
When it breaks, it breaks
How ecosystem developers reason about the stability of dependencies

Christopher Bogart
School of Computer Science
Carnegie Mellon University

Christian Kästner
School of Computer Science
Carnegie Mellon University

James Herbsleb
School of Computer Science
Carnegie Mellon University

Abstract—Dependencies among software projects and libraries
are an indicator of the often implicit collaboration among many
developers in software ecosystems. Negotiating change can be
tricky: changes to one module may cause ripple effects to many
other modules that depend on it, yet insisting on only backward-
compatible changes may incur significant opportunity cost and
stifle change. We argue that awareness mechanisms based on
various notions of stability can enable developers to make
decisions that are independent yet wise and provide stewardship
rather than disruption to the ecosystem. In ongoing interviews
with developers in two software ecosystems (CRAN and Node.js),
we are finding that developers in fact struggle with change, that
they often use adhoc mechanisms to negotiate change, and that
existing awareness mechanisms like Github notification feeds are
rarely used due to information overload. We study the state of the
art and current information needs and outline a vision toward a
change-based awareness system.

I. INTRODUCTION

For a previous generation of software projects, one could
hope to anticipate and manage change by using modular
design to isolate the effects of change. Yet the traditional world
of centralized management is giving way to socio-technical
ecosystems, in which a variety of players offer complementary
applications and services on a common platform. Kazman
[13] characterizes ecosystems as “including multiple units
of software, distributed over multiple systems, managed by
multiple people and organizations. It also includes the social
interconnectedness of those people and systems.” Centralized
management that anticipates and controls change is being
replaced by decentralized decision-making, that fosters innova-
tion but at the cost of sometimes incoherent and unanticipated
change. Scaling up older approaches presents the dilemma
of either stifling change and innovation by enforcing interface
stability or assuming unacceptable levels of technical risk.

We regard change as inevitable and envision an awareness
infrastructure to cope with change. The seeds of a solution can
be found in today’s transparent environments or social-coding
platforms such as GitHub, LaunchPad, and Bitbucket. Rather
than preventing unanticipated change, these environments
provide mechanisms for notification and exploration of change
activities, as well as open collaboration tools that allow affected
developers to quickly connect and formulate joint solutions to
the rippling effects of change. These tools work well within
and among the projects of a single community, but begin to
break down in the case of interdependent projects developed by
distinct communities; an individual attempting to follow news

from across the ecosystem would be inundated with updates,
each interpretable only in the context of some other commu-
nity’s interests, goals, standards, and development schedules.

To scale decentralized decision making about change, we
envision more nuanced and targeted awareness mechanisms
based on different notions of stability. We plan to analyze
changes to gauge their impact and to route tailored notifications
about important changes to relevant developers. This way we
provide means to plan changes and communicate changes
transparently in decentralized ecosystems.

To study change in ecosystems, we track dependencies
among modules. Modules provide clear boundaries, often with
clear responsibilities and explicit versioning schemes, and
declared and observable dependencies. Developers often rely on
multiple other modules and may need to update dependencies
when they change (and react to backward-incompatible changes
within them). When maintaining a module, developers may
need to observe changes in upstream dependencies (for bug
fixes, vulnerability patches, or new functionality), and when
planning changes developers need to reason about whether and
how changes may break downstream dependencies.

To identify a baseline of current practices and problems, and
to gauge the potential of a stability-based awareness solution,
we are conducting an interview study with developers in two
software ecosystems: CRAN and Node.js. In this paper, we
outline preliminary results, showing that developers perceive
dependency management and evolution as severe issues and
that existing awareness mechanisms are rarely used.

II. STATE OF THE ART

Change in software systems has been studied, measured,
and modeled intensively for many decades [7], [8], [14], [21].
Change is inevitable; for example, Lehman postulated that soft-
ware “undergoes continual changes or becomes progressively
less useful” [14]. Modularity (hiding the changeable code
behind a stable interface [18]) reduces the communication
overhead and the impact of change, but guaranteed-stable
interfaces may incur opportunity costs as certain mistakes
cannot be fixed and the software may become too inflexible for
new requirements. To control change, some organizations have
established a formal and central change management process
and various tools have been developed to study the impact of
a potential change [2].



With increasingly dynamic and decentralized software
ecosystems and web-based applications [9], [12], [16], evolu-
tion becomes much less centrally plannable. The movements
toward continuous change [16], social coding [6], and agile
development all break to some degree with traditional assump-
tions of stability and preplanning.

Many researchers have studied evolution of interfaces in
software systems. All studied systems evolved in unanticipated
ways with rippling consequences for downstream modules,
e.g., [5], [15], [19]. For example, recent studies on Android
APIs report an average of 115 interface changes per month [15];
Kapur et al. have shown that Java libraries “frequently and
seriously change over time” and migrating to the new version
is usually not trivial [5].

A shift to ecosystem-based development has facilitated a
surge in “social coding” in which a “transparent” environment
helps developers stay abreast of activities across collections of
projects without central planning [6]. In practice, developers
often broadcast change announcements to others by email
or through code reviews to achieve transparency [1], [7].
Whereas modularity pursues a divide-and-conquer strategy
to limit needed information, transparency aims at fostering
communication by making information available.

Awareness tools have been successful in supporting collabo-
ration in a variety of aspects. Traditional tools such as mailing
lists and issue trackers are used routinely to provide a general
awareness of project activity [7], [10]. Special-purpose tools
have been designed for tasks as predicting conflicts during
parallel collaborative development [3], [20]. In the context
of evolving software, Holmes and Walker explored directing
notifications about signature changes to affected developers [11]
and Padhye et al. use simple heuristics based on prior mod-
ifications, code ownership, and commit messages to similarly
reduce information overload [17]. Our work aims to eventually
bring the benefits of awareness currently available only to small
teams to large, ecosystem-scale development efforts.

III. AN INTERVIEW STUDY WITH PACKAGE MAINTAINERS

We have begun a qualitative empirical study investigating
the current practice of stability of interfaces and costs related to
modularity in ecosystems. We are proceeding in two steps: min-
ing software repositories and interviewing package maintainers.

First, to identify interview partners, we analyzed two
repositories and their histories to identify packages with
a recent history of changing upstream or downstream
dependencies. We selected from packages active in the last
year, that had more than two upstream and two downstream
dependencies, from there we chose packages by visualizing
their histories and (see Figure1) looking for ones with
contrasting patterns: e.g. how up-to-date they kept the versions
of their dependencies, whether they updated them all at once
or separately, of if they had added or dropped dependencies.

Second, we are interviewing maintainers of the packages we
identified to ask about their strategies and expectations toward
change and stability. We conducted semi-structured telephone

Fig. 1: Excerpt from dependency history of node.js package koa-jade.
The bottom bar is koa-jade’s version history, with time running left
to right. Other pairs of bars are upstream dependencies showing
the package’s own version history (top) and the version koa-jade
referred to (bottom). This example shows that koa-jade changed the
version constraints on its dependency to fs-extra about a month
after fs-extra’s update.

interviews of about 30 minutes. During our interviews, we
focus on three themes:

• Change planning: How do developers plan changes? Are
they aware of downstream projects and effects changes
may have on them? How do they publish plans about future
changes or drafts? What is their position on backward
compatibility? Do they experience opportunity costs of
maintaining backward compatibility?

• Expectations toward change: What kind of change do
developers expect in upstream modules and how fre-
quently? Does frequency of change impact decisions to
use/reuse a package? Is backward compatibility expected
in minor/major releases? When and how do they decide to
upgrade dependencies? Does this scale for projects with
many upstream dependencies?

• Practices for monitoring change: Do they use some form
of notification mechanisms, such as Github notifications or
mailing lists? How frequently do they check for updates?
Do they try to influence changes in their dependencies?

Answers to these questions will guide our design and presen-
tation of a stability-based awareness solution.

A. Ecosystems

We sought out ecosystems with (a) multiple interdependent
modules and an active developer community, (b) dependencies
among modules explicitly managed or reverse engineerable,
and (c) modules and their revision history available for study.
Furthermore, we are seeking diversity in their policies toward
interface stability. Ideally, the ecosystems should be candidates
to explore the proposed awareness solutions in subsequent
cycles as well.

We have begun with two promising ecosystems for our study:
• Node.js is a platform for writing server-side JavaScript

applications. Introduced in 2009, node.js has grown and
evolved quickly. Most of its development has happened
on GitHub, providing a rich and complete history.

• CRAN is a repository of over 8000 R-language packages.
R’s developers provide an interesting contrast to node.js,
since many of them are statisticians or other scientists,
without computer science backgrounds.



These two repositories have contrasting strategies towards
testing and consistency. CRAN’s infrastructure and policies are
aimed at keeping a consistent, tested snapshot: a package and
its dependents are tested on submission (by both the maintainer
of the package and the CRAN team); packages failing tests
are quickly removed. Interface changes in CRAN packages
often have to be handled through releases synchronized with
other developers.

Node.js, in contrast, allows multiple versions of packages
to coexist, both in its NPM repository, and within a user’s
installation. Its version numbering allows fine-grained control
over how a package author constraints dependencies’ versions,
allowing packages to evolve on different schedules. It does not
enforce or require testing, leaving it up to package developers
to assure themselves that their dependencies keep working.

IV. PRELIMINARY RESULTS

So far we have interviewed 7 package maintainers, two in
Node.js and five in CRAN (coded below as N1-2 and R1-5).
We are continuing to analyze results while we conduct more
interviews. However a clear picture is already emerging that
points out the perceived pain of maintaining dependencies, the
difficulties of change planning, and the limitations of existing
awareness mechanisms.

A. Attitudes towards dependency management

The R developers saw themselves as scientists first and
programmers second; they were often unsure of their own
programming skills and had trouble understanding CRAN’s
and R’s technical documentation. They understood the value
of providing a stable interface for dependent packages, but
described a sometimes trial and error process of learning to
accomplish this with existing tools and standards.

The R developers try to keep up with CRAN’s requirements,
but wished for better information and tools. Several of them told
us that CRAN alerts are a burden, but that they supported the
platform’s intention to ensure smooth installations for end users.

“R3: As a casual package developer I get bombarded
with emails saying "this isn’t allowed anymore, this
violates the rules" – so it’s hard to keep up with. I
wish there were tools to make this easier: I don’t have
time/energy/skills to manage reverse dependencies
myself. At least it’s not something I look forward to.”

It seems that the development culture in the R world is
in flux; developers are learning to keep their changes stable
and communicate with dependent package maintainers, spurred
by the CRAN team’s efforts. R developers reported changing
their behaviors as they learn to work within the rules, but still
expressed doubt about their strategies:

“R2: I changed something that made one of [a
downstream dependency author]’s test fail. So I fixed
it, and also got ahold of this guy and now we try
to coordinate changes. I don’t have a good enough
strategy for managing dependencies – I have gained
increased awareness because of incidents like this”

Neither of the two node.js developers had computer science
degrees, but they had more interest and expertise in software
engineering issues than the R interviewees. Both had evan-
gelistic fervor about semantic versioning (an explicit set of
semantics for communicating stability using three-part version
numbers: http://semver.org/), in contrast to the R developers
who either did not know the convention, or recognized that
they could not rely on others adhering to it in the R world.

B. Managing change in upstream dependencies

Many of the developers had intuitions about the stability of
upstream dependencies that they had difficulty articulating; they
described some packages as "classic", "core", or "stable", and
preferred to depend only on these. When pressed to identify
how they recognized these as trustworthy, they mentioned
factors such as knowing the developer, a history of using the
package without problems, a version number over 1.0, and
extensive, polished documentation.

Staying aware of potentially important changes to upstream
dependencies was difficult. Most of our informants reported
simply waiting for dependencies to break, rather than trying
to be proactive about them:

“R2: I’ll sound crass about this: I wait to hear from
CRAN that something broke, because I don’t think I
can keep up with the mailing lists.”
“R4: We don’t follow what they’re doing; when it
breaks, it breaks.”

Some did try to follow upstream development: both node.js
developers followed the node.js mailing list. Three interviewees
mentioned checking Github activity streams from time to time,
but they all found it too much information to digest:

“N1: ...but it’s a flood of information; a crapshoot
to actually get useful information”

R developers were averse to too many upstream dependencies
and found ways to limit the number or impact of dependencies.
Some would simply avoid functionality:

“R3: It would be interesting to shift from in-memory
to out-of-memory; that would require adding depen-
dencies to a few out-of-memory packages. But then
I’d be severely dependent on someone else’s code.”

Others described splitting a package into smaller pieces, each
with fewer dependencies; or conversely joining forces with
an upstream dependency to create a single package. One R
developer copied code to avoid a dependency:

“R4: I copy the code out, don’t want to deal with
dependencies. So we copy and acknowledge in help
file and code. This is tricky because we have to make
sure it’s working fine.”

C. Minimizing the impact on downstream dependencies

A major tool in node.js for signaling breaking changes is
careful use of semantic versioning. One node.js developer
trusted semantic versioning implicitly; the other did not:

“N1: semantic versioning should be evangelized;
when a package went to 2.0, then you should know

http://semver.org/


there may be breaking changes; semantic versioning
is not well understood and uniformly applied,”
“N2: I suspect people working with Node longer are
careful because they have been been burned, but I
think the practices are better nowadays.”

Most of the R users, in contrast, had only a vague under-
standing of semantic versioning; the ones who did understand
the convention were aware that it is not meaningful if the
community does not adopt it:

“R4: At first, we didn’t understand, as statisticians.
Then people told us how it works, and we’re trying
to be consistent. There’s no standard. This is a
difference between R and language made by computer
science people; in R people do whatever they want.”

Social connections succeed when technical solutions fail:
“R4: When it’s ready, I try to contact the people who
use our package. It’s easy to know who: there’s a
page for that. Usually, these people I know one way
or the other.”
“R3: Certain friends I had who would contribute
or would give me feedback; they weren’t using [a
feature], so implied from that that no one was. People
also in <this field> are a very small community.”

V. TOWARD STABILITY-BASED AWARENESS TOOLING

Since all code fragments are unstable to some degree, we
argue that developers need support to reason about, document,
compare, and monitor their change and stability. We envision
an awareness platform centered around different notions of
stability (historic, intended, and contextual stability) that does
not need to align with classic modularity mechanisms. Stability
indicators will make stability-related information transparent
and allow developers to make informed decisions about changes
and reuse decisions.

Our system will analyze individual changes in an ecosystem
to recognize their consequences, to provide personalized
notifications without the information overload of current
systems (change awareness). The system will also help evaluate
the impact of proposed changes on other developers (impact
awareness) by analyzing the stability of the changed code and
using static and dynamic analysis to identify their downstream
impact (e.g., breaking APIs, failing test cases, changed
behavior). Change awareness will help developers monitor and
react to changes without drowning in information overload,
while impact awareness will help them make informed
decisions about whether and how to perform a change.

An open empirical question is how software communities
will adapt themselves to stability indicators. It has been
repeatedly observed (e.g. [4]) that social and technical ties
mirror each other: communities gather around modules, and
trusted dependencies are often associated with human trust
relationships. It remains to be seen if stability indicators that
cross modular boundaries will ease the need to build social
trust in some situations, or in contrast help build new social ties
between communities. Either way, we expect that our approach

will soften the unrealistically rigid modularity requirement
of guaranteed-stable interfaces, while allowing developers to
minimize the disruptions their changes cause and respond
quickly and effectively to when change threatens their work.

REFERENCES

[1] A. Bacchelli and C. Bird. Expectations, Outcomes, and Challenges of
Modern Code Review. In Proc. Int’l Conf. Software Engineering (ICSE),
pages 712–721. 2013.

[2] S. A. Bohner and R. S. Arnold. Software Change Impact Analysis. IEEE
Computer Society Press, 1996.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin. Proactive Detection
of Collaboration Conflicts. In Proc. Europ. Software Engineering
Conf./Foundations of Software Engineering (ESEC/FSE), pages 168–178.
2011.

[4] M. Cataldo, J. D. Herbsleb, and K. M. Carley. Socio-technical congruence:
a framework for assessing the impact of technical and work dependencies
on software development productivity. Proc. Int’l Symp. Empirical
Software Engineering and Measurement (ESEM), pages 2 – 11, 2008.

[5] B. E. Cossette and R. J. Walker. Seeking the Ground Truth: A Retroactive
Study on the Evolution and Migration of Software Libraries. In Proc.
Int’l Symposium Foundations of Software Engineering (FSE), page 55.
ACM Press, 2012.

[6] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb. Social Coding in GitHub:
Transparency and Collaboration in an Open Software Repository. In Proc.
Conf. Computer Supported Cooperative Work (CSCW), pages 1277–1286.
2012.

[7] C. R. B. de Souza and D. F. Redmiles. An Empirical Study of Software
Developers’ Management of Dependencies and Changes. In Proc. Int’l
Conf. Software Engineering (ICSE), pages 241–250. 2008.

[8] S. G. Eick, T. L. Graves, A. F. Karr, J. Marron, and A. Mockus. Does
Code Decay? Assessing the Evidence from Change Management Data.
IEEE Trans. Softw. Eng. (TSE), 27(1):1–12, 2001.

[9] A. Gawer and M. A. Cusumano. Platform Leadership: How Intel,
Microsoft, and Cisco Drive Industry Innovation. Harvard Business
Review Press, 2002.

[10] C. Gutwin, R. Penner, and K. Schneider. Group Awareness in Distributed
Software Development. In Proc. Conf. Computer Supported Cooperative
Work (CSCW), pages 72–81. 2004.

[11] R. Holmes and R. J. Walker. Customized Awareness: Recommending
Relevant External Change Events. In Proc. Int’l Conf. Software
Engineering (ICSE), pages 465–474. 2010.

[12] M. Iansiti and R. Levien. The Keystone Advantage: What the New
Dynamics of Business Ecosystems Mean for Strategy, Innovation, and
Sustainability. Harvard Business Press, 2004.

[13] R. Kazman and H.-M. Chen. The metropolis model and its implications
for the engineering of software ecosystems. Proc. FSE/SDP workshop
on Future of soft. eng. research (FoSER), page 187, 2010.

[14] M. Lehman. Programs, Life Cycles, and Laws of Software Evolution.
Proceedings of the IEEE, 68(9):1060–1076, 1980.

[15] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. API Change and Fault Proneness:
A Threat to the Success of Android Apps. In Proc. Europ. Software
Engineering Conf./Foundations of Software Engineering (ESEC/FSE),
pages 477–487. ACM Press, 2013.

[16] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, D. Schmidt, K. Sullivan, and
K. Wallnau. Ultra-Large-Scale Systems: The Software Challenge of
the Future. Software Engineering Institute, 2006.

[17] R. Padhye, S. Mani, and V. S. Sinha. NeedFeed: Taming Change
Notifications by Modeling Code Relevance. In Proc. Int’l Conf.
Automated Software Engineering (ASE), 2014.

[18] D. L. Parnas. On the Criteria to be used in Decomposing Systems into
Modules. Commun. ACM, 15(12):1053–1058, 1972.

[19] S. Raemaekers, A. van Deursen, and J. Visser. Measuring Software
Library Stability Through Historical Version Analysis. In Proc. Int’l
Conf. Software Maintenance (ICSM), pages 378–387. 2012.

[20] A. Sarma, D. F. Redmiles, and A. van der Hoek. Palantír: Early Detection
of Development Conflicts Arising from Parallel Code Changes. IEEE
Trans. Softw. Eng. (TSE), 38(4):889–908, 2012.

[21] S. S. Yau and J. S. Collofello. Some Stability Measures for Software
Maintenance. IEEE Trans. Softw. Eng. (TSE), 6(6):545–552, 1980.


	Introduction
	State of the Art
	An Interview Study with Package Maintainers
	Ecosystems

	Preliminary Results
	Attitudes towards dependency management
	Managing change in upstream dependencies
	Minimizing the impact on downstream dependencies

	Toward Stability-Based Awareness Tooling
	References

