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Abstract

We present a novel methodology for estimating/testing the Bansal-Yaron (2004)
and related long-run risks (LRR) models based on the observation that the latent state
variables are known functions of observables. The large standard error of the estimated
IES explains the controversy on its magnitude. The model requires higher persistence
of consumption and dividend growth to explain the cross-section of returns than that
observed in the data. The model matches the unconditional moments of consumption
and dividend growth, but implies a higher risk free rate and lower volatility of the
price-dividend ratio, risk free rate, and market return than those observed in the data.
Contrary to the model implications, the conditional variance of the LRR variable fails
to capture the large time-variation in the equity premium.



Introduction

A burgeoning literature in finance addresses investors’ attitudes towards the timing
of resolution of uncertainty of future consumption and cash flows through the class
of preferences introduced by Epstein and Zin (1989), Kreps and Porteus (1978), and
Weil (1989). Models initiated by Bansal, Dittmar, and Lundblad (2005), Bansal and
Yaron (2004), and Hansen, Heaton, and Li (2008) have rich implications on prices and
show promise in explaining the time series and cross-sectional properties of returns of
financial assets. These models pay particular attention to the low frequency properties
of the time series of dividends and aggregate consumption—hence their characterization
as long run risks (LRR) models.! The main difficulty in assessing their empirical
plausibility is their reliance on latent state variables.

We propose an empirical methodology for estimating and testing asset pricing mod-
els of the cross-section of equity returns when the state variables are latent. We apply
this methodology to revisit the log-linearized LRR model introduced by Bansal and
Yaron (2004) (hereafter B-Y) and provide novel insights into this class of models. The
latent state variables, the conditional mean of the aggregate consumption growth rate
(the LRR variable) and the conditional variance of its innovation, are hard to measure
in the data. We bypass the need to filter the latent state variables, a procedure which
potentially introduces estimation error and decreases the power of the tests. We argue
that the two latent state variables are, in fact, observable because both the aggregate
log price-dividend ratio and log risk free rate are affine functions of only these two state
variables with coefficients that are known functions of the preference parameters and
of the parameters of the time-series processes. This observation allows us to invert the
system and express the two state variables as known affine functions of the observable

aggregate log price-dividend ratio and log risk free rate. Whereas this methodology is



common in the context of affine term structure models (for example, Dai and Singleton
(2000) and Duffee (2002)), this is the first application in the equities literature.

We estimate the model through GMM on the joint system of the Euler equations
of consumption and the restrictions imposed on the model parameters by the uncondi-
tional moments of the aggregate dividend and consumption growth over 1931 — 2009.
We are able to write down the Euler equations without reference to the latent state
variables because we express the log pricing kernel as an affine function of the aggregate
log price-dividend ratio, the log risk free rate, and their lags, in addition to consump-
tion growth. The estimated parameter values and, most importantly, their standard
errors, provide insights beyond those obtainable via calibration.

The most notable finding is that the standard error of the estimated intertemporal
elasticity of substitution in consumption is large. One cannot reject either the hypoth-
esis that it is lower than one or the hypothesis that it exceeds one. Furthermore, one
cannot reject the hypotheses that it is either lower or higher than the inverse of the risk
aversion coefficient. Therefore, these results offer an insight as to why the magnitude
of the elasticity is controversial in the literature. The results suggest that one should
explore LRR models with a wide range of values for the elasticity.

Another finding is that the model requires higher persistence of consumption and
dividend growth to explain the cross-section of returns over the period 1931 —2009 than
the persistence estimated from the time series of consumption and dividend growth
alone. This suggests that one should explore channels through which a lower level of
persistence can address the cross-section of equity returns.

In simultaneously testing the Euler equations of consumption and the restrictions
imposed on the model parameters by the unconditional moments of the aggregate

dividend and consumption growth, we find that the model matches the unconditional



moments of the aggregate consumption and dividend growth rates. Therefore, the
model is on the right track. However, it implies a higher value for the risk free rate
than that observed in the data (2.8%-4.5% versus 0.6%), lower volatility of the risk free
rate (0.9%-1.7% versus 3.0%), and lower volatility of the market-wide price-dividend
ratio (0.11-0.19 versus 0.45). Moreover, it implies economically large annual pricing
errors for the "Small" capitalization and the "Value" portfolios. An implication of
these findings is that one should explore ways to enhance the model by refining the
definition of the state variables and possibly introducing additional ones.

Finally, we address the model’s implications regarding predictability. The model
implies that the conditional expectation of the equity premium is an affine function of
the conditional variance of the LRR variable, yet we find that the conditional variance
does not predict the equity premium. We also find that the LRR variable predicts
the equity premium, despite the implications of the model to the contrary, suggesting
that the model may be enhanced either by making the conditional expectation of the
equity premium dependent on state variables other than the conditional variance of
the LRR variable or by an alternative specification of the dynamics of the conditional
variance process. We verify the model’s implication that the LRR variable predicts
consumption and dividend growth. However, the fact that the conditional variance
also contributes in predicting consumption and dividend growth, even though the model
does not imply such predictability, suggests that the model may be enhanced in ways
that make the conditional expectation of consumption and dividend growth dependent
on state variables in addition to the LRR variable. Whereas these predictability results
may be partly due to estimation error in the model parameters, we argue in Section 4
that this is unlikely to be the full explanation.

In our second application of the methodology, we revisit the co-integrated exten-



sion of the B-Y model by Bansal, Gallant, and Tauchen (2007) which introduces the
aggregate consumption-to-dividend ratio as a third state variable. The two latent state
variables are observable because both the aggregate log price-dividend ratio and log
risk free rate are affine functions of only the two latent state variables and the ob-
servable consumption-to-dividend ratio with coefficients that are known functions of
the preference parameters and of the parameters of the time-series processes. This
observation allows us to invert the system and express the two latent state variables
as known affine functions of the observable aggregate log price-dividend ratio, log risk
free rate, and consumption-to-dividend ratio. The conclusions are broadly similar to
those for the B-Y model.

We address the possibility that the decision interval may be monthly instead of
annual by comparing our estimation and testing results at the annual frequency to those
obtained using the B-Y monthly calibration. The results are very similar, suggesting
that our findings are unlikely to be driven by the choice of the decision frequency.

The paper is organized as follows. In Section 1, we describe the estimation and
testing methodology of the B-Y model. We discuss the data in Section 2. In Section 3,
we estimate the model, discuss the parameter estimates, present the empirical evidence
on the cross-section of returns, and explore the robustness of the results. In Section
4, we present the results of the model-implied in-sample forecasting regressions for the
equity premium and the aggregate consumption and dividend growth rates. In Section
5, we estimate and test the co-integrated extension of the model. Section 6 concludes.

The appendix contains derivations and details of the testing methodology.



1 The Model and Its Testable Implications

We describe the LRR model of Bansal and Yaron (2004) and derive its testable im-
plications for the equity premium and the cross-section of returns. Then we derive its
testable implications for the predictability of the equity premium, dividend growth,

and consumption growth.

1.1 Model

The Bansal and Yaron (2004) LRR model introduces the novel state variable, xy,
and the variance of its innovation, o7, that jointly drive the conditional mean of the

aggregate consumption and dividend growth rates:

Tip1 = Puy + Y, 0180 141, (1)
oty = (1—0)0® +v0} + 0uwoit, (2)
Acip1 = o+ 2+ 0Eciia, (3)
Adppr = g+ ¢z + 9o, (4)

where ¢, 1 is the logarithm of the aggregate consumption level and d;,; is the logarithm
of the aggregate stock market dividends. The shocks €, 41, €141, Ect41, and €441 are
assumed to be i.i.d. N(0,1) and mutually independent. The time-series specification
in equations (1)-(4) introduces nine parameters: ., iy, @, ©, Puy, Vuy 0, U, and o,,. In
Appendix A.1, we derive various unconditional moments of consumption and dividend
growth rates as functions of the time-series parameters.

The model further assumes that the representative consumer has the version of

Kreps and Porteus (1978) preferences adopted by Epstein and Zin (1989) and Weil



(1989). These preferences allow for separation between the coefficient of risk aver-
sion and the elasticity of intertemporal substitution. The utility function is defined

recursively as

i=[a-9c7 e E VD] 5)

where 0 denotes the subjective discount factor, v > 0 is the coefficient of risk aversion,

1 > 0 is the elasticity of intertemporal substitution, and 6 = 11:1 Note that the
P

sign of # depends on the relative magnitudes of v and 1. The standard time-separable

1
-
For this specification of preferences, Epstein and Zin (1989) and Weil (1989) show

power utility model is obtained as a special case when 6 =1, i.e. v =

that, for any asset j, the first-order conditions of the consumer’s utility maximization

yield the Euler equation,

E, [eXP(th + Tj,t-}—l)] =1, (6)

where

0
My = 0log o — EACH-I + (0 = Drepn (7)

is the natural logarithm of the intertemporal marginal rate of substitution; E;[.] denotes
expectation conditional on time ¢ information; r;,;; is the continuously compounded
return on asset j; and 7., is the unobservable continuously compounded return on
an asset that delivers aggregate consumption as its dividend each period.

We rely on log-linear approximations for the log return on the consumption claim,

Tet+1, and on the market portfolio (the return on the aggregate dividend claim), r,, ;41,



as in Campbell and Shiller (1988):

Tet+1 = Ko -+ R1Zt41 — %t + ACt+1, (8)

Tmit+1 — Kom + R1mZmt+1 — fm.t + AdiH»l; (9)

where z; is the log price-consumption ratio and z,,; the log price-dividend ratio. In

equation (8), k1 = 1fef and kg = log(l + €*) — k;Z are log-linearization constants,

where Z denotes the long-run mean of the log price-consumption ratio. Similarly, in

eFm
14e?m

equation (9), ki m = and Ko, = log(l + €*™) — K1mZm, where Z,, denotes the
long-run mean of the log price-dividend ratio.

B-Y show that z; and z,,; are affine functions of the state variables, z; and 0?2,

Zt = Ao + Al.I't + AQO-?, (10)

Zmgt = AO,m + Al,mxt + AQ,mU?- (11)

The coefficients Ao, A1, A2, Aom, A1m, and Ay, depend on the parameters of the
utility function, those of the stochastic processes for consumption and dividend growth
rates, and the linearization parameters, kg, K1, Kom and Ky, (see Appendix A.2.1 for
expressions for these coefficients and for the procedure that ensures that the lineariza-
tion parameters kg, K1, Kom and k1, are consistent with equations (10) and (11)).
For this model specification, the log risk free rate from period t to t+ 1 may also be

expressed as an affine function of the state variables (see Appendix A.2.2 for expressions

for Ao s, A1, and Ay y),



ree = —log Ey [exp(myyq)],

= Ao’f + Al,fl’t + AQJO’?. (12)

Equations (11) and (12) express the observable variables, z,,; and ry,, as affine
functions of the latent state variables, z; and o?. These equations may be inverted to
express the latent state variables, z; and o7, as affine functions of the observables, z,,

and ry,, (see Appendix A.2.3 for details and expressions for oy, a1, aq, 5y, 5, and

62)7

Ty = o+ oTrs+ QZmy, (13)

o7 = Bo+Birse+ Bozma (14)

1.2 Testable Implications for the Equity Premium and the
Cross-Section of Returns

Substituting the log-affine approximation for r.;;; in equation (8) into the expression
for the pricing kernel (equation (7)), and noting that z; is given by equation (10), we

have,

mer1 = (0logd + (0 — 1) [ro + (k1 — 1) Ao) + (—% + (0 - 1)) Acitr

+(9 — 1)I€1A1$t+1 -+ (9 — 1)I€1A20§+1 — ((9 — 1)A133t — ((9 — 1)A203 (15)
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Equation (15) for the pricing kernel involves the unobservable (from the point of
view of the econometrician) state variables, z; and ¢?, and, hence, is not directly
testable on a cross-section of asset returns. Substituting the expressions for z; and o?

from equations (13) and (14) into the pricing kernel in equation (15), we have,

1 1
Mys1 = €1 + c2Aciyq + 3 <7“f,t+1 - H_rf,t) + ¢4 (Zm,t+1 - R_Zm,t> . (16)
1 1

The parameters ¢ = (cq, 9, c3,¢4) are functions of the parameters of the time-series
processes and the preference parameters (see Appendix A.2.4 for details). The above
expression for the pricing kernel is entirely in terms of observables. We substitute this
expression into the set of Euler equations (6) to obtain a set of moment restrictions
that are expressed entirely in terms of observables.

We first examine the empirical plausibility of the model when the set of assets
consists of the market portfolio and the risk free rate, thereby focusing on the equity
premium and risk free rate puzzles. To the set of their Euler equations we add restric-
tions on the unconditional moments of consumption and dividend growth implied by
the time-series specification of the model. We estimate the parameters with GMM and
test the specification of the model with the overidentifying restrictions. We then ex-
amine the ability of the model to explain the cross-section of returns. The set of assets
consists of the "Value", "Growth", "Small" capitalization, and "Large" capitalization
portfolios, in addition to the market portfolio and the risk free rate. To the set of their
Euler equations we add moment restrictions implied by the time-series specification of

the model and test with GMM.
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1.3 Testable Implications for Predicting Returns and Growth
Rates

Equations (9), (11), (4) and (12) imply that the equilibrium expected market return is

an affine function of the state variables, z; and o?:

Et[rm,t—&-l] = Bg + let —+ BQU?; (17)

and the expected equity premium is an affine function of the state variable o7 alone:

Ermes1 — i = Eo+ EW?; (18)

The coefficients are known functions of the underlying time series and preference pa-
rameters.
The model also implies that the conditional variance of the market return is an

affine function of the state variable o?:

V(lT't (Tm,tJrl) = (51,mA2,mO-'w)2 -+ [(Hl’mALm"me)Q + (,O?l:| O'?. (19)

Finally, the time series specification of the model implies that the expected con-

sumption growth rate is given by

EAciiq] = pe + o, (20)

and the expected dividend growth rate is given by

Ey[Adyy] = pg + oy, (21)
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both affine functions of the state variable x;.

Since the state variables, z; and o7 are affine functions of the observables z,,; and
7t+, We use the point estimates of the time series and preference parameters and the
time series of z,,; and 7, to extract the time series of the state variables. In Section
4, we test the predictive implications of the model through in-sample linear forecasting
regressions of the realized equity premium on the state variable o2 and of the aggregate

consumption and dividend growth rates on the LRR variable z;.

2 Data

We use monthly data on prices and dividends and annual data on consumption from
January 1929 through December 2009. The proxy for the market is the Centre for
Research in Security Prices (CRSP) value-weighted index of all stocks on the NYSE,
AMEX, and NASDAQ. The construction of the size and book-to-market portfolios is
as in Fama and French (1993). In particular, for the size sort, all NYSE, AMEX,
and NASDAQ stocks are allocated across ten portfolios in June of each year according
to their market capitalization at the end of June. NYSE breakpoints are used in the
sort. Value-weighted monthly returns on these size-sorted portfolios are computed from
July of the year to June of the next year. "Small" and "Large" denote the bottom and
top market capitalization deciles, respectively. For the book-to-market equity sort, all
NYSE, AMEX, and NASDAQ stocks are allocated across ten portfolios in June of each
year according to their book equity (BE) to market equity (ME) ratio at the end of
the previous year. NYSE breakpoints are used in the sort. Value-weighted monthly
returns on these BE/ME-sorted portfolios are computed from July of the year to June
of the next year. "Growth" and "Value" denote the bottom and top BE/ME deciles,

respectively.
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The monthly portfolio return is the sum of the portfolio price and dividends at the
end of the month, divided by the portfolio price at the beginning of the month. The
annual portfolio return is the sum of the portfolio price at the end of the year and
uncompounded dividends over the year, divided by the portfolio price at the beginning
of the year. The real annual portfolio return is the above annual portfolio return
deflated by the realized growth in the Consumer Price Index.

The proxy for the real annual risk free rate is obtained as in Beeler and Campbell
(2011). Specifically, the quarterly nominal yield on 3-month Treasury Bills is deflated
using the realized growth in the Consumer Price Index to obtain the ex post real 3-
month T-Bill rate. The ex-ante quarterly risk free rate is then obtained as the fitted
value from the regression of the ex post 3-month T-Bill rate on the 3-month nominal
yield and the realized growth in the Consumer Price Index over the previous year.
Finally, the ex-ante quarterly risk free rate at the beginning of the year is annualized
to obtain the ex-ante annual risk free rate.

The annual price-dividend ratio of the market is the market price at the end of the
year, divided by the sum of dividends over the previous twelve months. The dividend
growth rate is the sum of dividends over the year, divided by the sum of dividends
over the previous year and is deflated using the realized growth in the Consumer Price
Index.

Consumption data are obtained from the Bureau of Economic Analysis. The real
annual consumption growth rate is the real per capita personal consumption expendi-
ture on nondurable goods and services over the year, divided by the per capita personal
consumption expenditure on nondurable goods and services over the previous year.

Table 1 provides descriptive statistics for the continuously compounded returns on

the assets, the market-wide price-dividend ratio, and the aggregate consumption and
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dividend growth rates for the annual sample over the period 1931 — 2009. The table
illustrates the well documented equity premium and the size and value premia. Over
the sample period, the annual equity premium over the risk free rate has mean 5.6%
and the volatility of the market return is 19.8%. The annual risk free rate has mean
0.6% and volatility 3.0%. The annual mean premium of small over large stocks is 4.7%
and of value over growth stocks is 4.5%. Value stocks are more volatile than growth
stocks and small stocks are much more volatile than large stocks.

The annual log price-dividend ratio on the market has mean 3.38 and volatility 0.45
over the sample period. The average annual log dividend growth rate on the market
portfolio is 1.0% with volatility 11.7%. Finally, the annual log consumption growth

has mean 2.0% and volatility 2.1% over the sample period.

3 Parameter Estimates and Model-Generated Mo-
ments

3.1 Parameter Estimates from the Time-Series Processes

We estimate the parameters of the time-series processes of aggregate consumption and
dividend growth over 1931 — 2009, without reference to the Euler equations. We esti-
mate the nine parameters of the time-series model (1)-(4) to match the following nine
sample moments: the unconditional mean, variance, and first-order autocorrelation
of consumption and dividend growth rates, the correlation between consumption and
dividend growth rates, and the variance of squared consumption and dividend growth
rates. These estimates serve as a benchmark for comparison when we subsequently re-
estimate these parameters from the joint system of the time-series moment restrictions

and the Euler equations.
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The point estimates, along with the associated standard errors (Newey-West (1987)
corrected using two lags) in parentheses, are displayed in the first row of Table 2. Note
that the system is exactly identified and, therefore, the model-generated moments
computed at the point estimates of the parameters closely match their sample analogs.
The estimated parameter values and, most importantly, their standard errors, provide
insights beyond those obtainable via calibration. The point estimate of the persistence
parameter (p,) of the LRR variable is 0.44 and is significantly different from zero. This
finding lends support to the major risk channel highlighted in the LRR literature - a
predictable component in the aggregate consumption and dividend growth rates. The
parameter ¢, that measures the sensitivity of the expected dividend growth rate to
changes in the LRR variable, is statistically significant while the parameters ¢ and
Y, that determine the volatility of the innovations to dividend growth and the LRR
variable, respectively, are very imprecisely estimated. Finally, the parameters governing
the dynamics of the conditional variance process in equation (2), namely (o, v, 0y,),
are imprecisely estimated and none of them is significantly different from zero. This
imprecision may be due to the lack of power or misspecification of the dynamics of
the volatility process. In Section 4, we find support for the latter by showing that
the conditional variance (0?) does not forecast the equity premium, contrary to the

implications of the model.

3.2 Parameter Estimates and Model-Generated Moments from
the Time-Series Processes and the Two-Asset System

We re-estimate the parameters of the time-series processes of aggregate consumption
and dividend growth along with the preference parameters over 1931 — 2009 from the

joint system of the nine unconditional moments implied by the time-series processes
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and six Euler equations of consumption on the market return and risk free rate. This
enables us to address the ability of the model to explain the equity premium and risk
free rate puzzles. We are able to write down Euler equations without reference to the
latent state variables because we express the log pricing kernel as an affine function of
the aggregate log price-dividend ratio, the log risk free rate, and their lags, in addition
to consumption growth. We augment the two unconditional Euler equations for the
market return and the risk free rate with four Euler equations conditional on the lagged
log price-dividend ratio of the market and the lagged log risk free rate. Combined
with the nine time-series moment restrictions, this system of 15 restrictions and 12
parameters (9 time-series parameters plus 3 preference parameters) is overidentified.
We estimate the parameters with GMM using the efficient weighting matrix and test
the model with the overidentifying restrictions.? The point estimates, along with the
associated standard errors in parentheses, are displayed in the second row of Table
2. We also verify the robustness of the estimation and tests by replacing the efficient
weighting matrix with the identity matrix in Section 3.5.2.

The most notable finding is that the standard error of the estimated intertemporal
elasticity of substitution in consumption (¢) is large and one can reject neither the
hypothesis that it is lower than one nor that it exceeds one, thereby providing an insight
as to why the magnitude of the elasticity is a controversial issue in the literature. This
lack of precision should be contrasted with the plausible and relatively precise estimates
of the subjective discount factor (0) and relative risk aversion coefficient (7). The lack
of precision in estimating the elasticity suggests that one should explore LRR models
with a wide range of values for this parameter.

In Table 2, we also report the historical and model-generated moments of the con-

sumption and dividend growth rates, market return, risk free rate, and market-wide
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price-dividend ratio. The column entitled "Data" reports the moments computed from
historical data along with standard errors in parentheses. The column entitled "Model"
presents the model-generated moments along with the 95% confidence intervals in
square brackets. We calculate the model-generated moments from the analytical ex-
pressions for these moments at the point estimates of the parameters. We calculate
their 95% confidence intervals from 10,000 simulations of 80 years each, the same size
as the historical sample. The model does a good job at matching the unconditional
moments of the aggregate consumption and dividend growth rates and the mean mar-
ket return. However, it implies a higher value for the risk free rate than that observed
in the data (4.5% versus 0.6%), lower volatility of the risk free rate (1.0% versus 3.0%),
and lower volatility of the market return (10.7% versus 19.8%).

The model also implies a lower volatility of the market-wide price-dividend ratio
(0.11 versus 0.45) as noted earlier in Beeler and Campbell (2011). The reason for
this can be explained as follows. The price-dividend ratio is an affine function of
the two state variables (equation (11)). Using the point estimates of the parameters
in Table 2, most of the variability of the price-dividend ratio in the model is due to
variation in the LRR variable (85.9%) with the conditional variance of the LRR variable
only accounting for 14.1% of the variance of the price-dividend ratio. Therefore, the
volatility of the price-dividend ratio is largely determined by the persistence parameter
of the LRR variable and the elasticity of intertemporal substitution that determine
the loading of the price-dividend ratio on the LRR variable. The point estimate of
the persistence parameter of the LRR variable is 0.48 in Table 2 that gives rise to a
volatility of 0.11 for the price-dividend ratio. For example, if we choose the persistence
parameter to be 0.88, the model-implied volatility of the price-dividend ratio becomes

0.44 and closely matches the observed volatility of 0.45. However, this counterfactually
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implies a much higher persistence of the consumption growth rate than that observed
in the data (0.69 vs 0.45) and much higher persistence of the dividend growth rate
(0.80 vs 0.16).

Finally, the J-stat is 9.45 and has asymptotic p-value 2.4%. Overall these results
suggest that one should explore ways to further enhance the model by refining the

definition of the state variables and possibly introducing additional state variables.

3.3 Interpretation of the Model at the Monthly Frequency

The estimation results in Table 2 were obtained under the assumption that the de-
cision interval of the agent is annual. We next examine the B-Y model under the
interpretation that the decision frequency is monthly. Since we do not have reliable
monthly data to directly test the model at the monthly frequency, we adopt the B-Y
calibration at the monthly frequency and examine the model’s implications at the an-
nual frequency. We compute the model-implied moments from a single simulation of 1
million monthly observations and the 95% confidence intervals from 10000 simulations
of the same length as the historical time series.

The results are reported in Table 3. The model does a better job than the model in
Table 2 in matching the volatility of dividend growth, market return, risk free rate, and
price-dividend ratio. However, the model does a worse job than the model in Table 2 in
matching the volatility of consumption growth, the correlation between consumption
and dividend growth, and the mean of the price-dividend ratio. Overall, the results
suggest that the interpretation of the model at the monthly frequency improves the
ability of the model to match certain moments of the data compared to an annual

decision interval while worsening the model’s fit for certain other moments.
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3.4 Parameter Estimates and Model-Generated Moments from
the Time-Series Processes and the Six-Asset System

We augment the set of assets to include the "Value", "Growth", "Small" capitalization,
and "Large" capitalization portfolios, in addition to the market portfolio and the risk
free rate. The unconditional Euler equations for these six assets along with the nine
time-series moment restrictions give 15 moment restrictions in 12 parameters. The
model does a better job at pricing some unconditional moments than others. The large
standard errors of the estimated preference parameters and the parameters governing
the conditional variance process, o2, neither lend support nor deny the possibility that
the channels of high elasticity and the particular conditional variance process in the B-
Y model are pivotal in addressing the cross-section of returns. The results are reported
in Table 4.

The point estimate of the persistence parameter of the LRR variable is 0.75 and
is much higher than the value of 0.44 estimated from the time series of consumption
and dividend growth alone. Therefore, the model requires much higher persistence
of consumption and dividend growth to explain the cross-section of returns than the
persistence estimated from the time series of the growth rates. The point estimate
of the elasticity (1.82) and its standard error are both higher than the corresponding
values in Table 2. These findings reinforce the earlier conclusion that one should explore
LRR models with a wide range of values for the elasticity.

The model-implied unconditional moments of the aggregate consumption and divi-
dend growth rates in the 6-asset system are comparable to those in the 2-asset system.
However, the 6-asset system exacerbates pricing discrepancies on the mean market
return and risk free rate that we previously identified when we estimated the model

on the 2-asset system. We compute the model-implied mean returns of the "Value",
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"Growth", "Small" capitalization, and "Large" capitalization portfolios.®> The annual
pricing errors for the “Large” and "Growth" portfolios are small while the error for
the “Small” portfolio is 5.1% and for the “Value” portfolio is 3.9%. The J-stat is 11.30

and the p-value is 1.0%, based on the asymptotic distribution of the J-stat.

3.5 Robustness Tests

In Section 3.5.1, we address the robustness of our results to observation error in the
price-dividend ratio and risk free rate. In Section 3.5.2, we examine the robustness of
our results to the choice of weighting matrix in the GMM estimation. In Section 3.5.3,

we address the robustness of our results to the post war sub-period.
3.5.1 Observation Error in the Price-Dividend Ratio and Risk free Rate

A crucial step in observing the latent state variables consists of inverting the system
that expresses the risk free rate and price-dividend ratio as affine functions of the latent
state variables. Therefore, the latent state variables are observed with error because
both the risk free rate and price-dividend ratio are observed with error. In particular,
our proxy for the one-year real risk free rate is the deflated one-year nominal risk free
rate. We address the sensitivity of our results to this potential source of error by
introducing a third observable, namely the conditional variance of the one-year market
return, that is an affine function of the latent state variables o? (equation (19)). We
proxy this conditional variance with the sum of squared daily market returns over the
previous 12 months.* We now have a system of three observables, the risk free rate,
price-dividend ratio, and conditional variance of the one-year market return, as affine
functions of the two latent state variables. At each time period, we estimate the values
of the latent state variables by a cross-sectional least squares regression of the three

observables on their loadings on the latent state variables and proceed as in Section
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3.4. The results are reported in Table 5.

The point estimates of the parameters are not significantly different from those
in Table 4. The model-implied mean of the market return and the volatility of the
risk-free rate are slightly closer to their sample counterparts than the model-implied
moments in Table 4. Overall, we find that the introduction of the conditional variance
of the one-year market return as a third observable does not significantly enhance the

fit of the model.

3.5.2 Sensitivity to the Choice of Weighting Matrix in the GMM Estima-
tion
We investigate the robustness of the estimation and tests by replacing the efficient
weighting matrix with the identity matrix. Table 6 reports results for the same sys-
tem of moment restrictions as Table 5, but using the identity weighting matrix. The
mean and volatility of the market return and risk free rate, the volatility of the price-
dividend ratio and dividend growth, and the mean of "Small" and "Value" portfolio
returns are closer to their sample counterparts than the model-implied moments in
Table 5. However, the mean and volatility of consumption growth, the autocorrelation
of consumption and dividend growth, and the mean of the price-dividend ratio are fur-
ther apart from their sample counterparts. Overall, the use of the identity weighting

matrix does not unambiguously enhance the fit of the model.
3.5.3 Robustness to the Post War Sub-Period

Since the period prior to 1947 was one of great economic uncertainty, including the
Great Depression, World War II, and structural breaks in the equity premium (Pastor
and Stambaugh (2001)), the inability of the B-Y model to match certain moments in

the data over the full sample period may be due to its poor performance in the pre

22



war period.

We explore this possibility by repeating the estimation and testing of the 6-asset
system over the post war sub-period 1947 — 2009. The results are reported in Table
7 and are worse than those obtained over the full period in Table 4. The model does
a better job at matching the unconditional volatility of dividend growth. However, it
does a worse job at matching the mean of "Small", "Large", "Growth" and "Value"
stocks and the volatility of the market return. The J-stat is 12.38 and has asymptotic
p-value less than 1%. Therefore, the inability of the B-Y model to match certain

moments in the data cannot be attributed to poor performance in the prewar period.

4 Forecasting Returns and Consumption and Div-
idend Growth

The B-Y model implies that the conditional expectation of the equity premium is an
affine function of the conditional variance, o2, of the LRR variable (equation (18)).
Bansal, Khatacharian, and Yaron (2005) show that the conditional volatility of con-
sumption growth predicts valuation ratios. We address the question as to whether the
conditional vaiance forecasts the equity premium. We regress the realized annual eq-
uity premium, r,,, ;11 —7, on the conditional variance, o7, over the period 1931 —2009.
The results are displayed in the first row of Table 8, Panel A. The regression coefficient
is not statistically significant and the R? is zero.® Figure 1 displays the time series of
the realized equity premium along with the predicted time series from the above model-
implied forecasting regression. Years with NBER recessions in at least two quarters
are displayed as shaded columns. The conditional variance exhibits a countercyclical
pattern with a correlation coefficient of 0.36 between the time series of the conditional

variance and an indicator variable that takes the value of one in a recession year (de-

23



fined as above) and zero otherwise. The figure shows that the conditional variance
does not predict the equity premium as this conditional variance is flat.5

Next, we add the LRR variable, x;, as a second predictor variable in the regression,
even though the model implies that the expectation of the equity premium is a function
of the state variable o7 alone. The results are displayed in the second row of Table
8, Panel A. The regression coefficient of ¢? remains statistically insignificant, the
regression coefficient of z; is marginally significant, and the R? increases to 3.3%. We
repeat the regressions over the post war subperiod 1947 — 2009 and display the results
in the first two rows of Table 8, Panel B. In the regression of the equity premium
on the conditional variance, the regression coefficient remains insignificant and the R?
remains zero. In the regression on the conditional variance and the LRR variable, the
regression coefficient on o? remains statistically insignificant, the coefficient on z; is
strongly statistically significant, and the R? increases to 7.2%.

Similar results are obtained at the 2-year and 5-year frequencies and are reported
in Table 9. The B-Y model implies that the 2-year and 5-year expected equity premia
are affine functions of o? alone. At the 2-year frequency, a forecasting regression of
the realized equity premium on o? produces a statistically insignificant slope coefficient
and R? 0.6%. When z; is added as a second predictor variable in the regression, the
regression coefficient on 0? becomes marginally significant, the regression coefficient on
x, is strongly significant, and the R? increases by two orders of magnitude to 13.0%. At
the 5-year frequency, the regression of the equity premium on the conditional variance
alone gives R? 0.6% while the inclusion of the LRR variable as an additional predictor
variable raises the R? dramatically to 31.4%.

The overall conclusion is that the conditional variance does not predict the eq-

uity premium. This suggests that the dynamics of the conditional variance process
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in equation (2) may be misspecified and the ability of the model to forecast the large
time-variation in the equity premium may be improved by alternative volatility spec-
ificatons. Also, the fact that the LRR variable predicts the equity premium, despite
the implications of the model to the contrary, suggests that the B-Y model may be
enhanced in ways that make the conditional expectation of the equity premium depen-
dent on state variables other than the conditional variance of the LRR variable. Which
of these two approaches is more promising is the scope of future research.

The B-Y model also implies that the conditional expectation of the aggregate con-
sumption growth rate is an affine function of the LRR variable (equation (20)), and the
conditional expectation of the aggregate dividend growth rate is an affine function of
the LRR variable (equation (21)). We regress the realized consumption growth on the
LRR variable, over the period 1931 —2009. The results are displayed in the third row of
Table 8, Panel A. The regression coefficient is not statistically significant and the R? is
1.5%. Figure 2 displays the time series of the realized consumption growth rate along
with the predicted time series from the model-implied forecasting regression. The LRR
variable is not very correlated with the business cycle with a correlation coefficient of
only —0.17 between the variable and an indicator variable that takes the value of one
in a recession year and zero otherwise.

Next, we add the conditional variance, as a second variable in the regression, even
though the model does not imply that the expectation of consumption growth is a
function of this variable. The results are displayed in the fourth row of Table 8,
Panel A. Both coefficients are statistically significant and the R? increases by an
order of magnitude from 1.5% to 13.9%. The results in Panel B over the post war
subperiod 1947 — 2009 make this point even more strongly. The regression of the

realized consumption growth rate on the lagged LRR variable, x;, gives a statistically
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insignificant coefficient on x; and negative R? (Row 3). Adding the lagged conditional
variance, o7, as a second predictor variable to the regression produces statistically
significant coefficients on both variables and 21.1% R?*(Row 4).

We obtain similar results for the dividend growth rate. Over the period 1931 —2009,
a forecasting regression of the aggregate dividend growth rate on z; gives R? 5.3%
(Panel A, Row 5) while the inclusion of the state variable o doubles the R? to 10.2%
(Panel A, Row 6). Figure 3 displays the time series of the realized dividend growth
rate along with the predicted time series from the model-implied forecasting regression
of the realized dividend growth rate on the LRR state variable. Over the post war
subperiod 1947 — 2009, the LRR variables loses its forecasting power for the dividend
growth rate with R? —1.6% (Panel B, Row 5). The conditional variance, on the other
hand, predicts the dividend growth with a statistically significant coefficient and R?
5.3% (Panel B, Row 6).

Overall the results suggest that the LRR variable does have some predictive power
for the consumption and dividend growth rates. However, the conditional variance
has strong incremental predictive power for the aggregate consumption and dividend
growth rates over and above that contained in the LRR variable, contrary to the
implications of the model. Note that, since the expected market return depends on
both state variables (equation (17)), a misspecification of the ex-ante risk free rate
could cause both predictors to enter the risk premium regression. Also, the forecasting
power of the LRR variable may be an artifact of measurement/estimation error in
the extraction of the two state variables and/or time-aggregation that might make the
innovations to the state variables correlated at the annual frequency. However, the fact
that the conditional variance strongly predicts the dividend growth rate in the post war

period even when the LRR variable loses its forecating power suggests that it is unlikely
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that our findings are entirely driven by measurement error or time-aggregation. The
results suggest that the B-Y model may be potentially enhanced in ways that make
the conditional expectation of consumption and dividend growth dependent on other

state variables in addition to the LRR variable.

5 A Co-integrated Long Run Risks Model

Bansal, Gallant, and Tauchen (2007) consider an extension of the LRR model of B-
Y that imposes a co-integrating restriction between the logarithm of the aggregate
stock market dividends and consumption. Bansal, Dittmar, and Kiku (2009) point out
that this co-integrating relation measures long run covariance risks in dividends and is
important in understanding sources of risk and explaining the equity risk premia across
investment horizons.” We estimate the log-linearized model and test its implications
on the cross-section of returns and on forecasting the equity premium and consumption

and dividend growth, using an extension of the methodology introduced in Section 1.1.

5.1 The Model and Testable Implications

The aggregate consumption growth, the LRR variable, and the variance of its inno-
vation are modeled as in equations (1)-(3). Therefore, the pricing kernel, the log
price-consumption ratio, and risk free rate are functions of the LRR variable and the
variance of its innovation, given by equations (15), (10), and (12), respectively. The
point of departure from the B-Y model is the imposition of a co-integrating restriction

between the logarithm of the aggregate stock market dividends and consumption,

dy — ¢t = flge + St, (22)
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where the cointegrating residual, s;, is an 1(0) process with the cointegrating coefficient

set at one,®

St41 = AsaTt + PsSt + V0tEs 141 (23)

The shocks €, 41, €ot415 Ectt1, and €g441 are assumed to be i.i.d. N(0,1) and
mutually independent.

From equation (22), we have,

Adipr = Acipr + Asg, (24)

= e+ (T4 Xz)xe + (g — 1)84 + 0tecps1 + V01Es 141,

where the second line follows from equations (3) and (23).

The model has three state variables, the LRR variable x;, the variance of its in-
novation ¢Z, and the co-integrating residual s;. Note that the B-Y model obtains as
a limiting special case when p, = 1. We conjecture that the log price-dividend ratio
is an affine function of the LRR variable, the variance of its innovation, and the co-
integrating residual. In Appendix A.3.1, we verify this conjecture and explicitly solve
for the coefficients. The co-integrating residual is observable as the demeaned difference
between the log aggregate dividend and consumption levels (equation (22)). We invert
the equations for the equilibrium risk free rate and market-wide price-dividend ratio
and express the unobservable state variables, r; and o7, in terms of the observables,

Zmts Trt, and S¢, (see Appendix A.3.2 for details). Finally, we express the pricing kernel

as an affine function of z,,,, 77+, and s, their lags, and consumption growth.
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5.2 Empirical Evidence on the Co-integrated Model

We estimate the preference parameters and the parameters of the time-series processes
of aggregate consumption and dividend growth over 1931 — 2009 by GMM from the
joint system of Euler equations and the restrictions on the unconditional moments
of consumption and dividend growth imposed by the time series specification of the
model. The asset menu consists of the market portfolio, risk free rate, and portfolios
of "Small" capitalization, "Large" capitalization, "Growth" and "Value" stocks. The
Euler equations for the 6 assets give 6 moment restrictions. To this set of pricing re-
strictions, we add the following 7 time series moment restrictions: the unconditional
mean, variance, and first- and second-order autocorrelations of consumption growth,
the variance and first-order autocorrelation of dividend growth, and the correlation
between consumption and dividend growth (see Appendix A.4 for expressions for these
moments). Thus, we have a total of 13 moment conditions. The total number of para-
meters to be estimated is 12 (9 time-series parameters and 3 preference parameters).
We estimate the parameters with GMM using the efficient weighting matrix and test
the model with the overidentifying restriction.

The results are reported in Table 10. The point estimate of the parameter p,, that
determines the persistence of the cointegrating residual, s;, is 0.90 and is statistically
indistinguishable from unity. Therefore, the data cannot distinguish the co-integrated
model from the B-Y model which obtains as a limiting special case when p, = 1. This
explains why the conclusions drawn from Table 10 are similar to our earlier conclusions
from Table 4. The persistence parameter of the LRR variable is much higher at 0.96,
compared to the value of 0.44 estimated from the time-series model alone in the first
row of Table 4. Therefore, the co-integrated model, like the B-Y model, requires much

higher persistence of consumption growth to explain the cross-section of returns than
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the persistence estimated from the time series of consumption growth alone. The model
does a fair job at matching the unconditional moments of the consumption and dividend
growth rates. However, like the B-Y model, it implies a higher level of the risk free rate
than that observed in the data (2.8% versus 0.6%), lower volatility of the risk free rate
(0.8% versus 3.0%), and lower volatility of the market return (9.3% versus 19.8%). The
model performs better at matching the volatility of the price-dividend ratio compared
to the B-Y model. The annual pricing errors for the "Small" capitalization and "Value"
portfolios are better than those obtained for the B-Y model but the pricing error for
the "Growth" portfolio is worse. Finally, the GMM overidentifying restrictions test
rejects this model with J-stat 17.2 and asymptotic p-value less than 1%.

We next examine the forecasting power of the model-implied state variables for
the equity premium and the aggregate consumption and dividend growth rates. The
cointegrated model implies that the conditional expectation of the equity premium is
an affine function of the conditional variance, o2, of the LRR variable, (see Appendix
A.3.3 for derivation). We regress the realized equity premium, r,, ;41 — s, on the
conditional variance, o2, over the period 1931 — 2009. The results are displayed in the
first row of Table 11, Panel A. The regression coefficient is not statistically significant
and the R?is —1.1%. Next, we add the LRR variable, x;, as a second predictor variable
in the regression, even though the model implies that the expected equity premium is
a function of the state variable o? alone. The results are displayed in the second row
of Table 11, Panel A. The regression coefficients are statistically insignificant and the
R? is negative. Row 3 shows that inclusion of the cointegrating residual, s, as a third
state variable makes all three regression coefficients statistically indistinguishable from
zero and the R? is still negative. We repeat the regressions over the post war subperiod

1947 — 2009 and display the results in the first three rows of Table 11, Panel B with
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similar results. The overall conclusion is that o2 does not predict the equity premium,
contrary to the predictions of the model. This conclusion is similar to that obtained
for the B-Y model. The fact that the other state variables, namely the LRR variable
and the cointegrating residual, also do not have any forecasting power for the equity
premium suggests that this class of models are missing important state variables that
drive the dynamics of the equity premium.

The cointegrated model, like the B-Y model, also implies that the conditional ex-
pectation of the aggregate consumption growth rate is an affine function of the LRR
variable (equation (20)). We regress the realized consumption growth on the LRR
variable, over the period 1931 — 2009. The results are displayed in the fourth row of
Table 11, Panel A. The regression coefficient has the wrong sign and the R? is 2.6%.
Next, we add the conditional variance, as a second variable in the regression, even
though the model does not imply that the expected consumption growth is a function
of this variable. The results are displayed in the fifth row of Table 11, Panel A. The
coefficient on o? is strongly statistically significant and the R? rises by an order of mag-
nitude from 2.6% to 27.8%. Row 6 shows that inclusion of the cointegrating residual,
s¢, as a third state variable does not change the outcome. The results show that the
conditional variance has strong predictive power for the aggregate consumption growth
rate, contrary to the implications of the model. The results in Panel B over the post
war subperiod 1947 — 2009 show that the LRR variable performs well at forecasting
the consumption growth rate over this period with the conditional variance and the
cointegrating residual not having much incremental forecasting power.

Finally, the cointegrated model, unlike the B-Y model, implies that the conditional
expectation of the aggregate dividend growth rate is an affine function of the LRR

variable and the cointegrating residual (equation (24)). We regress the realized dividend
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growth on z; and s; over the period 1931 — 2009. The results are displayed in Row 7 of
Table 11, Panel A. The regression coefficient of the cointegrating residual is statistically
significant, that of the LRR variable is not, and the R? is 7.6%. Next, we add o? as a
third variable in the regression, contrary to the implications of the model. The results
are displayed in Row 8. The coefficient on o2 is strongly statistically significant and the
R? more than doubles to 18.3%. This shows that the conditional variance has strong
predictive power for the aggregate dividend growth rate, contrary to the implications
of the model. The results in Panel B over the post war subperiod 1947 — 2009 show
that the none of the state variables have statistically significant coefficients and in both
cases the R? is negative.

The co-integrated model generalizes the LRR model of B-Y by introducing the
difference between the log dividend and consumption levels as a third state variable.
The combined evidence from the estimation, pricing tests, and forecasting regressions

suggest that the problems identified with the model of B-Y remain to be resolved.

6 Concluding Remarks

We presented a novel methodology for estimating and testing the class of long-run
risks models and related models that contain latent state variables. We illustrated
the methodology by estimating and testing the long-run risks model of Bansal and
Yaron (2004) and its cointegrated extension in Bansal, Gallant, and Tauchen (2007)
and provided insights for building the next generation of such models. The results
are summarized in the introduction. Recent studies by Ferson, Nallareddy, and Xie,
(2011), Ghosh and Constantinides (2011), and Jagannathan and Marakani (2010) are
already building on this methodology.

The main difficulty in assessing the empirical plausibility of such models is their
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reliance on latent state variables. The methodology is based on the insight is that the
model yields expressions of various observable quantities such as the market-wide price-
dividend ratio and risk free rate as functions of the latent state variables and the model
parameters. These functions may be inverted to express the latent state variables as
known functions of the observables and the model parameters. The procedure bypasses
the need to filter the state variables and, more importantly, bypasses the need to spell
out the information set over which consumers filter the state variables.

The latent state variables may be readily related to the time series of financial and
macroeconomic variables. The stochastic discount factor and the Euler equations of
consumption are expressed in terms of these observables. The model may be estimated
and tested with one-step procedures, such as GMM, on the joint system of the Euler
equations and the unconditional moments of observables.

Finally the methodology yields novel testable implications on predictability. For
example, whereas the B-Y model implies that the conditional mean of the equity pre-
mium is a function of the price-dividend ratio and risk free rate (and, equivalently, a
function of the LRR variable and its conditional variance), closer examination reveals
that the model has the sharper implication that the conditional mean of the equity
premium is a function of the conditional variance of the LRR variable but not of the
LRR variable itself. This sharper implication is readily testable with the methodology

that reveals the latent state variables.
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Figure Legends

Figure 1. The figure plots the time series of the realized equity premium (red-dashed
line) along with the premium predicted by the model (black solid line). The predicted time
series is obtained as the fitted value from a forecasting regression of the realized premium
on O’?, the conditional variance of the LRR state variable x;. The grey shaded areas denote

years in which at least two quarters are in NBER-dated recession periods.

Figure 2. The figure plots the time series of the realized consumption growth rate
(red-dashed line) along with the growth rate predicted by the model (black solid line). The
predicted time series is obtained as the fitted value from a forecasting regression of the realized
consumption growth rate on the LRR state variable x;. The grey shaded areas denote years

in which at least two quarters are in NBER-dated recession periods.

Figure 3. The figure plots the time series of the realized dividend growth rate (red-dashed
line) along with the growth rate predicted by the model (black solid line). The predicted time
series is obtained as the fitted value from a forecasting regression of the realized dividend
growth rate on the LRR state variable x;. The grey shaded areas denote years in which at

least two quarters are in NBER-dated recession periods.
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Notes

'For further references, see Alvarez and Jerman (2005), Bansal, Dittmar, and Kiku (2009), Bansal,
Gallant, and Tauchen (2007), Bansal, Kiku, and Yaron (2010), Bansal and Shaliastovich (2010),
Beeler and Campbell (2011), Bekaert, Engstrom, and Xing (2009), Chen, Favilukis, and Ludvigson
(2011), Colacito and Croce (2011), Croce, Lettau, and Ludvigson (2010), Drechsler and Yaron (2011),
Ferson, Nallareddy, and Xie, (2011), Ghosh and Constantinides (2011), Hansen and Scheinkman
(2009), Jagannathan and Marakani (2010), Lettau and Ludvigson (2009), Lustig, Van Nieuwerburgh,
and Verdelhan (2008), Malloy, Moskowitz, and Vissing-Jorgensen (2009), Parker and Julliard (2005),
and Piazzesi and Schneider (2006).

2The numerical search for a global minimum is done using the library "DEoptim" that is built in

the statistical package R. An independent grid search algorithm produces very similar results.

3For the cross-section, the model-implied mean return on portfolio i is computed as E (R;) =

1-C TW/\\,Ri : ~ . . ..
”“((/:‘)”), where T denotes the estimated value of x and M is the pricing kernel. We compute

E(M,
the model-implied mean returns for the cross-section using this approach because we are unable to

simulate returns on these assets without making assumptions about their dividend processes.

4 Andersen, Bollerslev, Diebold, and Labys (2003) and Barndorff-Nielsen and Shephard (2002) show
that the sum of squares of high-frequency returns is a highly accurate estimator of the return variance
over a discrete time horizon. We do not use the term premia on nominal bonds as the third (or
fourth) observable because the conversion of this premia to the term premia on real bonds introduces
a maintained hypothesis on the inflation process. We do not use the dividend-price ratio of some other
portfolio, for example the value portfolio, as the third observable because this introduces a maintained
hypothesis on the dividend growth process of the value portfolio and also involves estimation of the

parameters of this process.
SThroughout the paper, R? refers to the adjusted-R2.

OFor the results displayed in Figures 1 — 3 and Table 7, we obtain the time series of the latent

state variables from the observed price-dividend ratio, risk free rate, and the conditional variance of

35



the market return, as in Section 3.5.2. We also obtained the time series of the latent state variables
and corresponding figures and tables from the observed price-dividend ratio and risk free rate, as in

Sections 3.2 and 3.4. We chose to display the set of results that cast the model in the best light.

"In a different context, Lettau and Ludvigson (2001) and Menzly, Santos, and Veronesi (2004)
apply the co-integrating residual between consumption, labor income, and aggregate stock market

dividends to explain the cross-section of returns.

®Bansal, Gallant, and Tauchen (2007) perform a heteroskedasticity-robust augmented Dickey-Fuller
test for a unit root in d; — ¢; and the results provide strong evidence for a cointegrating relationship

between the variables with a coefficient equal to unity.
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A Appendix

A.1 Estimation of Time-Series Parameters of the B-Y Model

The decision interval of the agent is assumed to be annual. We estimate the model at
the annual frequency, such that its annual growth rates of consumption and dividends
match salient features of observed annual consumption and dividend data. There are
9 parameters to be estimated - p,, g, @, ©, Py Uy 0, U, and oy,.

From the specification of the consumption growth process, we have

E(Aci) = (25)
We also have
Var (Aciy1) = Var(zg) + Var (oiecir1) + 2C0o0(2s, 016 t41)
= Var(z;)+0*+0
¢i0 ? 2
= 1- 2 +o (26)
and,
2 2
o
COU(ACt+17 ACtJr?) = Py fbi p2 (27)
From the specification of the dividend process, we have
E(Adi) = pg (28)
Yo
Var (Adt+1) = ¢2m + 0'2302 (29)
Y2’
Cov(Adyi1, Adyya) = ¢2pm1 . 2 (30)
Also, from the consumption and dividend growth processes,
2 2
o
Cov(Acyy1, Adyyq) = (/lei e (31)

Finally, we have
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Var (Aci1)?) = E [Var, (Acis1)?)] + Var [Ey (Ace1)?)] (32)

Now,

(Acesr)” = p2 + a7 + oje ct+1 + 2,1 + 20404Ec 141 + 2001 141 (33)

Hence,

Et ((Act+1)2) = /Lg + xf + 0'? + 2,U/CZL’t

Var [E, ((A0t+1)2)] = Var(z?) + Var(o?) + 4u2Var(x,) + 4p.Cov(xy, 22)

+2Cov(x?,07) + 4p Cov(zs, 07) (34)
Now, Var(o?) = %, Cov(zy,0?) = 0, Cov(x?,0?) = %, Cov(zy,x?) =
0, and
3 4 _2 1 2 1 42 4 4
V(M”(.I’?) — ifa:a—w( _:pr) : - |:2 4+ Pz xz— :|
(1=p3)A =) (A —wpl)  1-p; (1—p3)

Substituting the above expressions into equation (34), we have

3t (1 +vp?) 1 4p2aptot
1% E A 2 _ - w T 9 4 zx
H I e e e R e Wi e
o2 Vio 20202 v
4 2 - w 35
e T Y T - o) (%)
Also, from equation (33),
Var, ((ActH) ) =20} + 4xjo; + Aplo} + 8p a0}
Hence,
B [Var, (Aein)?)] = 2-T0 4900 4 —Aaoiv | 4o 420 (36)
r =
S et AT o T e

Substituting equations (35) and (36) into equation (32), we have
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3io? (1 + vp?) 1 4p2to 302
V A 2 _ ¥ w x 2 4 x w
(Gee) = T T S *1—%
Vio 62020 420t
472 2 4 37
ey p'+u—v%u—v%> 1o T e (37
Similar calculations yield,
3¢5 (1 +vp?) 1 p
V E Ad 2 _ 4 W x 2 4 Tt x
ar B ((Adn))] = @ {<1-—-p§><1 )1 - vp§> T S ey
2 2 2 2 2
O'w 2 ¢ 2¢xng 2 2

2 dp2o2 v 4op2 ot
E[Var, (Adir)?)] = |28 + 20| o o w T | ¢
Vard ()] = [27%55 oot ety + {2 e
+Hpgp’o?
Hence, we have
3io? (14 vp?) 1 4p2 o 302
Var (Adeyy)?) = o 27w z 20 4+ S 2ot
ar (( t+1) ) ¢ |:<1—pé)(1—’l)2)(1—’l)p:26) 1_p;1‘ U + (1—,0) 1—'[}2%0
¢202 2 61/12021) 2 2 41/}2‘74 2 2
4 2 T ) _rx-
R R e e M e
+20t 0" + 4pZp?o? (38)

Equations (25)-(31), (37), and (38) give 9 moments restrictions in the 9 time-series
parameters.

A.2 Details of Estimation Methodology for the B-Y Model
A.2.1 Expressions for Ay, A, Ay, Aypy Aim, and Ay,

Bansal and Yaron (2004) show that z; and z,, ., are affine functions of the state vari-
ables, z; and o2,
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2
2 = Ao+ Az + Asoy,
2
Zmt = AO,m + Al,mxt + AQ,mUm

where
1-41
A = — v
1- K10y
2
0.5 [(—% + 0) + (9/@1141@@1)2}
A, =
2 0 (1 — r1v)
) log(d) + (1 — i) e + Ko + K1 A202(1 — v) + 0.50k2 A202
0 - 1— K1
_ 1
Alm = ¢ v
’ 1 — Kimp,
N (1—60)As (1 — k1) + 0.5 [Y2 4+ @2+ ((0 — 1) k1 Ay + KimArn) 92
am 1 —Kimu
A log(d) + (—g . 1) o (0= 1) ko 4+ (0 — 1) (k1 — 1) Ag + (0 — 1) k1 Ae02(1 — )
Ao =
0 1-— R1,m
+l‘i0,m + ,Ud + /ilijZmO'Q(l — U) + 0.5 [(9 — 1) :‘ilAQ + fi17mA2’m]2 O',%U
1-— R1,m

Finally, we express the linearization parameters kg and x; in terms of the preference
and time series parameters through the restriction that the long run mean of the log
price-consumption ratio, z, that defines ko and k1 should equal the unconditional ex-
pectation of z; implied by equation (10); and express the linearization parameters kg,
and Ky ,,, in terms of the preference and time series parameters through the restriction
that the long run mean of the log price-dividend ratio, Z,,, that defines k¢, and k1,
should equal the unconditional expectation of z,,; implied by equation (11).

A.2.2 Risk Free Rate

To derive the expression for the risk free rate, note that
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0
E, [exp <0 log § — EACtH + (0 — Dregr + Tf,t):| =1

Hence,

0
exp(—rs:) = E; {GXP (9 logd — EACt-H + (0 - 1)Tc=t+1>}

= exp(flogd — guc — gfbt + (0 — ko + (0 — 1)r1 A
+<9 - 1)H1A1PI$1& + (0 - 1)!11142(1 — U)O'2 + (9 - ].)K/IAQUO-?
—(0—1)Ag — (0 — 1) Ay, — (0 — D Ayo? + (0 — Dp, + (0 — 1)

+0.5

0 2
(—E+9_1) 02 4 (0 — 1)2R2AZGR0 + (0 — 1)2K2A%02 |)

Therefore, the risk free rate is

rry = —flogd — <_§ + 6 — 1> o — (0 — kg — (0 — 1) (k1 — 1)Ag — (0 — 1)k Asx(1 — v)o?

—0.5(0 — 1)*k7A302 — {(—% +60—1)+ (0 —1)(kip, — 1)A1} T

2
- [(9 = D(ks10 = 1)A3 +0.5 ((—% +0— 1> +(0 - 1)%?14%3) o}
= Agyf + Al,fxt + AgJU?
where
A()J = —910g6 - (—g + 0 — 1) He — (9 - l)lio — (0 — 1)(/{1 — 1)140 — (0 — 1)/{1A2(1 — U)O’2
—0.5(0 — 1)*k]A302
Ay = =[5 40-1)+ 0~ Dlsap, - 4]
2

Ayy = — [(9 —1)(kiv —1)A2 + 0.5 ((—% +6 — 1) + (6 — 1)2&,4@3)
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A.2.3 Latent state variables in terms of observable variables

The model implies
Zmt = AO,m + Al,mxt + AQ,mU?a

rie = Aog+ Avgpr+ Agpo;.

These equations may be inverted to express the state variables in terms of the
observables,

Ty = Qg+ a1Tfp + Q2Zm g,

where
. o A2,mA0,f - AO,mAZf
0o — 3
Al,mA2,f - AZ,mAl,f
o o _A2,m
1 =
Al,mAZf - AQ,mAl,f7
N Agg
2 5
Al,mA2,f - A2,mA1,f
and
O-f = 60 + Blrf + Bsz,ta
where

AO,mAl,f - Al,mAO,f

o = Ao Asy = ApmAry’
B o Al,m
! Al,mAZ,f - A2,mAl f’
—A
ﬁ2 = _Lf

A.2.4 The pricing kernel in terms of observables

The pricing kernel is given by (15),
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mi1 = (Ologd+ (0 —1)[ko+ (k1 — 1) Ao]) + <—g + (0 — 1)> Aciiq

+<9 — 1)H1A1$t+1 + (6 — 1)H1AQU?+1 — (0 — 1)141.1} — (0 — 1)1420'?

Substituting the expressions for z; and o2 from Section A.2.3 into the pricing kernel,
we have

1 1
Mys1 = €1 + C2Aciyq + C3 <7" fit+l — K—Tf,t tCa | Zmp1 — H—Zm,t
1 1

where

cp = 0logd+ (0 —1)[ko+ (k1 — 1) (Ao + Arag + A2f,)]
o = 9 +(0—1)
SR

cs = (00— 1)ri[Arag + Asfy]
¢y = (0—1)ri[Aras + Ay,

A.3 Estimation Methodology for the Co-integrated Model

The model is given by the equations

Aciyr = o+ T4 + 0y,
Tep1 = PuT + V0tEe i1,
afﬂ = (1-v)o*+vo?+ OwEo t+1,
di —ci = fige + S,
St41 = AsaTi + PeSt + VP 01Es 141,
Adir = pe+ (L4 Asp)ze + (ps — 1)8t + 0t€cr1 + V5015 41 (39)

Therefore, the equilibrium solution for the log price-consumption ratio and risk free
rate are identical to the Bansal and Yaron (2004) model.

A.3.1 The Dividend Claim

We conjecture that the log price-dividend ratio is an affine function of the state vari-
ables, z;, 02, and s;:
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Zmt = A(),m + Al,mxt + A27m0'§ + Ag’mSt. (40)

The coefficients Ag,, A1m, A2m, and As,, are computed using the method of unde-
termined coefficients as described below.
The Euler equation for the observable return on the aggregate dividend claim,

T t+15 1S,

0
Et {exp (0 10g5 — EACH_l + (0 - ].)7“07754,_1 + Tm,t+1>:| =1 (41)

Substituting the expression for r,, ;1 from equation (9) into the above Euler con-
dition, we have

%uc — %xt - %Ut867t+1 + (0 —1)ko+ (0 — 1)k1 A

+(0 — 1)r1Arpyae + (0 — 1)k A1p 0064 141

+(0 — k1 Az (1 —v) 0 + (0 — 1)k Agvo; + (0 — 1)k1Ag0wEg 111
—(0—1)Ag — (0 — 1) Ay, — (0 — 1) Ago?

+(0 — D+ (0 — Dy + (0 — 1)osec i

+K0.m + E1mAom + K1mA1mPete + K1m A1 mVp0i€n i1 + K1mAam (1 —v) o?

Eylexp(flogd —

+/€1,mA2,mUO-? + ﬁl,mAZ,mo-wgcr,tJrl + Hl,mAE;,m)\smxt + Kl,mAS,mpsst
+R1m A m O 1€s 141 — Aom — AlmTt — AQ,mO? — Az 5
e + (1L + Asg)we + (ps — 1)8¢ + 0ecprr + V0165 141))]

= 1

Using the assumed conditional log-normality of the stochastic processes, the left-
hand-side of the above expression simplifies to
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exp(flog o + (—% + 9) p,+ (0 — Vg + (0 — 1) (k1 — 1) Ag + (0 — 1)k1 45 (1 — v) 0
+K0m + (Kim — 1) Agm + FrmAom (1 —v) 0?
+ {(—% +0— 1) + (0 —1)(kip, — 1) A1 + (Kimpy — 1) Ar + (1 4+ As) | 21
+ [F1mAsmAsz] Tt + [(Kimps — 1) Asm + ps — 1] 54
+[(0 = 1) (k1o — 1) Ay + (K1 — 1) Ag ] 07
+QM<—%+@YJ}HmmAmﬁ%f¢%?
10 = 1)k Ay + KA V202 4 [(0 — 1)k1 Ay + Ky Agm]” 02})
— 1 (42)

Since the Euler equation (42) must hold for all values of the state variables, we have

(/{mes - 1) A3,m +ps — 1=0

Ps — 1
Ag = ——— 43
R (43)

—— 4+ 60— 1> +(0—1)(k1p, — 1) A1+ (Kimpy — 1) Arm + K1mAsmAse + 1+ A =0

1— i + )\sz(l + ’fl,mA?),m)

1-— Hl,mpx

Aim = (44)

2
((9 — 1) (Hl’U — 1) A2 + ("fl,mv — 1) A27m + 05{ <—% + 9)

+ [K1,mAsm + 1]2 ¢§ + (0 — 1)k AL + l€1,mz41,m]2 lﬁi
=0
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0—1)(kv—1)A2+C

1 — Ky

2
C = 0.5{ (—g + 0) + [F1mAsm + 17 02

+ [(9 — 1)%1/11 + /€17mAl,m]2 wi}

0logd + <—%+9) o+ (0 — Do+ (0 — 1) (k1 — 1) Ag + (0 — 1)k1 45 (1 — v) 0

—f-li()’m + (I{Lm — 1)A0,m + li17mA27m (1 — U) 0'2 + 05 [(Q — 1)K1A2 + /fl,mA2,m]2 O'%U

=0
0logd+ (=2 +8) e+ (6 — Do+ (6.~ 1) (1 — 1) Ay
AO,m - (46)
1-— R1,m
+(6’ — D)r1As (1 = v) 0% + Ko + KimAom (1 —v)0? +0.5[(0 — 1)k Az + /{LmAgvm]Q o2

1-— R1m

A.3.2 Latent State Variables in Terms of Observable Variables
We have

Zmit = AO,m + Al,mwt + AZ,mO'? + A3,m5t
rre = Aoy + A gr+ Ag gop

The above equations may be inverted to express the unobservable state variables,
z¢ and o7, in terms of the observables, 2,4, rf+, and ;.

Define,

D= A, Asp — Ai s Ao
We have,
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Ty

&%)
Qg
)

a3

ot
Bo
By
B
Bs

Qo + Q1Tfs + QoZiypr + i3Sy
AO,fAQ,m - AO,mAQ,f

D
_A2,m
D
Ans
D
_A3,mA2,f
D

Bo+ Birge + Bazmy + Bssi
AO,mAl,f - Al,mAO,f
D

Al,m

D
—Ay g

D
Al,fA3,m

D

Now, from equations (7), (8), and (10), the pricing kernel is given by the expression

mas = (Blogd+ (0=t (= 1A+ (= + 6= 1)) A

—f-(@ — 1)H1A1[Et+1 + ((9 — 1)%11420’?_,_1
—(9 — 1)A1.’13t — (9 — 1)1420'?

Substituting the expressions for z; and o? into the above expression for the pricing

kernel, we have

1 1 1
Myr1 = €1+ CaAcii1 +c3 (Tf,t+1 - K—Tf,t> +cy (Zm,t-l—l - K_zm,t) +c5 <5t+1 - R—St> )

where

1 1 1
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¢ = Blogd+ (0 —1)[ko + (k1 — 1) (Ao + Ararg + A25)]

o = —g—i—(@—l):—v

cs = (0—1)ri[Araq + AxB]
cas = (0—1)Rr1[Arag + Asfs)
cs = (0—1)r[Araz + Axfs)

A.3.3 Predictive Implications for the Equity Premium and Consumption
and Dividend Growth

Equation (3) implies
By (Acii1) = p + w4,
and equation (4) implies
By (Adir) = pe + (1 + Asz) 2 + (ps — 1) 81
Equations (9), (24), and (40) imply that the equilibrium market return is given by

mit+1 = Kom + R1im (AO,m + Al,mxtJrl + A2,m0'?+1 + A3,m3t+1) - (AO,m + Al,mxt + AQ,mU? + AS,mSt)
e + (14 Ase) e + (s — 1) 8¢ + 0s€epr1 + V01Es 41

Taking conditional expectation of the two sides of the above equation, and using
equations (1), (2), and (23), we have

Et (rm,tJrl) = /i(),m + (Kfl,m - 1) AO,m + He + /’il,mAZ,m (1 - U) 0—2
+ [(Kl,mpx - 1) Al,m + Hl,mA&m/\sz + 1 + )\saz] Ty
+ (K1 — 1) Agno? + [(K1mps — 1) Az + py — 1] 8¢

Therefore, the expected equity premium is given by

Ey(rmas1 —1pe) = Eo + EW?;

2
where By = (K1, — 1) A +(0—1)(k1v—1)A2+0.5 ((—% +6— 1) + (0 — 1)2@4@5).
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A.4 Estimation of Time-Series Parameters of the Co-integrated

Model
In this specification, there are 9 parameters to be estimated - p,., p,, ¥, 0, U, 0w, Az,
ps7 a‘nd I/JS'
We have
E(Acii1) = pe (47)
Also,
Var (Acy1) Var (x;) + Var (oci11) + 2C0ov(x4, 04 p41)
= Var(z;)+0*+0
¢i(72 2
= 1_ 2 +o (48)
and,
2 2
o
Cov(Acit1, Acr2) = p, fpi > (49)
2 9
o
Cov(Aciir, Acrys) = pf lwi > (50)
From the specification of the dividend growth process, we have
Var (Ady) = (14 M)’ Var (z) + (p, — 1) Var (s;) +
(1492 o* +2(1+ M) (p, — 1) Cov(zy, 5¢) (51)
w20.2 )\szp
where Var (z;) = 175, Cov(zy, ) = 725 Var (z;), and
N2 Var (a,) + ¢20? + DatasaVortzn)
Var(s;) = = —
Also,
Cov(Adyyr, Adrys) = (14 Ao)’ Cov(zisy, ) + (p, — 1) Cov(siiq, 51)
(14 M) (9 — 1) [Covlaen, s0) + Cov(r, 5141)]
+(ps — 1) Y Cov(st11,04E5141) (52)

49



where Cov(ziyr,x) = p,Var(x), Cov(sir,st) = AxCov(xy, i) + p,Var(sy),
Cov(xy, Se41) = Az Var (x¢)+psCov(xy, st), Cov(zis1, st) = p,Cov(xy, st), and Cov(Sii1, 01€s141) =
$.0?.
Finally,
Cov(Acii1, Adi1) = (14 Aew) Var (z,) + (p, — 1) Cov(zy, 5¢) + 02 (53)

Equations (47)-(53) give 7 moment restrictions.

50



References

1]

Fernando Alvarez and Urban Jermann, (2005), "Using Asset Prices to Measure the

Persistence of the Marginal Utility of Wealth," Econometrica, 73(6), 1977-2016.

Torben G. Anderson, Tim G., Bollerslev, Francis X. Diebold and Paul Labys,
(2003), "Modeling and Forecasting Realized Volatility," Econometrica, 71, 579-
625.

Ole E. Barndorff-Nielsen and Neil Shephard, (2002), "Econometric Analysis of Re-
alized Volatility and its Use in Estimating Stochastic Volatility Models," Journal
of the Royal Statistical Society, Series B 64, 253-280.

Ravi Bansal, Robert F. Dittmar and Dana Kiku, (2009), "Cointegration and Con-

sumption Risks in Equity Returns," Review of Financial Studies, 22, 1343-1375.

Ravi Bansal, R., Robert F. Dittmar and Christian Lundblad, (2005), "Consump-
tion, Dividends, and the Cross-Section of Equity Returns," Journal of Finance

60, 1639-1672.

Ravi Bansal, Ronald Gallant and George Tauchen, (2007), "Rational Pessimism,
Rational Exhuberance, and and Asset Pricing Models," Review of Economic Stud-

ies, T4, 1005-1033.

Ravi Bansal, Varoujan Khatchatrian and Amir Yaron, (2005), "Interpretable Asset

Markets?", Furopean Economic Review, 49, 531-560.

Ravi Bansal, Dana Kiku and Amir Yaron, (2010), "Risks For the Long Run:

Estimation and Inference," Working Paper.

o1



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Ravi Bansal and Ivan Shaliastovich, (2010) “Confidence Risk and Asset Prices”

American Economic Review, Papers and Proceedings,100, 537-541.

Ravi Bansal and Amir Yaron, (2004), "Risks for the Long Run: A Potential

Resolution of Asset Pricing Puzzles," Journal of Finance, 1481-1509.

Robert J. Barro and José Ursia, (2009), "Stock-Market Crashes and Depressions,"

Working Paper 14760, National Bureau of Economic Research.

Jason Beeler and John Y. Campbell, (2011), "The Long-Run Risks Model and
Aggregate Asset Prices: An Empirical Assessment" Working paper, Harvard Uni-

versity.

Geert Bekaert, Eric Engstrom and Yuhang Xing, (2009), "Risk, Uncertainty, and

Asset Prices," Journal of Financial Economics, 91, 59-82.

John Y. Campbell and Robert J. Shiller, (1988), "The Dividend-Price Ratio and
Expectations of Future Dividends and Discount Factors," Review of Financial

Studies, 1, 195-227.

Xiaohong Chen, Jack Favilukis and Sydney C. Ludvigson, (2011), "An Estimation

of Economic Models with Recursive Preferences," Working Paper.

Riccardo Colacito and Mariano M. Croce, (2011), "Risks for the Long-Run and
the Real Exchange Rate," Journal of Political Economy, 119(1), 153-181.

Mariano M. Croce, Martin Lettau and Sydney C. Ludvigson, (2010), "Investor

Information, Long-Run Risk, and the Duration of Risky Cash Flows," Working

paper.

52



[18]

[19]

[20]

22]

23]

[24]

[25]

[26]

Qiang Dai and Kenneth J. Singleton, (2000), "Specification Analysis of Affine
Term Structure Models," Journal of Finance, 55, 1943-1978.

Itamar Drechsler and Amir Yaron, (2011), "What’s Vol Got to Do With It,"
Review of Financial Studies, 24(1), 1-45.

Gregory R. Duffee, (2002), "Term Premia and Interest Rate Forecasts in Affine

Models," Journal of Finance, 57, 405-443.

Larry Epstein and Stanley E. Zin, (1989), "Substitution, Risk Aversion, and the
Temporal Behavior of Consumption and Asset Returns: A Theoretical Frame-

work," Econometrica, 57, 937-969.

Eugene F. Fama and Kenneth R. French, (1993), "Common Risk Factors in the

Returns on Stocks and Bonds," Journal of Financial Economics, 33, 3-56.

Wayne E. Ferson, Suresh Nallareddy and Bigin Xie, (2011), “The ‘Out-of-Sample’
Performance of Long-Run Risk Models,” Working paper, University of Southern

California.

Anisha Ghosh and George M. Constantinides, (2011), “The Predictability of Re-
turns with Regime Shifts in Consumption and Dividend Growth,” Working paper,

Carnegie-Mellon University and University of Chicago.

Lars P. Hansen, John Heaton and Nan Li, (2008), "Consumption Strikes Back,"

Journal of Political Economy, 116(2), 260-302.

Lars P. Hansen and José Scheinkman, (2009), "Long-Term Risk : An Operator
Approach," Econometrica, 77(1), 177-234.

53



[27]

33]

[34]

Ravi Jagannathan and Srikant Marakani, (2010), “Long Run Risks, the Factor
Structure of Price Dividend Ratios and the Cross Section of Returns,” Working

paper, Northwestern University.

David M. Kreps and Evan L. Porteus, (1978), "Temporal Resolution of Uncer-

tainty and Dynamic Choice Theory," Econometrica, 46(1), 185-200.

Martin Lettau and Sydney C. Ludvigson, (2001), "Resurrecting the C(CAPM): A
Cross-Sectional Test When Risk Premia are Time-Varying," Journal of Political

Economy, 109: 1238-87.

Martin Lettau and Sydney C. Ludvigson, (2009), "Euler Equation Errors," Review

of Economic Dynamics, 12, 255-283.

Hanno Lustig, Stijn Van Nieuwerburgh and Adrien Verdelhan, (2008). The

Wealth-Consumption Ratio," Working paper.

Christopher J. Malloy, Tobias J. Moskowitz and Annette Vissing-Jorgensen,
(2009), "Long-Run Stockholder Consumption Risk and Asset Returns," Journal
of Finance, 2427-2479.

Lior Menzly, Tano Santos and Pietro Veronesi, (2004), "Understanding Pre-

dictability," Journal of Political Economy, 112(1), 1-47.

Whitney K. Newey and Kenneth D. West, (1987), "A Simple, Positive Semi-
definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix,"

Econometrica, 55, 702-708.

o4



[35] Jonathan A. Parker and Christian Julliard, (2005), "Consumption Risk and the
Cross Section of Expected Returns," Journal of Political Economy, 113(1), 185-

222.

[36] Lubos Pastor and Robert F. Stambaugh, (2001), "The Equity Premium and Struc-
tural Breaks," Journal of Finance, 56(4), 1207-1239.

[37] Monika Piazzesi and Martin Schneider, (2006), "Equilibrium Yield Curves," in
Daron Acemoglu, Kenneth Rogoff, and Michael Woodford, NBER Macroeco-
nomics, Cambridge MA: MIT press, 389-442.

[38] Philippe Weil, (1989), "The Equity Premium Puzzle and the Risk-Free Rate Puz-

zle," Journal of Monetary Economics, 24(3), 401-421.

%)



Figure 1: Realized and Predicted Equity Premium, 1931-2009

~
P
—_—
-
[
A|V||||. -
—
<
I“\V
I
By T
Lo —_——
O N -
B8 =
= @ — T
o ——
-
| B et .
I ~=_
I ~ =
J—
-— e
I
—————
—
—_—
o=
[ R

—_——

winiwalid Ayinbg

2000

1980

1960

1940

Time

56



Consumption Growth

0.05

0.00

-0.05

Figure 2: Realized and Predicted Consumption Growth, 1931-2009
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Figure 3: Realized and Predicted Dividend Growth, 1931-2009

]
I
Il
I
I .
I —— Predicted
I ﬁ ——— Realized i
|1
B I I\
A i
I | \ /\ A
AR A A A J\ AL
A A% {// \ s PN ) \,l‘ ! V\
I/ 7N 2 AR ~
\" IJ AN vl \\f’\ 1 \\/ l/ |
| e 1/ v \/ / y |
[ (T v VA ' |
Foorlh \
b |
|
!I\ | | l;
1 | 1l &
1! 1
‘i Il
\ 1
f I
{ |
!
T | T
1940 1960 1980 2000
Time

58




"sojel IMO0I8 uordwnsuod pur puopIAIlp S0[ oY) pur ‘OljRI PUOPIAIP-99LId S0 opIm-joxIen oY) ‘SuInjal orojprod
WOT[RA , PUR  IMOID),  08Ie, ¢ [[eWG, OY) ‘©)el 9aI] JSLI ‘WINJAI jos{Iewt S0[ [enuue oY) Jo (sesoyjuared ur sSe] om) [ITm
sI0110 pIepue)s o1j0jduIdse sop) -£omo)N) UOTR[OLIOOIN® IOPIO-ISIy pue ‘Ajiye[oa ‘ueswr o[dures o) sj1odor o[qe) oY J,

(z¥20) (¥00°0) (€00°0)
6770 1¢0°0 0c¢00 IV
(9g1°0) (0z0°0) (€10°0)
€91°0 L1T°0 0100 v
(1€2°0) (180°0) (080°0)
L1180 ¢v'0 ge'e  (a/d)boy
(g80°0) (620°0) (820°0)

¥e10— 66¢°0 G600 0
(901°0) (810°0) (zz00) 5

2¢0°0— ¢1¢0 0600 4
(060°0) (g10°0) (610°0)

¢00°0— L8T1°0 9600 &
(L60°0) (1£0°0) (8€0°0)
9800 €ee0 €010 °u
(912°0) (500°0) (00°0)
zL9°0 0€0°0  900°0 Tu
(280°0) (210°0) (610°0)

890°0— 861°0 ¢90°0 e’

(1)oV aa(J "PIS  UDIT\
600Z-TE€6T ‘sorsipe)s Arewrwng :1 9[qer,

99



‘sosojuared ur onpes-d orjordurAse pojeIdOsSe oY) [IM FUOR SUOIIOLI)SAI SUIAJIJUSPLIOAO 9Y) I0J JeIS-[*
oy} sy10do1 91 ‘A[[eur "sojel YMOIS PUOPIAIP pue UOrdWNSUod 9y} JO SIUSWOW [RUOIHPUOIUN PUR ‘UINIOI 1O IRW PUR ‘Oljel
puopIATp-00LId ‘9yRl 901) YSLI oY) JO AJI[IJR[OA pUR UesW oY) JO (seseyjuared UI SIOLI® plepue)s o1j01duwAse) son[eA [ROLIO)SIY
o} pue (suorye[nuuis ()00 YSNOIY) paurejqo sjoxdeIq oIenbs Ul [RAIIUL 9OUIPYU0D 0/ G6) pordur-[opout oyy syrodor osfe 4] |
UO01)09G Ul pouyep sivjourered [opout o) Jo (sesoyjuared Ul SI01I0 prepue)s orjoydurdse) sopewniso NI s11odal o[qey oY J,

(¥20°0)
G¥'6 Is-r

[6T00°°T000°0] (L000°0)
9000°0 €100°0 [("pV)] g0

[o—0TXF9°,—0T%x9°g] (,—0T%x6F)

00T X¥T 401 X0T [("Hov)] 0

[c8L89¢] (90€°0) .
0290 L£9°0  (PV V)10V
[9818607]  (150°0) 795 %20°] (9€1°0)
¢ITo  svo  (2)o 19¢°0 €91°0 (rv)10V
lezezrel  (080°0) [0€11207] (020°0)
0ze see (Mg GL0°0 LTIT°0 (*Hpv)o
[9106007]  (S00°0) [ce0‘910" ] (€10°0)
0100 0£00  (Yu)o 10°0 010°0 ("Upv)a
[6v0‘0%071  (S00°0) (627750 —] (zvz0)
¢v0'0 9000  (Yu)a Sizall 6770 V)10V
(12196071  (210°0) [0€0°2107] (¥00°0)
L0T0 8610  (“4)o 81070 120°0 (THoy)o
(16022071  (610°0) (820" 7107] (£00°0)
8600 2900  (“u)i 12070 020°0 ("ow)a
19POJN  DID(]  SPUIWO J\T 19pO DID(T SqUWO J\
(p—01x2°Q) (ve9'1)  (€000) (¥1L0) (192°0) (ST'¥) (62°1) (1100)  (200°0) (¥6°T) (z8%) (L50°0) (wag p3S)
—0T X 9% F0¢0 ¢I100 0060 G870 90°¢ ¥1°¢ STO'0 1200 TI¥'T1 7¢°6 896°0 popows yny 1SH
(100°0) (L99'27)  (6¥70°0)  (8L%) (661°0) (8°07T) (¥9°0) (zro0'0)  (€00°0) (wtag p1s)
¢—0T X 09 8020 9000 0¢'9 LET0 8°GT 90°¢ 010'0 0Co'0 — — - soruas—owiy 15
e o 0 T “d % ) Prdf 711 Mt L 0 A2JPUDUD

600%-TE6T ‘WRISAS J0ssY-g o3 U0 [9POJN HHT A-d 2Y} jO uonpewysy :g o[qelL

60



"$99e1 IMOIS PUSPIAIP puR UOIIdWINSUOD 97} JO SJUSWOW [RUOIITPUOIUN
pu® ‘WInjel jexIew puR ‘Oljel PUSPIATP-00oLId ‘)Rl 901] YSLI oY) JO A[IIR[OA PUR URAW oY)} JO (sesayjuored Ul SIOLID PIRPUR)S
orjojdurdse) senfea [@dLI03SIY 07 pue (suorjenurs ()0 YSnoIy) paureqo sjoxoeI( dIRNDS Ul [BAIIUL 90USPYUO0D 0/ GE) porjdu
-[opowt a1} syrodor oste 9] (FO0g) UOIRX pUR [esueq woIj sonjea Iojourered pojeiqres A[yjuowt oY) sirodor o[qe} oy J,

[LT007°€000°0] (2000°0)
L0000 €100°0 [(TFpW)] 4v A
[0—0TXT'6'9g—0TXET] (,—0T%6F)
o 0T X0F o 0T X0T [[(Fv)]vA

(g7 20 —] (90€°0)
¢z 0 L£9°0 (THpy ‘THoy)d
[gz p1] (180°0) ez —] (9g1°0)
610  SF0 (“z)0 9T°0 €91°0 (etpy ‘THpy)d
[eTees el (080°0) [8eT60T'] (0z0°0)
0e  see  (")a Ge1T’0 LTIT°0 (THpw)o
(81076007  (S00°0) (790220 —] (€10°0)
P100 0800  (Yu)o 10°0 010°0 ("Wpw)d
(g0 ‘6107 (S00°0) (870 —] (zvz0)
8Z0°0 9000  (Y4)F 620 6770 (etoy ‘THoy)d
[o0z‘8eT]  (210°0) [6£0°°920°] (v00°0)
010 8610  (“u)o €00 120°0 (THoy)o
(11192071  (610°0) [1€0"'¢00°] (€£00°0)
2900 2900  (“0)F 8T0°0 020°0 ("ow)a
19O VIO SIUIWO JA 19po DIV (T SIUDULO JAT
o—0T X 20 L86'0 8L000 7¥¥00 6,60 ¢y ¢ GI00°0 CSGT000 G'1 01 8660
e a 0 T “d 2B Prd 11 R L 0 A2JPUDUD

600Z-TE61 ‘Syuswo]] par[du] pue [9POIN X-d A[UIUOIN 93 jo uonjeiqIre) :¢ 9qeL

61



‘sosojuored ur anpea-d orjoyduAse pajerosse o) s SUO[R SUOIOLISOI SUIAJIJUOPLIDAO 9} I0] JR)S-[*
oy} sy10del 91 ‘A[[eur "sejel YIMOIS PUSPIAIP pue Uordwnsuod o9y} JO SUSWOW [RUOIHIPUOIUN PUR ‘UINJSI 19y IRW PUR ‘Oljel
puepIialp-eoLId ‘9jel 901) YSII oY) Jo AJI[IJR[OA pUR URAW oY) JO (sesayjjuared Ul SIOLI® pIepue)s 2130)dUASR) SaN[RA [ROLIO)SI
o} pue (suorjernuiis ())0(T YSNOIY} POuIR}qo S303ORI] IRNDS UL [RAIIIUL 90UIPYU0D 0/ GE) porjduti-ppowt o3 sy1odos osfe 3] T
UOI}09§ UT pouyep siojewered [popour o) Jo (sesoyjuared Ul s10lmo prepue)s orjojdudse) sojewryso NN s11odor o[qe) oy T,

(010°0)
0€'TT is-r
(-] (g€0°0)
601°0 SPT'0  ("¥)d
(-] (€z00) 5 (000" c—0T*gg] (L000°0)
c00'0 ¥.00 (Pu)a €000°0 €100°0 [(TFpV)] 0
(-] (020°0) [o-0TXLE ,—0TX¥E]  (L,-0TX6'F)
8600 9,00 (')A ,-01 X 96 00T X 0T  [f(TToy)] g0
(-] (670°0) (1297091 (90¢°0) .
0c10 T.T0 (Cy)a 6L7°0 890  (pVOV)IIOV
lozz‘zir]  (150°0) [L67 ‘670 —] (9g1°0)
2GS0 GF0 (“z)o 1820 €91°(0 (rv)10V
leseveel  (080°0) [eT1°°2907] (020°0)
e see (Mg L20°0 LTT°0 (THpv)o
[z109007]  (S00°0) [160°‘810"—] (€10°0)
6000 000  (fu)o L10°0 010°0 ("Mpv)A
[0 ‘ec0’]  (00°0) 679 21T (2¥2°0)
0£0°0 9000  (Yu)a €or°0 6710 V)10V
oL 10T  (L10°0) (20 ‘710 (¥00°0)
1210 8610  (“u)o L1070 120°0 (THoy)o
[zso‘ct0]  (610°0) [220"‘6007] (£00°0)
s¥00 2900  (“4)F 810°0 020°0 ("ov)a
[PPOJAT  DID(]  SIULWO JA] 12PO A DID(] SJUUIO J\T
(¥000°0) (68L2) (g000) (F¥'1) (zg0) (0L7%) (60°T) (t1000)  (g000)  (0%°S) (63°2) (z92°0) (g "p2S)
¢000°0 6.0 TI00 €80 GL0 GL'S 16°¢ LT10°0 8I00 T8'T 8L 8L6°0 popows gy FSH
(100°0) (L99'2)  (670°0) (8°2LF) (661°0) (8°07T) (¥9°0) (zro0'0)  (€00°0) (g P3S)
¢—0T X 09 8020 9000 08 LEFO 8°GT 90°¢ 010'0 0Co'0 — — — soruos—owy $SH
o) Q 0 ‘i Yd % Py 11 Mt 9 0 42JOULDAD

6003-TE6T ‘WRISAS J0ssy-9 Y3 U0 [9POJN YHT A-d 2Y} jO uoirewysy J o[qelL,

62



‘sosojuared ur onpea-d o190)duAse pojRIdOsSe oY) M SUO[R SUOLOLI}SII SUIAJIIUSPLIOAO O} 10] JeIS- oY} sjrodor 1 ‘A[[eurq

"SojRI IMOIS PUSPIAIP pue UordWNsSuod ) JO SHUOWOW [BUOIIIPUOIUN PUR ‘UINJSI JoIRW pPUR ‘Orjel puapIAlp-oouid ‘ojer

99I] YSLI 91[} JO AJI[IJR[OA PUR URSW A) JO (sosarjjuared Ul SI0LI® pIepue)s o1j0jduiAse) senfea [RILIO)SIY 91} PUR (SUOIJR[NUIIS

00001 YSnoIy} paurejqo sjoxpeIq oIenbs Ul [BAIIUL 90UIPYUO0D 0/ GG) porjduti-opowt o7y $310do1 OS[e §] “SO[RLIBA 9)R)S JUd}e]
9T} JO UOIORIJXO O} UI POSTL dIR INJDI JONIRUL O} JO 9OURLIRA PUR ‘DRl 901 YSLI ‘OIjel PUOPIAIP-00LId opIM-1oxIRWL O], T

UO01)09G Ul pouyep sivjourered [opout o) Jo (sesoyjuared Ul SI0LI0 prepue)s orjoydurdse) sopewniso NN s110dal o[qey oY T,

(5000°0)
¢000°0
(100°0)
¢—0T X 09

SLyo)

(w21)  (9000)

Gev'0 0100

(L992)  (670°0)

802°0 9000
%) o)

(8¢'1)
6G'1T
(8L%)
0¢'S
‘i

(-]
S0T°0
(-]
9900
(-]
6400
(-]
6110
[112°0'20T°0]
V10
[8z'e'c1 €l
61°¢
[920°0°2T0°0]
L10°0
[170°0'T20°0]
000
[621°0°001°0]
LS1°0
[680°0°€T0°0]
160°0
1°PO N
(62°0)
TTL°0
(66T°0)
LEV0
Td

(g0°0)
S¥T1°0
(€20°0)
7,0°0
(0z0°0)
9,00
(6%0°0)
TLT0
(150°0)
aro
(080°0)
8¢°¢
(00°0)
0€00
(00°0)
9000
(L10°0)
86170
(610°0)
¢90°0
DID(]
(L1°9)
8G9
(8°07T)
8CT
o

¢

(z10°0)
TT0°0
(z10°0)
0100
Py

(£00°0)
ST10°0
(£00°0)
0c00
2

(v'92)
9T'1

P

[ST00°0'c—0T x€"6)
90000
[o—0TXT°L,—0T%6°€]
9—0T X ¥'¢C
[e72°0'99Z°0]
0LG°0
[9zg°0ce0°0—]
66¢°0
[e€1°0620°0]
6300
[150°0'820°0—]
TT00
[L12°0'012°0]
8740
[€€0°0°L10°0]
1¢0°0
[0£0°0°900°0]
S8T0°0
1PPO N
(6'€2)
699

L

(610°0)
766

(L000°0)
¢100°0
(,—0T%X6'F)
o—0T X 0T
(90€°0)
2890
(9g1°0)
€910
(020°0)
L1T°0
(€10°0)
0100
(z¥z0)
6770
(¥00°0)
12¢0°0
(€00°0)
0200
DID (]
(0gL0)
€860

¢

18-

[(*T'pV)]
[.("v)]
(pv 2v)DV
(Pv)1OV
(tHpv)o
("Mpw)a
OV)1ov
(tHoy)o

AHATquVm
SIUIWO J\]
(4t "P1S)

1opous 23%.%%@.
(e p1S)
mm?mm\ms.ﬁ.wmm

LITUWD D J

N.D
Nb

600Z-TE6T ‘SO[qeAIdSqQ 90y, Suls)) WeIsAS 39sSy-9 oY) U0 [OPOIAl MH'T A- O} JO UOHRWISH G O[qERL

63



‘sosojuared ur enfes-d orjojdwdse pojeroosse oy} Yjim SUO[R SUOTIONISOI SUIAJIJUOPLIOAO O} JOJ Je)s-[* oY) sp10dol 91 ‘Afreurq
'S99eI YIMOI3 PUSPIAID pUR UOIdWNSUO0d 97} JO SPUSTWOUW [RUOI}IPUOIUN PUR ‘UINJOI JoNIRUWL PUR ‘OI}el PUSPIAIP-90LId ‘9)el 991)
SLI 81} JO AJ[1)R[OA PUR URSW Y[} JO (Sosayjuared Ul SI0119 prepur)s o1101dWASR) san[eA [RDLIO)SIY 81} pue (suoryenuiis )00
SNOoIy) paurejqo sjoxorIq oIenbs Ul [BAIJUL 90USPHUOD 0/ GEH) porduri-opout o) s310dor Os[e 4] "SO[(RLIBA 9)R)S JUOYR] oYY JO
UOI1DRI)XD 9} Ul POsN a1 WINJl Joy IR oY) JO 9OURLIRA [RUOI}IPUOD PUR ‘D)Ll 991J YSLI ‘OIpel PuapIlAIp-9oLid oprm-joxrew oy J, ‘T
UOI109G UI pauyep sivjewrered [ppour o) Jo (seseyjuared Ul s1011e prepue)s orjojduidse) sojewryse AL s11odar o[qe) oy J,

(10°0>)
GeT'0 is-r
(-] (g0°0)
P10 SP10 (YA
(-] (€20°0) 5 [2%00°0'2000°0] (L000°0)
6600 7200 (°4)a 9100°0 €100°0 [("7pV)] ¢
-] (020°0) [¢-0TXLL9-0TxgT]  (,-0TX6'F)
£60°0 9,00 (M)A 0T X TC 001 x0T  [((FTPV)],
(-] (6%0°0) [z6L°0‘'0£€°0] (90€°0) .
0510  T.10 (y)d G€9°0 L€9°0 (v ov) 0OV
[6£0°21°0] (180°0) [965°0°200°0] (9€1°0)
G20 ar0  (“=)o PLE0 €91°0 (pv)10V
[L0°€'7LT] (080°0) [921°0°160°0] (020°0)
L6C ge'e  (Mo)a 601°0 LIT°0 (tHpw)o
[8€0°0'8T0°0]  (500°0) [0,0°0°020°0—] (€10°0)
800 0800  (Yu)o 010°0 010°0 ("Upv)A
[910°0°610'0—]  (200°0) (06201620 (zvz0)
9000 9000  (fu)a L¥9°0 6710 V)10V
[eLz°0'671°0]  (L10°0) [290°0°0£0°0] (¥00°0)
V610 8610  (“4)o 6€0°0 120°0 (THoy)o
[81T°0‘800°0]  (610°0) [¢70'0'¢10°0—] (£00°0)
1900 2900  (“4)m G100 0200 ("ow)a
19po N DIV SIUIWO J\T 19p0 ;7 DID(T SqUWO I\
(z€0'0) (Log) (1€0°0) (9z'T) (0gg'0) (09°11) (ze'T) (z100)  (€000)  (6°L%) (z'12) ) (g "p2S)
G000°0 LEG°0 9100 ¢cr'1 GLL°0 00°9 qI'¢ 07100 <100 ¥8'1 9¢'v 0660 popows s 1SH
(100°0) (L99°C) (6700) (8°2L%) (661°0) (s'0%1) (¥g0) (zro'0)  (€00°0) (et "P2S)
0T X 09 80c0 9000 0¢¢ LET0 8°GT 90°¢ 0100 0Co0 — — - soruas—owiy 15
e a 0 T “d % ) Prdf 711 Mt L 0 A2JPUDUD

600Z-TE6T XI13RIN SuySIop A}jusp] oy Suis() WeISAS 19SSy -9 oY) U0 [9POJAl A - oY} JO UOIyewISH :9 O[qEL,

64



‘sosojuared ur enpea-d orjoydudse pajerosse oy YIm SUO[R SUOIIOLISOI SUIAJIJUOPLIDAO 9} I0] JR)S-[
o) sprodar 91 ‘A[reur ‘sojel YIMOIS PUSPIAIP pur UONdWNSUOD Y} JO SIUSWOW [RUOI}IPUOIUN PUR ‘UINIDI joXIell pUe ‘Orjel
puepIAlp-eoLId ‘9jel 991) YSII A JO AI[IJR[OA PUR URAW oY) JO (sesay[juared Ul SIOL® pIepur)s 2130)dWASR) SaN[RA [ROLIO)SI
1) pue (suonjenuis ()] YSNOIY} PaUIreIqo sjoxoRI( oIeNDS UI [RAIIIUI SOUIPYUOD 04,G6) pordur-fopour oy spr0dor os[e 91 °|
UOI109G UI pauyep sivjewrered [popour o) Jo (seseyjuared Ul s1o1me prepue)s orjojdudse) sojewryso AL s11odar o[qe) oy J,

(900°0)
8C'¢CI is-r
(-] (¥20°0)
zeo0  9¢r 0 (“w)A
(-] (gz0°0) 5 [€000°0°g—0T%9T] (g—0Tx¥'9) N
100 7200  (Py)a 1000°0 1000°0 [(TFpv)] 0
(-] (220°0) [L-0Txg€'g-01x8€l  (3-01XT¥)
9000 9,00 ()a L 0T X9T  ,0TxTg [[(THhvy)] 0
(-] (ve0°0) [265°0°680°0—] (0sT°0) .
0€00 1210 (fw)a Treo L0e0  (pvoOv)IOV
[L0z°062.00]  (550°0) [e€v0'9120—] (060°0)
zS10  62F0  (“2)o GLT0 Al (rv)10V
[eLeo¢] (680°0) [060°0°670°0] (600°0)
L6°¢ wLve (M)A 1.0°0 0L0°0 (THpy)o
[900°000°0]  (200°0) [0€0°0910°0—] (010°0)
7000 L2000 (Y4)o L10°0 910°0 ("Mpv)a
[L£0°0'620°0]  (£00°0) [729°0'8€0°0—] (se1°0)
¢c0'0 0100  (Yu)a 697°0 PSy 0 V)10V
[ocT'0'7L00]  (020°0) [210°0°900°0] (100°0)
¢or0  9.10 ("o 600°0 €100 (THoy)o
[200‘T10'0]  (0T0°0) [520°0°€10°0] (z00°0)
700 €900  (Mo)g 610°0 6100 ("ov)d
PPOJN  DID(  SPUWO JAT 12PO A DID(T SIUWO J\T
(2000°0) (59'8) (e000)  (¥6L0) (8ve0) (ev'g) (6%'1) (800'0)  (zoo0) (S¥T) (Tv1) (g9¢°0) (g "p2S)
0T X 9°¢ 160 9000 9190 8¢R]°0 T°0T 14 L10°0 6100 091 ¢'01 81670 popows s 1SH
(€00°0) (6'79¢1)  (9000)  (290°T) (89¢°0) (6°0L) (1°29) (ot0'0)  (200°0) (wtag p1s)
o—0T X L'8 L¢c'0 C000 €¥c0 GG6°0 L'9¢ L'ST 9100 6100 — — — soruas—owiy 15
e a 0 T “d % ) Prdf 711 Mt L 0 A2JPUDUD

6003-LV61 ‘WRISAS J0ssy-9 U3 U0 [9POJN HHT A-d 2Y} jO uoipewysy :. o[qelL

65



‘A@ATI00dSaI ‘600C — LT6T PUR 6007 — TSET I9A0 S9)el [IMOIS PUSPIAID
pue uorpdunsuoo pue ‘wnrwoad £3mbo oY} 10§ SUOISSEIFL Jurysedarof pardwi-ppouwt woij synsol yrodar g pue 7/ s[pueg

(g'ge) (ze1°0) (¢10°0)
€c00 978— €ST'0  SI00 Iy
(zz1°0) (¥10°0)
910°0— €100 SI10°0 *Hpy
(€0°9) (€20°0) (z00°0)
112°0 86— FS00 61070 oy
(£20°0) (£00°0)
e10°0— 0T00  ST0°0 1oy
(0°28) (9z€°0) (2£0°0) . .
2,00 eICl SPR0— 010 Ffu— Ty
(1'18) (L20°0) . .
910°0— 781 0600 Hu— THuy
-y 20 tx “1SU0D
600G-LT6T “40fi-T g [oung
(L18) (0L1°0) (810°0)
2010 v'el—  L9%°0  $000— IHipy
(zL1°0) (810°0)
€c00 6620  S10°0— Iy
(zg9) (0g0°0) (£00°0)
6€1°0 I'6T— %900 0200 oy
(1€0°0) (£00°0)
c10°0 9%0'0 9100 oy
(0°99) (10€°0) (20°0) . .
€00 G'Q)L  8GG0— TLOO  Fhu— THUy
(0'99) (220°0) . .
2000 z'09 0700  Fu— THuy
A-lpy 20 tx “1SU09

600G-T86T “4vafi-T 1y [ouvg
SUOISSoI39Y Suljsedado parjdw-[opPoA :8 9Iqel

66



"A[eATI00dSaI ‘SUOZLIOY IRA-G pUR IRA-Z 10 GO0 — [CET 19A0 S9)RI [[JMOIS PUSPIAID
pue uorpdunsuoo pue ‘wnrwoad £3mbo oY} 10§ SUOISSEIFL Jurysedarof pardwi-ppouwt woij synsol yrodar g pue 7/ s[pueg

(¥0°29) (z62°0) (0g0°0)
¢g0°0 92T ¥LV0  9%2°0 IHpy
(962°0) (620°0)
9€0°0 9,60  6%0°0 py
(00°€T) (290°0) (200°0)
900°0— 86°ST  L20°0— 2010 oy
(990°0) (900°0)
€10°0— ¥1000—  0IT°0 1oy
(26°68) (97°0) (Lv0°0) . .
v1€°0 001 29C— 6870 Hu—THHy
(6'901) (8%0°0) . .
900°0 T LTl 180 Fa— Ty
APy 20 tx “1SU0D
6006-TE6T “40Mi-¢ T [uUDJ
(gev9) (292°0) (620°0)
0£0°0 8G'TI— LSG°0 TI0°0— IHipy
(292°0) (220°0)
00 670  €10°0— Iy
(18°01) (£50°0) (900°0)
7000 8GZI— 1900  6£0°0 oy
(£50°0) (¢00°0)
000°0— 2e0'0  L€0°0 oy
(16'92) (LL°0) (170°0) . .
0€1°0 eLel 960 T—  €LT'0  Hhu— Ty
(0g'18) (920°0) . .
9000 €9'R6 €600 Hu— THuy
A-lpy 20 tx “1SU09

600G-1661 “4vafi-g 1y jpung
SUOISSoI39Y Sur)sedato parjdw-[opPoIA :6 9Iqel

67



‘sosojuored ur anpea-d orjoyduAse pajerosse o) YIm SUO[R SUOI)OLISOI SUIAJIJUOPLIDAO O} I0] JR)S-[*
oy} sy1odel 91 ‘A[[eur "sejel YIMOIS PUSPIAIP pue Uordwnsuod o9y} JO SUSWOW [RUOIHIPUOIUN PUR ‘UINAI J19YIRW PUR ‘Oljel
puepIAlp-e0LId ‘9jel 901) YSII oY) Jo AI[IJR[OA pUR URAW oY) JO (sesayjjuared Ul SIOLI® pIepue)s 2190)dWASR) SaN[RA [ROLIO)SI
o} pue (suoryernuiis ())0(T YSNOIY} PIUIR}(O SIODRI] IRNDS UL [RAISUL 90UIPYU0D 0/ GE) parjduri-popour oy s310da1 os[e 3] G
UOI109G UT pouyep siojewrered [popour o) Jo (seseyjuared Ul sI01mo prepue)s orjojduise) sojewryso NN s11odor o[qe) oy,

(000°0)
G'LT s~
(-] (€€0°0) N
P10 S¥10 (A
(-] (€20°0) 5
¢110  v.00 (“q)a
(-] (0z0°0)
010 9.00 ()a
(-] (670°0) . [Feo‘1T 0] (90€°0) .
10 1.10 (o)A 2se0 L2890 (pvov)OV
[17°0'¢10]  (190°0) w [10%700—]  (9€1°0)
LE°0 70 (=)o G620 €9T°0 (rv)10V
[69¢‘c0’€l (080°0) [90T'0‘?90'0]  (020°0)
L6°¢ ge'e (Mg 1800  LIT0 (THpw)o
[600°0°€00'0]  (S00°0) [8£0°0'9T0'0—]  (€10°0)
8000 000  (Yu)o 1100 010°0 (""pv)a
[9¢0'0‘610°0]  (500°0) 70T 0] (zvz0)
8200 9000 () 00€°0  6¥F0 OV)10V
[e1T'0°CL0'0]  (L10°0) [610'0‘TT0'0]  (¥00°0)
€600 8610  (“a)o L10°0 12070 (THoy)o
[7L0°0°210'0]  (610°0) w [220°0'2000°0]  (£00°0)
¢¥0'0 <900  (“4)A 1100 020°0 acivilcs
[PPOJA  DID(  SIULWO JAT 1PPO A DID(T spUWO A\
(ror) (sg2) (gc9) (€10°0) (veee) (00°0) (8e5°1) (e19°0) (g00°0) (g'T0T) (z°29) (268°0)
86LF 060 G0E6 o-0TXE6 €86°0 7100 68T1°0 960 TI00 ¢<CT1 09 86°0 VWIS 5]
" °d S e Q 0 T “d 11 0 L % A2JPUDUD

600%-TE6T ‘WLISAS 19SSV -9 O} UO [9POJA] PoyerSour-o)) oy jo uopewssy 0T O[qeL

68



(8v0°0) (61°28) (9g2°0) (910°0)
820°0— Gv0'0— ¥906— FLT0 2200 Hpy
(L¥0°0) (s12°0) (110°0)
¢c0'0— 9¢0°0— ¢90'0 8100 IHpy
(800°0) (982°9) (€v0°0) (€00°0)
8810 IT0°0 9€L.— LST°0 6200 oy
(g81°9) (€¥0°0) (€00°0)
vL1°0 2SL6—  ¥I9T'0 92070 oy
(2£0°0) (z000)
esT0 8ZT'0 €200 oy
(2z1°0) (6876) (v£9°0) (6g0'0) .
€v0'0— 1€0°0  T0SP— L2000 €900 ‘fu— THuy
(08°16) (g£9°0) (6£0°0) . .
L30°0— 08°06— GF0'0 900 Hfu— THUy
(z0gg) (9z0'0) n
L00°0— 9L '8¢— G000 FIu— THHy
-y ts 20 ' 110D
600G-LT6T “4vofi-1 g 1puvg
(950°0) (¢6'9¢) (e1£°0) (120°0)
€810 I€ET°0— T12eI— 0070 &S00 Hipy
(650°0) (¥92°0) (910°0)
9,070 €9T°0— 92¢'0— 2000 Hipy
(600°0) (¢0z°9) (z0°0) (¥00°0)
1,20 700°0— ¢9'1¢— 8100 0€0°0 oy
(180°9) (z20°0) (£00°0)
.20 cree— 0800 0£0°0 oy
(8%0°0) (€00°0)
9200 G80'0— L1070 oy
(2oT°0) (92°02) (¥6s0)  (ov0'0) F
610°0— 00T°0— ¢&'8— 8Z€0— LVO0 *Hu—1Huy
(91°69) (162°0) (0%0°0) . .
LT0°0— 9L 61— 0L30— 160°0 *fu— Ty
(L1°LL) (Lgo0) .
I10°0— 88°9F— 2900 u— Ty
A-lpy ts 20 (& “1S1U09

600G-T86T “4vafi-T 1y [ouvg

suolssa139y Surisesaaoq pardu-[opoJN pejeidajuio) :TT d[qe],

69



“A2AT100dSaI ‘G00C — ATV6T PUR 600 — TSET 19A0 S9Rl [[IMOIS PUSPIAIP pue uordunsuod
pue ‘wmrweid £3mbo oY) 10] SUOISSOIF0L FUIISRIVI0) POI[dWI-[OPOUI-POIRIFOIUIOD O} WIOIJ S)Nsol j10dol g pue |/ s[pueg

70



