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Abstract

Computing semiparametric bounds for option prices is a widely stud-
ied pricing technique. In contrast to parametric pricing techniques, such
as Monte-Carlo simulations, semiparametric pricing techniques do not re-
quire strong assumptions about the underlying asset price distribution.
We extend classical results in this area in two main directions. First, we
derive closed-form semiparametric bounds for the payoff of a European
call option, given up to third-order moment information on the underly-
ing asset price. We analyze how these bounds tighten the corresponding
bounds, when only second-order moment (i.e., mean and variance) infor-
mation is provided. Second, we derive closed-form semiparametric bounds
for the risk associated to the expected payoff of a European call option,
when the mean and the variance of the underlying asset price are given.
Applications of these results to other areas such as inventory and supply
chain management are also discussed.

1 Introduction

Going back to the seminal work by Merton [19], many authors have studied the
problem of finding bounds for option prices under incomplete market conditions
or an incomplete knowledge of the distribution of the price of the underlying
assets (see, e.g., [3, 4, 5, 8, 9, 15, 16, 18, 21, 22, 23] and the references therein).
Here, we study bounds on the expected payoff of a European call option and its
associated risk, given only information on the moments of the underlying asset
price at maturity. Such type of bounds are called semiparametric bounds.
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Unlike parametric pricing techniques, such as Monte-Carlo simulation (cf.
[10]), semiparametric pricing techniques do not require strong assumptions a-
bout the underlying asset price distribution. The interest in computing semi-
parametric bounds for option prices stems mainly from this fact. In particular,
semiparametric bounds are used to set bounds for option prices under the risk-
neutral measure pricing theory, and to examine the relationship between option
prices and the true, as opposed to risk-neutral, distribution of the underlying
asset (see, e.g., [8, 18]).

The first, now classical, results in this area were derived by Lo [18] and
Grundy [8]. Lo [18] gave a closed-form upper bound on the payoff of a European
call option when second-order moment (i.e., mean and variance) information
about the asset price at maturity is available (see Theorem 1 in Section 2.1).
Grundy [8] derived similar upper bounds when only n-th order information is
given. Also, Grundy [8] gave a simple lower bound on the expected payoff of
a European call option when only the mean of the underlying asset price at
maturity is known. This initial work has been followed by further results in
this area, such as the ones developed by: Bertsimas and Popescu [3]; Boyle and
Lin [4]; D’Aspremont and El Ghaoui [5]; De la Peña, Ibragimov, and Jordan [12];
Popescu [22]; and Zuluaga and Peña [27]; to name a few recent ones.

The goal of this paper is to extend the results of Lo and Grundy in two main
directions. First (Section 2), we derive closed-form semiparametric bounds for
the payoff of a European call option, given up to third-order moment information
on the underlying asset price (see Theorems 3 through 5). We analyze how
these bounds tighten the corresponding bounds, when only up to second-order
moment information is provided (Section 2.2). For example, we show that third-
order moment information gives tighter bounds on the payoff of a European call
option when the option is close to being at the money. This is precisely the
region where the option pricing problem is more interesting. Furthermore, we
show that the magnitude of this tightening depends on the relationship between
the second and third moments of the underlying asset price. In particular,
we prove that if a special relationship between the second and third moments
holds, then third-order bounds completely determine the expected payoff of the
option (Theorem 3). Second (Section 3), we derive closed-form semiparametric
bounds for the risk associated to the expected payoff of a European call option,
when up to second-order moment information on the underlying asset price is
given (see Theorems 7 through 10). For exposition purposes, Sections 2 and 3
concentrate on the statements and interpretation of our main results, paying
special attention to the bounds’ values. Most of the proofs, which rely on
convex duality (cf. [24]), are deferred to the Appendix. Therein we also provide
information on the optimal solutions that attain our bounds’ values.

The computation of semiparametric bounds is a classical probability problem
(cf. Karlin and Studden [11], and Zuluaga and Peña [27]). As a consequence,
many related results come from areas other than finance, such as, inventory the-
ory and stochastic programming. For example, consider the work of: Bertsimas
and Natarajan [2], Dokov and Morton [6], Gallego and Moon [7], Scarf [25],
and the references therein. Conversely, our results have applications in these
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areas. In particular, here we discuss applications in inventory and supply chain
management (see Sections 2.3 and 3.3).

It is worth mentioning that all the semiparametric bounds considered here
can be numerically computed using semidefinite programming techniques (cf.
[26]). This fact follows from the work of Bertsimas and Popescu [3], and
other related work in the so-called area of polynomial programming (see, e.g.,
Lasserre [13, 14], and Zuluaga and Peña [27]). Here, however, our aim is to
obtain closed-form solutions to the semiparametric bound problems being con-
sidered. Closed-form solutions are of both practical and theoretical significance,
as they allow for easy computation of the bounds, and the performance of sen-
sitivity analysis and optimization over the parameters involved in the problem.

2 Bounds on the payoff of a European call

In this section, we consider the problem of finding sharp bounds on the expected
payoff of a European call option, given information on the first n moments of
the underlying asset price at maturity (without making any other assumption
on the distribution of the asset price). Finding the sharp upper, and the sharp
lower bound for this problem can be (respectively) formulated as the following
optimization problems (see, e.g., Bertsimas and Popescu [3]):

(P
σ
)

p(σ) = sup Eπ((S − 1)+)

s.t. Eπ(Si) = σi for i = 0, . . . , n
π a distribution in IR+,

and

(Pσ)

p(σ) = inf Eπ((S − 1)+)

s.t. Eπ(Si) = σi for i = 0, . . . , n
π a distribution in IR+.

Here σ0 := 1 and σi for i = 1, . . . , n are the (given) non-central moments
of the asset price at maturity. The random variable S represents the price of
the underlying asset at maturity. These formulations assume, without loss of
generality, that the strike price of the call option is $1. Thus, the problem (P

σ
)

(resp. (Pσ)) maximizes (minimizes) the expected payoff of a European call
option ((S − 1)+ := max{0, S − 1}) over all probability distributions π in IR+

whose moments are given by the vector σ = (σ0, σ1, . . . , σn).
In what follows, the aim is to provide closed-form solutions to (P

σ
) and

(Pσ) when up to third-order moment information of the underlying asset price
at maturity is given (i.e., when n = 3). In particular, we analyze how third-
order moment information tightens the corresponding bounds, when only up
to second-order moment information is provided (i.e., when n = 2). For this
purpose, we begin by discussing closed-form solution of (P

σ
) and (Pσ) in this

latter instance.

3



2.1 Bounds for up to second-order moment information

A classical result on semiparametric bounds for European options is Lo’s closed-
form solution of (P

σ
), when only the mean and variance of the underlying asset

price at maturity is available [18]. We will represent this information by setting
σ = (1, µ, γµ2); that is, the mean and variance of the asset price are represented
by the parameters µ and (γ − 1)µ2 respectively. Before stating Lo’s result,
Proposition 1 characterizes the feasibility of (P

σ
) and (Pσ) when second-order

moment information is available (i.e., when n = 2).

Proposition 1 Let σ = (1, µ, γµ2). The problems (P
σ
) and (Pσ) are feasible

if and only if µ ≥ 0 and γ ≥ 1.

Proposition 1 is a classical result on distributions on IR+ (see e.g., [11, The-
orem 10.1]). It is a straightforward consequence of Jensen’s inequality.

Theorem 1 (Lo [18]) Let σ = (1, µ, γµ2). If µ ≥ 0 and γ ≥ 1, then

p(σ) =

{
µ− 1

γ if µ > 2
γ ,

1
2 ((µ− 1) +

√
(γ − 1)µ2 + (µ− 1)2) if µ ≤ 2

γ .

Consider now the lower bound counterpart of Lo’s result; that is, solving
(Pσ) when only the mean and variance of the underlying asset price at maturity
is available. Theorem 2 below, gives a closed-form solution to this problem
(which up to our knowledge does not appear in the literature).

Theorem 2 Let σ = (1, µ, γµ2). If µ ≥ 0 and γ ≥ 1 then p(σ) = (µ− 1)+.

Proof. See the Appendix. 2

The sharp bound on Theorem 2 is consistent with the bound determined
by Merton [19, Theorem 1]. Also, from Grundy’s closed-form solution of (Pσ),
when only the mean of the underlying asset price at maturity is available [8,
Proposition 3]; it follows that the variance (second-order) information does not
contribute to tighten Grundy’s first-order lower semiparametric bound on the
payoff of a European call option.

The semiparametric bounds obtained by Lo [18] and Grundy [8], and ex-
tensions of these results, are used to set bounds for option prices under the
risk-neutral measure pricing theory; to examine the relationship between option
prices and the true, as opposed to risk-neutral, distribution of the underlying
asset; and to test different model assumptions (see, e.g., [4, 8, 12, 18]).

Figure 1 summarizes the results presented in this section on sharp bounds
on the payoff of a European call option when up to second-order moment infor-
mation on the underlying asset price is given.
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2.2 Bounds for up to third-order moment information

We now consider bounds on the expected payoff of a European call option
(analogous to those given by Theorems 1 and 2) when up to third-order mo-
ment information on the underlying asset price is given. We will represent this
information by setting σ = (1, µ, γµ2, βµ3); that is, the mean, variance, and
non-central third moment of the asset price are represented by the parameters
µ, (γ−1)µ2, and βµ3 respectively. For this purpose, Proposition 2 characterizes
the feasibility of (P

σ
) and (Pσ) in this instance (cf. Proposition 1).

Proposition 2 Let σ = (1, µ, γµ2, βµ3). The problems (P
σ
) and (Pσ) are

feasible if and only if one of the following two conditions holds:

(i) γ ≥ 1, β = γ2 and µ ≥ 0.

(ii) γ > 1, β > γ2 and µ > 0.

Proof. See the Appendix. 2

Let us first consider case (i) in Proposition 2. For this particular instance,
Theorem 3 below gives a closed-form solution to both (P

σ
) and (Pσ)

Theorem 3 Let σ = (1, µ, γµ2, βµ3). If (P
σ
) (or (Pσ)) is feasible and β = γ2

then p(σ) = p(σ) = (µ− 1/γ)+.

Proof. See the Appendix. 2

Theorem 3 implies that if the values of the second and third moments of
an asset price at maturity satisfy the relation β = γ2 (following the notation
in Proposition 2), then the expected payoff of a European call on this asset is
completely determined by the moment information, independent of the exact
distribution of the underlying asset price.

Let us now consider case (ii) in Proposition 2. For this particular instance,
Theorem 4 below gives a closed-form solution to (Pσ).

Theorem 4 Let σ = (1, µ, γµ2, βµ3). If (Pσ) is feasible and β > γ2, then

p(σ) =


µ− 1 if µ ≥ µ̃,
(γµ−1)2

βµ−γ if 1
γ < µ ≤ µ̃,

0 if µ ≤ 1
γ ,

where

µ̃ =
2(γ − 1)

(β − γ)−
√

(β − 3γ + 2)2 + 4(γ − 1)3
.

Proof. This follows from putting toghether Lemmas 11, 12, and 13 in the
Appendix.

As Figure 2 shows, for values of 1/γ ≤ µ ≤ µ̃, the addition of third-order mo-
ment information tightens the sharp lower second-order semiparametric bound
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Figure 1: Sharp upper and lower semiparametric bounds for the payoff of a
European call option when up to second-order moment information on the un-
derlying asset price is given (plots of p(1, µ, γµ2) and p(1, µ, γµ2) generated with
γ = 1.5, as a function of µ).
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Figure 2: Sharp third-order (solid line) vs. second-order (dashed line) lower
semiparametric bounds for the payoff of a European call option (plots of
p(1, µ, γµ2), p(1, µ, γµ2, βµ3), generated with γ = 1.4, and β = 2.5, as a function
of µ).
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on the payoff of a European call (see Theorem 2). Note that from γ ≥ 1 and
β ≥ γ2 (e.g., when (Pσ) for n = 3 is feasible), it follows that 1/γ ≤ 1 ≤ µ̃. Thus,
the tightening occurs in an interval around µ = 1; that is, when the option is
at the money (recall that the strike price is $1) and the pricing problem is more
interesting.

Now we consider the problem (P
σ
) when case (ii) in Proposition 2 holds. In

this case, Theorem 5 provides a sharpening of the upper bound given by Lo’s
Theorem (Theorem 1). The upper bound given by Theorem 5 is exactly p(σ)
for µ > 2/γ. In Section 2.4, we will empirically show that for µ ≤ 2/γ the upper
bound in Theorem 5 gives an accurate approximation of the exact value of p(σ).
To introduce the new upper bound, we need the following definitions:

a(µ, γ, β) = 32µr1
(4r1+r2−1)3

(4βµ2 − 7γµ + 3 + r1(4γµ− 3) + r2(1− r1 − γµ)),

b(µ, γ) = 1
2 ((µ− 1) +

√
(γ − 1)µ2 + (µ− 1)2),

(1)
where

r1(µ, γ, β) =
√

1− 2γµ + βµ2,

r2(µ, γ, β) =
√

1 + 8r1(µ, γ, β).
(2)

(Notice that b(·) above comes from Lo’s theorem (see Theorem 1).)

Theorem 5 Let σ = (1, µ, γµ2, βµ3). If (P
σ
) is feasible and β > γ2, then

p(σ) ≤ ρ(µ, γ, β)+ =

 min{a(µ, γ, β), b(µ, γ)} if µ ≤ 2γ
β

b(µ, γ) if 2γ
β ≤ µ ≤ 2

γ ,

p(σ) = µ− 1
γ if µ ≥ 2

γ ,

where a(·), b(·) are as in (1).

Proof. See the Appendix. 2

As Figure 3 shows, for values of µ ≤ 2γ/β, the addition of third-order mo-
ment information tightens the sharp upper second-order semiparametric bound
on the payoff of a European call (see Theorem 1).

With the results presented in Theorems 1 through 5, we can now consider
how the relationship between the second and third moment of the asset price
influences the magnitude by which third-order bounds tighten the second-order
semiparametric bounds introduced in Theorems 1 and 2. For this particular
analysis we use ρ(·)+ (see Theorem 5) as an upper bound on the option’s payoff.

As Figure 4 shows, when the value of β >> γ2, the magnitude of the tight-
ening due to third-order moment information on the asset price is noticeable
only in the lower bound of the option’s payoff. As β ≈ γ2, the magnitude of the
tightening due to third-order moment information becomes markedly higher for
both the lower and upper bounds on the option’s payoff. An example of this is
shown on Figure 5. In fact, as β → γ2, both the third-order upper and lower
bounds converge to (µ−1/γ)+. This is an immediate consequence of Theorem 4
and the following result.
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Proposition 3 Let σ = (1, µ, γµ2, βµ3). If (P
σ
) is feasible and δ := β/γ2−1 <

1, then

p(σ) ≤
(

µ− 1
γ

)+

+ 5δ1/3.

Proof. See the Appendix. 2

Theorems 4 and 5 also reveal that third-order moment information is not
relevant when the mean of the asset is much higher than the strike of the option.
This is in agreement with the intuition that option prices should be essentially
determined by the mean of the underlying asset price when the mean is bounded
away from the strike price.

The discussion in this section shows that third-order moment information on
the underlying asset price at maturity can be used to extend the early work of
Grundy [8] and Lo [18], by producing tighter bounds on the payoff of a European
call option.

2.3 An inventory management application

Although the previous results concern bounds for European call options, the
computation of semiparametric bounds is a classical probability problem (cf.
Karlin and Studden [11], and Zuluaga and Peña [27]). Hence our results are
relevant for a much wider variety of applications. For instance, consider the fol-
lowing classical result of Scarf [25] in inventory management (using the notation
introduced here).

Theorem 6 (Scarf [25]) Let x be the inventory of a single product, c be the
product’s unit cost, and r the product’s unit price. The minimum expected profit
over all demands distributions (represented by the random variable S) with given
mean µ ≥ 0 and variance (γ − 1)µ2 ≥ 0 is given by:

inf Eπ(r min{x, S} − cx)
s.t. Eπ(1) = 1

Eπ(S) = µ
Eπ(S2) = γµ2

π a distribution in IR+,

=


x

(
r
γ − c

)
x ≤ γµ

2 ,

r
2 (µ + x−√

γµ2 − 2µx + x2)− cx x ≥ γµ
2 .

Scarf [25] uses the result in Theorem 6 to find the level of inventory that
maximizes the minimum expected profit; thus, obtaining a robust inventory pol-
icy when only second-order moment information on the demand of the product
is available. By the simple observation: min{x, S} = S − (S − x)+, it follows
that Theorems 3, 4, and 5 can be used to extend Scarf’s result by considering
third-order moment information on the demand, and upper bounds as well as
lower bounds.
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Figure 3: Sharp third-order (solid line) vs. second-order (dashed line) up-
per semiparametric bounds for the payoff of a European call option (plots of
p(1, µ, γµ2), ρ(µ, γ, β)+, generated with γ = 1.2, and β = 1.6, as a function of
µ).
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Figure 4: Third-order (solid lines) vs. second-order (dashed lines) semipara-
metric bounds for the payoff of a European call option when β >> γ2 (plots of
p(1, µ, γµ2), p(1, µ, γµ2), ρ(µ, γ, β)+, p(1, µ, γµ2, βµ3), generated with γ = 1.5,
and β = 3, as a function of µ).
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2.4 Approximation for third-order upper bound

The result in Theorem 5 is not as strong as the one obtained for (Pσ) in The-
orem 4. However, we next introduce a valid lower bound on the value of p(σ)
that will allow us to show empirically that Theorem 5 gives a very accurate
approximation for the value of p(σ) in case (ii) of Proposition 2. To introduce
this valid lower bound, we need the following definitions:

c(µ, γ, β) = 1
2βµ−4γ

(
2− 3γµ + βµ2 + (γµ− 2)r1(µ, γ, β)

)
,

d(µ, γ, β) = 1
2

(
µ− 1 + 1

r3(γ,β) (2 + β − 3γ + (2γ2 − β − γ)µ)
)

,

l(γ, β) = 1
2(β−γ2) (β − γ − r3(γ, β)),

u(γ, β) = 1
2γ(γ−1) (5γ − β − 4 + r3(γ, β)),

(3)

where
r3(γ, β) =

√
β2 + β(4− 6γ) + γ2(4γ − 3), (4)

and r1(·) is given in (2).

0 1�Γ 1 2�Γ
Μ

���S�1���

Figure 5: Third-order (solid lines) vs. second-order (dashed lines) semipara-
metric bounds for the payoff of a European call option when β ≈ γ2 ( plots of
p(1, µ, γµ2), p(1, µ, γµ2), ρ(µ, γ, β)+, p(1, µ, γµ2, βµ3), generated with γ = 1.2,
and β = 1.5, as a function of µ).
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Proposition 4 Let σ = (1, µ, γµ2, βµ3) and

ρ(µ, γ, β)− =



c(µ, γ, β) 0 ≤ µ ≤ l(γ, β),

max{c(µ, γ, β), d(µ, γ, β)} l(γ, β) ≤ µ ≤ 2γ−2
β−γ ,

d(µ, γ, β) 2γ−2
β−γ ≤ µ ≤ u(γ, β),

µ− 1
γ µ ≥ u(γ, β),

where c(·), d(·), l(·), u(·) are as in (3). If (P
σ
) is feasible and β > γ2, then

p(σ) ≥ ρ(µ, γ, β)−.

Proof. See the Appendix. 2

As Figure 6 shows, using Proposition 4 we can now empirically show that
ρ(µ, γ, β)+ and ρ(µ, γ, β)− (see Theorem 5 and Proposition 4) give a very accu-
rate interval for the value of p(1, µ, γµ, βµ3).
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Figure 6: Valid upper and lower bounds for p(1, µ, γµ2, βµ3) for 0 ≤ µ ≤ 2/γ.
Top: ρ(µ, γ, β)+ and ρ(µ, γ, β)− for γ = 1.5, β = 3 (left), and γ = 1.2, β = 1.5
(right), as a function of µ. Bottom: Absolute error ρ(µ, γ, β)+ − ρ(µ, γ, β)− for
γ = 1.5, β = 3 (left), and γ = 1.2, β = 1.5 (right), as a function of µ.
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3 Bounds on the risk of a European call payoff

In this section, we consider the problem of finding sharp bounds on the risk
associated to the expected payoff of a European call option. This, given only
up to second-order moment (i.e., mean and variance) information on the un-
derlying asset price at maturity (without making any other assumption on the
distribution of the asset price). To measure the risk, we consider the variance
of the option’s payoff. As a first step towards finding such bounds, we start
by considering this problem when information on the expected payoff of the
European call is also given.

3.1 Risk bounds given option’s payoff expectation

Finding the sharp upper, and the sharp lower bound for the above described
problem, when information on the expected payoff of the option is also given,
can be (respectively) formulated as the following optimization problems:

(Q)

q(µ, γ, µ̂) = sup Varπ((S − 1)+)

s.t. Eπ(1) = 1
Eπ(S) = µ
Eπ(S2) = γµ2

Eπ((S − 1)+) = µ̂
π a distribution on IR+,

(5)

and

(Q)

q(µ, γ, µ̂) = inf Varπ((S − 1)+)

s.t. Eπ(1) = 1
Eπ(S) = µ
Eπ(S2) = γµ2

Eπ((S − 1)+) = µ̂
π a distribution on IR+.

(6)

Here, analogous to the semiparametric bound problems considered in Sec-
tion 2, the random variable S represents the price of the underlying asset at
maturity. Also, the formulations assume, without loss of generality, that the
strike price of the call option is $1. Thus, the problem (Q) (resp. (Q)) maxi-
mizes (minimizes) the variance of a European call option’s payoff ((S − 1)+ :=
max{0, S−1}) over all probability distributions π in IR+ whose moments satisfy
the given information on the mean (µ) and variance ((γ−1)µ2) of the underlying
asset price at maturity, and the given expected option’s payoff (µ̂).

In what follows, the aim is to provide closed-form solutions to (Q) and (Q).
For this purpose, we begin by addressing the feasibility of (Q) and (Q).

Proposition 5 The problems (Q) and (Q) are feasible if and only if

µ ≥ 0, γ ≥ 1,
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and

(µ− 1)+ ≤ µ̂ ≤


µ− 1

γ if µ ≥ 2
γ ,

1
2 ((µ− 1) +

√
(γ − 1)µ2 + (µ− 1)2) if µ ≤ 2

γ .

Proof. The first condition is the same as that of Proposition 1. The second
condition follows from Lo’s upper semiparametric bound (see Theorem 1), and
its corresponding lower semiparametric bound given in Theorem 2. 2

First, we present the closed-form solution of (Q).

Theorem 7 If (Q) is feasible then

q(µ, γ, µ̂) =


µ(γµ− 1)− µ̂− µ̂2 if µ̂ ≤ µ− 1

γ ,

1
2 (2µ̂(µ− 1) + µ((γ − 1)µ− r(µ, γ, µ̂))− µ̂2 if µ̂ ≥ µ− 1

γ ,

where r(µ, γ, µ̂) =
√

(γ − 1)((γ − 1)µ2 + 4µ̂(µ− 1)− 4µ̂2).

Proof. This follows from putting together Lemmas 14 and 15 in the Appendix. 2

Now, we present the closed-form solution of (Q).

Theorem 8 If (Q) is feasible then

q(µ, γ, µ̂) = 1
2 (2µ̂(µ− 1) + µ((γ − 1)µ− r(µ, γ, µ̂)))− µ̂2,

where r(µ, γ, µ̂) = −
√

(γ − 1)((γ − 1)µ2 + 4µ̂(µ− 1)− 4µ̂2))).

Proof. See the Appendix. 2

With Theorems 7 and 8, we can compute semiparametric bounds on the risk
associated to a given expectation of the payoff of a European call option. In
Figure 7 we compute these bounds for two particular instances of the parameters
of the problem. Analogous to the results presented in Section 2, these bounds
can be used to set bounds on the risk associated to a European call under the
risk-neutral measure pricing theory, and to test the validity of different model
assumptions. In the following section, we will introduce results that will allow
us to compute similar risk bounds when no information on the expectation of a
European call option is given.

3.2 Risk bounds without option’s payoff expectation

Now, we are ready to reconsider the problem described at the beginning of the
section; namely, finding sharp bounds on the risk (i.e., variance) associated to
the expected payoff of a European call option. This, given only up to second-
order moment (i.e., mean and variance) information on the underlying asset
price at maturity. Finding the sharp upper, and the sharp lower bound for
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this problem, can be (respectively) formulated as the following optimization
problems:

(R)

r(µ, γ) = sup Varπ((S − 1)+)

s.t. Eπ(1) = 1
Eπ(S) = µ
Eπ(S2) = γµ2

π a distribution on IR+,

and

(R)

r(µ, γ) = inf Varπ((S − 1)+)

s.t. Eπ(1) = 1
Eπ(S) = µ
Eπ(S2) = γµ2

π a distribution on IR+.

From the problems introduced in Section 3.1 (eq. (5) and (6)) and Proposition 5,
we can readily obtain closed-form solutions for (R) and (R).

Theorem 9 Problem (R) is feasible if and only if µ ≥ 0 and γ ≥ 1. Further-
more, if (R) is feasible, then r(µ, γ) = (γ − 1)µ2.

Proof. The feasibility conditions of (R) are straightforward (see Proposition 5).
Let µ ≥ 0 and γ ≥ 1. From (5) and Proposition 5, it follows that r(µ, γ) =
sup{q(µ, γ, µ̂) : (µ − 1)+ ≤ µ̂ ≤ µ̂+}, where µ̂+ = µ − 1/γ if µ ≥ 2/γ and
µ̂+ = (1/2)((µ − 1) +

√
(γ − 1)µ2 + (µ− 1)2) if µ ≤ 2/γ. Since q(µ, γ, µ̂) is

decreasing with µ̂, it follows that r(µ, γ) = q(µ, γ, (µ− 1)+) = (γ − 1)µ2. 2

Theorem 10 Problem (R) is feasible if and only if µ ≥ 0 and γ ≥ 1. Further-
more, if (R) is feasible, then r(µ, γ) = (γ − 1)((γµ− 1)+)2/γ2.
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Figure 7: Upper and lower semiparametric bounds for the risk associated to
a given expectation on the payoff of a European call option. Left: q(µ, γ, µ̂)
(dashed) and q(µ, γ, µ̂) (solid) for γ = 1.2, µ = 0.95, as a function of µ̂. Right:
q(µ, γ, µ̂) (dashed) and q(µ, γ, µ̂) (solid) for γ = 1.2, µ = 1.1, as a function of µ̂.
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Proof. It follows analogous to the proof of Theorem 9.

In particular, Theorem 9 shows that the risk associated to the payoff of a
European call option is not higher than the variance of the underlying asset price
at maturity, when information about the asset’s mean and variance is available.

3.3 A supply chain management application

As in Section 2.3, here we present an application of the results presented in this
section to a so-called supply chain game. Consider a scenario where two retailers
compete on product availability (cf. Parlar [20], Lippman and McCardle [17],
and Avsar and Baykal-Gursoy [1]). Denote by

pi = sale price per unit for retailer i

ci = purchase cost price per unit for retailer i

qi = order quantity for retailer i

Di = demand for retailer i

Xi = effective demand for retailer i,

for i = 1, 2. Then
Xi = Di + (Dj − qj)+,

where (Dj − qj)+ is the leftover from retailer j 6= i. The payoff function is
therefore:

Gi(q1, q2) = E(pi min{Xi, qi})− ciqi

= E(pi min{Di + (Dj − qj)+, qi})− ciqi,

for i, j = 1, 2, i 6= j. Each retailer wants to maximize its own profit Gi. Suppose
Di has a distribution with mean E(Di) = µi and variance Var(Di) = (γi−1)µ2

i ,
for i = 1, 2. In this setting, it is interesting (as in Scarf’s result, presented
in Theorem 6) to compute sharp lower bounds on the retailer’s profit, over all
demand distributions with the given mean and variance infomation. One way
to address this problem using the results outlined here, is the following. Let us
focus on retailer 1. Assuming that D1 and D2 are independent, it follows from
the available mean and variance information on D1 and D2 that

E(X1) = µ1 + µ̂2,

and (recalling (5) and (6)),

(γ1 − 1)µ2
1 + q

(
µ2

q2
, γ2,

µ̂2

q2

)
≤ Var(X1) ≤ (γ1 − 1)µ2

1 + q

(
µ2

q2
, γ2,

µ̂2

q2

)
,

for some (µ2 − q2)+ ≤ µ̂2 ≤ µ̂+
2 , where

µ̂+
2 =

{
µ2 − q2

γ2
if µ2 > 2q2

γ2
,

1
2 ((µ2 − q2) +

√
(γ2 − 1)µ2

2 + (µ2 − q2)2) if µ ≤ 2q2
γ2

.
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This follows from Theorems 1, 2, 7 and 8. Thus, to get a sharp bound on the
minimum profit of retailer 1 with the moment information and assumptions
discussed above, one could solve the problem:

inf{G1(µ̂2) : (µ2 − q2)+ ≤ µ̂2 ≤ µ̂+
2 },

where

G1(µ̂2) = inf Eπ(p1 min{X1, q1} − c1q1)

s.t. Eπ(1) = 1
Eπ(X1) = µ1 + µ̂2

Eπ(X2
1 ) ≥ γ1µ

2
1 + q

(
µ2
q2

, γ2,
bµ2
q2

)
+ 2µ1µ̂2 + µ̂2

2

Eπ(X2
1 ) ≤ γ1µ

2
1 + q

(
µ2
q2

, γ2,
bµ2
q2

)
+ 2µ1µ̂2 + µ̂2

2

π a distribution in IR+.

We can also solve the maximization problem to get a sharp bound G1(µ̂2) on
the maximum profit of retailer 1.

These two problems are slight variations of the one addressed by Scarf [25]
(see Theorem 6). It thus follows that for the minimization problem the second
constraint on Eπ(X2

1 ) is binding and the exact value of G1(µ̂2) follows from
Theorem 6. Likewise, for the maximization problem the first constraint on
Eπ(X2

1 ) is binding and the exact value of G1(µ̂2) follows from Theorem 2.

4 Appendix

Proof of Theorem 2. It is immediate that p(σ) ≥ (µ−1)+. To show the equality,
let k be a positive integer and consider the following distribution

πk(s) =


1

k(1+k2) if s = µ
(
1 + k

√
k(γ − 1)

)
,

1− 1
k if s = µ,

k
1+k2 if s = µ

(
1− 1

k

√
k(γ − 1)

)
.

Observe that πk is a feasible distribution for (Pσ) as long as k is sufficiently
large. If µ > 1 then taking k such that µ(1 − 1

k

√
k(γ − 1)) > 1, we have

Eπk
((S − 1)+) = Eπk

(S − 1) = µ − 1. Hence p(σ) ≤ µ − 1 if µ > 1. On the
other hand, if µ ≤ 1 then taking k such that µ(1 − 1

k

√
k(γ − 1)) ≥ 0, we have

Eπk
((S−1)+) = (µ(1+k

√
k(γ − 1))−1)+( 1

k(1+k2) ). Taking the limit as k →∞,
we get limk→∞ Eπk

((S − 1)+) = 0. Hence in either case p(σ) ≤ (µ− 1)+, which
completes the proof. 2

Now we introduce the following notation.

Definition 1 Let Mn+1 be the set of vectors σ ∈ IRn+1 for which there exists
a distribution π in IR+ such that σi = Eπ(Si) for i = 0, 1, . . . , n.
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Proof of Proposition 2. Evidently, (Pσ) and (P
σ
) are feasible if and only if

σ ∈ M4. The case µ = 0 is trivial as σ ∈ M4 ⇐⇒ σ = (1, 0, 0, 0). Hence,
let us assume µ > 0. It is known that for any σ = (1, µ, γµ2, βµ3) ∈ M4 the
following two matrices are positive semidefinite (see Theorem V.10.1 in [11],

p. 173) : R2 =
[

1 µ
µ γµ2

]
, R3 =

[
µ γµ2

γµ2 βµ3

]
. The matrices R2 and R3 are

positive semidefinite if and only if γ ≥ 1, β ≥ γ2 and µ ≥ 0. To finish the only
if direction, just note that γ = 1 implies β = γ2.

For the if direction, it is known that if R2 and R3 are positive definite; i.e., if
γ > 1, β > γ2 and µ > 0, then σ = (1, µ, γµ2, βµ3) ∈ M4 (see Theorem V.10.1
in [11], p. 173). Finally, for the case β = γ2, γ ≥ 1, and µ > 0 the following
distribution shows that σ = (1, µ, γµ2, γ2µ3) ∈M4:

π(s) =
{ 1

γ if s = γµ,

1− 1
γ if s = 0. (7)

2

In order to prove some of the results that follow, we need to introduce
the dual problems corresponding to (P

σ
) and (Pσ) (see, e.g., Bertsimas and

Popescu [3]). The dual problem corresponding to problem (P
σ
) can be written

as:

(D
σ
)

d(σ) = inf
n∑

i=0

σiyi

s.t.
n∑

i=0

yis
i ≥ (s− 1)+ for all s ∈ IR+.

It is easy to see that weak duality holds between (P
σ
) and (D

σ
):

d(σ) ≥ p(σ). (8)

The dual problem corresponding to problem (Pσ) can be written as:

(Dσ)

d(σ) = sup
n∑

i=0

σiyi

s.t.
n∑

i=0

yis
i ≤ (s− 1)+ for all s ∈ IR+.

It is easy to see that weak duality holds between (Pσ) and (Dσ):

d(σ) ≤ p(σ). (9)

Furthermore, for both the upper and lower bound problems, strong duality
holds under a suitable Slater condition (see Theorem XII.2.1 in Karlin and
Studden (1966), p. 472). In particular, we will rely on the following fact:
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Remark 1 If σ = (1, µ, γµ2, βµ3) ∈ M4 with µ > 0 and β > γ2, then d(σ) =
p(σ) and d(σ) = p(σ).

We also rely on the following straightforward property of cubic polynomials.

Proposition 6 Let p(s) = a0 + a1s + a2s
2 + a3s

3 where a0, a1, a2, a3 ∈ IR.
Assume p(s) has real roots r1 ≤ r2 ≤ r3. If a3 > 0 then p(s) ≥ 0 for s ∈
[r1, r2] ∪ [r3,∞). If a3 < 0 then p(s) ≤ 0 for s ∈ [r1, r2] ∪ [r3,∞).

We repeatedly use Proposition 6 to verify that a given vector (y0, y1, y2, y3)
is feasible for (D

σ
) or for (Dσ) when n = 3. In all cases this is done as follows:

(i) Compute (sometimes with the help of a symbolic computation package
such as Maple or Mathematica) the roots of the polynomials p1(s) =
y0 + y1s + y2s

2 + y3s
3 and p2(s) = y0 + y1s + y2s

2 + y3s
3 − (s− 1).

(ii) Verify, via Proposition 6, that p1(s) and p2(s) satisfy the relevant inequal-
ities. That is, for (D

σ
) we verify that p1(s) ≥ 0 for s ∈ [0, 1] and p2(s) ≥ 0

for s ∈ [1,∞), whereas for (Dσ) we verify that p1(s) ≤ 0 for s ∈ [0, 1] and
p2(s) ≤ 0 for s ∈ [1,∞).

To avoid redundant exposition, when we write

“By Proposition 6 the vector (y0, y1, y2, y3) is feasible for (D
σ
)”

it is to be understood that the above steps (i) and (ii) are performed.

Proof of Theorem 3. By Proposition 2 it suffices to consider the case µ > 0 and
γ ≥ 1. Consider the distribution π(s) defined by (7). Notice that π is feasible
for both (Pσ) and (P

σ
). Thus

p(σ) ≤ Eπ(S − 1)+ =
(

µ− 1
γ

)+

≤ p(σ). (10)

Now we show that the equalities actually hold. We consider two cases:
Case 1: γµ = 1. In this case it can be shown that the moment constraints

imply that π given by (7) is the only feasible distribution for (Pσ) or (P
σ
).

Then, it follows that p(σ) = p(σ) = (µ− 1/γ)+.
Case 2: γµ 6= 1. First, consider the vector y = (y0, y1, y2, y3) defined as

follows

y =

{
(0, 0, 0, 0)T for µ < 1

γ ,

( 1
(γµ) )

2(0,−2γµ, 2γµ + 1,−1)T for µ > 1
γ .

By Proposition 6 the vector y is feasible for (Dσ). Furthermore, for this y we
have

∑3
i=0 σiyi = (µ − 1

γ )+. Thus d(σ) ≥ (µ − 1/γ)+ which together with (9)
and (10) gives d(σ) = p(σ) = (µ − 1/γ)+. On the other hand, consider the
vector y = (y0, y1, y2, y3) defined as follows

y =

{
(γµ)2

(1−γµ)(3−γµ) (0, 1,− 2
γµ , ( 1

γµ )2)T for µ < 1
γ ,

(0, a, 1
γµ2 (2µ(1− a)− 3

γ ), 1
γ2µ3 (−µ(1− a) + 2

γ ))T for µ > 1
γ ,
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where a ≥ (γµ− 3
2 )2/(γµ(γµ− 1)). By Proposition 6 the vector y is feasible for

(D
σ
). Furthermore, for this y we have

∑3
i=0 σiyi = (µ − 1/γ)+. Thus d(σ) ≤

(µ− 1/γ)+ which together with (8) and (10) gives d(σ) = p(σ) = (µ− 1/γ)+.2

The proofs of some of the results that we present next, rely on the following
simple but crucial observations: Given σ = (1, µ, γµ2, βµ3) ∈ M4, consider the
moment vectors

σ′ = (1, µ, γµ2) ∈M3 and σ′′ = (1, µ, γµ2, γ2µ3) ∈M4.

Because (P
σ
) is more constrained than (P

σ′

), it follows that

p(σ′) ≥ p(σ). (11)

Likewise,
p(σ′) ≤ p(σ). (12)

Notice also that (D
σ
) and (D

σ′′

) have the same feasible set. Furthermore, any
point (y0, y1, y2, y3) in this feasible set must satisfy y3 ≥ 0. Thus, since β ≥ γ2,

d(σ) ≥ d(σ′′). (13)

Likewise,
d(σ) ≤ d(σ′′). (14)

Lemma 11 Let σ = (1, µ, γµ2, βµ3). If (Pσ) is feasible and β > γ2, then
p(σ) = 0 for µ ≤ 1/γ.

Proof. From Proposition 2 it follows that µ > 0. Since β > γ2, strong duality
holds for (Pσ), and (Dσ); i.e., d(σ) = p(σ) (see Remark 1). By Theorem 3 and
weak duality (9), d(σ′′) ≤ p(σ′′) = (µ − 1/γ)+. Since p(σ) ≥ 0, it then follows
from (14) that p(σ) = 0 for µ ≤ 1/γ. 2

Lemma 12 Let σ = (1, µ, γµ2, βµ3). If (Pσ) is feasible and β > γ2, then
p(σ) = µ− 1 for µ ≥ µ̃, where µ̃ is as defined in Theorem 4.

Proof. From Proposition 2 it follows that µ > 0, and β > γ2. Observe that
the solution (yo, y1, y2, y3) = (−1, 1, 0, 0) is feasible for (Dσ). Hence by weak
duality (9):

p(σ) ≥ d(σ) ≥
3∑

i=0

σiyi = µ− 1. (15)

Now consider the following distribution

π(s) =
{

p if s = µ + b,
1− p if s = µ− a,
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where a = µ̃ − 1, b = (µ̃ − 1) + β−3γ+2
γ−1 µ and p = (γ−1)2µ2

((β−3γ+2)µ+2a(γ−1))b . The
distribution π is feasible for (Pσ). For µ ≥ µ̃ we have µ− a ≥ 1, so

p(σ) ≤ Eπ(s)(S − 1)+ = µ− 1. (16)

Putting together (15) and (16), we get p(σ) = µ− 1 for µ ≥ µ̃. 2

Lemma 13 Let σ = (1, µ, γµ2, βµ3). If (Pσ) is feasible and β > γ2, then
p(σ) = (γµ−1)2

βµ−γ for 1/γ ≤ µ ≤ µ̃, where µ̃ is as defined in Theorem 4.

Proof. Consider the vector y = (y0, y1, y2, y3) given by

(y0, y1, y2, y3) =
(

0,
2(γµ− 1)
(γ − βµ)µ

,
(γµ− 1)(2βµ2 − γµ− 1)

(γ − βµ)2µ2
,− (γµ− 1)2

(γ − βµ)2µ2

)
.

By Proposition 6 the vector y is feasible for (Dσ) for 1/γ < µ ≤ µ̃. Furthermore,
the objective value of the vector (y0, y1, y2, y3) is equal to (γµ− 1)2/(βµ− γ) ≤
d(σ). Thus, from weak duality it follows that (γµ− 1)2/βµ− γ ≤ p(σ).

For the reverse inequality consider the following probability distribution:

π(s) =


γ3µ3−3γ2µ2+3γµ−1

β2µ3−3βγµ2+(2γ2+β)µ−γ if s = (βµ−γ)µ
γµ−1 ,

(β−γ2)µ3

βµ2−2γµ+1 if s = 1,

(γ2−β)µ2+(β−γ)µ−γ+1
βµ−γ if s = 0.

If (Pσ) is feasible, β > γ2, and 1/γ < µ ≤ µ̃, then π(s) is feasible for (Pσ)
and its objective value is equal to (γµ − 1)2/(βµ − γ). It thus follows that
p(σ) ≤ (γµ− 1)2/(βµ− γ). 2

Proof of Theorem 5. By Theorem 1 and Theorem 3, p(σ′) = p(σ′′) = µ−1/γ for
µ ≥ 2/γ. Furthermore, since β > γ2 and µ ≥ 2/γ > 0 then strong duality holds
for (P

σ
), and (D

σ
); i.e., d(σ) = p(σ) (see Remark 1). Also by weak duality (8),

d(σ′′) ≥ p(σ′′). From (11) and (13) it then follows that p(σ) = µ − 1/γ for
µ ≥ 2/γ.

Consider the vector y = (y0, y1, y2, y3) given by:

y0 = 0
y1 = s3

1−6s1s2+s2
1s2+4s1s2

2
(s1−s2)3

y2 = 3s1−2s2
1+3s2−2s1s2−2s2

2
(s1−s2)3

y3 = −2+s1+s2
(s1−s2)3

,

where s1 = 1−r1(µ, γ, β) and s2 = 1
4 (3+r2(µ, γ, β)) (see (2)). By Proposition 6

the vector y is feasible for (D
σ
) if (P

σ
) is feasible and µ ≤ 2γ/β. Furthermore,

the objective value of the vector (y0, y1, y2, y3) is equal to a(µ, γ, β) ≥ d(σ). The
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bound b(µ, γ, β) ≥ d(σ) follows from Theorem 1. Hence from weak duality it
follows that p(σ) ≤ d(σ) min{a(µ, γ, β), b(µ, γ, β)}. 2

Proof of Proposition 3. Consider two separate cases:
Case 1: |γµ− 1| ≤ δ2/3. Let S be any non-negative random variable whose

first three moments are (µ, γµ2, βµ3). The non-negativity of S and Tcheby-
cheff’s inequality yield

E((S − 1)+)2 ≤ E(((S − 1)+)2) ≤ E(S(S − 1)2) = βµ3 − 2γµ2 + µ.

But |γµ− 1| ≤ δ2/3 and β
γ2 = 1 + δ imply

βµ3 − 2γµ2 + µ ≤ µ

(
β(1 + δ)2

γ2
− 1 + 2δ

)
≤ µ(5δ2/3 + 3δ4/3 + δ2).

By Proposition 2, γ ≥ 1 so µ ≤ 1 + δ2/3. Hence

E((S − 1)+) ≤ (βµ3 − 2γµ + µ)1/2 ≤ 5δ1/3.

Since this holds for any non-negative random variable S whose first three mo-

ments are (µ, γµ2, βµ3), we get p(σ) ≤ 5δ1/3 ≤
(
µ− 1

γ

)+

+ 5δ1/3.

Case 2: |γµ − 1| > δ2/3. Consider the vector y = (y0, y1, y2, y3) defined as
follows:

y =

{
(γµ)2

(1−γµ)(3−γµ) (0, 1,− 2
γµ , ( 1

γµ )2) for γµ < 1− δ2/3,

(0, a, 1
γµ2 (2µ(1− a)− 3

γ ), 1
γ2µ3 (−µ(1− a) + 2

γ )) for γµ > 1 + δ2/3,

where a = (γµ− 3
2 )2

γµ(γµ−1) . By Proposition 6 the vector y is feasible for (D
σ
). Using

weak duality (8) and d(σ) ≤
∑3

i=0 σiyi, we get

p(σ) ≤

{
(γµ)2

(1−γµ)(3−γµ)µ( β
γ2 − 1) for γµ < 1− δ2/3,

(µ(2− a)− 3
γ )) + β

γ2 (−µ(1− a) + 2
γ ) for γµ > 1 + δ2/3.

From these expressions and Theorem 5 it follows that p(σ) ≤
(
µ− 1

γ

)+

+5δ1/3.
2

Proof of Proposition 4. Consider the following probability distribution:

π(s) =


1
2 (1− 2+β−3γ

r3(γ,β) ) if s = (β−γ+r3(γ,β))µ
2(γ−1) ,

1
2 (1 + 2+β−3γ

r3(γ,β) ) if s = (β−γ−r3(γ,β))µ
2(γ−1) ,

where r3(·) is given by (4). If (P
σ
) is feasible and l(γ, β) ≤ µ ≤ u(γ, β) (see (3)),

then π(s) is feasible for (P
σ
), and its corresponding objective value is equal to

d(µ, γ, β) ≤ p(σ).
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Consider the following probability distribution:

π′(s) =


1

2(2γ−βµ) (2− γµ− 2−3γµ+βµ2

r1(γ,β) ) if s = 1 + r1(µ, γ, β),

1
2(2γ−βµ) (2− γµ + 2−3γµ+βµ2

r1(γ,β) ) if s = 1− r1(µ, γ, β),

2(γ−1)+(γ−β)µ
2γ−βµ if s = 0

For 0 ≤ µ ≤ 2γ−2
β−γ , π′(s) is feasible for (P

σ
), and its corresponding objective

value is equal to c(µ, γ, β) ≤ p(σ). Finally for µ ≥ u(γ, β) ≥ 1/γ Remark 1,
(13), and Theorem 3 yield p(σ) = d(σ) ≥ d̄(σ′′) = (µ− 1/γ)+ = µ− 1/γ. 2

To prove the following lemmas we need to introduce the dual problems cor-
responding to (Q), and (Q). The dual problem corresponding to (Q) can be
written as:

(Q∗)

q(µ, γ, µ̂)∗ = sup yo + y1µ + y2γµ2 + ŷ1µ̂− µ̂2

s.t. yo + y1s + y2s
2 + ŷ1(s− 1)+ ≤ ((s− 1)+)2

∀s ∈ IR+

Clearly, weak duality holds between (Q) and (Q∗); that is:

q(µ, γ, µ̂) ≥ q(µ, γ, µ̂)∗ (17)

The dual problem corresponding to (Q) can be written as:

(Q
∗
)

q(µ, γ, µ̂)∗ = inf yo + y1µ + y2γµ2 + ŷ1µ̂− µ̂2

s.t. yo + y1s + y2s
2 + ŷ1(s− 1)+ ≥ ((s− 1)+)2

∀ s ∈ IR+

Clearly, weak duality holds between (Q) and (Q
∗
); that is:

q(µ, γ, µ̂) ≤ q(µ, γ, µ̂)∗ (18)

Lemma 14 If (Q) is feasible and µ̂ ≤ µ− 1
γ then q(µ, γ, µ̂) = µ(γµ−1)−µ̂−µ̂2.

Proof. Consider the solution given by yo = 0, y1 = −1, y2 = 1, and ŷ1 = −1.
This solution is feasible for (Q∗), and its corresponding objective value is equal
to µ(γµ− 1)− µ̂− µ̂2 ≤ q(µ, γ, µ̂)∗. Thus from weak duality (17) it follows that
µ(γµ−1)− µ̂− µ̂2 ≤ q(µ, γ, µ̂). For the reverse inequality consider the following
probability distribution:

π(s) =


bµ2

µ(γµ−1)−bµ if s = µ(γµ−1)bµ ,

µ2(γ(µ−bµ)−1)
µ(γµ−1)−bµ if s = 1,

1− µ + µ̂ if s = 0.
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If (Q) is feasible and µ̂ ≤ µ − 1/γ, then π(s) is feasible for (Q) and its corre-
sponding objective value is equal to µ(γµ− 1)− µ̂− µ̂2 ≥ q(µ, γ, µ̂). 2

Lemma 15 Let r(µ, γ, µ̂) =
√

(γ − 1)((γ − 1)µ2 + 4µ̂(µ− 1)− 4µ̂2). If (Q) is
feasible and µ̂ ≥ µ− 1

γ , then q(µ, γ, µ̂) = 1
2 (2µ̂(µ− 1) + µ ((γ − 1)µ− r(µ, γ, µ̂)))−

µ̂2.

Proof. Consider the solution given by

yo = − 1
2

(
(2µ̂− µ)µ + µ

r(µ,γ,bµ)

(
2(γ − 2)µ̂2 + (γ − 1)µ2 − 2µ̂(1 + (γ − 2)µ)

))
y1 = µ̂− µ− 1

r(µ,γ,bµ)

(
2µ̂2 − (γ − 1)µ2 + µ̂(2 + (γ − 3)µ)

)
y2 = − 1

2

(
1

µr(µ,γ,bµ)

(
(γ − 1)µ2 + 2µ̂(µ− 1)− 2µ̂2

)
− 1

)
ŷ1 = (µ− 1)− 1

r(µ,γ,bµ) ((γ − 1)µ(µ− 1− 2µ̂))
(19)

Under the hypothesis conditions, this solution is feasible for (Q∗), and its corre-
sponding objective value is equal to 1

2 (2µ̂(µ− 1) + µ ((γ − 1)µ− r(µ, γ, µ̂))) −
µ̂2 ≤ q(µ, γ, µ̂)∗. Thus from weak duality (17) it follows that
1
2 (2µ̂(µ− 1) + µ ((γ − 1)µ− r(µ, γ, µ̂))) − µ̂2 ≤ q(µ, γ, µ̂). For the reverse in-
equality let

s1 = µ
2bµ (2µ̂ + (γ − 1)µ− r(µ, γ, µ̂)) ,

p1 = 1
2(1−2µ+γµ2) (µ (2µ̂ + (γ − 1)µ + r(µ, γ, µ̂))− 2µ̂) ,

(20)

and consider the following probability distribution:

π(s) =


p1 if s = s1,

1− p1 if s = µ(1−γµ)+bµs1
1+bµ−µ .

(21)

If (Q) is feasible and µ̂ ≥ µ − 1/γ, then π(s) is feasible for (Q), and its corre-
sponding objective value is equal to 1

2 (2µ̂(µ−1)+µ((γ−1)µ−r(µ, γ, µ̂)))−µ̂2 ≥
q(µ, γ, µ̂). 2

Proof of Theorem 8. Consider the solution given by (19) with r(µ, γ, µ̂) as in the
statement of Theorem 8. This solution is feasible for (Q

∗
), and its correspond-

ing objective value is equal to 1
2 (2µ̂(µ− 1) + µ ((γ − 1)µ− r(µ, γ, µ̂))) − µ̂2 ≥

q(µ, γ, µ̂)∗. Thus from weak duality (18) it follows that
1
2 (2µ̂(µ− 1) + µ ((γ − 1)µ− r(µ, γ, µ̂))) − µ̂2 ≥ q(µ, γ, µ̂). For the reverse in-
equality consider the probability distribution given by (20), and (21) where
r(µ, γ, µ̂) is again as in the statement of Theorem 8. If (Q) is feasible, then this
probability distribution is feasible for (Q), and its corresponding objective value
is equal to 1

2 (2µ̂(µ− 1) + µ ((γ − 1)µ− r(µ, γ, µ̂)))− µ̂2 ≤ q(µ, γ, µ̂). 2

23



References

[1] Z. M. Avsar and Baykal-Gursoy, Inventory control under substitutable de-
mand: A stochastic game application, M. Naval Res. Logist. 49 (2002),
359–375.

[2] D. Bertsimas, K. Natarajan, and C. Teo, Tight bounds on expected order
statistics, Probab. Eng. Inform. Sc. (forthcoming).

[3] D. Bertsimas and I. Popescu, On the relation between option and stock
prices: An optimization approach, Oper. Res. 50 (2002), 358–374.

[4] P. P. Boyle and X. S. Lin, Bounds on contingent claims based on several
assets, J. Fin. Econ. 46 (1997), no. 3, 383–400.

[5] A. d́ Aspremont and L. El Ghaoui, Static arbitrage bounds on basket option
prices, Math. Program. A (forthcoming).

[6] S. P. Dokov and D. P. Morton, Second-order lower bounds on the expectation
of a convex function, Math. Oper. Res. 30 (2005), no. 3, 662–677.

[7] G. Gallego and I. Moon, The distribution free newsboy problem: review and
extensions, Oper. Res. Soc. 44 (1993), 825–834.

[8] B. Grundy, Option prices and the underlying asset’s return distribution, J.
Finance 46 (1991), 1045–1069.

[9] D. Hobson, P. M. Laurence, and T. H. Wang, Static arbitrage upper bounds
for the prices of basket options, Quant. Financ. (forthcoming).

[10] P. Jaeckel, Monte carlo methods in finance, John Wiley and Sons, Ltd.,
2002.

[11] S. Karlin and W. Studden, Tchebycheff systems: with applications in analy-
sis and statistics, Pure and Applied Mathematics Vol. XV, A Series of Texts
and Monographs, Interscience Publishers, John Wiley and Sons, 1966.

[12] V. H. De la Pena, R. Ibragimov, and S. J. Jordan, Option bounds, J. Appl.
Probab. 41A (2004), 145–156.

[13] J. B. Lasserre, Global optimization problems with polynomials and the prob-
lem of moments, SIAM J. Optim. 11 (2001), no. 3, 796–817.

[14] , Bounds on measures satisfying moment conditions, Ann. of Appl.
Probab. 12 (2002), 1114–1137.

[15] P. M. Laurence and T. H. Wang, Sharp upper and lower bounds for basket
options, Applied Mathematical Finance (forthcoming).

[16] H. Levy, Upper and lower bounds of put and call option value: Stochastic
dominance approach, J. Financ. 40 (1985), no. 4, 1197–1217.

24



[17] S. A. Lippman and K. McCardle, The competitive newsboy, Oper. Res. 45
(1997), 54–65.

[18] A. Lo, Semi-parametric upper bounds for option prices and expected payoffs,
J. Finan. Econ. 19 (1987), 373–388.

[19] R. Merton, Theory of rational option pricing, Bell J. Econ. 4 (1973), no. 1,
141–183.

[20] M. Parlar, Game theoretic analysis of the substitutable product inventory
problem with random demand, M. Naval Res. Logist. 35 (1988), 397–409.

[21] S. Perrakis and P. Ryan, Option pricing bounds in discrete time, J. Financ.
39 (1984), no. 2, 519–527.

[22] I. Popescu, A semidefinite programming approach to optimal moment
bounds for convex classes of distributions, Math. Oper. Res. (forthcoming).

[23] P. H. Ritchken, On option pricing bounds, J. Financ. 40 (1985), no. 4,
1219–1233.

[24] T. Rockafellar, Convex analysis, Princeton University Press, Princeton,
1970.

[25] H. Scarf, A min-max solution of an inventory problem, Studies in the Math-
ematical Theory of Inventory and Production (K. J. Arrow, S. Karlin, and
H. Scarf, eds.), Stanford University Press, 1958, pp. 201–209.

[26] M. Todd, Semidefinite optimization, Acta Numer. 10 (2001), 515–560.

[27] L. F. Zuluaga and J. Peña, A conic programming approach to generalized
tchebycheff inequalities, Math. Oper. Res. 30 (2005), no. 2, 369–388.

25


