Mathematical Programming Methods for Reasoning
under Uncertainty *

J. N. HooKER
GSTA, Carnegie Mellon University, Pittsburgh, PA 15213 USA
Matematisk Institut, Arhus Universitet, 8000 Arhus, Denmark

October 1991

Abstract

We survey three applications of mathematical programming to rea-
soning under uncertainty: a) an application of linear programming
to probabilistic logic; b) an application of nonlinear programming to
Bayesian logic, a combination of Bayesian inference with probabilistic
logic; and ¢) an application of integer programming to Dempster-Shafer
theory, which is a method of combining evidence from different sources.

1 Introduction

In recent years the methods of mathematical programming have been applied
to reasoning under uncertainty. We will present the basic ideas behind three
of these applications: that of linear programming to probabilistic logic, that
of nonlinear programming to Bayesian logic, and that of integer program-
ming to Dempster-Shafer theory. A mathematical programming approach
not only provides a practical means of computing inferences, as in proba-
bilistic logic and Dempster-Shafer theory, but it can suggest new types of
logic for dealing with uncertainty, as in the case of Bayesian logic.
Probabilistic logic replaces the “true” and “false” of propositional logic
with probabilities. It was originally conceived by George Boole, who came
very close to realizing that one could reason in probabilistic logic by solving
what we now call a linear programming problem [3, 4, 18, 20, 30]. Prob-
abilistic logic is an attractive alternative to the “confidence factors” often

*This work is partially supported by AFOSR grant 91-0287.

used in expert systems, not only because it, unlike they, is well grounded in
theory, but also because it has some attractive practical features. Nonethe-
less probabilistic logic does not receive the attention it deserves, and when
it does receive attention, it is often in the form of skepticism about the pos-
sibility of solving the computational problem it poses. But thanks to recent
applications of column generation techniques for linear programming, the
computational problem is now well solved for fairly large instances.

Bayesian logic extends probabilistic logic by applying its semantics to
Bayesian inference, and in particular to Bayesian networks, which represent
dependence and independence relations among propositions [32]. Bayesian
networks are perhaps best known for their role in influence diagrams [33],
which are a recent alternative to decision trees. Bayesian logic combines the
advantages of probabilistic logic (flexible input requirements, ability to deal
with molecular propositions, mathematical programming model) with those
of Bayesian networks (ability to capture causal and conditional independence
relations).

Dempster-Shafer theory [34] addresses the problem of mathematically
combining evidence from sources that may conflict, a problem that proba-
bilistic logic cannot solve. But it can pose an onerous computational prob-
lem, and we show here how that problem can be attacked with a particular
type of integer programming model known as a set covering model.

More detailed treatments of these topics can be found in [1, 8].

We should remark in passing that mathematical programming methods
can also be applied to inductive reasoning, which is important for the con-
struction of expert systems and other rule bases. Some of these methods are
deterministic [35, 23], but one approach [5, 6] infers rules from noisy data.
It treats inductive inference as a statistical regression problem in which the
fitted formula is a logical rather than a numerical formula. See [5] for a
readable introduction.

2 Probabilistic Logic

Probabilistic logic is the result of George Boole’s effort to capture uncer-
tainty in logical inference [3, 4]. Its formulas are identical to those of propo-
sitional logic, but they are assigned continuous probability values rather
than simply truth or falsehood.

In a probabilistic knowledge base, each formula is assigned a probability
or an interval within which its probability lies. Some conditional proba-

bilities may be specified (or bounded) as well. The inference problem is
to determine the probability with which a given conclusion can be drawn.
It turns out that this probably can be any number in an interval of real
numbers.

In his study of Boole’s work [18, 20], T. Hailperin pointed out that
the problem of calculating this interval can be naturally captured in a lin-
ear programming model, which Boole himself all but formulated. About a
decade later N. Nilsson reinvented probabilistic logic and its linear pro-
gramming formulation [30], and his paper sparked considerable interest
[9, 13, 14, 16, 17, 28, 29, 31, 36, 37]. Hailperin provides a historical sur-
vey of probabilistic logic in [19].

The theoretical advantage of probabilistic logic, relative to the confi-
dence factors commonly used in expert systems, is that it provides a princi-
pled means of computing the probability of an inference rather than an ad
hoc formula. The main practical advantage is that it allows one to use only
as much probabilistic information as is available. A perennial weakness of
probability-based reasoning, such as that in decision trees and influence dia-
grams, is the necessity of supplying a large number of prior and conditional
probabilities before any results can be computed. Probabilistic logic makes
no such demands.

If one is unhappy with a range of probabilities for the inferred proposi-
tion, he can obtain a point value by finding an entropy-maximizing solution.
This was in fact suggested in Nilsson’s paper [30]; see also [26]. But this
approach not only poses a much harder, nonlinear computational problem,
but it could mislead by deriving a point probability value when a possibly
wide range of probabilities are consistent with the known probabilities.

2.1 A Linear Programming Model

Suppose that we have a knowledge base consisting of three formulas,

1 (1)
T1 D T

T9 D X3.

A possible world is an assignment of truth values, true or false, to every
atomic proposition z;. In propositional logic, a model is simply a possible
world, and x3 can be inferred from (1) because z3 is true in every model in
which (1) is true.

Suppose, however, the formulas (1) are not known with certainty but
have probabilities 0.9, 0.8 and 0.7, respectively. Suppose also that the con-
ditional probability of zs, given that xz; and x4 are true, is 0.8. That is,

Pr(zs|eq, z2) = Pr(zy, 2, 23)/ Pr(zy,22) = 0.8. (2)

We want to know what probabilities can consistently be assigned x3.
Probabilistic logic solves this problem by letting a model be, not a pos-
sible world, but a distribution of probabilities over all possible worlds.
In this example, there are 2% = 8 possible worlds, corresponding to the
8 truth assignments,

(z1,22,23) = (0,0,0),(0,0,1),(0,1,0),(0,1,1), (3)
(1,0,0),(1,0,1),(1,1,0),(1,1,1).

Therefore, if we let py, ..., ps respectively be the probabilities assigned to
these 8 worlds, we can write the equations,

000 o0 111 1 » 0.9
111 1 0 0 1 1 S 0.8 (4)
1 10 1 11 0 1 : 0.7
000 —08 0 0 0 02 Ps 0

8
Spi=1, pi>0, i=1,...,8
=1

The 8 columns of the matrix correspond to the 8 possible worlds (3). Since
x1 is true in the last 4 worlds (indicated by the 1’s in the first row of the
matrix), (4) says that z1’s probability 0.9 is the sum of the probabilities
Ps, ..., pg of these 4 worlds. The probabilities 0.8 and 0.7 of 27 D 25 and
29 D zg are similarly computed in rows 2 and 3. The last row of the matrix
equation is simply the result of writing (2) in the form,

Pr(zy,z2,23) — 0.8Pr(x1,22) = 0,
which is equivalent to,

ps — 0.8(ps + ps) = 0.

The constraints in the last line of (4) ensure that (p1, ..., ps) is a probability
distribution.

The unknown probability mg of x5 is given by,
=0 1010 10 1]|p=clp (5)

It is clear that 7y can have any value ¢Ip for which p solves (4). Since (4)
and (5) are linear, the possible values of my lie in an interval that can be
found by minimizing and maximizing ¢’ p subject to the constraints in (4).
This is a linear programming problem. The minimum value of ¢!p is 0.5,
and the maximum value is 0.7, which means that 7o can be any probability
in the range from 0.5 to 0.7.

2.2 Column Generation Techniques

A serious difficulty with the linear programming model of the probabilistic
inference problem is that the number of variables p; can increase exponen-
tially with the number of atomic propositions. This problem can be allevi-
ated using column generation techniques, which are well known in mathe-
matical programming. Their rationale is that they introduce variables into
the problem only as they are needed to improve the solution, so that only a
small fraction of the total variable set may eventually be used.

Column generation was suggested for probabilistic logic by Nilsson [30]
and by Georgakopolous, Kavvadias and Papadimitriou [14] in their paper
on probabilistic satisfiability. Three column generation methods for proba-
bilistic logic have been developed in detail—those proposed by Hooker [21],
by Jaumard, Hansen, Aragaé and Brun [22, 7], and by Kavvadias and Pa-
padimitriou [24].

The second and third methods above have been computationally tested,
with promising results. Jaumard et al., for instance, solve problems with
70 atomic propositions and 100 clauses in about a minute on a Sun Sparc
computer. About 600 columns are generated, out of a possible 270,

3 Bayesian Logic

One weakness of probabilistic logic is that it fails to take into account what
may be our most useful source of probabilistic knowledge—the independence
of events. We can understand the world only if we assume that most events
are significantly influenced by relatively few other events.

An adequate knowledge base should therefore incorporate independence
assumptions when they can be made. Ordinary probabilistic logic cannot

Figure 1: A simple Bayesian network.

do this, since independence assumptions give rise to nonlinear constraints
that destroy the linearity of its linear programming model. But we can ac-
commodate independence assumptions in a nonlinear programming model,
provided there are not too many of them.

A useful device for capturing independence constraints is a Bayesian
network [32]. Bayesian networks encode events as nodes and dependence
as arcs, and they can capture complex conditional independence relations
(i.e., which events are independent, given the occurrence or nonoccurrence
of certain other events) [32]. Lauritzen and Spiegelhalter developed a com-
putational approach to solving Bayesian networks [25].

Andersen and Hooker [1] applied the semantics of probabilistic logic to
Bayesian networks to obtain “Bayesian logic,” which has both the flexibility
of the former and the expressive power of the latter. In particular, two weak-
ness of Bayesian networks vanish when they are combined with probabilistic
logic: a) their demand for a large number of prior and conditional probabil-
ities as input data, b) their inability to accommodate molecular (as opposed
to atomic) propositions without making possibly unwarranted independence
assumptions.

3.1 Bayesian Networks

A Bayesian network is a directed network in which each node represents an
event and each arc a probabilistic dependence. For our purposes, an event
is always the truth or falsehood of a proposition, so that we can identify
nodes with propositions.

An example is depicted in Fig. 1, in which a symptom (node 1) can be
evidence for either disease 2 or disease 3 (nodes 2 and 3). The occurrence
of the diseases can in turn be influenced by the presence of a certain genetic
trait (node 4), to which one is predisposed by the possession of either of two
particular genes (nodes 5 and 6).

In classical Bayesian networks, each node j is associated with atomic
proposition z;. The probability that z; is true is Pr(z;), and the prob-
ability that z; is false is the probability Pr(-z;) = 1 — Pr(z;) that its
denial -z; is true. It will be convenient to let X; be a variable whose
value is either z; or —z;. The conditional probability of X; given X; is
Pr(X;|X;) = Pr(X;X;)/Pr(X;), where Pr(X;X;) is an abbreviation for

Pr(X; A X;). Two propositions X; and X; are independent if Pr(X;, X;) =
Pr(X;)Pr(X;). Conditional independence is defined as follows: X; and X;
are independent, given that a set S of propositions are true, if Pr(X;X;|5) =
Pr(X;|9)Pr(X;|9).

The essence of a Bayesian network is that the probability that a node is
true, when conditioned on the truth values of all the other nodes, is equal
to the probability it is true, conditioned only on the truth values of its
immediate predecessors. In Fig. 1 the probability of observing the symptom
depends (directly) only on which diseases the patient has, which is to say
Pr(z1| X2 X3X4X5X6) = Pr(a1|X2X3) for all values of Xy,..., Xg. To put
it differently, any influence on the probability of the symptom other than
the diseases is mediated by the diseases.

Two nodes ¢, 7 in a Bayesian network are (conditionally) independent if
X;, X; are (conditionally) independent for all values of X;, X;. Clearly, two
nodes are independent if they have no common ancestor. Two nodes are
conditionally independent, given any fixed set of truth values for a set 5 of
nodes, if they have no common ancestor when the nodes in 5 are removed
from the network.

3.2 Possible World Semantics for Bayesian Networks

It is straightforward to interpret a Bayesian network with the semantics
of probabilistic logic. When we specify prior or conditional probabilities,
we use the same sort of constraints as in ordinary probabilistic logic. For
instance, suppose in the example of Fig. 1 that the conditional probabilities
of observing the symptoms are,

Pr(zq|zqzs) = 0.95 Pr(zq|-za23) = 0.8 (6)
Pr(zi|zg—as) = 0.7 Pr(-zy-as3)=0.1.

Suppose also that the predisposition to either disease is captured in the
following conditional probabilities.

Pr(zzlzs) =04 Pr(za]|-z4) = 0.05 (7)
Pr(zslzs) = 0.2 Pr(zs|-z4) = 0.1

(6) and (7) can be written as linear constraints, as before. We can of course
specify bounds, rather than exact values, for any of these probabilities.

We can also associate nodes with molecular propositions. For instance,
let us fix the conditional probabilities Pr(xz4|X5Xs) of having the genetic

trait so that the patient has it precisely when he has one or both of the
genes. Thus,

Pr(zq|lzsee) =1 Pr(zgl-asze) =1 (8)

Pr(zg|lzs—as) =1 Pr(zs-as—ag) = 0.

This in effect associates the molecular proposition a5V zg with node 4, even
within the framework of a conventional Bayesian network. But the network
of Fig. 1 is inappropriate, because it shows nodes 5 and 6 as independent,
and we may have no reason to suppose they are independent. We might re-
move the independence assumption by drawing an arrow from, say, node 5
to node 6. But then we could not solve the network unless we knew the con-
ditional probability Pr(zs|zs). In a conventional Bayesian network, then,
there is no way to associate a molecular proposition with a node without
making possibly unwarranted independence assumptions or presupposing
conditional probabilities that may not be available.

Probabilistic logic, however, provides an easy solution to this dilemma.
We simply omit nodes 5 and 6 from the Bayesian network, but retain the
conditional probability statements (8). This in effect associates x5V x¢ with
node 4 without making additional assumptions.

Finally, let us suppose that we can estimate prior probabilities for the
occurrence of the two genes:

Pr(zs)=0.25 Pr(ze)=0.15. (9)

It remains to encode the conditional independence constraints. Using the
definition of conditional probability, we can compute the joint probability
distribution of the atomic propositions z1,...,24 in Fig. 1 as follows. (We
omit 25 and ¢ since we dropped the corresponding nodes.)

PT(X1X2X3X4) = PT(Xl|X2X3X4)P7‘(X2|X3X4)P7‘(X3|X4)PT(X4) (10)

The computation is valid for any substitution of z; or -z, for each X;. Due
to the structure of the Bayesian network, two of the conditional probabilities
in (10) simplify as follows:

Pr(X1|X,X3X,) = Pr(X1|X2Xs) (11)
PT(X2|X3X4) = PT(X2|X4) (12)

This means that the joint probability in (10) can be computed,
PT(Xl .. X4) = PT(Xl|X2X3)PT(X2|X4)P7‘(X3|X4)P7‘(X4). (13)

We conclude that the independence constraints (11) and (12) are adequate
for calculating the underlying joint distribution and therefore capture the
independence properties of the network. Again using the definition of con-
ditional probability, we write (11) and (12) as the following nonlinear con-
straints:

PT(X1X2X3X4)P7‘(X2X3) = PT(XlXQXg)PT(X2X3X4) (14)
PT(X2X3X4)P7‘(X4) = PT(X2X4)P7‘(X3X4). (15)

Here each variable X; varies over z; and —z;. To treat (14) and (15) as
constraints, we must define each probability Pr(F') in terms of the vector
p. This is readily done by treating each ‘Pr(F)’ as a variable and adding a
constraint of the form,

Pr(F)=a"p, (16)

where,

(17)

0 — 1 if Fis true in world 7,
771 0 otherwise.

Now suppose we want to calculate bounds on the probability Pr(zz|zi23)
that a patient with disease 3 and the genetic condition has disease 2. We
minimize and maximize Pr(z12223)/ Pr(z123) subject to a) the linear con-
straints representing (6)-(9), b) the independence constraints (14) and (15),
and c) constraints of the form (16) that define all variables Pr(F'), including
Pr(zyz923) and Pr(zixzs). In this case we obtain the bounds 0.2179 and
0.2836.

3.3 Computational Considerations

The exponential explosion of variables p; in probabilistic logic remains when
nonlinear independence constraints are added. In [1] we show how to apply
Benders decomposition to the nonlinear programming problem, so that the
linear part can be isolated in a subproblem. This allows application of
the same column generation techniques that are being used for ordinary
probabilistic logic.

Also if the problem is formulated naively, the number of nonlinear con-
straints required to capture independence relations can grow exponentially
with the number of nodes in the network. But we show in [1] that if the
constraints are properly formulated, their number grows only linearly with
the number of nodes for a large class of networks.

Specifically, we show that the number of nonlinear constraints grows
exponentially, not with the size of the entire network, but with the size of
the largest "extended ancestral set” in the network. When the size of this
set is bounded, the number of constraints grows linearly with the number
of nodes.

To have an approximate understanding of this claim, we can imagine that
the nodes of a Bayesian network are people, and the immediate predecessors
of a node are that person’s parents. (We assume a person can have more
than two parents.) Beginning with any person in the network, we group his
parents so that no parent in one group has a common ancestor with anyone
in another. We do the same with his grandparents, and so on with earlier
generations. The resulting groups are “ancestral sets.” An ancestral set
joined by all the parents of its members is an “extended ancestral set.” If
all the extended ancestral sets are small, the problem is relatively easy to
solve.

4 Dempster-Shafer Theory

In an effort to develop a more adequate mathematical theory of evidence
than Bayesian statistics, G. Shafer [34] extended some statistical ideas of A.
P. Dempster [11, 12] to obtain a theory that is closely related to probabilistic
logic. A readable exposition of the role of Dempster-Shafer theory in expert
systems can be found in [15]. We will present the basic ideas of Dempster-
Shafer theory and show how an integer programming model can help solve
its inference problems.

4.1 Basic Ideas of Dempster-Shafer Theory

Dempster-Shafer theory is best introduced with an example. Sherlock Holmes
is investigating a burglary of a shop and determines, by examining the
opened safe, that the burglar was left-handed. Holmes also has evidence
that the theft was an inside job. One clerk in the store is left-handed, and
Holmes must decide with what certainty he can accuse the clerk.

We first identify a frame of discernment, which is very much like a set of
possible worlds: it is a set @ of exhaustive and mutually exclusive possible
states of the world. If I means that the thief is left-handed (and L that he
is not), and if I means that he is an insider (and I that he is not), then in
this case we have the four possible states LI, LI, LI, LI. Every subset of
O corresponds to a proposition in the obvious way: { L1} to the proposition

10

Table 1: Dempster’s Combination Rule

m2(0) = 0.2 m({LI,LT}) = 0.18 m(0) = 0.02

mo({LI,LI})=0.8 | m({LI})=0.72 | m({LI,LI})=0.08

mi({L1,IT}) = 0.9 my(0)=0.1

that the thief was a left-handed insider, {LI, LI} to the proposition that he
was left-handed, and so on.

We next assign basic probability numbers to each subset of O, to indicate
Holmes’ degree of belief in the corresponding proposition. Perhaps the evi-
dence from the safe leads Holmes to assign a probability number of 0.9 to the
set {LI, LT}, indicating the “portion of belief” that is “committed to” the
hypothesis that the thief is left-handed. Since the basic probabilities num-
bers must sum to one, Holmes assigns the remaining 0.1 to the entire frame
© = {LI,LI,LI, LI}, indicating that this portion of belief is committed to
no particular hypothesis. This defines a basic probability function m4, with
mi({LI,LT}) = 0.9, m1(®) = 0.1, and my(A) = 0 for all other subsets A
of ©@. Evidence of an inside job is treated similarly to obtain a second basic
probability function msy. In this example, either piece of evidence focuses
belief on a single subset of ©® other than © itself, but belief can in general
be divided among several subsets.

Our next task is to combine the left-handed evidence with the insider ev-
idence. For this Shafer uses Dempster’s combination rule, which produces a
new basic probability function m = my & my. The combined basic probabil-
ity m(C') of a set C'is the sum of mq(A)mq(B) over all sets A and B whose
intersection is C'. If my is given by mo({LI, LI}) = 0.8 and m2(©) = 0.2,
the results are displayed in Table 1. For instance, Holmes should commit
(0.9)(0.8) = 0.72 of his belief to the proposition that the thief is a left-
handed insider (i.e., the left-handed clerk). A portion 0.18 of his belief is
committed to the more general proposition that the burglar was left-handed,
and 0.08 to the general proposition that he was an insider. A small portion
0.02 remains uncommitted.

If some of the intersections are empty, Shafer normalizes the other basic

11

probabilities so that they sum to one. Thus if we define,

m(C) = Z my(A)my(B), (18)

ABCO
ANB=C
then,)
m(C) = my & my(C) = % (19)

If there are three basic probability functions, then m = (mq & mg) & msz =
my & (mg @ ma), and similarly for larger numbers of functions.

Now that the composite basic probability function m has been computed,
it remains to determine how much credence should be placed in each subset
of ©. To do this Shafer defines a belief function Bel, where Bel(A) is the
total credence that should be given a subset A of ©. He takes Bel(A) to be
the sum of the basic probability numbers of all subsets of A:

Bel(A)= 3" m(B). (20)

BCA

Thus the belief allotted to a proposition is the sum of the basic probability
numbers of all the propositions that entail it. For instance, the belief Holmes
should allocate to the guilt of the clerk is Bel({LI}) = 0.72, since the
only subset of {LI} with a positive basic probability is {LI} itself. The
belief he should allocate to the proposition that the thief was left-handed is
Bel({LI,LT}) =10.72+ 0.18 = 0.9. No credence is given to the proposition
that the thief is either a left-handed outsider or a right-handed insider, since
no subset of {LI, L1} has a positive basic probability.

4.2 A Set Covering Model

The difficulty of combining basic probability functions increases exponen-
tially with the number of functions. To see this, take the simplest case in
which each basic probability functions m; assigns a positive value to only one
set S; other than the entire frame O (i.e., m; is a simple support function).
To compute m(C') using formula (18), we must enumerate all intersections
of S;’s that are equal to C'. Equivalently, if T; = 5; \ C', we must enumer-
ate all intersections of 7}’s that are empty. If Sy,...,5 contain C' and
Ski4+1s- .-, 5% do not, we must check all 2K subsets of {Ty,..., Ty} to find
those whose intersection is empty.

12

There are various ways to make the enumeration more efficient. Barnett
[2] describes a method that applies when each simple support function as-
signs probability to a singleton. We will present a method valid for all simple
support functions that is based on a set covering model. Let us say that an
intersection of the sets in a subset S of {Ty,..., T} is minimally empty if
the intersection of the sets in no proper subset of S is empty. Then we need
only enumerate minimally empty intersections when computing m(C') with
formula (18). But some care must be taken in doing the computation.

A set covering problem has the form,

Az > e (21)
v, €{0,1}, j=1,....N

where A is a 0-1 matrix and e is a vector of 1’s. The columns of A correspond
to sets and the rows to elements the sets collectively contain. We set

1 if set 7 contains element 1,
a;; = .
Y 0 otherwise.

Thus a vector x solves (21) if the union of the sets j for which z; = 1
contains all the elements. Such an z is called a cover. We say z is a prime
cover if it properly contains no cover; that is, if no cover y satisfies y < z
with y; # z; for some j.

Let us associate the sets Ty,..., T} with the columns of A and the
elements in their union with the rows of A, where T is the complement of T'.
It is clear that if # is a cover, then the intersection of the sets 7} such that
x; = 1 is empty. Furthermore, if z is a prime cover, then the intersection
is minimally empty. It therefore suffices to generate all the prime covers
for (21) and to use them in an appropriate calculation to obtain m(C'). We
will first show how to generate the prime covers and then how to do the
calculation.

We can obtain an initial cover simply by finding a feasible solution z' of
(21), such as 2! = (1,1,...,1). We can reduce z' to a prime cover y* by re-
moving sets from the cover, one by one, until no further sets can be removed
without producing a noncover. Suppose, then, that we have generated dis-
tinct prime covers y',...,y". To obtain a (¢ + 1)-st distinct prime cover,
we add the following constraints to (21) and use an integer programming
algorithm to find a feasible solution z'*! of the resulting system:

ijgeTyT, T=1,...,1, (22)

A
y;=1

13

where € is a vector of ones. Note that each constraint in (22) excludes any
cover that contains a cover already enumerated. We next reduce z!t! to
a prime cover y't1, which clearly must be distinct from the prime covers
already generated. The process continues until there is no feasible solution
of (21) with the additional constraints (22).

Now that we know how to generate all the prime covers, we can illustrate
the calculation of m(C'). Let us suppose that sets S1,...,.94 contain €' and
that a remaining set S5 does not. Thus the formula for m(C') is,

Z m1(Ul)mg(Ug)mg(Ug)m4(U4)m5(®). (23)
U, e {Sl, @}

Uy € {54, @}
Let us also suppose that there are three prime covers,

ENEY (24)
{72773}
{T4}
Consider first the terms of (23) that correspond to the prime cover
{T1, T3} (i.e., the terms containing both my(.S1) and mz(S3)):

Z m1(Sl)mg(Sg)mg(U3)m4(U4)m5(G)). (25)
Us € {53, @}
Uy € {54, @}

Since each m; is a simple support function, we have m;(.5;) + m;(©) = 1 for
each 7, and (25) can be simplified to

ml(Sl)mg(Sg)m5(®). (26)

Consider next the terms of (24) that correspond to the prime cover

{TQ,T:),}.

Z ml(Ul)mg(Sg)mg(Sg)m4(U4)m5(®).
U, € {51,6}
U, € {54,(9}

14

Some of these terms, namely those containing mq(57), have already been
accounted for in (26). The sum of the remaining terms simplifies to,

m1(®)m2(52)m3(53)m5(®) (27)
By a similar process we remove redundant terms from the summation

Z m1(U1)mg(Ug)mg(Ug)m4(S4)m5(®).
Uy € {51,6}
Uy € {SQ,@}
Us € {53, @}

that corresponds to the prime cover {T4}. After removing redundancies, we
obtain the sum of three terms:

ml(Sl)mg(G)m4(S4)m5(®) (28)
my(©)m2(®)m4(54)m5(®) (30)

m(C') is now equal to the sum of (26)-(30). A precise statement of this
algorithm will appear in [8].

References

[1] Andersen, K. A., and J. N. Hooker, Bayesian logic, to appear in Deci-
ston Support Systems.

[2] Barnett, J. A., Computational methods for a mathematical theory of
evidence, Information Sciences Institute, University of Southern Cali-
fornia (not dated).

[3] Boole, G., An Investigation of the Laws of Thought, on which are
Founded the Mathematical Theories of Logic and Probabilities. Dover
Publications (New York, 1951). Original work published 1854.

[4] Boole, G., Studies in Logic and Probability, ed. by R. Rhees, Watts and
Co (London) and Open Court Publishing Company (La Salle, Illinois,
1952).

[5] Boros, E., P. L. Hammer and J. N. Hooker, Boolean regression, working
paper 1991-30, Graduate School of Industrial Administration, Carnegie
Mellon University, Pittsburgh, PA 15213 USA, 1991.

15

[6]

Boros, E., P. L. Hammer, and J. N. Hooker, Predicting cause-effect rela-
tionships from incomplete discrete observations, working paper 1991-22,
Graduate School of Industrial Administration, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213 USA, 1991.

Brun, T., Structure probabiliste en logique des propositions, Memoire
d’Ingénieur, Ecole des Hautes Fitudes Commerciales, Montréal, Canada

(1988).

Chandru, V., and J. N. Hooker, Optimization Methods for Logical In-
ference, to be published by Wiley, 1992.

Chen, S. 5., Some extensions of probabilistic logic, in Uncertainty in
Artificial Intelligence 2, ed. J. F. Lemmer and L. N. Kanal, North-
Holland (1988).

Dubois, D., and H. Prade, A tentative comparison of numerical approx-
imate reasoning methodologies, International Journal Man-Machine
Studies 27 (1987) 149-183.

Dempster, A. P., Upper and lower probabilities induced by a multival-
ued mapping, Annals of Mathematical Statistics bf 38 (1967) 325-339.

Dempster, A. P., A generalization of Bayesian inference, Journal of the
Royal Statistical Society (Series B) 30 (1968) 205-247.

Dubois, D., and H. Prade, A tentative comparison of numerical approx-
imate reasoning methodologies, International Journal Man-Machine
Studies 27 (1987) 149-183.

Georgakopolous, G., D. Kavvadias and C. H. Papadimitriou, Proba-
bilistic satisfiability, Journal of Complexity 4 (1988) 1-11.

Gorden, J., and E. H. Shortliffe, The Dempster-Shafer theory of evi-
dence, in B. G. Buchanan and E. H. Shortliffe, eds., Rule-Based Fxpert
Systems: The MYCIN Fzperiments of the Stanford Heuristic Program-
ming Project, Addison-Wesley (Reading, MA, 1984).

Grosof, B. N., An inequality paradigm for probabilistic reasoning, in
Uncertainty in Artificial Intelligence 1, ed. J. F. Lemmer and L. N.
Kanal, North-Holland (1986).

16

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[27]

Grosof, B. N., Non-monotonicity in probabilistic knowledge, in Uncer-
tainty in Artificial Intelligence 2, ed. J. F. Lemmer and L. N. Kanal,
North-Holland (1986).

Hailperin, T., Boole’s Logic and Probability, Studies in Logic and the
Foundations of Mathematics v. 85, North-Holland (1976).

Hailperin, T., Probability logic, Notre Dame Journal of Formal Logic
5 (1984) 198-212.

Hailperin, T., Boole’s Logic and Probability, Second Edition, Studies in
Logic and the Foundations of Mathematics v. 85, North-Holland (1986).

Hooker, J. N., A mathematical programming model for probabilistic
logic, working paper 05-88-89, Graduate School of Industrial Adminis-
tration, Carnegie Mellon University, Pittsburgh, PA 15213 (July 1988).

Jaumard, B., P. Hansen and M. P. Aragad, Column generation methods
for probablhstlc logic, mauscript, GERAD, Ecole des Hautes Etudes
Commerciales, 5255 avenue Decelles, Montrel QC Canada H3T 1V6
(December 1989).

Kamath, A. P., N. K. Karmarkar, K. G. Ramakrishnan, M. G. C.
Resende, A continuous approach to inductive inference, Mathemati-
cal Sciences Research Center, AT& T Bell Laboratories, Murray Hill,
NJ 07974 USA.

Kavvadias, D., and C. H. Papadimitriou, A linear programming ap-
proach to reasoning about probabilities, to appear in Annals of Math-
ematics and Artificial Intelligence.

Lauritzen, S. L., and D. J. Spiegelhalter, Local computations with prob-
abilities on graphical structures and their application to expert systems,
Journal of the Royal Statistical Society B 50 (1988) 157-224.

Lemmer, J. F., and S. W. Barth, Efficient minimum information up-
dating for Bayesian inferencing in expert systems, Proceedings of the
National Conference on Artificial Intelligence, Pittsburgh, PA, 1982.
Morgan Kaufmann (Los Altos, CA, 1982) 424-427.

Loveland, D. W., Automated Theorem Proving: A Logical Basis, North-
Holland (1978).

17

[28]

[29]

[30]

[31]

[32]

[33]

[36]

[37]

McLeish, M., Probabilistic logic: some comments and possible use for

nonmonotonic reasoning, in Uncertainty in Artificial Intelligence 2, ed.
J. F. Lemmer and L. N. Kanal, North-Holland (1986).

McLeish, M., Nilsson’s probabilistic entailment extended to Dempster-
Shafer theory, in Uncertainty in Artificial Intelligence 3 (1989) 23-34.

Nilsson, N. J., Probabilistic logic, Artificial Intelligence 28 (1986) 71-
87.

Paass, G., Probabilistic logic, in Non-standard Logics for Automated
Reasoning, ed. P. Smets em et al., Academic Press (New York, 1988)
213-251.

Pearl, J., Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference, Morgan Kaufmann (San Mateo, California, 1988).

Shachter, R. D., Evaluating influence diagrams, Operations Research
34 (1986) 871-82.

Shafer, G., A Mathematical Theory of Fvidence, Princeton University
Press, 1976.

Trantaphyllou, E.; A. L. Soyster and S. R. T. Kumara, Generating
logical expressions from positive and negative examples via a branch-
and-bound approach, manuscript, Industrial and Systems Engineering,
Pennsylvania State University, University Park, PA 16802 USA.

Ursic, S., Generalizing fuzzy logic probabilistic inferences, in J. F. Lem-
mer and L. N. Kanal, eds., Uncertainty in Artificial Intelligence, North-
Holland (Amsterdam, 1988) 337-364.

Wise, B. P., and M. Henrion, A framework for comparing uncertain
inference systems to probability, Proceedings of Workshop on Uncer-
tainty and Probability in Artificial Intelligence, AAAI (Los Angeles,
1985). (xx)

18

