
CellOrganizer: Image-derived Models of Subcellular
Organization and Protein Distribution

Robert F. Murphy
Lane Center for Computational Biology, Carnegie Mellon University, and Freiburg Institute for
Advanced Studies, University of Freiburg

Abstract

This chapter describes approaches for learning models of subcellular organization from images.

The primary utility of these models is expected to be from incorporation into complex simulations

of cell behaviors. Most current cell simulations do not consider spatial organization of proteins at

all, or treat each organelle type as a single, idealized compartment. The ability to build generative

models for all proteins in a proteome and use them for spatially accurate simulations is expected to

improve the accuracy of models of cell behaviors. A second use, of potentially equal importance,

is expected to be in testing and comparing software for analyzing cell images. The complexity and

sophistication of algorithms used in cell image-based screens and assays (variously referred to as

high content screening, high content analysis, or high throughput microscopy) is continuously

increasing, and generative models can be used to produce images for testing these algorithms in

which the expected answer is known.

Introduction

As traditional reductionist paradigms of biomedical research increasingly give way to

systems approaches, the need to build predictive models that synthesize large amounts of

information from potentially diverse sources is becoming critical. Most such current models

take the form of transcriptional regulatory networks, protein-protein interaction maps, or

biochemical reaction simulations. These typically do not consider spatial organization of

cells or tissues. Important advances came with systems such as MCell (1), allowed models

to be constructed using mesh representations of cells built from electron microscope images,

and the Virtual Cell (2) which allowed appropriately processed images to provide surface

area and volume for its compartmental models. Ontologies such as the Genome Ontology

(GO) can be used to describe protein attributes, including location, primarily at a major

organelle level. Such assignments can also be used to create compartmental models (e.g.,

http://biologicalnetworks.net/tutorials) However, compartmental models suffer from some

important limitations, in that they treat all molecules within each compartment as being

homogenously distributed, and they do not allow appearance, disappearance, fission or

fusion of compartments.

Given the energy expended by cells to maintain their subcellular organization, and the many

defects that are associated with alterations in it, models that do not accurately reflect
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subcellular organization are unlikely to perform satisfactorily at predicting complex cell

behaviors or how they respond to changes in conditions. There is therefore a need for

computational models that accurately represent the number, size, shape and positions of

subcellular structures, the spatial relationships between different structures, and how

proteins (and other molecules) are distributed between them (3, 4). In addition, there is a

need for a mechanism for representing how all of these vary within a population of cells of a

single cell type, within a single cell type under different conditions, among different cell

types, and among different organisms. Such models can not only capture cell behavior but

can also be an important step in understanding that behavior, since, for example, a

sufficiently detailed model helps distinguish aspects that are conserved and presumably

necessary from those that are highly variable and potentially not necessary.

In considering how to build such models, we can distinguish descriptive models, which

allow one to recognize what state a particular cell is in, from generative models, which can

also synthesize new examples of cells in particular states. We can also distinguish

theoretical or conceptual models, which posit a particular structure based on a generalized

understanding, from data-driven models that are learned from data and capture both general

behavior and variation in that behavior.

My focus in this chapter will be primarily on methods developed in my group that have been

used to learn generative models of cell organization and protein distribution from two-

dimensional and three-dimensional fluorescence microscope images (5–11). We have

recently grouped these methods as part of the open source CellOrganizer project (http://

cellorganizer.org) which includes collaborations with a number of investigators studying

particular cell systems.

Components of a model of subcellular organization and protein distribution

While there are a number of ways to break down the tasks necessary for creating such

models, we can distinguish at least three major components of a model of the distribution of

proteins within cells of a given type under a given condition:

• A model of subcellular organization, including distributions of the number, size,

shape and position of each subcellular structure, any of which may be conditional

on the model(s) for other structures

• A model representing the probability that a cell of a given type will contain a

certain number of molecules of a given protein, the expected fraction of those

molecules in each subcellular structure, and a measure of the variation in that

fraction from cell to cell

• A model of how each protein is distributed within each structure, which may

consist of a self-organizing model that specifies only the affinities between pairs of

proteins within each structure

Higher order models can then be built to specify how any of these models change over time

and condition: for example, during the cell cycle, in the presence of perturbagens, for cells

expressing mutations, or for different cell types.
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I will focus below on work on the first two types of components.

Models of subcellular organization

At a conceptual level, the most complete model of subcellular organization is probably the

GO (Genome Ontology) Cellular Component ontology (12). A significant effort has been

made to capture the vast majority of terms used to describe subcellular structures. The terms

in this ontology can be assigned to proteins in order to represent the results of experimental

or computational analyses. The advantage of this approach is precisely its disadvantage:

general terms such as “mitochondria” can be associated with a protein while leaving many

questions about what mitochondria are unanswered. However, to be useful for spatially

realistic modeling, ontology terms must be associated with a representation of each

organelle’s number, structure and distribution within cells. Currently, such representations

are abstract and implicit rather than concrete and they often leave unspecified how the

organelle would look in different cell types. For example, the abstract concept of a

mitochondrion is well-understood by biologists but most would be hard pressed to

accurately describe how mitochondria vary in number, size, shape and distribution from cell

type to cell type or organism to organism.

In building generative models, we refer to an individual image, stack or movie to be an

instance drawn from an underlying model, whether an actual image or a synthetic image.

These instances are considered to have been generated by particular values for the

parameters of the model. The model is generative if it captures how parameters values can

be chosen for new instances.

A critical concept in creating models of subcellular organization is the conditional

relationships that exist among different components. This is easily illustrated by considering

the task of building generative models of nuclear and cell shape (i.e., the positions of the

nuclear and plasma membranes). We could build one generative model from many examples

of nuclear shapes, and build another generative model from many examples of cell shapes. If

we with to synthesize a new example of a cell containing a nucleus, we can imagine drawing

a random example of a nuclear shape from the first model, and drawing a random example

of a cell shape from the second. However, there is nothing that would prevent the example

nuclear shape from being too wide to fit inside the example cell shape, and nothing to tell us

where within the cell shape to put the nuclear shape. We must therefore connect the

generation processes, which we do by making the models dependent, or conditional, upon

each other. In our work, we have chosen to make the cell shape model conditional upon the

nuclear shape. As we will see below, this means that during the learning process the

relationship between the shapes is captured, and during the generation process, an example

nuclear shape is first generated and used to generate an appropriate cell shape.1 An

alternative is to make the models joint, in which we learn simultaneously a model for both

shapes.

1Of course, we might also have chosen to make the nuclear shape conditional upon the cell shape. Which order is better will need to
be determined by future work.
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Another major consideration is whether to make the models parametric, in which the values

of model parameters explicitly describe various aspects of the sizes and shapes of cell

components, or non-parametric, in which sizes and shapes are implicitly described by the

relationships between examples. This distinction will be made clearer in the next sections

where we consider models of cell components and how they can be made conditional upon

each other. In each case, we will consider

• the inputs necessary for training the model,

• the means of assessing how adequately the model describes the data,

• what types of outputs that the model can generate.

Nuclear and cell shape models

Nuclear shape - Medial axis models—Nuclear shape is often represented in theoretical

models as a sphere or more generally an ellipsoid. Examination of only a few images of

some cell types (especially adherent cultured cells) reveals how inaccurate this model can

be. A somewhat more accurate model can be learned directly from images (5) using a

medial axis approach (13). As illustrated in Fig. 1, medial axis construction typically begins

by first orienting all nuclear shapes (instances) so that their major axes point in the same

direction). Each instance is then represented by the position of a curve bisecting the shape

perpendicular to the major axis, and by the width at each position along that curve. These

curves can be fit using splines, such that a set of 11 spline coefficients describes each

instance. The distribution(s) of these parameters over many instances can then be learned. In

this case, two multivariate Gaussian distributions, one for the medial axis position and one

for the width, were shown to provide a good representation of nuclear shape in two-

dimensional images (5). Sampling from these distributions using a random number

generator can be done in order to create synthetic examples from the learned model.

Nuclear shape - Cylindrical spline surface model—For three-dimensional images,

the medial axis method can result in an oversimplified shape model. An alternative is to

convert the nuclear shape to cylindrical coordinates and then fit a periodic spline surface

(11). This is illustrated in Fig. 2. In this case, there is one parameter for the nuclear height

and 32 parameters for the coefficients of the spline surface. For a collection of 3D images of

HeLa cells, these parameters were also shown to be well-represented by a multivariate

Gaussian distribution. As before, parameter values can be randomly sampled from this

distribution to generate new nuclear shape instances.

Nuclear shape – Large deformation diffeomorphic metric mapping—These

parametric models of nuclear shape have two significant advantages: they can be computed

fairly quickly and the parameters (and parameter distributions) can be stored compactly.

However, they make assumptions about the characteristics of nuclear shape that need to be

captured (e.g., that small bumps can be ignored) and do not handle well many concave or

branched shapes. An important alternative therefore is to use non-parametric models such as

the large deformation diffeomorphic metric mapping (LDDMM) framework developed by

Miller and colleagues (14). In this framework, shape is represented implicitly by measuring

differences between pairs of shape instances (see Fig. 3). The distance matrix is then used to
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create a shape space in which similar shapes are near each other. This approach has been

demonstrated to provide an excellent representation of nuclear shape in HeLa cells (6), and

the method can be applied to 2D, 3D or 4D images. This power comes at a price: saving the

shape model requires storing both the distance matrix (or the shape space) and the example

images used to create it. Generating new shape instances can be achieved by interpolating

between the original examples (8), but this can be computationally expensive.

An important additional use of non-rigid registration methods is to identify positions within

nuclei. In an exciting example, the positions of different chromosome regions have been

mapped to a common frame of reference using a multiresolution non-rigid registration

approach (15). Potentially, position mapping could be combined with modeling of the

nuclear shape itself as described above.

Cell shape – Circular and spherical coordinate ratiometric models—Cell shape

can also be represented using diffeomorphic methods, using exactly the same approach as

used for nuclei. This is appropriate when modeling only the cell shape is desired, but if

nuclei are to be included, as discussed above, the nuclear and cell shape models must be

conditionally related. This can be achieved using diffeomorphic methods by creating

indexed images in which pixels/voxels that are part of the background have one value (e.g.,

0), pixels/voxels in the nucleus have a second value (e.g., 1), and pixels/voxels inside the

cell but not in the nucleus have a third value. Finding the distance between such indexed

images is a bit more computationally demanding.

To create more compact conditional models of cell shape, a simple approach can be used.

For 2D images, the coordinates of the cell and nuclear boundary are first mapped to polar

coordinates, and then the ratio between the two is calculated for a fixed number of angles

(e.g., every degree over 360 degrees) (5). For 3D images, these ratios are calculated for each

2D slice (11). The model is then simplified by keeping only a certain number of principal

components (for HeLa cells, 10 components were used for 2D images and 25 for 3D

images). The distributions of these components have been shown to follow a multivariate

Gaussian, providing a very compact conditional model. To generate instances from the

model, a nuclear shape is first generated using one of the methods above, principal

component coefficients are chosen using random numbers and converted to the cell/nuclear

ratio as a function of angle, and then these ratios are multiplied by the corresponding

position on the synthetic nuclear boundary to generate the synthetic cell boundary.

Models of vesicular organelles: shape

Gaussian object models—Many vesicular organelles, such as lysosomes, show a

roughly spherical shape in both electron microscope and fluorescent microscope images.

Such shapes can be easily modeled if the organelles are well resolved from each other in

images. However, vesicular organelles are frequently found quite close to each other, and

they can appear to overlap when imaged in two dimensions. Furthermore, sampling noise

may make them appear irregularly shaped. One approach to this problem is to assume that

the organelles are all spherical (or ellipsoidal) and try to estimate what configuration of

organelles gave rise to a particular cell image. This can be done by thresholding the image of
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an organelle marker to identify connected components that may consist of more than one

organelle. As shown in Fig. 4, image processing and parameter estimation can then be used

to find the positions and sizes of the individual organelles. A statistical model of the

distribution of the number of objects per cell, and the distribution of the Gaussian

parameters (covariance matrix) can then be constructed. This method can be used for both

2D and 3D images, although distinguishing different organelles is easier in 3D images.

Outline models—More accurate models can be obtained using methods that seek to

estimate the position of the outline of vesicular organelles. For example, piece-wise linear

closed splines have been used to describe the shape of endosomes (16). Such methods could

be combined with eigenshape or diffeomorphic methods to create generative models.

Object type models—Even more detailed (but not necessarily more accurate!) models

can be obtained by finding all objects in a large set of cell images and clustering them to

identify distinct object types. This approach has been applied to a large collection of HeLa

cell images, and the resulting object types were found to enable recognition of different

subcellular patterns (17). As discussed below, this approach has been used to estimate the

amount of a given probe in different organelles. However, it could also be used as part of a

generative model by modeling the number and shape of each object type.

Models of vesicular organelles: position

Regardless of which method is used for estimating object number and shape, a model of the

position of each object within the cell is also needed. This clearly needs to be conditional

upon the cell and nuclear shape model. One simple approach is to represent the position of

each observed object in a normalized polar or spherical coordinate system (depending on

whether the image is 2D or 3D). To do this, the distance of the center of each object from

the nuclear boundary is expressed as a fraction of the sum of the distance from the nuclear

boundary and the distance from the cell boundary (this normalized distance can be negative

if the object is inside the nucleus). The angle (or angles) of the object’s center to the center

of the nucleus are also found. An empirical probability density map is then formed by

tabulating these positions for many object from many cells. To use this model to synthesize

an image, a number of objects is drawn from the appropriate distribution, a size and shape is

drawn for each (depending on which shape model is being used), and distances and angles

are chosen randomly according to the density map for each, and converted to actual

coordinates for particular cell and nuclear shape instances.

Models of cytoskeletal structures

The methods described above for building nuclear, cell and organelle models all make direct

estimates of model parameters from real images. While decomposing a cluster of organelles

into individual objects may be difficult, it is usually possible. Some organelles or structure

are much more difficult to resolve into individual elements. For example, 2D or 3D images

of the distribution of tubulin by either wide-field or confocal microscopy typically show

individual microtubules at the cell periphery but a tangle of crossing microtubules near the

centrosome. Estimating the number of individual microtubules or their individual paths is

nearly impossible. One solution is to use specialized microscope methods, such as speckle
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microscopy, to resolve individual microtubules. An alternative is to use inverse modeling

methods to try to estimate the parameters of a microtubule model, as illustrated in Fig. 5a. A

generative model is created and then instances of that model are created for many different

sets of parameters. These instances are compared to a real image and the parameters

corresponding to the best match are chosen. This approach has been used to study

kinetochore-microtubule dynamics (18). We have used a similar approach to build a

generative model of microtubules in interphase HeLa cells and 3T3 cells (9, 10). An

example of a synthetic microtubule distribution is shown in Fig. 5b.

Putting it all together

Once the various components of a model have been created, it is a simple matter to construct

synthetic cell instances. Figs. 6 and 7 show idealized images (with no blurring or noise) for

instances created from 2D or 3D models, respectively. As discussed below, these idealized

images can also be used to estimate how that cell might look if imaged in a particular

microscope.

Protein distributions across subcellular structures

The models described above capture how cellular organelles are arranged within a cell, but

do not address the critical question of how the tens of thousands of proteins in each cell are

distributed among these organelles. Images, especially fluorescence microscope images, can

be a major source of information on the subcellular distributions of proteins, and, as

mentioned above, may be used directly in cell simulations. The feasibility of using

automated pattern recognition approaches to recognize the subcellular patterns of proteins

that localize primarily to one organelle has been well demonstrated (for reviews see (19–

21)). However, many proteins are found to varying extents in more than one organelle, and

therefore a means of determing that distribution is needed.

Boolean vectors: GO terms

Some information about protein subcellular location can be obtained from protein databases,

which have at least some GO terms associated with most proteins. However, there are a

number of limiations of these annotations, most of which derive from the absence of enough

experimentatl data. For example, these databases do not attempt to capture changes in GO

terms for different conditions or cell types or distinguish between subcellular locations of

different splice isoforms. Nonetheless, when no other information is available, GO terms can

be represented as a Boolean vector describing whether a particular protein is or is not found

in each organelle.

Dirichlet distributions: Pattern unmixing

What is really need for accurate modeling of a protein is a Dirichlet distribution – a

probability distribution (that sums to one) for each molecule of that protein over the

different organelles. We can convert the Boolean vector for a particular protein derived from

GO terms into a Dirichlet distribution by dividing by the number of organelles it is thought

to be found in. This assumes, in the absence of any other information, that it is equally likely

to be in each of them. A much better alternative is to try to estimate the amount of a given
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protein in each organelle or structure. To do this, we define a set of fundamental patterns to

be a set from which all composite patterns can be constructed. This might correspond to the

set of all organelle patterns, but, depending on the extent to which they are distinct, might

contain multiple subpatterns for a given organelle. For example, protein distributions in the

nucleus have been divided into at least eight nuclear subdomains (22). For a collection of

images of a particular protein, we seek to find the Dirichlet distribution over these

fundamental patterns. In other words, we estimate how much of the protein would have to be

in each pattern in order for the overall image to appear as it does. This task can be viewed as

unmixing an image formed by mixing fundamental patterns.

We have described two approaches for estimating this: one in which we specify the

fundamental patterns in advance and just try to estimate the fractions (referred to as

supervised unmixing), and one in which we try to find the fundamental patterns as well as

the fractions (referred to as unsupervised unmixing). Using a test set of images created by an

automated high content imaging system, we have demonstrated that good estimates of the

fractions can be obtained by both the supervised (23) and unsupervised (24) approaches.

Use of models for testing algorithms

A classic problem in testing algorithms for microscope images is that the correct results are

frequently not known. A generative model for a desired pattern or structure can be combined

with a model of image formation in a particular microscope to generate test images

(“phantoms”) for which the correct results from image analysis are known. The process by

which an image is formed in a microscope is quite well understood, so accurate models of

point-spread functions and sampling noise can be constructed and applied to the idealized

images generated by the methods described above. This approach has been applied

previously for nuclei (15, 25); the paper by Svoboda et al (25) provides a particularly good

image formation model.

The phantom approach can be extended to any combination of the tools in the CellOrganizer

project to generate test images with known cell boundaries, object locations and/or

subcellular patterns. The accuracy of algorithms can also be determined as a function of the

parameters of the generative model, such as cell size or extent of nuclear elongation.

Collections of already synthesized synthetic cell images can be found at http://

CellOrganizer.org.

Conclusion

In this chapter I have described current approaches for building accurate models of cell

organization directly from fluorescent microscope images. These models capture variation in

cell organization at the level of the nucleus, cell membrane and individual organelles, and

can capture how particular proteins are distributed among cellular components. They

represent a significant advance over the use of words (such as GO terms) as the means by

which results of experiments on subcellular localization and organization are captured and

communicated. Nonetheless, the field is at the beginning, and it is hoped that many

investigators will develop and make available tools that improve and extend the approaches
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described here. Examples of future work that can be anticipated include methods for

merging images at different resolutions (especially light and electron microscope images)

and methods for describing the interplay between localization and structure for proteins

involved in creating subcellular structures.
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Figure 1.
Illustration of a medial axis method for modeling a 2D nuclear shape instance. The original

nuclear image (a) was binarized (b) and rotated so that its major axis is vertical (c). The

position of the curve that divides the shape in half horizontally at each vertical position is

then found (d). The horizontal positions of the medial axis as a function of the fractional

vertical distance are shown by the symbols in (e), along with a B-spline fit (solid curve). The

width as a function of fractional distance is shown by the symbols in (f), along with the

corresponding fit (solid curve). Scale bar, 5 um. From Zhao & Murphy (5).
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Figure 2.
Illustration of cylindrical spline surface method for modeling a 3D nuclear shape instance.

(a) Surface plot of a 3D HeLa cell nucleus. (b) Unfolded surface of the nuclear shape in a

cylindrical coordinate system. The surface plot shows the radius r as a function of azimuth u

and height z. (c) B-spline surface fitted to the unfolded nuclear surface. From Peng &

Murphy (11).
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Figure 3.
Determining the distance between two shapes using large deformation metric mapping. The

goal is to measure the distance betwee the starting shape and the target shape. This is done

by gradually deforming the starting shape to become more similar to the target shape while

recording how much perturbation is necessary at each step. From Rohde et al (6).
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Figure 4.
Illustration of fitting objects using a 2D Gaussian mixture model. A region of a cell

containing a single composite object (found by thresholding and connecting above threshold

pixels) (a) is smoothed by a Gaussian lowpass filter (b) to faciliate detection of local

maxima (“peaks”) in the composite object. Fitting using a spherical covariance matrix (c)

yields the estimated positions and sizes of the Gaussian objects assumed to have given rise

to the original image. A similar approach is used for 3D images. After Zhao & Murphy (5).
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Figure 5.
(a) Overview of inverse modeling approach for estimating parameters of the microtubule

generative model. From Sharif et al (9). (b) Example of 2D slice from 3D synthetic image

generated by tubulin model.
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Figure 6.
Example synthetic image generated by a 2D model learned from images of the lysosomal

protein LAMP2. The DNA distribution is shown in red, the cell outline in blue, and

LAMP2-containing objects in green. From http://murphylab.web.cmu.edu/data/

2007_Cytometry_GenModel.html.

Murphy Page 16

Methods Cell Biol. Author manuscript; available in PMC 2014 July 23.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://murphylab.web.cmu.edu/data/2007_Cytometry_GenModel.html
http://murphylab.web.cmu.edu/data/2007_Cytometry_GenModel.html


Figure 7.
Example synthetic image generated by a 3D model learned from images of the lysosomal

protein LAMP2. The nuclear surface is shown in red, the cell surface in blue, and LAMP2-

containing objects in green.
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