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Abstract

We survey three applications of mathematical programming to rea

soning under uncertainty� a� an application of linear programming
to probabilistic logic
 b� an application of nonlinear programming to
Bayesian logic� a combination of Bayesian inference with probabilistic
logic
 and c� an application of integer programming to Dempster
Shafer
theory� which is a method of combining evidence from di�erent sources�

� Introduction

In recent years the methods of mathematical programming have been applied
to reasoning under uncertainty� We will present the basic ideas behind three
of these applications� that of linear programming to probabilistic logic� that
of nonlinear programming to Bayesian logic� and that of integer program�
ming to Dempster�Shafer theory� A mathematical programming approach
not only provides a practical means of computing inferences� as in proba�
bilistic logic and Dempster�Shafer theory� but it can suggest new types of
logic for dealing with uncertainty� as in the case of Bayesian logic�

Probabilistic logic replaces the �true� and �false� of propositional logic
with probabilities� It was originally conceived by George Boole� who came
very close to realizing that one could reason in probabilistic logic by solving
what we now call a linear programming problem �	� 
� ��� 
�� 	��� Prob�
abilistic logic is an attractive alternative to the �con�dence factors� often
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used in expert systems� not only because it� unlike they� is well grounded in
theory� but also because it has some attractive practical features� Nonethe�
less probabilistic logic does not receive the attention it deserves� and when
it does receive attention� it is often in the form of skepticism about the pos�
sibility of solving the computational problem it poses� But thanks to recent
applications of column generation techniques for linear programming� the
computational problem is now well solved for fairly large instances�

Bayesian logic extends probabilistic logic by applying its semantics to
Bayesian inference� and in particular to Bayesian networks� which represent
dependence and independence relations among propositions �	
�� Bayesian
networks are perhaps best known for their role in in�uence diagrams �		��
which are a recent alternative to decision trees� Bayesian logic combines the
advantages of probabilistic logic ��exible input requirements� ability to deal
with molecular propositions� mathematical programming model� with those
of Bayesian networks �ability to capture causal and conditional independence
relations��

Dempster�Shafer theory �	
� addresses the problem of mathematically
combining evidence from sources that may con�ict� a problem that proba�
bilistic logic cannot solve� But it can pose an onerous computational prob�
lem� and we show here how that problem can be attacked with a particular
type of integer programming model known as a set covering model�

More detailed treatments of these topics can be found in ��� ���
We should remark in passing that mathematical programming methods

can also be applied to inductive reasoning� which is important for the con�
struction of expert systems and other rule bases� Some of these methods are
deterministic �	�� 
	�� but one approach ��� �� infers rules from noisy data�
It treats inductive inference as a statistical regression problem in which the
�tted formula is a logical rather than a numerical formula� See ��� for a
readable introduction�

� Probabilistic Logic

Probabilistic logic is the result of George Boole�s e�ort to capture uncer�
tainty in logical inference �	� 
�� Its formulas are identical to those of propo�
sitional logic� but they are assigned continuous probability values rather
than simply truth or falsehood�

In a probabilistic knowledge base� each formula is assigned a probability
or an interval within which its probability lies� Some conditional proba�






bilities may be speci�ed �or bounded� as well� The inference problem is
to determine the probability with which a given conclusion can be drawn�
It turns out that this probably can be any number in an interval of real
numbers�

In his study of Boole�s work ���� 
��� T� Hailperin pointed out that
the problem of calculating this interval can be naturally captured in a lin�
ear programming model� which Boole himself all but formulated� About a
decade later N� Nilsson reinvented probabilistic logic and its linear pro�
gramming formulation �	��� and his paper sparked considerable interest
��� �	� �
� ��� ��� 
�� 
�� 	�� 	�� 	��� Hailperin provides a historical sur�
vey of probabilistic logic in �����

The theoretical advantage of probabilistic logic� relative to the con��
dence factors commonly used in expert systems� is that it provides a princi�
pled means of computing the probability of an inference rather than an ad
hoc formula� The main practical advantage is that it allows one to use only
as much probabilistic information as is available� A perennial weakness of
probability�based reasoning� such as that in decision trees and in�uence dia�
grams� is the necessity of supplying a large number of prior and conditional
probabilities before any results can be computed� Probabilistic logic makes
no such demands�

If one is unhappy with a range of probabilities for the inferred proposi�
tion� he can obtain a point value by �nding an entropy�maximizing solution�
This was in fact suggested in Nilsson�s paper �	��� see also �
��� But this
approach not only poses a much harder� nonlinear computational problem�
but it could mislead by deriving a point probability value when a possibly
wide range of probabilities are consistent with the known probabilities�

��� A Linear Programming Model

Suppose that we have a knowledge base consisting of three formulas�

x� ���

x� � x�

x� � x��

A possible world is an assignment of truth values� true or false� to every
atomic proposition xj � In propositional logic� a model is simply a possible
world� and x� can be inferred from ��� because x� is true in every model in
which ��� is true�

	



Suppose� however� the formulas ��� are not known with certainty but
have probabilities ���� ��� and ���� respectively� Suppose also that the con�
ditional probability of x�� given that x� and x� are true� is ���� That is�

Pr�x�jx�� x�� � Pr�x�� x�� x���Pr�x�� x�� � ���� �
�

We want to know what probabilities can consistently be assigned x��
Probabilistic logic solves this problem by letting a model be� not a pos�

sible world� but a distribution of probabilities over all possible worlds�
In this example� there are 
� � � possible worlds� corresponding to the

� truth assignments�

�x�� x�� x�� � ��� �� ��� ��� �� ��� ��� �� ��� ��� �� ��� �	�

��� �� ��� ��� �� ��� ��� �� ��� ��� �� ���

Therefore� if we let p�� � � � � p� respectively be the probabilities assigned to
these � worlds� we can write the equations��

����
� � � � � � � �
� � � � � � � �
� � � � � � � �
� � � ���� � � � ��
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pi � �� pi � �� i � �� � � � � ��

The � columns of the matrix correspond to the � possible worlds �	�� Since
x� is true in the last 
 worlds �indicated by the ��s in the �rst row of the
matrix�� �
� says that x��s probability ��� is the sum of the probabilities
p�� � � � � p� of these 
 worlds� The probabilities ��� and ��� of x� � x� and
x� � x� are similarly computed in rows 
 and 	� The last row of the matrix
equation is simply the result of writing �
� in the form�

Pr�x�� x�� x��� ���Pr�x�� x�� � ��

which is equivalent to�

p� � ����p� � p�� � ��

The constraints in the last line of �
� ensure that �p�� � � � � p�� is a probability
distribution�






The unknown probability �� of x� is given by�

�� �
h

� � � � � � � �
i
p � cTp� ���

It is clear that �� can have any value cTp for which p solves �
�� Since �
�
and ��� are linear� the possible values of �� lie in an interval that can be
found by minimizing and maximizing cTp subject to the constraints in �
��
This is a linear programming problem� The minimum value of cTp is ����
and the maximum value is ���� which means that �� can be any probability
in the range from ��� to ����

��� Column Generation Techniques

A serious di�culty with the linear programming model of the probabilistic
inference problem is that the number of variables pj can increase exponen�
tially with the number of atomic propositions� This problem can be allevi�
ated using column generation techniques� which are well known in mathe�
matical programming� Their rationale is that they introduce variables into
the problem only as they are needed to improve the solution� so that only a
small fraction of the total variable set may eventually be used�

Column generation was suggested for probabilistic logic by Nilsson �	��
and by Georgakopolous� Kavvadias and Papadimitriou ��
� in their paper
on probabilistic satis�ability� Three column generation methods for proba�
bilistic logic have been developed in detail�those proposed by Hooker �
���
by Jaumard� Hansen� Araga�o and Brun �

� ��� and by Kavvadias and Pa�
padimitriou �

��

The second and third methods above have been computationally tested�
with promising results� Jaumard et al�� for instance� solve problems with
�� atomic propositions and ��� clauses in about a minute on a Sun Sparc
computer� About ��� columns are generated� out of a possible 
	��

� Bayesian Logic

One weakness of probabilistic logic is that it fails to take into account what
may be our most useful source of probabilistic knowledge�the independence
of events� We can understand the world only if we assume that most events
are signi�cantly in�uenced by relatively few other events�

An adequate knowledge base should therefore incorporate independence
assumptions when they can be made� Ordinary probabilistic logic cannot
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Figure �� A simple Bayesian network�

do this� since independence assumptions give rise to nonlinear constraints
that destroy the linearity of its linear programming model� But we can ac�
commodate independence assumptions in a nonlinear programming model�
provided there are not too many of them�

A useful device for capturing independence constraints is a Bayesian
network �	
�� Bayesian networks encode events as nodes and dependence
as arcs� and they can capture complex conditional independence relations
�i�e�� which events are independent� given the occurrence or nonoccurrence
of certain other events� �	
�� Lauritzen and Spiegelhalter developed a com�
putational approach to solving Bayesian networks �
���

Andersen and Hooker ��� applied the semantics of probabilistic logic to
Bayesian networks to obtain �Bayesian logic�� which has both the �exibility
of the former and the expressive power of the latter� In particular� two weak�
ness of Bayesian networks vanish when they are combined with probabilistic
logic� a� their demand for a large number of prior and conditional probabil�
ities as input data� b� their inability to accommodate molecular �as opposed
to atomic� propositions without making possibly unwarranted independence
assumptions�

��� Bayesian Networks

A Bayesian network is a directed network in which each node represents an
event and each arc a probabilistic dependence� For our purposes� an event
is always the truth or falsehood of a proposition� so that we can identify
nodes with propositions�

An example is depicted in Fig� �� in which a symptom �node �� can be
evidence for either disease 
 or disease 	 �nodes 
 and 	�� The occurrence
of the diseases can in turn be in�uenced by the presence of a certain genetic
trait �node 
�� to which one is predisposed by the possession of either of two
particular genes �nodes � and ���

In classical Bayesian networks� each node j is associated with atomic
proposition xj � The probability that xj is true is Pr�xj�� and the prob�
ability that xj is false is the probability Pr��xj� � � � Pr�xj� that its
denial �xj is true� It will be convenient to let Xj be a variable whose
value is either xj or �xj � The conditional probability of Xi given Xj is
Pr�XijXj� � Pr�XiXj��Pr�Xj�� where Pr�XiXj� is an abbreviation for
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Pr�Xi �Xj�� Two propositions Xi and Xj are independent if Pr�Xi� Xj� �
Pr�Xi�Pr�Xj�� Conditional independence is de�ned as follows� Xi and Xj

are independent� given that a set S of propositions are true� if Pr�XiXj jS� �
Pr�XijS�Pr�XjjS��

The essence of a Bayesian network is that the probability that a node is
true� when conditioned on the truth values of all the other nodes� is equal
to the probability it is true� conditioned only on the truth values of its
immediate predecessors� In Fig� � the probability of observing the symptom
depends �directly� only on which diseases the patient has� which is to say
Pr�x�jX�X�X�X�X
� � Pr�x�jX�X�� for all values of X�� � � � � X
� To put
it di�erently� any in�uence on the probability of the symptom other than
the diseases is mediated by the diseases�

Two nodes i� j in a Bayesian network are �conditionally� independent if
Xi� Xj are �conditionally� independent for all values of Xi� Xj� Clearly� two
nodes are independent if they have no common ancestor� Two nodes are
conditionally independent� given any �xed set of truth values for a set S of
nodes� if they have no common ancestor when the nodes in S are removed
from the network�

��� Possible World Semantics for Bayesian Networks

It is straightforward to interpret a Bayesian network with the semantics
of probabilistic logic� When we specify prior or conditional probabilities�
we use the same sort of constraints as in ordinary probabilistic logic� For
instance� suppose in the example of Fig� � that the conditional probabilities
of observing the symptoms are�

Pr�x�jx�x�� � ���� Pr�x�j�x�x�� � ��� ���

Pr�x�jx��x�� � ��� Pr��x��x�� � ����

Suppose also that the predisposition to either disease is captured in the
following conditional probabilities�

Pr�x�jx�� � ��
 Pr�x�j�x�� � ���� ���

Pr�x�jx�� � ��
 Pr�x�j�x�� � ����

��� and ��� can be written as linear constraints� as before� We can of course
specify bounds� rather than exact values� for any of these probabilities�

We can also associate nodes with molecular propositions� For instance�
let us �x the conditional probabilities Pr�x�jX�X
� of having the genetic
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trait so that the patient has it precisely when he has one or both of the
genes� Thus�

Pr�x�jx�x
� � � Pr�x�j�x�x
� � � ���

Pr�x�jx��x
� � � Pr�x�j�x��x
� � ��

This in e�ect associates the molecular proposition x��x
 with node 
� even
within the framework of a conventional Bayesian network� But the network
of Fig� � is inappropriate� because it shows nodes � and � as independent�
and we may have no reason to suppose they are independent� We might re�
move the independence assumption by drawing an arrow from� say� node �
to node �� But then we could not solve the network unless we knew the con�
ditional probability Pr�x
jx��� In a conventional Bayesian network� then�
there is no way to associate a molecular proposition with a node without
making possibly unwarranted independence assumptions or presupposing
conditional probabilities that may not be available�

Probabilistic logic� however� provides an easy solution to this dilemma�
We simply omit nodes � and � from the Bayesian network� but retain the
conditional probability statements ���� This in e�ect associates x��x
 with
node 
 without making additional assumptions�

Finally� let us suppose that we can estimate prior probabilities for the
occurrence of the two genes�

Pr�x�� � ��
� Pr�x
� � ����� ���

It remains to encode the conditional independence constraints� Using the
de�nition of conditional probability� we can compute the joint probability
distribution of the atomic propositions x�� � � � � x� in Fig� � as follows� �We
omit x� and x
 since we dropped the corresponding nodes��

Pr�X�X�X�X�� � Pr�X�jX�X�X��Pr�X�jX�X��Pr�X�jX��Pr�X�� ����

The computation is valid for any substitution of xj or �xj for each Xj � Due
to the structure of the Bayesian network� two of the conditional probabilities
in ���� simplify as follows�

Pr�X�jX�X�X�� � Pr�X�jX�X�� ����

Pr�X�jX�X�� � Pr�X�jX��� ��
�

This means that the joint probability in ���� can be computed�

Pr�X� � � �X�� � Pr�X�jX�X��Pr�X�jX��Pr�X�jX��Pr�X��� ��	�
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We conclude that the independence constraints ���� and ��
� are adequate
for calculating the underlying joint distribution and therefore capture the
independence properties of the network� Again using the de�nition of con�
ditional probability� we write ���� and ��
� as the following nonlinear con�
straints�

Pr�X�X�X�X��Pr�X�X�� � Pr�X�X�X��Pr�X�X�X�� ��
�

Pr�X�X�X��Pr�X�� � Pr�X�X��Pr�X�X��� ����

Here each variable Xj varies over xj and �xj � To treat ��
� and ���� as
constraints� we must de�ne each probability Pr�F � in terms of the vector
p� This is readily done by treating each  Pr�F �� as a variable and adding a
constraint of the form�

Pr�F � � aT p� ����

where�

aj �

�
� if F is true in world j�
� otherwise�

����

Now suppose we want to calculate bounds on the probability Pr�x�jx�x��
that a patient with disease 	 and the genetic condition has disease 
� We
minimize and maximize Pr�x�x�x���Pr�x�x�� subject to a� the linear con�
straints representing �������� b� the independence constraints ��
� and �����
and c� constraints of the form ���� that de�ne all variables Pr�F �� including
Pr�x�x�x�� and Pr�x�x��� In this case we obtain the bounds ��
��� and
��
�	��

��� Computational Considerations

The exponential explosion of variables pj in probabilistic logic remains when
nonlinear independence constraints are added� In ��� we show how to apply
Benders decomposition to the nonlinear programming problem� so that the
linear part can be isolated in a subproblem� This allows application of
the same column generation techniques that are being used for ordinary
probabilistic logic�

Also if the problem is formulated na�ively� the number of nonlinear con�
straints required to capture independence relations can grow exponentially
with the number of nodes in the network� But we show in ��� that if the
constraints are properly formulated� their number grows only linearly with
the number of nodes for a large class of networks�
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Speci�cally� we show that the number of nonlinear constraints grows
exponentially� not with the size of the entire network� but with the size of
the largest �extended ancestral set� in the network� When the size of this
set is bounded� the number of constraints grows linearly with the number
of nodes�

To have an approximate understanding of this claim� we can imagine that
the nodes of a Bayesian network are people� and the immediate predecessors
of a node are that person�s parents� �We assume a person can have more
than two parents�� Beginning with any person in the network� we group his
parents so that no parent in one group has a common ancestor with anyone
in another� We do the same with his grandparents� and so on with earlier
generations� The resulting groups are �ancestral sets�� An ancestral set
joined by all the parents of its members is an �extended ancestral set�� If
all the extended ancestral sets are small� the problem is relatively easy to
solve�

� Dempster�Shafer Theory

In an e�ort to develop a more adequate mathematical theory of evidence
than Bayesian statistics� G� Shafer �	
� extended some statistical ideas of A�
P� Dempster ���� �
� to obtain a theory that is closely related to probabilistic
logic� A readable exposition of the role of Dempster�Shafer theory in expert
systems can be found in ����� We will present the basic ideas of Dempster�
Shafer theory and show how an integer programming model can help solve
its inference problems�

��� Basic Ideas of Dempster�Shafer Theory

Dempster�Shafer theory is best introduced with an example� Sherlock Holmes
is investigating a burglary of a shop and determines� by examining the
opened safe� that the burglar was left�handed� Holmes also has evidence
that the theft was an inside job� One clerk in the store is left�handed� and
Holmes must decide with what certainty he can accuse the clerk�

We �rst identify a frame of discernment� which is very much like a set of
possible worlds� it is a set ! of exhaustive and mutually exclusive possible
states of the world� If L means that the thief is left�handed �and L that he
is not�� and if I means that he is an insider �and I that he is not�� then in
this case we have the four possible states LI � LI � LI � LI � Every subset of
! corresponds to a proposition in the obvious way� fLIg to the proposition
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Table �� Dempster�s Combination Rule

m��!� � ��
 m�fLI� LIg� � ���� m�!� � ���


m��fLI� LIg� � ��� m�fLIg� � ���
 m�fLI� LIg� � ����

m��fLI� LIg� � ��� m��!� � ���

that the thief was a left�handed insider� fLI� LIg to the proposition that he
was left�handed� and so on�

We next assign basic probability numbers to each subset of !� to indicate
Holmes� degree of belief in the corresponding proposition� Perhaps the evi�
dence from the safe leads Holmes to assign a probability number of ��� to the
set fLI� LIg� indicating the �portion of belief� that is �committed to� the
hypothesis that the thief is left�handed� Since the basic probabilities num�
bers must sum to one� Holmes assigns the remaining ��� to the entire frame
! � fLI� LI� LI� LIg� indicating that this portion of belief is committed to
no particular hypothesis� This de�nes a basic probability function m�� with
m��fLI� LIg� � ���� m��!� � ���� and m��A� � � for all other subsets A
of !� Evidence of an inside job is treated similarly to obtain a second basic
probability function m�� In this example� either piece of evidence focuses
belief on a single subset of ! other than ! itself� but belief can in general
be divided among several subsets�

Our next task is to combine the left�handed evidence with the insider ev�
idence� For this Shafer uses Dempster�s combination rule� which produces a
new basic probability function m � m��m�� The combined basic probabil�
ity m�C� of a set C is the sum of m��A�m��B� over all sets A and B whose
intersection is C� If m� is given by m��fLI� LIg� � ��� and m��!� � ��
�
the results are displayed in Table �� For instance� Holmes should commit
���������� � ���
 of his belief to the proposition that the thief is a left�
handed insider �i�e�� the left�handed clerk�� A portion ���� of his belief is
committed to the more general proposition that the burglar was left�handed�
and ���� to the general proposition that he was an insider� A small portion
���
 remains uncommitted�

If some of the intersections are empty� Shafer normalizes the other basic
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probabilities so that they sum to one� Thus if we de�ne�

"m�C� �
X

A�B��
A�B�C

m��A�m��B�� ����

then�

m�C� � m� �m��C� �
"m�C�

�� "m���
� ����

If there are three basic probability functions� then m � �m� �m���m� �
m� � �m� �m��� and similarly for larger numbers of functions�

Now that the composite basic probability function m has been computed�
it remains to determine how much credence should be placed in each subset
of !� To do this Shafer de�nes a belief function Bel� where Bel�A� is the
total credence that should be given a subset A of !� He takes Bel�A� to be
the sum of the basic probability numbers of all subsets of A�

Bel�A� �
X
B�A

m�B�� �
��

Thus the belief allotted to a proposition is the sum of the basic probability
numbers of all the propositions that entail it� For instance� the belief Holmes
should allocate to the guilt of the clerk is Bel�fLIg� � ���
� since the
only subset of fLIg with a positive basic probability is fLIg itself� The
belief he should allocate to the proposition that the thief was left�handed is
Bel�fLI� LIg� � ���
 � ���� � ���� No credence is given to the proposition
that the thief is either a left�handed outsider or a right�handed insider� since
no subset of fLI� LIg has a positive basic probability�

��� A Set Covering Model

The di�culty of combining basic probability functions increases exponen�
tially with the number of functions� To see this� take the simplest case in
which each basic probability functions mi assigns a positive value to only one
set Si other than the entire frame ! �i�e�� mi is a simple support function��
To compute "m�C� using formula ����� we must enumerate all intersections
of Si�s that are equal to C� Equivalently� if Tj � Sj n C� we must enumer�
ate all intersections of Tj �s that are empty� If S�� � � � � Sk� contain C and
Sk���� � � � � Sk do not� we must check all 
k

�

subsets of fT�� � � � � Tk�g to �nd
those whose intersection is empty�
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There are various ways to make the enumeration more e�cient� Barnett
�
� describes a method that applies when each simple support function as�
signs probability to a singleton� We will present a method valid for all simple
support functions that is based on a set covering model� Let us say that an
intersection of the sets in a subset S of fT�� � � � � Tk�g is minimally empty if
the intersection of the sets in no proper subset of S is empty� Then we need
only enumerate minimally empty intersections when computing "m�C� with
formula ����� But some care must be taken in doing the computation�

A set covering problem has the form�

Ax � e �
��

xj 	 f�� �g� j � �� � � � � N

where A is a ��� matrix and e is a vector of ��s� The columns of A correspond
to sets and the rows to elements the sets collectively contain� We set

aij �

�
� if set j contains element i�
� otherwise�

Thus a vector x solves �
�� if the union of the sets j for which xj � �
contains all the elements� Such an x is called a cover� We say x is a prime
cover if it properly contains no cover� that is� if no cover y satis�es y 
 x
with yj �� xj for some j�

Let us associate the sets T �� � � � � Tk� with the columns of A and the
elements in their union with the rows of A� where T is the complement of T �
It is clear that if x is a cover� then the intersection of the sets Tj such that
xj � � is empty� Furthermore� if x is a prime cover� then the intersection
is minimally empty� It therefore su�ces to generate all the prime covers
for �
�� and to use them in an appropriate calculation to obtain "m�C�� We
will �rst show how to generate the prime covers and then how to do the
calculation�

We can obtain an initial cover simply by �nding a feasible solution x� of
�
��� such as x� � ��� �� � � � � ��� We can reduce x� to a prime cover y� by re�
moving sets from the cover� one by one� until no further sets can be removed
without producing a noncover� Suppose� then� that we have generated dis�
tinct prime covers y�� � � � � yt� To obtain a �t � ���st distinct prime cover�
we add the following constraints to �
�� and use an integer programming
algorithm to �nd a feasible solution xt�� of the resulting system�X

j

y�
j
��

xj 
 eT y� � � � �� � � � � t� �

�

�	



where e is a vector of ones� Note that each constraint in �

� excludes any
cover that contains a cover already enumerated� We next reduce xt�� to
a prime cover yt��� which clearly must be distinct from the prime covers
already generated� The process continues until there is no feasible solution
of �
�� with the additional constraints �

��

Now that we know how to generate all the prime covers� we can illustrate
the calculation of "m�C�� Let us suppose that sets S�� � � � � S� contain C and
that a remaining set S� does not� Thus the formula for "m�C� is�X

U� 	 fS��!g
���

U� 	 fS��!g

m��U��m��U��m��U��m��U��m��!�� �
	�

Let us also suppose that there are three prime covers�

fT �� T�g �

�

fT �� T�g

fT �g

Consider �rst the terms of �
	� that correspond to the prime cover
fT �� T �g �i�e�� the terms containing both m��S�� and m��S����X

U� 	 fS��!g
U� 	 fS��!g

m��S��m��S��m��U��m��U��m��!�� �
��

Since each mi is a simple support function� we have mi�Si� �mi�!� � � for
each i� and �
�� can be simpli�ed to

m��S��m��S��m��!�� �
��

Consider next the terms of �

� that correspond to the prime cover
fT �� T �g� X

U� 	 fS��!g
U� 	 fS��!g

m��U��m��S��m��S��m��U��m��!��

�




Some of these terms� namely those containing m��S��� have already been
accounted for in �
��� The sum of the remaining terms simpli�es to�

m��!�m��S��m��S��m��!�� �
��

By a similar process we remove redundant terms from the summationX
U� 	 fS��!g
U� 	 fS��!g
U� 	 fS��!g

m��U��m��U��m��U��m��S��m��!��

that corresponds to the prime cover fT�g� After removing redundancies� we
obtain the sum of three terms�

m��S��m��!�m��S��m��!� �
��

m��!�m��S��m��!�m��S��m��!� �
��

m��!�m��!�m��S��m��!� �	��

"m�C� is now equal to the sum of �
����	��� A precise statement of this
algorithm will appear in ����
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