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Abstract

Previous use o artificial potentials has demonstrated the needfor an
obstacle avoidance potential that closely models he obstacle. yet does
Aot peneraie local minima in the workspace of the manipulator. Re-
cently we proposed a new elliptical potential funcrion which satisfies
these requirements for rectangular objects in spherically symmetric
anractve Wells. In this paper we present @ new obstacle avoidance
potential based on superquadrics. The superquadric formulation is a
generalization of the elliprical potensial funcrion method, and there-
fore (s viadblefor a much larger class of object shapes. As with ellipti-
cal potentials, a modified form of he superquadric potential provides
safe approach wward objects. \\e have implemented the avoidance
and approach potendals in simulations and the results exhibit an
improvemens OVEr existing potential schemes. The simulations also
employ an algorithm that eliminates collisions with obstacles by cal-
culating the repulsive forces exerted on links, based on the shortest
distance o an object.

1 Introduction

An anificial potential is a mathematical description of the poten-
tial energy within the workspace of a manipulator. Regioas in the
workspace that are (o be avoided are modelled by repulsive potentials
(cnergy peaks), and the region o which the end effector is o move
is modelled by an attractive poicntial (energy valley). The addition
of repulsive and attractive potentials provides the desired workspace
energy lopology. Thus, for each point in the real workspace of the
manipulator there is a modelled value of potential energy and an as-
sociated gradient or force. This force causes the end effector of the
manipulaior 10 move through its environment in a manner which is
direcly responsive to the modelied poteatial encrgy function of that
cavironment.

The major interest in antificial potential modeis has been in re-
alizing obstacle avoidance schemes {10,!12,11,13,8,14]. In an unob-
structed environment, a simple bowl-shaped attructive potential will
drive the manipulator 10 its center. But this potential will not suf-
fice in an obstructed envirooment. Repulsive potential hills must
be added to the anractive potential st the locations of obstacles, as
in Figure 1. The addition of repulsive potentials provides obstacle
avoidance capability.

But the addition of attractive and repulsive potentials can expose
a major problem with arntificial potentials: the presence of local min-
ima in the potential function. Any local minimum can cause the
manipulator 10 experience no net astificial force, and thereby stop
at an unintended location. A robus anificial potential model of the
eavironment will have no local minima [11.14),

We have proposed a second use of artificial poteatials — obstacle
approach {14]. Instead of having a potential function go to infinity at
the object surface (as with the avoidance potential), the potential can
go smoothly t0 a finite value. As the manipulator moves toward the
object, it gains potential energy, loses kinetic encrgy. and slows down.
Thus the approach potential determines the necessary decelerauon
forces that will provide a safe contact velocity at the surface.

Previously, we have presented a elliptical potential function that
can be used for both obstacle avoidance and object approach. This
function is useful for rectanguiar objects. In this paper wé present
a superquadric formulstion for use with more general object shapes
(3.2]. First. however, the history of the potential approach is out-
lined, and some of the problems indicated. Then, our new potential
function is described and its advantages are highlighted. Finally, the
developed potential is empioyed in simulations of two and three link
manipulators.

Currently, the proposed artificial potential scheme is being exper-
imentally implemented and evaluated on the CMU DD ARM IL

2 Attributes of Artificial Potentials

As was stated carlier, potentials may be divided into two types: ai-
tractive and repuisive potentials.

Anrctive potentials are genenally quadratic wells [9,7,11). As
we have outlined previously, quadratic wells are beneficial for two
reasons [14). First, a quadratic well provides & lincar control law
with constant gain; and second, all siablizing potentials are quadratic
for small displacements.
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Figure 1: A repulsive potential added 10 an attractive well.



A conical well has also been proposed {1}. &t 1s quadrutic to a
given range and then increases linearly:
x-x, Ixj < 1
v {2!]1] -5 21 M

where | is a constant and x is the position vector. This conical well
provides 1 constant magniyads, cenvally siuvacuve, foree field for
lwgs disances. While. for small distances, e stability of aquadraic
well is utilized.

The second cuegory oF porsadias, repulsive poteatials, are nec.
essary o repel he manipulaior away from obstacies that obsuuct its
padh of maian io U global strxciive wel. It has generally been
recognized that a repulsive potential sould have a limited nnge of
influence (1.9]. This prevents an object (rom affecting e motion
of e maaipulalor when it is far away from the object. Also, the
poiential funclion and its derivadive must change smoohly and never
become discontinuous Il

Many proposed repulsive potentials bave spherical symuneury,
One increases cubically with radial distance inside Of a circular thresh-
old range {1]. Anoiber has s Gaussian shape [11]. These potentials
arc useful for surrounding objects with spberical symmetry and Sin-
gularities in the workspace, Also, when added D 8 spherically sym-
metric attractive well they will oot creais a Jocal minimum (as will
e demonstried subsequently). But e spherically symmetnic repul-
tive potential does moi follow e coniour Of polybedral objects. For
instance, an oblong object surrounded by a sphers efTectively elim-
inates much more volume {rom he workspacz than is necsssary OF
desinabie.

The FIRAS funciion wis proposed (o addrs the insufficiency of
ndially symmeuic potentials (3], The potential energy, U(r), Of the
FTRAS function is described hy:

2
U(r)ag-(;—;l-o-) O<r<n 2)
where r is the closest distance to the object surface, ry is the effective
range, and A is a scaling factor. Figure 2 shows this potential for
A =2 and 7o = 6. The isopotential contours of this potential function
are depicted in Figure 3.

By itself the FIRAS potential works well. But when this potential
is added to an antractive well, local minima appear on the side of the
object away from the center of the well. Coasider the case depicted in
Figure 4, where the side of the object away from the attractive well
center is tangent to the isopotential contours of the well. Motion
along the linear section of the object contour, from point A to point
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Figure 2: The FIRAS potential for A = 2 and rp = 6. Large values
hive $ezn truncated.

B, passes through changing potential values of the attracuve well Al
A and B the atiractive well potential is higher than at point C. Since
the object potential is the same at A. B. and C, Ihe sum of the object
potential and the aitractive well poxential has a local minimum at point
C.1tcante sun thal my section of an object contour that has a rdius
of curvature greater than thai of the attractive well will generste a
Jocal minimum 'uphill’ from e odject. A circuwlar repulsive potenual
always bas a smaller radius Of curvature than U aznciive well in
which it is inserited. Therefore, a circulayr repulsive powential will
not generate local minima in this way.

In summary, a potential function that is usefu for modelling ob-

jects in the enviroament should have the following anributes:

1. The potential should have spherical symmeury for large dis-
tances 0 avoid the creation of local minima when this potential
is added to others.

2. The potential contours near the surface should follow the sur-

face contour 30 that large portions of the warkspace are not
effectively eliminated.

3. The potential of an obstacle should have a limited range of
influence.

4. The potential and the gradient of the potential must be coatin-
uous.
1000 .

Figure 3: The isopotential contours of the FIRAS potential in Fig-
ure 2.
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Figure 4: The coincidence of isopotential coniours W poinis A ad B
indicates the preseacs Of a kocal minimum in U vicinity of point C.



3 Superquadric Potentials

3.1 Superquadric Avoidance Potentials

To avoid the creation Of minima the object potential must k spherical.
as described in criterion number onc. However, a potential that is
spberical U all distances Will not work for nonspherical objects. In
this section, We present a potential function which changes from the
object shape near the object, to spherical away froem it (circular in
two dimensioas), and satisfics the four outlined criteria.
3.1.1 Superquadric Isopotential Contours
The shape Of a poiential function is described by its isopotential
contours. Therefore, criteria one and two must K satisfied by the
creation Of appropriate isopotential contours for the potential function.
To satisfy the secood criterion, an object may K surrounded with
a superquadric {32}

: \ y \»% :  \2m
[(In(x.y.z)) ’(fz(x.y.z))] ’(/:(x,y.z)) =1 ®

where /. f2. and f are scaling functions, and m and a are exponen-
tial parameters. Previously we have employed this function in two
dimensions (z = 0) with constant scaling functions [14]:

n* [y\*

(3)-G) = @
This form is called an a-ellipse where a is the semi-major axis and
b is the semi-minor axis (6,9]. It is valuable 10 review the use of
this simpler form in potential functions and thea show how it may
be generalized 10 the superquadric potential form.

In order for the sbove a-cllipse to be useful as a potential function,
two coastraints should be imposed at the surface of the object: first,
the ellipse must touch the comers of the surrounded object (which
is rectangular for this case); and second, the area between the object
and the ellipse must be minimal. These coastraints yield:

3@E)  sed() ®

where w is the x dimension of the rectangle, and A is the y dimension.

At the surface of the object, the isopotential contours should
maich the shape of the surface. This requires that a go to infin-
ity at the surface. However, away from the surface the contours must
become spherical in order 10 satisfy the first criterion. Letting a go
to one will make the contours elliptical. This ellipsc may be further
modified by a coefficient that multiplies the y term. The contour
functon thus becomes:

z 2 b 2 y b7 .

G)+Q)G) = - ©

It is also necessary 10 have a variable that specifies cach contour.

This variable should act as a pscudo-distance from the object. being

zero &t the surface and increasing with successive contours away from

the surface. Along the x axis this variable can be made 10 change
linearty. Thus,
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Figure 5 shows a plot of K a1 regular intervals with a varying from
a very large value 10 8 value near unity.

Since the parameter & must vary from infinity 10 one while X
varies from zero w infinity, a has been defined as:

1
A= = eeaX ®

Figure 5: The isopotentiai contours for K = 0.1 10 K = 2.6. and
a=15.
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Figure 6. Superquadric isopotential contours for a trapezoid

where a and §, are adjustable parameters. Unless otherwise noted,
B will be unity. Other definitions of a are possible, but this form
is valuable because it is related 10 the magnitude of the potential, as
will be shown in Section 3.1.2.

The above description, expanded to three dimensions, can yield
an cllipsoid instead of an ellipse. For the three dimensional case, f3
in Equation (3) is a third constant semi-axis, ¢, and the parameter m
can be given the form: |

mE= oo )
If the parameter 3, is set equal 10 5, then m equals » and Equatioa (3)

is an n-cllipsoid.

The clliptical (ellipsoidal) description may be generalized to the
superquadric formulation by using nonconstant scaling functions, f;,
in Equation (3). This provides a method of deforming the n-ellipse
(ellipsoid) to other shapes. This effect can be undersiood as changing
the semi-axes of the ellipse (ellipsoid). An example can be shown
in two dimensions for a superquadric contour that sougly surrounds
a trapezoid as in Figure 6. In this case, the semi-minor axis b must
vary from bo 10 i) s the height of the object varies from Ao 10 A;.
Therefore, at the object surface (K = 0),

Mx) = mx+d (10)
M-h bh-b
me oy



Figure 7: The isopotential contours surrounding a tiangle forK = 0.1

oK=26 anda =15.
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Figure 8. The avoidance potential for atriangle with o = 1and A = 1
Large values have been truncated.

This value of b provides s superquadric which touches the comers of
the urapezoid, with X' = 0. Superquadric isopotential contours sway
from the object may be obtained by scaling x:

X
fzsﬂlm#d 13)

Reducing A 10 3 very small value gives a superquadric model of a
triangle, as shown in Figure 7.

Finally, this exampie can be extended into three dimeasions for
superquadric models of wodges, pyramids, and cones. For a wedge,

fima (14)

A -mx—iT«rd as)

fec a6
For a pyramid,

Hi=a an

f=mr—d; as)

h= m-K-i—i +dy. (19)

And for a cone oniented aloag the z-axis,

n=1 (20)
z
. /'amK+l+d (21)
2
f"’"xn”‘ @2
A=c (23)

3.1.2 Avoidance Potential

With the form of the isopotential contours established, it is necessary
10 assign potential energy values 1o them. These energy values must
satisfly the third and fourth criteria outlined in Section 2, and in ac-
cordance with natural poscatials (¢.g. electromatic, gravitational, eic.)
exhibit an iaverse dependence on distance. Therefore, the potential
function must have a K~! dependence for shon distance repulsion,
but drop to 2evo faster than X! for large distances. Also, the func-
tioo and its derivative must be continuous. A function that satisfies
these criteria is the Yukawa potential [S):
e—aK
U(K)=A-K— (29)

Figure 8 shows this function with @ = | and A = 1 for a triangle.
The parameter a determines bow rapidly the potental rises near
the object and falls off away from the object. Therefore, this param-
eter must also appear in Equation (8), which determines how quickly
the ‘n-ness’ of the cllipse changes to accommodate the change in the
magnitude of the potential. The parameter A acts as an ovenall scale
factor for the potential. Large values of A will make the object have
a spherical field of repulsive force st large distances. Small values
of A will allow the object t0 be approached much more closely. At
this closer range, the isopoiential contours will have large values of
a and will spproximase the shape of the object. For the rest of this
discussion A will assumed 10 be unity unless otberwise noted.

32 Superquadric Approech Potentials

The attractive potential bas already been discussed as ooe method
of moving the manipulator 10 a desired point. This strategy, how-
ever, requires damping of the amm 1o prevent oscillstion about the
destination point. Ia effect, the damping is required 1o absord the ki-
netic energy that the arm ansins by moving from its starting point of
higher powential coergy. An aliemative way of sbeorbing the energy
is to increase the the potential energy of its destinmion. Thug, the
arm moves ‘downbill’ from its starting point and then ‘uphill® to its
destination.

An appropriate spproach potential should foliow all of the criteria
of the avoidance poseatial, but should go 10 & finite maximum value
at the surface of the object. Therefore, far from the object, the form
of the svoidance poteatial may be used. However, closer w the
surface the poteatisl should be Gaussian in nature, the siope smoothly
changing 10 ac10 at the surfacs 30 that 0o antificial force is experienced
when real contact with the environment is established. Because this
general form must remain for all values of a, a simple polynomial
fit is not possible. A function which does satisfy these criteria is:

gk, K21
”m'{.«exp(-ox"é). 1>K>0

Figure O shows this function with O = 1 for 8 uisngle.

@3



Figurc 9: The approach potential function for a tnangle with & =1 .
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4 Addition of a Superquadric Avoidance Poten-
tial and an Attractive Well

The concern when adding an avoidance potential 10 an attractive well,
is that an undesirabic minimum may be created ‘uphill’ from the
object. Because the superquadric avoidance potential only becomes a
circle asymptotically, a spurious minimum may be present. However,
this minimum can effectively be removed by making the depression
associaled with it smaller than the resolution of the system.

For a rectangular object, the minimum value of a is determined
for its worst case orientation. This is whea the loogest dimension
of the object o be avoided is tangeat to the isopatential contours
of the attractive well. In other words, the object is placed ‘across’
the desired path. We have previously shown that a local minimum
caused by this orientation in a quadratic well may be casily removed
by adjusting the parameter o [14).

For a reciangular object in the conical well, a similar analysis may
be performed. Using a coordinate sysiem centered on the object, with
the x axis along its longest dimension, yiclds:

U=UlK) + Uu(x) 26)
with the object and well poteatials given by:
e-al
U and  Uo=2ix-1 @n

with [ constant and x = (x,y — yp), where ) is the location of the
anractive well center.

First it is nocessary 10 find the local minimum along the y axis
that is on the opposite side of the object from the anractive well
center. At this point the total force is zero.

8 8
O-VU-E;[Uﬂ'U-li'fo—y(U-#U-l? (28)
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Considering only the y direcuon,

ML HOE) @@ e

is a quadratic equation of the form:
O=—e"(0+ I)c+2Wcy- 12 (33)
with
b\
K(x=0) = cy - c= (;) (;) . o=ak (34)
Solving for the meaningful root Of this equation yields:
1 [es@+l)
S o G3)

Having solved for the y coordinate Of the minimum. it s necessary
to determine the size of rk local depression. This is dooe by finding
the first maximum in the x direction for rk givea value ofy. From
Equations 29 rad 30.

%
i ;:% (36)

Given that the resolution of the sysiem being modelled must be
less than 2x, it is caly necessary 10 satisfy the above equation. Be-
cause y and » are both functions of o, this equstion can be used for
an iterative solution of 2. With a value of ¢ determined, y and » may
be obtained, followed by X and a. In this way, a minimum value of
a may be calculated which permits the addition of a conical atractive
well and the repulsive superquadric potential for a rectangular object,
without the creation of 3 local minimum.

For non-rectangular objects in quadratic and coaical wells, the
same analyses may be used. The rectangle coasidered has the di-
mensions of the maximum height and width of the non-rectangular
object. A valid bound for o is determined since the rectanglc is
more likely o form a local minima. This is because ihe superquadric
isopotential contours that intersect the object axes at right angles have
an infinite radius of curvature at the points of intersection. That is,
the contour is streight &t these points. For example, the contours
sunounding a square have an infinite radius of curvature at the x and
y axes. Therefore, a local minimum may occur for the same reason
that was outlined earlier for the FIRAS poicatial. The parameter o
climinates this minimum by forcing the isopotential contours to cir-
cles ot the rnge of the former minimum. The value of o that is
large enough 10 make the contours sufficiently circular st the axes,
will be large enough t0 make the contours circular in general. For a
non-reclangular object the same value of a will also provide circu-
lar isopotential comtours at the mecessary range, ensuring that these
objects will not cavse local minima,

5 Simulation

To test these concepis the performmance of two and three link planar
manipulators interacting with an astificial potential have been sim-
ulaied. The motion of these arms is caused by the anificial forces



acting 0N the end effector and the individual links. The end effec-
tor is annacted by a goal point and repelled by the obstacle, while
the links are repelled by the obstacle if the link interaction is 'on'.
The results indicaic that the superquadric potentials provide a valid
method Of obstacle avoidance for imanipulator, md an improvement
over existing potential functions.

S.1 End Effector Interaction

There are two ways for the arm (0 react to the anificial forces ap-
pﬁedwmende(reaor The first method transforms the forces intwo

the corresponding joint torques through the transpose of the Jaco-
bian: 7 = JTF. The joint accelerations can then be derived from the
Lagrangisn (4]. The second method obtains joint accelerstions by
direcdy transforming the Castesian accelerations that would be expe-
ricnced by a unit mass in the potential well: # = J~* (%~ J#). The
first method is desirable because it does not involve the inverse of the
Jacobian, which may become singular. For avoidance potentials, the
first method is used. But for reasons we have previously outlined. the
second method must be used when employing an approach potential
[14].

52 Link Interaction

While the end effector interaction with the artificial potentials will
guide the end effector around obstacles, it will not prevem collisions
of the links with the obstacles. To prevent these collisions, there must
be an interaction of the links with the anificial force ficld But the
link occupies a region near the obstacles, not just & point. How then
should the interaction be calculated? It would be 100 computstionally
insensive 0 integrae the total interaction of the link with the field.
Also, it is the avoidance of collision that is of primary importance.
Therefore, the poiat on the link which is closest 10 the obstacie should
determine the amount of repulsion experienced. We have previously
preseated an algorithm which determines the point on a link which
is closest 1o an obstacle (14]. The force due to the object is applied
10 the link a1 this point and the resultant motion is determined by the
dynamics of the armm.

5.3 Simulation Experiments

Three main situations were examined: 1.) Unsuccessful acquisition of
the goal while avoiding an object surrounded by the FIRAS potential,
2.) Movement 10 s gosl point while avoiding an object surrounded by
the proposed superquadric avoidance potential, 3.) and approach of an
object surrounded by the proposed superquadric approach potential.
In the first two simations the end effector experiences an sttractive
force from a goal point and a repuisive force from the obstacle. and
the links of the arm experience a repuisive force from the obstacle.
For the thind situation, the use of a goal point is optional and there
is o link interaction.

$3.1 FIRAS Potential

For many situations, the FIRAS potential provides a viable method of
obsiacle avoidance and goal acquisition. However, as was shown ear-
lier, local minima can be created when the FIRAS potential is added
10 a circularly symmetric well [14). When link interaction forces are
aot great enough 10 drive the end effector out of this minima, the arm
will stop ‘uphill’ of the object. Figure 10 shows such a situation.

532 Superquadric Avoidance Potentisl
The same arm majeciory has been initited with the superquadric

potential in the circular atiractive well. Figure 11 shows the end
effector of a two link manipulator successfully navigating around the
obstacle. This confirms the absence of a local minimum ‘uphill® from
the object. Howgver, with oaly two degrees of frecdom, the arm can
not move completely sround the obstacle — it becomes stuck when
the repulsive torque of the obstacle on the second link equals the
attractive torque of the goal point on the end effecior. This is not a
deficiency in the form of the potential, but s deficiency in the two link
manipulator. Figure 12 shows that a three link design does not have
this same problem. The arm is abic 0 ‘snake’ around the obstacle,
and the end effector is able t0 achieve the goal point.

A third situation was also examined. Four obstacles surrounded
by superquadric avoidance potentials were placed in a conical at-
tractive well, Figures 13 and 14 show the manipulator successfully
navigating between them 10 achieve the specified goal point. The stan
and finish points were interchanged for the two simulations. Differem
trajectories were created, but the traversal lime was about the same.
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Figure 10: Unsuccessful avoidance of sn obstacle using the FIRAS
potential (rp = 1.5). The end cffector has settled in s local minimum
just ‘uphill’ from the obstacie.

400 400 &0 1‘4

Figure 11: Successful avoidance of an obstacle using the newly pro-
posed function. The minimum value of a that will allow avoidance
has been used (a = 4.4). The am is prevenied from reaching the
goal by its geometric limitations.

r‘”“““ 200

Figure 12: Successful avoidance of an obstacle using the newly pro-
posed function. The minimum value of o that will allow avoidance
has been used (o = 3.76). The redundancy of the manipulator caables
it to ‘snake’ its way around the obstacle. The donted manipulator is
an inlermediste configuration.
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Figure 13: Successful navigauon around four obstacles using su-
perquadric avoidance potentials and a modifiedconical attractive well.
The dotted manipulators are intermediate configurations.
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$33 Approach Potential

Finally, the motion of the end effector approaching the surface of
the object has been simulaied in Figure 15. For this simulation, no
atrractive point was used. Instead, the arm was given an initial end
effecior velocity with its corresponding kinetic cnergy. The beight
of the potential al the surface was sct 1o ninety percent of the initial
kinetic and potential energy. To climinate any computational errors
due 10 the discreie time nature of the calculations, the height the
potential was continually modified to ninety percent of the kinetic
and potential energy. Also, the end effector was position controlled
in the y direction.

6 Summary

A new superquadric poteatial has been developed that improves upon
previous artificial potentials by providing svoidance of obstacles with-
out the generation of local minima., Also, since the contours of ob-
jecis are followed, a modified version of the function may be uscd
for object approach. These potentials have been implemented in sim-
ulations of two and three link manipulators. The results indicate an
improvement over other potential schemes.
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