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Abstract The modeling practices of constraint programming (CP), artificial intel-

ligence, and operations research must be reconciled and integrated if the compu-

tational benefits of combining their solution methods are to be realized in practice.

This chapter focuses on CP and mixed integer/linear programming (MILP), in which

modeling systems are most highly developed. It presents practical guidelines and

supporting theory for the two types of modeling. It then suggests how an integrated

modeling framework can be designed that retains, and even enhances, the modeling

power of CP while allowing the full computational resources of both fields to be ap-

plied and combined. A series of examples are used to compare modeling practices

in CP, MILP, and an integrated framework.

1 Modeling as a Key to Hybrid Problem Solving

The solution methods of constraint programming, artificial intelligence, and oper-

ations research have complementary strengths. Recent research shows that these

strengths can be profitably combined in hybrid algorithms, many of which are de-

scribed in subsequent chapters of this book. Under the right conditions, one need

not choose between CP, AI, and OR, but can have the best of all three worlds.

There is more to integration, however, than combining algorithmic techniques.

There is also the issue of problem formulation. CP, AI, and OR have developed

their own distinctive modeling styles, which poses the question of how to formulate

problems that are to be solved by hybrid methods. Whereas the solution methods of

the three fields can be seen as related and complementary, the modeling styles seem

very different and possibly irreconcilable.

For example, one can contrast CP models with mixed integer/linear program-

ming (MILP) models developed in the OR community. CP organizes its models
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around high-level global constraints, each of which represents a structured collec-

tion of simpler constraints. The solver may have a large library of global constraints

for which special-purpose algorithms have been designed. The modeler selects con-

straints that correspond to the major structural elements of the problem and com-

bines them with some low-level constraints as needed to complete the formulation.

An advantage one might claim for this approach is that the selection of global

constraints reveals the special structure of the problem and allows the solver to ex-

ploit it. It may also result in a fairly succinct model that is easier to read and debug

because the global constraints reflect how the modeler thinks about the problem.

Such a model can be seen as a theory or explanation that helps us understand the

phenomenon described by the model. Scientific theories, after all, are essentially

explanatory models of phenomena. On the other hand, a model that uses high-level

global constraints may have to be reformulated for solvers that recognize different

sets of constraints.

An MILP model takes the opposite approach. It uses a very small set of primi-

tive terms, namely linear inequalities. The problem is broken down into elementary

ideas that can be captured with inequality constraints, perhaps using auxiliary vari-

ables and other devices. Advanced modeling systems allow one to abbreviate the

formulation with loops and if-then statements that generate a large number of con-

straints, but the formulation must nonetheless be conceived in terms of inequality

constraints.

An advantage cited for this approach is the independence of model and method.

Once the model is written, it can be submitted to any MILP solver. In fact, there

are libraries of MILP instances that have been used, without alteration, as testbeds

for several generations of solvers. In addition, the user need not be familiar with

a library of meta-constraints. Finally, inequality constraints are suitable for the

highly developed relaxation technology of MILP, including strong cutting planes,

Lagrangean relaxation, and so forth. On the negative side, the model may be long,

nonintuitive, and hard to debug. The solver may be unable to exploit substructure

that global constraints would have revealed, aside from a few special types of struc-

ture that can be automatically recognized by the more sophisticated solvers.

The modeling issue must be resolved if hybrid solvers are to harness the comple-

mentary strengths of CP and MILP. CP methods rely heavily on the application of

specialized filtering methods to global constraints and must therefore know where

global constraints appear in the problem. MILP methods rely heavily on relaxation

methods and cutting planes that have been developed for inequality constraints and

therefore require that inequality constraints appear in the model.

The modeling issue is important in practice. Developing a formulation and the

associated data is an expensive undertaking. Models must typically be reformulated,

updated, and debugged many times. While reasonably fast solution is desirable, it

is equally essential that solution software support and simplify modeling activities.

Practitioners frequently report that the greatest benefit of developing a model is not

so much the ability to obtain a solution as the clearer understanding of the problem

one obtains from the modeling exercise.
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Practical application also requires interaction between modeling and the solution

process. There are typically alternative ways to formulate a problem, some of which

result in much faster solution than others. A practitioner can begin with a straight-

forward model and solve it on a small problem instance. The model can then be

altered and refined as the instances are scaled up, so as to maintain tractability. A

practical modeling system should support this kind of trial-and-error process.

This chapter focuses on integrating the modeling styles of CP and MILP in par-

ticular, because it is in these areas that modeling systems are most highly developed.

After a brief review of current hybrid modeling systems and some basic terminol-

ogy, the chapter is organized in three major sections. The first two sections develop

guidelines for CP and MILP modeling, respectively. They introduce the necessary

theory and present a series of examples to illustrate good modeling practice. The

third section suggests how these modeling practices may be merged into a unified

approach, based on ideas that have evolved in the CP-AI-OR community over the

last decade or more. It illustrates the ideas by showing how each of the examples

discussed earlier may be rendered in an integrated modeling framework. The paper

concludes by assessing the extent to which the particular strengths of CP and MILP

modeling carry over into an integrated framework.

It is possible to develop modeling languages that specify the search procedure

as well as the problem (e.g., [21, 40]). Although algorithmic modeling is beyond

the scope of this chapter, it may become a key component of integrated modeling

systems.

2 Modeling Systems

A number of modeling systems implement CP/MILP hybrid modeling to a greater

or lesser extent. A pioneering effort is ECLiPSe [2, 4, 15, 50], a Prolog-based con-

straint logic programming system that provides an interface with linear and MILP

solvers. ECLiPSe was recently revised to accept models written in MiniZinc, a CP-

based modeling system [41]. OPL Studio [22] provides a modeling language that

expresses both MILP and CP constraints. A script language allows one to write

algorithms that call the CP and MILP solvers repeatedly. Mosel [17, 18] is a spe-

cialized programming language that interfaces with various solvers, including MILP

and CP solvers.

SCIL [3] is an MILP solver with a modeling language that designates specially

structured sets of inequalities. SIMPL [5, 62] is a hybrid solver with a high-level

modeling language that integrates CP and MILP modeling. The solver processes

each constraint with both CP-based and MILP-based techniques that are combined

in a branch-infer-and relax algorithmic framework. SCIP [1] is a callable library

that gives the user control of a solution process that can involve both CP and MILP

solvers. G12 [53] is a CP-based and hybrid system that accepts models written in

the Zinc modeling language and uses a mapping language (Cadmium) to associate

the models with underlying solvers and/or search strategies.
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There has been some investigation of integrated modeling beyond the CP/MILP

interface. The modeling language in the Comet system [21], which evolved from

an earlier system Localizer [40], allows CP and MILP constraints as well as high-

level constraint-based specifications of local search. The global optimization pack-

age BARON [54, 55] combines nonlinear (as well as linear) integer programming

with CP-style domain reduction, although it uses a modeling system (AIMMS) that

does not support CP-style constraints. Some general discussions of integrated mod-

eling include [26, 29, 62].

No attempt is made here to describe currently available modeling languages, be-

cause they evolve rapidly. The emphasis is on general principles that should inform

the design of any integrated modeling system. In fact, none of the existing systems

implement all of these principles or fully integrate CP and MILP modeling. Yet the

necessary concepts and technology have reached a stage where a seamlessly inte-

grated modeling system is within reach. Perhaps the discussion to follow will help

encourage efforts in this direction.

3 Basic Terminology

For present purposes, a problem consists of a stock of variables x1, . . .,xn and a set

of constraints. Each variable x j is associated with a domain that can be viewed as

a set of permissible values for x j. A solution is any tuple x = (x1, . . .,xn) for which

each x j belongs to its domain. Each constraint is associated with a set of solutions

that satisfy it. The goal is to find a feasible solution, which is a solution that satisfies

all the constraints.

When there is an objective function f (x), the goal is to find an optimal solution,

which can without loss of generality be defined as a feasible solution that mini-

mizes f (x) subject to the constraints. That is, an optimal solution x̄ is one such that

f (x̄) ≤ f (x) for all feasible solutions x.

The terminology here is borrowed from both CP and OR, with constraints and

domains defined roughly as in CP, and the various types of solutions as in OR. It is

important to note that the domain of a variable need not consist of numbers, although

this is the normal practice in OR. In CP, a domain may consist of arbitrary objects,

or even sets of objects.

CP methods are typically designed to find feasible solutions and OR methods to

find optimal solutions, but this is not a fundamental difference. CP methods can find

optimal solutions by adding the constraint f (x) ≤U to the problem and gradually

reducing the bound U until no feasible solution can be found.

The modeling task is (a) to identify variables, domains, constraints, and perhaps

an objective function that formulate the desired problem, and (b) to express the con-

straints and objective function in a form that allows solution by available software.
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4 CP Modeling

The concepts of domain consistency, filtering, propagation, and global constraints

are essential to understanding CP modeling practice. Once these are defined, guide-

lines for CP modeling can be stated and illustrated with a series of examples. These

examples will recur in later sections to show how they can be formulated as MILP

models and in an integrated modeling context. For further practice, one can consult

the tutorials on CP modeling in [49, 52].

4.1 Consistency, Filtering, and Propagation

A central concept in CP solution technology is domain consistency, also known as

generalized arc consistency or hyperarc consistency. A problem is domain consis-

tent if every element of every domain is consistent with the constraint set. That is,

for each element v in the domain of any variable x j , there is at least one feasible

solution in which x j = v. Another way to put this is that each variable’s domain is

equal to the projection of the feasible set onto that variable.

CP solvers typically achieve or approximate domain consistency for individual

constraints by means of filtering algorithms that remove inconsistent values from

domains. The smaller domains obtained by filtering a constraint become the starting

point for filtering another constraint, in a process known as constraint propagation.

It is important to note that constraint propagation does not necessarily achieve do-

main consistency for the problem as a whole, even if the filtering algorithms achieve

it for every individual constraint.

The advantage of filtering domains is that the search algorithm spends less time

enumerating values that cannot be part of a feasible solution. If filtering reduces

every domain to a singleton and achieves domain consistency as well, then a feasible

solution is at hand.

A somewhat weaker form of consistency is bounds consistency, which applies

when there is a natural ordering for the elements of a domain. A problem is bounds

consistent if for each domain, its smallest value is consistent with the constraint set,

and likewise for its largest value.

4.2 Global Constraints

CP modeling relies heavily on the use of global constraints. A global constraint

represents a set of more elementary constraints that exhibit special structure when

considered together. Each individual constraint typically involves only a few of the

variables that appear in the global constraint and might be viewed as “local” in that

sense.
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A practice of using global constrains, rather than writing out the more elementary

constraints, has several advantages: (a) it is more convenient; (b) it yields a more

natural and readable model that is more easily debugged; (c) it alerts the solver

that the model contains special structure that might have been overlooked if the

elementary constraints had been written. In particular, filtering algorithms designed

for a global constraint can generally remove more values than filtering algorithms

designed for the more elementary constraints.

An example of a global constraint is the well-known all-different constraint,

which can be written alldiff(X) and requires that the variables in the set

X = {x1, . . .,xk} take pairwise distinct values. It replaces a set of more elementary

constraints in the form of inequations xi 6= x j for 1 ≤ i < j ≤ k.

Filtering is more effective when applied to an alldiff constraint than when

applied to the individual inequations it represents. Suppose, for example, that vari-

ables x1,x2,x3 all have domain {a,b}. The constraintalldiff({x1,x2,x3}) allows

filtering to reduce each domain to the empty set if domain consistency is achieved.

By contrast, achieving domain consistency for the individual inequations x1 6= x2,

x1 6= x3, x2 6= x3 removes no values from the domains. It is therefore better modeling

practice to use the alldiff.

4.3 Example: Sudoku Puzzles

The popular sudoku puzzle (Fig. 1) illustrates how global constraints can be used in

modeling, in this case alldiff constraints. A sudoku puzzle consists of a 9× 9

grid whose cells must be filled with digits 1, . . .,9 so that each row and each column

of the grid contains nine distinct digits. In addition, each of the nine 3×3 subsquares

of the grid must contain nine distinct digits. Some of the cells are preassigned digits.

The first task in formulating a model is normally to define the variables. In this

case, a natural scheme is to let xi j be the digit in row i and column j, so that each

xi j has domain {1, . . .,9}. The domain could of course be any set of nine distinct

objects, not necessarily numbers, without affecting the problem. Let Xi∗ be the set

6  7 4 1 2   5 

    8  4   

  4   3 8 2 6 

 2     1 6 3 

   5  6    

3 4 6     5  

4 7 3 2   5   

  9  5     

5   1 7 9 3  2 

 

Fig. 1 A sudoku puzzle.
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of variables in the ith row, namely {xi1, . . .,xi9}, and let X∗ j be the set of variables

in the jth column. Also let Xk` contain the variables corresponding to the cells in

the 3×3 square in position k, `, for k, `∈ {1,2,3}. Suppose the content of cell i, j is

preassigned ai j for all (i, j)∈ S. Then the problem can be formulated

alldiff(Xi∗), alldiff(X∗i), i = 1, . . .,9

alldiff(Xk`), k, ` = 1,2,3

xi j = ai j, all (i, j)∈ S

xi j ∈ {1, . . .,9}, all i, j

(1)

Propagation is more effective if the alldiffs are filtered simultaneously. If the

modeling system has a multiple alldiff constraint (not yet standard), the first

two lines of (1) should be replaced with

multiAlldiff

(

Xi∗,X∗i, i = 1, . . .,9,

Xk`, k, ` = 1, . . .,3

)

(2)

Moreover, the alldiffs in the first line of (1) have special structure, in that they

define a Latin square. If at some point a specialized filter is developed for Latin

squares, a global constraint LatinSquare(X) can be added to the model, where

X is the matrix of variables xi j. The new constraint is redundant of the alldiffs,

but redundancy can result in better propagation.

4.4 CP Modeling Guidelines

At least four principles should guide the formulation of CP models. They will also

carry over into an integrated modeling framework.

1. A specially-structured subset of constraints should be replaced by a single global

constraint that captures the structure, when a suitable one exists. This produces a

more succinct model and can allow more effective filtering and propagation.

2. A global constraint should be replaced by a more specific one when possible, to

exploit more effectively the special structure of the constraints.

3. The addition of redundant constraints (i..e, constraints that are implied by the

other constraints) can improve propagation.

4. When two alternate formulations of a problem are available, including both (or

parts of both) in the model may improve propagation. This is especially helpful

when some constraints are hard to write in one formulation but suitable for the

other. The dual formulations normally contain different variables, which should

be defined in terms of each other through the use of channeling constraints.

The sudoku formulation illustrates Principle 1, because each alldiff con-

straint represents many inequations. If the multiAlldiff constraint is used as
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in (2), this again accords with Principle 1, because the multiAlldiff replaces

twenty-seven alldiff constraints with overlapping variable sets.

The sudoku model (1) also illustrates Principle 3, because one of the alldiff

constraints is redundant. If the numbers in rows 1 through 8 are all different, and

those in columns 1 through 9 are all different, then row 9 necessarily contains nine

different numbers. Nonetheless it is good modeling practice to include a redundant

alldiff constraint for row 9.

A practice of including redundant constraints may appear contrary to the goal

of writing perspicuous models, because it makes the models longer. Yet redundant

constraints can sometimes result in a more intuitive statement of the problem, as in

the sudoku example. When redundancy is introduced by dual formulations, the two

formulations can be separated in the model statement for clarity. It is natural (as well

as computationally advantageous) to make each one as complete as possible, rather

than arbitrarily dropping some constraints for the sake of removing redundancy.

In other cases, however, the modeler may become aware of redundant constraints

after completing the formulation. Adding them complicates the model, as in the case

of the LatinSquare constraint in the sudoku model. Yet the redundant constraints

can be written separately for clarity, and the model continues to provide an explana-

tory theory—perhaps even a better theory, because it includes some “theorems”

(redundant constraints) along with the “axioms” (original constraints). It can be a

good exercise to think through some of the consequences of a model by deriving

redundant constraints.

4.5 Example: Car Sequencing

A car sequencing example, adapted from [52], introduces three important global

constraints. An assembly line makes fifty cars a day. To simplify matters, suppose

that only four types of cars are manufactured, although in practice there could be

hundreds. Each car type is defined by the options installed, as indicated in Table 1.

In this example, the only available options are air conditioning and a sun roof. The

table also shows how many cars of each type are required on a given day.

Table 1 Options and production level required for each car type.

Type Air cond. Sun roof Production

a no no 20

b yes no 15

c no yes 8

d yes yes 7

The problem is to sequence the car types so as to meet production requirements

while observing the capacity constraints of the assembly line. The constraints are

that at most three cars in any sequence of five can be given air conditioning, and at
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Car type ti: d b b c a b d
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Fig. 2 A feasible solution for a small instance of the car sequencing problem in which the produc-

tion requirements are (Da,Db,Dc,Dd) = (1,3,1,2). The brackets indicate subsequences in which

assembly line capacity constraints are enforced.

most one in any sequence of three can be given a sun roof. Figure 2 shows a feasible

solution for a smaller instance of the problem.

A natural decision variable for this problem is the type ti of car to assign to

each position i in the sequence. To make sure that the production requirements are

met, a constraint is needed that counts the number of times each type occurs in the

sequence. The cardinality constraint, also known as the generalized cardinality or

gcc constraint, serves the purpose [47, 48]. It is written cardinality(X ,v, l,u),
where X is a set of variables, v = (v1, . . .,vk) a tuple of values (not necessarily

numerical), l = (`1, . . ., `k) a tuple of lower bounds, and u = (u1, . . .,uk) a tuple

of upper bounds. The constraint says that, for each i, at least `i and at most ui of

the variables in X must take the value vi. The production requirements for the car

sequencing problem can be written with a single cardinality constraint,

cardinality({t1, . . ., t50}, (a,b,c,d),(20,15,8,7),(20,15,8,7)) (3)

The alldiff constraint is a special case of a cardinality constraint in which

each value is allowed to appear at most once. The alldiff constraints in the

sudoku model (1) can therefore be replaced with cardinality constraints. It is best

to follow Principle 2, however, by using the more specific alldiff constraint.

Although filtering methods designed specifically for alldiff are likely to have

the same result as cardinality filters (either typically achieves domain consis-

tency), a alldiff filter generally runs faster.

The capacity constraints in the car sequencing problem limit the number of times

each option occurs in subsequences of a specified length. However, the variables xi

indicate what type of car occurs in position i of the sequence, not which option. We

know only that types b and d use the air conditioning option, and types c and d use
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the sun roof option. This requires a slightly different kind of counting than provided

by the cardinality constraint. One must count the number of times type b or d occurs

in a subsequence, and the number of times type c or d occurs. The among constraint

was developed for such situations [10]. It can be written among(X ,S, `,u), where

X is a set of variables, S a set of values (not necessarily numerical), and ` and u

are lower and upper bounds. The constraint requires that at least ` and at most u

variables in X have a value that is among those in S.

Constraints of this kind can enforce the capacity constraints by applying them to

every subsequence of five variables for air conditioners and every subsequence of

three variables for sun roofs:

among
(

{t j, . . ., t j+4},{b,d},0,3
)

, j = 1, . . .,46

among
(

{t j, t j+1, t j+2},{c,d},0,1
)

, j = 1, . . .,48

Although this is a correct formulation, it fails to recognize that the among con-

straints are closely related. They apply to overlapping subsequences of variables of

equal length. Faster and more effective filters can be designed if one exploits this

structure (Principle 1). For this reason, scheduling formulations frequently use the

constraintsequence(x,S,q, `,u), where x = (x1, . . .,xn) is a tuple of variables, S a

set of values, and q an integer [10, 23, 38]. The constraint says that in any sequence

of q consecutive variables x j, . . .,x j+q−1, at least ` and at most u variables must

take a value in S. The capacity constraints can now be more compactly written as

the second and third constraints in the complete car sequencing model that appears

below.

cardinality({t1, . . ., t50}, (a,b,c,d),(20,15,8,7),(20,15,8,7))

sequence((t1, . . ., t50),{b,d},5,0,3)

sequence((t1, . . ., t50),{c,d},3,0,1)

ti ∈ {a,b,c,d}, i = 1, . . .,50

(4)

4.6 Example: Employee Scheduling

Employee scheduling is one of the most successful application areas for CP, and

several well-studied global constraints have been developed for it. A small nurse

scheduling problem, adapted from [16, 26, 49], illustrates dual formulations (Prin-

ciple 4) and channeling constraints.

Four nurses are to be assigned to eight-hour shifts. Shift 1 is the daytime shift,

while shifts 2 and 3 occur at night. The schedule repeats itself every week. In addi-

tion,

1. Every shift is assigned exactly one nurse.

2. Each nurse works at most one shift a day.

3. Each nurse works at least five days a week.
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4. To ensure a certain amount of continuity, no shift can be staffed by more than

two different nurses in a week.

5. To avoid excessive disruption of sleep patterns, a nurse cannot work different

shifts on two consecutive days.

6. Also, a nurse who works shift 2 or 3 must do so at least two days in a row.

We can formulate the problem by assigning nurses to shifts or by assigning shifts

to nurses. Rather than select one alternative, Principle 4 recommends using both.

This not only sidesteps a difficult modeling decision but can result in faster solution

than either model would permit if used in isolation. Table 2 displays a feasible as-

signment of nurses to shifts, and Table 3 displays the equivalent assignment of shifts

to nurses.

We first write a model that assigns nurses to shifts. Let wsd be the nurse assigned

to shift s on day d, where the domain of wsd is the set of nurses {A,B,C,D}. Con-

straint 1 is satisfied automatically, by virtue of the notation. Constraint 2 says in

effect that three different nurses work each day:

alldiff(w1d ,w2d ,w3d) , d = 1, . . .,7 (5)

Because there are 21 shifts in a week, constraint 3 implies that each nurse will work

at least five and at most six days a week. This is readily expressed with a cardinality

constraint:

cardinality(W, (A,B,C,D), (5,5,5,5),(6,6,6,6)) (6)

where W is the set of variables wsd .

Constraint 4 requires that for each shift s, at most two nurses are assigned to the

variables ws1, . . .,ws7 corresponding to the seven days of the week. Thus while con-

straint 2 counts the number of times a value occurs, constraint 3 counts the number

of different values that occur. One therefore uses the nvalues(X , `,u) global con-

straint [8, 11], which requires that the variables in X take at least ` and at most u

different values.

Table 2 Employee scheduling viewed as assigning workers to shifts. A feasible solution is shown.

Sun Mon Tue Wed Thu Fri Sat

Shift 1 A B A A A A A

Shift 2 C C C B B B B

Shift 3 D D D D C C D

Table 3 Employee scheduling viewed as assigning shifts to workers (shift 0 corresponds to a day

off). A feasible solution is shown.

Sun Mon Tue Wed Thu Fri Sat

Worker A 1 0 1 1 1 1 1

Worker B 0 1 0 2 2 2 2

Worker C 2 2 2 0 3 3 0

Worker D 3 3 3 3 0 0 3
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nvalues({ws1, . . .,ws7},1,2), s = 1,2,3

Because alldiff is a special case of nvalues with ` = u = n, one could

have used nvalues rather than alldiff to express constraint 2. However, again

following Principle 2, it is better to use the more specific constraint.

The remaining constraints are difficult to express in terms of variables wsd , and

there are no obvious global constraints that capture them. One can therefore move

to an alternative model in which variable tid is the shift assigned to nurse i on day

d, and where shift 0 denotes a day off. Constraint 1 is satisfied in this model by

assigning different shifts to the nurses on each day:

alldiff(tAd , tBd , tCd , tDd) , d = 1, . . .,7

Constraint 2 is automatically satisfied by virtue of the notation. Constraint 3 says

that each nurse gets at most two days off in a week (and at least one, because the

other nurses get at most two days off):

cardinality({ti1, . . ., ti7},0,1,2), i = A,B,C,D

Thus Constraints 1–3 are enforced in both models, a redundancy that can speed

solution.

Constraint 4 is not easily expressed in terms of the variables tid. However, these

variables are suitable for Constraints 5 and 6, which refer to patterns of shifts that

each nurse may work. This allows one to use the stretch constraint [13, 20, 45],

written stretch(x,v, `,u,P), where x = (x1, . . .,xn) and P is a set of patterns. The

constraint requires, for each vi, that any stretch of variables with value vi in the

sequence x1, . . .,xn has length at least `i and at most ui. A stretch is a maximal

subsequence of consecutive variables that take the same value. A pattern is a pair

(v,v′) of distinct values. The constraint requires that whenever a stretch of value v

immediately precedes a stretch of value v′, the pair (v,v′) occurs in P. Constraints 5

and 6 can be written

stretch-cycle((ti1, . . ., ti7), (2,3), (2,2),(6,6),P), i = A,B,C,D

where P consists of all patterns that include a day off

P = {(s,0), (0, s) | s = 1,2,3}

One must use the cyclic version of stretch because the schedule is cyclic, and a

stretch can extend across the weekend.

Constraints 5 and 6 can also be written as a regular constraint [46], which gen-

eralizes stretch and can often be processed at least as efficiently. A regular

constraint models allowable sequences of values as expressions in a regular lan-

guage, which can in turn be represented by a deterministic finite automaton. How-

ever, it is not straightforward to represent cyclic stretches with an automaton,
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due in part to the necessity of introducing additional variables. The more specific

stretch constraint is therefore used in the present model.

Finally, the two models are linked with channeling constraints that relate the

variables wsd with the variables tid:

wtidd = i, all i,d

twsds = s, all s,d
(7)

The first constraint says that the nurse assigned to the shift to which nurse i is as-

signed on day d should be nurse i, and analogously for the second constraint. For

(7) to be valid, one must interpret w0d as the nurse that is off duty on day d. When

a problem instance requires more than one nurse to be off duty on a given day, it is

necessary to define a dummy shift (representing a day off) for each nurse.

Note that variables occur as subscripts in the constraints (7). This powerful mod-

eling device does not occur in MILP but is frequent in CP. A CP or integrated mod-

eling system can parse an expression of the form xt , where t is a variable with

a finite domain, by replacing it with a new variable y and adding the constraint

element(t, (xv1
, . . .,xvk

),y). The values v1, . . .,vk belong to the domain of t , and

the element constraint requires that y take the same value as the variable in the

item xv1
, . . .,xvk

whose subscript is the value of t . Thus the modeling system inter-

prets the constraints (7) as

yid = i, all i,d

zsd = s, all s,d

element(tid , (w0d, . . .,w3d),yid) , all i,d

element(wsd , (tAd, . . ., tDd), zsd) , all s,d

Filtering methods have been developed for the element constraint as for any

other global constraint, and they allow the channeling constraints (7) to improve

propagation when the dual formulation is used. The dual formulation also speeds

solution by allowing all the elements of the problem to be written as high-level

global constraints (in one formulation or the other), which appears to be impossible

if either formulation is used alone.

4.7 Assignment and Circuit Problems

Assignment and circuit problems illustrate several lessons in CP, MILP, and inte-

grated modeling. The assignment problem can be viewed as one in which the objec-

tive is find a minimum cost assignment of m tasks n to workers (m ≤ n). Each task

is assigned to a different worker, and no two workers are assigned the same task. If

m < n, some of the workers will not be assigned tasks. If assigning worker i to task

j incurs cost ci j, the problem is simply stated:
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min ∑
i

cixi

alldiff(x1, . . .,xn), xi ∈ Di, i = 1, . . .,n
(8)

where xi is the worker assigned to task i. The domain Di of xi is the set of workers

that can do task i.

The assignment problem can be viewed as a sequencing problem in which the

cost depends on which item appears in each position of the sequence. The circuit

problem, by contrast, is a sequencing problem in which the cost depends on which

item follows which in the sequence. The sequence is circular in the sense that the

first item is viewed as following the last. The problem can be written

min ∑
i

cxixi+1

alldiff(x1, . . .,xn), xi ∈ Di, i = 1, . . .,n
(9)

where cn,n+1 is identified with cn1. If each domain Di is {1, . . .,n}, the problem can

be viewed as seeking a shortest hamiltonian circuit on a complete directed graph,

where ci j is the length of edge (i, j). This is the famous traveling salesman problem,

in which the vertices are cities that the salesman must visit before returning to his

home city. One can deal with edges (i, j) that are missing from the graph by setting

ci j = ∞. Unfortunately, filtering the alldiff has no effect because every domain

is complete.

Although the two formulations (8) and (9) are almost identical, they represent

vastly different problems. The assignment problem is very easy to solve, whereas

the traveling salesman problem is notoriously hard.

An alternate formulation for the circuit problem uses the circuit(y1, . . .,yn)
constraint [14, 32]. Here yi denotes the vertex after vertex i in the circuit, and the

constraint requires that the yis describe a hamiltonian circuit. The circuit problem

can be written
min ∑

i

ciyi

circuit(y1, . . .,yn), yi ∈ D′
i, i = 1, . . .,n

(10)

This formulation has the advantage that missing edges can be explicitly repre-

sented in the domains. Domain D′
i of yi contains j if and only if (i, j) is an edge of

the graph. Filtering the circuit constraint can therefore have an effect. On the

other hand, achieving domain consistency is much harder for circuit than for

alldiff [26, 32].

Rather than choose between formulations (9) and (10), Principle 4 recommends

using both. The channeling constraints are xi+1 = yxi
for i = 1, . . .,n − 1, and

x1 = yxn . The “first” vertex in the circuit can be arbitrarily defined to be vertex 1 (i.e.,

x1 = 1) without loss of generality. Propagation of incomplete domains D′
i through

these constraints can remove elements from the domains Di, so that alldiff fil-

tering can now have an effect. Both objective functions can be used as bounds on

cost, so that the dual formulation becomes
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min z

z ≥∑
i

cxixi+1
, z ≥ ∑

i

ciyi

alldiff(x1, . . .,xn), xi ∈ Di, i = 1, . . .,n

circuit(y1, . . .,yn), yi ∈ D′
i, i = 1, . . .,n

x1 = yxn = 1, xi+1 = yxi
, i = 1, . . .,n−1

xi ∈ {1, . . .,n}, yi ∈ Di, i = 1, . . .,n.

(11)

5 MILP Modeling

An MILP model is an optimization problem in which the objective function is linear

and the constraints are linear inequalities. Some or all of the variables are restricted

to integer values. A major advantage of such a model is that it provides a ready-made

continuous relaxation, obtained simply by dropping the integrality constraints. The

relaxation is a linear programming problem whose solution provides a bound on

the optimal value of the original problem. A “tighter” relaxation provides a bound

that is closer to the optimal value. Such a bound can be very useful in a solution

algorithm, for example by pruning the search tree. In addition, the solution of the

relaxation may be integral, in which case it solves the original MILP. Even when the

solution is nonintegral, it may provide valuable clues on how to conduct a branching

search.

Because integer-valued variables are present in an MILP model, its continuous

relaxation can often be tightened by the addition of cutting planes. These are valid

inequalities that are satisfied by all the feasible solutions of the MILP but “cut

off” part of the feasible set of the continuous relaxation. MILP solution methods

rely heavily on relaxation and cutting plane technology. Both general-purpose and

special-purpose families of cutting planes have been developed, the latter for prob-

lems with special structure (see [39] for a survey).

A wide variety of problems can be given MILP models, although it is often not

obvious how to do so, and the MILP formulation may require additional variables

and constraints that obscure the underlying structure of the problem. Yet even when

an MILP format is not appropriate for the original model, it may be advantageous for

the solver to reformulate parts of the problem as an MILP to harness the power of the

relaxation technology. The best strategy for using MILP formulations is therefore to

write constraints in MILP format when it is natural to do from a modeling point of

view, and to allow the solver to reformulate other constraints as MILPs when this

benefits the solution process. The present section focuses on how to write MILP

formulations, while Section 6 explores the role of these formulations in integrated

modeling.

The key to building MILP formulations is to recognize the structure of feasible

sets that are representable by MILP models. It can be shown that show that MILP

models are always equivalent to disjunctions of systems of knapsack inequalities.

These lead to guidelines for writing models as disjunctions and for converting these
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to proper MILP models. Existing MILP modeling systems require the user to do the

conversion by hand, but an integrated system would do so automatically.

This section therefore begins with knapsack modeling and then proceeds to show

how knapsack modeling can be combined with disjunctive modeling to exploit the

full resources of MILP problem formulation. Further examples and discussion of

MILP modeling can be found in [19, 57, 58, 59, 60].

The MILP modeling guidelines presented here omit some familiar modeling de-

vices because they are subsumed by more general concepts of integrated modeling.

These include special ordered sets, semi-continuous variables, and indicator con-

straints. These techniques are not actually part of MILP modeling but are extensions

that system developers have provided for convenience or computational efficiency.

We will see that an integrated system provides the same capabilities, but in a more

general and more principled way.

5.1 Knapsack Modeling

MILP formulations frequently involve counting ideas that can be expressed as knap-

sack inequalities. For present purposes a knapsack inequality can be defined to be

one of the form ax ≤ β (or ax ≥ β ), where some (or all) of the variables x j may be

restricted to integer values.

The term “knapsack inequality” derives from the fact that the integer knapsack

problem can be formulated with such an inequality. The problem is to pack a knap-

sack with items that have the greatest possible value while not exceeding a maxi-

mum weight β . There are n types of items. Each item of type j has weight a j and

adds value c j . If x j is the number of items of type j put into the knapsack, the

problem can be written

max cx

ax ≤ β

x j ∈ Z, all j

(12)

A wide variety of modeling situations involve this same basic idea. A classic ex-

ample is the capital budgeting problem, in which the objective is to allocate a limited

amount of capital to projects so as to maximize revenue. Here β is the amount of

capital available. There are n types of projects, and each project j has initial cost a j

and earns revenue c j . Variable x j represents the number of projects of type j that are

funded.

Typically an MILP model contains a system of many knapsack inequalities.

There may also be purely linear constraints in which all the variables are contin-

uous. Some important special cases of knapsack systems include set packing, set

covering, and set partitioning problems, as well as logical constraints.

Set packing. The set packing problem begins with a collection of finite sets S j for

j = 1, . . .,n that may partially overlap. It seeks a largest subcollection of sets that

are pairwise disjoint.
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Suppose, for example, that there are n surgeries to be performed, and the objec-

tive is to perform as many as possible this morning. Surgery j requires a specific set

S j of surgeons and other personnel. Because the surgeries must proceed in parallel,

no two surgeries with overlapping personnel can be performed. This is a set packing

problem.

The set packing problem can be formulated with 0-1 knapsack inequalities. Let

Ai j = 1 when item i belongs to set S j, and Ai j = 0 otherwise. Let variable x j = 1

when set j is selected. The knapsack inequality ∑
n
j=1

Ai jxi j ≤ 1 prevents the selec-

tion of any two sets containing item i. Thus the system Ax ≤ e of knapsack inequal-

ities, where e is a vector of ones, prevents the selection of any two overlapping sets.

The objective is to maximize ∑
n
j=1

x j subject to Ax ≤ e and x ∈ {0,1}n, which is an

MILP problem.

Set covering. The set covering problem likewise begins with a collection of sets

S j but seeks the minimum subcollection that contains all the elements in the union

of the sets. For example, one may wish to buy a minimum collection of songbooks

that contains all the songs that appear in at least one book. Here S j is the set of songs

in book j.

If Ai j and x j are as before, the knapsack inequality ∑
n
j=1

Ai jx j ≥ 1 ensures that

item i is covered. The set covering problem is to minimize ∑
n
j=1

x j subject to Ax ≥ e

and x ∈ {0,1}n. The objective function in this or the set packing problem can be

generalized to cx by attaching a weight c j to each set S j, to represent the cost or

benefit of selecting S j.

Set partitioning. The set partitioning problem seeks a subcollection of sets such

that each element is contained in exactly one of the sets selected. The constraints

are therefore Ax = e, which are a combination of the knapsack constraints Ax ≤ e

and Ax ≥ e. The problem is to minimize or maximize cx subject to these constraints.

An important practical example of set partitioning is the airline crew rostering

problem. Crews must be assigned to sequences of flight legs while observing com-

plicated work rules. For example, there are restrictions on the number of flight legs

a crew may staff in one assignment, the total duration of the assignment, the layover

time between flight legs, and the locations of the origin and destination.

Let S j be a set of flight legs that can be assigned to a single crew, where j indexes

all possible such sets. A set S j is selected (x j = 1) when it is assigned to a crew,

incurring cost c j . This is a partitioning problem because each flight leg must be

staffed by exactly one crew and must therefore appear in exactly one selected S j.

Although there may be millions of sets S j and therefore millions of variables x j,

the model can be qite practical when its continous relaxation is solved by a column

generation method; that is, by adding variables (and the associated columns of A) to

the problem only when they can improve the solution. Typically, only a tiny fraction

of the columns are generated.

Clique Inequalities. A collection of set packing constraints in a model can some-

times be replaced or supplemented by a clique inequality, which substantially tight-

ens the continuous relaxation. For example, the 0-1 inequalities
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x1 +x2 ≤ 1

x1 +x3 ≤ 1

x2 +x3 ≤ 1

(13)

are equivalent to the clique inequality x1 + x2 + x3 ≤ 1. One can see that the clique

inequality provides a tighter relaxation from the fact that x1 = x2 = x3 = 1/2 violates

it but satisfies (13). It should therefore replace (13) in the model.

To generalize this idea, define a graph whose vertices j correspond to 0-1 vari-

ables x j. The graph contains an edge (i, j) whenever x j + x j ≤ 1 is implied by a

constraint in the model. If the induced subgraph on some subset C of vertices is a

clique, then ∑ j∈C ≤ 1 is a valid inequality and can be added to the model.

Logical Conditions. Logical conditions on 0-1 variables can be formulated as

knapsack inequalities that are similar to set covering constraints. Suppose, for ex-

ample, that either plants 2 and 3 must be built, or else plant 1 must not be built. For

the moment, regard x j as a boolean variable that is true when plant j is built, and

false otherwise. The condition can be written

¬x1 ∨ x2 ∨ x3 (14)

where ∨ means “or” and ¬ means “not.” Such a condition is a logical clause, mean-

ing that it is a disjunction of literals (boolean variables or their negations). Because

the clause states that at least one of the literals must be true, it can be written as an

inequality (1− x1)+ x2 + x3 ≥ 1 by viewing x j as true when x j = 1 and false when

x j = 0. This is equivalent to the knapsack inequality −x1 + x2 + x3 ≥ 0.

Any logical condition built from “and,” (∧) “or,” “not,” and “if” can be converted

to a set of clauses and given an MILP model on that basis. “B if A” is written A ⇒ B

and is equivalent to ¬A∨B. Consider, for example, the condition, “If plants 1 and 2

are built, then plants 3 and 4 must be built.” It can be written

(x1 ∧ x2) ⇒ (x3 ∧ x4)

The implication can be eliminated to obtain ¬(x1 ∧ x2) ∨ (x3 ∧ x4). The nega-

tion is then brought inside using De Morgan’s Law, resulting in the expression

¬x1 ∨¬x2∨ (x3 ∧ x4). The conjunction is now distributed:

(¬x1 ∨¬x2∨ x3)∧ (¬x1∨¬x2 ∨ x4)

This conjunction of two clauses can be written as two knapsack constraints:

−x1 − x2 + x3 ≥−1

−x1 − x2 + x4 ≥−1
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5.2 MILP Representability

MILP modeling achieves its full power when the model is allowed to contain aux-

iliary variables in addition to the variables of the original problem space, because

this allows the model to represent disjunctions of discrete alternatives. The auxil-

iary variables can be either continuous or discrete and frequently appear in practical

models. It is known precisely what kind of problems can be represented with MILP

models in this way, due to theorems proved in [31] and generalized in [28].

Formally, a subset S of R
n+p is MILP representable if it is the projection onto x

of the feasible set of a model of the form

Ax+Bu +Dδ ≥ b

x ∈ R
n ×Z

p, u ∈ R
m, δ ∈ {0,1}q

Some of the auxiliary variables are real-valued (u j) and some are binary (δ j).
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1

Fig. 3 (a) A mixed integer polyhedron Q (horizontal lines) where Q = P∩ (R×Z) and P is

bounded by the dashed line. (b) The recession cone of Q.

To state the representability theorems, some definitions are necessary. Let a

mixed integer polyhedron be the nonempty intersection of any polyhedron in R
n+p

with R
n ×Z

p. Such a polyhedron is illustrated in Fig. 3. A vector r ∈ R
n+p is a

recession direction of a polyhedron P ∈ R
n+p if one can go forever in the direction

r without leaving P. That is, for any x ∈ P, x + αr ∈ P for all α ≥ 0. A rational

vector r is a recession direction of a mixed integer polyhedron Q if it is a recession

direction of a polyhedron whose intersection with R
n×Z

p is Q. The recession cone

of a mixed integer polyhedron is the set of all its recession directions (Fig. 3).

Theorem 1. A nonempty set S ∈ R
n ×Z

p is MILP representable if and only if it

is the union of finitely many mixed integer polyhedra in R
n ×Z

p having the same

recession cone.

Each mixed integer polyhedron Qk in the finite union can be described by a knap-

sack system. The theorem therefore states in effect that any MILP representable set
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can be modeled as a disjunction of knapsack systems (i..e, at least one of the systems

must be satisfied). If Qk = {x ∈ R
n ×Z

p | Akx ≥ bk}, the disjunction is

∨

k∈K

(

Akx ≥ bk
)

, x ∈ R
n ×Z

p (15)

This suggests a principle for creating MILP models, because practical problems

frequently present a set of alternative actions or situations. If the alternatives can be

modeled by knapsack systems, then the problem takes the form of a disjunction of

such systems. An MILP model can now be written, provided the knapsack systems

describe mixed integer polyhedra with the same recession cone. The recession cone

condition is normally satisfied in practice by adding a few innocuous constraints.

There remains the question, however, as to how to convert the disjunction (15)

of knapsack systems into an MILP model. There are two standard ways: a big-M

formulation and a convex hull formulation. Both require 0-1 auxiliary variables,

and the convex hull formulation requires continuous auxiliary variables as well.

First, the big-M formulation. Consider any nonempty MILP representable set

S ∈R
n×Z

p. From Theorem 1, S is the union of mixed integer polyhedra Qk defined

earlier, where the Qks have the same recession cone. Then S has the sharp big-M

formulation

Akx ≥ bk −Mk(1−δk), k ∈ K

x ∈ R
n ×Z

p, δk ∈ {0,1}, k ∈ K
(16)

where

Mk = bk −min
` 6=k

{

min
x

{

Akx

∣

∣

∣ A`x ≥ b`, x ∈ R
n ×Z

p
}}

(17)

Note that there are binary auxiliary variables δk. When δk = 1, the kth knapsack sys-

tem Akx ≥ bk is enforced. When δk = 0, the kth system is deactivated by subtracting

a vector Mk of large numbers from the right-hand side. The formulation is sharp in

the sense that the components of Mk are chosen to be as small as possible, but it

remains a valid formulation if larger values of Mk are used. If Qk is as before,

Theorem 2. A set S ∈ R
n ×Z

p is MILP representable if and only if it has a sharp

big-M representation (16), where S =
⋃

k∈K Qk.

The convex hull formulation of (15) introduces continuous auxiliary variables by

disaggregating x into a sum ∑k∈K xk , where each xk corresponds to Qk. The formu-

lation is
x = ∑

k∈K

xk

Akxk ≥ bkδk, k ∈ K

∑
k∈K

δk = 1

x ∈ R
n ×Z

p, δk ∈ {0,1}, k ∈ K

(18)

Theorem 3. A set S ∈ R
n ×Z

p is MILP representable if and only if it can be formu-

lated as (18), where S =
⋃

k∈K Qk. Furthermore, (18) is a convex hull formulation if

Ak ≥ bk is a convex hull formulation of Qk for each k ∈ K.
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Model (18) is a convex hull formulation of S when its continuous relaxation

describes the closure of the convex hull of S. The continuous relaxation is obtained

by dropping the integrality constraints; that is, by replacing the last line of (18) with

x ∈ R
n+p, 0 ≤ δk ≤ 1, k ∈ K

The system Akx ≥ bk is a convex hull formulation of Qk when it describes the clo-

sure of the convex hull of Qk . A convex hull formulation has the tightest possible

continuous relaxation.

It can be shown that (18) provides a convex hull relaxation of S when the polyhe-

dra Qk do not have the same recession cone, even though (18) is not a representation

of S in this case. That is,

Theorem 4. The continuous relaxation of (18), when projected onto x, describes the

closure of the convex hull of S =
⋃

k∈K Qk even when the Qks do not have the same

recession cone.

Similarly, the big-M formulation (16) provides a valid relaxation of S even when the

polyhedra Qk do not have the same recession cone.

In some modeling contexts it is useful to associate user-defined 0-1 variables δk

explicitly with each term k of a disjunction by writing (15) as

∨

k∈K

(

Akx ≤ bk
)

δk

(19)

The variables δk become the 0-1 auxiliary variables in the MILP formulation of

the disjunction and are available for use elsewhere in the problem as well. If the

solver branches on the disjunction, it sets δk = 1 when the kth disjunct is enforced.

It enforces term k of the disjunction when δk is fixed to one and removes term k

from the disjunction when δk = 0.

5.3 Example: Fixed-Charge Problems

A simple fixed-charge problem illustrates MILP model construction. The cost z of

manufacturing quantity x of some product is zero when x = 0 and is f + cx when

x > 0, where f is the fixed cost and c the unit variable cost. The problem is to

minimize cost.

There are two alternatives, corresponding to a zero or positive production level,

each giving rise to a different cost calculation. The feasible set S is illustrated in

Fig. 4. It is described by a disjunction of linear systems that, in this case, contain

only continuous variables:

(

x = 0

z ≥ 0

)

∨

(

x ≥ 0

z ≥ cx+ f

)

(20)
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The disjuncts respectively describe the polyhedra P1 and P2 in Fig. 4(a). The reces-

sion cone of P1 is P1 itself, and the recession cone of P2 is {(z,x) | z ≥ cx ≥ 0}. Thus,

by Theorem 1, S is not MILP representable. For example, one can write the big-M

formulation (17) as

0 ≤ x ≤ M1

1
δ x ≥ 0

z ≥−M1

2
δ z ≥ cx+ f −M2

2
(1−δ )

δ ∈ {0,1}

where the 0-1 variables δ1,δ2 are replaced by 1− δ and δ (because they sum to

one). But this formulation is not well defined because from (17),

M1

1 = −min{−x | x ≥ 0, z ≥ cx+ f } = ∞

Also the convex hull formulation (18) of (20) becomes

x = x1 + x2 z = z1 + z2

x1 = 0 x2 ≥ 0

z1 ≥ 0 z2 ≥ cx2 + f δ

δ ∈ {0,1}

(21)
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Recession

cone of P1, P ′

2

Fig. 4 (a) Feasible set of a fixed-charge problem, consisting of the union of polyhedra P1 (heavy

vertical line) and P2 (darker shaded area). (b) Feasible set of the same problem with the bound

x ≤U, where P′
2

is the darker shaded area. In both (a) and (b), the convex hull of the feasible set

is the entire shaded area.
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One can eliminate the constraint x1 = 0 (and the corresponding aggregation con-

straint x = x1 + x2) by replacing x2 with x, and similarly for the constraint z1 ≥ 0.

So (21) simplifies to

x ≥ 0, z ≥ cx+ f δ , δ ∈ {0,1}

which does not correctly represent the feasible set. However, its continuous relax-

ation correctly describes the closure of the convex hull of the feasible set, as pre-

dicted by Theorem 4. For if one replaces δ ∈ {0,1} with 0 ≤ δ ≤ 1 and projects out

δ , the result is z ≥ cx, x ≥ 0. This is illustrated in Fig. 4(a).

The recession cones can be equalized by placing an upper bound U on x in the

second disjunct of (20). The recession cone of each of the resulting polyhedra P1,P′
2

is the same, as illustrated in Fig. 4(b), and the feasible set is therefore MILP repre-

sentable. The big-M formulation becomes

0 ≤ x ≤ M1

1
δ 0 ≤ x ≤U +M2

1
(1−δ )

z ≥−M1

2
δ z ≥ cx+ f −M2

2
(1−δ )

δ ∈ {0,1}

(22)

From (17), (M1

1
,M1

2
,M2

1
,M2

2
) = (U,− f ,0, f ). So (22) simplifies to

0 ≤ x ≤Uδ , z ≥ cx+ f δ , δ ∈ {0,1} (23)

which is a correct formulation. The convex hull formulation becomes

x = x1 + x2 z = z1 + z2

0 = x1 0 ≤ x2 ≤Uδ

z1 ≥ 0 z2 ≥ cx2 + f δ

δ ∈ {0,1}

which again simplifies to (23). In this case, the big-M formulation happens to be a

convex hull formulation.

5.4 MILP Modeling Guidelines

Theorems 1–3 imply that an MILP model can be formulated by regarding the prob-

lem as a disjunction of knapsack systems corresponding to discrete alternatives. The

disjunction is then converted to a big-M or convex hull formulation. In practice, it

may be convenient to identify several disjunctions, each of which is converted to a

set of MILP constraints. This suggests the following guidelines for MILP modeling:

1. Try to conceive the problem as posing one or more choices among discrete alter-

natives.

2. Formulate each alternative using a system of knapsack inequalities.
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3. Write each choice of alternatives as a disjunction of knapsack systems. Some

of the disjunctions may have only one disjunct, indicating that there is only one

alternative.

At this point, the disjunctions are converted to MILP formulations as follows. The

conversion would be automatic in an integrated modeling system.

4. Adjust the linear systems so that in each disjunction, all of the disjuncts describe

mixed integer polyhedra with the same recession cone. This can be done manu-

ally as well; the options are discussed in Section 6.2.

5. Convert each disjunction to a big-M or a convex hull formulation. The convex

hull formulation normally has a tighter continuous relaxation, unless the big-M

model happens to be a convex hull formulation as well. The big-M formulation

normally contains fewer variables, particularly when there are many disjuncts,

unless the convex hull formulation can be simplified. The choice between the

formulations rides on whether the tighter relaxation is worth the overhead of

additional variables.

Not all useful MILP models evolve naturally from this disjunctive approach. An

example is the standard 0-1 model for the circuit (traveling salesman) problem, dis-

cussed below.

5.5 Example: Facility Location

A capacitated facility location problem illustrates the above modeling guidelines.

There are m possible locations for factories, and n customers who obtain products

from the factories. A factory installed at location i incurs fixed cost fi and has ca-

pacity Ci. Each customer j has demand D j. Goods are shipped from factory i to

customer j on trucks, each with capacity Ki j, and each incurring a fixed cost ci j. The

problem is to decide which facilities to install, and how to supply the customers, so

as to minimize total cost.
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Fig. 5 A facility location problem.
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The basic decision, for each location i, is whether to install a factory at that loca-

tion. This presents two discrete alternatives that can be represented as a disjunction.

To describe each alternative with knapsack systems, let xi j be the quantity of goods

shipped from factory i to customer j, and let wi j be the number of trucks on which

they are transported. Then if zi is the total cost incurred at location i, the two alter-

natives for location i are represented by the disjunction

















∑
j

xi j ≤Ci

0 ≤ xi j ≤ Ki jwi j, all j

zi ≥ fi +∑
j

ci jwi j

wi j ∈ Z, all j

















∨

(

xi j = 0, all j

zi ≥ 0

)

(24)

The alternative on the left corresponds to installing a factory at location i. The first

constraint enforces the factory’s capacity limit, and the second does the same for the

truck capacities. The third constraint computes the cost incurred at location i. Note

that each wi j is integer valued, which means that this disjunct describes a mixed

integer polyhedron. The disjunct on the right corresponds to the case in which no

factory is installed at location i.

Customer demand can be satisfied by imposing the constraint ∑i xi j ≥ D j for

each customer j. Each of these constraints can be viewed as a separate disjunction

with only one alternative. The objective is to minimize total cost, given by ∑i zi.

This completes the modeler’s task. At this point the modeling system takes

over by converting (24) to an MILP formulation. It must first ensure that the

two disjuncts in (24) have the same recession cone. As it happens, they do not.

The cone for the first polyhedron is {(xi,wi, zi) | xi = 0, wi ≥ 0, zi ≥ ∑ j ci jwi j}
where xi = (xi1, . . .,xin) and wi = (wi1, . . .,win), while the cone for the second is

{(xi,wi, zi) | xi = 0, zi ≥ 0}. The cones can, in theory, be equalized if the innocuous

constraints wi j ≥ 0 and zi ≥ ∑ j ci jwi j are added to the second disjunct. This yields

a disjunction that can be given an MILP model:

















∑
j

xi j ≤Ci

0 ≤ xi j ≤ Ki jwi j, all j

zi ≥ fi +∑
j

ci jwi j

wi j ∈ Z, all j

















∨









xi j = 0, all j

wi j ≥ 0, all j

zi ≥∑
j

ci jwi j









(25)

Using (18), the convex hull formulation of (25) is
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xi j = x1

i j + x2

i j, wi j = w1

i j +w2

i j, zi = z1

i + z2

i , all j

∑
j

x1

i j ≤Ciδi

0 ≤ x1
i j ≤ Ki jw

1
i j, all j

z1
i ≥ fiδi +∑ j ci jw

1
i j

x2

i j = 0, w2

i j ≥ 0 all j

z2

i ≥∑
j

ci jw
2

i j

δi ∈ {0,1}, wi j ∈ Z, all j

Because the auxiliary 0-1 variables corresponding to the two disjuncts sum to one,

they can be written as δi and 1−δi; the latter does not appear because the right-hand

sides in the second disjunct are all zero. The constraints x2

i j = 0 can be dropped

(along with the aggregation constraints xi j = x1
i j + x2

i j) if x1
i j is replaced by xi j, and

similarly for the constraints w2
i j ≥ 0 and z2

i ≥∑ j ci jw
2
i j. Because zi can be replaced by

fiδi +∑ j ci jwi j in the objective function ∑ j z j, the complete MILP model becomes

min ∑
i

(

fiδi +∑
j

ci jwi j

)

∑
j

xi j ≤Ciδi, all i

0 ≤ xi j ≤ Ki jwi j, all i, j

∑
i

xi j ≥ D j, all j

δi ∈ {0,1}, wi j ∈ Z, all i, j

(26)

Although each disjunction (25) is given a convex hull formulation in the MILP

model (26), the model as a whole is not a convex hull formulation of the problem.

Using (16), the big-M model for the disjunction (25) is

∑
j

xi j ≤Ci +M1

1i(1−δi)

0 ≤ xi j ≤ Ki jwi j +M1

2i j(1−δi), all j

zi ≥ fiδi +∑ j ci jwi j −M1

3i(1−δi)

0 ≤ xi j ≤ M2

1i jδi, all i, j

wi j ≥−M2

2i jδi all i, j

z2

i ≥∑
j

ci jwi j −M2

3iδi, all i

δi ∈ {0,1}, wi j ∈ Z, all j

(27)

It can be verified from (17) that M1

1i = −Ci, M2

1i j = Ci, and all the other big-Ms are

zero in the sharp formulation. The big-M formulation (27) therefore reduces to the

same model as the convex hull formulation.

It is unclear how the disjunction (25) could be obtained automatically, and per-

haps unrealistic to expect the user to equalize the recession cones in this way manu-

ally. A more practical alternative is for the modeling system to equalize the recession

cones by imposing reasonable lower and upper bounds on every variable, or to ask

the user to provide bounds.



Hybrid Modeling 27

5.6 Examples: Piecewise Linear and Indicator Constraints

Piecewise linear and indicator constraints were not discussed in the section on CP

but illustrate some important points for MILP modeling.

Piecewise linear functions are a very useful modeling tool because they pro-

vide a means to approximate separable nonlinear functions within a linear modeling

framework. Typically, we wish to model a function of the form g(x) = ∑ j g j(x j) by

approximating each nonlinear term g j(x j) with a piecewise linear function f j(x j).
The function f j(x j) is set to a value equal to (or close to) g j(x j) at a finite number

of values of x j and is defined between these points by a linear interpolation.

For convenience, we drop the subscripts and refer to f j(x j) as f (x). We suppose

that f (x) is piecewise linear in the general sense that it is linear on possibly disjoint

intervals [ai,bi] and undefined outside these intervals, as illustrated by Fig. 6. More

precisely, x ∈
⋃

i∈I [ai,bi] and

f (x) =







f (ai)+
x−ai

bi −ai

[ f (bi)− f (ai)] if x ∈ [ai,bi] and ai < bi

f (ai) if x = ai = bi

(28)

In many applications, each bi = ai+1, which means f (x) is continuous.

A disjunctive formulation is natural and convenient for a function of this form:

∨

i∈I







x = λ ai + µbi

z = λ f (ai)+ µ f (bi)

λ + µ = 1, λ , µ ≥ 0






(29)
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Fig. 6 A piecewise linear function. The domain of x is [L,U].
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where disjunct i corresponds to x ∈ [ai,bi], and z is a variable that represents f (x).
Because the disjuncts of (29) define polyhedra with the same recession cone (all

the polyhedra are bounded), the following convex hull formulation can be automat-

ically generated:

x = ∑
i∈I

λiai + µibi

z = ∑
i∈I

λi f (ai)+ µi f (bi)

λi + µi = δi, i ∈ I

∑
i∈I

δi = 1

λi, µi ≥ 0, δi ∈ {0,1}, i ∈ I

(30)

This is similar to a well-known textbook model that dispenses with the multipli-

ers µi but applies only when f (x) is continuous:

x =
k+1

∑
i=1

λiai, z =
k+1

∑
i=1

λi f (ai),
k+1

∑
i=1

λi = 1

λi ≤ δi−1 +δi, i = 2, . . .,k

λ1 ≤ δ1, λk+1 ≤ δk,
k

∑
i=1

δi = 1

λi ≥ 0, i = 1, . . .,k+1; δi ∈ {0,1}, i = 1, . . .,k

(31)

where ak+1 = bk. This model, however, is not as tight as (30). Moreover, (30) is

“locally ideal,” meaning that the 0-1 variables take integer values at all the vertices

of the polyhedron described by the continuous relaxation. Apparently, model (30)

was unrecognized in the literature until described by Sherali [51] in 2001, but it is

an immediate result of the disjunctive MILP formulation. Although Sherali proves

that (30) is locally ideal, no proof is necessary, because any convex hull formulation

of a disjunction is locally ideal. Model (30) can also be adapted to the case in which

f (x) is lower semi-continuous, as noted in [51].

For continuous functions f (x), one can use the incremental cost model, which

contains no more variables than (31) but is equivalent to the tight model (30) and

locally ideal [51]:

x = a1 +
k+1

∑
i=2

xi, z = f (a1)+
k+1

∑
i=2

f ′i
a′i

xi

0 ≤ xi ≤ a′i, i = 2, . . .,k+1

a′iδi ≤ xi ≤ a′iδi−1, i = 2, . . .,k

a′
2
δ2 ≤ x2 ≤ a′

2
, 0 ≤ xk+1 ≤ a′k+1

δk

δi ∈ {0,1}, i = 2, . . .,k

(32)

Here a′i = ai −ai−1 and f ′i = f (ai)− f (ai−1).
Most MILP solvers allow one to model a continuous piecewise linear function

by defining the multipliers λi in the textbook model (31) to be a special ordered set
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of type 2 (SOS2). In this case, one need only write the constraints on the first line of

(31). The SOS2 condition requires that at most two of the variables λi be nonzero,

where any two nonzero variables must be adjacent (i.e., λi and λi+1 for some i). The

condition is enforced directly by the branching mechanism. It simplifies the model

by eliminating the 0-1 variables δi, but it sacrifices the tight continuous relaxation

provided by the 0-1 model (30) or (32).

An integrated solver can implement SOS2 branching simply by branching on the

terms of the disjunction (29) in the normal fashion. This has the effect of permitting

only adjacent multipliers to be nonzero. In fact, this disjunctive approach is more

general than SOS2 because it is not restricted to continuous functions. If desired,

one can dispense with the 0-1 formulation (30) simply by instructing the solver not

to generate a relaxation for the disjunction. Thus there is there no need for a separate

SOS2 option in the modeling system.

There are recent proposals for modeling piecewise linear functions with a loga-

rithmic number of 0-1 variables [36, 56]. However, we will see that in an integrated

modeling context, piecewise linear functions can be efficiently modeled, and a re-

laxation provided, without the use of any auxiliary variables or special ordered sets.

Indicator constraints are constraints that are enforced only when a 0-1 variable

is equal to one (or equal to zero). They, too, are naturally expressed in disjunctive

form, and there is no need for a modeling system to offer this feature separately.

Suppose, for example, that we wish to enforce the system Ax ≥ b only when

δ = 1. The advantage of having an indicator constraint option in a modeling system

is that it obviates the use of a big-M construction like

Ax ≥ b−M(1−δ )

Yet one can achieve the same purpose by writing the disjunction

(Ax ≥ b)
δ

The second disjunct, corresponding to δ = 0, is understood to be empty because it

does not appear. The system will enforce Ax ≥ b when δ = 1, as desired.

A semi-continuous variable x is a related idea in which x is forced to zero when

δ = 0 and to be within bounds L ≤ x ≤ U when δ = 1. One can define x to be

semi-continuous by writing (L ≤ x ≤U)δ ∨ (x = 0).

5.7 Example: Car Sequencing

It will be useful to compare a MILP model of the car sequencing problem with

the CP model developed earlier. In this problem, there are four discrete alternatives

at each position i in the manufacturing sequence—car types a, b, c, and d. Each

alternative implies a choice of options. If we let ACi = 1 when air conditioning is

installed at position i, and SRi = 1 when a sun roof is installed, the four alternatives

can be written as follows for each position i:
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(

ACi = 0

SRi = 0

)

∨

(

ACi = 1

SRi = 0

)

∨

(

ACi = 0

SRi = 1

)

∨

(

ACi = 1

SRi = 1

)

The convex hull formulation of this disjunction is

ACi = AC a
i +AC b

i +AC c
i +AC d

i

SRi = SR a
i +SR b

i +SR c
i +SR d

i

AC a
i = 0,

SR a
i = 0,

AC b
i = δib,

SR b
i = 0,

AC c
i = 0,

SR c
i = δic,

AC d
i = δid

SR d
i = δid

δia +δib +δic +δid = 1

δi j ∈ {0,1}, j = a,b,c,d

This simplifies to

ACi = δib +δid, SRi = δic +δid

δib +δic +δid ≤ 1

δi j ∈ {0,1}, j = b,c,d

The complete MILP model can now be written by combining the above with con-

straints that meet demand and observe the assembly line capacity constraints:

ACi = δib +δid, SRi = δic +δid , i = 1, . . .,50

δib +δic +δid ≤ 1, i = 1, . . .,50

δi j ∈ {0,1}, j = b,c,d, i = 1, . . .,50

50

∑
i=1

δia = 20,
50

∑
i=1

δib = 15,
50

∑
i=1

δic = 8,
50

∑
i=1

δid = 7, i = 1, . . .,50

i+4

∑
j=i

AC j ≤ 3, i = 1, . . .,46

i+2

∑
j= j

SR j ≤ 1, j = 1, . . .,48

(33)

5.8 Network Flow Models

The continuous relaxation of a MILP model sometimes describes an integral poly-

hedron, in the sense that the integer variables take integer values at every vertex. In

such cases one can easily solve the MILP model by solving its continuous relaxation

with a linear programming algorithm that finds a vertex solution. There is a strong

incentive to use an MILP formulation when it has this integrality property.

In practice, the most common MILP models with the integrality property are

capacitated network flow models, of which assignment models are a special case.

The matrix of constraint coefficients in these problems is totally unimodular, which
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ensures that the continuous relaxation of the model describes an integral polytope if

all the right-hand sides are integral.

A network flow model is defined on a directed network in which the net supply Si

of flow at each node i is given. If (i, j) represents an arc that is directed from node i

to node j, then Ci j is the arc capacity and variable yi j represents the flow on (i, j). If

arc (i, j) is missing from the network, one can nonetheless include yi j in the model

and set Ci j = 0. The flow model is

∑
j

yi j −∑
j

y ji = Si, all i

0 ≤ yi j ≤Ci j, all i, j

(34)

There is typically an objective function that measures cost, such as ∑i j ci jyi j, where

ci j is the unit cost of sending flow on arc (i, j).
Due to total unimodularity, the model (34) describes an integral polytope if the

supplies and capacities are all integral. This means that if the flows are restricted to

be integral, the resulting MILP model can be solved by solving its continuous relax-

ation (34). This is a particularly easy problem to solve because there are specialized

algorithms for computing minimum cost network flows.

5.9 Assignment Problems

The assignment problem discussed in Section 4.7 assigns m tasks to n workers

(m ≤ n). It is a special case of a network flow problem, which means that the MILP

model is totally unimodular. This provides a strong incentive to use an MILP for-

mulation at some stage of the solution process.

The flow network corresponding to an assignment problem is bipartite, as illus-

trated in Fig. 7. If m < n, then dummy task nodes are created so that supply balances

demand. The cost ci j is set to zero for a dummy task i. A unit flow yi j = 1 indicates

that worker i is assigned task j. The flow model therefore reduces to

n

∑
j=1

yi j =
n

∑
j=1

y ji = 1, i = 1, . . .,n

yi j ≥ 0, all i, j

(35)

This model can be solved very rapidly with specialized algorithms. Obviously the

solution is meaningful only if each yi j ∈ {0,1}, but this is assured by total unimod-

ularity.
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Fig. 7 A flow model for an assignment problem.

5.10 Circuit Problems

Circuit problems have been given several MILP formulations [42], but by far the

most popular is the subtour elimination formulation. If binary variable yi j = 1 when

vertex j immediately follows i in the hamiltonian circuit, then the traveling salesman

problem on n cities can be written

min ∑
i j

ci jyi j

∑
j

yi j = ∑
j

y ji = 1, all i

∑
(i, j)∈δ (S)

yi j ≥ 1, all S ⊂ {1, . . .,n} with 2 ≤ |S| ≤ n−1

yi j ∈ {0,1}, all i, j

(36)

where S is a subset of vertices and δ (S) is the set of edges (i, j) for which i ∈ S and

j 6∈ S. The assignment constraints (line 2) ensure that exactly one vertex precedes,

and exactly one vertex follows, each vertex in the tour. Line 3 contains the subtour

elimination constraints, which rule out circuits on fewer than n vertices. This is

accomplished by requiring, for each proper subset S of the vertices, that at least one

edge in the circuit connect a vertex in S with a vertex outside S.

In practice, the formulation is not actually written out because it contains expo-

nentially many constraints. Rather, a traveling salesman solver generates separating

subtour elimination constraints as they are needed. A separating constraint is one

that cuts off the solution of the current linear relaxation without cutting off any fea-

sible solutions. Several families of strong cutting planes have been identified for the

problem, along with separation heuristics. A survey of this work can be found in

[6].
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5.11 Example: Sudoku Puzzles

The sudoku problem can be formulated with assignment constraints, although a

large number of 0-1 variables are necessary to do so. Let 0-1 variable yi jt = 1 when

digit t appears in cell i, j. Let Jk` be the set of cells (i, j) in the 3× 3 square in

position k, `. Then the MILP model is

9

∑
j=1

yi jt =
9

∑
j=1

y jit = 1, i, t = 1, . . .,9 (a)

∑
(i, j)∈Jk`

yi jt = 1, k, ` = 1,2,3, t = 1, . . .,9 (b)

9

∑
t=1

yi jt = 1, i, j = 1, . . .,9 (c)

yi jai j
= 1, all (i, j)∈ F (d)

yi jt ∈ {0,1}, all i, j, t

(37)

Constraints (a) enforce the alldiff condition for the rows and columns, and con-

straints (b) do the same for the 3×3 squares. Constraints (c) ensure that exactly one

digit appears in each cell. Constraints (d) take care of the preassigned cells.

6 Integrated Modeling

It is time to address the question as to how the seemingly incompatible modeling

styles of CP and MILP can be integrated. CP relies on the use of global constraints,

so that it can exploit problem substructure with its filtering algorithms and prop-

agation methods. MILP requires that the problem be reduced to linear inequality

constraints, so that it can obtain linear relaxations and strengthen them with cutting

planes.

A simple solution is to follow the CP practice of building a model around global

constraints, but to create new global constraints that represent sets of inequalities.

Different constraints can be designed for inequality sets with different kinds of spe-

cial structure, so that the solver can take advantage of this structure when it generates

cutting planes. A general-purpose constraint can be defined for an MILP inequality

set that has no particular structure.

Because MILP models can always be constructed by conceiving the problem as

a disjunction of linear systems, it may be more natural in many cases to write the

problem in disjunctive form rather than translate the disjunctions to MILP models.

The solver can make the translation automatically. It is therefore useful for a general-

purpose MILP global constraint to accept disjunctions of linear systems as well as

a single linear system.
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The proposal, therefore, is that the modeler write parts of the problem with CP-

style global constraints and other parts with global constraints that represent struc-

tured sets of linear inequalities, depending on which is more natural and best reveals

the structure of the problem to the solver.

Such a model allows the solver to take full advantage of both CP and MILP

solution technology. CP-style global constraints are explicitly present, which allows

the solver to apply its repertory of filtering and propagation techniques. Inequality

constraints are also explicitly present, identified by their structure, which allows the

solver to generate MILP-based relaxations and cutting planes. This is already an

advance over commercial MILP systems, which do not permit the user to identify

most types of special structure in subsets of constraints.

Furthermore, MILP relaxation technology can be applied even when a constraint

is written in CP style. If a CP constraint in the model has an alternative MILP formu-

lation, the solver always has the option of generating the MILP formulation along

with any useful cutting planes, for the sake of obtaining an relaxation. Alternatively,

the solver may generate a relaxation that is based on a polyhedral analysis of that

particular constraint, rather than on an MILP model of it. The overall advantage of

this scheme is that it allows the solver to exploit the wide variety of filtering and

relaxation methods that appear in the CP, MILP, and CP-AI-OR literatures.

There are some technical issues that must be clarified if the generated inequality

relaxations are to replicate the full advantage of MILP technology. One is a variable

mapping issue that arises when MILP translations of global constraints create aux-

iliary variables. When the auxiliary variables map to the same set of variables in the

original model, the solver must use the same auxiliary variables in all the transla-

tions. Also, care must be taken when simplifying the individual MILP translations,

so that the combined translations provide a correct model.

Not only are the full computational resources of CP and MILP simultaneously

available, but they are mutually reinforcing in all the ways that have been described

in the literature and the remainder of this book. CP-based filtering, for example, re-

sults in tighter MILP models and relaxations, which in turn provide bounds for more

effective domain reduction. Thus an integrated model supports integrated problem

solving.

The remainder of this section begins with a summary of guidelines for integrated

modeling. It then reviews the problems that have been so far introduced and indi-

cates how they might be formulated in an integrated modeling system. It shows how

relaxations can be generated and addresses the technical issues just mentioned. Be-

cause hybrid methods often use decomposition methods to combine solution tech-

niques, the section concludes with two illustrations of how decomposition can be

introduced into a model. This not only tells the solver how the problem may be

decomposed, but it may allow the model to be written with high-level global con-

straints that would not otherwise be applicable.
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6.1 Integrated Modeling Guidelines

Because it is proposed that an integrated model be built around global constraints

much as in CP modeling, CP modeling guidelines continue to apply. They must

be augmented, however, with principles for incorporating MILP-based global con-

straints. In view of the above discussion, the following principles seem appropriate.

1. A specially-structured subset of constraints should be replaced by a single global

constraint that captures the structure, when a suitable one exists.

2. A global constraint can be one familiar to the CP community or a collection of

inequalities whose structure has been studied in the MILP literature.

3. Constraints that are more naturally formulated as disjunctions of linear systems

should normally be left in this form, rather than converting them to MILP models.

4. A global constraint should be replaced by a more specific one when possible.

5. Redundant constraints can improve propagation. However, the solver should be

relied upon to generate the MILP equivalent of a CP constraint in the model.

6. When two formulations of a problem are natural and intuitive, both (or parts of

both) may be included in the model to improve propagation. This is especially

helpful when some constraints are hard to write in one formulation but suitable

for the other. Channeling constraints should be used to define variables in the two

formulations in terms of each other.

7. Decomposition can be introduced into a model when it would alert the solver to

a useful decomposition strategy, or when it would permit the use of high-level

global constraints that would not otherwise be applicable. This can be accom-

plished with a subproblem global constraint, described below.

6.2 Example: Facility Location

The facility location problem is naturally expressed as an MILP model. The primar-

ily elements of the problem are a disjunction of alternatives (install the factory or

not), and additional linear inequalities (customer demand). Following Principle 3, it

should be written in disjunctive form rather than converting it to an MILP.

It is therefore convenient to invent a general-purpose MILP global constraint

linear(
∨

k Sk), which enforces the disjunction of the linear systems Sk. A special

case is linear(S), which enforces a single linear system S. Any integrality restric-

tions on the variables are given when the variable domains are specified. The facility

location model can be written
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∑
j

xi j ≤Ci

0 ≤ xi j ≤ Ki jwi j, all j

zi ≥ fi +∑
j

ci jwi j

wi j ∈ Z, all j

















∨

(

xi j = 0, all j

zi ≥ 0

)

















, all i

linear







min ∑
i

zi

∑
i

xi j ≥ D j, all j







xi j, zi ∈ R, wi j ∈ Z, all i, j

(38)

The objective function is placed in a linear constraint because it can be viewed as

a linear inequality, namely ∑i zi ≤U , where U is any upper bound on the minimum

cost.

As noted in Section 5.5, the mixed integer polyhedra described by the two terms

of the disjunction in (38) have different recession cones. It is therefore impossible

for the solver to generate an MILP model for the disjunction. However, the purpose

of creating an MILP model is to obtain its continuous relaxation. The continuous

relaxations of the convex hull and big-M formulations are valid relaxations for the

problem, even though the formulations do not correctly model the problem.

This suggests that the linear constraint can be accompanied by a parameter

that has three possible values.

Relaxation only. The solver simply generates a valid relaxation of the disjunction

based on the big-M or convex hull formulation. It does not strengthen the re-

laxation with cutting planes, because these formulations may not be valid MILP

models.

User-defined recession cones. The solver assumes that the modeler has equalized

the recession cones by hand, perhaps simply by placing reasonable bounds on the

variables. The solver creates a valid MILP model and perhaps strengthens it with

cutting planes.

System-defined recession cones. The solver automatically equalizes the recession

cones, again perhaps by placing bounds on the variables. It is a research issue

how these bounds can be adjusted automatically so that the resulting relaxation

is reasonably tight.

6.3 Examples: Piecewise Linear and Indicator Constraints

A piecewise linear function (28) can be modeled with a specialized global constraint

as well as with a disjunctive constraint similar to (29). Such a global constraint might

take the form
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piecewiselinear(x, z,a,b, f(a), f(b))

where a = (a1, . . .,am), f(a) = ( f (a1), . . ., f (am)), and similarly for b and f(b). The

variable z represents f (x). The piecewiselinear constraint is not only conve-

nient but can have computational advantages. It can provide a convex hull relaxation

without introducing any continuous or 0-1 auxiliary variables, and it allows for in-

telligent branching.

The relaxation is obtained by computing the convex envelope of the graph of

f , as in illustrated in Fig. 8. This can be quickly accomplished with computational

geometry techniques. The relaxation consists of the few inequalities that define the

convex hull. The solver can branch on the constraint by splitting the domain of x. For

example, if the value of x in the solution of the current relaxation is between b1 and

a2 in Fig. 8, the domain is split into intervals [a1,b1] and [a2,U ]. The convex hull

relaxation is recomputed for each branch and becomes tighter. There is evidence

that this approach can reduce computation substantially relative to standard MILP

techniques [43, 62].

An indicator constraint can also be expressed as a global constraint, namely a

conditional constraint. In general, a conditional constraint has the form A ⇒ B,

where A is a set of constraints on discrete variables, and B is an arbitrary set of

constraints that are enforced when A becomes satisfied. An indicator constraint that

enforces Ax ≥ b when δ = 1 can be written (δ = 1) ⇒ (Ax ≥ b).
However, when B consists of linear inequality constraints, it may be best to write

a conditional constraint as a disjunction of linear systems, because this invokes the

generation of convex-hull relaxations. Thus (δ = 1) ⇒ (Ax ≥ b) can be written in

the disjunctive form (Ax ≥ b)δ as suggested earlier. To equalize recession cones,

the modeling system can automatically add user-supplied bounds L ≤ x ≤U to the

disjunction, which becomes

.
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Fig. 8 Convex hull relaxation of a piecewise linear function (shaded area).
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(

Ax ≥ b

L ≤ x ≤U

)

δ

∨ (L ≤ x ≤U) (39)

The system now generates a convex-hull MILP model for (39).

Similarly, a set of conditional constraints of the form (δi = 1) ⇒ (Aix ≥ bi) for

i ∈ I should be written
∨

i∈I

(

Aix ≥ bi
)

δi

The disjunct corresponding to δi = 0 for all i∈ I does not appear because it is empty.

6.4 Network Flow Problems

An MILP model is the preferred choice for a network flow problem, not only be-

cause it is a natural and intuitive formulation, but also because it has the substantial

advantage of total unimodularity. However, there is no need to write out the individ-

ual network flow constraints, and even if one did, the solver might not recognize the

network flow structure. Principles 1 and 2 call for a global constraint to represent

the inequality set. Such a constraint might be written

networkFlow(y, f,C) (40)

where y is a matrix of flow variables yi j, f is a vector of net supplies fi, and C is

a matrix of arc capacities Ci j. On encountering a constraint of the form (40), the

modeling system automatically generates the MILP model (34).

A minimum cost network flow problem can be stated by minimizing the objective

function ∑i j yi j subject to (40).

6.5 Assignment Problems

The assignment problem is naturally written in its CP form (8), using the alldiff

constraint. The MILP model (35) is also useful due to its total unimodularity, but

the solver should be relied upon to generate it (Principle 5). Generating this model

raises the important technical issue of variable mapping.

The solver generates the MILP assignment constraints (35) when it encounters

the alldiff constraint in the CP model. But this alone is not adequate. Fast al-

gorithms for the MILP assignment model use an objective function ∑i j ci jyi j that

is expressed in terms of the 0-1 variables yi j, not the objective function ∑i cixi
that

appears in the CP model (8).

To make this more precise, recall that the variable subscript in ∑i cixi
is parsed

by generating an element constraint. The CP model actually sent to the solver is

therefore
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min ∑
i

zi

element(xi, (ci1, . . .,cin), zi) , i = 1, . . .,n

alldiff(x1, . . .,xn) , xi ∈ Di, i = 1, . . .,n

(41)

The solver can now create MILP translations for the element constraints as well

as the alldiff. The ith element constraint can be given an MILP model by writing

a convex hull formulation of the disjunction
∨

j(zi = ci j):

zi =
n

∑
j=1

ci jy
′
i j,

n

∑
j=1

y′i j = 1, y′i j ∈ {0,1}, j = 1, . . .,n (42)

The MILP translation of (41) that results is

min ∑
i

zi

zi =
n

∑
j=1

ci jy
′
i j,

n

∑
j=1

y′i j = 1, i = 1, . . .,n

n

∑
j=1

yi j =
n

∑
j=1

y ji = 1, i = 1, . . .,n

y′i j ∈ {0,1}, i = 1, . . .,n

(43)

The variables yi j, y′i j are related to the original variables xi by way of variable map-

ping constraints

xi =
n

∑
j=1

jyi j, xi =
n

∑
j=1

jy′i j, i = 1, . . .,n (44)

The difficulty is that (43) is not an assignment problem with the integrality prop-

erty, unless variables yi j are identified with variables y′i j. The solver can accom-

plished this by mapping the variables xi to the same set of 0-1 variables yi j whenever

it creates an MILP model containing variables defined as in (44). This means that

the yi js become global variables rather than local to a specific MILP translation. If

the original model contains only an alldiff constraint and an objective function,

the solver can now exploit the total unimodularity of the MILP translation once it

verifies that the translated objective function has the right form.

The practice of mapping variables in the original model to global variables in the

MILP translations can be called global variable mapping. Such a practice ensures

that one can use the succinct CP model (8) for an assignment problem without sac-

rificing any of the advantages of an MILP model. However, MILP variables that are

not mapped to an original variable should remain local. This is illustrated in the car

sequencing example below.
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6.6 Circuit Problems

From a modeling point of view, a CP formulation of the circuit (traveling salesman)

problem is superior to an MILP formulation. A CP formulation is more natural

and contains only one constraint, as opposed to exponentially many constraints in

the most popular MILP model. The question remains, however, as to which of the

two CP formulations is better in an integrated modeling context—the alldiff

formulation (9) or the circuit formulation (10).

The circuit formulation seems more intuitive, because it is conceived in terms

of a circuit, as opposed to an assignment. The variables yi in the circuit formula-

tion refer to the next vertex in the hamiltonian circuit, which allows one to indicate

missing edges from the graph by removing elements from the variable domains.

The circuit formulation is superior from a technical point of view as well, be-

cause it allows for more effective propagation and relaxation. Consider the situation

with the alldiff formulation. No filtering can take place because the variable do-

mains are complete. In addition, the totally unimodular MILP model of alldiff

constraint is of little use in the context of a circuit problem, because it has no vari-

ables in common with the MILP translation of the objective function. To see this,

recall that the alldiff(x1, . . .,xn) constraint is translated

n

∑
j=1

yi j =
m

∑
j=1

y ji = 1, yi j ∈ {0,1}, i = 1, . . .,n (45)

where the xis are mapped to the auxiliary variables yi j by

xi = ∑
j

jyi j (46)

However, the objective function ∑i cxixi+1
of (9) is parsed as

∑
i

zi, element((xi,xi+1),C, zi) , i = 1, . . .n (47)

where C is the matrix of coefficients ci j. The ith element constraint sets zi equal to

the element of C in position (xi,xi+1). This can be translated to an MILP model by

writing a convex hull formulation of the disjunction
∨

jk(zi = c jk):

zi = ∑
jk

c jkδi jk, ∑
jk

δi jk = 1, δi jk ∈ {0,1}, all j,k

where the xis are mapped to the auxiliary variables δi jk by

δi jk = 1 ⇔ (xi,xi+1) = ( j,k) (48)

Because (46) and (48) are different mappings, the solver does not (and should not)

identify the variables δi jk with the variables yi j. So the MILP translation (45) of

the alldiff has no variables in common with the MILP translation (47) of the
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objective function, and the resulting MILP model of the problem is useless as a

relaxation.

The circuit formulation, on the other hand, allows for filtering, even though

achieving domain consistency is much harder than foralldiff. Also the circuit

constraint allows one to harness the advanced relaxation methods that have been

developed for the MILP formulation (36) of the constraint. The solver would not

actually generate the entire MILP formulation, because of its exponential size, but

would generate separating subtour elimination constraints and strong separating cuts

as needed, much as a specialized traveling salesman solver would do. The difficulty

that arose with the alldiff constraint does not occur here, because the variables

yi j that occur in the MILP translation (36) of circuit also occur in the MILP

translation of the objective function ∑i ciyi
. The latter is simply ∑i j ci jyi j, and both

MILP translations use the same variable mapping yi = ∑ j jyi j.

In addition, it is possible to write a relaxation of the circuit constraint solely

in terms of the original variables yi, provided they take numerical values. It is argued

in [33] that a proper choice of these values can exploit structure in the objective

function.

The dual model (11), which uses bothalldiff and circuit constraints, may

be advantageous when some other constraints in the problem are best expressed in

terms of the xi variables (Principle 6). In such cases, the MILP-based relaxation

of alldiff may be useful even though it does not connect with the objective

function.

6.7 Example: Sudoku Puzzles

The sudoku puzzle is most naturally modeled with alldiff constraints, as in (1).

It may also be advantageous for the solver to generate the MILP model (37), which

is not totally unimodular but may provide a useful relaxation. The solver can easily

generate the assignment constraints for each alldiff. It the solver uses global

variable mapping, the combined assignment constraints provide the desired relax-

ation.

MILP-based relaxations for alldiff contain 0-1 variables yi j, not the original

variables xi. Polyhedral relaxations in the original variables have been studied for

the alldiff constraint [24, 61] and the multiAlldiff constraint [37, 35], pro-

vided those variables take numerical values such as 1, . . .,n. The solver may choose

to generate these in addition to the MILP model, particularly if the yi js do not occur

in the relaxations of the objective function or other constraints.
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6.8 Example: Car Sequencing

The CP-based formulation (4) of the car sequencing model is very appropriate for

an integrated modeling context, due to its simplicity and the fact that it harnesses

the filtering power of cardinality and sequence constraints. It may be useful

for the modeling system to generate the MILP model (33) automatically, because

it provides a relaxation. However, the generation of such a model raises another

important technical point.

The cardinality constraint in the CP model (4) translates immediately to the

desired MILP constraints in (33), namely

50

∑
i=1

δia = 20,
50

∑
i=1

δib = 15,
50

∑
i=1

δic = 8,
50

∑
i=1

δid = 7, i = 1, . . .,50 (49)

using the variable mapping

(δi j = 1) ⇒ (ti = j), j = a,b,c,d (50)

There may appear to be a difficulty in translating the two sequence constraints,

however. For the first sequence constraint in (4), disjunctions of the form

(ACi = 0)∨ (ACi = 1)∨ (ACi = 0)∨ (ACi = 1) (51)

are converted to the MILP model

ACi = δib +δid, i = 1, . . .,50

δia +δib +δic +δid = 1

i+4

∑
j=i

AC j ≤ 3, i = 1, . . .,46

(52)

which simplifies to

ACi = δib +δid, i = 1, . . .,50

δib +δid ≤ 1

i+4

∑
j=i

AC j ≤ 3, i = 1, . . .,46

(53)

If global variable mapping is used, the variables δi j in (53) are the same as those in

(49), because they are mapped to the same original variables ti using (50). Similarly,

the second sequence constraint yields the MILP model

SRi = δic +δid, i = 1, . . .,50

δia +δib +δic +δid = 1

i+2

∑
j=i

SR j ≤ 1, i = 1, . . .,48

(54)
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which simplifies to

SRi = δic +δid, i = 1, . . .,50

δic +δid ≤ 1

i+2

∑
j=i

SR j ≤ 1, i = 1, . . .,48

(55)

The variables ACi and SRi are local to either MILP translation because they are not

mapped to any of the original variables.

The difficulty is that when the MILP formulations (53) and (55) are merged, the

constraints involving δi js are not equivalent to the corresponding constraints in the

desired MILP model (33):

ACi = δib +δid, SRi = δic +δid, i = 1, . . .,50

δib +δic +δid ≤ 1, i = 1, . . .,50
(56)

The two inequalities δib +δid ≤ 1 and δic+δid ≤ 1 are not equivalent to the inequal-

ity δib +δic +δid ≤ 1 in (56).

The problem is that (52) and (53) are equivalent only in the sense that they specify

the same disjunction (51). Because the auxiliary variables δi js are global variables,

the two formulations must be equivalent in the space that includes the δi js as well as

the ACis. In general, when an MILP translation based on disjunctions is simplified,

it must be simplified to a formulation that is equivalent in the auxiliary variables

as well as the variables in the disjuncts, if the auxiliary variables are global. It is

therefore essential to use the formulation (52) rather (53), and similarly to use (54)

rather than (55). If this is done, the result is the desired MILP model (33).

6.9 Example: Employee Scheduling

The CP idiom is especially well suited for employee scheduling problems, be-

cause several global constraints are expressly designed for this purpose—such as

the stretch constraint in the CP model of Section 4.6. Writing an MILP model

for stretch is not straightforward and should not be attempted in the original

model. How the solver might generate an MILP translation presents an interesting

research issue, as does the task of finding linear relaxations that are not based on

MILP formulations.

6.10 Decomposition: Machine Assignment and Scheduling

A machine assignment and scheduling problem illustrates the usefulness of decom-

position in modeling (Principle 7). A set of n jobs are to be assigned to m machines.

The jobs assigned to each machine must be scheduled so that they do not overlap
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and are processed within their time windows. The time window for each job j con-

sists of a release time r j and a deadline d j. Each job j has a processing time of pi j

on machine i. For simplicity, suppose the cost of assigning job j to machine i is a

constant ci j.

The assignment portion of the problem is modeled simply by letting x j be the

machine assigned to job j. For the scheduling component, a number of well-studied

global constraints are available. The simplest is a disjunctive scheduling constraint,

which might be written disjunctive({t1, . . ., tn}), where t j is the start time of

job j. The constraint requires that start times be set so that each job runs inside its

time window and starts after the previous job finishes. The time window of each job

j is enforced by setting the domain of each x j to the interval [r j,d j− p j], where p j is

the processing time of job j. Filtering algorithms for the constraint use edge finding

and other methods to reduce the domains of the t js [7].

One would like to write a model for the assignment and scheduling problem that

uses disjunctive constraints:

linear





min ∑
j

cx j j

r j ≤ t j ≤ d j − px j j, all j





disjunctive({t j | x j = i}) , all i

t j ∈ R, x j ∈ {1, . . .,m}, all j

(57)

Each disjunctive constraint schedules the jobs on one of the machines. The

difficulty is that the disjunctive constraints are not well defined until the values

of the x js are known, because the variable list in the constraints depends on the x js.

In principle, an enhanced disjunctive constraint could be designed to filter

the t j and x j domains simultaneously, but there is apparently no such enhanced

constraint in current systems.

By introducing decomposition into the model, however, one can retain the

disjunctive constraints. One approach is to define a global constraint that spec-

ifies a subproblem in which the values of certain variables are assumed to be known.

The constraint could be written

subproblem(X ,C1, . . .,Ck)

to enforce constraints C1, . . .,Ck after the values of the variables in set X are fixed.

The model (57) can be written

linear

(

min ∑
j

cx j j

)

subproblem







{x1, . . .,xn},

disjunctive({t j | x j = i}) , all i,

linear
(

r j ≤ t j ≤ d j − px j j, all j
)







t j ∈ R, x j ∈ {1, . . .,m}, all j

(58)
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The variables x j function as constants inside the subproblem, which means that the

disjunctive constraints are well defined. Also the time window constraints set

the variable domains to ranges appropriate for the assigned machine.

The solver may be able to exploit the decomposition structure that is identified in

the model. In this case, it might use a Benders method, because the outer problem

and the subproblem use disjoint sets of variables (the x js and the t js, respectively).

The disjunctive constraint would be associated with an algorithm that gener-

ates a logic-based Benders cut. The cut is added to the main problem, which is then

re-solved. For example, if the scheduling problem on machine i is infeasible, the

disjunctive filter may discover that a small subset J of the jobs assigned to

machine i are responsible for the infeasibility. Then a Benders cut
∨

j∈J(x j 6= i) can

be added to the constraint set outside the subproblem. This constraint set is then re-

solved to obtain new trial values of the xis, and so on until an optimal solution is ob-

tained. This process has been used in a number of contexts (e.g., [12, 24, 25, 27, 30])

and is discussed further in Chapter 4.

An important generalization of disjunctive scheduling is cumulative scheduling,

which allows tasks to be run simultaneously subject to one or more resource con-

straints. Each task consumes each resource at a certain rate, and there is a limit on

the total rate of consumption—a limit that may vary with time. Several versions of

the cumulative global constraint exist for this situation, and logic-based Ben-

ders cuts have been developed for some of them as well as for the disjunctive

constraint. Although filtering technology for disjunctive and cumulative

is highly developed [7], it may be useful to generate MILP formulations or linear

relaxations that are not based on MILP models [26].

6.11 Decomposition: Routing and Frequency Assignment

A final example, adapted from [52], illustrates decomposition in a more complex

setting. The arcs of a directed network represent optical fibers with limited capacity

(Fig. 9). There are requests for communication channels to be established between

certain pairs of nodes. The channels must be routed over the network, and they

must be assigned frequencies so that all the channels passing along any given arc

have different frequencies. There are a limited number of frequencies available, and

it may not be possible to establish all the channels requested. The objective is to

maximize the number of channels established.

The problem can be decomposed into its routing and frequency-assignment ele-

ments. The routing problem is amenable to an MILP formulation, and the frequency

assignment problem is conveniently written with alldiff constraints—provided

that a subproblem constraint is used to fix the flows before the frequency assign-

ment problem is stated.

The routing problem is similar to the well-known multi-commodity network flow

problem. This problem generalizes the capacitated network flow problem discussed

above by distinguishing several commodities that must be transported over the net-
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Supply:
yij = 2
yij′ = 0

Supply:
yi′j = 0
yi′j′ = 1

Supply:
yij = −2
yi′j = 0

Supply:
yij′ = 0

yi′j′ = −1

Arc flow:
xijk` + xi′j′k` = 2

A

B

A

Fig. 9 A message routing and frequencyassignment problem. Two message channelsare requested

from i to j and one from i′ to j′. The arcs have capacity 2, and frequencies A, B are available. The

dashed lines show an optimal solution.

work. There is a net supply of each commodity at each node, and the total flow

on each arc must be within the arc capacity. In the message routing problem, each

origin-destination pair represents a different commodity.

The message routing problem is not identical to the multicommodity flow prob-

lem because the net supplies are not fixed, due to the fact that some requests may not

be satisfied. As a result, one would not be able to use a global constraint designed

for multicommodity flow problems, even if one existed. Nonetheless, it is fairly easy

to write the MILP constraints directly.

For each pair of nodes (i, j), let Di j be the number of i-to- j channels requested

(possibly zero). A key decision is which requests to honor, and one can therefore

let integer variable yi j be the number of channels from i to j that are actually es-

tablished. (It is assumed here that different channels from i to j can be routed dif-

ferently.) The net supply of commodity (i, j) is yi j at node i, −yi j at node j, and

zero at other nodes. Let xi jk` be the flow of commodity (i, j) on arc (k, `), and Ck`

the capacity of the arc. To simplify notation, arcs missing from the network can be

viewed as arcs with a capacity of zero. The flow model is
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linear











































max ∑
i j

yi j

∑
` 6=i

xi ji`−∑
k 6=i

xi jki = yi j, all i, j

∑
` 6= j

xi j j`−∑
k 6=i

xi jk j = −yi j, all i, j

∑
` 6=i, j,k

xi jk`− ∑
` 6=i, j,k

xi j`k = 0, all i, j,k with k 6= i, j

∑
i j

xi jk` ≤Ck`, all k, `

xi jk` ≥ 0, all i, j,k, `

0 ≤ yi j ≤ Di j, all i, j











































xi jk`,yi j ∈ Z, all i, j,k, `

Once the communications channels are routed, a frequency fi j can be assigned to

each pair i, j so that the frequencies assigned to channels passing through any given

arc are all different. The model is therefore completed by writing

subproblem

(
{

xi jk`, all i, j,k, `
}

,

alldiff
(

{ fi j | xi jk` > 0}
)

, all k, `

)

fi j ∈ F, all i, j with i 6= j

where F is the set of available frequencies.

7 Conclusions

A scheme for integrating CP and MILP modeling styles has been proposed, in

which structured sets of MILP inequalities appear as global constraints alongside

the global constraints of CP. It remains to assess, however, whether a scheme of this

sort can deliver the advantages of both CP and MILP modeling in a single frame-

work.

It has already been argued that the full computational resources of both CP and

MILP are available in an integrated setting, where they can also be combined for

greater effect. CP-style global constraints continue to appear in the model whenever

they provide the best modeling approach, and they can be subjected to any filtering

or propagation methods available to a CP solver. MILP relaxation technology can

also be brought to bear, even in cases where it would not be applied in a commercial

MILP solver, because structured sets of inequalities are identified. Even when con-

straints are not written in inequality form, the integrated solver can generate MILP

translations when they are useful. This results in an MILP-based relaxation that is as

effective as any obtained from a conventional MILP model, provided certain tech-

nical issues are handled correctly. Global constraints can be given linear relaxations
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that are not based on an MILP model and therefore cannot be used in MILP solvers.

Beyond this, the potential of integrated problem solving can be tapped, because CP

filtering and MILP relaxations are mutually reinforcing.

The key advantages of CP-based modeling are the power of the modeling lan-

guage, the relative conciseness and naturalness of its formulations, and their ability

to reveal problem structure to the solver. These advantages are clearly retained, and

again enhanced, because the lexicon of global constraints is increased to encompass

structural ideas from MILP.

The key advantages of MILP modeling—aside from its ability to harness MILP

relaxation technology, which is retained—are its reliance on a small set of primitives

(linear inequalities) and the relative independence of model and solution method.

Integrated modeling obviously sacrifices the first advantage, because it relies on a

sizable collection of global constraints. Yet it must be asked whether this is actually

a sacrifice.

The difficulty with using global constraints is presumably that one must be fa-

miliar with a large number of them to be able to write a model. Yet one frequently

writes an MILP model, or at least important parts of it, by identifying such patterns

as flow balances, fixed charges, packing or covering constraints, and so forth, and

then reducing them to inequality form. One must therefore be familiar with a num-

ber of modeling ideas in any case. Integrated modeling only spares one the labor

(and errors) of writing micro-constraints that can be generated automatically. More-

over, a well-organized list of constraints can alert the modeler to patterns that might

otherwise have been overlooked in the problem. It can provide a vocabulary that

helps one to learn and distinguish modeling ideas, much as a technical vocabulary

assists learning in any field.

Global constraints seem to be proliferating by the day, but new constraints tend

to be variations on old ones. A well-known global constraints catalog [9] lists 313

constraints, but on close examination one can identify about thirty basic modeling

ideas among these, of which the other constraints are variations and extensions. A

good modeling system can organize constraints along various dimensions, so that

one can generally find what one needs, much as one finds the relevant function in a

spreadsheet.

Independence of model and method presents a more serious challenge to in-

tegrated modeling, and the matter deserves careful examination. It should be ac-

knowledged at the outset, however, that the issue is not independence of model and

method, because no modeling language achieves it, but independence of model and

solver. Good MILP modelers know that one must think about the solution method

when writing a model. The constraints must be chosen to result in a tight relaxation,

the variables chosen to allow effective branching, redundant constraints added, sym-

metry considered, special ordered sets used when applicable, and so forth. Nonethe-

less, MILP does achieve independence of model and solver (with the possible ex-

ception of special ordered sets), because a given MILP model will run on almost

any solver.

Reliance on global constraints undeniably links the model with the solver, be-

cause different solvers offer different libraries of constraints. The library of avail-
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able constraints grows as solvers advance, and the best way to write a model evolves

accordingly. Static collections of models used for benchmarking software, such as

MIPLIB, are an impossibility, because the formulations must change with the solu-

tion technology to take full advantage of the software.

Independence of model and solver is frequently discussed as though it were an

unmitigated advantage, when in fact it has both positive and negative aspects. A

fixed modeling language provides the convenience of being able to run a model

on any solver, but that very characteristic blocks progress in solution technology.

Integrated methods, for example, can sometimes yield orders of magnitude in com-

putational speedup, but only if one is willing to move beyond traditional MILP

modeling.

As for benchmarking, a standard set of MILP models allows one to compare

a wide variety of solvers, but at the cost of restricting one’s attention to certain

kinds of solvers. Benchmarking sets can equally well consist of problem statements

(as opposed to models), so that one can reformulate the problems as necessary for

new solvers. This allows one to monitor progress in modeling practices as well as

algorithms. Some popular benchmarking libraries, such as MIPLIB, contain models

for which the underlying problems are actually unknown, which means that they

cannot be reformulated. This practice does not seem optimal for progress in either

modeling or solution technology.

In summary, integrated modeling forgoes the convenience of solver indepen-

dence, but it compensates with more convenient modeling and a wider repertory

of solution methods. Even the inconvenience of incompatible solvers may fade over

time, because software vendors will have an incentive to converge toward a univer-

sal set of global constraints. They may want to satisfy as many customers as possible

by implementing all the global constraints they prefer to use.

The discussion here has focused on CP and MILP, but integrated modeling can in

principle be broadened to encompass nonlinear constraints, local search heuristics

and other AI-based search procedures, stochastic models and methods, and even

simulation. Ideally, a single modeling system would allow one to write problem

formulations to which the solver can apply any combination of methods that might

be effective.
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