LEHMAN MATRICES

GERARD CORNUEJOLS, BERTRAND GUENIN, LEVENT TUNEL

ABSTRACT. A pair of square), 1 matricesA, B such thatAB” = E + kI (whereFE is the

n x n matrix of all 1s andk is a positive integer) are calldcehman matrices. These matrices
figure prominently in Lehman’s seminal theorem on minimally nonideal matrices. There are two
choices ofk for which this matrix equation is known to have infinite families of solutions. When

n = k?>+k+1andA = B, we get point-line incidence matrices of finite projective planes, which
have been widely studied in the literature. The other case occurs kvee andn is arbitrary,

but very little is known in this case. This paper studies this class of Lehman matrices and classifies

them according to their similarity to circulant matrices.

1. INTRODUCTION

Let M, (K) denote the set of x n matrices with elements i, and letB denote the seft0, 1}.
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We say that matriced, B € M, (B) form a pair ofLenman matrices if there exists a positive

integerk such that
(1) ABT = E + kI

where E denotes the: x n matrix of all 1s, and is the identity matrix. Matrix5 is called the
dual of matrix A. Note thatA is the dual ofB (indeedAB” = E + kI impliesBAT = E + kI
sinceFE + k1 is symmetric). Bridges and Ryser [1] showed that every Lehman matriragular

for some integer > 2, i.e. it has the same numbeof 1s in each row and column, see Section 2.
If the dual of A is A itself (i.e. AAT = E + kI) then A is the point-line incidence matrix of a
nondegeneratefinite projective plane, a widely studied topic [7]. Other infinite classes of Lehman
matrices occur wheh = 1 but very little is known in this case. The main purpose of this paper
is to initiate a study of these matrices.

We say thatd isthinwhenk = 1 in equation (1) anéht whenk > 1 (this terminology refers to
the volume of the simplex defined by the column vectorglp$ee Section 6.2). Nondegenerate
finite projective planes withh > 7 points give rise to fat Lehman matrices. Before presenting
examples of thin Lehman matrices, we introduce some notation.

Given indiceg, ' € [n] (Where[n] = {1,...,n}), a(t,t')-interval is the set of indices visited
following the cyclical ordering, starting fromand ending at’. We denote this interval by, ¢'].
Itssizeist’ — ¢t + 1 whent’ > t andt’ —t +n + 1 whent’ < t. Similarly, we denote the set
{0,1,...,m} by [0,m]. Giveni € [0,n — 1], we say that interval + i, ¢ + ¢] is ani-shift of
interval [, t']. More generally, the-shift of vector (v, ..., v,) is the vector(uy, . .., u,) where
ujy = v;if j+4 < nandu;y;—, = v;if j +17 > n + 1. Vectoru is ashift of vectoru if there

existsi € [0,n — 1] such that: is ani-shift of v.

1.1. Examples. A matrix X € M, (B) is circulant if for all i € [n — 1], row 1 + 7 is ani-shift

of row 1. Consider integers, s,n such that,s > 2 andrs = n + 1. We define matrices
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cr, D € M,(B) as follows:C" and D are the circulant matrices with rowcorresponding to

[r] and{1,r,2r,..., (s — 1)r} respectively. Note thaf" D"’ = £ + I. Hence,

Remark 1.1. For all integers,, s, n such that, s > 2,rs = n+1, C andD? form a pair of thin

Lehman matrices.

Two matricesX, Y areisomorphicif Y can be obtained fronX’ by permuting the columns and
the rows ofX. If a matrix A is isomorphic to a Lehman matrix, thehis also a Lehman matrix
(to see this, perform the same permutations on the dual and observe that (1) still holds).

2-regular Lehman matrices are perfectly understood: They are isomorphi¢ for » odd
(they are sometimes calledd holes).

Luetolf and Margot [11] enumerated all nonisomorphic Lehman matrices far 11. For
example, they found exactly two nonisomorphic Lehman matrices fer 8 (to help visualize

0,1 matrices we do not write down the 0s):

1011 111 .
111 111
111 111
. 11 1 11 1
Cs = 111 and 111
11 1 11 1
1 11 1 11
11 1 11 1]

Note that the second matrix is obtained fr6if by adding &), +1 matrix of rank 1. The main
theme of this paper is that this is not a coincidence: thin Lehman matrices are either circulant
matricesC”" or “similar” to them. We make this more precise below. Definel&el of a thinr-
regulam xn Lehman matrix4 to be the minimum rank o’ —C7" over all matricesd’ isomorphic
to A. For example, the circulant matriceé§ have level 0 and the second Lehman matrix with
n = 8 above has level 1. To demonstrate that the notion of level is natural in the study of thin

Lehman matrices, we appeal to information complexity (also known as Kolmogorov complexity).
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1.2. Results. A parameter is anya € [n]. We say that am x n matrix A can bedescribed with

k parameters P = {p1,...,px} if there exists an algorithm that, givép, constructs a matrix
isomorphic toA (note that there is no complexity restriction on the algorithm). We prove the

following theorem in Section 3.

Theorem 1.2. If Aisathinn x n Lehman matrix of level ¢, then A can be described with O(¢*)

parameters.

Thus thin Lehman matrices with constant level can be described with a constant number of
parameters, whereas one may requife) parameters to describefat+1 matrix of constant
rank. This means that thin Lehman matrices with constant level are simit@f o terms of
information complexity.

In Section 4, we give a complete characterization of level one thin Lehman matrices, using
only six parameters. This infinite class of Lehman matrices is new.

In Section 5, we prove the existence of thin Lehman matrices of arbitrarily high level and we
give some constructions. In Section 6, we briefly discuss fat Lehman matrices and in Section 7

we state open problems and present some concluding remarks.

1.3. Motivation. Lehman matrices are key to understandings#tieovering problemmin{c’x :

Mz > e,, x € B"}, a fundamental problem in combinatorial optimization (heie a given

vector inR", e, is them-vector all of whose components are 1, avids a givenm x n matrix

with entries equal to O or 17 is the vector of unknowns). A basic question is the following:
when can the set covering problem be solved by linear programming? This can be done for every
objective function: exactly when theset covering polytope P := {z € R" : Mz > e, 0 <

x < e,} isintegral, i.e. all its extreme points have only 0,1 components. When this occurs, the

matrix M is said to badeal.
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If P is an integral polytope, then for glle [n] andj € B, so are its face®”’ := PN{z; = (}.

Let P” be the restriction of’ to variables distinct from;, i.e. P” = {(x1, ..., %j_1,Tj41, ..., Tn) :
(x1,...,2,) € P'}. It can readily be checked th&” is a set covering polytope as well, i.e.
Pr={reR"': Mz >e,, 0<uzx<e,}forsomel, 1 matrix M'. We say that
M’ is aminor of M. Thus if a matrix is ideal then so are all its minors.0Al matrix ismin-
imally nonideal if it is not ideal but all its minors are. Thus i¥/ is minimally nonideal then
P={zeR": Mz >e, 0<uz <e,}isnotan integral polytope but all the polytopes
obtained fromP by fixing a variabler; to O or to 1 are.

An example of a minimally nonideal matrix is the point-line incidence matrix dégenerate
finite projective plane (one line containg — 1 pointsvy, . .., v,_1, and the remaining — 1 lines
contain exactly two points;, v,, for j = 1,...,n — 1). Define thecore of a minimally nonideal
matrix M to be the submatrix induced by those rows for which the inequalities> ¢,, hold
as equality at a fractional extreme pointof P. Lehman [8] gave the following property of
minimally nonideal matrices: I/ is a minimally nonideal matrix, then either it is the point-
line incidence matrix of a degenerate finite projective plane or it has a unique core which is a
Lehman matrix. A complete characterization of minimally nonideal matrices or of their cores
seems extremely difficult. A step towards a better understanding of these matrices is to study the
Lehman equation (1). This is the purpose of this paper.

A 0,1 matrix M is Mengerian if for every nonnegative integral vectorthe linear program
min{c’x : Mz > e,, 0 < x < e,} and its dual both have integral solutions. Many classical
minimax theorems are associated with an underlying Mengerian matrix [3]. If a matrix is Men-
gerian then so are all its minors.0A1 matrix isminimally non-Mengerian if it is not Mengerian
but all its minors are. Clearly, it/ is Mengerian then it is ideal. If follows that minimally

non-Mengerian matrices are either minimally nonideal or ideal. In [4] it is shown that if a matrix
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is minimally non-Mengerian and minimally nonideal, then its core must be thin. Hence, thin
Lehman matrices are important in understanding minimally non-Mengerian matrices.
Finally, note the analogy between equation (1) and the equati®h = £ — I that arises in
the study of perfect graphs: Lasz [10] showed that minimally imperfect graphs sati$fy” =
E — I whereA (B respectively) is the maximum clique (maximum stable set respectively) versus
vertex incidence matrix. Graphs that satisfy this matrix equation are qadheidionable graphs
and they were studied in the 1970s and following decades.
We will drop the subscript or superscriptfrom C}*, D?, e,, etc. when the dimension is clear

from the context.

2. PRELIMINARIES
A classical result about the solutions of the Lehman matrix equation (1) was proved by Bridges

and Ryser [1].

Theorem 2.1. Let A, B € M,,(B) beaLehman pair. Then, there exist integersr > 2 ,s > 2 such

that A isr-regular, B is s-regular and rs = n + k. Moreover, A”, BT are also a Lehman pair.

Next, we establish that the notion k#vel of a Lehman matrix is invariant under duality. A

matrix isO-regular if the sum of entries in each row and column is equal to O.
Proposition 2.2. Let A, B € M, (B) beathin Lehman pair. Then, level(A) = level(B).

Proof. By Theorem 2.1, there exist integers> 2 ,s > 2 such thatA is r-regular,B is s-regular
andrs =n + 1.
Lett = level(A). By the definition of level, there exist x n permutation matrice®,  such

that PAQ — C, has rank.

Claim 1. PBQ — D, hasrank t.
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Proof. We define

S4:=PAQ - C,, Xp:=PBQ- D,

SinceC, and D, form a thin Lehman pair, we have

E+1 = (PAQ-5%,4)(PBQ—-%g5)"
= (PAQ)(PBQ)" — C,X5 — %a(PBQ)".
Since P(E + I)PT = E + I and A, B make a thin Lehman pair, so d@AQ and PBQ. We
obtain
YpCl = —(PBQ)YY.

By Theorem 2.1C7 and DT are a Lehman pair. Multiplying both sides of the above equation

from right by D, and using the fact thai z is 0-regular, we arrive at
Yp = —(PBQ)X.D,.
PBQ and D, are nonsingular; thereforegnk(35) = rank(34) = ¢ as desired. O

The above claim implies thad¢vel(B) < t. Since the roles ofi and B are symmetric in the
Lehman equation, ifevel(B) < ¢t — 1, we would arrive alevel(A) < ¢ — 1, a contradiction.

Therefore Jevel(B) must equat. O

Remark 2.3. Supposed, B € M, (B) make a thin Lehman pair. Then using the Lehman equa-

tion,

(2) Al =BT — lE.

r

Supposed, B also satisfyA = C,. + ¥4 andB = D, + ¥, whereX, andX are0-regular
matrices. Using the proof of Proposition 2.2, the identity (2), andothegularity ofX 4, we
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deduce
3) Sp=—BYLD, = —ATTSID, = — (C7'5,47H) "

3. INFORMATION COMPLEXITY

As we hinted in the introduction, thin Lehman matrices can be classified with respect to their
relation to the circulant matrices via the notion®fel. In particular, we will prove in this section
that low level, thin Lehman matrices are very similar to circulant matrices. In this context, two
matrices are “similar” or “close” to each other if only “little” extra information is sufficient to
describe one in terms of the other. Our approach focuses odetdsaptional complexity of
0,1 matrices which is in the general domain of well-known notionK@mogorov complexity
and Shannon information theory. In such studies one has to decide ahead of time what the
communicated data or the computer input “mean.” (How will it be interpreted?) For our purposes,
we will require that the input be treated as “positions” inriadimensional vector. While both of
these areas (Kolmogorov complexity and Shannon information theory) are close to what we need,
neither one is exactly suitable. Therefore, we set up our own special model below. For detailed
information on Kolmogorov complexity, see [9]; for a comparison of Kolmogorov complexity
and Shannon information theory, see [5].

In our approach, we are interested in describing 0,1 matricesbr matrices. Our complex-
ity model allows the usage of parametergriin However, we require that any algorithm that is
allowed in our model must treat these parameters as “positions” efdimensional vector (or
treat a pair of parameters as a position imar n matrix). For instance, to describe a 0,1 vector
of lengthn, we may list the positions where contiguous ones start and end (such a representation
would require2(n) parameters in the worst case). However, we do not allow the usage of param-
eters to encode the 0,1 elements as the digits of a numlpey (if this were allowed, then -

parameters would suffice to describe any 0,1 vector of lenjth
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As we explained in the introduction, our classification theory treats isomorphic matrices as
equivalent (so does our notion kivel of a thin Lehman matrix). Given thin Lehman matrices
A, A" € M, (B), bothr-regular, we are interested in the significant intrinsic combinatorial differ-
ences betweed and A’. So, classification up to isomorphism also serves us well in the current
section.

LetA, B € M, (B) be aLehman pair withd beingr-regular and3 beings-regular. To describe
the 1s inA, rn parameters suffice. Since we allow computation (any algorithm may be used),
andA, B satisfy the Lehman equation, each thin Lehman matrix can be describethy, s}n
parameters. E.g., i < r, we describe3 usingsn parameters and compute= (E+1)B~7. In
contrast, one parameter suffices to descfibenamelyr. Indeed, iflevel(4) = O(1) thenO(1)
parameters suffice to descride(see Corollary 3.8).

Givenu € Z", uy,u_ € Z are the positive (negative resp.) partsifuch that: = v — u_
andu., u_ have disjoint supports. (Sometimes, we define a vectwy first defining its positive
and negative parts, andu_ and then by letting: := u, — u_; in this latter definition, the
supports of., andu_ need not be disjoint.) We denote the support of a vectoy supp(u).

We say that, € Z" is (t, C,)-compact if

supp(uy) < union oft intervals of size, and

supp(u_) < union oft intervals of size-.
We say that, € Z™ is (t, D)-compact if

supp(uy) C union of the supports afcolumns ofD,, and

supp(u—_) <€ union of the supports afcolumns ofD..

Proposition 3.1. Let ¥ € M, ({0, £1}), be0-regular withrank(¥) = ¢. If C,. + X isnonnegative

then every column and row of ¥ is (¢, C,.)-compact.
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Proof. We only prove that every column &fis (¢, C,.)-compact (our arguments directly apply to
the rows ofY as well). First, we note that for any colummof ¥, = _ is (1, C}.)-compact (since
C, + ¥ is nonnegative). Next, we prove that is (¢, C,)-compact: Let: be then x (n — 1)

matrix obtained front by deleting column. SinceX is 0-regular, the system:

4) Ya=—-x, «a>0

has a solution, namely := e. Sincerank(X) < t, there exists an extreme point solutiomf (4)

such that supp(a)| < t. In particular,

supp(z4) € | J supp([colz(i)])-

i€supp(@)

We conclude that,, and hence;, is (¢, C,.)-compact. O

Corollary 3.2. Let ¥ € M, ({0,£1}), be 0-regular with rank(X) = ¢. If C, 4+ X is nonnegative

then every v € rowspace(X) is (¢?, C,.)-compact.

Proof. Choose a set of rows, /s, . . ., ¢; of > which forms a basis for the row spaceXf Then
v = ijl a;/T, for some coefficientsy;, as, ..., ;. By Proposition 3.1, eachy is (¢, C,)-

compact; hence; is (¢?, C,.)-compact as desired. O

Forp € Z™ and an(i, j)-interval S C [n], thetransition of p over S is
j
trans(p, §) == > |p(k) — p(k +1)],
k=i—1
where the indices are interpreted cyclicallyjin.
Fori, j € [n], dist(4, 7) is the size of a smallest interval containing bo#nd;. Thus, ifj > i,

thendist(é, j) = min{j —i+ 1, — j+n+1}.
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Proposition 3.3. Let r > 2, s > 2 beintegersand let n := rs — 1. Alsolety € {0,+1}" be
(1, D,)-compact and ¢ := CTy. Then

trans(¢, S) < 12, for everyinterval S of sizer — 1.

Proof. Let
24 = Z row;(C,) andz_ := Z row;(C,.).

1€Y+ i€y—
We say that € [n] is special if z, (i) >2o0rz_(i) > 2. Note,/ = z, — z_.
Claim 1. Let i, j € supp(¢,) besuch that dist(z, j) < r — 1 and neither i nor j is special. Then

i and j liein the same interval of supp (/).

Proof. Clearly,i,j € supp(z,). Sincei, j are not special;, (i) = 1 andz,(j) = 1. Let S be
the smallest interval containing batland;. Sincey is (1, D,)-compact, the rows indexed lyy.
are each shifted by or » — 1. Sincedist(7, j) < r — 1, this implies thatS C supp(z;). Since
z (i) = z_(j) = 0 anddist(i,7) < r — 1, SNsupp(z_) = 0. We conclude thatupp(¢,) 2 S
and that the same interval 6f containsS.

&

Claim 2. There exist at most two special elements. If a special element v appearsin z, then

zy(v) = 2; ifit appearsin z_ then z_(v) = 2.

Proof. The claim follows from the matrix equatiafi’ D, = F + 1. &
Let S be an interval of size — 1. The following includes all potential contributions to
trans((, S):
e at most for each special element (by Claim 2, there are at most two such elements),
e at most2 for each of’,, ¢_ (by Claim 1).

The total is bounded above by 12. O
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The next two remarks are useful in estimating the total number of transitions over sums of

vectors and unions of intervals.
Remark 3.4. Let/, ¢ € 7" and letS C [n] be an interval. Then
trans(¢ + ¢/, S) < trans(¢, S) + trans(¢', S).
Remark 3.5. Let/ € Z" andS, S’ C [n] be intervals. Then
trans(¢, S U S’) < trans(¢, S) + trans(¢, S").

Proposition 3.6. Lety € {0, +1}" be (¢, D,)-compact. Define ¢ := CTy. If £ is(q, C,)-compact,
then

trans(, [n]) < 48tq.
Proof.

Claim 1. For everyinterval S C [n] of sizer — 1, trans(¢, S) < 12¢.

Proof. Sincey is (¢, D,)-compact, there exigt € {0, £1}" such that each; is (1, D;)-compact
and>>!_ p; = y. Letd; .= CTp;, for alli € [t]. By Proposition 3.6trans(¢;, S) < 12. Since
¢ =>""_ t;, Remark 3.4 implies the claim. &

Sincel is (¢, C,)-compact,
supp(f,) C union ofq intervals of sizer,

supp(¢—) C union ofq intervals of size-.
Therefore,
supp(¢) C union of4q intervals of size[2] < r — 1.

By the claim, every such interval contains at moat transitions for/. Hence, by Remark 3.5,

we havetrans(/, [n]) < (4q)(12t)
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as desired. 0
Now, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let A be ann x n thin Lehman matrix of leved. Then (by Theorem 2.1)
A is r-regular for some integer > 2 and by our definition of level, there exist permutation
matricesP, () such thatank(PAQ — C,) =t. Let¥, := PAQ — C... Denote byB the dual of
A (thenB is s-regular wheres > 2 is the integer satisfyings = n +1). LetX 3 := PBQ — D,.
We will describeX: z with O(¢*) parameters. Since the roles4fand B are symmetric, the same
arguments also apply 0.

By the proof of Proposition 2.2 (or (3))ank(X5) = t. So, there exists &x ¢ nonsingular
submatrix” of ¥z with row index set/,., column index sef.. such that after a suitable reordering,

S r M,
B= 1 My M, M, |-

We define

Y:{&J, Ul = M].

Further letL := CTY, X := C,U. GivenL, X, J,, J. as the input, the following algorithm

computes:g:

e ComputeD? X, D,L

(this givesl’, M; and M, as follows:

T
zfX:DﬂMh4E+nU=U=[LTy
1

similarly,

&L:Dﬁﬁ%ﬁE+DY:Y:{£}%
2

e computeM, M.



14 GERARD CORNUEJOLS, BERTRAND GUENIN, LEVENT TUNEL

We claim that(L, X, J,., J.) can be represented l6y(¢*) parameters. Clearly], and.J. can be
represented by parameters each. So, it suffices to prove the upper bound feince forX we
simply transpose the matri). By Corollary 3.2, every columfof L is (¢, C,)-compact. Since
every columny of Y is a column ofY 5, Proposition 3.1 implies thatis (¢, D)-compact. Now,
Proposition 3.6 impliesrans(, [n]) < 48t3. Every transition can be described by one parameter;

hence/ can be described b9 (¢?), L can be described b9 (') parameters. O

Remark 3.7. Theorem 1.2 also applies to partitionable matrices (those satishig= £ —I).

We simply redefine the notion of “special” used in the proof of Proposition 3.3.

Corollary 3.8. Every pair of thin Lehman matrices with fixed level (i.e. level(4) =t = O(1))
can be described by O(1) parameters.

The next section gives a complete characterization of all thin Lehman matrices of level one,

using only 6 parameters.

4. COMPLETE CHARACTERIZATION OF LEVEL ONE MATRICES

Throughout this sectiod, B € M,(B) denote level one matrices ari¢l is the dual ofA.
MoreoverA is r-regular andB is s-regular. A matrix in)/,,(B) is identified with the set of pairs
in [n] x [n] corresponding to its nonzero entries.

A (t,q;t',¢')-block is the set of pairgi, j) wherei is in the (¢, t')-interval andj is in the
(q,¢")-interval. A(p,o)-shiftof a(t, ¢;t', ¢')- block is the(t + p,q + o;t' + p, ¢ + o)-block. A
configuration C is a 6-tuple(, j, ng, nc, p, o) associated with 4 blocks as follows. Thiecks of
C are denoted3y;, Bis, Bai, Boy WhereBy; isthe(i, j;i +nr — 1,5 + ne — 1)-block, By, is a
(p, 0)-shift of Byy, By is a(0, o)-shift of By; and By, is a(p, o)-shift of By;. The matrix3(C)

is defined as-B;; — By + By + Bys.
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Theorem 4.1. A matrix A is a level one (Lehman) matrix if and only if A is isomorphic to
C, + X(C) where C is the configuration (1,1 + ng,ng,r — ng, tr,tr — 1) whereng € [r — 1]

andt € [s — 1].

We call any configuration of the form given in Theorem 4 .haaic configuration. Consider,

for instance, the basic configuration with= 14,7 =5, nr = 2,t = 1 andC = (1, 3,2, 3,5, 4).

Tl 111 :
1 1111
1111 1

11111
11111
1111 1
Cr+2(C0) = P 11}}1
11111
11111

1 1111

11 111

111 11

(1111 1

Next we describe briefly the major steps of the proof of Theorem 4.1. The “if” part is easy to
check using the dudb defined in Remark 4.3 below. The proof of the “only if” part consists of
the following steps. Sincd has level one it can be written @s+x¢* wherez, ¢ € {0, +1}". We

first show in Section 4.2 that ¢ have a simple structure, i.e. only a small number of parameters
are needed to describe them. This result is refined in Section 4.3 where we show tihefine a
special type of configuration. In Section 4.4 it is proved that there exists a bijection between the
configurations ford and those forB (after isomorphism). The proof is completed after a brief

case analysis in Section 4.5.

4.1. Preliminaries. In this section, the support of a 0,1 vectowill also be denoted by, i.e.

we use the same notation for a 0,1 vector and its support.
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We say that P, Q) define thestandard (D;, C;)-isomorphismif P, () are permutation matrices
(of ordern) such that for all indices, P(i, (i — 1)r + 1) = 1 andQ(i, is) = 1.

Remark 4.2. PD,Q = C.,.

Proof. By definition of D, row,;(D;) = {i—1+tr : t € [s]}. SinceQ(i,is) = 1 andrs = n+1,
it follows thatQ(ri,¢) = 1 for all indicesi. Now (PD,Q);; = row;(P)Dscol;(Q) = Ds((i —
)r+1,7j)whichis equal td ifand only ifrj = (i — 1)r +1 — 1 + ¢r for somet € [s]. We can
rewrite this last condition agj = r(i+t) wheret € [0, s—1]. Thusj = i+t wheret € [0, s—1],

i.e.j € row;(Cs). O

We say that a permutation matrix defines asimple isomorphism if there exists € [0,n — 1]
such that”(i,:+4) = 1 for all indicesi. Observe thaPC, PT = C,. Let P, Q be the permutation
matrices such that for all indices P(i,n — i) = 1 andQ(i,n — i + r — 1) = 1. Then given
X € M,({0,£1}), PXQ is called thereverse of X. Note that the reverse @f, is C,. Given
a vectorr € {0, +1}" thereverse of z is Pz. We say that) defines thestandard (C7, C,.)-
isomorphismif Q(i,i+r—1) = 1 for allindicesi. Note thatC'’ () = C,. and that the isomorphism
maps columry to columnj + r — 1.

For the remainder of this section when we talk abdytB, we mean isomorphic copies
PAQ, PBQ such thatlevel(A) = rank(PAQ — C,) (and by Proposition 2.2evel(A4) =
level(B) = rank(PBQ — Dy)).

Remark 4.3. There are vectors,(,y,u € {0,+1}" and® = +1 such thatd = C, + z(7,

B = D,+®yu” and! = CTy, v = Cou, ® = _1—;15Ty' Moreoverg®e = (Te = yTe = ule = 0.

+

Proof. SinceA has level one, there exist vectard such thatd = C, +z¢*. SinceA is r-regular
zTe = (Te = 0. Definey := C; "¢ andu := C;'z. By (2) we havey = (D, — 2E){ = D/l

andu = (D! — 1E)x = DIx. Moreovery”e = (" D’e = ("'se = 0 and similarly we can show
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ule = 0. We have,
A=Cptal” =(I+2"CHC, = (I +2y7)C,.

Using Remark 6.2(1) and the above equation, we concludetthat det(I + zy”) =1 + 27y.
Thereforezy € {0, -2} and® = —H—;Ty is well-defined and is=1. Then it can be checked

that B = (I + ®yzT)D, (multiply ABT and use the fact that' e = y”e = 0). Thus
B=D,+ ®yz'D, = D, + dyu’.

Since A is a0, 1 matrix, we haver/” € M, ({0,+1}). Thus, we can choose ¢ € {0, +1}".
SinceB is a0, 1 matrix and® = +1, we must havgu’ € M, ({0, £1}). We established above
thaty = D,/ andu = DTz. Since we haver,/ € {0,4+1}", y andu are integral vectors.

Thereforey, v € {0, £1}" as desired. O

Let (P, Q) define the standar,, C,)-isomorphism. Sincé3 = D, + ®yu” it implies that
PBQ = P(D, + ®yu”)Q = PD,Q + PPyu’Q = C, + (®Py)(Q*u)T. Definey := ®Pu and
@ = QTuthenPBQ = C, + gu’. Hence all results about ¢ and A apply toy, & and PBQ.

The notatior?, z, y, u, , y andu will be used throughout the remainder of this section.

Remark 4.4. Suppose that, is a(j, j')-interval and that _ is ao-shift of /, . Suppose that
is an(i, ')-interval and that: .. is ap-shift of z_. Then we can define two distinct configurations
C,C’ from x and/ such thate(” = (C) = X(C") where:C = (i,j,i' —i+ 1,5 —j+ 1,p,0)
with blocks By = 2_(%, Biy = x_ (T, Byy = (%, Byy =z (T;andC’ = (i+p,j+ 0,7 —i+

1,5/ = j+1,n—p,n—o)withblocks B, = B}, =2 (Y, By =x_(_ By, =x_(,.

Observe thaf andC’ are determined from, ¢ and the choice oB3;;. Thus, we will say thaf is

the(z, ¢)-configuration withB;; = x_¢, and that’ is the(x, ¢)-configuration withB,; = =, (_.
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4.2. r-structures. We use the notion of vector shift given in the introduction. A vector in
{0,+1}" is atype |, r-structure if it is a shift of a vectorv whose positive and negative parts
are the intervals, = [1,q¢|, v = [1 + tr,q + tr] whereq € [r — 1],t € [s — 1]. A vector

v € {0,£1}"is aTypell, r-structure if v or —v is a shift of a vector’ wherev’, = [1,¢| U {r},

v =tr,q+tr]andq € [r — 2|,t € [s — 1]. Avectorin{0,+1}"is aTypelll, r-structure if it

is a shift of a vectow wherev, = [1,q] U {r}, v_ = [tr,q+tr — 1] U {q+ (t — 1)r}, where

q € [r— 2] andt € [s — 1]. Theorder of anr-structurev is given by the parameter If there
exists an index such thav andé + r — 1 are both indices of . (resp.y_) then{d,§ +r — 1}

form aspecial pair of y, (resp.y_) andy. (resp.y_) is special.

Lemma4.5. ¢ or itsreverseisan r-structure of order |y, |. Moreover, it isof typel if and only if
neither vy, nor y_ are special; itisof typell if and only if exactly one of i, y_ isspecial; it isof

type Il if both iy, and y_ are special.
Proof. SinceA does not have levél, z_, x,¢_, ¢, are all non-empty.

Claim 1.

(1) ¢, (resp. ¢_) iscontained in an interval of cardinality r.

(2) ¢, (resp. ¢_) isnot aninterval of cardinality r.

Proof. A = C, + x(" > 0. In particular,C,, — z_¢% > 0, thus¢Z C row,(C,) forall o € z_.
This implies (1). Furthermore i, is an interval of size:, thenxz_ contains a unique element
a. Sincee’z = 0, z, contains a unique elemedt As C, — x. /T > 0, and/Te = 0, /_ is an
interval of sizer. ThenA is obtained fronC,. by permuting the rows;, 3, contradicting the fact

that A has levell. &

Claim 2.

(1) If & = +1theny, C cols(Ds), Vo € u_. If & = —1theny, C cols(Dy), Vi € u,.
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(2) Consider § suchthaty, C cols(Ds). ThenVi, j € y., i # j, row;(C,)Nrow;(C,) C {6}.

Moreover, ” C” holdswith” =" if and only if {4, j} isa special pair of v .

Proof. D, + ®yu” > 0. Supposed = 1 as the cas® = —1 is similar. ThenD, — &y, u” > 0
which implies (1). Considef such thaty, C cols(D,). We haveFE + I = CT D, thuse + e; =

CT cols(Ds) > CTy, = > row;(C,). Moreover, ifé € row;(C,.) Nrow,;(C,) thens, j must

1€Y+

be a special pair. This implies (2). O
We define,
P = Z row;(C,) and N = Z row;(C,.).
€Y+ 1€Y—
Then/T = y'C, = P — N. LetP denote the support a® and let\ denote the support o¥.
We will show thatP and are both intervals. PartitigR into maximal intervalg®,, . .., P, and

partition\VV into maximal intervalsVy, . .., Ng.

We say that setS, 7" C [n] crossif S\ T"andT'\ S are both non-empty.
Claim 3. P;, N; crossfor every pair i € [a],j € [3].

Proof. SupposeP;, N; do not cross. We consider the case where> N; as the casé’; C N;
can be proved in the same way. For some indicésc, d, P, = [a,b] andN; = [c¢,d]. Since
row,(C,) = [a,a +r — 1], a € y,. Sincerow.(C,) = [c,c+r—1],c € y_. Asy, Ny_ =0,
a # c¢. We omit the proof thab # d as it is similar. Consider indices = ¢ — 1 andd = d + 1.
Then{d',t'} € ¢,. By Claim 1,d’, b’ are contained in an interval of size at most. SinceN; is
a union of rows ofC,, |N;| > r. Hence we may assunte= [b', a’]. Since/_ # (), there exists

Nj wherej # j' € [3]. ButN;, C S\ {d’,0'}. A contradiction asN;/| > r. &

Claim 4. P and \V are both intervals.
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Proof. Suppose for a contradictioR or V is not an interval. I\ is not an interval, relabél
by —¢ andz by —z (asA = C, + /" = C,. + (—z)(—¢)"). ThenP becomesV and vice-
versa. Thus, we may assume there ekjst P, whereiy, i, € [o] andi; # i,. Since|P;,| > r,
Claim 1 implies that there exists € [3] such thatP, N N;, # 0. Similarly, there exists
J2 € [0] such thatP,, N N;, # 0. Note thatN; , N;, need not be distinct. There exist indices
ar, by, az, by, c1,dy, o, dy such thatP;, = [aq, b1], P, = [ag,bs], Nj, = [c1,d1], Nj, = [c2, ds].
SinceP;,, N;, cross (by Claim 3) exactly one of, d; is in ;. We may assume;, € P, for
otherwise we consider the reversedinstead ofA, this exchanges the roles efandd,. Since
P,,, N;, cross, exactly one afy, d, is in P,,. Thus there are two cases: (&) € P, and (2)
dy € Py,.

Consider case (1). Not§;, # N,,. Thenc;—1, c;—1 € £,. Claim 1implies that, —1,c,—1
are contained in an interval of cardinalityr. But S must contain strictly one aV;, or V;,. A
contradiction asn;, |, | Nj,| > r.

Consider case (2). Notg — 1, dy + 1 € ¢,. Claim 1 impliesc; — 1, d» + 1 are contained
in an intervalS of cardinalityr. Similarly,b; + 1, a; — 1 € /_ impliesb; + 1, dy — 1 arein an
interval S of cardinalityr. ThenS U S" U (N, \ {b1 + 1}) U (Nj, \ {a2 — 1}) D [n]. Hence,
2r + |Ny| + Ny —2 > n =rs—1,ie. |N| > |N;| + |Nj| > (s —2)r + 1. It follows
that|y_| > s — 1. If |y4| = |y—_| = s then it can be readily checked th&tis obtained from
D, by permuting two columns, a contradiction as this implieghenceA) has level zero. Thus
ly+| = Jy—| = s — 1. Claim 2(1) implies that there exists an ind&such thaty, C cols(D;).
Let: be the unique element iwl;(D;) \ y;. ThenP = e+ es — row;(C,). SinceP decomposes
into at least two interval®;,, P;,, we must havé € row;(C,) withi < § <i+r —1,i.e. one

of the intervalsP;,, P, is {¢}. But this contradict$P;,| > r for all j € [a]. It follows thatP is

an interval. SimilarlyV is an interval. <&
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By Claim 4, there are indices b, ¢, d such thatP = [a,b] andN = [c,d]. Since|P| > r,
Claim 1 implies thatP N A/ = (). Since by Claim 3} and\ cross, exactly one aof, d is in
P. If d € P then consider the reverse dfinstead ofA. This will exchange the roles efand
d, proving the result for the reverse 6f As the statement is symmetric with respect tand
its reverse, this is acceptable. Thus, we may assumeP andd ¢ P. Lett := |y, | = |y_|.
Label elements iy, by {i1,...,i;} and elements i_ by {ji,...7:}. We may assume that,
starting froma and ending ak, we visit rowsiy, . . . , i; of C;. when following the cyclic ordering.
Similarly, starting from: and ending ad, we visit rowsj, . . ., j; of C,. when following the cyclic

ordering.

Claim 5.

(1) if y, isspecial then row;, (C,.) Nrow;,(C,) = {a+r — 1},
(2) if y_ isspecial then row;, , (C;) M xow,,(Cy) = {d — r + 1},

Proof. Supposey,. is special. Claim 2(2) implies that for some ¢ [t — 1], row; (C,) N
row;, ., (Cy) # (. The unique element common to these rowsisp—1. SinceP(a+rp—1) =
2,a+rp—1¢€{,.Sincea € {,, Claim 1 implies thafa, a + rp — 1} is contained in an interval
S of sizer. ThusS does not contairow; ., (C,). It follows thata € row;,(C,), i.e.p = 1. Then
clearlyrow;, (C,) Nrow;,(C,) = {a+r —1}. This proves (1). The proof for (2) can be obtained

by considering the reverse df. &

Sincer-structures are invariant under shifting we may assume 1. Letq := ¢ — 1, then
[1,q] €l and[b+1,d] C(_.

In the remainder of the proof we consider cases depending on whetlagrdy_ are special.

Case 1. Neither y, nor y_ are special.
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Then/, =[1,¢| and/_ = [b+ 1,d]. Since rows, ..., i, of C, are disjointh + 1 = 1 + ¢tr and

d=q+tr. Hence/_ = [1 + tr,q + tr] and/ is a type |,r-structure.
Case 2. Bothy,,y_ arespecial.

By Claim 5,row;, (C,) Nrow,,(C,) = {r}, androw,, ,(C,) Nrow;,(C,) = {d —r + 1}. Then
(. =[1,qu{r}, - =[b+1,dU{d—r+1}. Noteq € [r—1]. Butqg # r — 1 because
of Claim 1. Since rows,, i, of C, intersect exactly in one position and since all other pairs of
rows among, ..., are disjoint,b +1 = 1 + (tr — 1) = tr andd = ¢ + (tr — 1). Thus
(_=[tr,q+tr—1]U{q+ (tr —1)—r+1} whereq+ (tr — 1) —r+1=q+ (¢t — 1)r. Hence

¢is a type lll,r-structure.
Case 3. y, isspecial and y_ isnot special.

By Claim 5,row;, (C.) Nrow,,(C,.) = {r}. Thenl, = [1,q] U {r}, and/_ = [b + 1,d]. By the
same argument as in Caseb2- 1 = tr. Thend = ¢ + tr (as we must havg/ | = |¢_]). Thus

(_ = [tr,q + tr]. Hencel is an type Il,r-structure.
Case4. y, isnot special and y_ is special.

We want to show is a type Il,r-structure. Since if is a type Il,r-structure, so is-¢, we redefine
¢ by —¢ andx by —z. This exchanges the roles Bfand . But nowd € P andc ¢ P, so we

consider the reverse of instead ofd. As we exchanged for —y we are in Case 3. O

4.3. Block configuration. The goal of this section is to prove:

Lemma 4.6. Let A be a level one matrix. Then A = C, + X(C) where C is a configuration

(1,7, ng,ng, tr,t'r — ). wheret,t’ € [s — 1] and 6 € {0, 1}.

GivenS C [n] x [n] we defineval(S) to be|S N Dy].
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Remark 4.7. 27y = —val(z_(1) — val(z, (1) + val(z, 01) + val(z_(T) € {0, —2}.
Proof. Sincel/ = C'y,
1
oty =27C7 T =27 (D, — ;E)f = 2" D/

=— xTDS&L — xiDsﬁf + $£D5€+ +a2I'D._

= —val(z_{1) — val(z 1) + val(z (1) + val(z_(T).
Remark 4.3 states thét = — 1~ = £1. Thusz"y € {0, —2} and the result holds. O
Let S,S" C [n] x [n]. We say thatS’ is ahorizontal trandation of S if S’ is a (0, tr)-shift of S
wheret € [s — 1] andV/(i, j) € S the numberg,i,i +r — 1, j + tr do not appear in that cyclical
order (note these numbers need not be all distinct). We saythatavertical trandation of S
if S"is a(tr,0)-shift of S wheret € [s — 1] andV(i, j) € S the numbers, j —r + 1, 7,7+ tr do

not appear in that cyclical order.
Remark 4.8. If S’ is a horizontal (resp. vertical) translation®thenval(S") = val(.5).

Proof. Let S’ be a horizontal translation &f. ThenS is a (0, ¢tr)-shift of S. Then(i,j) € S
if and only if (i,j + tr) € S’. Moreover,(i,j) € D, if and only if (i,5 + tr) € D, since

row;(Ds) = {i,i+r—1,...,i+ (s—1)r — 1}. The case for vertical translations is similat]

Remark 4.9. Let S, S’ be intervals. The’ is atr-shift of S for somet € [s — 1] if and only if

Sisa(t'r — 1)-shift of S’ wheret’' = s — ¢t € [s — 1].

Proof. S” is atr-shift of S if and only if S is an(n — tr)-shift of S" andn — tr = rs — 1 — tr =
t'r — 1. O

GivenS C [n] x [n] and(i, j) € [n] x [n] we abbreviateS \ {(¢,7)} by S\ (¢, ).

Lemma4.10. Zisnot atypell, r-structure.



24 GERARD CORNLUEJOLS, BERTRAND GUENIN, LEVENT TUNEL

Proof. Suppose for a contradictiod,is a type Il,r-structure. By considering eitheror ¢ or
—z, —¢ and A or its reverse we may assume (after a simple isomorphismythat|[1, ¢| U {r},
that/_ = [tr,q + tr], and thaly € [r — 2|,t € [s — 1]. Since the smallest interval containifg
has cardinality-, |[z_| = |z,| = 1 andz_ = {1}. Applying Lemma 4.5 toAd?, it follows thatz
or its reverse is a type t-structure. Lety be the unique element in,. Remark 4.9 implies that
x =1+tr—0wheret' € [s— 1] andé € {0, 1} (6 = 1 corresponds to the case wherés a

Type |, r-structurep = 0 corresponds to the case where the reverseisy.
Clam. t=tandj = 1.

Proof. row, (C,) = [1 +t'r — 4, (¢ +1)r — §]. SinceC, — z ¢ >0, ¢~ C row,(C,). Thus, (1)
tr >1+tr—3dand (2)q+tr < (¥ +1)r — 4. We write (2) ag < ¢ + 1 — (6 + ¢). Hence

t<t.Wewrite (1)ag > t' + %(1 — ). Ast < t' this impliest = ¢’ andj = 1. &

The claim implies thaty = tr. Remark 4.9 implies that ¢ is a ((s — t)r,0)-shift of
z (T, It follows thatxz_ (T is a vertical translation of ¢~. Hence by Remark 4 .¥al(z (T) =
val(z_¢T). Similarly z_¢ \ (1,1) is a vertical translation of . ¢% \ (¢r,1). Henceval(z_(% \
(1,1)) = val(z,¢% \ (¢r,1)). Moreover,(1,1) € D, and(tr,1) ¢ D,. Thusval(z (1) =
val(z_¢1) — 1. It follows that — val(z_¢1) — val(x;.0T) + val(z;01) + val(z_(T) = —1, a

contradiction to Remark 4.7. O

A simple-C4 is the matrix>(C) whereC is the configuration1, 1,1, 1,¢r, (t + 1)r — 1). A
twin-C4 is the matrixe(” wherel, = {1} U {r}, (- = {tr} U{(t — 1)r + 1} andz_ = {1},

xy ={(t = 1)r + 1} wheret € [2, s — 1]. Theorder of the twin-C4 is given byt.

Remark 4.11. Supposed = C,. + ' wherel is a twin-C'4 of order2, or a simple€’'4. ThenA is

isomorphic toC, + X(C) whereC is a basic configuration.
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Proof. By permuting columng andr + 1 of a twin-C'4 of order2 we obtain a simpleé-4. By
permuting rowd andtr+ 1 of a simple twin€'4 we obtainX(C) whereC = (1,2, 1,r—1,tr, tr—
1). O

Lemma 4.12. Suppose/ isatypelll, r-structure. Then after a simpleisomorphism (z, ¢) defines

atwin-C4 of order |y, | > 2.

Proof. From the hypothesis we may assufme= [1,¢| U {r}, andl(_ = [tr,q + tr — 1] U {q +
(t — 1)r}. Proceeding as in the proof of Lemma 4.10 we showthat {1} andx consists of

a single element wherex = 1 + ¢r — d wheret’ € [s — 1] ando € {0, 1},
Clam. t' =t—1,§ =0,and ¢ = 1.

Proof. SinceC, — z (T > 0, (L C row,(C,) = [L + t'r — ¢, (¢ + 1)r — §] and the following
relation must holdy + (¢t — 1)r > 1 +t'r — dandqg+tr — 1 < (¢’ 4+ 1)r — §. We can rewrite
these relations asg: — 1 > ¢/ — L(¢+d — 1) andt — 1 < ¢’ — 2(¢+ 6 — 1). It follows that
t—1=1t—1(¢+06—1). Sincet an integerg + 0 — 1 is a multiple ofr. But1 < ¢ < r —2and
0 <4 <1 Itfollowsthatg+ 6 —1=0henceg =1andé =0. Thent' =¢ — 1. &

The result follows immediately from the claim. O
Consider dt, ¢; ', ¢')-block D. We use the following notationd = (¢,¢), D' = (t,q'),.D =

(t',q)andD, = (¥, ¢'). We say thalD, D', D and D, are thecorners of D.

Lemma 4.13. If AT = C, + %(C) where C is a basic configuration, then A is isomorphic to

C, + X(C") where C' isa basic configuration.

Proof. SupposeA? = C, + ¥(C) whereC = (1,1 + ng,ng,7 — ng,tr,tr — 1) whereny €
[r — 1] andt € [s — 1]. Let Byy, Bys, By, B be blocks ofC. Then the support oE(C)”

can be partitioned into blockB?,, BL,, Bl,, BL,. DefineB|, = B, B,, = Bl, B} = B}
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and B}, = B];. Ba is a(0,tr — 1)-shift of By, in (C). Remark 4.9 implies thaB,; is a
(0, (s — t)r)-shift of By in X(C). ThusBL, = Bj, is an((s — t)r,0)-shift of B, = B}, in

Y(C)T. By is a(tr,0)-shift of B;;. Remark 4.9 implies thaB,, is a ((s — t)r — 1,0)-shift
of By in 3(C). ThusB{, = B, is a(0, (s — t)r — 1)-shift of B, = B}, in X(C)”. Block
B}, = BL, hasr — ny rows andny columns. LetQ define the standar@””, C,)-isomorphism
and let P define the simple isomorphism mapping rem¢ + tr to row 1. Then PAQPT =

C.+ PX(C)TQPT = C,+X(C") whereC' = (1,14 (r —ng),r —ng,ng, (s—t)r, (s —t)r —1)

asBj, = (1,(1+tr)+ (r —1) — (ng + tr — 1)) wherer — 1 arises fromp and—(ng — tr — 1)

arises fromP. Observe thaf’ is basic. O

Proof of Lemma 4.6. Lemma 4.5 implies thaf or its reverse is am-structure. LetQ be the
permutation matrix which defines the standéttf’, C,)-isomorphism. Theorem 2.1 implies that
AT is a Lehman matrix. We havé” = CT + (27 thusATQ = CTQ + (27Q = C, + £(Q" )™
Note thatQ”z is an(r — 1)-shift of z. Lemma 4.5 implies that or the reverse of is anr-
structure. Lemma 4.10 implies that none/of, or the reverse of or = are type Il,r-structures.
Suppos€’ or its reverse is a type k-structure. Consider the case wheres a type |,r-
structure. Then:_ is atr-shift of . LetC be the configuration defined Wy, ¢) with B;; =
r, (T (see Remark 4.4). Remark 4.9 implies thatis a (t'r — §)-shift of ¢_ wheret’ € [s — 1]
andé € {0,1}. ThenC is as required in the statement of Lemma 4.6. Consider the case where
the reverse of is a type I,r-structure. Themn, is atr-shift of z_. LetC be the configuration
defined by(z, ¢) with B;; = z_(%. Remark 4.9 implies that_ is a (¢'r — §)-shift of £, where
t' € [s—1]andd € {0,1}. ThenC is as required in Lemma 4.6.
Thus one of the following holds: (1) neithénor its reverse is a type #;structure, (2) neither
x nor its reverse is a typet;structure. We will show that if (1) holds theh= C,. + ¥(C) where
C is a basic configuration. If (2) holds, then, using the same argument (appli€d ittstead of

A, z instead off, and/ instead ofr) we also obtain thati” = C, + ¥(C’) where(’ is basic. But
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then Lemma 4.13 implies that = C,. + X(C) whereC is basic. Thus Theorem 4.1 holds fdr
and so does the weaker Lemma 4.6.

Hence it suffices to consider that (1) holds. THus its reverse is a type lli;-structure. We
can assume we are in the former case, for if we are in the latter one, it suffices to cenSaet
—z instead of andz. Lemma 4.12 implies thdtr, /) defines a twinc'4 of order|y. |. Let (P, Q)
define the standard;, C,)-isomorphism. Remarks 4.2 and 4.3 imply tfaBQ = C, + gu’.

Claim. g, isnot aninterval of cardinality < s — 1.

Proof. Lemma 4.5 implies thaj, is special, i.e. there exists an indeguch thab, )+r—1 € y..
We havey = &Py whereP(i, (i — 1)r + 1) = 1 for all indicesi or equivalentlyP(si, i) = 1 for
allindicesi. Asd,6 +r — 1 € y,, Py contains elementsy, sd 4+ sr —s = sd — s+ 1. Thus the

smallest interval containing, has cardinality at least &

Lemma 4.5 applied t®BQ and its transpose implies thatu are s-structures or their re-
verse (note the reverse of a type dHstructure is equal to the inverse of a typedistructure).
Lemma 4.10 implies that is not of type Il. Because of the claim,is not of type | either. Hence
g is of type Ill and Lemma 4.12 implies théi, §) define a twin€'4 of (PBQ)”. In particu-
lar |74| = |y;+| = 2. Hence(z, /) is a twin<C4 of order 2. Then Remark 4.11 completes the

proof. O

4.4. Block configurationsin thedual. The goal of this section is to prove the following result.

Lemma4.14. Suppose A = C, + X(C) whereC isaconfiguration (i, j, ng, n¢, tr, t'r — §) where
t,t' € [s—1]andd € {0,1}. Let (P,Q) define the standard (D, C;)-isomorphism. Then
PBQ = Cs; + X(C') where C' has the following parameters:

(1) Ifd=+1andd =0thenC’ = (7,7,t',t,ncs, ngs),

(2 Ifd=—1andd =0thenC’ = (j,7+ ngs,t', t,nes, (r —ng)s — 1),
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B)Ifd=+1lando =1thenC’ = (j— (s —t'), i+ ngrs,s —t', t,ncs, (r —ng)s — 1),
@ lfd=—-1landd=1thenC’' = (j— (s —t'),7,s —t',t,ncs,ngs),

wherei = (i —1)s+1landj=(j —1)s + 1.
We will need a number of preliminary results.

Lemma 4.15. Suppose (P, Q) defines the standard (D, Cs)-isomorphism. Let v be an (a, b)-
interval and [v| < r — 1. Let@ = (a — 1)s + 1 and let b = bs. Then

(1) PD,v isan (a,b)-interval,

(2) Q"DTvisan (a,b)-interval.

Proof. Consider part (1). Noté®D,Q = C,, thusPD, = C,QT which implies thatPD v =

C,QTv. SinceQ(i,si) = 1, coly(C,QT) = coly(Cy). ThusC,QTv = >._ coly(C,). Note

1€V
cols;(Cs) = [(i — 1)s+ 1,is]. Thus for any index, coly; (Cs) N cols41)(Cs) = @ andceoly,; (Cs) U
coly(i+1)(C5) forms an interval. It follows that’,Q” v is the required interval.

Consider part (2). Not®” DT PT = CT, thusQ” DT = CT P which implies thaty” DTv =
CT Pv. SinceP(i, (i—1)r+1) = 1 we have thaf’(is,i—1+s) = 1andP((i—1)s+1,:) = 1 for
all indicesi. Hencerow,(CT P) = row(i_1),4+1(Cs) = [(i — 1) + 1,is] and@Q” DTv = CT Pv =

Y ico TOW(i—1)s+1(C5). Proceed now as in part (1). O

Lemma4.16. Lett, A € [s—1]anda € [n] andlet§ € {0,1}. Suppose /. isan (a,a+ A —1)-
interval and ¢_ isa (tr — ¢)-shiftof /.. Definey by ¢ = CTy andleta = (a — 1)s + 1.

(1) If 6 = 0then (Py)y = [a,a +t — 1] and (Py)_ isa As-shift of (Py).

(2) If 6 = 1then (Py)- =[a— (s +1),a— 1] and (Py), isa As-shift of (Py)_.

(3) Satement (1) remainstrueif wereplace ¢ by 2/, y by v/ and Py by Q7v’' where 2z’ = C,/'.

Proof. Consider part (1). We have= C!y. Thusy = C, "¢ = (D, — 1E){ = D where
the last equality follows from the fact théais 0-regular. Define? = PD ¢/, andN = PD(_.
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Sincel = ¢, — (_ itfollows thatPy = PD ./, — PD,_ =P — N. Applying Lemma 4.15(1)
we obtain tha® = [a, b] whered = (a — 1)s+1andb = (a + A —1)s = @+ As — 1. Applying
Lemma 4.15(1) we also obtain th&f = [/, b'] whered’ = (a +tr —1)s+1=a+trs = a+1t
andd = (a+A —1+tr)s = b+t = (@a+ As — 1) +t. Hence, N is at-shift of P.
Sincet < 5,0 # PNN = [a+t,b]. It follows that(Py), = P — N = [a,a+t — 1] and
(Py)- =N —P=[b+1,b+1] =[a+As,a+ As +t— 1]. Hence (1) holds.

Consider case (2). We defifieandV in the same manner as in case (1). Applying Lemma 4.15(1)
to P we obtain that (as in case () = [a, B] whereb = @ + As — 1. Applying Lemma 4.15(1)
to A we obtain that\ = [@/, ] whered = (a +tr — 1 —1)s+1 = a+t — s and
V=(a+A—-1+tr—1s=a+As—1—(s—t)=0b— (s—t). ThusN is a(t — s)-shift of
P.Ast < s, PNN = [a,b— (s —t)]. Itfollows that(Py)_. = N\ P = [a— (s —t),a—1]
and(Py). = P\N =[a— (s—t),a— 1] and(Py)y = P\N = [b—(s—t)+ 1,b] =
la+ As — (s —t),a + As — 1]. This proves (2).

Consider case (3). We havé = C,u/, thusu’ = C;'a’ = (D! — 1E)2’ = DIa’. Define
P = QTDIz/, andN = QTDI2’ . Sincex’ = 2/, — 2/ it follows thatQ”v' = QT DIz, —
QTDTx' =P — N. Using Lemma 4.15(2) we obtain th&t \ are the same intervals that as in

part (1). The proof now proceeds in the same way. O

We are now ready for the main result of this section.

Proof of Lemma 4.14. We haveC = (i, j,ng,nc, tr,t'r — §) andX(C) = =T for somez, ( €
{0, £1}". We can choose, ¢ such thatr_ = [i,i + ng — 1], 24 is atr-shift of x_; ¢, =
[j, 7 +nc — 1], £_is a(t'r — 6)-shift of £,. Recall that>(C") = gu” wherej = ®Py and
@ = QTu. Leta’ = —z andu’ = —u. Sincex = C,u, 2’ = C,v/. Lemma 4.16(3) implies that

Q) y =u_ = [1,i+t—1]and(QTv')_ = a, is angs-shift of u_ wherei = (i — 1)s + 1.
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Consider part (1), i.@ = 1,6 = 0. Then the relatioy = Py and Lemma 4.16(1) imply that
vy = (Py)y = [5,7+t — 1] andy_ = (Py)_ is ancs-shift of g, wherej = (5 — 1)s + 1.
Let C’ be the configuration defined Iy, @) with B!, = ¢, u” (see Remark 4.4). The first two
parameters of’ are given by the corneéB’, = (j,7) and each of the blocks haverows andt
columns.

Consider part (2), i.ep = —1 andd = 0. Theny = —Py and Lemma 4.16(1) implies that
g- = (Py)_ =[j,]+t — 1] andyg, = (Py)_ is anngs-shift of y_ (andj is as above). Lef’ be
the configuration defined by, @) with B}, = y_u”. The first two parameters 6f are given by
the cornerB), = (7,7 + nrs) and each of the blocks haverows andt columns. Sincéi, is an
nrs-shift of a_, Remark 4.9 implies that_ is an((r — ng)s — 1)-shift of ..

Consider part (3), i.e® = 1 andd = 1. Theny = Py and Lemma 4.16(2) implies that
g- = (Py)- = [J—(s—1t),7— 1] andgy = (Py), is annes-shift of g_. LetC’ be the
configuration defined by, @) with Bf, = y_a’. Note thatB}, = (j— (s—t'),7+ngs) and that
the blocks have — ¢’ rows andt columns. Since:i, is anngs-shift of a_, Remark 4.9 implies
thata_ isan((r — ng)s — 1)-shift of ..

Consider part (4), i.,e® = —1 ando = 1. Theny = —Py and Lemma 4.16(2) implies
thaty, = (Py)- =[j— (s —1t'),7— 1] andy_ = (Py), is annc¢s-shift of g,.. LetC’ be the
configuration defined by, @) with B}, = 5, u”. Note thatB,; = (j— (s —t'),7) and the blocks

haves — t' rows andt columns. O

4.5. Case analysis. Lemma 4.6 implies (after possibly a simple isomorphism) that C',. +
¥(C) whereC is a configuration1, b, ng, ne, tr,t'r — 0) whereb is an index,ng,nc € [r —
1],¢,t € [s — 1] andd € {0,1}. Let Byy, Bia, Ba1, By denote the blocks of. The variables

b,ngr,nc,t,t andé are used throughout the remainder of this section.

Lemma4.17. We may assumet = t'.
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Proof. Note' By, = (1+tr, b+t'r—0). Thusb+t'r—§ € row,,4,(C,) i.e. there existg € [0,r—1]
suchthab+tr—d6=1+tr+gq,ier(t —t)=q—b+06+1. Asb<r,qg—b+06+1> —r;
hencet’ —t > 0. Supposeé’ —t¢ > 1. Theng — b+ + 1 is a multiple ofr, butasg < r—1,b>1
andd < 1wemusthavey = r —1,b =§ = 1. AsB;; = (1,b) = (1,1),ng = 1 and as
Byy = (1 +tr,(t +1)r),nc = 1. ThusC = (1,1,1,1,tr, (t + 1)r — 1), i.e. itis a simple€’4.
We are then done by Remark 4.11. O

Thus throughout the remainder of the sectica ¢'.
Lemma4.18. If § = 0 then Val(BH) = Val(ng) and Val(BH) 7é 1.

Proof. SinceBy; C C,, By N D, C {B,,.Bi1}. Similarly, By, N D, C {B,,, Bx»}. Since
t =t andd = 0,B;; N D, # 0 if and only if B, N D, # 0 and By, N D, # 0 if and
only if By # 0. It follows thatval(B;;) = val(Bsy). Supposeval(Bi;) = val(Bg) = 1.
AssumeB,, € D, as the caseB;; € D, can be dealt with similarly. The®,, € D,. Since
0 = 0, Byy is a horizontal translation @8, hence Remark 4.8 implies thatl(B,,) = val(Bj2).
Bsy \ By, is a horizontal translation dB,; \ B,;, hence Remark 4.8 implies thatl( By, \ By, ) =
val(Ba \ Byy). Moreover,By, ¢ Dy andB,, € D;. It follows thatval(By;) — val(By) = —1.

Hence— val(By;) + val(Bi2) + val(Bs;) — val(By2) = —1, contradicting Remark 4.7. O

Lemma4.19. Let (P, Q) definethe standard (Cs, D;)-isomorphism. (1) Suppose A = C,.+3(C)
where C isbasic, then PBQ = C, + ¥X(C') where C’ isbasic. (2) Suppose PBQ = Cs + X(C')

where C’ isbasic then A = C,. + X(C) whereC isbasic.

Proof. Since we can interchange the roles/bfind PBQ it suffices to prove (1).By; \ By, is
a vertical translation of3;; \ B;,. Remark 4.8 implies thatal(B;; \ B;,) = val(By; \ By).
Moreover,B;, € Ds; but By, ¢ D,. Thus,val(By;) = val(By;) + 1. Similarly, we prove
that val(Byy) = val(Bj2) + 1. Hence—val(By;) + val(Bja) + val(Bg;) — val(Bgg) = —2.
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Remark 4.7 implies that”y = —2 hence (Remark 4.3p = +1. Thus, we are in case (3)
of Lemma 4.14 withi = 1 andj = 1 + nig. Then? = 1 andj = ngs + 1. ThusC' =
(ngps +1—(s—1t),ngs + 1,s —t,t,(r — ng)s, (r —ng)s — 1). After a simple isomorphism,
mapping romngs+1—(s—t)to1l, we havel’ = (1, (s—t)+1,s—t,t, (r—ng)s, (r—ng)s—1).

Definen, = s—t andq = r—ng, thenC’ = (1, 14+ny, nly, s—nk, ¢s, gs—1) which is basic. [
We can now prove the main theorem of this section.

Proof of Theorem 4.1: The "if” part of the statement follows from Lemma 4.19. L&tbe the
configuration obtained fro@ = (i, j, ng, n¢, tr,t'r — 0) in Lemma 4.14 where = 1 (we will
consider each of the 4 cases of the lemma separately). Neté, Denote byB,, B2, Bs1, B2

the blocks corresponding th
Casel & =1andd = 0.

ThenC' = (7,1,t,t,ncs,ngs). By applying Lemma 4.17 t&®B(Q instead of A we obtain
thatne = ngi. Supposeval(Bj;) = val(By) = 0. Then B, is a horizontal translation of
By and B,y is a horizontal translation dBy;. Remark 4.8 implies thatal(B;;) = val(B;2) and
val(Ba1) = val(Bgy). Then— val(By;)+val(By2)+val(Bs ) —val(Bgz) = 0. Remark 4.7 implies
thatz”y = 0. Remark 4.3 implies that = —1, a contradiction. Lemma 4.18 impliesl(B1;) =
val(Bay) # 1. Henceval(By,) = val(Bg,) > 2. Thusval(By;) = 2 and{ B, B,,} C D,. It
follows thatne = np = % and thatr is odd. Since = 1we musthave =r —ng+1 = %1

It follows thatj = (“5*)s +1 = 1(n+ 1 —s) + 1. We must havéz, j) € C, thusj € col; (C;) =
{n—s+2...,n}u{l}ie.i(n+1—-5) +1>n—s+2 whichimpliesl >n—s+2,a

contradiction.

Case2. d =—1landd =0.
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ThenC’' = (7,1 + ngs,t, t,nes, (r — ng)s — 1). By applying Lemma 4.17 t&° B(Q instead
of A we obtain thatuc = r — ng. It follows that exactly one ofBy;, B;, is in D,, i.e. that

val(Bj;) = 1. But this contradicts Lemma 4.18.
Case3. d=1andj = 1.

ThenC' = (j— (s —t),1+ngs,s —t,t,ncs, (r—ng)s—1). By applying Lemma 4.17 t& BQ
instead ofA we obtain thatic = 7 —ng. Then exactly one of3,,, B, isin D,. By Lemma 4.18
exactly one ofBy,, B,, isin D,. Moreover, sincé = 1, we must haveés|, € D, and By, € D,.
Sincei = 1,j =r—nc+1 =r—(r—ng)+1 = ng+1. ThusC = (1, ng+1,ng,r—ng, tr, tr—1),

i.e. itis a basic configuration.
Case4. &= —-1ando = 1.

ThenC' = (j— (s —t),1,s —t,t,ncs,ngs). By applying Lemma 4.17 t& BQ instead ofA we
obtain thatnc = ny. Since forC’ the last parameter iszs and notnzs — 1, C’ is of the same
form of C as in either case 1 or case 2 (the two cases #vith(0). But we excluded these cases

already. 0

5. HIGHER LEVEL MATRICES

In this section, we address the following questions:

e Are there simple composition techniques for constructing high level thin Lehman matri-
ces from low level thin Lehman matrices?

e Are there thin Lehman matrices of arbitrarily high level?

5.1. Compositions. We describe ways of composing Lehman matrices to obtain more compli-

cated, potentially higher level, Lehman matrices.
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Proposition 5.1. Let A, B € M,,(B), ¥4,%X4, X5, X5 € M,({0,+1}) such that (A, B), (A +
Y4, B+Yp), (A+X 4, B+Xp ) areall Lehmanpairsand A+X 4 +X 4, B+YXp+Xp € M,(B).

Then (A+ X4 + X4, B+ Xp + Xp) isaLehman pair iff
YAYE +X43E =0.
Proof. Since(A, B), (A+ X4, B+ Xp),(A+ X4, B + Xp/) are all Lehman pairs, we have
AYL +34(B+3Xp)" =0andAXL, + X 4(B +Xp)" = 0.
Using these two matrix equations and the fact th&’ = £ + I, we find that
(A+Z44+34) B+ +3p)" =(E+1)+Z435 + a2

Therefore,(A + ¥4 + X4, B + X5 + Xp/) is a Lehman pair iffE, X%, + 4 3L = 0, as
desired. O

Corollary 5.2. Let A, B € M,(B), X4,%4,%5, 25 € M,({0,£+1}) such that (A, B), (A +
Y4,B + Xp),(A+ Xa, B+ Xp) are all Lehman pairs and supp(X4) (\supp(Xa) = 0,

supp(Xp) supp(Xp) = 0. Then (A+ X4 + X4, B+ X + Xp/) isaLehman pair iff
DIPDI WIS 3V 3 =N}

Proof. Since,X 4 andX 4 have disjoint support A+ 4+X /) € M, (B) follows. Similarly,X 5
andX - have disjoint supportimplieg3 + X5+ Xp5) € M, (B). Now, we can apply Proposition
5.1 0

5.2. Long cycles. In some sense, the simplest level-1 update is the one given by a configuration
in which all blocks ard x 1. (Seesimple-C'4 in Section 4.) There is a nice generalization of this

simple combinatorial structure to an arbitrary level. We call the general strugftoycle, for
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5 €{2,3,...,s—1}. We define the underlying update by describing the primal perturbation
and the dual perturbation.

The nonzero entries af 4 are given as follows:

(X =1 (ZA)(5_1)T+1,1 =1

Ca)rir gy = =L Ea)g e gy, =1 VR E {12,000 — 1}
All nonzero entries ok 5 are in the following 2-by-2 block structure:
br lr+1

kr | =1 +1 |foralll </¢ <k < suchtha(?+ k) is odd.
kr+1]|+1 -1

We denote the above matrices By (9) andXz(0).

Proposition 5.3. Let r > 2, s > 2 be arbitrary integers and let n := rs — 1. Then for every

be{2,3,....,s—1},A:=C,+X4(0) and B := D, + X5(§) make a thin Lehman pair.

Proof. It is easy to verify thatd, B € M, (B). To verify thatAB” = E + I, it suffices to check

the matrix equation
Cr [S5(0)]" +Za(0)Dy + 2a(8) [Sp(9)]" =0.

It is easily seen that (restricted to their nonzero rows and columns),

2r 2r+1 3r 3r+1 4r 4r+1 --- Or or+1

1] -1 1 0 0 —1 0 5

r+1 1 -1 -1 1 1 -1 .- =1 1

C. [2p(6)" = 2r+1| 0 0 1 -1 -1 | —1
3r+1] 0 0 0 0 1 -1 - =1 1

0—1r+1] 0 0 0 0 0 0 1 -1
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2r 2r+1 3r 3r+1 4r 4r4+1 --- or or+1
1 1 —1 1 —1 1 -1 - 1 —1
r+1]-1 1 0 0 0 0 0 0
Y4(0) DT = 2r+1] 0 0 -1 1 0 0 --- 0 0
Jr+1] 0 0 O 0 —1 1 0 0
(5—1)7‘—0—1 0 0 0 0 0 0o -.- —1 1
3r 3r+1 4r 4r+1 5r S5r+1 --- Oor or+1
1[—1 1 0 0 —1 T 1 i
r+1 1 -1 -1 1 1 -1 - 1 —1
2A(0) [Zp(0)]" = 2r+1| 0 0 1 -1 -1 1 .. —1 1
Jr+1] 0 0 0 0 1 I | 1
0—Lr+1| 0 0 0 0 O 0 --- 0 0

where we illustrated the last two columns and the last rows of the matricéfid. Therefore,

ABT = E + I and(A, B) is a thin Lehman pair. O

What is the level of the thin Lehman matriX. + > 4(J) defined above? A likely answer is
d — 1 but we could not prove it. It is easy to see that the level'pft- ¥ 4(d) is at mosty — 1:
IndeedX 4 (§) hasd nonzero rows (and columns). When restricted to its support, this matrix is the
node-arc incidence matrix of a circuit dmodes. Thereforeank(34(6)) = 6 — 1. Hence, the
level of A is at most(6 — 1). Note that the highest possible level®@f + X 4(§) is max{r, s} — 2.
Proving lower bounds is much harder. In the next section, we give a lower bounding technique.

Note however that the resulting lower bounds are typically not tight.

5.3. Lower bounding the level of thin Lehman matrices. Let A € M, (B) ber-regular for
somer > 2. We define the simple undirected graph := (V(G4), E(G4)) by

o V(G,) :={i:iisarowofA},

o ij € E(G,)iff [row;(A) Nrow,;(A)| =7 —1.
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Then, the maximum degree of any nodedn is at most 2. Thus(z 4 can be partitioned into
vertex-disjoint paths calleskgments. We denote byegment(A) the number of segments 6f,.

This parameter is invariant under the isomorphismd of

Remark 5.4. Let A be as above and Iét and@ ben x n permutation matrices. Then
segment(A) = segment(PAQ).

Lemmab5.5. Let A, P, and ) be as above. Define ¥ := PAQ — C,, t := rank(X). Then X has

at most 2¢r non-zero rows.

Proof. Suppose for a contradiction thathas more thag¢r non-zero rows. Lef be a minimal

set of columns ok such that the union of their supports covers all non-zero rows of
Claim1. |S| >t+ 1.

Proof. By definition, the number of£1”s as well as the number of1”s in each column ok

is at mostr. So,

|supp [col;(X)]| < 2r, forall j.

Thus,|S| >t + 1 as desired. &
Claim 2. col;(X) for j € S arelinearly independent.

Proof. For every columnj € S, the minimality of S implies that there exists a row;) that
is covered by column only. Consider the submatrix &f indexed by the column-row pairs

(7,4(4)). This submatrix is theéS| x |S| identity matrix. <&

We haverank(X) > |S| > ¢ + 1 (where the first inequality uses Claim 2 and the second uses

Claim 1), a contradiction. O
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Lemma5.6. Let ¥ € M, ({0, £1}) be 0-regular with ¢ non-zero rows. Then C,. + X has at most

2q segments.
Proof. Note thatG ., is then-circuit. The next elementary observation is all we need.

Claim 1. Let A € M,,(B) ber-regular. Alsolet ¢ € {0, £1}" be O-regular. Let e; denote the ith

unit vector. Then the only edgesin G 4 possibly not in G 4, . areincident to vertex <.

We apply the above claim repeatedly, starting wi#th).. There are at mogYy edges of+ ¢, that
are not inG¢, . x. Since edges ofr¢, |y that are not inG¢, can only decrease the total number

of segments(Z¢, . s, has at mos2q segments. OJ

Proposition 5.7. Let A € M,,(B) be athin Lehman matrix that is-regular. Then

segment (A)

level(A) >
evel(A) > ™

Proof. Lett¢ := level(A). Then, there exist x n permutation matrice®, ) such that: :=
PAQ — C, € M,({0,£1}) is 0-regular and has rank Now, Lemma 5.5 implies that has at

most2tr non-zero rows. Lemma 5.6 implies that

segment(PAQ) < 4tr.
Using Remark 5.4 we conclude> segment(A)/(4r). O
Theorem 5.8. There exist thin Lehman matrices of arbitrarily high level.

Proof. We letr := 3 and for large integers, setn := rs — 1. We defineA from C,. by applying

the configurations

(1,2,1,1,3,3),(6,7,1,1,3,3),(11,12,1,1,3,3),(16,17,1,1,3,3), - - -
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Itis easy to verify thatd is a Lehman matrix. Indeed the dual4is defined fromD by applying

the configurations
(2,3,1,1,1,1),(7,8,1,1,1,1),(12,13,1,1,1,1),(17,18,1,1,1,1), - - -

as can be checked by multiplying these two matrices. Consider those integatisfying the
above condition and = 5k, for some integek > 4. Thensegment(A) > 2k. Using Proposition

5.7, we conclude that
level(A) > iy
30

ThereforeJevel(A) = Q(n) for this construction. O

Remark 5.9. Consider the long cycle construction. Létbe as defined in Proposition 5.3. It
is easy to check that )-cycle create$ segments, the largest valdean take iss — 1. Thus,

Proposition 5.7 implies
s—1
4r
for the largest value af. If » = 3, then3s = n + 1 and the long cycle construction also yields a

level(A) >

proof of Theorem 5.8:
n—2

level(A) >
evel(A) > 3

6. FAT MATRICES

6.1. Examples.

[ 1 1 17
(11 1 . 1 11
1 11
11 1
1 11
1 1 1 1 11
(5) F7: 11 1 P10:
1 1 1
1 11
1 1 1
1 11
1 1 1 1 1 1
L . 1 1 1
|1 1 1 |




40 GERARD CORNUEJOLS, BERTRAND GUENIN, LEVENT TUNEL

Matrices F; and Py, are fat Lehman matrices. Matrik; is the point-line incidence matrix
of the Fano planeF: is self-dual, thus = 2 in (1). Matrix Py, is the matrix whose columns
correspond to the edges &f; and whose rows are the incidence vectors of the triangles of
K5. Equivalently,P;, can be viewed as the vertex-vertex incidence matrix of the Petersen graph

(hence the notation)?;,, Pio + I form a Lehman pair, thus = 2 in (1).
6.2. Deter minant.

Remark 6.1. In this sectionE,, denotes then x n matrix of 1s. Forn > 2 andk > 1, the
matrix £,, + kI, has two distinct eigenvalues, namelyvith multiplicity n — 1, andn + & with

multiplicity 1. In particular,
det(E, + k) = k" ' (n + k).

Proof. Since(E,+k1,)—kI, = E, and there are—1 linearly independent vectors Mull{e, },
the multiplicity of £ is at least: — 1. Vectore,, is the eigenvector for the eigenvalue- k. Since
the total multiplicity is at most, the result about eigenvalues follows. Finally, the determinant

is the product of the eigenvalues. O

As an example, considdr; in (5). Thenn = 7 and sincefF; is self-dual,k = 2. Hence

det(E7 + 2[7) =9 x 2% and det(F7) =3 x 23.

Remark 6.2. Let A be anr-regular Lehman matrix.

(i) If Aisthin, then|det(A)| =r,

r(r—1)

(i) If Ais self-dual, thendet(A)| = (r—1)"z r.

Proof. (i) By Theorem 2.1, the dual oft is ans-regular matrixB such thatrs = n + 1. Re-
mark 6.1 implies thaflet(E,, + I,,) = n+ 1 = rs. Thusdet(A) det(B) = det(E, + I,,) = rs.
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Since A is anr-regular nonsingular integral matrix, it follows that its determinant is a nonzero
integer multiple ofr. Thus|det(A)| > r and similarly|det(B)| > s, and the result follows.

(ii) Since A is self-dualk = r — 1. By Theorem 2.13* = n +r — 1. Remark 6.1 implies that
det(A)? = det(E, + (r — 1)I,) = (r — 1)""=Y72, The result follows. O

Recall thatdet(A)| equals the volume of the parallelopiped defined by the columAgefewed

as vectors ofR™). This justifies our terminology othin Lehman matrix (the parallelopiped
formed by its columns has the smallest possible volume among all nonsingeigular matrices

in M,(B)). By contrastfat Lehman matrices give rise to parallelopipeds with larger volumes,

the extreme case being that of nondegenerate finite projective planes.

6.3. Lehman matrices from projective planes. A projective plane consists of points and lines

such that any two distinct points belong to exactly one line, and any two distinct lines intersect in
exactly one point. A projective plane degenerate if at least three of any four points belong to

the same line. It can be shown that all the lines of a nondegenerate finite projective plane have the
same number of points. Therefore, point-line incidence matrices M, (B) of nondegenerate

finite projective planes are exactly the solutions of the equatidd = E + kI, i.e. they are

the self-dual Lehman matrices. We review known results about these matrices. First note that
Theorem 2.1 implies that = k% + & + 1. The integef is called theorder of the projective plane.

Not all ordersk are possible, as proved by Bruck and Ryser [2] in the following theorem.

Theorem 6.3. If £ = 1,2 (mod 4) and 4* + 22 = k hasno solution in integers, then there is no

projective plane of order k.

For example, this implies that there are no projective planes of orders 6 and 14. What is
the idea of the proof of the Bruck-Ryser theorem? ObserveRhatkl is a positive definite
matrix. Therefore it always has a decompositibA” = E + kI. Bruck and Ryser [2] address

the question of whether there exists such a decomposition whaeesrational entries. (When
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n = 1, this question reduces to: When does there exist a rational nunsioeh that:> = 1+ k?)
By clever arguments, Bruck and Ryser massage the quadraticaford”z = 27 (E + kI )z
(which has nonzero rational solutions) until they eventually reduceit t 22 = & in integers.
Does this line of proof carry over to the general Lehman equatiBd = E + kI, i.e. can
we use the fact that and B have rational entries to exclude certain valuegdfUnfortunately
not: For any nonsingular rational matrik we can seB” = A~!(E + kI) which is also ratio-
nal. In order to prove the nonexistence of Lehman matrices for certain valugsoat needs
combinatorial arguments using the fact tatB are 0,1 matrices.

The following table gives the number of projective planes for small orklers

k 2 3 45 9 10 11 12 13 14 15 16
1 111 4 0 >1 72 >1 0 7 >22

7 8
Number 1 1

6
0

Next we describe an infinite family of projective planes denoted by2Pk3. Let 1 be a
3-dimensional vector space over a finite field witkelements. The points of RG k) are the
1-dimensional subspacesidfand its lines are the 2-dimensional subspacés.ofhen PG2, k)
is a projective plane of ordér. For example, wheh = 2 we get the Fano plang;.

This construction implies that a projective plane of ordexists whenevek is a prime power,
since there always exists a finite field withelements in this case. Interestingly, all known

examples of finite projective planes have an order which is a prime power.

6.4. Nearly self-dual Lehman matrices. We callnearly self-dual a Lehman matrix4 with the
following properties:

(i) A= AT and

(i) the dual of A is A + 1.

Theorem 6.4. Let A beanearly self-dual Lehman matrixwhichisr-regular. Thenr = 2,3, 7 or 57.
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Proof. Since A + I is a 0,1 matrix, the entries in the diagonal 4fare all equal to 0. Since
A = AT the matrixA is the vertex-vertex incidence matrix of a gragh SinceA is r-regular,

G isr-regular.
Claim 1. Thegraph G hasgirth at least 5.

Proof. Suppose otherwise. TheH contains a triangle with vertices j, k or a 4-cycle with
verticesi, k, 7,1 in that order. In both cases, the scalar produetr;(A), row;(A + 1)) > 2. But

this contradicts Lehman’s equation, which impliesw,(A),row;(A+ 1)) =1fori #j. <

An (r,g)-cage is a graph that (i) is--regular, (ii) has girth at least, and has the smallest

possible number of vertices among all graphs satisfying (i) and (ii).
Claim 2. Thegraph G isan (r, 5)-cage with 1 + r? vertices.

Proof. Consider any--regular graphH with girth at least 5, and let be a vertex off. Vertex
v hasr neighborsuvy, ..., v, and each of these verticeshasr — 1 neighbors distinct from.
Furthermore, all these vertices are distinct sificeontains no 4-cycle. Thereforé, has at least
1+7r+r(r—1)=1+r?vertices.

SinceA, A, is a Lehman pair, it follows from Theorem 2.1 (i) thadt- + 1) = n+ (r — 1), i.e.

the graph hasn = 1 + r? vertices. Thug~ is an(r, 5)-cage. <&

Atheorem of Hoffman and Singleton [6] states that, for &ny)-cage; > 1+r? and equality

holds if and only ifr € {2,3,7,57}. O

Hoffman and Singleton [6] show that there is a unique solution (up to isomorphism) for each
of the cases = 2, 3, 7. The existence of a solution for the case 57 is unknown.

The case = 2 (i.e. n = 5) is the circulanC3.

The case: = 3 (i.e. n = 10) is the Petersen matrik,, mentioned earlier.

The case = 7 (i.e. n = 50) was constructed by Hoffman and Singleton [6].
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6.5. Fat Lehman matrices and minimally nonideal matrices. The point-line matrices of de-
generate finite projective planes are minimally nonideal. The cores of most other known mini-
mally nonideal matrices are thin Lehman matrices. We know only three exceplion®;, and

its dual. These three fat Lehman matrices play a central role in Seymour’s conjecture about ideal
binary matrices [13]. A 0,1 matrix lsinary if the sum modulo 2 of any three of its rows is greater
than or equal to at least one row of the matrix. Seymour’s conjecture states that there are only
three minimally nonideal binary matrice8{(, O, whose columns are indexed by the edges of

K5 and whose rows are the characteristic vectors of the odd cycl€s,@nd its blocker): Their

cores are;, Py and its dual respectively.

7. OPEN PROBLEMS AND CONCLUDING REMARKS

The Lehman matrix equation (1) occurs prominently in the study of minimally nonideal ma-
trices. Bridges and Ryser [1] give basic properties of its solutions (Theorem 2.1). Two infinite
families of solutions are known: thin Lehman matrices and finite projective planes. In this paper,
we classify thin Lehman matrices according to their similarity to the circulant matricekevel
t matrices are isomorphic t@" plus a rank matrix. We were able to describe explicitly all level
1 matrices and we showed that levehatrices can be described by a number of parameters that
only depends on (independent of. andr). We also gathered results from the literature that are

relevant to our understanding of fat Lehman matrices. There remain many open problems.

Question 1. Are there other infinite families of Lehman matrices beside thin matrices and

projective planes?

Question 2: Can Theorem 1.2 be strengthened as follows4 s a thin Lehman matrix of
levelt, thenA can be described with(¢) parameters?

In particular, can every thin x n matrix be described with onl§(n) parameters?
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Question 3: Do all thin Lehman matrices have level at mesl”—)?

min(r,s

Question 4: Is there a decomposition theorem stating that a thin Lehman matrix either is in
a well-described family (such as matrices with low level or long cycles) or has a decomposition

(such as presented in Section 5)?
Question 5: Is a thin Lehman matrix always the core of some minimally nonideal matrix?

Question 6: Is F» the only nondegenerate finite projective plane whose point-line matrix is the
core of a minimally nonideal matrix? Beth Novick [12] answered this question positively when

“the core of” is removed from the statement.
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