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Abstract

We study a general class of bicriteria network design problems. A generic problem in this
class is as follows: Given an undirected graph and two minimization objectives (under different
cost functions), with a budget specified on the first, find a ¡subgraph from a given subgraph-class
that minimizes the second objective subject to the budget on the first. We consider three different
criteria - the total edge cost, the diameter and the maximum degree of the network. Here, we
present the first polynomial-time approximation algorithms for a large class of bicriteria network
design problems for the above mentioned criteria. The following general types of results are
presented.

First, we develop a framework for bicriteria problems and their approximations. Second,
when the two criteria are the same we present a “black box” parametric search technique. This
black box takes in as input an (approximation) algorithm for the unicriterion situation and gen-
erates an approximation algorithm for the bicriteria case with only a constant factor loss in the
performance guarantee. Third, when the two criteria are the diameter and the total edge costs we
use a cluster-based approach to devise a approximation algorithms — the solutions output violate
both the criteria by a logarithmic factor. Finally, for the class of treewidth-bounded graphs, we
provide pseudopolynomial-time algorithms for a number of bicriteria problems using dynamic
programming. We show how these pseudopolynomial-time algorithms can be converted to fully
polynomial-time approximation schemes using a scaling technique.
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1 Motivation

With the information superhighway fast becoming a reality, the problem of designing networks ca-

pable of accommodating multimedia (both audio and video) traffic in a multicast (simultaneous

transmission of data to multiple destinations) environment has come to assume paramount impor-

tance [Ch91, FW+85, KJ83, KP+92A, KP+93]. As discussed in Kompella, Pasquale and Polyzos

[KP+92A], one of the popular solutions to multicast routing involves tree construction. Two opti-

mization criteria – (1) the minimum worst-case transmission delay and (2) the minimum total cost

– are typically sought to be minimized in the construction of these trees. Network design problems

where even one cost measure must be minimized, are often NP-hard. (See Section A2 on Network

Design in [GJ79].) But, in real-life applications, it is often the case that the network to be built is

required to minimize multiple cost measures simultaneously, with different cost functions for each

measure. For example, as pointed out in [KP+92A], in the problem of finding good multicast trees,

each edge has associated with it two edge costs: the construction cost and the delay cost. The con-

struction cost is typically a measure of the amount of buffer space or channel bandwidth used and the

delay cost is a combination of the propagation, transmission and queuing delays.

Such multi-criteria network design problems, with separate cost functions for each optimization

criterion, also occur naturally in Information Retrieval [BK90] and VLSI designs (see [ZP+94] and

the references therein). With the advent of deep micron VLSI designs, the feature size has shrunk to

sizes of 0.5 microns and less. As a result, the interconnect resistance, being proportional to the square

of the scaling factor, has increased significantly. An increase in interconnect resistance has led to an

increase in interconnect delays thus making them a dominant factor in the timing analysis of VLSI

circuits. Therefore VLSI circuit designers aim at finding minimum cost (spanning or Steiner) trees

given delay bound constraints on source-sink connections.

The above applications set the stage for the formal definition of multicriteria network design prob-

lems. We explain this concept by giving a formal definition of a bicriteria network design problem.

A generic bicriteria network design problem, (A, B, S), is defined by identifying two minimization

objectives, -A and B, - from a set of possible objectives, and specifying a membership requirement

in a class of subgraphs, - S. The problem specifies a budget value on the first objective, A, under one

cost function, and seeks to find a network having minimum possible value for the second objective,

B, under another cost function, such that this network is within the budget on the first objective. The

solution network must belong to the subgraph-class S. For example, the problem of finding low-cost

and low-transmission-delay multimedia networks [KP+92A, KP+93] can be modeled as the (Diam-

eter, Total cost, Spanning tree)-bicriteria problem: given an undirected graph G � �V�E� with two

weight functions ce and de for each edge e � E modeling construction and delay costs respectively,

and a bound D (on the total delay), find a minimum c-cost spanning tree such that the diameter of the

tree under the d-costs is at most D. It is easy to see that the notion of bicriteria optimization problems

can be easily extended to the more general multicriteria optimization problems. In this paper, we will

be mainly concerned with bicriteria network design problems.
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In the past, the problem of minimizing two cost measures was often dealt with by attempting to

minimize some combination of the two, thus converting it into a unicriterion problem. This approach

fails when the two criteria are very disparate. We have chosen, instead, to model bicriteria problems

as that of minimizing one criterion subject to a budget on the other. We argue that this approach is

both general as well as robust. It is more general because it subsumes the case where one wishes to

minimize some functional combination of the two criteria. It is more robust because the quality of

approximation is independent of which of the two criteria we impose the budget on. We elaborate on

this more in Sections 5.1 and 5.2.

The organization of the rest of the paper is as follows: Section 3 summarizes the results obtained

in this paper; Section 2 discusses related research work; Section 4 contains the hardness results;

Section 5.1 shows that the two alternative ways of formulating a given bicriteria problem are indeed

equivalent; Section 5.2 demonstrates the generality of the bicriteria approach; Section 6 details the

parametric search technique; Section 7 presents the approximation algorithm for diameter constrained

Steiner trees; Section 8 contains the results on treewidth-bounded graphs; Section 9 contains some

concluding remarks and open problems.

2 Previous Work

2.1 General Graphs

The area of unicriterion optimization problems for network design is vast and well-explored (See

[Ho95, CK95] and the references therein.). Ravi et al. [RM+93] studied the degree-bounded mini-

mum cost spanning tree problem and provided an approximation algorithm with performance guar-

antee (O�log n�� O�log n�).

The (Degree, Diameter, Spanning tree) problem was studied by Ravi [Ra94] in the context of

finding good broadcast networks. There he provides an approximation algorithm for the (Degree,

Diameter, Spanning tree) problem with performance guarantee (O�log� n�� O�log n�)6.

The (Diameter, Total cost, Spanning tree) entry in Table 1 corresponds to the diameter-constrained

minimum spanning tree problem introduced earlier. It is known that this problem is NP-hard even

in the special case where the two cost functions are identical [HL+89]. Awerbuch, Baratz and Peleg

[AB+90] gave an approximation algorithm with �O���� O���� performance guarantee for this prob-

lem - i.e. the problem of finding a spanning tree that has simultaneously small diameter (i.e., shallow)

and small total cost (i.e., light), both under the same cost function. Khuller, Raghavachari and Young

[KR+93] studied an extension called Light, approximate Shortest-path Trees (LAST) and gave an

approximation algorithm with �O���� O���� performance guarantee. Kadaba and Jaffe [KJ83], Kom-

pella et al. [KP+92A], and Zhu et al. [ZP+94] considered the (Diameter, Total cost, Steiner tree)

problem with two edge costs and presented heuristics without any guarantees. It is easy to con-

6The result in Ravi [Ra94] is actually somewhat stronger - given a budget, D, on the degree he finds a tree whose total
cost is at most O�log n� times the optimal and whose degree is at most O�D log n� log� n�.
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struct examples to show that the solutions produced by these heuristics in [ZP+94, KP+92A], can

be arbitrarily bad with respect to an optimal solution. A closely related problem is that of finding

a diameter-constrained shortest path between two pre-specified vertices s and t, or (Diameter, To-

tal cost, s-t path). This problem, termed the multi-objective shortest path problem (MOSP) in the

literature, is NP-complete and Warburton [Wa87] presented the first fully polynomial approxima-

tion scheme (FPAS) for it. Hassin [Ha92] provided a strongly polynomial FPAS for the problem

which improved the running time of Warburton [Wa87]. This result was further improved by Phillips

[Ph+93].

The (Total cost, Total cost, Spanning tree)-bicriteria problem has been recently studied by Ganley

et al. [GG+95]. They consider a more general problem with more than two weight functions. They

also gave approximation algorithms for the restricted case when each weight function obeys triangle

inequality. However, their algorithm does not have a bounded performance guarantee with respect to

each objective.

2.2 Treewidth-Bounded Graphs

Many NP-hard problems have exact solutions when attention is restricted to the class of treewidth-

bounded graphs and much work has been done in this area (see [AC+93, AL+91, BL+87] and the

references therein). Independently, Bern, Lawler and Wong [BL+87] introduced the notion of de-

composable graphs. Later, it was shown [AC+93] that the class of decomposable graphs and the

class of treewidth-bounded graphs are equivalent. Bicriteria network design problems restricted to

treewidth-bounded graphs have been previously studied in [AL+91, Bo88].

3 Our Contributions

In this paper, we study the complexity and approximability of a number of bicriteria network design

problems. The three objectives we consider are: (i) total cost, (ii) diameter and (iii) degree of the

network. These reflect the price of synthesizing the network, the maximum delay between two points

in the network and the reliability of the network, respectively. The Total cost objective is the sum of

the costs of all the edges in the subgraph. The Diameter objective is the maximum distance between

any pair of nodes in the subgraph. The Degree objective denotes the maximum over all nodes in the

subgraph, of the degree of the node. The class of subgraphs we consider in this paper are mainly

Steiner trees (and hence Spanning trees as a special case); although several of our results extend to

more general connected subgraphs such as generalized Steiner trees.

As mentioned in [GJ79], most of the problems considered in this paper, are NP-hard for arbi-

trary instances even when we wish to find optimum solutions with respect to a single criterion. Given

the hardness of finding optimal solutions, we concentrate on devising approximation algorithms with

worst case performance guarantees. Recall that an approximation algorithm for a minimization prob-

lem � provides a performance guarantee of � if for every instance I of �, the solution value
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returned by the approximation algorithm is within a factor � of the optimal value for I . Here, we ex-

tend this notion to apply to bicriteria optimization problems. An ��� ��-approximation algorithm for

an (A, B, S)-bicriteria problem is defined as a polynomial-time algorithm that produces a solution

in which the first objective (A) value, is at most � times the budget, and the second objective (B)

value, is at most � times the minimum for any solution that is within the budget on A. The solution

produced must belong to the subgraph-class S. Analogous definitions can be given when A and/or

B are maximization objectives.

3.1 General Graphs

Table 1 contains the performance guarantees of our approximation algorithms for finding spanning

trees, S, under different pairs of minimization objectives, A and B. For each problem cataloged in

the table, two different costs are specified on the edges of the undirected graph: the first objective is

computed using the first cost function and the second objective, using the second cost function. The

rows are indexed by the budgeted objective. For example the entry in row A, column B, denotes

the performance guarantee for the problem of minimizing objective B with a budget on the objective

A. All the results in Table 1 extend to finding Steiner trees with at most a constant factor worsening

in the performance ratios. For the diagonal entries in the table the extension to Steiner trees follows

from Theorem 6.3. ALGORITHM DCST of Section 7 in conjunction with ALGORITHM BICRITERIA-

EQUIVALENCE of Section 5.1 yields the (Diameter, Total cost, Steiner tree) and (Total cost, Diameter,

Steiner tree) entries. The other nondiagonal entries can also be extended to Steiner trees and these

extensions will appear in the journal versions of [RM+93, Ra94]. Our results for arbitrary graphs can

be divided into three general categories.

Cost Measures Degree Diameter Total Cost
Degree �O�log n�� O�log n��� �O�log� n�� O�log n��[Ra94] �O�log n�� O�log n��[RM+93]

Diameter �O�log n�� O�log� n��[Ra94] �� � �� � � �

�
�� �O�log n�� O�log n���

Total Cost �O�log n�� O�log n��[RM+93] �O�log n�� O�log n��� �� � �� � � �

�
��

Table 1. Performance Guarantees for finding spanning trees in an arbitrary graph on n nodes. Asterisks indicate
results obtained in this paper. � � � is a fixed accuracy parameter.

First, as mentioned before, there are two natural alternative ways of formulating general bicri-

teria problems: (i) where we impose the budget on the first objective and seek to minimize the

second and (ii) where we impose the budget on the second objective and seek to minimize the first.

We show that an ��� ��-approximation algorithm for one of these formulations naturally leads to a

��� ��-approximation algorithm for the other. Thus our definition of a bicriteria approximation is

independent of the choice of the criterion that is budgeted in the formulation. This makes it a robust

definition and allows us to fill in the entries for the problems (B, A, S) by transforming the results

for the corresponding problems (A, B, S).

Second, the diagonal entries in the table follow as a corollary of a general result (Theorem 6.3)

which is proved using a parametric search algorithm. The entry for (Degree, Degree, Spanning tree)
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follows by combining Theorem 6.3 with the O�logn�-approximation algorithm for the degree prob-

lem in [RM+93]. In [RM+93] they actually provide an O�log n�-approximation algorithm for the

weighted degree problem. The weighted degree of a subgraph is defined as the maximum over all

nodes of the sum of the costs of the edges incident on the node in the subgraph. Hence we actually get

an �O�log n�� O�log n��-approximation algorithm for the (Weighted degree, Weighted degree, Span-

ning tree)-bicriteria problem. Similarly, the entry for (Diameter, Diameter, Spanning tree) follows

by combining Theorem 6.3 with the known exact algorithms for minimum diameter spanning trees

[CG82]; while the result for (Total cost, Total cost, Spanning tree) follows by combining Theorem

6.3 with an exact algorithm to compute a minimum spanning tree [CLR].

Finally, we present a cluster based approximation algorithm and a solution based decomposition

technique for devising approximation algorithms for problems when the two objectives are different.

Our techniques yield �O�log n�� O�log n��-approximation algorithms for the (Diameter, Total cost,

Steiner tree) and the (Degree, Total cost, Steiner tree) problems7.

3.2 Treewidth-Bounded Graphs

We also study the bicriteria problems mentioned above for the class of treewidth-bounded graphs.

Examples of treewidth-bounded graphs include trees, series-parallel graphs, k-outerplanar graphs,

chordal graphs with cliques of size at most k, bounded-bandwidth graphs etc. We use a dynamic

programming technique to show that for the class of treewidth-bounded graphs, there are either

polynomial-time or pseudopolynomial-time algorithms (when the problem is NP-complete) for sev-

eral of the bicriteria network design problems studied here. A polynomial time approximation

scheme (PTAS) for problem � is a family of algorithms A such that, given an instance I of �, for

all � � �, there is a polynomial time algorithm A � A that returns a solution which is within a factor

�� � �� of the optimal value for I . A polynomial time approximation scheme in which the running

time grows as a polynomial function of � is called a fully polynomial time approximation scheme.

Here we show how to convert these pseudopolynomial-time algorithms for problems restricted to

treewidth-bounded graphs into fully polynomial-time approximation schemes using a general scaling

technique. Stated in our notation, we obtain polynomial time approximation algorithms with perfor-

mance of ��� � � ��, for all � � �. The results for treewidth-bounded graphs are summarized in Table

2. As before, the rows are indexed by the budgeted objective. All algorithmic results in Table 2 also

extend to Steiner trees in a straightforward way.

Our results for treewidth-bounded graphs have an interesting application in the context of find-

ing optimum broadcast schemes. Kortsarz and Peleg [KP92] gave O�log n�-approximation algo-

rithms for the minimum broadcast time problem for series-parallel graphs. Combining our results for

the (Degree, Diameter, Spanning tree) for treewidth-bounded graphs with the techniques in [Ra94],

we obtain an O� log n
log log n�-approximation algorithm for the minimum broadcast time problem for

treewidth-bounded graphs (series-parallel graphs have a treewidth of �), improving and generalizing

7The result for (Degree, Total cost, Steiner tree) can also be obtained as a corollary of the results in [RM+93].
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the result in [KP92]. Note that the best known result for this problem for general graphs is by Ravi

[Ra94] who provides an approximation algorithm performance guarantee (O�log� n�� O�log n�).

Cost Measures Degree Diameter Total Cost
Degree

polynomial-time polynomial-time polynomial-time
Diameter (weakly NP-hard) (weakly NP-hard)

polynomial-time ��� � � �� ��� � � ��

Total Cost (weakly NP-hard) (weakly NP-hard)
polynomial-time ��� � � �� ��� � � ��

Table 2. Bicriteria spanning tree results for treewidth-bounded graphs.

4 Hardness results

The problem of finding a minimum degree spanning tree is strongly NP-hard [GJ79]. This im-

plies that all spanning tree bicriteria problems, where one of the criteria is degree, are also strongly

NP-hard. In contrast, it is well known that the minimum diameter spanning tree problem and the

minimum cost spanning tree problems have polynomial time algorithms (see [CLR] and the refer-

ences therein).

The (Diameter, Total Cost, Spanning tree)-bicriteria problem is strongly NP-hard even in the

case where both cost functions are identical [HL+89]. Here we give the details of the reduction to

show that (Diameter, Total Cost, Spanning tree) is weakly NP-hard even for series-parallel graphs

(i.e. graphs with treewidth at most �). Similar reductions can be given to show that (Diameter,

Diameter, Spanning tree) and (Total cost, Total cost, Spanning tree) are also weakly NP-hard for

series-parallel graphs.

We first recall the definition of the PARTITION problem [GJ79]. As an instance of the PAR-

TITION problem we are given a set T � ft�� t�� � � � � tng of positive integers and the question is

whether there exists a subset X � A such that
X

ti�X

ti �
X

tj�T�X

tj � �
X

tj�T

tj���.

Theorem 4.1 (Diameter, Total cost, Spanning tree) is NP-hard for series-parallel graphs.

Proof: Reduction from the PARTITION problem. Given an instance T � ft�� t�� � � � � tng of the

PARTITION problem, we construct a series parallel graph G with n � � vertices, v�� v�� � � � vn��

and �n edges. We attach a pair of parallel edges, e�i and e�i , between vi and vi��, � � i � n. We

now specify the two cost functions f and g on the edges of this graph; c�e�i � � ti� c�e
�
i � � �� d�e�i � �

�� d�e�i � � ti� � � i � n. Let
X

ti�T

ti � �H . Now it is easy to show that G has a spanning tree

of d-diameter at most H and total c-cost at most H if and only if there is a solution to the original

instance T of the PARTITION problem.
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We now show that the (Diameter, Total-cost, Steiner tree) problem is hard to approximate within

a logarithmic factor. An approximation algorithm provided in Section 7. There is however a gap

between the results of Theorems 4.3 and 7.7. Our non-approximability result is obtained by an

approximation preserving reduction from the MIN SET COVER. An instance �T�X� of the MIN

SET COVER problem consists of a universe T � ft�� t�� 	 	 	 � tkg and a collection of subsets X �

fX��X�� 	 	 	 �Xmg� Xi � T , each set Xi having an associated cost ci. The problem is to find a

minimum cost collection of the subsets whose union is T .

Fact 4.2 Recently [AS97, RS97] have independently shown the following non-approximability

result:

It is NP -hard to find an approximate solution to the MIN SET COVER problem, with a uni-

verse of size k, with performance guarantee better than 	�lnk�.

Corollary 4.3 There is an approximation preserving reduction from MIN SET COVER prob-

lem to the (Diameter, Total Cost, Steiner tree) problem. Thus:

Unless P � NP , given an instance of the (Diameter, Total Cost, Steiner tree) problem

with k sites, there is no polynomial-time approximation algorithm that outputs a Steiner

tree of diameter at most the bound D, and cost at most R times that of the minimum cost

diameter-D Steiner tree, for R 
 lnk.

Proof: We give an approximation preserving reduction from the MIN SET COVER problem to the

(Diameter, Total Cost, Steiner tree) problem. Given an instance �T�X� of the MIN SET COVER

problem where T � ft�� t�� 	 	 	 � tkg and X � fX��X�� 	 	 	 �Xmg� Xi � T , where the cost of

the set Xi is ci, we construct an instance G of the (Diameter, Total Cost, Steiner tree) problem as

follows. The graph G has a node ti for each element ti of T 8, a node xi for each set Xi, and an

extra “enforcer-node” n. For each set Xi, we attach an edge between nodes n and xi of c-cost ci, and

d-cost �. For each element ti and set Xj such that ti � Xj we attach an edge �ti� xj� of c-cost, 0, and

d-cost, �. In addition to these edges, we add a path P made of two edges of c-cost, 0, and d-cost, �, to

the enforcer node n (see Figure 1). The path P is added to ensure that all the nodes ti are connected

to n using a path of d-cost at most 2. All other edges in the graph are assigned infinite c and d-costs.

The nodes ti along with n and the two nodes of P are specified to be the terminals for the Steiner

tree problem instance. We claim that G has a c-cost Steiner tree of diameter at most 
 and cost C if

and only if the original instance �T�X� has a solution of cost C.

Note that any Steiner tree of diameter at most 
 must contain a path from ti to n, for all i, that

uses an edge �xj � n� for some Xj such that ti � Xj . Hence any Steiner tree of diameter at most 


provides a feasible solution of equivalent c-cost to the original Set cover instance. The proof now

follows from Theorem 4.2.

8There is a mild abuse of notation here but it should not lead to any confusion.
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Figure 1: Figure illustrating the reduction from the MIN SET COVER problem to (Diameter, Total
cost, Steiner tree) problem. The instance of MIN SET COVER is �T�X� where T � ft�� t�� 	 	 	 � t�g,
X � fx�� x�� x�� x�g. Here x� � ft�� t�� t�g� x� � ft�� t�� t�g� x� � ft�g and x� � ft�� t�g. The
cost on the edges shown in the figure denotes the c-cost of the edges. All these edges have d-cost
� �.

5 Bicriteria Formulations: Properties

In Section 1, we claimed that our formulation for bicriteria problems is robust and general. In this

section, we justify these claims.

5.1 Equivalence of Bicriteria Formulations: Robustness

In this section, we show that our formulation for bicriteria problems is robust and general.

Let G be a graph with two (integral)9 cost functions, c and d (typically edge costs or node costs).

Let A (B) be a minimization objective computed using cost function c (d). Let the budget bound on

the c-cost10 (d-cost) of a solution subgraph be denoted by C (D).

There are two natural ways to formulate a bicriteria problem: (i) (A,B, S) - find a subgraph in S

whose A-objective value (under the c-cost) is at most C and which has minimum B-objective value

(under the d-cost), (ii) (B, A, S) - find a subgraph in S whose B-objective value (under the d-cost)

is at most D and which has minimumA-objective value (under the c-cost).

Note that bicriteria problems are generally hard, when the two criteria are hostile with respect

to each other - the minimization of one criterion conflicts with the minimization of the other. A
9In case of rational cost functions, our algorithms can be extended with a small additive loss in the performance guar-

antee.
10We use the term “cost under c” or “c-cost” in this section to mean the value of the objective function computed using

c, and not to mean the total of all the c costs in the network.
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good example of hostile objectives are the degree and the total edge cost of a spanning tree in an

unweighted graph [RM+93]. Two minimization criteria are formally defined to be hostile whenever

the minimum value of one objective is monotonically nondecreasing as the budget (bound) on the

value of the other objective is decreased.

Let A�APPROX�G� C� be any ��� ��-approximation algorithm for (A, B, S) on graph G

with budget C under the c-cost. We now show that there is a transformation which produces a ��� ��-

approximation algorithm for (B,A, S). The transformation uses binary search on the range of values

of the c-cost with an application of the given approximation algorithm, A�APPROX, at each

step of this search. Let the minimum c-cost of a D-bounded subgraph in S be OPTc. Let Chi be an

upper bound on the c-cost of anyD-bounded subgraph in S. Note that Chi is at most some polynomial

in n times the maximum c-cost (of an edge or a node). Hence log�Chi� is at most a polynomial in

terms of the input specification. Let Heuc (Heud) denote the c-cost (d-cost) of the subgraph output

by ALGORITHM BICRITERIA-EQUIVALENCE given below.

ALGORITHM BICRITERIA-EQUIVALENCE:

� Input: G - graph, D - budget on criterion B under the d-cost, A�APPROX - an ��� ��-
approximation algorithm for (A, B, S).

�1. Let Chi be an upper bound on the c-cost of any D-bounded subgraph in S.

2. Do binary search and find a C� in ��� Chi� such that

(a) A�APPROX�G� C�� returns a subgraph with d-cost greater than �D, and

(b) A�APPROX�G� C� � �� returns a subgraph with d-cost at most �D.

3. If the binary search in Step 2 fails to find a valid C� then output “NO SOLUTION” else
output A�APPROX�G� C� � ��.

� Output: A subgraph from S such that its c-cost is at most � times that of the minimum
c-cost D-bounded subgraph and its d-cost is at most �D.

Claim 5.1 If G contains aD-bounded subgraph in S then ALGORITHM BICRITERIA-EQUIVALENCE

outputs a subgraph from S whose c-cost is at most � times that of the minimum c-cost D-

bounded subgraph and whose d-cost is at most �D.

Proof: Since A and B are hostile criteria it follows that the binary search in Step 2 is well defined.

Assume that S contains a D-bounded subgraph. Then, sinceA�APPROX�G� Chi� returns a sub-

graph with d-cost at most �D, it is clear that ALGORITHM BICRITERIA-EQUIVALENCE outputs a

subgraph in this case. As a consequence of Step 2a and the performance guarantee of the approxima-

tion algorithm A�APPROX, we get that C� � � � OPTc. By Step 2b we have that Heud � �D

and Heuc � ��C� � �� � �OPTc. Thus ALGORITHM BICRITERIA-EQUIVALENCE outputs a sub-

graph from S whose c-cost is at most � times that of the minimum c-cost D-bounded subgraph and

whose d-cost is at most �D.
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Note however that in general the resulting ��� ��-approximation algorithm is, not strongly poly-

nomial since it depends on the range of the c-costs. But it is a polynomial-time algorithm since its

running time is linearly dependent on log Chi the largest c-cost. The above discussion leads to the

following theorem.

Theorem 5.2 Any ��� ��-approximation algorithm for (A, B, S) can be transformed in poly-

nomial time into a ��� ��-approximation algorithm for (B, A, S).

5.2 Comparing with other functional combinations: Generality

Our formulation is more general because it subsumes the case where one wishes to minimize some

functional combination of the two criteria. We briefly comment on this next. For the purposes of

illustration let A and B be two objective functions and let us say that we wish to minimize the sum

of the two objectives A and B. Call this an (A � B, S) problem. Let A�APPROX�G� C� be

any ��� ��-approximation algorithm for (A, B, S) on graph G with budget C under the c-cost. We

show that �� � �, there is a polynomial time �� � �� maxf�� �g-approximation algorithm for the

(A �B, S) problem. The transformation uses simple linear search in steps of �� � �� over the range

of values of the c-cost with an application of the given approximation algorithm, A�APPROX,

at each step of this search. Let the optimum value for the (A � B, S) problem on a graph G be

OPTc�d � �Vc � Vd�, where Vc and Vd denote respectively the contribution of the two costs c

and d for A and B. Let Heuc�C� (Heud�C�) denote the c-cost (d-cost) of the subgraph output

by A�APPROX�G� C�. Finally, let Heuc�d�C� denote the value computed by ALGORITHM

CONVERT.

ALGORITHM CONVERT:

� Input: G - graph, an � � �, A�APPROX - an ��� ��-approximation algorithm for (A,
B, S).

�1. Let Chi be an upper bound on the c-cost of any subgraph in S.

2. Let R � dlog	���
 Chie

3. For j � � to R do

(a) Mj � �� � ��j

(b) Let Heuc�Mj�, Heud�Mj� denote the c-cost and the d-cost of solution obtained by
A�APPROX�G�Mj�.

4. Return the minimum over all � � j � R, of Fj � Heuc�Mj� �Heud�Mj�.

� Output: A subgraph from S such that the sum of its c-cost and its d-costs is at most �� �
��maxf�� �g�OPTc�d�.

Theorem 5.3 Let A�APPROX�G� C� be any ��� ��-approximation algorithm for (A, B, S)

on graph G with budget C under the c-cost. Then, for all � � �, there is a polynomial time

�� � ��maxf�� �g-approximation algorithm for the (A � B, S) problem.
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Proof Sketch: Consider the iteration of the binary search in which the bound on the c-cost is R such

that Vc � R � �� � ��Vc. Notice that such a bound is considered as a result of discretization of the

interval ��� Chi�. Then as a consequence of the performance guarantee of the approximation algorithm

A�APPROX, we get that

Heuc�R� � �R � �� � ���Vc	

By Step 4, the performance guarantee of the algorithm A�APPROX, and the hostility of A and

B, we have that Heud�R� � �Vd. Thus Heuc�d�R� � ������Vc��Vd � �����maxf�� �g�Vc�

Vd�. Since ALGORITHM CONVERT outputs a subgraph from S the sum of whose c-cost and d-cost

is minimized, we have that

min
C�����Chi

�
Heuc�C

�� �Heud�C
��
�
� �� � ��maxf�� �g�OPTc�d�	

A similar argument shows that an ��� ��-approximation algorithm A�APPROX�G� C�, for

a (A, B, S) problem can be used to find devise a polynomial time �� � ����� approximation algo-

rithm for the (A � B, S) problem. A similar argument can also be given for other basic functional

combinations. We make two additional remarks.

1. Algorithms for solving (f (A, B), S) problems can not in general guarantee any bounded per-

formance ratios for solving the (A,B, S) problem. For example, a solution for the (Total Cost

+ Total Cost , Spanning Tree) problem or the (Total Cost/Total Cost , Spanning Tree) problem

can not be directly used to find a good ��� ��-approximation algorithm for the (Total Cost,

Total Cost, Spanning Tree)-bicriteria problem.

2. The use of approximation algorithms for (A, B, S)-bicriteria problems, to solve (f (A, B), S)

problems (f denotes a function combination of the objectives) does not always yield the best

possible solutions. For example problems such as (Total Cost + Total Cost , Spanning Tree)

and (Total Cost/Total Cost , Spanning Tree) [Ch77, Me83] can be solved exactly in polynomial

time by direct methods but can only be solved approximately using any algorithm for the (Total

Cost, Total Cost , Spanning Tree)-bicriteria problem.11

6 Parametric Search

In this section, we present approximation algorithms for a broad class of bicriteria problems where

both the objectives in the problem are of the same type (e.g., both are total edge costs of some network

computed using two different costs on edges, or both are diameters of some network calculated using

two different costs etc.).

11This is true since the (Total Cost, Total Cost, Spanning Tree)-bicriteria problem is NP-complete and therefore unless
P = NP cannot be solved in polynomial time.

11



As before, let G be a graph with two (integral) cost functions, c and d. Let C denote the budget

on criteria A. We assume that the c and d cost functions are of the same kind; i.e., they are both

costs on edges or, costs on nodes. LetUVW�G� f� be any �-approximation algorithm that on input

G produces a solution subgraph in S minimizing criterion A, under the single cost function f . In

a mild abuse of notation, we also let UVW�G� f� denote the (f -)cost of the subgraph output by

UVW�G� f� when running on input G under cost function f . We use the following additional nota-

tion in the description of the algorithm and the proof of its performance guarantee. Given constants a

and b and two cost functions f and g, defined on edges (nodes) of a graph, af � bg denotes the com-

posite function that assigns a cost af�e� � bg�e� to each edge (node) in the graph. Let h�D� denote

the cost of the subgraph, returned byUVW�G� �
�D
C �c� d� (under the ��

�D
C �c� d�-cost function). Let

the minimum d-cost of a C-bounded subgraph in S be OPTd. Let Heuc (Heud) denote the c-cost

(d-cost) of the subgraph output by ALGORITHM PARAMETRIC-SEARCH given below.

Let � � � be a fixed accuracy parameter. In what follows, we devise a ��� � ��� �� � �
� ��-

approximation algorithm for (A,A, S), under the two cost functions c and d. The algorithm consists

of performing a binary search with an application of the given approximation algorithm, UVW, at

each step of this search.

ALGORITHM PARAMETRIC-SEARCH:

� Input: G - graph, C - budget on criteria A under the c-cost, UVW - a �-approximation
algorithm that produces a solution subgraph in S minimizing criterion A, under a single
cost function, � - an accuracy parameter.

�1. Let Dhi be an upper bound on the d-cost of any C-bounded subgraph in S.

2. Do binary search and find a D� in ��� �Dhi� such that

(a) UVW�G� �D
�

C �c� d� returns a subgraph such that h	D
�


D� � �� � ���, and

(b) UVW�G� �D
���
C �c� d� returns a subgraph such that h	D

���

	D���
 � �� � ���.

3. If the binary search in Step 2 fails to find a valid C� then output “NO SOLUTION” else
output UVW�G� �D

���
C �c� d�.

� Output: A subgraph from S such that its d-cost is at most ����
� �� times that of the minimum

d-cost C-bounded subgraph and its c-cost is at most �� � ���C.

Claim 6.1 The binary search, in Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-defined.

Proof: Since � �RUVW�G� f�� is the same asUVW�G� fR �, we get that h	
�D

�D

� �
�D
UVW�G� �

�D
C �c�

d� �UVW�G� � �C �c �
�
�D
d�. Hence h	 �D


�D
is a monotone nonincreasing function of D. Thus the bi-

nary search in Step 2 of ALGORITHM PARAMETRIC-SEARCH is well-defined.

Claim 6.2 If G contains a C-bounded subgraph in S then ALGORITHM PARAMETRIC-SEARCH

outputs a subgraph from S whose d-cost is at most ��� �
� �� times that of the minimum d-cost

C-bounded subgraph and whose c-cost is at most �� � ���C.
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Proof: By claim 6.1 we have that the binary search in Step 2 of ALGORITHM PARAMETRIC-

SEARCH is well-defined.

Assume that S contains a C-bounded subgraph. Then, since UVW�G� ��Dhi

C �c � d� returns

a subgraph with cost at most �� � ���Dhi, under the ���Dhi

C �c � d�-cost function, it is clear that

ALGORITHM PARAMETRIC-SEARCH outputs a subgraph in this case.

As a consequence of Step 2a and the performance guarantee of the approximation algorithm

UVW, we get that

D� � � �
OPTd
�

	

By Step 2b we have that the subgraph output by ALGORITHM PARAMETRIC-SEARCH has the fol-

lowing bounds on the c-costs and the d-costs.

Heud � h�D� � �� � ��� � ���D� � �� � �� �
�

�
��OPTd

Heuc � �
C

D� � �
�h�D� � �� � �

C

D� � �
��� � ����D� � �� � �� � ���C	

Thus ALGORITHM PARAMETRIC-SEARCH outputs a subgraph from S whose d-cost is at most

��� �
� �� times that of the minimum d-cost C-bounded subgraph and whose c-cost is at most ������C.

Note however that the resulting �������� ��� �
� ���-approximation algorithm for (A,A, S) may

not be strongly polynomial since it depends on the range of the d-costs. But it is a polynomial-time

algorithm since its running time is linearly dependent on logDhi. Note that Dhi is at most some

polynomial in n times the maximum d-cost (of an edge or a node). Hence log�Dhi� is at most a

polynomial in terms of the input specification.

The above discussion leads to the following theorem.

Theorem 6.3 Any �-approximation algorithm that produces a solution subgraph in S mini-

mizing criterion A can be transformed into a �������� ��� �
� ���-approximation algorithm for

(A,A,S).

The above theorem can be generalized from the bicriteria case to the multicriteria case (with

appropriate worsening of the performance guarantees) where all the objectives are of the same type

but with different cost functions.

7 Diameter-Constrained Trees

In this section, we describe ALGORITHM DCST, our �O�log n�� O�log n��-approximation algorithm

for (Diameter, Total cost, Steiner tree) or the diameter-bounded minimum Steiner tree problem. Note

that (Diameter, Total cost, Steiner tree) includes (Diameter, Total cost, Spanning tree) as a special

case. We first state the problem formally: given an undirected graph G � �V�E�, with two cost
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functions c and d defined on the set of edges, diameter bound D and terminal set K � V , the

(Diameter, Total cost, Steiner tree) problem is to find a tree of minimum c-cost connecting the set of

terminals in K with diameter at most D under the d-cost.

The technique underlying ALGORITHM DCST is very general and has wide applicability. Hence,

we first give a brief synopsis of it. The basic algorithm works in �log n� phases (iterations). Initially

the solution consists of the empty set. During each phase of the algorithm we execute a subroutine

	 to choose a subgraph to add to the solution. The subgraph chosen in each iteration is required

to possess two desirable properties. First, it must not increase the budget value of the solution by

more than D; second, the solution cost with respect to B must be no more than OPTc, where OPTc
denotes the minimum c-cost of a D bounded subgraph in S. Since the number of iterations of the

algorithm is O�log n� we get a �log n� logn�-approximation algorithm. The basic technique is fairly

straightforward. The non-trivial part is to devise the right subroutine 	 to be executed in each phase.

	 must be chosen so as to be able to prove the required performance guarantee of the solution. We

use the solution based decomposition technique [Ra94, RM+93] in the analysis of our algorithm. The

basic idea (behind the solution based decomposition technique) is to use the existence of an optimal

solution to prove that the subroutine 	 finds the desired subgraph in each phase.

We now present the specifics of ALGORITHM DCST. The algorithm maintains a set of connected

subgraphs or clusters each with its own distinguished vertex or center. Initially each terminal is in a

cluster by itself. In each phase, clusters are merged in pairs by adding paths between their centers.

Since the number of clusters comes down by a factor of � each phase, the algorithm terminates in

dlog� jKje phases with one cluster. It outputs a spanning tree of the final cluster as the solution.
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ALGORITHM DIAMETER-CONSTRAINED-STEINER-TREE (DCST):

� Input: G � �V�E� - graph with two edge cost functions, c and d, D - a bound on the
diameter under the d-cost, K � V - set of terminals, � - an accuracy parameter.

�1. Initialize the set of clusters C� to contain jKj singleton sets, one for each terminal in K .
For each cluster in C, define the single node in the cluster to be the center for the cluster.
Initialize the phase count i �� �.

2. Repeat until there remains a single cluster in Ci

(a) Let the set of clusters Ci � fC� 	 	 	 � Ckig at the beginning of the i’th phase (observe
that k� � jKj).

(b) Construct a complete graph Gi as follows: The node set Vi of Gi is fv �
v is the center of a cluster in Cg. Let path Pxy be a �� � ��-approximation to the mini-
mum c-cost diameter D-bounded path between centers vx and vy in G. Between every
pair of nodes vx and vy in Vi, include an edge �vx� vy� in Gi of weight equal to the
c-cost of Pxy.

(c) Find a minimum-weight matching of largest cardinality in Gi.

(d) For each edge e � �vx� vy� in the matching, merge clusters Cx and Cy, for which vx
and vy were centers respectively, by adding path Pxy to form a new cluster Cxy. The
node (edge) set of the cluster Cxy is defined to be the union of the node (edge) sets of
Cx� Cy and the nodes (edges) in Pxy . One of vx and vy is (arbitrarily) chosen to be the
center vxy of cluster Cxy and Cxy is added to the cluster set Ci�� for the next phase.

(e) i �� i� �	

3. Let C �, with center v� be the single cluster left after Step 2. Output a shortest path tree of
C � rooted at v� using the d-cost.

� Output: A Steiner tree connecting the set of terminals in K with diameter at most
�dlog� neD under the d-cost and of total c-cost at most �� � ��dlog� ne times that of the
minimum c-cost diameter D-bounded Steiner tree.

We make a few points about ALGORITHM DCST:

1. The clusters formed in Step 2d need not be disjoint.

2. All steps, except Step 2b, in algorithm DCST can be easily seen to have running times indepen-

dent of the weights. We employ Hassin’s strongly polynomial FPAS for Step 2b [Ha92]. Has-

sin’s approximation algorithm for theD-bounded minimum c-cost path runs in timeO�jEj�n
�

� log n
� ��.

Thus ALGORITHM DCST is a strongly polynomial time algorithm.

3. Instead of finding an exact minimum cost matching in Step 2c, we could find an approximate

minimum cost matching [GW95]. This would reduce the running time of the algorithm at the

cost of introducing a factor of � to the performance guarantee.

We now state some observations that lead to a proof of the performance guarantee of ALGO-

RITHM DCST. Assume, in what follows, that G contains a diameter D-bounded Steiner tree. We

also refer to each iteration of Step 2 as a phase.
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Claim 7.1 Algorithm DCST terminates in dlog� jKje phases.

Proof: Let ki denote the number of clusters in phase i. Note that ki�� � dki� e since we pair up the

clusters (using a matching in Step 2d). Hence we are left with one cluster after phase dlog� jKje and

algorithm DCST terminates.

The next claim points out as clusters get merged, the nodes within each cluster are not too far away

(with respect to d-distance) from the center of the cluster. This intuitively holds for the following

important reasons. First, during each phase, the graph Gi has as its vertices, the centers of the clusters

in that iteration. As a result, we merge the clusters by joining their centers in Step 2d. Second, in

Step 2d, for each pair of clusters Cx and Cy that are merged, we select one of their centers, vx or vy
as the center vxy for the merged cluster Cxy. This allows us to inductively maintain two properties:

(i) the required distance of the nodes in a cluster to their centers in an iteration i is iD and (ii) the

center of a cluster at any given iteration is a terminal node.

Claim 7.2 Let C � Ci be any cluster in phase i of algorithm DCST. Let v be the center of C.

Then any node u in C is reachable from v by a diameter-iD path in C under the d-cost.

Proof: Note that the existence of a diameter D-bounded Steiner tree implies that all paths added in

Step 2d have diameter at most D under d-cost. The proof now follows in a straightforward fashion

by induction on i.

Lemma 7.3 Algorithm DCST outputs a Steiner tree with diameter at most �dlog� jKje � D

under the d-cost.

Proof: The proof follows from Claims 7.1 and 7.2.

This completes the proof of performance guarantee with respect to the d-cost. We now proceed

to prove the performance guarantee with respect to the c-costs. We first recall the following pairing

lemma.

Claim 7.4 [RM+93] Let T be an edge-weighted tree with an even number of marked nodes.

Then there is a pairing �v�� w��, 	 	 	, �vk� wk� of the marked nodes such that the vi�wi paths

in T are edge-disjoint.

Claim 7.5 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let OPTc
denote its c-cost. The weight of the largest cardinality minimum-weight matching found in

Step 2d in each phase i of algorithm DCST is at most �� � �� �OPTc.
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Proof: Consider phase i of algorithm DCST. Note that since the centers at stage i are a subset of the

nodes in the first iteration, the centers vi are terminal nodes. Thus they belong to OPT . Mark those

vertices in OPT that correspond to the matched vertices, v�� v�� 	 	 	 � v�b ki
�
c
, of Gi in Step 2c. Then

by Claim 7.4 there exists a pairing of the marked vertices, say �v�� v��� 	 	 	 � �v�b ki
�
c��

� v
�b

ki
�
c
�, and a

set of edge-disjoint paths in OPT between these pairs. Since these paths are edge-disjoint their total

c-cost is at most OPTc. Further these paths have diameter at most D under the d-cost. Hence the sum

of the weights of the edges �v�� v��� 	 	 	 � �v�b ki
�
c��

� v
�b

ki
�
c
� in Gi , which forms a perfect matching

on the set of matched vertices, is at most �� � �� � OPTc. But in Step 2c of ALGORITHM DCST,

a minimum weight perfect matching in the graph Gi was found. Hence the weight of the matching

found in Step 2d in phase i of ALGORITHM DCST is at most �� � �� �OPTc.

Lemma 7.6 Let OPT be any minimum c-cost diameter-D bounded Steiner tree and let OPTc
denote its c-cost. ALGORITHM DCST outputs a Steiner tree with total c-cost at most �� �

��dlog� jKje �OPTc.

Proof: From Claim 7.5 we have that the c-cost of the set of paths added in Step 2d of any phase is

at most ��� �� �OPTc. By Claim 7.1 there are a total of dlog� jKje phases and hence the Steiner tree

output by ALGORITHM DCST has total c-cost at most �� � ��dlog� jKje � OPTc.

From Lemmas 7.3 and 7.6 we have the following theorem.

Theorem 7.7 There is a strongly polynomial-time algorithm that, given an undirected graph

G � �V�E�, with two cost functions c and d defined on the set of edges, diameter bound D,

terminal set K � V and a fixed � � �, constructs a Steiner tree of G of diameter at most

�dlog� jKjeD under the d-costs and of total c-cost at most �� � ��dlog� jKje times that of the

minimum-c-cost of any Steiner tree with diameter at most D under d.

8 Treewidth-Bounded Graphs

In this section we consider the class of treewidth-bounded graphs and give algorithms with improved

time bounds and performance guarantees for several bicriteria problems mentioned earlier. We do

this in two steps. First we develop pseudopolynomial-time algorithms based on dynamic program-

ming. We then present a general method for deriving fully polynomial-time approximation schemes

(FPAS) from the pseudopolynomial-time algorithms. We also demonstrate an application of the

above results to the minimum broadcast time problem.

A class of treewidth-bounded graphs can be specified using a finite number of primitive graphs

and a finite collection of binary composition rules. We use this characterization for proving our

results. A class of treewidth-bounded graphs � is inductively defined as follows [BL+87].
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1. The number of primitive graphs in � is finite.

2. Each graph in � has an ordered set of special nodes called terminals. The number of terminals

in each graph is bounded by a constant, say k.

3. There is a finite collection of binary composition rules that operate only at terminals, either

by identifying two terminals or adding an edge between terminals. A composition rule also

determines the terminals of the resulting graph, which must be a subset of the terminals of the

two graphs being composed.

8.1 Exact Algorithms

Theorem 8.1 Every problem in Table 2 can be solved exactly in O��n � C�O	�
�-time for any

class of treewidth bounded graphs with no more than k terminals, for fixed k and a budget

C on the first objective.

The above theorem states that there exist pseudopolynomial-time algorithms for all the bicriteria

problems from Table 2 when restricted to the class of treewidth-bounded graphs. The basic idea is to

employ a dynamic programming strategy. In fact, this dynamic programming strategy (in conjunction

with Theorem 5.2) yields polynomial-time (not just pseudopolynomial-time) algorithms whenever

one of the criteria is the degree. We illustrate this strategy by presenting in some detail the algorithm

for the diameter-bounded minimum cost spanning tree problem.

Theorem 8.2 For any class of treewidth-bounded graphs with no more than k terminals,

there is an O�n �k�k�� �DO	k�
�-time algorithm for solving the diameter D-bounded minimum

c-cost spanning tree problem.

Proof: Let d be the cost function on the edges for the first objective (diameter) and c, the cost

function for the second objective (total cost). Let � be any class of decomposable graphs. Let the

maximum number of terminals associated with any graph G in � be k. Following [BL+87], it is

assumed that a given graph G is accompanied by a parse tree specifying how G is constructed using

the rules and that the size of the parse tree is linear in the number of nodes.

Let � be a partition of the terminals of G. For every terminal i let di be a number in f�� �� 	 	 	 �Dg.

For every pair of terminals i and j in the same block of the partition � let dij be a number in

f�� �� 	 	 	 �Dg. Corresponding to every partition �, set fdig and set fdijg we associate a cost for

G defined as follows:

Cost�fdig�fdijg � Minimum total cost under the c function of any forest containing

a tree for each block of �, such that the terminal nodes

occurring in each tree are exactly the members of the corresponding

block of �, no pair of trees is connected, every vertex in G
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appears in exactly one tree, di is an upper bound on the maximum

distance (under the d-function) from i to any vertex in the same

tree and dij is an upper bound the distance (under the d-function)

between terminals i and j in their tree.

For the above defined cost, if there is no forest satisfying the required conditions the value of Cost is

defined to be 	.

Note that the number of cost values associated with any graph in � is O�kk � DO	k�
�. We now

show how the cost values can be computed in a bottom-up manner given the parse tree for G. To

begin with, since � is fixed, the number of primitive graphs is finite. For a primitive graph, each cost

value can be computed in constant time, since the number of forests to be examined is fixed. Now

consider computing the cost values for a graph G constructed from subgraphs G� and G�, where the

cost values for G� and G� have already been computed. Notice that any forest realizing a particular

cost value for G decomposes into two forests, one for G� and one for G� with some cost values.

Since we have maintained the best cost values for all possibilities for G� and G�, we can reconstruct

for each partition of the terminals of G the forest that has minimum cost value among all the forests

for this partition obeying the diameter constraints. We can do this in time independent of the sizes of

G� and G� because they interact only at the terminals to form G, and we have maintained all relevant

information.

Hence we can generate all possible cost values for G by considering combinations of all relevant

pairs of cost values for G� and G�. This takes time O�k�� per combination for a total time of

O�k�k�� � DO	k�
�. As in [BL+87], we assume that the size of the given parse tree for G is O�n�.

Thus the dynamic programming algorithm takes time O�n � k�k�� � DO	k�
�. This completes the

proof.

8.2 Fully Polynomial-Time Approximation Schemes

The pseudopolynomial-time algorithms described in the previous section can be used to design fully

polynomial-time approximation schemes (FPAS) for these same problems for the class of treewidth-

bounded graphs. We illustrate our ideas once again by devising an FPAS for the (Diameter, Total

cost, Spanning tree)-bicriteria problem for the class of treewidth-bounded graphs. The basic tech-

nique underlying our algorithm, ALGORITHM FPAS-DCST, is approximate binary search using

rounding and scaling - a method similar to that used by Hassin [Ha92] and Warburton [Wa87].

As in the previous subsection, let G be a treewidth-bounded graph with two (integral) edge-

cost functions c and d. Let D be a bound on the diameter under the d-cost. Let � be an accuracy

parameter. Without loss of generality we assume that �� is an integer. We also assume that there exists

a D-bounded spanning tree in G. Let OPT be any minimum c-cost diameter D-bounded spanning

tree and let OPTc denote its c-cost. Let TCSTonTW�G� c� d� C� be a pseudopolynomial time

algorithm for the (Total cost, Diameter, Spanning tree) problem on treewidth-bounded graphs; i.e.,
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TCSTonTW outputs a minimum diameter spanning tree of G with total cost at most C (under the

c-costs). Let the running time of TCSTonTW be p�n�C� for some polynomial p. For carrying out

our approximate binary search we need a testing procedure PROCEDURE TEST(V) which we detail

below:

PROCEDURE TEST():

� Input: G - treewidth bounded graph, D - bound on the diameter under the d-cost,  -
testing parameter, TCSTonTW - a pseudopolynomial time algorithm for the (Total cost,
Diameter, Spanning tree) problem on treewidth-bounded graphs, � - an accuracy parameter.

�1. Let b c
���	n��
c denote the cost function obtained by setting the cost of edge e to

b ce
���	n��
c.

2. If there exists a C in ��� n��
� � such that TCSTonTW�G� b c

���	n��
c� d� C� produces a
spanning tree with diameter at mostD under the d-cost then output LOW otherwise output
HIGH.

� Output: HIGH/LOW.

We now prove that PROCEDURE TEST() has the properties we need to do a binary search.

Claim 8.3 If OPTc �  then PROCEDURE TEST() outputs LOW. And, if OPTc � �� � ��

then PROCEDURE TEST() outputs HIGH.

Proof: If OPTc �  then since

X

e�OPT

b
ce

���n� ��
c �

X

e�OPT

ce
���n� ��

�
OPTc

���n� ��
�
n� �

�

therefore PROCEDURE TEST(� outputs LOW.

Let Tc be the c-cost of any diameter D bounded spanning tree. Then we have Tc 
 OPTc. If

OPTc � �� � �� then since

X

e�T

b
ce

���n� ��
c 


X

e�T

�
ce

���n� ��
� �� 


Tc
���n� ��

� �n� �� 

OPTc

���n� ��
� �n� �� �

n� �

�

therefore PROCEDURE TEST() outputs HIGH.

Claim 8.4 The running time of PROCEDURE TEST() is O�n� p�n�
n
� ��.

Proof: PROCEDURE TEST() invokes TCSTonTW only n��
� times. And each time the budget

C is bounded by n��
� , hence the running time of PROCEDURE TEST() is O�n� p�n�

n
� ��.

We are ready to describe ALGORITHM FPAS-DCST - which uses PROCEDURE TEST() to do

an approximate binary search.
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ALGORITHM FPAS-DCST:

� Input: G - treewidth-bounded graph, D - bound on the diameter under the d-cost,
TCSTonTW - a pseudopolynomial time algorithm for the (Total cost, Diameter, Span-
ning tree) problem on treewidth-bounded graphs, � - an accuracy parameter.

�1. Let Chi be an upper bound on the c-cost of any D-bounded spanning tree. Let LB � �
and UB � Chi.

2. While UB 
 �LB do

(a) Let  � �LB � UB���.

(b) If PROCEDURE TEST() returns HIGH then set LB �  else set UB � �� � ��.

3. Run TCSTonTW�G� b c
LB��	n��
c� d� C� for all C in ��� ��n��

� �� and among all the
trees with diameter at most D under the d-cost output the tree with the lowest c-cost.

� Output: A spanning tree with diameter at most D under the d-cost and with c-cost at most
�� � �� times that of the minimum c-cost D-bounded spanning tree.

Lemma 8.5 If G contains aD-bounded spanning tree then ALGORITHM FPAS-DCST outputs

a spanning tree with diameter at most D under the d-cost and with c-cost at most �� �

��OPTc.

Proof: It follows easily from Claim 8.3 that the loop in Step 2 of ALGORITHM FPAS-DCST

executes O�logChi� times before exiting with LB � OPTc � UB 
 �LB.

Since

X

e�OPT

b
ce

LB���n� ��
c �

X

e�OPT

ce
LB���n� ��

�
OPTc

LB���n� ��
� ��

n� �

�
�

we get that Step 3 of ALGORITHM FPAS-DCST definitely outputs a spanning tree. Let Heu be the

tree output. Then we have that

Heuc �
X

e�Heuc

ce � LB���n� ��
X

e�Heuc

ce
LB���n� ��

� LB���n� ���
X

e�Heuc

b
ce

LB���n� ��
c� ��	

But since Step 3 of ALGORITHM FPAS-DCST outputs the spanning tree with minimum c-cost we

have that X

e�Heuc

b
ce

LB���n� ��
c �

X

e�OPT

b
ce

LB���n� ��
c	

Therefore

Heuc � LB���n� ��
X

e�OPT

b
ce

LB���n� ��
c� �LB �

X

e�OPT

ce � �OPTc � �� � ��OPTc	

This proves the claim.

Lemma 8.6 The running time of ALGORITHM FPAS-DCST is O�n� p�n�
n
� � logChi�.
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Proof: From Claim 8.4 we see that Step 2 of ALGORITHM FPAS-DCST takes timeO�n� p�n�
n
� � logChi�

while Step 3 takes time O��n� p�n�
�n
� ��. Hence the running time of ALGORITHM FPAS-DCST is

O�n� p�n�
n
� � logChi�.

Lemmas 8.6 and 8.5 yield:

Theorem 8.7 For the class of treewidth-bounded graphs, there is an FPAS for the (Diame-

ter, Total cost, Spanning tree)-bicriteria problem with performance guarantee ��� � � ��.

As mentioned before, similar theorems hold for the other problems in Table 2 and all these results

extend directly to Steiner trees.

8.3 Near-Optimal Broadcast Schemes

The polynomial-time algorithm for the (Degree, Diameter, Spanning tree)-bicriteria problem for

treewidth-bounded graphs can be used in conjunction with the ideas presented in [Ra94] to obtain

near-optimal broadcast schemes for the class of treewidth-bounded graphs. As mentioned earlier,

these results generalize and improve the results of Kortsarz and Peleg [KP92].

Given an unweighted graph G and a root r, a broadcast scheme is a method for communicating

a message from r to all the nodes of G. We consider a telephone model in which the messages are

transmitted synchronously and at each time step, any node can either transmit or receive a message

from at most one of its neighbors. The minimum broadcast time problem is to compute a scheme that

completes in the minimum number of time steps. Let OPTr�G� denote the minimum broadcast time

from root r and letOPT �G� �Maxr�GOPTr�G� denote the minimum broadcast time for the graph

from any root. The problem of computing OPTr�G� - the minimum rooted broadcast time problem

- and that of computing OPT �G� - the minimum broadcast time problem are bothNP-complete for

general graphs [GJ79]. It is easy to see that any approximation algorithm for the minimum rooted

broadcast time problem automatically yields an approximation algorithm for the minimum broadcast

time problem with the same performance guarantee. We refer the readers to [Ra94] for more details

on this problem. Combining our approximation algorithm for ( Diameter, Total cost, Spanning tree)-

bicriteria problem with performance guarantee ��� � � �� for the class of treewidth bounded graphs

with the observations in [Ra94] yields the following theorem.

Theorem 8.8 For any class of treewidth-bounded graphs there is a polynomial-timeO� log n
log log n�-

approximation algorithm for the minimum rooted broadcast time problem and the minimum

broadcast time problem.

9 Concluding Remarks

We have obtained the first polynomial-time approximation algorithms for a large class of bicriteria

network design problems. The objective function we considered were (i) degree, (ii) diameter and
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(iii) total cost. The connectivity requirements considered were spanning trees, Steiner trees and (in

several cases) generalized Steiner trees. Our results were based on the following three ideas:

1. A binary search method to convert an ��� ��-approximation algorithm for (A,B, S)-bicriteria

problems to a ��� ��-approximation algorithm for (B,A, S)-bicriteria problems.

2. A parametric search technique to devise approximation algorithms for (A,A,S)-bicriteria prob-

lems. We note that Theorem 6.3 is very general. Given any �-approximation algorithm for min-

imizing the objective A in the subgraph-class S, Theorem 6.3 allows us to produce a ���� ���-

approximation algorithm for the (A,A, S)-bicriteria problem.

3. A cluster based approach for devising approximation algorithms for certain categories of (A,B,S)-

bicriteria problems.

We also devised pseudopolynomial time algorithms and fully polynomial time approximation

schemes for a number of bicriteria network design problems for the class of treewidth-bounded

graphs.

Subsequent work

During the time when this paper was under review, important progress has been made in improving

some of the results in this paper. Recently, Ravi and Goemans [RG95] have devised a ��� � � ��

approximation scheme for the (Total Cost, Total Cost, Spanning tree) problem. Their approach does

not seem to extend to devising approximation algorithms for more general subgraphs considered

here. In [KP97], Kortsarz and Peleg consider the (Diameter, Total Cost, Steiner tree) problem. They

provide polynomial time approximation algorithms for this problem with performance guarantees

��� O�log n�� for constant diameter bound D and �� � ��� n�� for any fixed � 
 � 
 � for general

diameter bounds. Improving the performance guarantees for one or more of the problems considered

here remains an interesting direction for future research.

Acknowledgements: We would like to thank an anonymous referee for several useful comments

and suggestions. We thank Sven Krumke (University of Würzberg) for reading the paper carefully

and providing several useful comments. In particular, both pointed an error in the original proof

of Theorem 5.3. We thank Professors S. Arnborg and H. L. Bodlaender for pointing out to us the

equivalence between treewidth bounded graphs and decomposable graphs. We thank A. Ramesh

for bringing [KP+93] to our attention. We also thank Dr. V. Kompella for making his other papers

available to us. Finally, we thank the referees of ICALP ’95 for their constructive comments and

suggestions.

23



References

[AS97] S. Arora and M. Sudan, “Improved low-degree testing and its applications,” Proc. 29th
Annual ACM Symposium on Theory of Computing (STOC), 485-496 (1997).

[AB+90] B. Awerbuch, A. Baratz, and D. Peleg, “Cost-sensitive analysis of communication proto-
cols,” Proceedings of the 9th Symposium on Principles of Distributed Computing (PODC),
pp. 177-187 (1990).

[AC+93] S. Arnborg, B. Courcelle, A. Proskurowski and D. Seese, “An Algebraic Theory of Graph
Reductions,” Journal of the ACM (JACM), vol. 40:5, pp. 1134-1164 (1993).

[AK+95] A. Agrawal, P. Klein and R. Ravi, “When trees collide: an approximation algorithm for
the generalized Steiner problem on networks,” SIAM Journal on Computing, vol.24, pp.
440-456 (1995).

[AL+91] S. Arnborg, J. Lagergren and D. Seese, “Easy Problems for Tree-Decomposable Graphs,”
Journal of Algorithms, vol. 12, pp. 308-340 (1991).

[Bo88] H.L. Bodlaender, “Dynamic programming on graphs of bounded treewidth,” Proceedings
of the 15th International Colloquium on Automata Language and Programming, LNCS
vol. 317, pp. 105-118 (1988).

[BK90] A. Bookstein and S.T. Klein, “Construction of Optimal Graphs for Bit-Vector Compres-
sion,” Proc. 13th ACM-SIGIR, vol. 16, pp. 387-400 (1990).

[BL+87] M.W. Bern, E.L. Lawler and A.L. Wong, “Linear -Time Computation of Optimal Sub-
graphs of Decomposable Graphs,” Journal of Algorithms, vol. 8, pp. 216-235 (1987).

[CG82] P. M. Camerini, and G. Galbiati, “The bounded path problem,” SIAM Journal on Algebraic
and Discrete Methods vol. 3, no. 4, pp. 474-484 (1982).

[Ch77] R. Chandrasekaran, “Minimum Ratio Spanning Trees,” Networks, vol. 7, pp. 335-342,
(1977).

[CLR] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms, McGraw-Hill
Book Co., 1990.

[Ch91] C.-H. Chow, “On multicast path finding algorithms,” Proceedings of IEEE INFOCOM
1991, pp. 1274-1283 (1991).

[CK95] P. Crescenzi and V. Kann, “A compendium of NP optimization problems,” Manuscript,
(1995).

[FW+85] A. Frank, L. Wittie, and A. Bernstein, “Multicast communication in network computers,”
IEEE Software, vol. 2, no. 3, pp. 49-61 (1985).

[GG+95] J. L. Ganley, M. J. Golin and J. S. Salowe, “The multi-weighted spanning tree prob-
lem,” Proceedings of the First Conference on Combinatorics and Computing (COCOON),
Springer Verlag, LNCS pp. 141-150 (1995).

[GJ79] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to the theory of
NP-completeness, W. H. Freeman, San Francisco (1979).

[GW95] M. X. Goemans and D. P. Williamson, “A general approximation technique for constrained
forest problems,” SIAM Journal on Computing, Vol. 24, 1995, pp. 296–317.

24



[Ha92] R. Hassin, “Approximation schemes for the restricted shortest path problem,” Mathematics
of Operations Research, vol. 17, no. 1, pp. 36-42 (1992).

[HL+89] J. Ho, D.T. Lee, C.H. Chang and C.K. Wong, “Bounded diameter spanning tree and related
problems,” Proceedings of the Annual ACM Symposium on Computational Geometry, pp.
276-282 (1989).

[Ho95] D. Hochbaum, Approximation algorithms for NP-hard problems, D.S. Hochbaum Ed.,
PWS Publishing Company, Boston, MA (1995).

[KJ83] B. Kadaba and J. Jaffe, “Routing to multiple destinations in computer networks,” IEEE
Transactions on Communications, Vol. COM-31, pp. 343-351 (March 1983).

[KR+93] S. Khuller, B. Raghavachari, and N. Young, “Balancing minimum spanning and shortest
path trees,” Algorithmica, vol. 14 (4), pp. 305-321, (1995).

[KP+92A] V.P. Kompella, J.C. Pasquale and G.C. Polyzos, “Multicasting for multimedia applica-
tions,” Proceedings of IEEE INFOCOM 1992 (May 1992).

[KP+93] V.P. Kompella, J.C. Pasquale and G.C. Polyzos, “Multicast routing for multimedia com-
munication,” IEEE/ACM Transactions on Networking, pp. 286-292 (1993).

[KP92] G. Kortsarz and D. Peleg, “Approximation algorithms for minimum time broadcast,” SIAM
Journal on Discrete Mathematics, Vol. 8, No. 3, pp. 401-427 1995.

[KP97] G. Kortsarz and D. Peleg, “Approximating Shallow Light Trees,” Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 103-110 (1997).

[Me83] N. Megiddo, “Applying parallel computation algorithms in the design of serial algorithms,”
Journal of the ACM (JACM), vol. 30, pp. 852-865, (1983).

[Ph+93] C. Phillips, “The Network Inhibition Problem,” Proceedings of the 25th Annual ACM Sym-
posium on the Theory of Computing, pp. 776-785, (1993).

[Ra94] R. Ravi, “Rapid rumor ramification: approximating the minimum broadcast time,” Pro-
ceedings of the 35th Annual IEEE Foundations of Computer Science, pp. 202-213 (1994).

[RG95] R. Ravi and M. Goemans, “The constrained spanning tree problem,” to appear in the Pro-
ceedings of the 5th Scandinavian Workshop on Algorithmic Theory, 1996.

[RM+93] R. Ravi, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and H.B. Hunt III, “Many birds with
one stone: multi-objective approximation algorithms,” Proceedings of the 25th Annual
ACM Symposium on the Theory of Computing, pp. 438-447 (1993). (Expanded version
appears as Brown University Technical Report TR-CS-92-58.)

[RS97] R. Raz and S. Safra, “A sub-constant error-probability low-degree test, and a sub-constant
error-probability PCP characterization of NP,” Proc. 29th Annual ACM Symposium on The-
ory of Computing, 475-484 (1997).

[Wa87] A. Warburton, “Approximation of Pareto optima in multiple-objective, shortest path prob-
lems,” Operations Research, vol. 35, pp. 70-79 (1987).

[ZP+94] Q. Zhu, M. Parsa, and W.W.M. Dai, “An iterative approach for delay-bounded minimum
Steiner tree construction,” Technical Report UCSC-CRL-94-39, UC Santa Cruz (1994).

25


