
Taxonomies of Visual Programming

P
and

rogram Visualization

S

Brad A. Myers

eptember 20, 1989

eSchool of Computer Scienc
Carnegie Mellon University

Pittsburgh, PA
15213-3890

ubam@cs.cmu.ed
(412) 268-5150

g
R
The research described in this paper was partially funded by the National Science and Engineerin

esearch Council (NSERC) of Canada while I was at the Computer Systems Research Institute, Univer-
r

N
sity of Toronto, and partially by the Defense Advanced Research Projects Agency (DOD), ARPA Orde

o. 4976 under contract F33615-87-C-1499 and monitored by the Avionics Laboratory, Air Force

4
Wright Aeronautical Laboratories, Aeronautical Systems Division (AFSC), Wright-Patterson AFB, OH
5433-6543. The views and conclusions contained in this document are those of the author and should

e
A
not be interpreted as representing the official policies, either expressed or implied, of the Defens

dvanced Research Projects Agency of the US Government.

e
t
This paper is an updated version of [4] and [5]. Part of the work for this article was performed whil
he author was at the University of Toronto in Toronto, Ontario, Canada.

gTaxonomies of Visual Programmin
and

nProgram Visualizatio

Brad A. Myers

T

ABSTRACT

here has been a great interest recently in systems that use graphics to aid in the programming,

‘

debugging, and understanding of computer systems. The terms ‘‘Visual Programming’’ and

‘Program Visualization’’ have been applied to these systems. This paper attempts to provide

-

t

more meaning to these terms by giving precise definitions, and then surveys a number of sys

ems that can be classified as providing Visual Programming or Program Visualization. These

systems are organized by classifying them into three different taxonomies.

- 1 - n_Brad A. Myers Visual Programming & Program Visualizatio__

1. Introduction.

It is well-known that conventional programming languages are difficult to learn and use,

s

requiring skills that many people do not have [1]. However, there are significant advantages to

upplying programming capabilities in the user interfaces of a wide variety of programs. For

p

example, the success of spreadsheets can be partially attributed to the ability of users to write

rograms (as collections of ‘‘formulas’’).

As the distribution of personal computers grows, the majority of computer users now do

t

a

not know how to program, however. They buy computers with packaged software and are no

ble to modify the software even to make small changes. In order to allow the end user to

n

m

reconfigure and modify the system, the software may provide various options, but these ofte

ake the system more complex and still may not address the users’ problems. ‘‘Easy-to-use’’

w

software, such as ‘‘Direct Manipulation’’ systems [2] actually make the user—programmer gap

orse since more people will be able to use the software (since it is easy to use), but the inter-

r

i

nal program code is now much more complicated (due to the extra code to handle the use

nterface).

Therefore, we must find ways to make the programming task more accessible to users.

l

One approach to this problem is to investigate the use of graphics as the programming

anguage. This has been called ‘‘Visual Programming’’ or ‘‘Graphical Programming.’’ Some

e

f

Visual Programming systems have successfully demonstrated that non-programmers can creat

airly complex programs with little training [3].

Another class of systems try to make programs more understandable by using graphics to

’

s

illustrate the programs after they have been created. These are called ‘‘Program Visualization’

ystems and are usually used during debugging or when teaching students how to program.

e

f

This paper, which is updated and revised from [4] and [5], attempts to provide a mor

ormal definition of these terms, and discusses why graphical techniques are appropriate for use

-

i

with programming. Then, the various approaches to Visual Programming and Program Visual

zation are illustrated through a survey of relevant systems. This survey is organized around

.

2

three taxonomies. Finally, some general problems and areas for further research are addressed

. Definitions.

Programming___________. In this paper, a computer ‘‘program’’ is defined as ‘‘a set of statements that can

-

t

be submitted as a unit to some computer system and used to direct the behavior of that sys

em’’ [6]. While the ability to compute ‘‘everything’’ is not required, the system must include

the ability to handle variables, conditionals and iteration, at least implicitly.

- 2 - s_Visual Programming & Program Visualization Brad A. Myer__

r______________________ Any programming language system may either be ‘‘interpretive’’ o.

‘

Interpretive vs. Compiled

‘compiled.’’ A compiled system has a large processing delay before statements can be run

e

s

while they are converted into a lower-level representation in a batch fashion. An interpretiv

ystem allows statements to be executed when they are entered. This characterization is actu-

t

ally more of a continuum rather than a dichotomy since even interpretive languages like Lisp

ypically require groups of statements (such as an entire procedure) to be specified before they

V

are executed.

isual Programming_________________. ‘‘Visual Programming’’ (VP) refers to any system that allows the user

d

to specify a program in a two (or more) dimensional fashion. Although this is a very broad

efinition, conventional textual languages are not considered two dimensional since the com-

d

pilers or interpreters process them as long, one-dimensional streams. Visual Programming

oes not include systems that use conventional (linear) programming languages to define pic-

-

1

tures, such as, Sketchpad [7], CORE, PHIGS, Postscript [8], the Macintosh Toolbox [9], or X

1 Window Manager Toolkit [10]. It also does not include drawing packages like Apple

P

Macintosh MacDraw, since these do not create ‘‘programs’’ as defined above.

rogram Visualization.___________________ ‘‘Program Visualization’’ (PV) is an entirely different concept from

,

b

Visual Programming. In Visual Programming, the graphics is used to create the program itself

ut in Program Visualization, the program is specified in a conventional, textual manner, and

-

t

the graphics is used to illustrate some aspect of the program or its run-time execution. Unfor

unately, in the past, many Program Visualization system have been incorrectly labeled "Visual

:

w

Programming" (as in [11]). Program Visualization systems can be classified using two axes

hether they illustrate the code, data or algorithm of the program, and whether they are

-

g

dynamic or static. ‘‘Data Visualization’’ systems show pictures of the actual data of the pro

ram. Similarly, ‘‘Code Visualization’’ illustrates the actual program text, by adding graphical

t

marks to it or by converting it to a graphical form (such as a flowchart). Systems that illus-

rate the ‘‘algorithm’’ use graphics to show abstractly how the program operates. This is

s

m

different from data and code visualization because with algorithm visualization, the picture

ay not correspond directly to data in the program, and changes in the pictures might not

t

correspond to specific pieces of the code. For example, an algorithm animation of a sort rou-

ine might show the data as lines of different heights, and swaps of two items might be shown

n

t

as a smooth animation of the lines moving. The ‘‘swap’’ operation may not be explicitly i

he code, however.

‘‘Dynamic’’ visualizations refers to systems that can show an animation of the program

running, whereas ‘‘static’’ systems are limited to snapshots of the program at certain points.

- 3 - n_Brad A. Myers Visual Programming & Program Visualizatio__

y

t

If a program created using Visual Programming is to be displayed or debugged, clearl

his should be done in a graphical manner, which might be considered a form of Program

s

t

Visualization. However, it is more accurate to use the term Visual Programming for system

hat allow the program to be created using graphics, and Program Visualization for systems

V

that use graphics only for illustrating programs after they have been created.

isual Languages_______________. ‘‘Visual Languages’’ refer to all systems that uses graphics, including

-

w

Visual Programming and Program Visualization systems. Although all these terms are some

hat similar and confusing, it is important to have different names for the different kinds of

E

systems, and these are the names that are conventionally used in the literature.

xample-Based Programming_________________________. A number of Visual Programming systems also use Example-

p

Based-Programming. ‘‘Example-Based Programming’’ (EBP) refers to systems that allow the

rogrammer to use examples of input and output data during the programming process. There

W

are two types of Example-Based Programming: Programming by Example and Programming

ith Example. ‘‘Programming by Example’’ (PBE) refers to systems that try to guess or infer

c

the program from examples of input and output or sample traces of execution. This is often

alled ‘‘automatic programming’’ and has generally been an area of Artificial Intelligence

s

research. ‘‘Programming with Example’’ (PWE) systems, however, require the programmer to

pecify everything about the program (there is no inferencing involved), but the programmer

-

m

can work out the program on a specific example. The system executes the programmer’s com

ands normally, but remembers them for later re-use. Halbert [3] characterizes Programming

e

‘

with Examples as ‘‘Do What I Did’’ whereas inferential Programming by Example might b

‘Do What I Mean.’’

Of course, whenever code is executed in any system, test data must be entered to run it

l

on. The distinction between normal testing and Example-Based-Programming is that in the

atter the system requires or encourages the user to provide the examples before programming

3

begins, and then applies the program to the examples as it develops.

. Advantages of Using Graphics.

Visual Programming and Program Visualization are very appealing ideas for a number of

-

i

reasons. The human visual system and human visual information processing are clearly optim

zed for multi-dimensional data. Computer programs, however, are conventionally presented in

l

d

a one-dimensional textual form, not utilizing the full power of the brain. Two-dimensiona

isplays for programs, such as flowcharts and even the indenting of block structured programs,

have long been known to be helpful aids in program understanding [12]. A number of

- 4 - s_Visual Programming & Program Visualization Brad A. Myer__

l

d

Program Visualization systems [13] [14] [15] [16] have demonstrated that 2-D pictoria

isplays for data structures, such as those drawn by hand on a blackboard, are very helpful.

t

Clarisse [17] claims that graphical programming uses information in a format that is closer to

he user’s mental representations of problems, and will allow data to be processed in a format

l

s

closer to the way objects are manipulated in the real world. It seems clear that a more visua

tyle of programming could be easier to understand and generate for humans, especially for

non-programmers or novice programmers.

Another motivation for using graphics is that it tends to be a higher-level description of

f

a

the desired actions (often de-emphasizing issues of syntax and providing a higher level o

bstraction) and may therefore make the programming task easier even for professional pro-

p

grammers. This may be especially true during debugging, where graphics can be used to

resent much more information about the program state (such as current variables and data

-

g

structures) than is possible with purely textual displays. Also, some types of complex pro

rams, such as those that use concurrent processes or deal with real-time systems, are difficult

to describe with textual languages so graphical specifications may be more appropriate.

The popularity of ‘‘direct manipulation’’ interfaces [2], where there are items on the com-

d

puter screen that can be pointed to and operated on using a mouse, also contributes to the

esire for Visual Languages. Since many Visual Languages use icons and other graphical

h

objects, editors for these languages usually have a direct manipulation user interface. The user

as the impression of more directly constructing a program rather than having to abstractly

design it.

Smith [12] discusses at length many psychological motivations for using visual displays

4

for programs and data.

. Taxonomies of Visual Languages.

This paper presents three taxonomies. The first, discussed in Section 5, is for systems that

E

support programming, and classifies them as to whether they use Visual Programming and

xample-Based Programming. The second, discussed in Section 6, lists the various ways that

f

Visual Programming systems have represented the program. The third taxonomy (section 7) is

or Program Visualization systems, and shows whether the systems illustrate the code, data or

algorithm of programs.

Of course, a single system may have features that fit into various categories and some

t

systems may be hard to classify, so these taxonomies attempt to characterize the systems by

heir most prominent features. Also, the systems discussed here are only representative; there

]

[

are many systems that have not been included (additional systems are described in [18] [19

20] [21] [22]). Since there are so many visual language systems, it would be impossible to

B - 5 -rad A. Myers Visual Programming & Program Visualization

s

urvey them all in a single article, but hopefully the 50 or so discussed here will give the

5

reader an overview of the work that has been done.

. Taxonomy of Programming Systems

Figure 1 shows a taxonomy of some programming systems divided into eight categories

using the orthogonal criteria of:

• Visual Programming or not,

d

•

• Example-Based Programming or not, an

Interpretive or Compiled.

- 6 - s_Visual Programming & Program Visualization Brad A. Myer__

Not Example-Based Programming

Compiled Interpretive _
N

ot VP All Conventional Languages:

Pascal, Fortran, etc. LISP, APL, etc. __
Grail [23] Graphical Program Editor [24]

Q
AMBIT/G/L [25] [26] Spreadsheets

uery by Example [27] [28] PIGS [29] [30]

G
FORMAL [31] Pict [32]

AL [33] PROGRAPH [34] [35]
]VP FPL [36] State Transition UIMS [37

IBGE [38] PLAY [39]
]

O
MOPS-2 [40] Action Graphics [41

PAL [42] Forms [43]
]

H
Proc-BLOX [44] VERDI [45

iGraphs [46] LabVIEW [47]
]

S
Miro [48] SIL-ICON [49

tateMaster [50]
MPL [51]__

Example-Based Programming

Compiled Interpretive __
I/O pairs* [52] Tinker [53]

]Not VP Editing by Example* [54__
Pygmalion [12]

]Traces* [55] Smallstar [3] [56
Rehearsal World [57] [58]
Graphical Thinglab [59]

]VP Music System [60
HI-VISUAL [61]

P
ALEX* [62]

eridot* [63] [64]

F
InterCONS [65]

abrik [66] __

C
Figure 1.

lassification of programming systems by whether they are visual or not, whether they have
-

t
Example-Based Programming or not, and whether they are compiled or interpretive. Starred sys
ems (*) have inferencing (Programming by Example), and non-starred Example-Based Program-

-
c
ming systems use Programming with Example. The systems are listed in approximate chronologi
al order.

5.1. Not EBP, Not VP, Compiled and Interpretive

These are the conventional textual, linear programming languages that are familiar to all

t

programmers, such as Pascal, Fortran, and Ada for compiled and LISP and APL for interpre-

ive.

- 7 - n_Brad A. Myers Visual Programming & Program Visualizatio__

5.2. Not EBP, VP, Compiled

One of the earliest ‘‘visual’’ representations for programs was the flowchart. Grail [23]

o

could generate programs directly from computerized flowcharts, but the contents of boxes were

rdinary machine language statements. Since then, there have been many flowchart languages.

h

For example, FPL (First Programming Language) is reported to be ‘‘particularly well suited to

elping novices learn programming’’ because it eliminates syntactic errors [36]. Other

e

flowchart languages are IBGE [38] for the Macintosh, and OPAL [46] which allows doctors to

nter knowledge about cancer treatments into an expert system (see Figure 2). OPAL handles

u

iterations, conditionals and concurrency in an easy-to-understand manner. The GAL system

ses a flowchart-variant called Nassi-Shneiderman flowcharts [67] and is compiled into Pascal

[33].

Figure 2.
C

c
An OPAL program for defining a single cycle of VAM chemotherapy followed by cycles of POC
hemotherapy until the parameter CR (complete response) becomes true [42].

L

[

An early effort that was not based on flowcharts was the AMBIT/G [25] and AMBIT/

26] graphical languages. They supported symbolic manipulation programming using pictures.

g

Both the programs and data were represented diagrammatically as directed graphs, and the pro-

ramming operated by pattern matching. Fairly complicated algorithms, such as garbage col-

lection, could be described graphically as local transformations on graphs.

A new variant on graphs is called ‘‘HiGraphs’’ [46], which allows the nodes to contain

-

t

other nodes, and allows the arrows to split and join (see Figure 3). HiGraphs can also be res

ricted to certain forms to create specific visual programming languages. For example, Miro

-

m

[48] is a HiGraphs language for defining security constraints in operating systems (for deter

ining which users can access which files). Another application is the programming of com-

puter user interfaces in StateMaster [50].

You might think that a system called ‘‘Query by Example’’ would be a ‘‘Programming

e

(

by Example’’ system, but in fact, according to this classification, it is not. Query by Exampl

QBE) [27] allows users to specify queries on a relational database using two-dimensional

tables (or forms), so it is classified as a Visual Programming system. The ‘‘examples’’ in

- 8 - s_Visual Programming & Program Visualization Brad A. Myer__

Figure 3.
.

Q

A HiGraphs program describing the operation of a digital watch

BE are what Zloof called variables. They are called ‘‘examples’’ because the user is sup-

n

posed to give them names that refer to what the system might fill into that field, but they have

o more meaning than variable names in most conventional languages. The ideas in QBE have

-

p

been extended to mail and other non-database areas of office automation in ‘‘Office by Exam

le’’ (OBE) [28]. A related forms-based database language is FORMAL [31] which explicitly

represents hierarchical structures.

The MOPS-2 system [40] uses ‘‘colored Petri nets’’ to allow parallel systems to be con-

s

structed and simulated in a visual manner. Petri nets may help when programming real-time

oftware, as described in [68]. Berztiss [69] discusses how to lay out Petri nets automatically.

w

p

Another interesting way to present program constructs is using tiles that look like jigsa

ieces, and will only fit together in ways that form legal programs. One version of this is

Proc-BLOX [44] shown in Figure 4.

The MPL system [51] allows graphical representations of matrices to be combined with

s

s

conventional Prolog programs. The program is entered with a modified text editor that allow

ymbolic representations of the matrices to be drawn graphically, and then the resulting file is

5

compiled and run. This is a good example of combining the use of graphics with text.

.3. Not EBP, VP, Interpretive

Probably the first Visual Programming system was William Sutherland’s Graphical Pro-

t

c

gram Editor [24] which represented programs somewhat like hardware logic diagrams tha

ould be executed interpretively. Some systems for programming with flowcharts have been

-

t

interpretive. Pict [32] uses conventional flowcharts, but is differentiated by its use of color pic

ures (icons) rather than text inside of the flowchart boxes. PIGS [29] uses Nassi-Shneiderman

B - 9 -rad A. Myers Visual Programming & Program Visualization___

Figure 4.
l

o
A Proc-BLOX display for some Pascal-like program constructs [44]. The jigsaw puzzle pieces wil
nly fit together in ways that form legal programs.

flowcharts and has been extended to handle multi-processing in Pigsty/I-PIGS [30]. Another

-

t

variant of flowcharts is used by the PLAY system [39], which allows children to create anima

ions by using a ‘‘comic strip’’ representation of the actions to be performed. The VERDI

r

c

system [45] uses a form of Petri nets to specify distributed systems. With VERDI, the use

an see an animation of the program running by watching tokens move around the network.

-

t

A number of visual programming systems use ‘‘dataflow diagrams.’’ Here, the opera

ions are typically put in boxes, and the data flows along the wires connecting them. One

e

t

example is PROGRAPH [34], which is a structured, functional language that claims to alleviat

he usual problem with functional languages where ‘‘the conventional representation in the

-

V

form of a linear script makes it almost unreadable’’ [35]. Another data flow language is Lab

IEW [47], which is a commercial product running on Apple Macintoshes for controlling

y

u

external instruments. LabVIEW provides procedural abstraction, control structures, and man

seful primitive components such as knobs, switches, graphs, and arithmetic and transcendental

functions (see Figure 5).

A number of systems for automatically generating user interfaces for programs (User

g

Interface Management Systems [70]) allow the designer to specify the user interface in a

raphical manner. An example of this is the state transition diagram editor by Jacob [37].

t

Most other UIMSs require that designers specify the programs using some textual representa-

ion, so they do not qualify as Visual Programming systems.

-

p

Spreadsheets, such as those in VisiCalc or Lotus 1-2-3 were designed to help non

rogrammers manage finances. Spreadsheets incorporate programming features and can be

l

P

made to do general purpose calculations [71], and therefore qualify as a very-high level Visua

rogramming language. Some of the reasons that spreadsheets are so popular are: (from [43]

V - 10 -isual Programming & Program Visualization Brad A. Myers___

(a) (b)

A
Figure 5.

LabVIEW window (a) in which a program to generate a graph has been entered. The resulting user

a

interface after the program has been hidden is shown in (b).

nd [1])

(1) the graphics on the screen use a familiar, concrete, and visible representation which

(

directly maps to the user’s natural model of the data.

2) they are non-modal and interpretive and therefore provide immediate feedback,

(

(3) they supply aggregate and high-level operations,

4) they avoid the notion of variables (all data is visible),

(

(5) the inner world of computation is suppressed,

6) each cell typically has a single value throughout the computation,

(

(7) they are non-declarative and typeless,

8) consistency is automatically maintained, and

l(9) the order of evaluation (flow of control) is entirely derived from the declared cel

dependencies.

- 11 - n_Brad A. Myers Visual Programming & Program Visualizatio__

s

i

The first point differentiates spreadsheets from many other Visual Programming language

ncluding flowcharts which are graphical representations derived from textual (linear)

l

t

languages; with spreadsheets, the original representation is graphical and there is no natura

extual language.

Action Graphics [41] uses ideas from spreadsheets to try to make it easier to program

t

f

graphical animations. The ‘‘Forms’’ system [43] uses more a more conventional spreadshee

ormat, but adds sub-sheets (to provide procedural abstraction) which can have an unbounded

size (to handle arbitrary parameters).

A different style of system is SIL-ICON [49], which allows the user to construct ‘‘iconic

i

sentences’’ consisting of graphics arranged in a meaningful two-dimensional fashion, as shown

n Figure 6. The SIL-ICON interpreter then parses the picture to determine what it means.

c

The interpreter itself is generated from a description of the legal pictures, in the same way that

onventional compilers can be generated from BNF descriptions of the grammar.

F
Figure 6.

ive different ‘‘iconic sentences’’ that SIL-ICON can interpret. They
.

T
mean: insert a line, insert a string, delete a string, move a string to a new place, and replace a string

he user constructs these pictures from primitives such as rectangles, lines and arrows [49].

V - 12 -isual Programming & Program Visualization Brad A. Myers

5

.4. EBP, Not VP, Compiled

Some systems have attempted to infer the entire program from one or more examples of

L

what output is produced for a particular input. One program [52] inferred simple recursive

ISP programs from a single I/O pair, such as (A B C D) ==> (D D C C B B A A). This

s

o

system was limited to simple list processing programs, and it is clear that systems such as thi

ne cannot generate all programs, or even be likely to generate the correct program [72]

5.5. EBP, Not VP, Interpretive

Tinker [53] is a ‘‘pictorial’’ system that is not classified as VP. The user chooses a con-

i

crete example, and the system executes Lisp statements on this example as the code is typed

n. Although Tinker uses windows, menus, and other graphics in its user interface, it is not a

-

t

VP system since the user presents all of the code to the system in the conventional, linear, tex

ual manner. For conditionals, Tinker requires the user to give two examples: one that will

p

travel down each branch. Tinker notices that two contradictory paths have been specified and

rompts the user to type in a test to distinguish when each branch is desired.

.

H

The Editing by Example (EBE) system [54] is based on ideas from input/output pairs

ere, the system generates a small program that describes a sequence of editing operations.

p

This program can then be run on any piece of text. The system compares two or more exam-

les of the editing operations in order to deduce what are variables and what are constants.

h

The correct programs usually can be generated given only two or three examples, and there are

euristics to generate programs from single examples. EBE creates the programs from the

a

results of the editing operations (the input and output), rather than traces of the execution, to

llow the user more flexibility and the ability to correct small errors (typos) while giving the

i

examples. EBE seems to be relatively successful, chiefly because it limits the domain in which

t performs inferencing.

d5.6. EBP, VP, Compile

Some inferencing systems that attempt to cover a wider class of programs than those that

r

can be generated from I/O pairs have required the user to specify the data structures and algo-

ithms and then run through a computation on a number of examples. The systems attempt to

t

infer where loops and conditionals should go to produce the shortest and most general program

hat will work for all of the examples. One such system is by Bauer [55], which also decides

l

s

which values in the program should be constants and which should be variables. It is visua

ince the user can specify the program execution using graphical traces. Unfortunately, these

d

systems tended to create incorrect programs, and it was difficult to check what the system had

one without studying the generated code.

- 13 - n_Brad A. Myers Visual Programming & Program Visualizatio__

5.7. EBP, VP, Interpretive

Pygmalion [12] was one of the seminal VP and EBP systems. It provides an iconic and

d

i

‘‘analogical’’ method for programming: concrete display images for data and programs, calle

cons, are manipulated to create programs . The emphasis is on ‘‘doing’’ pictorially, rather

t

1

han ‘‘telling.’’ Thinglab [73] [74] was designed to allow the user to describe and run com-

d

plex simulations easily. A VP interface to Thinglab is described in [59]. Here the user can

efine new constraints among objects by specifying them graphically. Also, if a class of

e

objects can be created by combining already existing objects, then it can be programmed by

xample in Thinglab.

Smallstar [3] [56] uses EBP to allow the end user to program a prototype version of the

,

p

Star office workstation [75]. When programming, the user simply goes into program mode

erforms the operations that are to be remembered, and then leaves program mode. The opera-

.

S

tions are executed in the actual user interface of the system, which the user already knows

ince the system does not use inferencing, the user must differentiate constants from variables

l

r

and explicitly add control structures (loops and conditionals). This is done on a textua

epresentation of the program created while the user is giving the example. Halbert reports

that Star users were able to create procedures for performing their office tasks with his system.

The goal of Rehearsal World [57] [58] is to allow teachers who do not know how to pro-

‘

gram to create computerized lessons easily. Interactive graphics are heavily used to provide a

‘collaborative, evolutionary and exploratory’’ environment where programming is ‘‘quick,

a

easy and fun.’’ The metaphor presented to the user is a theater, where the screen is the stage

nd there are predefined performers that the user can direct to create a play. The teacher

.

I

developing the program sees at every point exactly what the student-user of the play will see

n addition, the teacher can have additional performers in the wings (so the student will not see

e

t

them) that provide auxiliary functions such as flow control. Everything is made visible to th

eachers, however, which allows their thinking to be concrete, rather than abstract as in con-

c

ventional programming environments. When a new performer is needed, often its code can be

reated using examples, but when this is not possible, some Smalltalk code must be written.

The static representation for all performers is Smalltalk code, which can be edited by those

Pygmalion is also credited with inventing the use of icons in computer interfaces. Icons were later used by Smith and others in1

commercial products such as the Xerox Star and Apple Lisa and Macintosh.

V - 14 -isual Programming & Program Visualization Brad A. Myers

w

ho know how.

HI-VISUAL [61] allows the user to construct data flow programs out of iconic pictures

-

m

(see Figure 7). It is classified as EBP because the user supplies sample data before program

ing starts, and the system executes the program on the data as each icon is added to the pro-

gram.

Figure 7.
.

A

A HI-VISUAL program for performing image processing [61]

related system uses direct manipulation to configure icons and circuit diagrams to

-

p

define sound processing systems [60]. This system is classified as Programming With Exam

le because the resulting sound is continuously played while the circuit is being constructed.

-

p

The ALEX system [62] allows matrix manipulation algorithms to be specified by exam

le. The user points to a typical element, row, or column in a graphical presentation of a sam-

o

ple matrix, and then specifies how to process it. The system then generalizes this operation to

perate on the entire array.

Peridot [63] [64] is a tool for creating user interfaces by demonstration without program-

t

ming. The user draws a picture of the desired interface and the system generalizes this picture

o produce a parameterized procedure (see Figure 8). The user gives example values for any

a

n

parameters so the system can display a concrete instance of the user interface. Peridot allows

on-programmer to create menus, scroll-bars, buttons, sliders, etc., and it can create most of

the interaction techniques in the Apple Macintosh Toolbox.

Two data flow systems support Programming with Example. InterCONS [65] and Fabrik

s[66] both were developed in Smalltalk and allow the user to wire together low-level primitive

- 15 - n_Brad A. Myers Visual Programming & Program Visualizatio__

C
Figure 8.

reating a scroll bar using Peridot. In (a), the background graphics have been created. The grey bar
f

t
will represent percent of file visible in the window. The two extremes of the full file (b) and none o
he file (c) are demonstrated. This will depend on the active value ScrollPercent which ranges from

)
a
100 to 0 (d). Next, the two extremes of seeing the end of the file (d) and the beginning of the file (e
re demonstrated. The active value WhereInFile (which varies from the value of the parameter Chars-

m
InFile down to one) controls this (f). The designer then demonstrates (f) that the bar should follow the

ouse when the middle button is down using the ‘‘simulated mouse’’ [63].

.

T

like arithmetic operators and higher-level user interface elements like scroll bars and buttons

hese systems allow the user to input sample data as the program input, and they continually

o

h

adjust the output data based on the input and the program constructed thus far. Fabrik als

andles undefined values on wires by drawing them with dotted lines. Figure 9 shows an

6

example of an InterCONS program for a calculator.

. Classification by Specification Technique.

Another way to classify programming systems is by what kind of representation they use

u

for the code. Figure 10 lists the systems discussed here by what specification technique they

se. As new Visual Programming systems are designed, this list is likely to grow, since new

forms for the specification can be invented.

- 16 - s_Visual Programming & Program Visualization Brad A. Myer__

A desk calculator program in InterCONS [65].
Figure 9.

_Specification Technique: Systems:___
Textual Languages: Pascal, Ada, Fortran, Lisp, Ada, etc.

Tinker, Smallstar ___
Flowcharts: Grail, Pict, FPL, IBGE, OPAL ___
Flowchart derivatives: GAL, PIGS, SchemaCode, PLAY ___
Petri nets: MOPS-2, VERDI ___
Data flow graphs: Graphical Program Editor, PROGRAPH,

,
L
Graphical Thinglab, Music System, HI-VISUAL

abVIEW, Fabrik, InterCONS ___
Directed graphs: AMBIT/G/L, State Transition UIMS, Bauer’s Traces ___
Graph derivatives: HiGraphs, Miro, StateMaster ___
Matrices: ALEX, MPL ___
Jigsaw puzzle pieces: Proc-BLOX ___
Forms: Query by Example, FORMAL ___
Iconic Sentences: SIL-ICON ___
Spreadsheets*: VisiCalc, Lotus 1-2-3, Action Graphics, ‘‘Forms’’ ___
Demonstrational*: Pygmalion, Rehearsal World, Peridot _
N

__
one*: I/O Pairs, Editing by Example ___

C
Figure 10.

lassification of programming systems by specification style. Classifications marked with a star (*) pri-

F
marily show the data of the program, rather than the code. References for these systems are shown in

igure 1.

- 17 - n_Brad A. Myers Visual Programming & Program Visualizatio__

6.1. Discussion

Many of the categories listed in Figure 10 should be clear, but some need additional

explanation.

The ‘‘Textual Language’’ specification style is clearly used by all conventional program-

.

S

ming languages. It is also used by Tinker since it is not a Visual Programming Language

mallstar is a example-based-programming system and the system generates the appropriate

-

m

code while the user is demonstrating the program. Smallstar uses a textual language (aug

ented with a few decorative icons) to record the user’s program. Many of the other

.

T

example-based-programming systems are listed in the figure as having ‘‘no’’ textual language

his is because they generate code in a conventional computer language (e.g., Lisp for I/O

Pairs and Peridot) which is not shown to the users.

The ‘‘Iconic Sentences’’ are a separate category because here the positions of the picture

g

are meaningful, and not just how they are connected with arrows as with flowcharts and

raphs.

In ‘‘Demonstrational’’ systems, the program is defined by graphics that change in time.

w

The meaning and behavior of the icons is demonstrated temporally, and the system remembers

hat the user has done. For example, in Pygmalion, to demonstrate that 3 should be added to

s

o

the value in a variable, the user would drag the icon for the variable into one of the input slot

f the adder icon, and a ‘‘3’’ to the other input slot. There is no visible representation of the

actions.

The systems classified as using Demonstrational, Spreadsheets, and no language

f

t

(‘‘None’’) actually show the data of the program, rather than the code. The current values o

he data is visible on the screen, and the code that caused the data to get to be that way is hid-

i

den. Sometimes, but not often, there is a way to discover previous states of the data. This is

n contrast to most other systems (including data flow diagrams), where the code of the pro-

h

gram is represented and the data is implicit. The AMBIT languages are somewhat unique

owever, because here both the code and data is shown in a pictorial manner.

7. Taxonomy of Program Visualization Systems.

The systems discussed in this section are not programming systems since code is created

e

p

in the conventional manner. Therefore, none of the systems discussed below appears in th

revious sections. Graphics is used here to illustrate some aspect of the program after it is

a

written. Figure 11 shows some Program Visualization systems classified by whether they

ttempt to illustrate the code, data or algorithm of a program, and whether the displays are

estatic or dynamic. Some systems fit into multiple categories, because they illustrate multipl

- 18 - s_Visual Programming & Program Visualization Brad A. Myer__

aspects or have different modes.
Static Dynamic ___

Flowcharts [76] BALSA [16]
]

C
SEE Visual Compiler [77] PV Prototype [78

ode PegaSys [79] MacGnome [80]
Object-Oriented Diagrams [81]

_ TPM [82] TPM [82]__
Data TX2 Display Files [83] Linked Lists [84]

Incense [14] [85] MacGnome [13] ___
Two Systems [86]

]Stills [87] Sorting out Sorting [15
BALSA [16] [88]

]Algorithm Animation Kit [89
PV Prototype [78]

A
ALADDIN [90]

nimation by Demonstration [91]
TANGO [92] ___

C
Figure 11.

lassification of Program Visualization Systems by whether they illustrate the code, data or algorithm,

7

and whether they are static or dynamic.

.1. Static code visualization

The earliest example of a visualization is undoubtably the flowchart. As early as 1959,

l

there were programs that automatically created graphical flowcharts from Fortran or assembly

anguage programs [76]. An entirely different approach is taken by SEE [77] which attempts

o

to make conventional program text easier to read by adding multiple fonts, nice formatting, and

ther graphics.

In PegaSys [79], pictures are formal documentation of programs and are drawn by the

e

e

user and checked by the system to ensure that they are syntactically meaningful and, to som

xtent, whether they agree with the program. The program itself, however, must still be

entered in a conventional language (Ada).

The Prolog logic-programming language has a quite different execution model than con-

t

P

ventional languages. In order to try to make it more understandable, TPM (the Transparen

rolog Machine) [82] generates pictures of the execution of Prolog programs. TPM will pro-

,

b

duce nicely formatted pictures after a program has completed (so it is classified as ‘‘static’’)

ut it will also show an animation of the code executing on less well-formatted pictures (so it

is also listed as ‘‘dynamic’’). Figure 12 shows a sample of a TPM picture.

- 19 - n_Brad A. Myers Visual Programming & Program Visualizatio__

A
Figure 12.

Prolog program visualized by TPM [82].

7.2. Dynamic code visualization

Most systems in this class do not actually animate the code itself, but rather dynamically

f

h

show what parts of the code are being executed as the program is run using some sort o

ighlighting. Examples are BALSA [16], PV Prototype [78] and MacGnome [80]. Figure 13

shows the Balsa highlighting the execution of a recursive procedure.

Figure 13.
n

a
On the left is a code visualization from BALSA showing the highlight bar that follows the executio
nd the recursive nesting of procedures. On the right is the algorithm animation [16].

V - 20 -isual Programming & Program Visualization Brad A. Myers___

The Object-Oriented Diagraming system [81] has a somewhat different focus. It is aimed

s

o

at illuminating the message-passing structure in object-oriented programs. The system display

bjects as boxes (see Figure 14), and arrows show whether the message is handled by the

object class, or by one of its super-classes.

Figure 14.
e

s
Display of message passing from [81]. Each rounded box is one object instance, and super-classes ar
hown below sub-classes. The arrows show whether the message was handled by the object class itself

-
d
(e.g. add: which calls at:put: of its parent class) or whether it is handled by the super-class (e.g. ad

All:).

7.3. Static data visualization

A very early system for the TX-2 computer could produce static pictures of the display

s

f

file to aid in debugging [83]. Incense [14] [85] automatically generated static pictorial display

or data structures. The pictures included curved lines with arrowheads for pointers and

e

g

stacked boxes for arrays and records, as well as user-defined displays (see Figure 15). Th

oal was to making debugging easier by presenting data structures to programmers in the way

that they would draw them by hand on paper.

Figure 15.
.A display produced automatically by Incense of 3 records containing pointers [85]

- 21 - n_Brad A. Myers Visual Programming & Program Visualizatio__

7.4. Dynamic data visualization

One of the earliest data visualization systems was the L6 movie of list manipulations

s

t

[84]. This system actually falls between dynamic and static since the software created frame

hat were filmed. The hardware was not fast enough to animate the structures changing. The

s

o

MacGnome system, however, shows the pictures changing as the data is modified [13]. It run

n the Macintosh, and is similar to Incense in that it automatically produces displays for data

.

T

structures from the types of the variables; no extra code is needed to generate the pictures

he user simply points to a variable with the mouse, and a picture of its data is automatically

displayed (see Figure 16).

Figure 16.
d

a
A data visualization automatically produced by MacGnome [13] of a queue of characters implemente
s a linked list of records.

n7.5. Static Algorithm visualizatio

A visualization system that produces static snapshots of the algorithm is Stills [87]. The

t

w

user added special commands to the source algorithm, and the system generated troff outpu

hich could be sent to printers.

n7.6. Dynamic Algorithm visualizatio

Most algorithm visualizations systems are dynamic since they produce animations of the

-

t

algorithm in action. The first few systems in this class, like the early data visualization sys

ems, created movies of the algorithms (e.g. sorting) and were used for teaching computer sci-

ence algorithms [86] [15].

- 22 - s_Visual Programming & Program Visualization Brad A. Myer__

-

g

Unlike data visualization systems, all algorithm animation systems require that the pro

rammer explicitly add information to the code to control the animations. In the famous

s

BALSA system from Brown University [16], special instructions were added to the code to

ignal important events. This system was designed to teach students about programming, and

n

u

produces the illustrations in real time on an Apollo personal workstation (see Figure 13). A

pdated version, called BALSA-II, runs on the Macintosh and allows the user to control the

-

m

animation using Macintosh-style menus [88]. The code of the algorithm must still be aug

ented to tell the system about important events.

The ‘‘PV Prototype’’ [78] was designed to aid in debugging and program understanding,

.

A

and it supports dynamic displays of data and easier construction of user-defined displays

nother system, called Animation Kit, has similar goals. It is written in Smalltalk and features

smooth transitions from one state to another [89].

A recognized problem with these systems is that it is difficult to specify what the data

a

d

animations should look like. ALADDIN [90] attempts to alleviate this problem by allowing

eclarative specification of the desired views using a catalog of pre-defined graphical and ani-

D

mation primitives. A different approach was used by Duisberg [91] in the Animation by

emonstration system, which allows the desired animations to be specified by demonstration.

f

The user draws a sample picture and then demonstrates an example of the animation to be per-

ormed. This animation can then be triggered when a message is sent to an object in the

c

underlying Smalltalk environment. The system uses gestures and a music-like score editor to

ontrol the timing of the animations. TANGO [92] uses a similar approach and allows much

8

of the animations to be created using a graphical editor instead of by writing code.

. Evaluation of Visual Programming and Program Visualization.

m

V

Although there is a great deal of excitement about Visual Programming and Progra

isualization, as well as a large number of working systems, there is still a lot of skepticism

about the success and prospects of the field. For example, Frederick Brooks wrote:

A favorite subject for PhD dissertations in software engineering is graphical, or visual,

i
programming—the application of computer graphics to software design.... Nothing even convinc-
ng, much less exciting, has yet emerged from such efforts. I am persuaded that nothing will. In

o
b
the first place, ... the flowchart is a very poor abstraction of software structure.... It has proved t
e useless as a design tool.... Second, the screens of today are too small, in pixels, to show both

.
s
the scope and the resolution of any seriously detailed software diagram.... More fundamentally, ..
oftware is very difficult to visualize. Whether one diagrams control flow, variable-scope nesting,

d
variable cross-references, dataflow, hierarchical data structures, or whatever, one feels only one
imension of the intricately interlocked software elephant. [93, pp. 15-16, emphasis added]

r

D

In a similar vein, referring to the MacGnome system (discussed in section 7.4), Edsge

ijkstra wrote:

- 23 - n_Brad A. Myers Visual Programming & Program Visualizatio__

-
g
I was recently exposed to ... what ... pretended to be educational software for an introductory pro
ramming course. With its ‘‘visualizations’’ on the screen, it was ... an obvious case of curriculum

s
e
infantilization.... We must expect from that system permanent mental damage for most student
xposed to it. [94]

Visual Languages are new paradigms for programming, and clearly the existing systems have

-

m

not been completely convincing. The challenge clearly is to demonstrate that Visual Program

ing and Program Visualization can help with real-world problems. The key to this, in my

r

g

opinion, is to find appropriate domains and new domains to apply these technologies to. Fo

eneral-purpose programming by professional programmers, textual languages are probably

e

w

more appropriate. However, we will find new domains and new forms of Visual Languag

here using graphics will be beneficial. The systems discussed in this paper show that some

F

successful areas so far include:

or Visual Programming:

• helping to teach programming (FPL, Pict, etc.),

-• allowing non-programmers to enter information in limited domains (OPAL, spread

sheets),

• allowing non-programmers to construct animations (PLAY) and simple computerized les-

•

sons for computer-aided instruction (Rehearsal World),

helping with the construction of user interfaces (Peridot, State Transition UIMS),

F

• and, most significantly, financial planning with spreadsheets.

or Program Visualization:

• helping to teach algorithms involving data structures (Sorting out Sorting, BALSA),

•

• helping to teach program concepts, such as Prolog code execution (TPM), and

helping to debug programs (MacGnome).

.9. General Problems and Areas for Future Research

As described in the previous section, the largest area for future research is to prove that

l

p

Visual Languages will actually help users. In addition, there are a number of more technica

roblems that most of these systems share.

- 24 - s_Visual Programming & Program Visualization Brad A. Myer__

9.1. All Visual Languages

The problems mentioned in this section apply to many Visual Programming and Program

•

Visualization systems.

Difficulty with large programs or large data. Almost all visual representations are physi-

t

cally larger than the text they replace, so there is often a problem that too little will fit on

he screen. This problem is alleviated to some extent by scrolling and various abstraction

•

mechanisms.

Need for automatic layout. When the program or data gets to be large, it can be very tedi-

-

t

ous for the user to have to place each component, so the system should lay out the pic

ure automatically. Unfortunately, for many graphical representations, generating an

r

e

attractive layout can be difficult, and generating a perfect layout may be intractable. Fo

xample, generating an optimal layout of graphs and trees is NP-Complete [95]. More

r

i

research is needed, therefore, on fast layout algorithms for graphs that have good use

nterface characteristics, such as avoiding large scale changes to the display after a small

•

edit.

Lack of formal specification. Currently, there is no formal way to describe a Visual

w

Language. Something equivalent to the BNFs used for textual languages is needed. This

ould provide the field with a ‘‘hard science’’ foundation, and may allow tools to be

s

e

created that will make the construction of editors and compilers for Visual Language

asier. Chang [49] [96], Glinert [97] and Selker [98] have made attempts in this direc-

•

tion, but much more work is needed.

Tremendous difficulty in building editors and environments. Most Visual Languages

t

require a specialized editor, compiler, and debugger to be created to allow the user to use

he language. With textual languages, conventional, existing text editors can be used and

l

l

only a compiler and possibly a debugger needs to be written. Currently, each graphica

anguage requires its own editor and environment, since there are no general purpose

-

c

Visual Language editors. These editors are hard to create because there are no ‘‘editor

ompilers’’ or other similar tools to help. The ‘‘compiler-compiler’’ tools used to build

-

p

compilers for textual languages are also rarely useful for building compilers and inter

reters for Visual Languages. In addition, the language designer must create a system to

-

g

display the pictures from the language, which usually requires low-level graphics pro

ramming. Other tools that traditionally exist for textual languages must also be created,

r

including pretty-printers, hard-copy facilities, program checkers, indexers, cross-

eferencers, pattern matching and searching (e.g., ‘‘grep’’ in Unix), etc. These problems

are made worse by the historical lack of portability of most graphics programs.

- 25 - n_Brad A. Myers Visual Programming & Program Visualizatio__

-• Lack of evidence of their worth. There are not many Visual Languages that would be gen

erally agreed are ‘‘successful,’’ and there is little in the way of formal experiments or

t

informal experience that shows that Visual Languages are good. It would be interesting

o see experimental results that demonstrated that visual programming techniques or

.

M

iconic languages were better than good textual methods for performing the same tasks

etrics might include learning time, execution speed, retention, etc. Fortunately, prelim-

t

inary results are appearing for the advantages of using graphics for teaching students how

o program [36].

• Poor representations. Many visual representations are simply not very good. Programs are

e

o

hard to understand once created and difficult to debug and edit. This is especially tru

nce the programs get to be a non-trivial size.

t• Lack of Portability of Programs. A program written in a textual language can be sen

through electronic mail, and used, read and edited by anybody. Graphical languages

-

c

require special software to view and edit; otherwise they can only be viewed on hard

opy.

9.2. Specific Problems for Visual Programming

A primary problem for many Visual Programming languages is that are ‘‘unstructured’’

•

in the software engineering sense. This is because many of them:

use gotos and explicit transfer of control (often through wires),

•

• only have global variables,

have no procedural abstraction,

• if they have procedural abstraction, they may not have parameters for the procedures,

• have no place for comments.

Another problem is that many Visual Programs do not integrate with programs created in

f

t

different languages, such as text. A Visual Program might be appropriate for some aspects o

he programming task but not others. An exception is MPL (section 5.2) which uses a Visual

c

Language for matrices and a textual language for everything else. Antoerh approach is for the

ompiler for the Visual Programming Language to generate conventional computer programs

(e.g., in C), so they can be combined with other programs.

- 26 - s_Visual Programming & Program Visualization Brad A. Myer__

•

9.3. Specific Problems for Program Visualization

Difficulty in specifying the display. Newer Program Visualization systems are beginning to

-

g

ease the task of specifying the display, but it can still be very difficult to design and pro

ram the desired graphics. Some systems, such as BALSA-II make it easy to choose

t

b

from a pre-defined set of displays, but creating other displays can still be very difficul

ecause it involves making low-level calls to the graphics primitives.

y• Problem of controlling timing. For dynamic data visualization, it is difficult to specif

when the displays should be updated. Issues of aesthetics in timing are very important to

1

produce useful animations.

0. Conclusions.

Visual Programming and Program Visualization are interesting areas that show promise

s

t

for improving the programming process, especially for non-programmers, but more work need

o be done. The success of spreadsheets demonstrates that if we find the appropriate paradigms,

A

graphical techniques can revolutionize the way people interact with computers.

CKNOWLEDGEMENTS

For help and support of this article, I would like to thank Bernita Myers. I would also

o

a

like to thank the British Computer Society Displays Group for making it possible for me t

ttend the Symposium on Visual Programming and Program Visualisation in London where an

R

earlier version of this paper was presented.

EFERENCES
[1] C. Lewis and G.M. Olson. ‘‘Can Principles of Cognition Lower the Barriers to Pro-

gramming?’’ in Empirical Studies of Programmers, Vol. 2, Ablex, 1987.

[2] Ben Shneiderman. ‘‘Direct Manipulation: A Step Beyond Programming Languages,’’
IEEE Computer. 16(8) Aug. 1983. pp. 57-69.

[3] Daniel C. Halbert. Programming by Example. PhD Thesis. Computer Science Divi-

D
sion, Dept. of EE&CS, University of California, Berkeley. 1984. Also: Xerox Office Systems

ivision, Systems Development Department, TR OSD-T8402, December, 1984. 83 pages.

-
a

[4] Brad A. Myers. ‘‘Visual Programming, Programming by Example, and Program Visu
lization; A Taxonomy,’’ Proceedings SIGCHI’86: Human Factors in Computing Systems.

Boston, MA. April 13-17, 1986. pp. 59-66.

[5] Brad A. Myers. The State of the Art in Visual Programming and Program Visualiza-

C
tion, Carnegie Mellon University Computer Science Department Technical Report No. CMU-

S-88-114. Feb, 1988.

[6] Dictionary of Computing. Oxford: Oxford University Press, 1983.

-
t

[7] Ivan E. Sutherland. ‘‘SketchPad: A Man-Machine Graphical Communication Sys
em,’’ AFIPS Spring Joint Computer Conference. 23 1963. pp. 329-346.

B - 27 -rad A. Myers Visual Programming & Program Visualization___

[8] Adobe Systems, Inc. Postscript Language Reference Manual. Addison-Wesley, 1985.

[

[9] Apple Computer, Inc. Inside Macintosh. Addison-Wesley, 1985.

10] Joel McCormack and Paul Asente. ‘‘An Overview of the X Toolkit,’’ Proceedings

O
of the ACM SIGGRAPH Symposium on User Interface Software,’’ Banff, Alberta, Canada.

ct, 17-19, 1988. pp 46-55.

[11] Robert B. Grafton and Tadao Ichikawa, eds. IEEE Computer, Special Issue on
Visual Programming. 18(8) Aug. 1985.

[12] David C. Smith. Pygmalion: A Computer Program to Model and Stimulate Creative
Thought. Basel, Stuttgart: Birkhauser, 1977. 187 pages.

[13] Brad A. Myers, Ravinder Chandhok, and Atul Sareen. ‘‘Automatic Data Visualiza-

1
tion for Novice Pascal Programmers,’’ 1988 IEEE Workshop on Visual Languages. October

0-12, 1988. Pittsburgh, PA. Computer Society Order Number 876, IEEE Computer Society
Press, Terminal Annex, P.0. Box 4699, Los Angeles, CA 90051. pp. 192-198.

[14] Brad A. Myers. ‘‘Incense: A System for Displaying Data Structures,’’ Computer
Graphics: SIGGRAPH ’83 Conference Proceedings. 17(3) July 1983. pp. 115-125.

[15] Ron Baecker. Sorting out Sorting. 16mm color, sound film, 25 minutes. Dynamics

O
Graphics Project, Computer Systems Research Institute, University of Toronto, Toronto,

ntario, Canada. 1981. Presented at ACM SIGGRAPH’81. Dallas, TX. Aug. 1981.

’
C

[16] Marc H. Brown and Robert Sedgewick. ‘‘A System for Algorithm Animation,’
omputer Graphics: SIGGRAPH’84 Conference Proceedings. Minneapolis, Minn. 18(3) July

23-27, 1984. pp. 177-186.

[17] Olivier Clarisse and Shi-Kuo Chang. ‘‘VICON: A Visual Icon Manager,’’ Visual
Languages. New York: Plenum Press, 1986. pp. 151-190.

[18] Shi-Kuo Chang, Tadao Ichikawa, and Panos A. Ligomenides, eds. Visual
Languages. New York: Plenum Press, 1986.

[19] Robert R. Korfhage, ed. 1986 IEEE Workshop on Visual Languages. June 25-27,
,

T
1986. Dallas, Texas. Computer Society Order Number 722, IEEE Computer Society Press

erminal Annex, P.0. Box 4699, Los Angeles, CA 90051.

.
L

[20] Erland Jungert, ed. 1987 Workshop on Visual Languages. August 19-21, 1987
inkoping, Sweden. IEEE Computer Society.

[21] Nan C. Shu. Visual Programming. New York: Van Nostrand Reinhold Company,
1988.

[22] Alfs S. Berztiss, ed. 1988 IEEE Workshop on Visual Languages. October 10-12,
,

T
1988. Pittsburgh, PA. Computer Society Order Number 876, IEEE Computer Society Press

erminal Annex, P.0. Box 4699, Los Angeles, CA 90051.

n
M

[23] T.O. Ellis, J.F. Heafner and W.L. Sibley. The Grail Project: An Experiment i
an-Machine Communication. RAND Report RM-5999-Arpa. 1969.

.
M

[24] William R. Sutherland. On-line Graphical Specification of Computer Procedures
IT PhD Thesis. Lincoln Labs Report TR-405. 1966.

e
A

[25] Carlos Christensen. ‘‘An Example of the Manipulation of Directed Graphs in th
MBIT/G Programming Language,’’ in Interactive Systems for Experimental Applied

.
4
Mathematics, Melvin Klerer and Juris Reinfelds, eds. New York: Academic Press, 1968. pp

23-435.

[26] Carlos Christensen. ‘‘An Introduction to AMBIT/L, A Diagramatic Language for
.

L
List Processing,’’ Proceedings of the 2nd Symposium on Symbolic and Algebraic Manipulation

os Angeles, CA. Mar. 23-25, 1971. pp. 248-260.

n
(

[27] Moshe M. Zloof and S. Peter de Jong. ‘‘The System for Business Automatio
SBA): Programming Language,’’ CACM. 20(6) June, 1977. pp. 385-396.

V - 28 -isual Programming & Program Visualization Brad A. Myers___

[28] Moshe M. Zloof. ‘‘QBE/OBE: A Language for Office and Business Automation,’’
IEEE Computer. 14(5) May, 1981. pp. 13-22.

[29] M.C. Pong and N. Ng. ‘‘Pigs--A System for Programming with Interactive Graphi-
cal Support,’’ Software--Practice and Experience. 13(9) Sept. 1983. pp. 847-855.

[30] Man-Chi Pong. ‘‘A Graphical Language for Concurrent Programming,’’ IEEE Com-

2
puter Society Workshop on Visual Languages. IEEE CS Order No. 722. Dallas, Texas. June
5-27, 1986. pp. 26-33.

[31] Nan C. Shu. ‘‘FORMAL: A Forms-Oriented Visual-Directed Application Develop-
ment System,’’ IEEE Computer. 18(8) Aug. 1985. pp. 38-49.

[32] Ephraim P. Glinert and Steven L. Tanimoto. ‘‘Pict: An Interactive Graphical Pro-
gramming Environment,’’ IEEE Computer. 17(11) Nov. 1984. pp. 7-25.

[33] Miren B. Albizuri-Romero. ‘‘GRASE--A Graphical Syntax-Directed Editor for
Structured Programming,’’ SIGPLAN Notices. 19(2) Feb. 1984. pp. 28-37.

[34] Thomas Pietrzykowski, Stanislaw Matwin, and Tomasz Muldner. ‘‘The Program-
,

E
ming Language PROGRAPH: Yet Another Application of Graphics,’’ Graphics Interface’83

dmonton, Alberta. May 9-13, 1983. pp. 143-145.

[35] T. Pietrzykowski and S. Matwin. PROGRAPH: A Preliminary Report. University of
Ottawa Technical Report TR-84-07. April, 1984. 91 pages.

[36] Nancy Cunniff, Robert P. Taylor, and John B. Black. ‘‘Does Programming
L

a
Language Affect the Type of Conceptual Bugs in Beginners’ Programs? A Comparison of FP
nd Pascal,’’ Proceedings SIGCHI’86: Human Factors in Computing Systems. Boston, MA.

April 13-17, 1986. pp. 175-182.

[37] Robert J.K. Jacob. ‘‘A State Transition Diagram Language for Visual Program-
ming,’’ IEEE Computer. 18(8) Aug. 1985. pp. 51-59.

[38] Thomas H. Taylor and Robert P. Burton. ‘‘An Icon-Based Graphical Editor,’’ Com-
puter Graphics World. 9(10). Oct, 1986. pp. 77-82.

[39] Steven L. Tanimoto and Marcia S. Runyan. ‘‘PLAY: An Iconic Programming Sys-
tems for Children,’’ Visual Languages. New York: Plenum Press, 1986. pp. 191-205.

[40] Tadashi Ae, Masafumi Yamashita, Wagner Chiepa Cunha, and Hroshi Matsumoto.

W
‘‘Visual User-Interface of A Programming System: MOPS-2,’’ IEEE Computer Society

orkshop on Visual Languages. IEEE CS Order No. 722. Dallas, Texas. June 25-27, 1986.
pp. 44-53.

[41] J. Michael Moshell, Charles E. Hughes, Lee W. Lacy, and Richard L. Lewis. ‘‘A

W
Spreadsheet-Based Visual Language for Freehand Sketching of Complex Motions,’’ 1987

orkshop on Visual Languages. August 19-21, 1987. Linkoping, Sweden. IEEE Computer
Society. pp 94-104.

[42] Mark A. Musen, Lawrence M. Fagen, and Edward H. Shortliffe. ‘‘Graphical
y

W
Specification of Procedural Knowledge for an Expert System,’’ IEEE Computer Societ

orkshop on Visual Languages. IEEE CS Order No. 722. Dallas, Texas. June 25-27, 1986.
pp. 167-178.

[43] Allen L. Ambler. ‘‘Forms: Expanding the Visualness of Sheet Languages,’’ 1987
r

S
Workshop on Visual Languages. August 19-21, 1987. Linkoping, Sweden. IEEE Compute

ociety. pp. 105-117.

[44] Ephraim P. Glinert. ‘‘Out of Flatland: Towards 3-D Visual Programming,’’
.

D
Proceedings of FJCC ’87-1987 Fall Joint Computer Conference. IEEE Computer Society

allas, Texas, October 25-29, 1987. pp. 292-299.

7
W

[45] Mike Graf. ‘‘A Visual Environment for the Design of Distributed Systems,’’ 198
orkshop on Visual Languages. August 19-21, 1987. Linkoping, Sweden. IEEE Computer

Society. pp. 330-344.

- 29 - n_Brad A. Myers Visual Programming & Program Visualizatio__

[

[46] David Harel. ‘‘On Visual Formalisms,’’ CACM, 31(5), May, 1988. pp. 514-530.

47] National Instruments. LabVIEW. 12109 Technology Blvd. Austin, Texas, 78727.

-
r

[48] Mark W. Maimone, J.D. Tygar, and Jeannette M. Wing. ‘‘Miro Semantics for Secu
ity,’’ 1988 IEEE Workshop on Visual Languages. October 10-12, 1988. Pittsburgh, PA.

.
B
Computer Society Order Number 876, IEEE Computer Society Press, Terminal Annex, P.0

ox 4699, Los Angeles, CA 90051. pp. 45-51.

[49] S. K. Chang, M. Tauber, B. Yu, and J.S. Yu. ‘‘A Visual Language Compiler,’’
IEEE Transactions on Software Engineering. May, 1989. pp. 506-525.

[50] Pierre D. Wellner. ‘‘Statemaster: A UIMS based on Statecharts for Prototyping and

A
Target Implementation,’’ Proceedings SIGCHI’89: Human Factors in Computing Systems.

ustin, Tex. April 30-May 4, 1989. pp. 177-182.

g
B

[51] Ricky Yeung ‘‘MPL-A Graphical Programming Environment for Matrix Processin
ased on Logic and Constraints,’’ 1988 IEEE Workshop on Visual Languages. October 10-12,

T
1988. Pittsburgh, PA. Computer Society Order Number 876, IEEE Computer Society Press,

erminal Annex, P.0. Box 4699, Los Angeles, CA 90051. pp. 137-143.

-
g

[52] David E. Shaw, William R. Swartout, and C. Cordell Green. ‘‘Inferring Lisp Pro
rams from Examples,’’ Fourth International Joint Conference on Artificial Intelligence. Tbil-

isi, USSR. Sept. 3-8, 1975. 1 pp. 260-267.

[53] Henry Lieberman. ‘‘Constructing Graphical User Interfaces by Example,’’ Graphics
Interface’82, Toronto, Ont. Mar. 17-21, 1982. pp. 295-302.

[54] Robert P. Nix. ‘‘Editing by Example,’’ ACM Transactions on Programming
Languages and Systems. 7(4). Oct. 1985. pp. 600-621.

[55] Michael A. Bauer. A Basis for the Acquisition of Procedures. PhD Thesis, Depart-
ment of Computer Science, University of Toronto. 1978. 310 pages.

[56] Daniel C. Halbert. An Example of Programming by Example. Masters of Science
d

X
Thesis. Computer Science Division, Dept. of EE&CS, University of California, Berkeley an

erox Corporation Office Products Division, Palo Alto, CA. June, 1981. 55 pages.

o
R

[57] Laura Gould and William Finzer. Programming by Rehearsal. Xerox Palo Alt
esearch Center Technical Report SCL-84-1. May, 1984. 133 pages.

,
1

[58] Laura Gould and William Finzer. ‘‘Programming by Rehearsal,’’ Byte. 9(6) June
984, pp. 187-210.

[59] Alan Borning. ‘‘Defining Constraints Graphically,’’ Human Factors in Computing
Systems: Proceedings SIGCHI’86. Boston, MA. Apr. 13-17, 1986.

[60] Peter Desain. ‘‘Graphical Programming in Computer Music,’’ Proceedings of the
.

2
International Computer Music Conference. Royal Conservatory, The Hague, Netherlands. Oct

0-24, 1986. pp. 161-166.

[61] M. Hirakawa, S. Iwata, I. Yoshimoto, M. Tanaka, and T. Ichikawa. ‘‘HI-VISUAL
,

S
Iconic Programming,’’ 1987 Workshop on Visual Languages. August 19-21, 1987. Linkoping

weden. IEEE Computer Society. pp. 305-314.

d
V

[62] Dexter Kozen, Tim Teitelbaum, Wilfred Chen, John Field, William Pugh, Bra
ander Zanden. ‘‘ALEX - An Alexical Programming Language,’’ 1987 Workshop on Visual

.Languages. August 19-21, 1987. Linkoping, Sweden. IEEE Computer Society. pp. 315-329

[63] Brad A. Myers. ‘‘Creating Interaction Techniques by Demonstration,’’ IEEE Com-
puter Graphics and Applications, 7(9), Sept. 1987. pp. 51-60.

[64] Brad A. Myers. Creating User Interfaces by Demonstration. Boston: Academic
Press, 1988.

[65] David N. Smith. ‘‘Visual Programming in the Interface Construction Set,’’ 1988

S
IEEE Workshop on Visual Languages. October 10-12, 1988. Pittsburgh, PA. Computer

ociety Order Number 876, IEEE Computer Society Press, Terminal Annex, P.0. Box 4699,

V - 30 -isual Programming & Program Visualization Brad A. Myers

L

os Angeles, CA 90051. pp. 109-120

[66] Frank Ludolph, Yu-Ying Chow, Dan Ingalls, Scott Wallace, and Ken Doyle. ‘‘The

1
Fabrik Programming Environment,’’ 1988 IEEE Workshop on Visual Languages. October 10-
2, 1988. Pittsburgh, PA. Computer Society Order Number 876, IEEE Computer Society

Press, Terminal Annex, P.0. Box 4699, Los Angeles, CA 90051. pp. 222-230.

[67] I. Nassi and B. Shneiderman. ‘‘Flowchart Techniques for Structured Programming,’’
SIGPLAN Notices. 8(8) Aug. 1973. pp. 12-26.

[68] Tadashi Ae and Reiji Aibara. ‘‘A Rapid Prototyping of Real-Time Software Using
.

I
Petri Nets,’’ 1987 Workshop on Visual Languages. August 19-21, 1987. Linkoping, Sweden
EEE Computer Society. pp. 234-241.

[69] Alfs T. Berztiss. ‘‘Specification of Visual Representations of Petri Nets,’’ 1987
r

S
Workshop on Visual Languages. August 19-21, 1987. Linkoping, Sweden. IEEE Compute

ociety. pp. 225-233.

[70] Brad A. Myers. ‘‘User Interface Tools: Introduction and Survey,’’ IEEE Software.
6(1). Jan, 1989. pp. 15-23.

[71] Alan Kay. ‘‘Software,’’ Scientific American. September, 1984.

-
p

[72] Alan W. Biermann. ‘‘Approaches to Automatic Programming,’’ Advances in Com
uters, Morris Rubinoff and Marshall C. Yovitz, eds. (15) New York: Academic Press, 1976.

pp. 1-63.

[73] Alan Borning. Thinglab--A Constraint-Oriented Simulation Laboratory. Xerox Palo
Alto Research Center Technical Report SSL-79-3. July, 1979. 100 pages.

[74] Alan Borning. ‘‘The Programming Language Aspects of Thinglab; a Constraint-
)

O
Oriented Simulation Laboratory,’’ Transactions on Programming Language and Systems. 3(4

ct. 1981. pp. 353-387.

[75] David C. Smith, Charles Irby, Ralph Kimball, Bill Verplank, and Erik Harslem.
‘‘Designing the Star User Interface,’’ Byte Magazine. April 1982. pp. 242-282.

[76] Lois M. Haibt. ‘‘A Program to Draw Multi-Level Flow Charts,’’ Proceedings of the
Western Joint Computer Conference. San Francisco, CA. 15 Mar. 3-5, 1959. pp. 131-137.

[77] Ronald Baecker and Aaron Marcus. ‘‘Design Principles for the Enhanced Presenta-
s

S
tion of Computer Program Source Text,’’ Human Factors in Computing Systems: Proceeding
IGCHI’86. Boston, MA. Apr. 13-17, 1986.

[78] Gretchen P. Brown, Richard T. Carling, Christopher F. Herot, David A. Kramlich,
E

C
and Paul Souza. ‘‘Program Visualization: Graphical Support for Software Development,’’ IEE

omputer. 18(8) Aug. 1985. pp. 27-35.

[79] Mark Moriconi and Dwight F. Hare. ‘‘Visualizing Program Designs Through
PegaSys,’’ IEEE Computer. 18(8) Aug. 1985. pp. 72-85.

[80] Rob Chandhok, et. al. ‘‘Programming Environments based on structure editing: The

1
Gnome approach,’’ Proceedings of the National Computer Conference (NCC’85). AFIPS,

985.

[81] Ward Cunningham and Kent Beck. ‘‘A Diagram for Object-Oriented Programs,’’

N
OOPSLA ’86 Proceedings. September 29-October 2, 1986. Portland, Oregon. SIGPLAN

otices. 21(11), November, 1986. pp. 361-367.

[82] Marc Eisenstadt and Mike Brayshaw. ‘‘The Transparent Prolog Machine: an execu-
-

g
tion model and graphical debugger for logic programming,’’ to appear in Journal of Logic Pro

ramming. 1988. Human Cognition Research Laboratory Technical Report No. 21a. The Open
University. Milton Keynes, MK7 6AA, England. October, 1987.

[83] R.M.Baecker. ‘‘Experiments in On-Line Graphical Debugging: The Interrogation of
-

t
Complex Data Structures,’’ (Summary only) First Hawaii International Conference on the Sys
em Sciences. Jan. 1968. pp. 128-129.

- 31 - n_Brad A. Myers Visual Programming & Program Visualizatio__

B
[84] K.C. Knowlton. L6: Bell Telephone Laboratories Low-Level Linked List Language.

lack and white sound files, Bell Laboratories, Murray Hill, NJ, 1966.

o
A

[85] Brad A. Myers. Displaying Data Structures for Interactive Debugging. Xerox Pal
lto Research Center Technical Report CSL-80-7. June, 1980. 97 pages.

f
t

[86] R.M.Baecker. ‘‘Two Systems which Produce Animated Animated Representations o
he Execution of Computer Programs,’’ SIGCSE Bulletin. 7(1) Feb. 1975. pp. 158-167.

;
T

[87] Jon L. Bentley and Brian W. Kernighan. A System for Algorithm Animation
utorial and User Manual. AT&T Bell Laboratories Computing Science Technical Report No.

132. 600 Mountain Avenue, Murray Hill, NJ 07974. January, 1987.

[88] Marc H. Brown. ‘‘Exploring Algorithms Using Balsa-II,’’ IEEE Computer. 21(5)
May, 1988. pp. 14-36.

[89] Ralph L. London and Robert A. Druisberg. ‘‘Animating Programs in Smalltalk,’’
IEEE Computer. 18(8) Aug. 1985. pp. 61-71.

[90] Aulikki Hyrskykari and Kari-Jouko Raiha. ‘‘Animation of Algorithms Without Pro-

I
gramming,’’ 1987 Workshop on Visual Languages. August 19-21, 1987. Linkoping, Sweden.
EEE Computer Society. pp. 40-54.

[91] Robert Adamy Duisberg. ‘‘Visual Programming of Program Visualizations,’’ 1987

S
Workshop on Visual Languages. August 19-21, 1987. Linkoping, Sweden. IEEE Computer

ociety. pp. 55-65.

[92] John Thomas Stasko. TANGO: A Framework and System for Algorithm Animation.
.

T
PhD Dissertation. Brown University, Department of Computer Science, Providence, RI 02912

echnical Report No. CS-89-30, May, 1989. 257 pages.

e
E

[93] Frederick P. Brooks, Jr. ‘‘No Silver Bullet: Essence and Accidents of Softwar
ngineering,’’ IEEE Computer. 20(4), April, 1987. pp. 10-19.

e
S

[94] Edsger W. Dijkstra. ‘‘On the Cruelty of Really Teaching Computing Science,’’ Th
IGCSE Award Lecture, SIGCSE Conference Proceedings, 1989. pp. xxv-xxxix.

f
A

[95] D. S. Johnson. ‘‘The NP-Completeness Column: an ongoing guide,’’ Journal o
lgorithms. 3(1982), pp. 89-99.

[96] Shi-Kuo Chang, G. Tortora, Bing Yu, and A. Guercio. ‘‘Icon Purity - Toward a For-

S
mal Theory of Icons,’’ 1987 Workshop on Visual Languages. August 19-21, 1987. Linkoping,

weden. IEEE Computer Society. pp. 3-16.

[97] Ephraim P. Glinert and Jakob Gonczarowski. ‘‘A (Formal) Model for (Iconic) Pro-

l
gramming Environments,’’ Human-Computer Interaction-Interact’87. Elsevier Science Pub-
ishers (North Holland), 1987. pp. 283-290.

[98] Ted Selker and Larry Koved. ‘‘Elements of Visual Language,’’ 1988 IEEE
y

O
Workshop on Visual Languages. October 10-12, 1988. Pittsburgh, PA. Computer Societ

rder Number 876, IEEE Computer Society Press, Terminal Annex, P.0. Box 4699, Los
Angeles, CA 90051. pp. 38-43.

