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1 Introduction

Perhaps the most puzzling feature of currency prices is the tendency for high interest
rate currencies to appreciate, when one might guess, instead, that investors would
demand higher interest rates on currencies expected to fall in value. This departure
from uncovered interest parity, which we term the forward premium anomaly, has
been documented in dozens — and possibly hundreds — of studies, and has spawned
a second generation of papers attempting to account for it. One of the most influ-
ential of these is Fama (1984), who attributed the behavior of forward and spot
exchange rates to a time-varying risk premium. Fama showed that the implied risk
premium on a currency must (i) be negatively correlated with its expected rate of
depreciation and (ii) have greater variance.

We refer to this feature of the data as an anomaly because asset pricing theory
to date has been notably unsuccessful in producing a risk premium with the requi-
site properties. Attempts include applications of the capital asset pricing model to
currency prices (Frankel and Engel, 1984; Mark, 1988), statistical models relating
risk premiums to changing second moments (Cumby, 1988; Domowitz and Hakkio,
1985; Hansen and Hodrick, 1983), and consumption-based asset pricing theories,
including departures from time-additive preferences (Backus, Gregory, and Telmer,
1993; Bansal, Gallant, Hussey, and Tauchen, 1995; and Bekaert, 1996), from ex-
pected utility (Bekaert, Hodrick, and Marshall, 1997), and from frictionless trade in
goods (Hollifield and Uppal, 1997).

We study the anomaly in the context of affine models, whose popularity in
bond pricing has spread to currencies in recent years. Notable applications of affine
models to currencies include Ahn (1997), Amin and Jarrow (1991), Bakshi and Chen
(1997), Bansal (1997), Frachot (1996), Nielsen and Sai-Requejo (1993), and Saa-
Requejo (1994). We consider a generalization of the models used in these papers, an
adaptation to currencies of Duffie and Kan’s (1997) class of affine yield models, and
outline the conditions on such models needed to reproduce the forward premium
anomaly. Theory and examples indicate that the anomaly places strong restrictions
on the structure and parameter values of affine models: either state variables have
asymmetric effects on state prices in different currencies or interest rates are negative
with positive probability. We quantify both with parameter values estimated from
monthly data on the dollar-pound rate.

We proceed as follows. In Section 2, we summarize the properties of dollar
exchange rates and one-month eurocurrency interest rates. These properties serve
as an anchor to the theory that follows. In Section 3, we describe the relations among
pricing kernels, currency prices, and interest rates dictated by general arbitrage-free
environments and our specific class of affine models. In Section 4, we develop and



estimate several affine models and show how different features and parameter values
bear on the forward premium anomaly.

2 Properties of Currency Prices and Interest Rates

Properties of exchange rates and eurocurrency interest rates have been widely doc-
umented, but a review focuses our attention on the issues to be addressed and
provides a quantitative benchmark for subsequent theory. Accordingly, we sum-
marize the properties of spot and forward exchange rates for the US dollar versus
the remaining G7 currencies and interest rates for the same currencies. Here and
elsewhere, s; is the logarithm of the dollar price of one unit of foreign currency and
ft is the logarithm of the dollar price of a one-month forward contract: a contract
arranged at date ¢ specifying payment of exp( f;) dollars at date ¢+ 1 and receipt of
one unit of foreign currency.

In Table 1, we report sample moments for depreciation rates of the dollar, s;41 —
s¢, continuously-compounded one-month eurocurrency interest rates, r;, and forward
premiums, f; — s;. Panel A is concerned with depreciation rates. For the currencies
in our sample, mean depreciation rates are smaller than their standard deviations,
typically by a factor of about eight. In this sense, volatility is one of the most
striking features of currency prices. Apparently little of this volatility is predictable
from past depreciation rates: estimated autocorrelations are less than 0.1 for all
six currencies. Panels B and C are concerned with interest rates and interest rate
differentials. Unlike currency prices, both interest rates and their differentials are
highly persistent. They also exhibit less variability, both absolutely and relative to
their means.

One way to think about this evidence is to relate it to the expectations hy-
pothesis: that forward rates are expected future spot rates. We have no reason
to think the expectations hypothesis is an accurate description of the world, but
it provides a useful benchmark to which we can compare the data. We express
the hypothesis in logarithmic form as f; = Eys;y1 or fi — 8¢ = Eysi41 — S84, where
F; denotes the expectation conditional on date-¢ information. Although we do not
observe expected future spot rates, we can get an indication of the accuracy of the
expectations hypothesis by comparing mean forward premiums with mean depreci-
ation rates across currencies. We see in Figure 1 (based on entries from Table 1)
that while the two means are not the same, their differences are small relative to
their cross-sectional variation. Currencies with large forward premiums, on average,
are also those against which the dollar has depreciated the most. In other words,
currencies with average interest rates higher than the dollar have typically fallen in
value relative to the dollar.



This sanguine view of the expectations hypothesis changes dramatically when
we turn from cross-section to time-series evidence — that is, from unconditional
moments to conditional moments. A huge body of work has established, for the
extant flexible exchange rate period, that forward premiums have been negatively
correlated with subsequent depreciation rates for exchange rates between most major
currencies. Canova and Marrinan (1995), Engel (1996), and Hodrick (1987) provide
exhaustive references to the literature. The most common evidence comes from
regressions of the form

St41 — St = a1 + az( fi — s¢) + residual. (1)

The expectations hypothesis implies a regression slope a; = 1, yet most studies es-
timate ag to be negative. Thus they find not only that the expectations hypothesis
provides a poor approximation to the data, but that its predictions of future cur-
rency movements are in the wrong direction. We report similar evidence in Table
2, where estimates of ay range from —0.073 for the lira to —1.840 for the pound.
Since the forward premium equals the interest differential (covered interest parity),
the regressions indicate that currencies with high interest rate differentials (relative
to their means) have low rates of depreciation (also relative to their means). All of
these estimates are at least two standard errors from the value of one indicated by
the expectations hypothesis. Although the R?s are small (the largest, for the Cana-
dian dollar, is 0.034), equation (1) can be used to construct profitable investment
strategies. Backus, Gregory, and Telmer (1993) and Bekaert and Hodrick (1992)
show that while such strategies are not riskless, they have positive and statistically
significant average excess returns.

Evidence of negative correlation between forward premiums and depreciation
rates has survived, so far, a number of attempts to reverse it. One issue is the log-
arithmic version of the expectations hypothesis and equation (1). If we define the
expectations hypothesis in terms of forward and spot exchange rates, rather than
their logarithms, the evidence is virtually the same. See, for example, Backus, Gre-
gory, and Telmer (1993, Table 2). A second issue is stability. Although estimates of
ag vary substantially over time, they remain consistently negative. Bekaert and Ho-
drick (1993), for example, find that estimates based on data subsequent to Fama’s
(1984) sample are more strongly negative than those based on the entire sample.
Data from the early 1990s moderates this conclusion, but does not invalidate it. A
third issue concerns measurement error and bid-ask spreads. Bekaert and Hodrick
(1993) and Bossaerts and Hillion (1991) argue, however, that neither of these factors
has a material effect on the sign or magnitude of estimates of ay. A fourth issue
concerns the exchange-rate regime. Flood and Rose (1996) find that negative slope
parameters are less apparent for currencies covered by the Exchange Rate Mecha-
nism of the European Monetary System. In fact, the evidence for exchange rates in
the ERM is mixed: estimates of a; are close to one for the German mark and the



French franc, but large and negative for the mark and the Dutch guilder. Flood and
Rose estimate a typical ERM slope parameter of 0.58, which is significantly different
from one but nevertheless positive. For floating exchange rate regimes they report,
as others do, negative values for as.

While the evidence apparently contradicts the expectations hypothesis, Fama
(1984) notes that it is consistent with a time-varying risk premium. In Fama’s
interpretation, the forward premium, f; — s;, includes a risk premium p; as well as
the expected rate of depreciation ¢;:

fi—=st = (fi — Etsip1) + (Eesey1 — St)
= prt g (2)

The risk premium ¢; = fi— Eysi41 is the (log-linearized) expected return from buying
dollars in the forward market. The cross-section evidence (Table 1 and Figure 1)
suggests that risk premiums are small on average, but the time series evidence
implies they are highly variable. Since the population regression coeflicient is

4 = Cov(q,p+ q) _ Cov(q,p)+ Var(q)
Var(p+ q) Var(p + q) ’

(3)

it is clear that a constant risk premium p generates ag = 1. To generate a negative
value of ay we need Cov(q,p)+ Var(q) < 0. Fama notes that this requires (i) negative
covariance between p and ¢ and (ii) greater variance of p than ¢. We refer to
these requirements as Fama’s necessary conditions. They serve as hurdles that any
theoretical explanation of the anomaly must surpass.

3 A Theoretical Framework

With these properties of the data in mind, we consider theories that might account
for them. The challenge is to account simultaneously for currency prices and prices
of fixed income securities denominated in both currencies. A model of the dollar-
pound rate, for example, must account for the properties of interest rates in dollars
and pounds, as well as those of the exchange rate between the two currencies.
From a theoretical perspective, this challenge places demands on a model’s internal
consistency. It gains greater force in quantitative applications, when parameter
values chosen to imitate (say) movements in exchange rates must be reconciled with
properties of interest rates.

We find it useful to consider currency prices in a fairly general theoretical setting
before turning to the more structured environment of affine models. We describe



models in terms of pricing kernels: stochastic processes governing prices of state-
contingent claims. Existence of a pricing kernel (or, equivalently, of risk-neutral
probabilities) is guaranteed in any economic environment that precludes arbitrage
opportunities. The beauty of this result is its simplicity. It requires only that market
prices of traded assets not permit combinations of trades that produce positive
payoffs in some states with no initial investment — a departure from covered interest
rate parity, for example. The framework encompasses, among other things, the
possibility that agents trade on different information, or that some agents harbor
“irrational” beliefs. In the rest of this section, we relate properties of currency
prices to those of pricing kernels in two currencies and examine the relation between
pricing kernels and the forward premium anomaly.

3.1 Pricing Kernels and Currency Prices

Currencies are largely a matter of units: we can quote prices in dollars or pounds,
and the exchange rate is the ratio of the two. In similar fashion, we show that we
can compute the depreciation rate from the ratio of pricing kernels in two curren-
cies. With complete markets, absence of arbitrage determines unique pricing kernels
whose ratio equals the depreciation rate. With incomplete markets, pricing kernels
are no longer unique. We show, however, that we can choose them to satisfy the
same condition.

Consider assets denominated in either domestic currency (“dollars”) or foreign
currency (“pounds”). The dollar value v; of a claim to the stochastic cash flow of
d;41 dollars one period later satisfies

v = Ly (mt+1 dt+1) 5 (4)

or
1= Ey(mip1Reqq), (5)

where R;y1 = di11/v; is the gross one-period return on the asset. We refer to m as
the dollar pricing kernel. In economies with a representative agent, m is the nominal
intertemporal marginal rate of substitution and (5) is one of the agent’s first-order
conditions. More generally, there exists a positive random variable m satisfying the
pricing relation (5) for returns R on all traded assets if the economy admits no pure
arbitrage opportunities. When the economy has a complete set of markets for state-
contingent claims, m is the unique solution to (5), but otherwise there is a range of
choices of m that satisfy the pricing relation for returns on all traded assets. These
issues, and the relevant literature, are reviewed by Duffie (1992).

The pricing kernel m and the pricing relation (5) are the basis of modern theories
of bond pricing: given a pricing kernel, we use (5) to compute prices and yields for



bonds of all maturities. The price of a one-period bond, for example, is b} = E;myyq,
and the (one-period) short rate r; is

Ty = —10g b% = —10g Eth_l. (6)
We return to this equation shortly.

When we consider assets with returns denominated in pounds, we might adopt
an analogous approach and use a random variable m* to value them. Alternatively,
we could convert mark returns into dollars and value them using m. The equivalence
of these two procedures gives us a connection between exchange rate movements and
pricing kernels in the two currencies, m and m*. If we use the first approach, pound
returns R} satisfy

1= E; (miy RiLy) (7)

If we use the second approach, with S = exp(s) denoting the dollar spot price of
one pound, dollar returns on this asset are R;y1 = (Si41/5¢)Rfy, and

1= E; [mey1(Si41/5:) Ripq] -

If the pound asset and currencies are both traded, the return must satisfy both
conditions:

Ey (mi Riyy) = By [mega(Seea/Se) Ry ] -

This equality ties the rate of depreciation of the dollar to the random variables m
and m* that govern state prices in dollars and pounds. Certainly this relation is
satisfied if m},; = my415¢41/5¢ This choice is dictated when the economy has a
complete set of markets for currencies and state-contingent claims. With incomplete
markets, the choices of m and m* satisfying (5,7) are not unique, but we can choose
them to satisfy the same equation:

Proposition 1 Consider stochastic processes for the depreciation rate, Siyq1/St,
and returns Ry and R}, on dollar and pound denominaled assets. If these pro-
cesses do not admil arbilrage opportunilies, then there exist pricing kernels m and
m* for dollars and pounds that satisfy both

migy [ migpr = Seq1/ S (8)

and the pricing relations (5,7).

Proof. Consider dollar returns on the complete set of traded assets, including the
dollar returns (S;41/5¢)R;;; on pound-denominated assets. If these returns do
not admit arbitrage opportunities, then there exists a positive random variable
my4 satisfying (5) for dollar returns on each asset (Duffie 1992, Theorem 1A and



extensions). For any such m, the choice My = Mip1 St41/ 5t automatically satisfies

(7). n

The proposition tells us that of the three random variables — myy1, my,,, and
Sty1/5¢ — one is effectively redundant and can be constructed from the other two.
Most of the existing literature uses the domestic pricing kernel m (or its equivalent
expressed as state prices or risk-neutral probabilities) and the depreciation rate. We
start instead with the two pricing kernels, which highlights the essential symmetry
of the theory between the two currencies.

The essence of the proposition is that we can always choose an m™ that satisfies
(7) and (8). Suppose, instead, that m* satisfies (7), but departs from (8) by an
arbitrary error 7:

(St41/8¢) = (miyq /Mg )e™ .

Since we can convert dollar cash flows to pounds, and vice versa, this error must
satisfy

Ey(mip 1 Rip1) = By [mupi(Se /S0 RG] = B (mip €™ RY) (9)
Ey(mepiRep1) = By [mi(Se/Ser1)Repa] = By (mygre” "4 Ryy)

for all feasible returns R and R*. Given such an error, we can satisfy the proposition
by choosing a different foreign pricing kernel 7y, = mj,; exp(n;41).

Missing from the proposition is a position on purchasing power parity. Although
it presumes frictionless trade in (some) assets, including currencies, it applies equally
to environments in which costs of shipping goods across countries lead to departures
from purchasing power parity (Hollifield and Uppal, 1997) and those in which pur-
chasing power parity holds exactly (Bakshi and Chen, 1997).

3.2 Forward Rates and Risk Premiums

We can now relate the risk premium defined by Fama to properties of the two pricing
kernels. Consider a forward contract specifying at date ¢ the exchange at ¢ + 1 of
one pound and F; = exp(f) dollars, with the forward rate F; set at date ¢ as the
notation suggests. This contract specifies a net dollar cash flow at date ¢t + 1 of
Fy; — S¢41. Since it involves no payments at date ¢, pricing relation (4) implies

0 = Ey[mp1(Fy — Sep1)] -
Dividing by 57 and applying Proposition 1, we find

(Fy/S1)Ei(migr) = By (mygp1Si41/5¢) = Ed(miy).



Thus the forward premium is
ft — 8 = 10g Etm?_}_l - 10g Et’mt+1. (10)

This equation and definitions of the short rate [equation (6) for domestic rate and
an analogous relation for the foreign rate], give us f; — s; = r; — rf, the familiar
covered interest rate parity condition.

Now consider the components of the forward premium. The expected rate of
depreciation is, from (8),

qr = Etst-l—l — S8 = Et 10g mf_l_l — Et 10g mMiqq. (11)

Thus we see that the first of Fama’s components is the difference in conditional
means of the logarithms of the pricing kernels. The risk premium is, from (2,10),

Pt = (log Etmfﬂ — Eilog m¥+1) - (log Eymypq — Eylog mt+1)7 (12)

the difference between the “log of the expectation” and the “expectation of the log”
of the pricing kernels m and m*.

With additional structure we can be more specific about the factors that affect
the risk premium. Many popular models of bond and currency prices, including
the affine models we examine shortly, start with conditionally log-normal pricing
kernels: log my; and log m},, are conditionally normal with (say) means (g1, ;)
and variances (po, u5,). With this structure, one-period bond prices are

Eymyy = exp(pae + pat/2)
Eymiyy = exp(piy + p3,/2)
and the risk premium is
pe = (k2 — par)/2. (13)

Fama’s conditions require, in this case, (i) negative correlation between differ-
ences in conditional means and conditional variances of the two pricing kernels
and (ii) greater variation in one-half the difference in the conditional variances. We
need, in short, a great deal of variation in conditional variances.

If the conditional distributions of logm and logm* are not normal, the risk
premium also depends on moments of order three and higher. For an arbitrary
distribution, equation (11) tells us (again) that only the means affect the expected
rate of depreciation. The risk premium is given, in general, by (12), but if all of the
conditional moments of log m;4 exist, log Fym4q1 can be expanded as

10g Etmt_H = Z K’jt/j!y (14)
i=1



where k;; is the jth cumulant for the conditional distribution of log m¢y;. Equation
(14) is an expansion of the cumulant generating function (the logarithm of the mo-
ment generating function) evaluated at one; see, for example, Stuart and Ord (1987,
chs 3,4). Cumulants are closely related to moments, as we see from the first four:
Kit = Mg, Kot = Moty Kar = pag, and kg = gy — 3(pos)?. The notation is standard,
with 1; denoting the conditional mean of log m¢y; and pj¢, for j > 1, denoting the
7th central conditional moment. For the normal distribution, cumulants are zero
after the first two, so equation (14) gives us a way of quantifying the impact of
departures from normality. If the foreign kernel has a similar representation, the
forward premium is

o0
Jo—se = (K5 — rj0) /5!,
i=1
and the risk premium is
p: = H*_Lt — k-1t (15)

where

) 00
Ko =) kit/il Kl =) K/dl
J=2 7=2

We refer generically to the sums x_ and k* as “higher-order cumulants.”
1,2 1,t
’

With equations (15) and (11) describing risk premiums and expected rates of
depreciation, we have

Remark 1 If conditional moments of all order exist for the logarithms of the two

pricing kernels, m and m*, then Fama’s necessary conditions for the forward pre-

mium anomaly imply (i) negative correlation between differences in conditional means,
1i¢ — pae, and differences in higher-order cumulants, k* , — k14, and (ii) greater

variation in the latter. A necessary and sufficient condition is a negative covariance

belween q; = pj, — p1r and f; — s = pi; — pae + H*—Lt — K_14-

This characterization of the risk premium suggests an interpretation for the
failure of GARCH-M models, which model the risk premium as a function of the
conditional variance of the depreciation rate. Studies by Bekaert (1995), Bekaert
and Hodrick (1993), and Domowitz and Hakkio (1985) document strong evidence
of time-varying conditional variances of depreciation rates, but little that connects
the conditional variance to the risk premium p. One view of this failure is that
GARCH-M models violate our sense of symmetry: an increase in the conditional
variance of the depreciation rate increases risk on both sides of the market, and
hence carries no presumption in favor of one currency or the other. Our framework
indicates why. The conditional variance of the depreciation rate is

Vary(sgy1 — s¢) = Vary(logmi,, — logmy),



the conditional variance of the difference between the logarithms of the two kernels.
The risk premium, on the other hand, is half the difference in the conditional vari-
ances [equation (13)] and possibly higher moments [equation (15)], which need bear
no specific relation to the conditional variance of the depreciation rate. GARCH-M
models, to put it simply, focus on a different conditional variance.

3.3 The General Affine Model

Further progress requires more structure. We explore an adaptation to currencies
of the Duffie and Kan (1996) class of affine yield models, whose relevant properties
are summarized in Appendix A. The linearity of these models makes it relatively
to easy to explore the implications of different structures and parameter values for
the forward premium anomaly.

This class of affine currency models starts with a vector z of state variables
following the law of motion

Ziy1 = (I — <I))0 + &z + ‘/(2’15)1/25754-1 (16)

where {e;} ~ NID(0, /), ® is stable with positive diagonal elements, and V' is diag-
onal with typical element

vi(2) = a; + 5]z

Further conditions on the parameters guarantee that the state z never leaves the
region defined by nonnegative values of the volatility functions v;; see Appendix A
for details. Given z, pricing kernels have the form

— 10g miy1 = 6 + ’)/TZt + AT"[(Zt)1/25t+1 (17)
—logmi,, = & +v"x+ NV (2) Y2441, (18)

and the depreciation rate is
sipr =0 = (6= 6)+ (1 =7) T2+ (A= A) TV (2) ey (19)

Thus, log kernels and depreciation rates are conditionally normal with conditional
means and variances that are linear in the state z.

Application of equation (8) of Proposition 1 comes without loss of generality
in this environment. The presumption of the model is that predictable and un-
predictable movements in log bond prices and depreciation rates are spanned by
the state z and the innovations V(2)"/?c. From this, any error in (8) is affine, and

10



Proposition 1 might be satisfied only by an alternative afline choice of foreign pricing
kernel,

—logy, = (8 +8)+ (7 +7) 2+ A+ X))V (2) e,

for some arbitrary nonzero choice of (8’,7', \'). Equation (9) implies, however, that
m™* and m* price all traded assets the same way. In this sense, the two kernels are
observationally equivalent, and there is no loss of generality in applying Proposition
1.

We turn now to the possibility of using models in this class to account for the
forward premium anomaly.

4 Accounting for the Anomaly

Remark 1 suggests that it should be relatively easy to construct examples that re-
produce the anomaly: we simply arrange for differences in first and second moments
of pricing kernels to move in opposite directions. Consider a model like Engel and
Hamilton’s (1990) in which the conditional distributions of two pricing kernels al-
ternate between two log-normal regimes. If the difference in conditional means of
the pricing kernels is higher in regime 1, and one-half the difference in conditional
variances is higher in regime 2, and varies more than the difference in means, then
the model will reproduce the anomaly.

A greater challenge is to construct a model that mimics the properties of cur-
rency prices and interest rates more generally. We approach this problem with
affine models, which have several advantages in this context. First, we have, as a
profession, more than two decades’ experience with affine models in pricing fixed
income securities. Much of this experience can be transferred directly to currency
pricing. Second, conditional means and variances of logarithms of pricing kernels
are linear functions of a vector of state variables. As a result, we can easily compare
their properties to Fama’s necessary conditions for the forward premium anomaly.
Finally, we will see shortly that many of the models in this class automatically
generate the contrary movements in the conditional mean and variance of pricing
kernels suggested by Fama’s condition (i) in log-normal settings.

4.1 Example 1: Two-Currency Cox-Ingersoll-Ross

An obvious starting point is a two-currency version of Cox, Ingersoll, and Ross
(1985). Our version is adapted from Sun’s (1992) discrete-time translation.

11



The model is based on two state variables, indexed by ¢« = 1,2, that obey inde-
pendent “square-root” processes

Zity1 = (1 — @1)b; + @izie + UiZZ-lt/28it+17 (20)

with 0 < ¢; < 1, 6; > 0, and {e;s} ~ NID(0,1). The unconditional mean of z; is
0;, the autocorrelation is ¢;, the conditional variance is ofzit, and the unconditional
variance is 026;/(1 — ¢?). A variant of (20),

Zite1 — 2 = (1= 93)(0; — 2i2) + 0i2] “einnn,

is a direct analog of the continuous-time original (Cox, Ingersoll, and Ross, 1985,
eq 17). A salient feature of (20) is the square-root term in the innovation, whose
conditional variance falls to zero as z; approaches zero. In continuous time, this
feature and the Feller condition,

2(1 — ¢;)86;

5 > 1, (21)

0;

guarantee that z; remains positive. In discrete time, z; can turn negative with a
large enough negative realization of ¢;. This happens with positive probability, but
the probability approaches zero as the time interval goes to zero (Sun, 1992).

In the standard one-factor Cox-Ingersoll-Ross model, z; (say) is the dollar short
rate and the pricing kernel is

— 10g mMiy1 = (1 + A%/Q)th + AIZ}{2£1t+17 (22)

a special case of (18). The coeflicient of z; makes it the one-period rate of interest.
The parameter Aq controls the covariance of the kernel with movements in interest
rates and thus governs the risk of long bonds and the average slope of the yield
curve.

This structure is an example of the conditionally log-normal pricing kernels de-
scribed in Section 3. Moreover, equation (22) builds in an inverse relation between
the conditional mean and variance of the logarithm of the pricing kernel, as required
by Fama’s condition (i). The conditional mean and variance,

—(14 A1/2)21s
/\%th’

Et 10g My

Var;log my4q

are both linear in the state variable z;. The short rate is therefore

1
Ty = — 10g Et’lﬂ,t+1 = — (Et 10g mi4q + 5 V(U’t 10g mH_l) = Z1t, (23)

12



as claimed earlier.

A natural extension to two currencies is to posit an analogous pricing kernel for
valuing foreign-currency cash flows. The pricing kernel m* for (say) pounds is based
on a second state variable z5 and follows

% 1/2
—logmipy = (14 A3/2)z00 + Aazal *enepn. (24)
Then the pound short rate is 7} = 29; and the forward premium is
Jt = 8t = z11 — 22

If we impose (purely for convenience) the symmetry restriction A; = Az, we can
write the expected depreciation rate as ¢ = (14 A?/2) (21, — 22;) and the risk
premium as p; = —(A%#/2)(z1; — 22¢). Thus the linearity of the conditional mean and
variance translate into forward premium components that are linear functions of
the differential z; — z;. More important, this structure automatically generates the
negative correlation between p and ¢ of Fama’s condition (i): since equation (22)
implies an inverse relation between the conditional mean and variance of log myy1,
and the two pricing kernels are independent, the difference in conditional means is
inversely related to the difference in conditional variances.

This model cannot, however, satisfy Fama’s condition (ii) or reproduce the
anomalous regression slope. If we regress the depreciation rate on the forward
premium in this model, the slope is

ay = 1+A12/2

The slope is not only positive, and therefore inconsistent with the anomaly, it exceeds
one, and is therefore inconsistent even with the Flood and Rose (1996) evidence for

the ERM.

4.2 Example 2: Negative Factors

We turn next to a generalization of example 1 that is capable of satisfying both
of Fama’s necessary conditions, but abandons the trademark positive interest rates
of the Cox-Ingersoll-Ross model. We also add a factor that is common to both
currencies, which allows us to account for nonzero correlation of interest rates across
currencies but does not otherwise bear on the ability of the model to account for
the anomaly.

Consider a two-currency world based on three independent state variables, a
common state variable zy and (as before) currency-specific state variables z; and z;,
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each following (20). Pricing kernels in the domestic and foreign currency are

—logmipr = (14+A3/2)z00+ (=14 A3/2)21; + /\023{250154-1 + /\12’}15/251t+1
—logmi,;, = (1+ A2/2)z0t + (=14 A3/2)z9s + /\OZé{QEOt-l—l + /\22515/25215—}—17

with {¢;;} independent standard normal random variables. The depreciation rate is
therefore

sty — 5t = (=1 + A2/2) (210 — 220) + M (21] erep1 — 2] eair1)s (25)

where we have again imposed the symmetry condition, Ay = Ag, for analytic conve-
nience.

The new ingredients are the common factor zg and the coefficients of z; and
z3 in the pricing kernels. Since the common factor zp and its innovation e¢q affect
both pricing kernels the same way, they have no effect on currency prices or interest
differentials. They therefore have no effect on the slope parameter as that charac-
terizes the forward premium anomaly. The other change, however, bears directly on
the anomaly. The coefficients of (zg, 21, 22) and 2z, imply short-term interest rates of
Tt = zot — 21¢ and rf = zg; — z2¢. The forward premium is —(z1; — 2z2;) and expected
depreciation is (—1 + /\12/2)(th — z3¢). The regression slope is therefore

az =1—2}/2, (26)
which is always less than one, and negative for large enough values of A;.

We thus have a model that can account for the forward premium anomaly. The
cost is that we can no longer maintain strictly positive interest rates. Whether this
is a serious difficulty for the model is largely an empirical issue that we address
later in this section. If a small probability of negative interest rates leads to an
affine model that is realistic in other respects, we might regard this a small cost
paid for the convenience of linearity. Duffie and Singleton (1997) and Pearson and
Sun (1994) make similar arguments in extending the Cox-Ingersoll-Ross model of
bond pricing.

4.3 A Proposition

Examples 1 and 2 illustrate a general feature of afline models based on independent
interest-rate factors. If we restrict ourselves to models in which foreign and domestic
interest rates depend on independent factors, so that the only connection between
them is a common factor that affects both rates the same way, then we cannot
simultaneously account for the anomaly and maintain strictly positive interest rates.

14



We refer to this generalization of example 2 as an independent factor model.
As in example 2, the state vector has three independent components, but here
we allow them to be vectors: a vector zg of common factors that affect interest
rates in both currencies the same way and vectors z; and 29 of currency-specific
factors. If we express the components of parameter vectors with similar subscripts,
the independent factor structure we have in mind places these restrictions on the
general affine model of Subsection 3.3:

o The three components of z are independent: ® is block-diagonal with elements
®, fori=0,1,2.

e The common factor affects both pricing kernels the same way: 79 = 75 and

Ao = AL

e The currency-specific factors affect the pricing kernel of only one currency:
72 =A2=0and 7y = A7 =0.

Ahn (1998) and Amin and Jarrow (1991) consider similar structures.

As result of this structure, these models exhibit the same tension between the
anomaly and positive interest rates that we observed in examples 1 and 2:

Proposition 2 Consider the affine class of currency models described by equations
(16,17,18,19) with the independent factor structure described above. If such a model
implies positive bond yields for all admissible values of the state variables, then it
cannot generate a negative value of the slope parameter ay from forward premium
regressions.

A proof is given in Appendix B, but the intuition follows examples 1 and 2. The
affine models permitted in Proposition 2 are based on state variables that are un-
bounded in one direction. In both examples, state variables z; assume all positive
values with positive probability. Such state variables have two effects on the short
rate, one operating through the mean of the pricing kernel, the other through the
variance. An increase in the conditional mean tends to raise the short rate, while
an increase in the conditional variance lowers it. If the mean effect is larger, as it
is in the Cox-Ingersoll-Ross model, then the short rate is unbounded above. The
anomaly requires instead that the effect of the variance must be larger, and thus
that increases in variance be associated with decreases in the short rate. But since
the conditional variance is unbounded above, the short rate will be negative for large
enough values of the state variable.
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4.4 Example 3: Interdependence with One Factor

Example 2 and Proposition 2 indicate that one approach to explaining the anomaly
is to abandon the requirement of strictly positive interest rates. Another is to
posit interdependence between factors: domestic and foreign interest rates depend
in different ways on the same state variable.

A one-factor example shows how this might work. Consider a model based on a
single state variable z; obeying (20) with pricing kernels
2 1/2
— 10g miy1 = (1 + Al/Q)th + /\121t E1t+1
—log m:—l—l = (72+ /\%/Q)th + /\22%{251%#1-
The model is interdependent in the sense that z; affects the two pricing kernels
differently if (1, A1) # (72, A2). In this setting, short rates are r; = 214 and r} = y2214,

so the forward premium is f; — s; = (1 — 72)2z1;. Both interest rates are strictly
positive if v > 0. The depreciation rate is

Sip1 — S = [1 — 72+ (A - /\%)/2] 210+ (M — /\2)2}15/251154-17

so expected depreciation is ¢; = [1 — 75 + (A? — A2)/2]214. The slope of the forward
premium regression is therefore

M-
ay =14+ ——7, 27
’ 2(1 - 72) &7
which differs from one if A\¥ # A2, If 45 = 1 the forward premium is zero: the

model has no forward premium and thus no forward premium anomaly. For other
values, the model implies an inverse relation between the forward premium and the
interest differential if 2(1 — 72) and A? — A% have opposite signs and the latter is
larger in absolute value. Ahn (1997) and Frachot (1996) describe a similar examples
in continuous time.

4.5 Example 4: Interdependence with Two Factors

We can easily extend example 3 to a more realistic two-factor setting in which the
correlation between foreign and domestic interest rates is imperfect. Consider a
model based on two state variables, z; and 25, obeying identical independent square
root processes (20), and pricing kernels

—logmpr = (L4+A}/2)z1+ (72 + A3/2)z0: + >\12’i§/251t+1 + /\22’;15/252154-1
“logmiy; = (v2 4 AL/2)z1 4 (14 A2/2)z0 4+ Aoz e + Mzl e
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Bakshi and Chen (1997), Nielsen and Saa-Requejo (1993, pp 9-10), and Sad-Requejo
(1994, p 17) describe similar models. Our version is symmetric in the sense that
the unconditional distributions of the two pricing kernels are the same, but inter-
dependent in the sense that the state variables z; and z9 potentially affect the two
kernels in different ways.

Consider the implications for the anomaly. Short rates in this model are

re = 21t + Y222

*
Ty = Y221t + 2ot

The forward premium,
Ji—st=ri—rf = (1 —72)(21t — 221).
and depreciation rate,
Si41 — 8¢ = [1 — 72+ (/\% - /\%)/2] (210 — 2z2¢) + (M1 — /\2)(2%15/281154-1 — 25{252154-1)7

imply a regression slope of
A - A
2(1—72)’

a repeat of equation (27). As in example 3, appropriate choice of parameters allows

ay =1+

us to generate a negative value. The critical feature in this regard is, again, that
state variables affect the two kernels differently.

In example 4, interdependence takes a particularly striking form. Suppose (with-
out loss of generality) that v < 1. From the short rate equations, we might say that
z1 is the “dollar factor,”
z3. For similar reasons we might refer to z; as the pound factor. But the anomaly

since it has a greater effect on the dollar short rate than

(in fact, any value of @y less than one) implies A3 > A%, implying that innovations in
the “pound factor” have greater influence on the dollar kernel than do innovations
in the dollar factor. It’s as if (to use a concrete example) US money growth had a
larger influence than British monetary policy on dollar interest rates, but a smaller
influence on the dollar pricing kernel.

4.6 Estimates of Examples 2 and 4

Examples 2, 3, and 4 suggest that the set of affine currency models that are con-
sistent with the forward premium anomaly is potentially large. In this section, we
report estimates of examples 2 and 4 and comment on their ability to account for
both the anomaly and features of currencies and interest rates in general.
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Our approach is to estimate the parameters of examples 2 and 4 by GMM using
one moment condition for each parameter. The spirit is similar to Constantinides’
(1992) study of interest rates, but the formalism of GMM provides us with standard
errors for the estimated parameters. In each example, we use data on the dollar-
pound exchange rate, the dollar short rate, and the dollar-pound forward premium.
All of the relevant sample moments are reported in Tables 1 and 2.

In Table 3, we report estimates of parameter values and standard errors for ex-
ample 2 (the independent factor model) and example 4 (the interdependent factor
model). The two models illustrate two ways to account for the anomaly: negative
interest rates and interdependence, respectively. For example 2, we choose param-
eters to reproduce these moments: the mean, variance, and autocorrelation of the
dollar short rate; the variance and autocorrelation of the dollar-pound forward pre-
mium; the variance of the dollar-pound depreciation rate; and the regression slope
ay of equation (1) that we use to characterize the anomaly.

These estimates allow us to assess the quantitative impact of Proposition 2.
Since all three state variables range between zero and infinity, short rates (r; =
zot — z1¢ and 1} = zg; — z9¢) are negative with positive probability, as required by the
proposition. We note in Appendix C that the state variables have (approximately)
gamma distributions. With estimated parameters, we find that the probability of
negative 7 is less than 107°. The difficulty, instead, is that the model exhibits
extreme distributional properties for the currency-specific factors and the forward
premium. The problem can be traced directly to the anomaly. The regression
coefficient dictates the large value of A} that we see in Table 3; see equation (26).
But the variance of the depreciation rate dictates a small value of \26;:

Var(siy1 — s¢) > /\%01;

see equation (25). Since the monthly standard deviation of the depreciation rate is
about 3% (see Table 1), we must choose an extremely small value for #;. This value,
in turn, implies that we violate the Feller condition (21) by more than two orders

of magnitude:

2(1 — ¢1)6;

1
This ratio governs the distributional properties of z;, and implies extreme values
for its skewness and kurtosis; see Appendix C. None of these features is peculiar
to the dollar-pound rate: parameter estimates are similar for the other currencies
described in Tables 1 and 2.

Table 3 also lists estimates for the interdependent factor model, example 4. There

is one difference in the moments used to estimate parameter values: we drop the
autocorrelation of the short rate, since the model cannot reproduce different values
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for the autocorrelation of the short rate and the forward premium. The resulting
estimates do not have the difficulty noted for those of example 2. The Feller ratio,

2(1 — 991)01
ot

= 3.455> 1,

easily satisfies the Feller condition. As a result, the unconditional distributions of
interest rates do not exhibit the extreme behavior we noted for example 2.

5 Final Remarks

We have studied the relation between interest rates and currency prices in theory
and data. The relation shows up in theory as a restriction on the joint behavior of
currencies and state prices in arbitrage-free environments. In the data, it appears
in the form of the forward premium anomaly, in which interest rate differentials
help to predict future movements in currency prices. We find that the anomaly
imposes further conditions on affine models: either interest rates must be negative
with positive probability or the effects of one or more factors on pricing kernels must
differ across currencies (what we term interdependence). Our estimates suggest that
within the class of affine models, those with interdependence offer the best hope of
accounting for the properties of currency prices and interest rates in general.

We are left with two outstanding issues. The first is whether affine models with
a small number of state variables are capable of approximating the properties of cur-
rency prices and a more comprehensive set of fixed income securities. Ahn (1997)
and Sad-Requejo (1994) have made some progress along these lines, extending the
analysis to yields on bonds with longer maturities. The second is the economic
foundations of pricing kernels that reproduce the anomaly. We have followed a “re-
verse engineering” strategy in which pricing kernels are simply stochastic processes
that account for observed asset prices, but one might reasonably ask what kinds of
behavior by private agents and policy makers might lead to such pricing kernels.
Several possibilities are outlined by Alvarez and Atkeson (1996), Bakshi and Chen
(1997), Stulz (1987), and Yaron (1995), who develop dynamic general equilibrium
models in which interest rates and currency prices reflect preferences, endowments,
and monetary policies. Perhaps further work will connect pricing kernels in these
models to properties of interest rates, currency prices, and monetary aggregates.
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A Affine Models

We outline a class of affine yield models adapted from Duffie and Kan (1996) and
translated into discrete time. This section explains the relation between Duffie and
Kan’s class of affine models and our discrete-time analog and sets the stage for the
affine currency models of Sections 3 and 4.

Expressed in discrete time, Duffie and Kan’s affine models are based on a k-
dimensional vector of state variables z that follow

Zt-}—l — Zt = (I — @)(0 — Zt) —|— V(Zt)l/QE,'H_l, (28)
where {e;} ~ NID(0, 1), V(%) is a diagonal matrix with typical element
vi(2) = i + B} 2,

(; has nonnegative elements, and ® is stable with positive diagonal elements. State
prices are governed by a pricing kernel of the form

— 10g miy1 = 6 + "‘/TZt + ATV(Zt)1/2€t+1. (29)

The process for z requires that the volatility functions v; be positive. We define the
set D of admissible states as those values of z for which volatility is positive:

D ={z:v;(z) >0 all ¢}.
Duffie and Kan (1996, Section 4) show that z remains in D if the process satisfies

Condition A For each i:

(a) for all z € D satisfying v;(z) = 0 (the boundary of positive volatility), the drift
is sufficiently positive: 3] (I — ®)(0 — z) > 3 3;/2; and

(b) if the jth component of (B; is nonzero for any j # i then vi(z) and v;(z) are

proportional to each other (their ratio is a positive constant).

We refer to models characterized by (28,29) and satisfying Condition A as the Duffie-
Kan class of affine models.

Our description of these models in Subsection 3.3 differs from Duffie and Kan’s
in a number of respects. First, Duffie and Kan write (28) as

zg1— 2= (I —®)(0 — z) + SV(2) 2,44, (30)
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which includes a matrix ¥ that is missing in our version. We show that our choice is
innocuous by reducing their model to ours. Assume ¥ is invertible (this is convenient
but not essential) and define 2/ = X712, If we substitute for z, equation (30) becomes

Zt—|—1 - ‘t = - P’ )(0 - Zzlf) + V/(Z/)l/zgt-l—la

with vi(2) = a; + BI72/, & = 710N, ¢ = X716, and B!T = 8] ¥. Equation (29)
becomes
—logmepr =6+ 2+ ANTVI(2) 2%,

with 7'T = 47X, Thus we have effectively eliminated ¥ from the model.

A second difference from Duffie and Kan is the assumption that the volatility
parameters 3; are nonnegative, which comes without loss of generality. Define the
matrix 8 = (fB1,..., ) with §;; denoting the jth element of §; and the (i, j)th ele-
ment of 37. Note that we can choose the diagonal elements of 3 to be nonnegative:
if B;; < 0 for any 2, we replace z; and —z; and §; with —f3;; and change the other
parameters in the model accordingly. This produces a matrix 8 with positive diag-
onal elements. Condition A(b) tells us that if § has nonzero off-diagonal elements,
then they are proportional to diagonal elements and hence positive as well.

The class of affine currency models we describe in Subsection 3.3 simply adds to
this environment a second pricing kernel for the foreign currency.

B Proof of Proposition 2

We prove Proposition 2, starting with some preliminary results on affine models in
which bond yields are strictly positive.

In the affine models of equations (28,29), bond prices are log-linear functions of
the state variables z. If b} denotes the price at date ¢ of a claim to one dollar in all
states at date t + n, then

—logb? = A(n) + B(n)" z

for some parameters {A(n), B(n)}. Since bond yields are y' = —n~!logb}, they
are linear in z:

yi = A'(n) + B'(n)z,

where A’(n) = n~1A(n) and B'(n) = n~'B(n). We use the pricing relation (4) to
generate parameters recursively:

k
An+1) = A(n)+6+ Bm)'( —%E M + B(n);)? o
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k
Bt )T = (374 B)T®) ~ 53 (44 B(n);)* ]

J=1
starting with A(0) = 0 and B(0) = 0. We say that a model is invertible if there
exist k maturities for which the matrix

B = [B'(n) - B'(n)]

is nonsingular. The assumption of invertibility is not restrictive: if a model is not
invertible, we can construct an equivalent invertible model with a smaller state
vector. Analogously, define the vector AT = [A'(ny),. .., A'(ny)].

Consider now a subclass of affine models in which bond yields are always positive:

Lemma 1 Consider the Duffie-Kan class of affine models. If the model is invertible
and bond yields are positive for all admissible states z, then 3 is diagonal with strictly
posilive elements.

In words: the volatility functions have the univariate square root form
v(z) = a; + Biizi,

with strictly positive 3;;. As a consequence, § has full rank. This rules out both
pure Gaussian factors like 8, = (0,0,...,0) and multivariate factors like 3] =
(1,1,...,1).

Proof. Suppose, in contradiction to the lemma, that § has less than full rank.
Then there exists a nonzero vector h satisfying 37h = 0. For any admissible z,
z' = z 4 ph is also admissible for any real p since it generates the same values for
the volatility functions. Now consider bond yields. For yields to be positive we need
bond prices to be less than one. If y denotes a vector of yields for a set of maturities
for which B is invertible, then we need

y=A+ BTz >0
for all admissible z. Since 2’ = z + ph is also admissible, we have
y=A+ BTZ—I—pBTh.

By assumption, B is invertible so BTh # 0. Thus we can choose p to make yields as
negative as we like, thereby violating the premise of the lemma. We conclude that
B has full rank. Condition A(b) then tells us that 8 must be diagonal. [

A second result is that in this environment (univariate volatility functions),
Var(z) has nonnegative elements:
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Lemma 2 Consider the Duffie-Kan class of affine models in which § is diagonal
with strictly positive elements B;;. Then Var(z) has all positive elements.

The proof hinges on Condition A(a), Duffie and Kan’s multivariate analog of the
Feller condition. Since § is diagonal with positive elements, the condition implies
that for each ¢ i

Zl{ij(gj' — Z]') > ﬂ“/Q > 0.

i=1
for all admissible z satisfying v;(2) = 0, where K = I — ® has elements &;;. The new
ingredient relative to the univariate Feller condition is the effect of variables z;, j # 4,
on the drift of z;. The structure placed on 3 means that the set of admissible z’s
includes values of z; that are arbitrarily large. The condition therefore implies
ki; <0 for all j # 4. The admissible set also includes z; = 6;, so x;; > 0. Since by
assumption ® = I — K has positive diagonal elements, 0 < k;; < 1. This additional
step is an artifact of our discrete time approximation: if x;; were greater than one,
we would simply choose a smaller time interval.

We have established that the elements of ® are nonnegative. We now show that
the unconditional variance of z, which we denote by the matrix €2, has no negative
elements. Since z is a first-order autoregression with stable @, its variance is the
solution to

Q=300" +V(9),
where V(#) is a diagonal matrix with positive elements v;(6;) = a; + (3;;6;. Since ®
is stable, we can compute  iteratively using

Qi1 = 29,07 +V(0),

starting with 29 = 0. We see that at each stage the elements of €2;4; are sums
of products of nonnegative numbers, so we conclude that the elements of € are
nonnegative. ]

We come at last to a proof of Proposition 2. The proposition is based on the
model described in Subsection 4.3. It has three independent state variables or
factors: a common factor z; and currency-specific factors z; and z3. The common
factor has, by construction, no influence on currency prices or the forward premium.
It therefore has no influence on the anomaly, and we can disregard it.

With this simplification, interest rates in the two currencies are
_ , T
o= (b-w)+(7-7) 21

rio= (0w (7 ) e,
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where w = 3. Mal, w* = 3. A2a2, 7 = 3 A261/2, and 7 = 37, A5262 /2. The

R 7
forward premium is therefore

Jo—se=(7 - T)Tzlt - (7" - T*)TZQt
and the depreciation rate is
Sgp1 —Se = (6 —6%) + ”/TZU - ”/*T22t + /\TVI(ZU)I/QEUH - /\*TVQ(Z%)I/QEQHL
The anomaly therefore requires
Cov(sip1 — 81, f1 — 81) = (v = 7)) Var(z1)y + (7" = 77) T Var(z9)7* < 0. (31)
The question is whether this is consistent with interest rates that are always positive.

The condition that interest rates are positive for all admissible states places
restrictions on the parameters. For the “dollar” short rate » we need the elements
of v — 7, and hence of 7, to be nonnegative, since 7 > 0 and each element of z is
unbounded above. By Lemma 2, Var(z;) has nonnegative elements, so the bilinear
form

(v = 7)" Var(z1),

is nonnegative. Identical reasoning applies to the second term in (31). We conclude
that the model cannot reproduce the anomaly with strictly positive interest rates. m

C Distribution of State Variables

We clarify the role played by the Feller condition in determining higher moments of
state variables following square root processes, an issue that arises in estimates of
the independent factor model (Section 4.6).

Consider a state variable z following the square root process (20). The uncon-
ditional distribution of z is Gamma with density

f(z) = [b*T(a)] " 227 e/,

and parameters a,b > 0. This statement is exact in continuous time, approximate
in discrete time. The mean and variance of a Gamma random variable are ab = 6
and ab® = 00% /(1 — ¢?), which defines the parameters as

a = (1-¢*8/0?
b= o*/(1-¢%).
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In the continuous-time limit, 1 — ¢? — 2k = 2(1 — @), so ¢ — 2(1 — p)f/0?, the
ratio in the Feller condition, inequality (21). This ratio governs the distribution’s
higher moments:

E(z-0)° 2
71 = Var(2) 72 = (skewness)
Y
Y2 = E(z—0) = g (kurtosis)

[Var(z))? a

Parameter values implying a > 1 satisfy the Feller condition. Smaller values violate
the condition and generate large values of the skewness and kurtosis measures, 7,
and 3.
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Table 1

Properties of Currency Prices and Interest Rates

Currency Mean Std Deviation Autocorrelation

A. Depreciation Rate, s;41 — s

British Pound —0.0017 0.0342* 0.084
Canadian Dollar —0.0015 0.0122* 0.057
French Franc —0.0005 0.0328* —0.002
German Mark 0.0021 0.0340* —0.015
Italian Lira —0.0038 0.0334* 0.049
Japanese Yen 0.0044 0.0324* 0.067

B. One-Month Interest Rate, r;

American Dollar 0.0069* 0.0030* 0.957*
British Pound 0.0093* 0.0027* 0.915*
Canadian Dollar 0.0081* 0.0028* 0.965*
French Franc 0.0091* 0.0035* 0.755*
German Mark 0.0053* 0.0020* 0.969*
Italian Lira 0.0122* 0.0045* 0.743*
Japanese Yen 0.0046* 0.0020* 0.914*

: _ *
C. Forward Premium, f; — sy = r; — 7}

British Pound —0.0024* 0.0027* 0.900*
Canadian Dollar -0.0014* 0.0014* 0.842*
French Franc —0.0023* 0.0032* 0.660*
German Mark 0.0017* 0.0029* 0.953*
Italian Lira —0.0056* 0.0045* 0.724*
Japanese Yen 0.0021* 0.0029* 0.888*

Entries are sample moments of depreciation rates, s;41 —s;, one-month eurocurrency
interest rates, 7, and forward premiums, f; — s;. The data are monthly, last Friday
of the month, from the Harris Bank’s Weekly Review: International Money Markets
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and Foreign Fzchange, compiled by Richard Levich at New York University’s Stern
School of Business. The data are available by anonymous ftp: aleast.gsia.cmu.edu in
directory /dist/fx. Dates ¢ run from July 1974 to November 1994 (245 observations).
An asterisk (*) indicates a sample moment at least twice its Newey-West standard
error. The letters s and f denote logarithms of spot and one-month forward ex-
change rates, respectively, measured in dollars per unit of foreign currency, and r
denotes the continuously-compounded one-month yield. Mean is the sample mean,
St Dev the sample standard deviation, and Autocorr the first autocorrelation.
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Table 2

Forward Premium Regressions

Currency a1 a3 Std Er R?

British Pound —-0.0062 —1.840 0.0339 0.0213
(0.0027) (0.847)

Canadian Dollar —0.0036 —1.575 0.0120 0.0341
(0.0009) (0.460)

French Franc —0.0021 —-0.674 0.0328 0.0042
(0.0031) (0.827)

German Mark 0.0033 —0.743 0.0340 0.0041
(0.0025) (0.805)

Italian Lira —0.0042 -0.073 0.0335 0.0001
(0.0039) (0.453)

Japanese Yen 0.0080 —-1.711 0.0320 0.0230
(0.0024) (0.643)

Entries are statistics from regressions of the depreciation rate, s;y1 — s;, on the
forward premium, f; — s;:

St41 — S¢ = a1 + az( fi — s¢) + residual,

where s and f are logarithms of spot and forward exchange rates, respectively,
measured as dollars per unit of foreign currency. The data are described in the
notes to Table 1. Dates ¢ run from July 1974 to November 1994 (245 observations).
Numbers in parentheses are Newey-West standard errors (3 lags) and Std Er is the
estimated standard deviation of the residual.
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Table 3

Estimates of Examples 2 and 4

Parameter Estimate Standard Error

A. Example 2: Independent Factor Model

6 0.007 6.567 x 10~*
o0 0.003 0.009
©o 0.992 0.041
6, 1.004 x 10~4 3.614 x 1073
o1 0.081 0.022
01 0.919 0.032
| A1 2.383 0.384

B. Example 4: Interdependent Factor Model

6, 0.005 4.950 x 10~*
o1 0.017 0.004
01 0.919 0.037
o 0.331 0.080
A1 ~5.886 2.184
Mg ~5.541 2.202

Entries are exactly identified GMM estimates of the parameters of examples 2 and
4 in the text based on data for the dollar-pound rate. Example 2 is estimated to
reproduce these moments: the mean, variance, and autocorrelation of the dollar
short rate; the variance and autocorrelation of the dollar-pound forward premium;
the variance of the dollar-pound depreciation rate; and the regression slope ay of
equation (1). Example 4 is similar. We drop the condition based on the autocorre-
lation of the the short rate, since the (symmetric) model cannot reproduce different
values for the autocorrelation of the short rate and the forward premium. Standard
errors are computed by the Newey-West method (12 lags).
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Figure 1

Mean Depreciation Rates and Forward Premiums
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The figure plots mean depreciation rates of the dollar against mean forward premi-
ums. The numbers are taken from Table 1 and multiplied by 1200 to convert them
to annual percentages. Circles represent values for different currencies. The solid
line represents equal values for mean depreciation rates and forward premiums. (a
“45-degree line”).
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