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Abstract

We consider a quadratic programming (QP) problem (Π) of the form minxTCx subject toAx ≥ b where
C ∈ Rn×n

+ , rank(C) = 1 and A ∈ Rm×n, b ∈ Rm. We present an FPTAS for this problem by reformulating
the QP (Π) as a parameterized LP and “rounding” the optimal solution. Furthermore, our algorithm returns
an extreme point solution of the polytope. Therefore, our results apply directly to 0-1 problems for which the
convex hull of feasible integer solutions is known such as spanning tree, matchings and sub-modular flows.
They also apply to problems for which the convex hull of the dominant of the feasible integer solutions is
known such as s, t-shortest paths and s, t-min-cuts. For the above discrete problems, the quadratic program
Π models the problem of obtaining an integer solution that minimizes the product of two linear non-negative
cost functions.

∗Tepper School of Business, Carnegie Mellon University. Email: {vgoyal,ravi}@andrew.cmu.edu . Supported in part by NSF
grant CCF-0728841.

�Tepper School of Business, Carnegie Mellon University. Email: lgenc@andrew.cmu.edu
�Corresponding Author.

1



1 Introduction
In this paper, we consider the following special case of the non-convex quadratic programming (QP) problem

(Π).
min xTCx

Ax ≥ b

where C ∈ Rn×n
+ , rank(C) = 1 and A ∈ Rm×n, b ∈ Rm and let P = {x ∈ Rn|Ax ≥ b}. Since a general

rank-1 matrix is not positive semi-definite, xTCx is not convex in general. Therefore, Π is a non-convex QP
problem. Since rank(C) = 1, C = c1c

T
2 for some c1, c2 ∈ Rn. Furthermore, since C ∈ Rn×n

+ both c1, c2 ∈ Rn
+.

Therefore, the objective function xTCx can be written as a product of two non-negative linear functions,

xT (c1cT2 )x = (cT1 x) · (cT2 x)

and the problem Π models the problem of minimizing the product of two non-negative linear cost functions over
a polyhedral set. This problem is in general non-convex and is known to be NP-hard [9].

We would like to note that an FPTAS for this problem is already known due to Kern and Woeginger [7].
However, our work is independent of [7] and our algorithm differs significantly and gives an interesting alternate
approach to solve the problem with a reduced running time. The algorithm presented in [7] does a parametric
search for the possible values of the objective function in powers of (1 + ε) for a fixed ε > 0. For each possible
objective function value (say λ), the authors solve a set of O(log(1+ε) detA) linear programs. Based on the
optimum values of these linear programs, they are able to distinguish whether λ ≤ OPT or λ > OPT · (1 + ε),
where OPTis the objective value of the optimal solution. Hence, the total number of LPs solved by their method

is O(log(1+ε)
U
L · log(1+ε) detA) ' O( log U

L
·log detA

ε2
) where U and L are the upper and lower bounds on the

value of the objective function respectively.

On the other hand, our algorithm does a parametric search over the possible values of one of the cost func-
tions. Furthermore, for each possible value of the cost function (say B) we solve a single linear program and
then obtain an extreme point x of the polytope such that c1(x) · c2(x) ≤ z∗ · B where z∗ is the optimum value
of the linear program. Therefore, our algorithm has an improved running time of O(log(1+ε)

u
l ) ' O( log u

l
ε ) LP

calls.

1.1 Our Contributions

We give a polynomial time (1 + ε)-approximation algorithm for minimizing the problem Π for any fixed
ε > 0. The following theorem is the main contribution of this paper.

Theorem 1.1 Given a rank-1 matrix C ∈ Rn×n
+ , a polytope P and ε > 0, there is a polynomial time (1 + ε)-

approximation algorithm A for the problem Π to minimize

min
x∈P

xTCx

Furthermore, A returns a solution that is an extreme point of P .

Recall that a point x ∈ P is an extreme point of P if and only if x can not be expressed as a convex
combination of any set of points (not including x) in P . It is well known [7] that the minimum of xTCx
is achieved at an extreme point of the polyhedral set. We will present a proof of this lemma for the sake of
completeness.

Lemma 1.2 [7] Let extr(P ) denote the set of extreme points of P . Then

min
x∈extr(P )

(cT1 x) · (cT2 x) = min
x∈P

(cT1 x) · (cT2 x)
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Since our algorithm obtains an extreme point approximate solution for the problem Π, we show application
of our algorithm to the problem of minimizing a rank-1 quadratic objective over a set of 0-1 points when the
description of the convex hull or the dominant of the 0-1 points is known.

Corollary 1.3 Let S ⊂ {0, 1}n, c1 ∈ Rn
+, c2 ∈ Rn

+. If we can optimize over either the convex hull of S or the
dominant of S (i.e. dom(S) = {x ∈ {0, 1}n|∃x′ ∈ S, x ≥ x′}) in polynomial time, then there is an FPTAS for
the problem

min
x∈S

(cT1 x) · (cT2 x)

1.2 Applications

Minimum Product Spanning Tree problem: Given an undirected graph G = (V,E), cost functions c1 : E →
R+ and c2 : E → R+, the goal is to find a spanning tree T that minimizes c1(T ) · c2(T )). Note that for any
subset E′ ⊂ E, ci(E′) =

∑
e∈E′ ci(e). The convex hull of all spanning trees is known (see Edmonds [1]).

Minimum Product Matching problem: Given an undirected graph G = (V,E), cost functions c1 : E → R+

and c2 : E → R+, the goal is to find a perfect matching M that minimizes c1(M) · c2(M)). The convex hull of
all perfect matchings is known (see Edmonds [1]).

Minimum Product Submodular Flows: Given a directed graph D = (V,A), cost functions c1 : A→ R+ and
c2 : A→ R+ and a submodular function f : C → Z such that for all S, T ⊂ V ,

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).

A submodular flow x ∈ Z|A| is such that∑
a∈δ+(U)

x(a)−
∑

a∈δ−(U)

x(a) ≤ f(U)∀U ⊂ V

The goal is to find a submodular flow x that minimizes (cT1 x) · (cT2 x). The convex hull of submodular flows is
known due to Edmonds and Giles [2]. For many applications of submodular flows such as directed spanning
trees, matroid bases and orientations, as well as a linear description of all feasible solutions for it, please see [12].

Minimum Product s,t-Min-Cut. Given an undirected graph G = (V,E), vertices s, t ∈ V , cost functions
c1 : E → R+ and c2 : E → R+, the goal is to find a cut (S, S̄) such that s ∈ S, t /∈ S that minimizes
c1(δ(S)) · c2(δ(S))). For any S ⊂ V , δ(S) = {e = (u, v) ∈ E|u ∈ S, v /∈ S}. We show that the convex hull
of the dominant of feasible s, t-cuts is known.

Let C = {x ∈ {0, 1}|E||x is an incidence vector of minimal s, t− cut} and dom(C) = {x ∈ {0, 1}|E||∃x′ ∈
C, x ≥ x′}. While we do not know a linear description of the convex hull of C, a description of the convex hull
of dom(C) is available [3].

Minimum Product s,t-Path. Given an undirected graph G = (V,E), vertices s, t ∈ V , cost functions c1 :
E → R+ and c2 : E → R+, the goal is to find a path P between s and t that minimizes c1(P ) · c2(P ).

Let P = {x ∈ {0, 1}|E||x is an incidence vector of s, t− path} and dom(P) be defined analogously. As in
the case of s,t-cuts, a linear formulation of the convex hull of dom(P) is known.

In all the above cases, by using Corollary 1.3, we can obtain an FPTAS for the corresponding product prob-
lem.
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1.3 Related Work

General QPs The general quadratic programming (QP) problem is the following.

min
x∈Rn

f(x) = (aTx+ xTCx) subject to Ax ≥ b.

Here a ∈ Rn, C ∈ Rn×n, A ∈ Rm×n and b ∈ Rm. It is known that the objective function f is convex if
and only if the matrix C is positive semi-definite. The problem is referred to as a convex QP if the objective is
convex and can be solved in polynomial time. On the other hand, if f is not convex, the problem is referred to
as non-convex QP and is in general NP-hard to solve [10, 13]. The non-convex QP problem has been studied
widely in literature and finds important applications in numerous fields such as portfolio analysis, VLSI design,
optimal power flow and economic dispatch. The bibliography of Gould and Toint [4] is an extensive list of
references in non-convex QP and its applications. The special case of non-convex problem when rank(C) = 1
has also been proved to be NP-hard in Matsui [9] and an FPTAS for the problem is known due to Kern and
Woeginger [7] as discussed earlier although their algorithm differs significantly from the one we present in this
paper.

Product Spanning Tree Given two non-negative linear cost functions c1 and c2 on edges in an undirected graph,
the problem of finding a spanning tree that minimizes cost c1 subject to a budget constraint on cost c2 has been
considered by Ravi and Goemans [11]. They give a bi-criteria (1, 1 + ε)-approximation for any fixed ε > 0
i.e., the algorithm outputs a tree with optimal c1 cost while violating the budget constraint by a factor (1 + ε).
A slight improvement to an EPTAS is available in [6]. While these algorithms can be adapted to give a PTAS
(though not an FPTAS) for the minimum product spanning tree problem, they are specific to the spanning tree
problem.

Product Shortest Path In the above vein, given two non-negative linear cost functions c1 and c2 on edges in
an undirected graph, the problem of finding an s, t-path that minimizes cost c1 subject to a budget constraint on
cost c2 has been considered by Hassin [5]. He gives a similar bi-criteria (1, 1 + ε)-approximation for any fixed
ε > 0. His method can be used to design an FPTAS for the product shortest path problem.

In general, the bi-criteria problem of minimizing a non-negative linear cost subject to a budget on a second
non-negative linear cost has been addressed in [8]. Their methods give a ((1+α)ρ, (1+ 1

α)ρ)-approximation for
the bi-criteria problem for any α > 0 where ρ is the approximation factor for the single-criterion problem. Their
methods can be adapted to give a 4ρ2-approximation for the product problems; examples with ρ = 1 include
shortest path, matching and min-cut. Our results improve this to give (1 + ε)-approximation for these problems.

2 (1 + ε)-Approximation Algorithm
Let C = c1c

T
2 , c1, c2 ∈ Rn

+ and let P = {x ∈ Rn|Ax ≥ b}. The problem Π is the following.

minx∈P (cT1 x) · (cT2 x)

We solve the problem via a parametric approach. Consider the following parametric problem Π(B) where B
is a given parameter.

min cT1 x (1)

cT2 x ≤ B (2)

x ∈ P (3)

Lemma 2.1 Let x∗ be an optimal solution for the problem Π and let B = cT2 x
∗. Then x∗ is also an optimal

solution for Π(B).

Proof: Suppose not. Let x̃ be an optimal solution for Π(B). Then cT1 x̃ < cT1 x
∗ and cT1 x̃ ≤ B = cT2 x

∗.
Therefore, (cT1 x̃) · (cT2 x̃) < (cT1 x

∗) · (cT2 x∗) which contradicts the optimality of x∗ for Π.
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Lemma 2.2 Let x̃(B) be a basic optimal solution of Π(B) for any B > 0. Then x̃(B) can be written as a
convex combination of at most two extreme points of polytope P .

Proof: If the constraint cT2 x ≤ B is not tight for x̃(B), then clearly x̃(B) is an extreme point of P and the claim
holds. Recall P = {x|Ax ≥ b}. LetAT = {ai|ai · x̃ = bi}. Since, x̃(B) is a basic optimal solution of Π(B) and
only one other constraint except those corresponding to AT is tight for x̃(B), rank(AT ) ≥ n − 1. Therefore,
x̃(B) ∈ F where F is a face of dimension at most one in polytope P . Any point in a face of dimension one can
be expressed as a convex combination of two extreme points. Therefore, there exist x1, x2 ∈ extr(P ) such that
x̃(B) = α · x1 + (1 − α) · x2 for some 0 ≤ α ≤ 1. Note that x1 and x2 may not be feasible for the problem
Π(B).

Lemma 2.3 Let x̃(B) be a basic optimal solution for Π(B) for some B > 0. There exists an extreme point
x ∈ extr(P ) such that

(cT1 x) · (cT2 x) ≤ (cT1 x̃(B)) ·B (4)

(5)

Proof: From Lemma 2.2, we know that there exist two extreme points x1, x2 ∈ extr(P ) such that x̃(B) =
α · x1 + (1 − α) · x2 for some 0 ≤ α ≤ 1. Let ai = cT1 x

i and bi = cT2 x
i, i = 1, 2. We consider the following

two cases.

Case 1: Suppose a1 = a2. Then either b1 ≤ b2 or b2 ≤ b1. Let us assume b1 ≤ b2 (the other case is symmetric).
Clearly, cT1 x

1 = cT1 x̃(B) = a1 and cT2 x
1 ≤ cT2 x̃(B) and the inequality 4 holds.

Case 2: a1 < a2 (a1 > a2 is symmetric). We can claim that b1 > b2 without loss of generality. If b1 ≤ b2, then
a1 = cT1 x

1 ≤ cT1 x̃(B) and b1 = cT2 x
1 ≤ cT2 x̃(B) and the inequality 4 holds in this case for x1. Now,

cT1 x̃(B) = α · a1 + (1− α) · a2 (6)

cT2 x̃(B) = α · b1 + (1− α) · b2 (7)

(8)

Either a1b1 or a2b2 is less than or equal to α · a1b1 + (1− α) · a2b2 (say a1b1). Then,

α · a1b1 + (1− α) · a2b2 − (cT1 x̃(B)) · (cT2 x̃(B))
= α · a1b1 + (1− α) · a2b2 − (α · a1 + (1− α) · a2) · (α · b1 + (1− α) · b2)
= α(1− α)(a1b1 + a2b2 − a1b2 − a2b1)
= α(1− α)(a1 − a2)(b1 − b2)
≤ 0

The last inequality follows because a1 < a2 and b1 > b2. Therefore,

a1b1 ≤ α · a1b1 + (1− α) · a2b2 ≤ (cT1 x̃(B)) · (cT2 x̃(B))

Since we do not know the value of parameter B, we try different powers of (1 + ε) for a fixed ε > 0. The
algorithm can now be stated as follows.

Proof of Theorem 1.1: Let x∗ be an optimal solution for the problem Π. There exists j ∈ N such that

(1 + ε)j−1 ≤ cT2 x∗ < (1 + ε)j .

Consider the problem Π(B) for B = (1 + ε)j and let x̃(B) be a basic optimal solution for Π(B). Clearly,
cT1 x̃(B) ≤ cT1 x∗ as x∗ is a feasible solution for Π(B). From Lemma 2.3, we can find x ∈ extr(P ) such that

cT1 x · cT2 x ≤ cT1 x̃(B) ·B
≤ cT1 x∗ ·B
≤ cT1 x∗ · cT2 x∗(1 + ε)

4



Algorithm A for Minimizing Rank-1 QPs
Given C = c1c

T
2 , c1, c2 ∈ Rn

+, polytope P and ε > 0.

Initialize M ← maxx∈P cT2 x

minx∈P cT2 x
, NM = dlog1+εMe and cs ←∞.

1. For j = 1, . . . , NM ,

(a) Let B = (1 + ε)j and let x̃(B) be a basic optimal solution for Π(B).

(b) Using Lemma 2.3 find x̂(B) ∈ extr(P ) such that

(cT1 x̂(B)) · (cT2 x̂(B)) ≤ (cT1 x̃(B)) ·B.

(c) If cs > (cT1 x̂(B)) · (cT2 x̂(B)), then

xs ← x̂(B)
cs ← (cT1 x̂(B)) · (cT2 x̂(B))

2. Return the solution xs.

Therefore, our algorithm A finds an extreme point of P that is a (1 + ε)-approximation for the problem.

Let l = minx∈P cT2 x and u = maxx∈P cT2 x. Then our algorithm solves dlog(1+ε)
u
l e linear programs to

obtain a (1 + ε)-approximate solution (We can assume l 6= 0 since this case can be checked over each objective
function). On the other hand, the algorithm in [7] needs to solve approximately these many linear programs for
each guessed value of the optimal objective value.

Recall that the objective (cT1 x) · (cT2 x) is neither convex nor concave. However, it is known that there exists
an extreme point of P that minimizes minx∈P (cT1 x) · (cT2 x) [7]. For the sake of completeness, we present a
proof of this using Lemma 2.3.

Proof of Lemma 1.2: Let x̃ be an optimal solution for minx∈P (cT1 x) · (cT2 x). Consider B = cT2 x̃ and consider
the problem Π(B). From Lemma 2.3, we have that there exists an extreme point x̂ ∈ extr(P ) such that
(cT1 x̂) · (cT2 x̂) ≤ (cT1 x̃) ·B = (cT1 x̃) · (cT2 x̃). Therefore,

min
x∈extr(P )

(cT1 x) · (cT2 x) = min
x∈P

(cT1 x) · (cT2 x)

3 Future Work
In this paper we present an FPTAS for a special case of non-convex QP where the objective is to minimize

the product of two linear non-negative cost functions and showed applications to 0-1 problems when either
the convex hull of feasible integer solutions or the convex hull of the dominant of feasible integer solutions is
known. It is known that this non-convex QP problem is NP-hard in general [9]. However, the complexity of
the special cases of minimizing the product of two linear non-negative costs for 0-1 problems (such as shortest
paths, spanning trees etc) is still open.
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