayy or desirible.

The FTRAS luarion wroposed to adres the insufficiency of radially symmetis potentials (9). Top potential energy, $U(r)$, of the FLRAS function is described by:

$$
\begin{equation*}
U(r)=\frac{A}{2}\left(\frac{1}{r}-\frac{1}{r_{0}}\right)^{2} \quad 0<r<r_{0} \tag{2}
\end{equation*}
$$

where r is the closest distnoce to the object surface, r_{0} is the effective range, and A is a scaling factor. Figure 2 shows this porential for $A=2$ and $r_{0}=6$. The isopotential contours of this potential function are depicted in Figure 3.

By itself the FIRAS potemial works well. But when this potential is added to an auractive well, local minima appeer on the side of the object away from the ceater of the well. Consider the case depicted in Figure 4, where the side of the object away from the attractive well center is tangent to the isopotential contours of the well. Motion along the linear section of the object contour, from point A to point

Figure 2: The FIRAS potential for $A=2$ and $r_{0}=6$. Large values hive unen unced.

8, passes through changing polentiad values of the altracuve wcll AI A and B the allosctive well posential is higher than at point C. Since the object potential is the same at A. B. and C. Ihe sum of the object potential and the alractive well porenial has a localminimum at point C. It can be sun thel my section of an object conwurthat has a radius of curvature greater than thal of the aturactive well will generale a local minimum 'uphill' from the object. A circular repulsive potenjal always has a smaller radius of curvature than the atreive well in which it is insorited Therefore. a circula repulsive ponenid will no generale local minima in this way.

In summary, a potersial function that is ustill for modeling objects in the enviroamens should have the following amributes:

1. The potential should have spherical symmery for large distances to avoid the creation of local minima when this potential is added to others.
2. The potential consours near the surface should follow the surface conour so that large portions of the workspace are not effectively eliminated.
3. The potential of an obsiscle should have a limited range of influence.
4. The potential and the gradient of the potential must be cootinuous.

Figure 3: The isopotential coatours of the FIRAS potential in Figure 2.

Figure 4: The coincidence of isopotential osnhour im points A and B indienes the prese of a minimum in tre vicinity of point C.

3 Superquadric Potentials

3.1 Superquadric Avoidance Potentials

To avoid the creavion of minima the object potenial must \mathbf{k} spherical. as deacribed in criterion number one. However, a potenuial that is spherical U all disances will nor wort for nonspherical objects. In this section. we present a potential fumetion which changes from the object shape near the object, to spherical away from it (circular in two dimensions), and sutisfies the four outlined criteria.

3.1.1 Superquadric Isopotential Contours

The shape of a potential function is described by its isoporential contours. Therefore. criteria one and two must \mathbf{k} satisfied by the creation of appropriate isoporenuial contours for the potential function

To sexisfy the secood criterion, an object may \mathbf{k} enfrounded with a superquadric (3,2]:

$$
\begin{equation*}
\left[\left(\frac{x}{f_{1}(x, y, z)}\right)^{2 n}+\left(\frac{y}{f_{2}(x, y, z)}\right)^{2 n}\right]^{\frac{y}{2}}+\left(\frac{z}{f_{3}(x, y, z)}\right)^{2 m}=1 \tag{3}
\end{equation*}
$$

where f_{1}, f_{2}, and f_{3} are scaling functions, and m and n are exponentiv panameters. Previously we have employed this function in two dimeasions ($z=0$) with constanh sealing functions (14):

$$
\begin{equation*}
\left(\frac{x}{a}\right)^{2 n}+\left(\frac{y}{b}\right)^{2 n}=1 . \tag{4}
\end{equation*}
$$

This form is called an n-ellipse where a is the semi-major axis and b is the serni-minor axis (6,9). It is valuable to review the use of this simpler form in pocential functions and then show how it may be geseralized to the superquadric poteotial form.

In order for the above n-ellipse to be useful as a polential function, two constrinins sbould be imposed at the surfice of the object: firsy, the elliper must wouch the comers of the surrounded object (which is recinngular for this case); and secood, the area berween the object and the ellipse must be minimal. These consarnints yield:

$$
\begin{equation*}
a=\frac{w}{3}(2 t) \quad b=\frac{b}{3}(2 t) \tag{5}
\end{equation*}
$$

where w is the x dimension of the recmagle, and h is the y dimension.
At the surface of the objec. the isoporential conours should mach the shape of the sarface. This requires that π ep to infinity $\begin{array}{ll}\text { a the surface. However, away from the surface the comours must }\end{array}$ become spberical in order to salisfy the first criterion. Leuing n go to one will make the contours elliptical. This ellipse may be further modified by a coefficieat thas multiplies the y term. The contour function thus becomes:

$$
\begin{equation*}
\left(\frac{x}{a}\right)^{2 n}+\left(\frac{b}{a}\right)^{2}\left(\frac{y}{b}\right)^{2 n}=1 \quad n \geq 1 \tag{6}
\end{equation*}
$$

It is also necessary to have a verisble that specifies each contour. This variable should ad as a peendo-distence from the object. being zero \equiv the surface and increasing with successive contours away from the surface. Along the x axis this variable can be made to chenge linearly. Thus,

$$
\begin{equation*}
K=\left[\left(\frac{x}{a}\right)^{2 n}+\left(\frac{b}{a}\right)^{2}\left(\frac{y}{b}\right)^{2 x}\right]^{\frac{t}{x}}-1 . \tag{7}
\end{equation*}
$$

Figure S shows a plot of K a regular intervals with \boldsymbol{n} varying from a very large value to a velue pear unity.

Since the parameter n must vary from infinity to one white K varies from zero to infinity, a bas been defined as:

$$
\begin{equation*}
n=\frac{1}{1-e^{-\theta 0 X}} \tag{8}
\end{equation*}
$$

Figure 5: The isopotentid contours for $K=0.1$ to $K=2.6$. and $a=1.5$.

Figure 6: Superquadric isoporential contours for a rapezoid

where a and β_{n} are adjuanble parmeters. Unless ouberwise noted. β_{n} will be unity. Other definitions of n are possible, but this form is valuable because it is reised to the magninude of the potentin. as will be shown in Section 3.1.2.

The above description, expmoded to three dimensions, can yield an ellipsoid instesd of en ellipse. For the throe dimensional case. fo in Equasion (3) is a third consenat semi-axis, c, and the parameler m can be given the form:

$$
\begin{equation*}
m=\frac{1}{1-e^{-\alpha d x}} \tag{9}
\end{equation*}
$$

If the parameler β_{m} is see equal to $\beta_{n 0}$, then mequals n and Equation (3) is an n-ellipsoid.

The elliptical (ellipsoidal) description may be generalized to the superquadric formulaioa by using nonconstrat scaling functions, fi. in Equarion (3). This provides a method of deforming the n-ellipse (ellipsoid) to other shapes. This effect can be understood as changing the semi-axes of the ellippe (ellipsoid). An exemple can be shown in two dimensions for a superquadric comour the mangly sumounds a traperoid as in Figure 6. In this cese, the semi-minor axis b muse vary from b_{0} to b_{1} a the beigh of the object varies from h_{0} to h_{1}. Therefore. an the objoca surface $(K=0)$.

$$
\begin{align*}
b(x) & =m x+d \tag{10}\\
m & =\frac{h_{1}-h_{0}}{2 w}=\frac{b_{1}-b_{0}}{2 a} \tag{11}\\
d & =\frac{b_{1}+b_{0}}{2} \tag{12}
\end{align*}
$$

Figure 7: The isoporential contours surrounding a triangle for $K=0.1$ $10 K=2.6$. and $\alpha=1.5$.

Figure 8: The avoidance porential for a triangle with $o=1$ and $A=1$. Large values have been urncated.

This value of b provides a superquadric which eonches the corners of the unpezoid, with $K=0$. Superquadric isopotential contours away from the object may be obtaised by scaling x :

$$
\begin{equation*}
f_{2}=m \frac{x}{K+1}+d \tag{13}
\end{equation*}
$$

Reducing h_{1} to a very small value gives a muperquadric model of a triangle, as showe is Figure 7.

Finally, this example can be extended iano three dimensions for superquadric models of wedges, pyraonids, and cones. For a wedge,

$$
\begin{align*}
& f_{1}=a \tag{14}\\
& \boldsymbol{A}=m \frac{x}{K+1}+d \tag{15}\\
& \boldsymbol{H}=c . \tag{16}
\end{align*}
$$

For a pyrmaid.

$$
\begin{align*}
& f_{1}=a \tag{17}\\
& f_{2}=m_{2} \frac{x}{K+1}+d_{2} \tag{18}\\
& f_{3}=m_{3} \frac{x}{K+1}+d_{3} . \tag{19}
\end{align*}
$$

And for a cone oriented along the 2 -axis.

$$
\begin{align*}
n & =1 \tag{20}\\
f_{1} & =m \frac{2}{K+1}+d \tag{21}\\
f_{2} & =m \frac{2}{K+1}+d \tag{22}\\
f_{3} & =c . \tag{23}
\end{align*}
$$

3.1.2 Avoidnnce Potential

With the form of the iscoporential contours entrblished, it is necessury to assigh potential energy values to them. These energy values mur satisfy the thind and fourth criteria outlined in Section 2. and in accordace with manal poneotials (e-g. electrotatic, grevitational, etc.) exhibit a inverse dependence on disunce. Therefore, the powential function must have a \mathbb{K}^{-1} dependence for shon distince repulsion, but drop to zero faster than \boldsymbol{K}^{-1} for large distances. Aiso, the funclion and its derivative must be continuous. A function that satisfies these criteria is the Yukawa potential [5]:

$$
\begin{equation*}
U(K)=A \frac{e^{-\alpha K}}{K} \tag{24}
\end{equation*}
$$

Figure 8 shows this function with $a=1$ and $A=1$ for a triangle.
The parmmeter a determines bow rapidly the potential rises near the object and falls off away from the object. Therefore, this parameter must also appear in Equation (8), which determines how quickly the ' n-ness' of the ellipse changes to accommodite the change in the magnitude of the potential. The parmeter A acts as an overall scale factor for the potential. Large values of A will make the object have a spberical field of repalsive force at lage distances. Small values of A will allow the object to be approached much more cionely. At this closer range, the isopotential contours will heve inge values of n and will approximate the shape of the object. For the rest of this discusaica A will asensed to be waity unless obberwise noted.

32 Superquadric Approech Potentials

The atructive poteatial has already been discused as oove method of moving the maipulator to a desired point. This atrecty, however, requires damping of the ant to prevent oscillation about the destination point In effect, the droping is required to abeorb the kisetic energy that the am atuias by moving from to arating poins of higher powential emergy. An slternative way of aboorbing the enorty is to increase the the potercial enery of its dentinaion. Thus, the am moves 'dowabill' from ins sariag poiat and then 'uphill' to its demination.

An epproprime approach potential should follow all of the criveria of the avoidance poneatial, but stould to so a finite maximem value at the surface of the objoct. Therefore, far from the object, the form of the suoidnace pormaid may be used. However, clower to the
 chuaging to zero st the nomber so then mo erificial force is experienced when real comant with the etrirogesed is extrblistod. Becsuste this generd form mon remain for all vehes of a, a simple polynomial fir is not poonbie. A fuaction which does saiafy these criteria is:

$$
U(X)= \begin{cases}\hat{R}^{-a K}, & K \geq 1 \tag{25}\\ A \exp \left(-a K^{1+\frac{1}{2}}\right), & 1>K \geq 0\end{cases}
$$

Figure 9 shows this function with $0=1$ for 8 triangle.

Figure 9: The approach potential function for a triangle with $n=1$

4 Addition of a Superquadric Avoidance Potential and an Attractive Well

The concen when adding an avoidance porential to an auractive well. is that an uodesirable minimum may be creased 'uphill' from the object. Because the superquadric avoidance potential only becomes a circle asymprotically, a spurious minimum may be present. However. this minimum can effectively be removed by mating the depression asocianed with it amaller then the resolution of the system.

For a rectnagular object, the minimum value of a is determined for its work case orientation. This is when the loggest dimension of the object to be avoided is tangent to the isopotential coasours of the auractive well. In other words, the object is placed 'across' the desired path. We have previously shown that a local minimum cansed by this orienention in a quadratic well may be easily removed by edjuating the parmeter a [14].

For a recrangular object in the conical well, a similar analysis may be performed. Using a coordinate system centered on the object, with the x axis aloag its longeat dimension. yields:

$$
\begin{equation*}
U=U_{d}(K)+U_{w}(x) \tag{26}
\end{equation*}
$$

with the object and well potentials given by:

$$
\begin{equation*}
U_{0}=\frac{e^{-\infty K}}{K} \quad \text { and } \quad U_{0}=2|x|-l \tag{27}
\end{equation*}
$$

with l constane and $\mathrm{I}=\left(x_{1} y-y_{0}\right)$, where y_{0} is the location of the auractive well center.

Fire it is necessary to find the bocal minimum along the y exis that is an the opposive side of the object from the atrnctive well center. At this point the lotal force is sero.

$$
\begin{equation*}
0=\nabla U=\frac{\theta}{\partial x}\left[U_{0}+U_{*}\right] \xi+\frac{\partial}{\partial y}\left[U_{0}+U_{w}\right] 9 \tag{28}
\end{equation*}
$$

or

$$
\begin{align*}
& 0=\frac{\partial U}{\partial K}\left[\left(\frac{x}{a}\right)^{2 n}+\left(\frac{b}{a}\right)^{2}\left(\frac{y}{b}\right)^{2 n}\right]^{\frac{1}{b-1}}\left(\frac{1}{a}\right)^{2 n} x^{2 n-1}+\frac{2 \mid x}{|x|} \tag{29}\\
& 0=\frac{\partial U}{\partial K}\left[\left(\frac{x}{a}\right)^{2 n}+\left(\frac{b}{a}\right)^{2}\left(\frac{y}{b}\right)^{2 n}\right]^{\frac{1}{2-1}} \frac{b^{2-2 n}}{a^{2}} y^{2 n-1}+\frac{2 K\left(y-y_{0}\right)}{|x|} \tag{30}
\end{align*}
$$

where

$$
\begin{equation*}
\frac{\partial U}{\partial K}=-e^{-a K}\left[\frac{a}{K}+\frac{1}{K^{2}}\right] \tag{31}
\end{equation*}
$$

Considering only the y direction.

$$
\begin{equation*}
\left.\frac{\partial U}{\partial y}\right|_{-0}=\frac{\partial U}{\partial K}\left[\left(\frac{b}{a}\right)^{2}\left(\frac{y}{b}\right)^{2 n}\right]^{\frac{1}{n-1}}\left(\frac{b}{a}\right)^{2}\left(\frac{1}{b}\right)^{2 n} y^{2 n-1}+2 \tag{32}
\end{equation*}
$$

is a quadracic equation of the form:

$$
\begin{equation*}
0=-e^{-c}(0+1) c+2\left((c y-1)^{2}\right. \tag{33}
\end{equation*}
$$

with

$$
\begin{equation*}
K(x=0)=c y-1, \quad c \equiv\left(\frac{b}{a}\right)^{\frac{1}{b}}\left(\frac{1}{b}\right), \quad \sigma \equiv a K \tag{34}
\end{equation*}
$$

Solving for the meaningful root of this equarion yields:

$$
\begin{equation*}
y=\frac{1}{c}+\sqrt{\frac{e^{-c}(\sigma+1)}{2 k}} \tag{35}
\end{equation*}
$$

Having solved for the y coordinate of the minimum. it is necessary to determine the tize of rk locel depresaion. This is dooe by finding the first maximum in the x direction for rk given value ofy. From Equations 29 rad 30.

$$
\begin{equation*}
x=a\left[\frac{y^{20-1}}{y=\frac{y_{0}}{y}}\right]^{*} \tag{36}
\end{equation*}
$$

Given that the resolution of the system being modelled must be less than $2 x$, it is only mecessary to sanisfy the sbove equation. Because y and n are both funcricos of σ. this equation can be uned for an iternive solution of σ. Wuth a value of o determined, y and n may be obsined, followed by X and a. In this way, a minimum value of a may be calculmed which permits the addition of a conical aurtective well and the repulsive superquadric potential for a rectengular object. withous the cremion of a local minimum.

For mon-rectangular objects in quadraic and conical wells, the same analyses may be used. The recrangle coasidered has the dimensions of the maximum beigh and widh of the non-rectangular object. A valid bound for a is devermined since the rectangle is more likely to form a local minima. This is becanse the superquadric isopoteatial contours that intersect the objoct axes a right angles have an infinite radius of curvenre ot the points of infersection. Tha is, the contour is strighe thete poins. For example, the contours surrounding a squas have an infaive redius of curvature an the x and y axes. Therefore, a local minimum may ocour for the ame reson that was oullined eartier for the FBRAS poteatiel. The partmeter a elingmes this minimun by forcing the ieopocential contours to circles at the rage of the former minimum. The value of a tha is large enough to make the contours authciemly circular a the axes, will be large enough to meke the comours circular in generl. For a mon-rectangular object the same velue of a will also provide circular isopotential coptours at the mecoseary rage, ensuring that these objects will not cause locel minima

5 Simulation

To test these concepts the performance of iwo and throe link planar manipulaors interacting with mo mificial potemial hove been simulated. The motion of theac arms is cmused by the arificial forces
acting on the end effector and the individual links. The end effector is antracted by a goal point and repelled by the obstacle, while the links are repelled by the obstacle if the link inseraction is 'on'. The reaula indicate thas the superquadric potentials provide a valid meibod of obsacle avoidence for manipulator, md an improvement over existing potenuial functions.

5.1 End Effector Interaction

There are two ways for the arm to seact so the arificial forces epplied to the end effector. The first method tranforms the forces into the corresponding join torques through the traspose of the Jacobian: $r=J^{T} F$. The joint accelerations cen then be derived from the Lagreagim (4). The socond method obtains joint accelertions by direaly tranforming the Cartesian accelerations tha would be experienced by a unit mass in the poteatial well: $\bar{j}=5^{-1}(\dot{x}-j 0)$. The first method is desinable because in does not involve the inverse of the Jacobien, which may become singular. For avoidance potentials, the first method is used. Bu for reasons we have previously oullined, the second method must be used when employing an approach potential [14].

5.2 Link Interaction

While the end effector interaction with the artificial porentials will guide the end effector around obstacles, it will nor prevent collisions of the links with the obaracles. To prevent these collisions, there must be m interaction of the links with the antificial force field. But the link occupies a regica near the obatacles, not juat a point. How theo should the intersction be calculated? if would be too computationally intensive to integrate the totel internction of the link with be field. Also, it is the avoidance of collision that is of primery importance. Therefore, the poins on the link which is clovest to the obstacte should determise the amourt of repulsion experiesced. We have previously preseared a algorithm which determines the point on a link which is clowest to an obatacle (14). The force tue to the object is applied to the link at this point and the resultant motion is determined by the dyamics of the arm.

5.3 Simulation Experiments

Three whin situstions were examined: 1.) Unsuccessful sequisition of the gool while avoiding an object surrounded by the FIRAS potensial, 2.) Moveanent to a goal point while avoiding an object surrounded by the proposed superquadric avoidance poesecis, 3.) and approach of an object surrounded by the proposed superquadric appeosch potential. In the first two sinumions the and effector experiences an muctive force from a goul point and a repulsive force firea the obatacle. and the links of the arm experience a repulsive force from the obstacle. For the third situation the use of a goel point is oprional and there is do lint internction.

53.1 PRAS Potential

For many simmions, the FIRAS povemial providea a viable method of obsacle evoidrace and goal acquisition. However, sa wes shown earlier, locel minima can be creacd whea the FIBAS potential is added to a circularly symmeric well [14]. Whea link insernction forces are not great enough to drive the end effector out of this minime, the arm will stop "uphill' of the object. Figure 10 shows such a situation.

5.3.2 Superquadric Avoidance Pocentilal

The anose atm unjectory has been initimed with the superquadric
porential in the circular aturactive well. Figure 11 shows the end effector of a two link manipulator successfully navigating around the obstacie. This confirms the absence of a local minimum "uphill' from the object. However, with only two degrees of freedom, the arm can not move completely around the obstacie - it becomes stuck when the repulsive torque of the obsiacle on the second link equals the attractive torque of the goal point on the and effector. This is not a deficieacy in the form of the poteatial, but a deficiency in the two link manipulator. Figure 12 shows that a three link design does not have this same problem. The arm is able to 'make' around the obstacle, and the ad effector is able to achieve the goal point.

A third situation was also examiaed. Four obaccles surnounded by superquadric avoidunce porentials were pleced in a conical atunctive well. Figures 13 ad 14 show the manipulmor auccesafully navigaing between them to achieve the specified goal poinh. The san and faish points were interchanged for the two simulations. Different unjectories were created, but the traversal time was about the same.

Figure 10: Unauccenstul avoidunce of a obatacle using the FIRAS proential ($r 0=1.5$). The end effector has settled in a local minimum just "uphill' from the obacie.

Figure 11: Successful avoidance of an obascle using the newly proposed function. The minimum value of a that will allow avoidnnce has been used $(\alpha=4.4)$. The arn is prevented from reaching the goal by its eecnetric limitations.

Figure 12: Successful avoidance of an obsacle using the newly proposed fuaction. The misimum vilue of a that will allow avoidance has been used ($\alpha=3.76$). The reduadracy of the manipulator eambles it to "snake" its way around the obzacle. The doned manipulator is an insermedinte coafigurtion.

Figure 13: Successful navigation around four obslacles using superquadric avoidance poienuials and a modifiedconical attractive well. The doted manipulators are intermediate configurations.

5.3.3 Approach Potential

Finally, the motion of the ead effector approaching the surface of the object has been simulmed in Figure 15. For this simulation, no atractive point was used. losread, the arm was given an initial end effector velocity with its comesponding kinetic energy. The height of the potenial as the surface was set io ninety perceat of the initial kinetic and potential exergy. To eliminate any computational errors due to the discrete time naure of the calculations, the beight the pocential was comtinully modified to ninety percem of the kinetic and polential energy. Also, the end effecior wes position controlled in the y direction.

6 Summary

A sow apperquadric poterial bas boen developed that improves upon previous arififid polencials by providing evoidence of obstacles with. onk the genemtion of local minima. Also, since the contours of objects are followed, a modified verion of the function may be used for object approach. These porentials have been implemented in simulations of two and throe link manipulators. The results indicate an improvement over other porenial schemes.

7 Acknowledgements

We would like to thank Professor Takeo Kanade for suggesting the use of superquadrics as a generalizstion of the n-ellipse formulation. We would also like to thank him for providing the pecessary laboracory and compurational facilities to cooduct this work. This research is suppored in par by an AFOSR graduace fellowship (for Richerd Volpe) and the Deparment of Electrical and Computer Engineering.

Reforences

 - A Ampent $1: 11-24$ 181).

 18 m

Figure 14: The same situation as Figure 13 except that the starung and ending points have been interchanged. Notice that a different trajectiory has been creared but the ume of traversal is about the same.

Figure 15: This Figure shows successful approsch and contact with an object surrounded by the proposed approach porential. For this simulation there was no atraclive point, but the codefficior was position controlled in the y direction. The initial velocity was 1 univsec in the x direction. The contact velocity was 0.06 univsec.

 Man ment

 182.

 7-10 192

