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Abstract
Given the importance of subcellular location to protein function, computational simulations of cell
behaviors will ultimately require the ability to model the distributions of proteins within organelles
and other structures. Towards this end, statistical learning methods have previously been used to
build models of sets of two-dimensional microscope images, where each set contains multiple
images for a single subcellular location pattern. The model learned from each set of images not
only represents the pattern but also captures the variation in that pattern from cell to cell. The
models consist of sub-models for nuclear shape, cell shape, organelle size and shape and organelle
distribution relative to nuclear and cell boundaries, and allow synthesis of images with the
expectation that they are drawn from the same underlying statistical distribution as the images
used to train them. Here we extend this generative models approach to three dimensions using a
similar framework, permitting protein subcellular locations to be described more accurately.
Models of different patterns can be combined to yield synthetic multi-channel image containing as
many proteins as desired, something that is difficult to obtain by direct microscope imaging for
more than a few proteins. In addition, the model parameters represent a more compact and
interpretable way of communicating subcellular patterns than descriptive image features, and may
be particularly effective for automated identification of changes in subcellular organization caused
by perturbagens.
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1 Introduction
Proteins function in different cellular or subcellular compartments as part of complex
systems. In systems biology, investigating and modeling these complex systems from
different aspects and at various levels is hoped to lead to a mechanistic understanding of cell
behavior [1, 2]. Extensive efforts have been made towards proteome-scale determination of
protein sequence, structure, abundance and interactions and tremendous progress has been
achieved. Much less information is available about protein location within cells, with
descriptions using words (such as GO terms) being the main approach used to represent this
important concept. More detailed and comprehensive approaches to learning and describing
the spatial distributions of proteins at different levels of accuracy will be critical for systems
models.

Development of modern microscopy technology makes observation of protein localization
possible both in vitro and in vivo with high throughput. However, traditional visual analysis
to recognize protein localizations can be a key barrier for converting large sets of images to
useful descriptions of protein locations. To overcome this difficulty, machine learning
methods and digital image processing tools have been combined to develop systems that
automatically recognize protein subcellular location patterns [3]. Here “pattern” designates
the subcellular distribution of a protein, or of a set of proteins whose distributions are
statistically indistinguishable. The most critical component of these systems is sets of
numerical features to describe protein subcellular location patterns in 2D or 3D images.
With these features, the feasibility is capable of classifying major protein subcellular
location patterns with high accuracy and efficiency compared to visual analysis has been
demonstrated [4, 5].

However, recognition of location patterns provides only limited information. For example,
describing a protein location as “nucleus” in a given cell type under a given condition
provides no detail on how it is distributed within the nucleus (and of course no information
on the size or shape of nuclei in that cell type). Similarly, recognition based approaches can
describe a protein’s “relocation from organelle A to B“ but communicates no information
about how this process happens spatially and geometrically. Thus, beyond simply
recognizing subcellular location patterns, an important goal is to be able to build models to
capture the essence and variation of a specific pattern.

Zhao and Murphy [6] describe the first system for constructing generative models of
subcellular patterns in 2D images, providing a framework in which cell structure and
subcellular location patterns can be represented and communicated. In this work, images are
viewed as the manifestation of a set of random variables and image synthesis or generation
is viewed as a stepwise random process. A statistical generative model is the combination of
all distributions of these random variables. Building a generative model for images in the
form of a joint distribution of all pixels in an image is too computationally expensive (and
potentially underdetermined) to be practical. Therefore, methods of computational geometry
and data analysis were explored in order to compromise between complexity and accuracy
of the model. 2D fluorescence images of cells were represented by three major components:
nucleus, cell membrane, and protein objects distributed inside these compartments. All three
components were represented by small sets of parameters (much fewer than the number of
image pixels) from which the key features related to protein locations in the original image
can be reconstructed with reasonable accuracy. The three components were modeled
conditionally on each other, e.g., the output of the model of organelle position takes as
inputs the instances drawn from models of cell and nuclear shape.

Peng and Murphy Page 2

Cytometry A. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



While this initial approach is useful for the vast majority of fluorescence microscope images
that are acquired in only 2D, they represent a significant simplification of actual cell
organization in 3D. Therefore, in this paper we describe extending the generative modeling
and simulation framework to 3D.

2 Materials and Methods
For the studies describe here, we used the same 3D HeLa dataset [5] used previously for
testing 2D models (the previous studies used only the central slide of each 3D stack). The
dataset is available at http://murphylab.web.cmu.edu/data and contains three fluorescent
channels for each field: a DNA channel that reflects nuclear shape and chromosome texture;
a total protein channel that reflects cell shape; and an antibody channel that reflects the
distribution of a particular protein. Each field has been previously segmented into single cell
regions using a seeded watershed approach. The entire 3D stacks of 447 images were
included to build the 3D nuclear and cell shape models. Protein location models were
created for four “object-like” protein location patterns— lysosomes, mitochondria,
endosomes and nucleoli, each with around 50 training 3D image stacks. Each stack contains
14 to 29 slices containing 1024 × 1024 voxels. The voxel spacing is 0.049µm × 0.049µm ×
0.203µm.

The 3D generative model algorithm used in this work was built upon the toolbox for 2D
generative models (available from http://murphylab.web.cmu.edu/software) and
implemented using MATLAB (version 7.8.0). Code and trained models will be available
upon publication from the same site. Methods and algorithms to create each component of
the model are described in Results. Before the modeling step, each image slice was
thresholded using the Ridler-Calvard method [7]. This was done rather than using a global
threshold because lower slices in the 3D stacks are subject to photobleaching effect. Nuclear
and cell shapes were rotated to have the major axis aligned using a principal axis alignment
method described in [8]. The Matlab spline toolbox (version 3.3.6) was used for nuclear
shape modeling. The EM code used in protein object modeling from the NETLAB library
(http://www.ncrg.aston.ac.uk/netlab) was modified to estimate weighted Gaussian mixtures
with interval inputs (instead of points).

3 Results
3.1 Spline surface model of 3D nuclear shape

We begin by building a 3D nuclear shape model. In the previous 2D model, a nuclear shape
was represented by curves describing the medial axis and the width along it. These two
curves were each parametrically approximated by fourth order B-spline curves. The medial
axis representation has also been applied in modeling 3D shapes, such as pancreas [9].
However, it is not easy to find a concise and proper representation for 3D nuclear shape with
this method, especially for nuclei of cultured cells, which are usually at (Figure 1a).

We therefore consider the 3D shape of a nucleus to be described by a parametric surface
[x(φ,z), y(φ, z), z(φ,z)]. The definition becomes much clearer in a cylindrical coordinate
system

(1)
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The cylindrical representation is an “unwrapping” of the side surface of a nuclear shape to a
surface function r(φ, z) with rectangular support (Figure 1b). The conversion from Cartesian
to cylindrical coordinate systems included resampling of the digitized image.

As previously done for 2D models, we used splines to parameterize the 3D nuclear shape as
they were observed to give very good fits. A tensor product spline surface was used to fit the
surface function r(φ, z).

(2)

where m and n are the number of control points for φ and z, respectively.

In the tensor form, Ni,p(φ) and Nj,q(z) are B-spline basis functions of degree p and q,
respectively; τi,j are the control points or coefficients of the basis functions. Parameterization
of the surface function r(φ, z) is achieved by least-square approximation.

(3)

where N1 and N2 are the number of angles and slices in the digitized image, respectively.
rB(φi, zj) is the radius calculated from the fitted spline surface function at (φi, zj), where real
value r(φi, zj) is observed. To achieve good fit with reasonable complexity, and to eliminate
the effect of high frequency digitization artifacts, we pick the orders of the B-spline basis
functions as p = 4 and q = 3 for the HeLa nuclei (Figure 1c), with m = 8 and n = 3. We
observed the fitted values of the internal knot points to be around (1/4, 3/8, 1/2, 5/8, 3/4)
along the azimuth coordinate and 1/2 along the height coordinate and to have little
contribution to the variation of the spline surface. The positions were therefore set to be
constants.

Fitting the “unwrapped” surface ignores the continuous condition at φ0 = 0 and φN1 = 2π.

(4)

Fujioka and Kano [10] have proved that continuity is maintained if and only if the
coefficients τ satisfies

(5)

We append these constraints to the least-square approximation problem in equation 3 to
guarantee periodicity. This reduces the number of free parameters from (m + 1) * (n + 1) =
36 to 32. Adding a parameter for the height, each nuclear shape is therefore represented by a
total of 33 free parameters. All nuclei are rotated and mirrored (if necessary) according to
the central slice so that they all have same “elongating” and “bending” direction. Statistical
learning is then performed on the shape parameters extracted from these nuclei images to
describe the variation of the shapes from nucleus to nucleus. We chose a multivariate normal
distribution to model the variation of the parameters. As shown in Figure 2, comparison of
the data empirical distribution with the fitted normal distribution validates this choice. The
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nearness of each plot to the diagonal line indicates close agreement to theoretical normal
distributions. The mean and median of p-values under Kolmogorov-Smirnov normality tests
for all parameters are 0.28 and 0.19, respectively, also confirming the choice. Thus we
conclude that the nuclear shape of HeLa cells can be captured by a statistical model with
562 values: a length 32 vector τ for the means of the spline coefficients and the unique
elements of the symmetric 32 × 32 covariance matrix, plus the mean and standard deviation
of the height.

To synthesize a nuclear shape, we draw the parameter values from the trained distributions
and then construct a new shape from the parameters.

3.2 Eigen shape model of cells
The next step is to construct a model of the cell shape (or plasma membrane). Compared
with the nuclear boundary, the cell boundary has more local morphological flexibility and
much larger variation from cell to cell, making it hard to be parameterized to a statistically
simple representation.

However, it is obvious that the cell shape is conditioned on the nuclear shape (at least the
nucleus is inside the cell). Instead of building a parametric cell shape model and a
correlation model separately, we adopt the approach previously used in the 2D model:
learning the ratio of the radius of the cell to that of the nucleus. As for the nucleus, we first
define a polygonal representation of the cell shape in a cylindrical coordinate system,
denoted as rc(φ, z). The radius ratios are then expressed as a function of φ and z: R(φ, z) =
r(θ, z)/rc(θ, z). We sampled φ over 360° in 1 degree increments, and sampled z over 18
slices. This was the average number of slices per cell; all cells were resampled to this value
along the z dimension. The ratio representation contains 360 × 18 = 6120 values.

Direct statistical estimation is impossible for the 6120-dimensional vector with only
hundreds of samples, and is not necessary to guarantee accuracy. Instead, we applied
principal component analysis (PCA) to the ratio vectors after centering them by subtraction
of the mean vector. Instead of performing PCA directly on the original covariance matrix,
we use a modified PCA method to find significant modes and coefficients quickly by

applying eigen analysis on , where R is an N-column matrix with each column a
centered ratio vector. This modified PCA method is a more efficient approach for eigen
decomposition with far more original data dimension than number of samples, based on
discussions in both [11, 12].

With 20 most significant principal modes the shape ratio can be reconstructed substantially
(Figure 3). Moreover, the coefficients λij of each mode appear to be normally distributed and
independent from each other (Figure 4). The mean and median of p-values under
Kolmogorov-Smirnov normality tests for all parameters were 0.29 and 0.22, respectively.
The cell shape model then contains 21 6120-dimensional constant vectors for the mean and
principal modes, and 20 variances of the coefficients (the coefficient means are zero).

To generate an instance of cell shape, we first synthesize an instance of nuclear shape as
described in the previous section. We then sample values for each principal component from
its normal distribution, generate centered ratio vectors by multiplying by the saved principal
modes, and add back the mean ratio vector. The result has a fixed height of 18 slices. We
next sample a cell height from its normal distribution, stretch the synthesized nuclear shape
to correspond to this height, apply the ratios at every (θ, z) and form a cell shape by
connecting line segments between neighboring surface points. The cell shape is stretched
back so that the nuclear height corresponds to its original height. Note that this assumes that

Peng and Murphy Page 5

Cytometry A. Author manuscript; available in PMC 2012 May 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the nucleus and cell cover the same number of slices; this was observed to be the case for
HeLa cells which have little cytoplasmic space above or below the nucleus (relative to the
slice thickness).

3.3 Protein object model
Object-based protein pattern representation—Protein subcellular location patterns
have been successfully represented using “objects” in a number of previous studies, such as
location pattern recognition and complex pattern unmixing [4, 13, 14, 15]. “Objects” are
defined as contiguous regions of non-zero pixels. Many cell organelles have roughly
ellipsoidal shapes and appear to be ellipsoids with intensity clustered in the center in the
images. Zhao and Murphy [6] therefore used 2D Gaussian distribution functions to fit
objects in 2D images and modeled each ellipsoidal family as the distribution of the Gaussian
distribution parameters. In this paper, we also focus on modeling protein location patterns
consisting of mostly ellipsoidal objects in 3D images by extending the methods of Gaussian
objects learning into 3D.

As in 2D images, ellipsoidal objects in 3D images may aggregate to form larger objects to
which single Gaussian gives a poor fit. Using the expectation-maximization (EM) algorithm,
we can estimate parameters of each Gaussian component in an aggregated object as a
Gaussian mixture. The probability density function (PDF) of a Gaussian mixture distribution
can be written as

(6)

g(x|μk, Σk) is Gaussian PDF over three variables x = (x, y, z) with mean μk and covariance
matrix Σk. pk is probabilistic weight of the kth Gaussian component in the mixture
( ).

As in the 2D case, we weight each data point with the intensity value of the voxel (wi = I(xi,
yi, zi)). The E-step of the algorithm to fit the Gaussian mixture stays the same for 3D objects.
αik is the expected probability that point xi is associated with component k. The superior (t)
added to the mixture model PDF parameters means the values at step t of the iterative EM
process. The Gaussian parameter for each object is fitted at convergence.

E-step:

(7)

In the previous 2D model, pixels were treated as points. However, taking account of the
digitization effect, the pixels and voxels are better treated as intervals. Therefore, the
Gaussian parameters estimation in the M-step should be slightly changed. The variances
should increase by 1/12 to avoid zero variance at certain dimensions (1/12 is the variance of
a standard continuous uniform distribution).

M-step:
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(8)

(9)

(10)

We then perform statistical learning, mostly distribution fitting with maximum likelihood
estimation, on the decomposed Gaussian function parameters. The centers (mean) of the
Gaussian objects are used to learn the object position model, which is described in the next
section. The covariance matrix Σ is directly related to the size of the object and we use it to
train an object size model. The ellipsoid Gaussian objects are rotated to have their major and
minor axis aligned to the Cartesian coordinates (the rotation transformation can be achieved
by eigen decomposition of Σ). Each object is then represented in size by three standard
deviations σX, σY and σZ in descending order. As the variances along different coordinates
are highly dependent, we use a simple Bayesian structure to fit their distribution: σY ← σX
→ σZ. Figure 5a shows standard deviation on the major axis is well fit by exponential
distribution. Conditional distribution of σY or σZ over σX are also fit by normal distributions
(normality of the conditional distributions of P(σY |σX) or P(σZ|σX) is shown in Figure 6).
The mean and median of p-values under Kolmogorov-Smirnov normality tests for all
parameters are both 0.37. Figure 5b,c,d,e show the dependency of the normal parameters on
σX, along with their parametric fitting by

(11)

The other important parameter to describe a single Gaussian object is its intensity. It is
defined to be the coefficient between fitted object and the Gaussian function, which is
normalized. γi for an object is estimated from the product of total intensity of the aggregated
object it resides in and the fraction this object in the whole mixture Ii(x) = γi · g(xi). Again,
we choose exponential distribution to fit the intensity coefficient γi (Figure 7).

To synthesize an individual Gaussian object, we simply generate the σ, γ values and use
them to synthesize a 3D Gaussian function γ · g(x|0, Σ). The Gaussian function is digitized
and added to the 3D image at a specific position as determined below.

Probabilistic protein location model—We modeled the positions of protein objects
relative to the nuclear and plasma membranes. The model we used here is a direct extension
of the 2D protein object position model used previously.

We parameterize the position of each object by three variables: s, ratio of the distance of a
given object’s center to the nuclear surface over the sum of that distance and the distance to
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the cell surface; and θ and φ, the inclination angle and azimuth angle of the vector from the
nuclear center to the object center. Using this parameterization, a distribution was formed in
which all points where an object occurs were set to 1 and all other positions set to zero.
After normalizing for the total number of objects, the potential (the probability that a given
position is the center of an object) can be fitted by a logistic regression function

(12)

Here the parameters of β have different interpretations for object location “preference”. For
example, β1 shows whether the protein is more likely to distribute near the nucleus or near
the cell membrane. β3, β4 and β5 determines the protein angular preference. Table 1 shows
learned β for different location patterns. As expected, nucleoli show a preference to be
inside the nuclear membrane (negative β1).

At this point, the only aspects of the model that are not statistically modeled are the number
of Gaussian objects and the direction of alignment of each of them to the central axis. These
parameters did not show an easily fitted distribution (data not shown) and therefore for
image generation values for them are randomly sampled from the empirical distributions.
Given synthesized nuclear and cell shapes, Gaussian objects and positions, we can
synthesize full images depicting protein subcellular location patterns. Figure 8 shows
synthesized location images with three channels of the four patterns. Additional images can
be generated using the tools and models available at
http://murphylab.web.cmu.edu/software.

4 Discussion
The work described here enables significantly more accurate and realistic descriptions and
simulations than prior work. Nonetheless, much further work is required to further refine
and extend these models. In particular, methods are needed to capture patterns not well
represented by discrete objects. Work on learning generative models for microtubule
distributions represents an initial step in this direction [16].

As in any parametric model, our approach includes a number of choices for what parameters
to use and how to capture their distributions (mostly using normal and exponential
distributions). Their generalizability to new cell types is therefore unknown. For such
applications in the future, it will therefore be important to revisit these choices, and perhaps
ultimately to make them using large collections of images for many cell types. In cases were
parametric models do not perform well, alternatives such as the instance-based
diffeomorphic shape generation models described previously [17] may be considered.

With our approach, images can be generated that appear to the eye to capture the essential
features of protein location patterns. These synthesized images are suitable for simulations
(using systems like Virtual Cell [18] and MCell [19]), and their utility can ultimately be
evaluated (and hopefully increased) through simulations using them to predict cell
behaviors. It is important to note that in line with their anticipated use in simulations, our
models are abstractions not intended to generate images that appear similar to actual
microscope images. However, it is a straightforward matter to generate such images by
convolution of the idealized image with the point-spread function for a particular
microscope [20].
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While our 2D and 3D systems are the only ones described to date that construct generative
models of organelles within the context of cell and nuclear organization, other investigators
have described approaches for modeling or simulating nuclear or organelle size and shape
[20, 21]. Models resulting from such work can readily be incorporated into the conditional
model framework we have described.
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Figure 1.
Nuclear shape representation. (a) Surface plot of a 3D HeLa cell nucleus. (b) Unfolded
surface of the nuclear shape in a cylindrical coordinate system. The surface plot shows the
radius r as a function of azimuth φ and height z. (c) B-spline surface fitted to the unfolded
nuclear surface.
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Figure 2.
Normality plots of nuclear shape parameters. (a–d) P-P plot of randomly selected spline
surface coefficients (empirical cdf versus fitted normal cdf). (e) P-P plot of the nuclear
height.
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Figure 3.
Principal Component Analysis on cell shape representation. (a) The eigen value spectrum
(truncated to the first 30). (b) Reconstruction residual of cell shapes as a function of number
of principal modes used. The residual is the ratio of the sum of eigen values of not included
modes to the sum of all eigen values. With 20 modes the residual drops under 0.1.
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Figure 4.
Normality plots of nuclear shape parameters. (a–d) P-P plot of randomly selected spline
surface coefficients (empirical cdf versus fitted normal cdf). (e) P-P plot of the nuclear
height.
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Figure 5.
Fitting the distributions of object size parameters. (a) The histogram of the Gaussian object
parameter σX is shown, along with an exponential fit (solid line) to the distribution. (b,d)
Conditional mean of σY (b) and σZ (d) as a function of σX (squares), and results of
parametric fitting (solid line). (c,e) Conditional standard deviation of σY (c) and σZ (e) as a
function of σX (squares), and results of parametric fitting (solid line).
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Figure 6.
Normality plots of the conditional distributions of object dimensions. (a–j) P-P plot of σY
versus corresponding σX for different ranges of x in increments of 0.1. (k–t) P-P plot of σZ
with corresponding σX in different ranges. The plots for the first two ranges (a,b,k,l) deviate
from the diagonal because in these intervals σ’s are rather small, approaching the voxel
limit.
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Figure 7.
Distribution of the total intensity of Gaussian objects. The points are close to a straight line,
supporting the use of an exponential distribution to represent the distribution.
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Figure 8.
Synthesized images displayed in pseudo color surfaces for different protein location patterns
(green), with nuclear (red) and cell shapes (blue). (a) Lysosome. (b) Mitochondria. (c)
Nucleolus. (d) Endosome.
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