
Mixed Logical�Linear Programming �

J� N� Hooker

Graduate School of Industrial Administration

Carnegie Mellon University� Pittsburgh� PA ����� USA

M� A� Osorio

School of Computer Science

University of Puebla� Puebla� M�exico ����	

Revised June ����

Abstract

Mixed logical
linear programming �MLLP� is an extension of mixed integer
linear pro
gramming �MILP�� It can represents the discrete elements of a problem with logical propo
sitions and provides a more natural modeling framework than MILP� It can also have
computational advantages� partly because it eliminates integer variables when they serve
no purpose� provides alternatives to the traditional continuous relaxation� and applies logic
processing algorithms� This paper surveys previous work and attempts to organize ideas
associated with MLLP� some old and some new� into a coherent framework� It articu
lates potential advantages of MLLP�s wider choice of modeling and solution options and
illustrates some of them with computational experiments�

� Introduction

Mixed logical�linear programming �MLLP� is a general approach to formulating and solving
optimization problems that have both discrete and continuous elements� It extends mixed in�
teger�linear programming �MILP� by introducing logic�based modeling and solution options�
MLLP in no way rejects integer programming and in fact incorporates all of its techniques�
Its expanded modeling framework may� however� allow more natural or succinct formulations
without sacri�cing solution e	ciency� Its larger repertory of solution techniques may accel�
erate solution or even solve problems that are intractable for MILP alone� These techniques
include branching strategies� relaxations and logic processing algorithms that are not ordinarily
associated with integer programming�

Mixed discrete�continuous problems are traditionally conceived as continuous problems in
which some of the variables are restricted to be integers� MLLP permits one to take a di
erent
view� Rather than embed the discrete aspects of the problem within a linear programming
model� which may not be the most natural approach� one can represent them with logical
formulas� MLLP therefore has the option of dispensing with integer variables� Rather than

�This research is partially supported by the U�S� O�ce of Naval Research Grant N�������	����	�
 and by
the Engineering Design Research Center at Carnegie Mellon University� an Engineering Research Center of the
National Science Foundation �USA� under grant EEC���������

�

require that a feasible solution satisfy a �xed set of inequalities� an MLLP model can contain
several alternative sets of inequalities� The logical formulas govern which sets must be satis�ed
by a feasible solution�

��� General Form of an MLLP

An introductory discussion is more meaningful if MLLP is given a brief mathematical descrip�
tion� An MLLP model has the form

min cx
s�t� pj�y� h� � �Ajx � aj�� j � J qi�y� h�� i � I�

���

The constraint set has a logical part �on the right�hand side of the bar� and a continuous part
�on the left��

The logical part consists of formulas qi�y� h� that involve atomic propositions y � �y�� � � � � yn��
which are either true or false� Such a formula might be q��y� h� � y� � y�� which says that y�
or y� �or both� must be true� There may also be some variables h � �h�� � � � � hm� that take
several discrete values� Thus qi�y� h� could be �y� � y�� � �h� �� h��� where � means and�� In
general the formulas pj and qi may take any form that is convenient for the purpose at hand�
provided that their truth value is a function of the truth values of the propositions y and the
values of the discrete variables h�

The continuous part associates logical formulas pj�y� h� with systems Ajx � aj of linear
inequalities� A system Ajx � aj is enforced when pj�y� h� is true� So the constraints of the
following problem in e
ect require x to satisfy A�x � a� or A�x � a� �or both��

min cx
s�t� y� � �A�x � a�� y� � y�

y� � �A�x � a��

In general� �x� y� h� is feasible if �y� h� makes all the logical formulas qi�y� h� true� and x satis�es
the linear systems corresponding to the formulas pj�y� h� that �y� h� makes true�

��� Solution of an MLLP

The problem ��� can be solved by branching on the truth values of the yj�s and the discrete
values of the hj �s� At each node of the search tree� one solves a linear programming problem
�LP� containing the constraints that correspond to true pj�s� plus any inequalities added to
strengthen the relaxation� A key element of MLLP is to apply a logical inference algorithm
to the logical formulas before solving the LP� This may generate valid constraints �constraints
satis�ed by all feasible solutions� in logical form� and in particular it may �x some additional
yj�s and hj �s�

An MLLP can therefore be solved in a manner that is analogous to the traditional branch�
and�cut algorithms used in MILP� There are two primary di
erences� however� First� as one
descends into the tree� the LP�s solved at the nodes are not necessarily de�ned by �xing
certain variables in them� They may also be de�ned by adding new constraints corresponding
to formulas that �xed variables make true� or by some combination of the two methods�

A second di
erence is that at each node of the search tree� the logical part of the constraint
set can be processed with its own set of algorithms� in order to generate additional constraints

�

or check for feasibility� These include many of the logic programming and constraint satis�
faction techniques that appear in the computer science and arti�cial intelligence literatures
�discussed below�� MLLP therefore provides one means of uniting mathematical programming
with methods have been developed more or less independently in other �elds�

��� Motivation for MLLP

The primary rationale for MLLP is that it brings to mathematical programming greater mod�
eling power and a wider range of solution options� But MLLP also grows out of a rethinking
of the role of integer variables�

Traditionally integer variables have in most cases served a modeling function and a relax�
ation function simultaneously� It is proposed here that these functions be separated� When
integer variables provide the most natural modeling device for certain constraints� e�g� knap�
sack constraints� they should be used to formulate those constraints� When a certain portion
of the constraint set has a useful continuous relaxation when formulated with integer variables�
they should be included in that portion of the problem in order to obtain the relaxation�

In other cases� however� inequalities may not provide the most convenient way to formulate
the discrete aspect of the problem� Also their continuous relaxation may be weak� or its
e
ect may be duplicated by adding a few valid inequalities that involve only the original
continuous variables� Furthermore� it will be seen that integer variables may have fractional
values in the continuous relaxation even when a feasible solution of the original problem has
been found� Thus if one branches on integer variables with fractional values� branching may
continue unnecessarily�

In such cases� integer modeling may not justify the overhead it incurs� The inclusion
of integer variables enlarges the linear programming problems that must be solved at nodes
of the search tree� This can be particularly costly when there are many discrete variables�
because it may be possible to process the discrete elements of the constraint set much more
rapidly in logical form� A simple constraint propagation algorithm� for example� may have
the same ability to detect infeasibility in logical constraints as solving the linear relaxation of
their inequality formulation� But its speed may be two or three orders of magnitude greater�
because it need not carry along the data structures and machinery of a linear solver� Other
types of logic processing may obtain valid constraints or �x variables in ways that are not
available in MILP�

The primary drawback of MLLP is that it requires more expertise on the part of the user�
It provides more options but presupposes that the user knows how to choose the best one�
In particular� if integer variables are not used� then the traditional continuous relaxation is
unavailable� and it may be necessary to concoct an alternate relaxation�

��� Aim of this Paper

The aim here is to explore MLLP as a general and practical approach to solving problems
with both discrete and continuous elements� Previous work is drawn together� and an attempt
is made to order ideas associated with MLLP� some old and some new� in a coherent frame�
work� The potential advantages of an expanded repertory of modeling and solution options
are articulated� and several are illustrated by computational experiments� The logic processing
component of MLLP is explored only deeply enough to convey the �avor of the ideas� but some
expository literature is cited�

�

Because MLLP is a general approach to continuous�discrete problem solving� a thorough�
going experimental evaluation would be a massive undertaking� and it is not attempted here�
The task would be further complicated� both practically and conceptually� by the fact that
MLLP is not a single approach to problem solving but a framework within which several ap�
proaches can be used� As in MILP� its e
ectiveness depends on how carefully one designs
relaxations and branching schemes to �t the problem at hand� The intent here is to provide a
broader range of options and to show by example that at least some of them can be superior
to the conventional ones�

The examples include chemical engineering network synthesis problems� warehouse location
problems� �ow shop scheduling problems� and the �progressive party problem�� which is a
scheduling problem posed by a yacht party� The last problem is rather frivolous but has
attracted a good deal of attention and illustrates several ideas associated with MLLP�

Experience with engineering design problems �e�g�� ���� ���� suggests that MLLP can be
usefully extended to mixed logical�nonlinear programming �MLNLP�� This possibility is not
pursued here�

��� Previous Work

A logic�based approach to operations research was discussed as early as ���� in Hammer and
Rudeanu�s treatise on boolean methods ����� Granot and Hammer ���� suggested in ���� the
possibility of using boolean methods for integer programming�

The MLLP approach described here was perhaps �rst clearly articulated by Jeroslow ����
���� who was primarily interested in issues of representability� He viewed discrete variables as
arti�ces for representing a feasible subset of continuous space� which in the case of an MLLP or
MILP model is a union of �nitely many polyhedra� From this it follows that MLLP and MILP
models are essentially disjunctive programming models� Building on joint work with Lowe �����
Jeroslow proved that an MILP model can represent a union of �nitely many polyhedra if and
only if they have the same recession cone�

In the meantime� Williams ���� ��� ��� ���� Blair ��� ��� and Hooker ���� ��� ��� ��� ���
explored connections between logic and optimization� Beaumont ��� undertook what is appar�
ently the �rst systematic study of MLLP as a solution technique for optimization problems�
Drawing on the seminal work of Balas in disjunctive programming ��� �� ��� he described families
of valid inequalities that can be used to create relaxations of disjunctive constraints�

More recently� Hooker argued in ���� that a logic�based approach to optimization� includ�
ing MLLP� can exploit problem structure in ways that are parallel to traditional polyhedral
techniques� Wilson ���� ��� ��� studied logic�based formulations�

It is crucial to demonstrate the practical value of MLLP in a problem domain� This was
accomplished largely by Grossmann in the area of chemical process design in a series of papers
coauthored with Hooker� Turkay� Yan and particularly Raman ���� ��� ��� ��� ��� ���� These
papers developed some of the key MLLP concepts discussed here� Bollapragada� Ghattas and
Hooker also obtained encouraging results in structural design �����

��� Other Approaches

It is instructive to contrast MLLP with other approaches that combine discrete and continuous
elements�

�

The mixed logical�linear programming approach of McAloon and Tretko
 ���� ���� which
is implemented in the system �LP� combines procedural with declarative programming� The
discrete element is represented by a user�supplied script that controls the formulation and
solution of LP models that represent the continuous element� This contrasts with the approach
to MLLP described here� in which both elements are modeled in a declarative fashion� The
two approaches are not incompatible� however� and �LP could in fact provide a framework in
which to implement the MLLP techniques presented here�

Even pure ��� optimization problems have a continuous element in the sense that the
constraints are represented by linear inequalities� and it is not obvious how to apply logic�
based methods to them� An approach devised by Barth ��� is to derive formulas from the
inequalities that can be processed with logical inference methods� Barth�s techniques can
enhance the logical processing phase of MLLP algorithms�

The work of McAloon� Tretko
 and Barth is in�uenced by several streams of research that
have historically focused on discrete problems but are experimenting with ways to incorporate
continuous variables� Logic programming models� introduced by Colmerauer ���� and Kowalski
����� allow one to formulate a problem in a subset of �rst�order logic �Horn clause logic�� Recent
versions of the logic programming language PROLOG ���� ���� such as PROLOG III ���� �and
soon IV�� incorporate linear programming�

The integration of constraint solving with logic programming is formalized in the constraint
logic programming �CLP� scheme of Ja
ar and Lassez ����� It generalizes the �uni�cation� step
of logical inference methods to encompass constraint solving in general �����

CLP provides a framework for integrating constraint satisfaction methods developed in the
arti�cial intelligence community �and elsewhere� with logic programming ideas ���� ��� ����
A number of systems along this line have been developed in addition to Prolog III� including
CLP�R� ����� CAL ���� CHIP ���� ���� the ILOG solver ����� and other packages ���� ��� ����
Linear programming has a place in several of these systems� Unlike MLLP� these methods
rely to some extent on procedural modeling� They also lack MLLP�s emphasis on exploiting
problem structure in the generation of valid constraints and relaxations� although the constraint
programming literature has shown some interest in exploiting structure �e�g�� ������

��� Outline of the Paper

The remainder of the paper begins with a few simple modeling examples �Section ��� Two
long sections �� and �� respectively discuss relaxations and logic processing algorithms� Sec�
tion � provides a generic algorithm for solving MLLP�s� and Section � presents models and
computational results for four sets of problems� The concluding section attempts to assemble
guidelines for modeling and solving problems in an MLLP framework�

Aside from its survey and development of MLLP generally� the speci�c contributions of
this paper include necessary and su	cient conditions for whether an elementary inequality
for a disjunction is supporting �Section ����� necessary and su	cient conditions for integrality
of a ��� disjunctive representation �Section ����� a de�nition of optimal separating inequali�
ties �Section ����� a completeness proof for multivalent resolution �Section ����� and a unit
resolution algorithm for multivalent clauses �Section �����

�

� Modeling Examples

A few simple examples will illustrate modeling in MLLP�

��� Fixed Charges and Semicontinuous Variables

A cost function with a �xed charge is generally given a big�M formulation in integer program�
ming�

min cx� dy
s�t� x �My

x � �
y � f�� �g�

where c is the variable cost and d the �xed cost� �Other constraints and objective function
coe	cients would normally be present�� An MLLP model is�

min cx� z
s�t� y � �z � d� y � y�

y� � �x � ��
x� z � ��

The proposition y � y� states that either the �xed cost is incurred or it is not� The model can
also be written by replacing y� with �y �not�y� and deleting y � y��

A semicontinuous variable x is one whose value must lie in one of the intervals �at� bt� for
t � �� � � � � T � One MILP representation is�

atyt � x � btyt� t � �� � � � � T
TX
t��

yt � �

yt � f�� �g� t � �� � � � � T

���

An MLLP representation is

yt � �at � x � bt�
T�
t��

yt

��� Quadratic Assignment Problem

The quadratic assignment problem is typically formulated as an MILP model in the following
way�

min
X
ikjl

vijck�wijk�

s�t�
X
i

yik � �� all kX
k

yik � �� all i

zijk� � yik � yj� 	 �� all i� j� k� �
yik� wijk� � f�� �g� all i� j� k� ��

�

Here vij is the volume of tra	c between facilities i and j� and ck� is the unit cost of tra	c
between locations k and �� yik � � if facility i is assigned to location k� and zijk� � � if facilities
i� j are respectively assigned to locations k� ��

An MLLP model can be written with fewer variables�

min
X
ij

zij

s�t� �yik � yj��� �zij � vijck��� all i� j� k� �
X
i

yik � �� all k

zij � �� all i� j�
X
k

yik � �� all i

���

The constraints on the right are intended to be read as logical constraints� The �rst constraint�
for example� says that exactly one of the propositions y�k� � � � � ynk is true� for each k� The
symbol � on the left means and��

An alternate model uses multivalued discrete variables hi to indicate which location is
assigned to facility i�

min
X
ij

zij

s�t� �hi � k � hj � ��� �zij � vijck��� all i� j� k� � alldi
�h�� � � � � hn�
zij � �� all i� j hi � f�� � � � � ng� all i�

The �alldi
� constraint on the right states that h�� � � � � hn must all take distinct values� All�
di
erent constraints are widely used in constraint programming�

� Relaxations

The linear programming problem solved at each node of an MLLP search tree provides a lower
bound on the optimal value at that node� However� the LP contains only those constraints that
are enforced by true propositions� Many logical constraints may therefore be unrepresented in
the LP relaxation� which may therefore provide a weak bound� When possible it is important
to augment the relaxation with additional valid inequalities that represent logical formulas�

This section presents some techniques for obtaining linear relaxations of logical formulas
by generating valid inequalities in the continuous variables� We will consider only disjunctive
formulas in which each disjunct is an atomic proposition that enforces a linear system�

yj � �Ajx � aj� y� � � � � � ym� ���

An important research question is how relaxations may be written for broader classes of formu�
las� particularly formulas that contain multivalued discrete variables hj � This matter is being
investigated�

Some of the valid inequalities that will be presented for disjunctions mimic the e
ect of the
traditional continuous relaxation of a ��� model� The strength and nature of the traditional
relaxation is remarkably ill understood� given the degree to which it is used� An analysis of it
will therefore comprise an important part of the discussion�

�

x�
��

x�

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure �� Convex hull of the feasible set of a scheduling disjunction�

��� The Convex Hull

The task at hand is to generate valid inequalities for ���� which can be written�
t�T

Atx � at� ���

The feasible set is a union of jT j polyhedra� and a description of the convex hull of this union
is the best possible linear relaxation of the formula�

In some cases the convex hull is so large that even the best possible relaxation is poor or
useless� If for example x is bounded � � x � m� it is not uncommon for the convex hull of ���
to �ll most or all of the box described by � � x � m� A notorious example of this arises in
scheduling problems� If operations � and � begin at times x� and x� and last � minutes� one
imposes the disjunctive constraint

�x� � x� � �� � �x� � x� � ��

to ensure that one occurs after the other� The upper bounds m represent the latest time
at which an operation could be scheduled and therefore may be much larger than �� The
dashed line in Fig� � encloses the convex hull when m � ���� ���� In this case the best possible
relaxation is given by x� � x� � �� x� � x� � �� and � � xj � ��� This is not much di
erent
than � � xj � �� and is probably useless in practice�

��� Disjunctive and Dual Inequalities

A relaxation of ��� can be obtained by generating valid inequalities that partially or completely
describe the convex hull� Balas ��� characterized valid inequalities for ��� as follows� First� note
that bx � � is a valid inequality for a feasible disjunct Atx � at if and only if it is dominated
by a nonnegative linear combination �or surrogate� of Atx � at� A dominating surrogate can
be written uAx � ua� where b � uA� � � ua and u � �� But bx � � is a valid inequality for

�

the disjunction as a whole if it is valid for each disjunct� i�e�� for each disjunct a surrogate can
be found that dominates bx � ��

Theorem � �Balas� The inequality bx � � is valid for ��� if any only if for each feasible

system Atx � at there is a ut � � such that b � utAt and � � utat�

Given any set of surrogates utAtx � utat� if x � � one can immediately write the valid
disjunctive inequality �

max
t�T

futAtg

�
x � min

t�T
futatg ���

for ���� where the maximum is componentwise� Theorem � clearly implies that if x � �� every
valid inequality is dominated by a disjunctive inequality ���� The strength and usefulness
of a disjunctive inequality ��� depends radically on the choice of surrogates� One could in
principle generate disjunctive inequalities to de�ne every facet of the convex hull� but this is
often impractical� The task of obtaining a good relaxation for ��� is in essence the task of
choosing multipliers ut judiciously�

One initially attractive choice for ut is given by the solution of a dual problem� Each
surrogate should ideally give the best possible bound on the objective function cx� That is�
ut should be chosen so that the minimum value of cx subject to utAtx � utat is maximized�
The desired ut is easily seen to be the optimal solution of the LP dual of minfcx j Atx � atg�
where ut is the vector of dual variables� �To put it di
erently� the surrogate dual for linear
programming is identical to the LP dual ������

The di	culty with this approach is that because Atx � at is only a small part of the original
constraint set� it may have no coupling with the objective function� That is� the variables xj
that have nonzero coe	cients in cx may have zero coe	cients in Atx � at� and vice�versa�
This means that cx provides no information to guide the choice of ut� a situation that is in
fact common in practice�

A possible remedy is to include more constraints in the problem whose dual is solved� so
as to capture the link between cx and Atx � at� This can be done as follows� At any node
of the search tree a system Ax � a of certain linear constraints are enforced by true formulas
pi�y� h�� If Ax � a is included in each term of the disjunction ���� it becomes

�
t�T

�
Atx � at

Ax � a

�

For each t one solves the dual of

min cx
s�t� Atx � at �ut�

Ax � a �u�
���

where �ut� u� are the dual variables as shown� An optimal solution of the dual supplies a
reasonable set of multipliers ut for the disjunctive inequality ����

Unfortunately this approach appears to be impractical� because ��� is generally a large LP�
Computational results reported in Section ��� suggest that it is very time consuming to solve
the dual of ��� for each disjunct� The remaining discussion will therefore focus on much faster
mechanisms for choosing e
ective multipliers ut�

�

��� Elementary Inequalities

The most common sort of disjunctive constraint ��� is one in which each disjunct is a single
inequality� �

t�T

atx � �t� ���

where it is assumed that � � x � m� Beaumont ��� showed how to generate a valid inequality
for ��� that is equivalent to the continuous relaxation of the traditional ��� formulation of ����
The latter is

atx � �t 	Mt��	 yt�� t � TX
t�T

yt � �

� � x � m
yt � f�� �g� t � T�

���

Each Mt is chosen so that �t 	Mt is a lower bound on the value of atx�

�t 	Mt �
X
j

minf�� atjgmj� ����

The bounds � � x � m are imposed to ensure that such a lower bound exists� It can be
assumed without loss of generality that Mt � �� because otherwise the inequality is vacuous
and can be dropped� Beaumont obtains a valid inequality by taking a linear combination of
the inequalities in ���� where each inequality t receives weight ��Mt� This yields an elementary

inequality for ���� �X
t�T

at

Mt

�
x �

X
t�T

�t
Mt

	 jT j� �� ����

Theorem � �Beaumont� The elementary inequality ���� is equivalent to the continuos re�

laxation of ���� That is	 the feasible set of ���� and � � x � m is equal to the projection of

the feasible set of the continuous relaxation of ��� onto the x�space�

One can also prove equivalence by applying Fourier elimination to ��� in order to eliminate y�
It is easy to show that ���� and � � x � m are the resulting inequalities�

A similar technique obtains elementary inequalities for all logical formulas that are express�
ible as knapsack constraints�

dy � 	
yt � �atx � �t�� t � T
� � x � m�

����

where d � �� The ��� representation of ���� is

atx � �t 	Mt��	 yt�� t � T
� � x � m
dy � 	
yt � f�� �g� t � T�

����

A linear combination of the inequalities� using weights dt�Mt� yields the elementary inequality��X
t�T

at
dt
Mt

�
x �

X
t�T

�t
dt
Mt

	
X
t�T

dt � 	� ����

��

x�

x�

HHHHHHHHHHHHHHHHHHH

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

�a�

�b�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

Figure �� Illustration of a supporting elementary inequality �a� and a nonsupporting elementary
inequality �b��

This is in general weaker than the continuous relaxation of ����� however� If
P

t dt � 	� for
example� ���� forces all the disjuncts to hold� where ���� only forces a linear combination of
them to hold�

In many cases a better lower bound than that in ���� can be obtained for atx� resulting in
a stronger inequality� One method is to minimize atx subject to each of the other disjuncts
and � � x � m and pick the smallest of the minimum values� Mt is therefore chosen so that

�t 	Mt � min
t� ��t

n
min
x
fatx j at

�

x � �t� � � � x � mg
o
� ����

The computation involved is negligible�
Consider for example the following constraint set� whose feasible set is the shaded area in

Fig� ��
�x� � �x� � �� � ��x� � x� � ��
� � xj � ��

The ��� formulation is
x� � �x� � �	M���	 y��
�x� � x� � �	M���	 y��
y� � y� � �
� � xj � �� yj � f�� �g

Beaumont puts �M��M�� � ��� �� which results in the valid inequality �
�x� � �

�x� � �� By
contrast� ���� puts �M��M�� � ��� ��� which yields the stronger inequality x� � x� � �� This
is a supporting inequality in the sense that it de�nes a supporting hyperplane for the feasible
set�

Even when ���� is used to compute Mt� the resulting inequality may fail to be supporting�
Consider the constraints �Fig� ���

�	x� � �x� � �� � ��x� 	 x� � ��
� � xj � ��

��

x�

x�

��
��

��
��

��
��

��
��

��
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�b�

�a�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�

Figure �� Illustration of an elementary inequality �a� and a strengthened elementary inequality
�b��

���� sets �M��M�� � ��� ��� which results in the useless inequality x� � x� � �� The inequality
can obviously be strengthened to x� � x� � ��

When the inequalities atx � �t in ���� are replaced by systems of inequalities Atx � at�
many elementary inequalities are required to achieve the e
ect of the traditional relaxation�
Let each system Atx � at consist of inequalities Atix � ati for i � It� The ��� formulation is

Atx � at 	M t��	 yt�� t � T
� � x � m
dy � 	
yt � f�� �g� t � T�

����

Here M t is an array such that for each i � It� a
t
i 	M t

i is a lower bound on Atix� Repeated
applications of Fourier elimination reveal that the projection of the feasible set of ���� onto
the x�space is described by the set of inequalities of the form��X

t�T

Atit
dt
M t

it

�
x �

X
t�T

atit
dt
M t

it

	
X
t�T

dt � 	�

for all possible vectors �i�� � � � � ijT j� � I�
 � � �
 IjT j�
Elementary inequalities may therefore be impractical when the yt�s correspond to systems

of inequalities� In such cases one can use optimal separating inequalities �described below� or
the traditional relaxation�

��� Supporting Elementary Inequalities

The example of Fig� � shows that an elementary inequality can fail to be supporting� In such
cases it is a simple matter to increase its right�hand side until it supports the feasible set� thus
obtaining a strengthened elementary inequality� In fact there is a closed�form formula for the

��

x�

x�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�a�

�b�

J
J
J
J
J
J
J
J
J
J
J
J
J

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Figure �� A supporting elementary inequality �a� and a facet�de
ning inequality �b��

best possible right�hand side� The formula allows one to check easily whether a given elemen�
tary inequality is supporting� and when it is not� to improve upon the traditional continuous
relaxation the inequality represents�

Figures � and � may suggest that a disjunction a�x � ���a
�x � �� produces a supporting

elementary inequality if and only if the vectors a�� a� subtend an acute angle� and that a similar
relationship might be discovered for more than two disjuncts� A third example reveals that
the situation is more complicated than this� Figure � shows the feasible set for

�	�x� � x� � 	�� � �	x� � 	��
� � xj � �

The elementary inequality �a� is �x� ��x� � ��� which is supporting even though �	�� �� and
���	�� subtend an obtuse angle�

A more adequate analysis goes as follows� Let bx � � be any valid inequality for the
disjunction ���� such as an elementary inequality� such that the inequality de�nes a supporting
hyperplane of the feasible set of ���� Then � is the smallest of the minimum values obtained
by minimizing bx subject to each of the disjuncts atx � �t� That is�

� � min
t�T

�t� ����

where
�t � min

n
bx j atx � �t� � � x � m

o
�

The computation of �t is simpli�ed if b � �� because in this case the upper bounds x � m can
be ignored� To this end one can introduce the change of variable�

 xj �

�
xj if bj � �
mj 	 xj otherwise

��

The strengthened elementary inequality in terms of x� namely b x � �� can now be computed�
where bj � jbjj� The right�hand side of bx � � can then be recovered from ���� by setting

�t � �t �
X
j

bj � �

mjbj� ����

It remains to compute
 �t � min

n
 bx j at x � �� x � �

o
� ����

where

 atj �

�
atj if btj � �

	atj otherwise
����

and
 �t � �t 	

X
j

bj � �

mja
t
j� ����

Because b � �� LP duality applied to ���� yields that

 �t � min
j

�atj � �

�
 bj
 atj

�
maxf �t� �g� ����

This proves�

Theorem � A valid inequality bx � �� for the disjunction ��� is supporting if and only if

�� � �	 where � is de
ned by ����	 ���� and ���

��� Integral 	
� Representations

The traditional continuous relaxation of a disjunctive constraint may permit fractional solu�
tions even when the original disjunction is satis�ed� This means that a traditional branch�
and�bound method can keep branching even when a feasible solution has been discovered� It is
therefore best to check disjunctions �as well as other logical constraints� directly for feasibility�
as done in MLLP�

The ��� formulation of the disjunction ��� is the following�

Atx � at 	Mt��	 yt�� t � T
� � x � mX
t�T

yt � �

yt � f�� �g� t � T�

����

where Mt satis�es�

at 	Mt � min
n
Atx j � � x � m

o
� ����

and e � ��� � � � � ��� The claim is that when x is �xed to some value !x� an extreme point solution
y � !y of ���� can be nonintegral even when !x satis�es ���� An example of this is presented by
a simple semicontinuous variable� x � f�g � �s�� s��� or

�	x � �� � �x � s��
� � x � s��

��

x

y

Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q
Q

!xs� s�

�
�!x� !y�

Figure �� The line segment from �!x� �� to �!x� !y� is the polytope described by the continuous

relaxation of the ��� representation of a semicontinuous variable� �!x� !y� is a fractional extreme

point of the polytope even though !x is a feasible value�

The continuous relaxation of ���� is

	x � 	s���	 y�
x � s� 	 s�y
� � x � s�
� � y � ��

����

If x is �xed to !x and ���� is projected onto y� the result is

�	
!x

s�
� y � �	

!x

s�
� � � y � �� ����

If s� � !x � s�� !y � � 	 �x
s�

is an extreme point solution of ���� and therefore ����� and it is
nonintegral whenever s�
 !x
 s�� So ���� can have extreme point solutions with fractional
y even when !x � �s�� s��� and even though ���� is the best possible �convex hull� relaxation of
����� The extreme point solutions for !x � �s�� s�� are guaranteed to have integral y only when
s� � s�� i�e�� when x is essentially a rescaled binary variable�

The idea can be de�ned in general as follows� Let P�x be the set of points y that satisfy the
continuous relaxation of ���� when x is �xed to !x� Let the continuous relaxation of ���� be
integral if for every �!x� !y� satisfying ���� such that !y is an extreme point of P�x� !y is integral�

The following characterizes integral relaxations� A disjunct of ��� is redundant when its
feasible set lies within that of another disjunct� Obviously� redundant disjuncts can be dropped
without e
ect�

Theorem � Suppose that the disjunction ��� contains no redundant disjuncts	 that � � x �
Mt	 and that Mt satis
es ��� for t � T � For t� t� � T with t �� t� de
ne

ytt� � max
n
yt jMtyt � Atx	 at �Mt� A

t�x � at
�

� � � x � m� yt � �
o
�

Then the continuous relaxation of ��� is integral if and only if ytt� � � for every pair t� t� � T
with t �� t��

��

Proof� It is clear that ytt� can be written�

ytt� � max
n
yt j A

tx � at 	Mt��	 yt�� A
t�x � at

�

� � � x � m� yt � �
o
� ����

It is convenient to let St be the feasible set for disjunct t � T � i�e�� St � fx j Atx � at� � �
x � mg� For !x � St� de�ne

ytt��!x� � max
n
yt j A

t!x � at 	Mt��	 yt�� yt � �
o
� ����

Claim� For any !x � St� and any t �� t��

ytt��!x� � max
y
fyt j y � P�xg � ����

Proof of claim� It su	ces to show that any yt that is feasible in ���� is feasible in ����� and
vice�versa� The former is obvious� To show the latter� let yt be feasible in ����� To see that it
is feasible in ����� set yt� � �	 yt and yt�� � � for t�� �� t� t�� It is enough to show

At�� !x � at
��

	Mt����	 yt��� ����

for all t�� � T � But ���� holds for t�� � t by stipulation� It holds for t�� � t� because !x � St� �
and it holds for t�� �� t� t� by de�nition of Mt�� � This proves the claim�

Now suppose that ytt� � � for some t� t� with t �� t�� Because the disjunct t� is not redundant�
St� is nonempty� and one can choose any !x� � St� and note that ytt��!x

�� � �� Again because
disjunct t� is not redundant� one can choose !x� � St� n St and note that ytt��!x

��
 �� There
exists a convex combination !x � St� of !x� and !x� with �
 ytt��!x�
 �� so that ytt��!x� is not
integral� But ���� implies that some !y with !yt � ytt��!x� is an extreme point of P�x� It follows
that ���� is not integral�

For the converse� suppose that ytt� � � for all pairs t� t� with t �� t�� It su	ces to show
that for any !x satisfying ���� any given extreme point !y of P�x is integral� If it is supposed that
!x � St� � the following can be stated�

max fyt� j y � P�xg � �
max fyt j y � P�xg � �� t �� t��

����

The �rst is due simply to the fact that !x � St� � By the above claim� the second is equivalent
to ytt��!x� � �� which is implied by the fact ytt� � �� Now ���� implies that P�x is a line segment
of unit length extending from the origin in a positive direction along the yt� axis� Thus any
extreme point !y � P�x is integral� which means that ���� is integral� �

This specializes to disjunctions with one inequality per disjunct as follows�

Corollary � Consider a disjunction ��� with one inequality per disjunction and bounds � �
x � m� If ��� contains no redundant disjuncts	 then ��� is integral if and only if

max
n
atx j at

�

x � �t� � � � x � m
o
� �t 	Mt ����

for every t� t� � T with t �� t��

The conditions in Theorem � and Corollary � are quite strict� In fact�

��

Corollary � The continuous relaxation of ��� is integral only if the feasible sets described by
the disjuncts of ��� are disjoint�

Proof� Suppose two of the feasible sets intersect� e�g� those corresponding to disjuncts t
and t�� Then y�t �t

�� � �� which violates the condition of the theorem� �
Not even disjoint feasible sets are su	cient for integrality� as the above example shows�

Furthermore� Corollary � and ���� imply that when there are two disjuncts containing one
inequality each� ���� is integral only if the feasible sets of the disjuncts are vertices or other
faces of the box � � x � m� Corollary � implies that the faces must also be disjoint�

��� Beaumont�s Inequalities

Beaumont ��� identi�ed a class of facet�de�ning inequalities for disjunctive constraints in which
each disjunct consists of a single inequality� as in ���� They are facet�de�ning in the sense
that� under certain conditions� they de�ne facets of the convex hull of the feasible set of
���� Unfortunately� these conditions are often unsatis�ed� which limits the usefulness of the
inequalities�

Beaumont�s approach is essentially a reasonable method for choosing multipliers ut so as
to generate a disjunctive inequality ���� He �rst incorporates the bounds x � m into the
disjunction ��� to obtain �

t�T

	
	I
at

x �

	
	m
�t

� t � T�

The vector of nonnegative multipliers for each disjunct is ut � �vt� wt�� where wt corresponds
to the last inequality in the disjunct� The object is to derive an inequality bx � � that satis�es

b � wta
t 	 vt

� � wt�t 	 vtm

for all t� For a given wt �yet undetermined�� it is reasonable to make the components of b as
small as possible to get a tight constraint� So let

b � min
t

n
wta

t
o
� ����

where the minimum is taken componentwise� One can now set

vt � wta
t 	 b� t � T�

because ���� implies vt � �� To make the right�hand side of the inequality as tight as possible�
set

� � min
t�T

n
wt�t 	 vtm

o
� ����

It remains to pick values for the wt�s� Beaumont�s choice is equivalent to setting wt � Mt when
Mt is derived from the variable bounds as in ���� and at � �� Thus

wt �
�

�t 	 atm
� ����

The approach breaks down when the denominator is nonpositive� whereupon Beaumont sug�
gests letting

wt �
�

�t 	minfat� �gm
� ����

��

Theorem � �Beaumont� The inequality bx � � given by ��������� is facet�de
ning for ���
if �t 	 atm � � for all t � T �

Beaumont�s inequality can therefore be superior to a supporting elementary inequality� This is
illustrated in Fig� �� where Beaumont�s inequality is the facet�de�ning inequality �x��x� � ��

Assuming �t 	 atm � � is equivalent to assuming that the point x � m is infeasible� in
which case it makes sense to separate this point from the feasible set� However� x � m is often
feasible� as in the example of Fig� �� Here ���� puts �w�� w�� � �	�

� �	
�
	�� and one must revert

to ����� which yields the useless inequality �x� � �x� � 	��
The underlying di	culty is that Beaumont�s approach has no mechanism for detecting

which corner of the box � � x � m should be cut o
 from the feasible set�

��� Optimal Separating Inequalities

When valid inequalities are added to the linear constraint set� there is always the possibility
that most of them will never play a role in the solution process� That is� the relaxations may
provide the same bounds even of most of the inequalities are removed�

This is true of the traditional continuous relaxation of an MILP model� for example� The
relaxation is nothing other than a set of valid inequalities� most of which are generally inactive
in the solution of the relaxation�

This phenomenon can be avoided by generating only separating inequalities� which are valid
inequalities that are violated by the current solution of the inequality constraints�

It is straightforward to state a small LP problem whose solution identi�es an separating
inequality for a disjunction if and only if one exists� Thus if no separating inequality is found�
the current solution is known to lie within the convex hull of the feasible set� In this case�
branching is necessary to obtain a feasible solution� unless of course the current solution is
already feasible� The inequality is optimal in the sense that it is chosen to maximize the amount
by which the current solution violates it� Unlike Beaumont�s and elementary inequalities� this
sort of inequality can be generated when the disjuncts contain more than one inequality�

Suppose that the solution !x of the current LP is to be separated from the feasible set of
the disjunctive constraint ���� Any upper bounds x � m should be incorporated into each
disjunct of ���� Because any disjunctive inequality is de�ned by a choice of multipliers ut� an
LP model can be formulated so as to �nd a set of ut�s that de�ne an inequality bx � � that is
maximally violated by !x� Such a model is�

max � 	 b!x ����

s�t� � � utat� t � T

b � utAt� t � T

	e � b � e

ut � �� t � T

�� b unrestricted�

Note that the variables in the model are �� b� u� If the objective function value is zero� there is
no separating inequality� The constraint 	e � b � e ensures that an optimal solution exists�

��

The model ���� has an interesting dual�

min �s� s��e

s�t� !x	
X
t�T

xt � s	 s� �b�

Atxt � atyt� t � T �ut�X
t�T

yt � � ���

s� s�� xt� yt � �� t � T

����

If s	s� is �xed to zero and !x is a variable� the constraint set is Balas� convex hull representation
for the disjunction ��� ���� That is� when s	 s� � �� the projection of the feasible set of ����
onto the !x�space is the convex hull of the feasible set of ���� �This is related to the fact�
observed by Williams ����� that the dual of the dual of a disjunctive programming problem
is the convex hull representation of the problem�� The problem ���� therefore seeks a pointP

t�T x
t in the convex hull that is closest to !x� as measured by the rectilinear distance�

An optimal separating inequality can be superior to a supporting elementary inequality�
Consider the example of Fig� �� which becomes�

B�	�x� � x� � 	�
	x� � 	�
	x� � 	�

CA �

�
B�	x� � 	�
	x� � 	�
	x� � 	�

CA

The solution of ���� for !x � ��� �� is � � 	

� � b � �	��	�

� �� u
� � ��� � ��

	
��� u

� � ��� � �� ��� which
produces the facet�de�ning inequality �x� � x� � ��

The optimal separating inequality need not be facet�de�ning� however� If the convex hull of
the disjunction is the box de�ned by � � xj � m for j � �� �� the optimal separating inequality
for !x � ��� �� is x� � x� � ��

Optimal separating inequalities are roughly analogous to the optimal disjunctive cuts used
in the lift�and�project method of Balas� Ceria and Cornuejols ���� One di
erence is that lift�and�
project cuts involve integer variables� Another is that they are derived from disjunctions of the
form yj � � � yj � �� Optimal separating inequalities may be derived from any disjunction�
and they are valid only in those portions of the search tree where the disjunction is valid�
Optimal separating inequalities have not been evaluated computationally� but the success of
lift�and�project cuts suggests that an evaluation is worthwhile�

� Logic Processing

Logic processing can be understood as the derivation of logical implications from the constraint
set� It generates valid logic constraints� which are formulas q�h� y� that are implied by the set
S of formulas qi�y� h� in the model� i�e�� all truth values of y and discrete values of h that make
the formulas in S true also make q�h� y� true�

Valid logic constraints are derived by inference algorithms that may also go by the name of
constraint propagation� preprocessing� etc� Feasibility checking is a special case of inference�
because a set of formulas is unsatis�able if and only if they imply a logical contradiction� such
as xj � �xj�

Cutting plane algorithms are actually special cases of inference algorithms� An inequality
can be viewed as a formula that is true when it is satis�ed� A cutting plane for a constraint set

��

S is an inequality that is satis�ed by all integer points that are feasible in S� and it is therefore
an implication of S� Logic processing algorithms can therefore be viewed as logical analogs of
cutting plane algorithms�

The advantage of logic processing is that it can reduce backtracking� It may� for example�
determine that the logical constraint set is infeasible and thereby prune the search tree at the
current node� It may also generate valid logic constraints that will prune the search tree at a
later time� Suppose� for example� that the formulas

x� � x���
x� � �x���

����

are among the logical constraints� Obviously x� can be false in no feasible solution� Yet if
one branches on the variables in the order x�� � � � � x��� and takes the branch x� � false �rst�
one could conceivably search all ����	 � nodes in the corresponding subtree before discovering
that x� must be true� However� if the valid logic constraint x� had been derived from ����� the
subtree could have been eliminated immediately�

A theory to support this view of constraint generation has been developed in the constraint
satisfaction literature� Generating the constraint x�� for example� is viewed as increasing the
degree of �consistency� of the constraint set� which in turn reduces backtracking� Consistency is
not feasibility� as the word may suggest� but is roughly analogous to integrality in a polyhedral
setting� because a totally consistent constraint set can be solved without backtracking� There is
no space to present this theory here� but an expository development written for mathematical
programmers is available in �����

In the context of MLLP� generating valid logic constraints has another advantage� It may
be possible to de�ne relaxations for the logic constraints in the continuous part of the model�
thereby strengthening the overall relaxation�

The discussion here will be limited to three types of inference algorithms that are useful
for logic processing� resolution� a simple form of constraint propagation� and the derivation
of ���cuts� for knapsack constraints� In general one does not carry any of these algorithms
to completion� It is usually best to generate a few implications that seem most useful for the
problem at hand�

Valid �and nonvalid� logic constraints can also be derived from the special structure of a
problem� much as is done for polyhedral cuts� These constraints may be valid or nonvalid and
are discussed brie�y below�

��� Resolution

Resolution ���� ��� ��� was originally de�ned for logical clauses� which are disjunctions of
literals �atomic propositions or their negations�� Resolution can derive valid logic constraints
for any set of formulas q�y� in which the variables y are atomic propositions� because any such
formula is equivalent to a �nite set of clauses�

Clause C� implies clause C� if and only every literal of C� occurs in C�� Two clauses have
a �unique� resolvent when exactly one variable yj occurs positively in one and negatively in
the other� The resolvent is a disjunction of all literals that occur in either clause except yj and
�yj� For instance� y� ��y� is the resolvent of y� � y� and �y� ��y�� Given a set S of clauses�
the resolution algorithm picks a pair of clauses in S that have a resolvent that is implied by no
clause in S� and adds the resolvent to S� It repeats until there is no such pair� which occurs
after �nitely many iterations�

��

Theorem 	 �Quine
��� ���� A clause set S implies clause C if and only if the resolution
algorithm applied to S generates a clause that implies C� In particular	 S is unsatis
able if

and only if resolution generates the empty clause�

Thus resolution is somewhat analogous to Chv"atal�s cutting plane procedure� because it gen�
erates all valid logic constraints in clausal form� Quine�s theorem follows from Theorem ��
proved below� Resolution has exponential complexity in the worst case ���� and can be very
slow in the typical case ����� In practice� however� one would generate a limited number of
resolvents� such as those with k or fewer literals� for some small k�

Any formula q�y� h� that contains both atomic propositions y and discrete variables h is
equivalent to a �nite set of multivalent clauses� Logic constraints can be derived for a set of
formulas by applying a generalized form of resolution to clauses implied by them� A multivalent
clause has the form

n�
j��

�hj � Hj�� ����

where each Hj is a subset of the domain Dj of hj � For notational simplicity� it is assumed that
an atomic proposition yj is written hj � fTg or hj � fFg� where hj is a bivalent variable� If
Hj is empty� the term �hj � Hj� can be omitted from ����� but it is convenient to suppose
that ���� contains a term for each hj � One multivalent clause

W
j�hj � H�j� implies anotherW

j�hj � H�j� if and only if H�j H�j for each j�
The multivalent resolution algorithm is related to Cooper�s algorithm for obtaining k�

consistency for a set of constraints ����� Given a set of multivalent clauses���
�

n�
j��

�hj � Hij�

������ i � I

��
� � ����

the resolvent on hk of these clauses is�
hk �

�
i�I

Hik

�
�
�
j ��k

�
hj �

�
i�I

Hij

�
�

Ordinary bivalent resolution is a special case�
For example� the �rst three clauses below resolve on h� to produce the fourth� Here each

hj has domain f�� �� �� �g�
�h� � f�� �g� � �h� � f�g�
�h� � f�� �g� � �h� � f�� �� �g�
�h� � f�� �g� � �h� � f�g�
�h� � f�g� � �h� � f�� �� �g�

It is pointless to resolve the �rst three clauses on h�� because this produces the tautology�

�h� � f�� �� �� �g� � �x� � f�g��

To apply the resolution algorithm to a set S of multivalent clauses� �nd a subset of S whose
resolvent M is implied by no clause in S� and add M to S� Continue until no further clauses
can be added to S�

The multivalent resolution algorithm derives all multivalent clauses that are valid logic
constraints for a given set of multivalent clauses� The proof of the theorem uses the idea of
Quine�s original proof for ordinary resolution�

��

Theorem A set S of multivalent clauses implies a multivalent clause M if and only if the
multivalent resolution algorithm applied to S generates a clause that implies M �

Proof� Multivalent resolution derives only implications of S because it is clearly valid� To
prove the converse� let S� be the result of applying the algorithm to S� Also de�ne the length
of a clause ���� be

P
j jHjj� Suppose the theorem is false� and let ���� be a longest clause

implied by S but by no clause in S��
Claim� At least one Hj in ���� is missing at least two elements� i�e�� jDj n Hjj � � for

some j� First it is clear that no Hj � Dj � because otherwise ���� would be implied by a �in
fact� every� clause in S�� Suppose contrary to the claim that every Hj is missing exactly one
element� say vj� Then h � v � �v�� � � � � vn� violates ���� and must therefore violate some
clause

W
j�hj � H �

j� in S�� because S� implies ����� This means each H �
j Dj n fvjg� so thatW

j�hj � H �
j� implies ����� contrary to hypothesis� This proves the claim�

Now suppose vk� v
�
k are missing from Hk� and consider the multivalent clauses

�hk � Hk � fvkg� �
�
j ��k

�hj � Hj�� �hk � Hk � fv
�
kg� �

�
j ��k

�hj � Hj�� ����

They must respectively be implied by clauses M��M� � S� because they are longer than �����
This means that the resolvent ofM��M� on hk implies ����� So by construction of the resolution
algorithm� S� contains a clause that implies ����� contrary to hypothesis� �

The proof of the theorem shows that it su	ces in principle to generate resolvents only of
pairs of clauses�

Resolution can be generalized so as to obtain all valid constraints in the form of ��� knapsack
constraints �discussed in Section ��� below� for a system of such constraints ����� Barth ���
specialized this approach to obtain constraint generation techniques for extended clauses of the
form

P
j�J xj � k� These inequalities seem to be a useful compromise between ��� inequalities

and logical clauses� because they retain some of the expressiveness of the former and are yet
amenable to logic processing�

��� Constraint Propagation

Unit resolution� also known as forward chaining� provides a fast and very useful constraint
propagation algorithm for logical clauses� It is the same as full resolution except that one of
the parents of a resolvent is always a unit clause� For example� unit resolution �xes y� to true
in the following clause set�

y�
y���y�

y���y���y�

Unit resolution is incomplete �i�e�� does not derive all valid constraints�� as can be seen in the
example�

y�� y�� y�
y���y�� y�
y�� y���y�
y���y���y�

Full resolution �xes y� to true� but unit resolution does nothing because there are no unit
clauses to start with� Unit resolution is e	cient� however� as it runs in O�nL� time� if there
are n variables and L literals� and it tends to be very fast in practice�

��

Let S be a set f
P

j�Ji Lij � ki j i � Ig of extended clauses�

where each Lij is yj or �yj�
Let U be a stack of unit clauses� initially empty�

For each i � I with jJij � ki f
For each j � Ji add Lij to U�
Let Ji � ��

g
While U is nonempty f

Remove L�t from U�
For each i � I with t � Ji f

If Lit � L�t then let ki � ki 	 �� Ji � Ji n ftg�
Else f

If ki � jJij then stop� S is unsatisfiable�

Else f
If ki � jJij� � then f

For each j � Ji n ftg add Lij to U�
Let Ji � ��

g
Else let Ji � Ji n ftg�

g
g

g
g

Figure �� A unit resolution algorithm for extended clauses�

Unit resolution is easily generalized to broader classes of formulas� It is adapted to extended
clauses in Fig� �� A version for multivalent clauses and all�di
erent constraints appears in Fig� ��

Unit resolution is a complete inference algorithm for certain classes of clauses� such as
Horn clauses� renamable Horn clauses� extended Horn clauses� etc� ���� ��� ��� ��� ���� No
known structural property of a clause set is necessary and su	cient for the completeness of
unit resolution�

Unit resolution has the same inferential power as linear programming� in the following
sense� Suppose that the clauses of S are written as a system Ay � a of ��� inequalities in the
usual fashion� i�e�� a clause

W
j�J Lj is written

P
j�J yj�Lj� � �� where yj�Lj� is yj if Lj � yj

and is �	 yj if Lj � �yj�

Theorem � �Blair� Jeroslow� Lowe
���� Unit resolution
nds a contradiction in the clause

set S if and only if the linear relaxation of the corresponding system Ay � a of ��� inequalities

is infeasible�

Ay � a is infeasible when unit resolution �nds a contradiction because unit resolution �unlike
resolution in general� simply adds the inequality representations of clauses� So deriving the
empty clause is equivalent to obtaining � � � from a nonnegative linear combination of Ay � a�
Conversely� if unit resolution detects no contradiction� then the inequalities that represent the

��

Let S be a set fCi j i � Ig of multivalent clauses� where each Ci

has the form
Wm
j���hj � Hij� �

W
t�Ti alldiff�fhj j j � Jtg�

Let ni be the number of terms �hj � Hij� of Ci with nonempty Hij�

Let U be a stack of indices representing active domains�

initially U � f�� � � � �mg�
Let A be a list of enforced alldiff predicates� initially empty�

For each i � I f
If ni � � and jTij � � then�

Add the alldiff predicate in Ci to A and remove i from I�
Else if ni � � and jTij � � then

Let Hij be nonempty� let Dj � Dj �Hij and remove i from I�
g
While U is nonempty f

Remove an index k from U�
If Dk is empty then stop� S is unsatisfiable�

For all i � I f
If Hik is nonempty then f

If Dk Hik then remove i from I�
Else f

Let Hik � Hik �Dk�

If Hik is empty then f
Let ni � ni 	 ��
If ni � � and jTij � � then f

Let Hij be nonempty and remove i from I�
If Dj � Hij then

Let Dj � Dj �Hij and add j to U�
g
If ni � � and jTij � � then f

Remove i from I�
Add the alldiff predicate in Ci to A�

g
g

g
g

g
For each predicate alldiff�fhj j j � Jg� in A with k � J

If jDkj � � then
For j � J n fkg

If Dk Dj then Let Dj � Dj nDk and add j to U�
g

Figure �� A unit resolution algorithm for multivalent clauses�

��

remaining clauses can be satis�ed by setting each yj � ����
Although LP duplicates the e
ect of unit resolution� the latter is preferable for logic pro�

cessing because it is much faster�

��� Knapsack Constraints

The familiar ��� knapsack constraint dy � 	� where each yj � f�� �g� can also be regarded as
a logical formula that is true when the sum over bj for which yj is true is at least �� Boolean
functions of this form are called threshold functions and are studied in the electrical engineering
literature ����� They are di	cult to process logically� but they can be used to generate logic
constraints in the form of clauses and extended clauses� which are easily manipulated� For
example� the logical clauses implied by a knapsack constraint are identical to the well�known
�covering inequalities� for the constraint� and their derivation is straightforward �e�g�� ������

It may be more e
ective� however� to infer extended clauses� Although it is hard to derive
all the extended clauses that are implied by a constraint� it is easy to derive all ��cuts� Consider
a ��� inequality dy � 	 for which it is assumed� without loss of generality� that d� � d� � � � � �
dn � �� if dj
 �� reverse its sign and add dj to 	� A ��cut for dy � 	 is one of the form�

y� � y� � � � �� yj � k� ����

The algorithm of Fig� �� presented in ����� derives all valid ��cuts� By way of example� the
knapsack constraint

��y� � �y� � �y� � �y� � �y	 � �y� � ��

gives rise to the ��cuts�
y� � y� � �
y� � y� � y� � �
y� � y� � y� � y� � y	 � ��

The �rst cut could be deleted if desired� because it is redundant of the second� ��cuts and
related cuts are discussed further in �����

��� Structural Logic Constraints

An intuitive understanding of a problem can suggest logic constraints even when no further
valid inequalities are easily identi�ed� Such constraints may be nonvalid as well as valid� as
proposed by ���� in connection with the process synthesis example discussed in Section ����
Structural constraints have also been derived for truss design problems ����� matching problems
����� and a series of standard ��� problems discussed by Wilson �����

A valid logic constraint was de�ned above for a set of formulas� It can be de�ned for an
MLLP model ��� as a formula q�y� h� that is true for every �x� y� h� that is feasible in ���� For
example� �y� is a valid logic constraint for the problem

min x� � x�
s�t� y� � �x� � �� y� � y�

y� � �x� � ��
y� � �x� � x� � ��
x�� x� � ��

����

but is not implied by the formula y� � y��

��

Let k � �� s �
Pn

j�� dj� klast � ��

For j � �� � � � � n f
Let s � s	 dj�
If s
 	 then f

While s� dk
 	�
Let s � s� dk� k � k � ��

If k � klast then f
Generate the cut y� � � � �� yj � k�
Let klast � k�

g
g

g

Figure �� An algorithm for generating all ��cuts for a knapsack constraint dy � 	 in which

d� � d� � � � � � dn � ��

Logic constraints can be de�ned in a more general sense that permits them to be nonvalid�
Let �y� h� be feasible in ��� if �x� y� h� is feasible in ��� for some x� Let �y�� h�� dominate �y� h�
if for any �x� y� h� that is feasible in ���� there is a feasible �x�� y�� h�� for which cx� � cx� Then
q�y� h� might be called a quasi�valid logic constraint if any feasible �y� h� that makes q�y� h�
false is dominated by a feasible �y�� h�� that makes q�y�� h�� true� A quasi�valid constraint may
be added to ��� without changing the optimal solution� but it may exclude feasible solutions�

For example� the formulas �y� and �y� are quasi�valid logic constraints for ����� They are
nonvalid because they exclude the feasible points ��� �� ��� ��� �� ���

� A Generic Branching Algorithm

A generic branching algorithm for MLLP appears in Fig� �� For simplicity it assumes that the
propositions pj in ��� are atomic propositions yj� which is the case for all the problems solved
in the next section� When branching �xes yj to true or false� the formula yj or �yj is added
to the set Q of logical formulas qi�y� h�� When hj is �xed to v� the domain Dj of hj is reduced
to fvg� Again for simplicity� it is assumed that one branches on hj by setting it to one value
at a time� but one could branch by partitioning its domain into subsets containing more than
one element�

Logic processing is applied to Q at each node� It may change the content of Q or remove
elements from some Dj �s� Linear relaxations of formulas in Q are added to the set L of linear
inequalities� if desired�

If Q or L is infeasible� the algorithm backtracks� Otherwise the solution !x of the LP
relaxation will in general satisfy certain constraint sets Ajx � aj and not others� If proposition
yj is not already �xed to true or false� it is temporarily assumed true if !x satis�es Ajx � aj

and false otherwise� If an un�xed yj corresponds to an empty constraint set� it can be given
a default temporary value that applies until it is �xed otherwise� If the values of the yj�s and
hj �s� including the temporary values� make the formulas in Q true� !x is a feasible solution�
Otherwise optimal separating inequalities are added to L if desired� If there are no separating

��

inequalities� a variable is chosen for branching�
Traditional branch�and�cut for mixed ��� problems can be seen as a special case of the

algorithm of Fig� � by formally expressing the problem as follows�

min cx
s�t� Ax � a

� � xj � �� j � �� � � � � r
yj � �xj � ��� j � �� � � � � r
�yj � �xj � ��� j � �� � � � � r

Here branching on the yj�s is equivalent to branching on the ��� variables x�� � � � � xr� General
MILP problems can be written�

min cx

s�t�

Ax � a
� � hj � mj� j � �� � � � � r
�hj � k�� �xj � k�� k � �� � � � �mj � j � �� � � � � r
�h�j � k�� �xj � k�� k � �� � � � �mj � j � �� � � � � r

mj�
k��

�hj � k � h�j � k�� j � �� � � � � r

One can branch on the alternatives xj � k 	 �� xj � k by setting h�j � k 	 � and then hj � k�

� Some Examples

Examples from four application areas are formulated and solved� The aim is to illustrate how
to choose between a traditional integer programming approach and other MLLP options for
a given problem� An attempt was made to choose problems with the �avor or complexity of
real applications� although the warehouse location problem is somewhat stylized�

Each problem is formulated as an MLLP without any integer variables and as a traditional
MILP� Both are solved with the generic algorithm of Fig� �� which in the case of an MILP
reduces to traditional branch�and�cut� The simplest possible algorithm is used in either case�
in order to isolate the e
ect of the speci�c MLLP features illustrated by each problem�

For logic�based models� the generic algorithm of Fig� � is �eshed out as follows� The search
tree is traversed in depth�search manner� so that memory requirements for the tree are modest�
The branching rule is to branch on the �rst propositional variable in the �rst unsatis�ed logical
formula� Logic processing consists of the unit resolution algorithms of Figs� � and �� The logical
formulas were represented in the same data structure used to provide inequality constraints
to CPLEX� The relaxation of logical formulas varies from case to case� as described below�
The code is written in C and compiled with the Sun C compiler version ��� with optimization�
The tests were conducted on a SPARC Station ��� running SUN OS version ����� and with
xx megabytes memory� The LP relaxations were solved by CPLEX version ����

The MILP algorithm is a straightforward branch�and�bound procedure� The branching
rule is to branch on a variable whose value in the relaxation is nearest ���� The LP relaxations
were solved with the same CPLEX routine�

Run times and node counts for version ��� of the CPLEX MILP code are also reported� It is
argued in ����� however� that comparison with a commercial code may provide limited insight�
The many features of a commercial code make it di	cult to isolate which are responsible for
performance di
erences�

��

Let Q be a set of logical formulas� initially the formulas

qi�y� h in ����

Let L be a set of linear inequalities� initially empty�

Let T� F� U indicate true� false and undefined�

Let �y be a vector of truth values for y� initially �y � �U� � � � � U�
Let D � �D�� � � � � Dm be the domains of h�� � � � � hm�

Let �z be an upper bound on the optimal value� initially ��

Let A be the set of active nodes� initially with A � f�Q�L� �y�Dg�
While A is nonempty f

Remove a tuple �Q�L� �y�D from A�

Apply a logic processing algorithm to Q� possibly changing

the contents of Q� possibly changing some �yj�s from U to T

or F� and possibly removing elements from some Dj�s�

If no logical contradiction is detected then f
For each �yj changed to T� add Ajx � aj to L�

Generate inequality relaxations for formulas in Q and add them to L�

Let �x minimize cx subject to L�

If c�x � �z then f
For each yj f

If �yj � fT� Fg then let �yj � �yj�
Else let �yj � T if Aj�x � aj and �yj � F otherwise�

g
Let C� initially empty� be the set of unsatisfied formulas�

For each qi�y� h � Q f
If qi��y� �h is F or U then f

If desired� try to generate a separating inequality for

qi�y� h with respect to ��y� �h�
If a separating inequality is generated then add it to L�

Else add qi�y� h to C�

g
g
If C is empty then f

If no separating inequalities were generated then

�x is feasible� let x� � �x and �z � c�x�
Else add �Q�L� �y�D to A�

g
Else f

Choose a variable yj with �yj � U or a variable hj with

jDj j � �� such that setting yj to T or F� or setting hj
to one of its discrete values� satisfies or tends

to satisfy one of the formulas in C�

If yj is chosen then

Add �G � fyjg� L� �y�D and �Q � f�yjg� L� �y�D to A�

Else if hj is chosen then

For each v � Dj	

Set �D � D� set �Dj � fvg� and add �Q�L� �y� �D to A�

g
g

g
g
If �z �� then x� is an optimal solution�

Else the problem is infeasible�

Figure �� A generic branching algorithm for MLLP�

��

��� A Flow Shop Problem

A scheduling problem that frequently occurs in chemical processing is a �ow shop problem with
zero�wait transfer� There are several jobs� each representing a batch of some reagent� Each
job is processed on several machines �reactors�� The machines are always visited in the same
order� but a given job may skip some of the machines� When a job�s processing is completed
on one machine� it must move immediately to the next machine in its sequence� The objective
is to minimize makespan�

Let Ji be the set of machines on which job i is processed� and dij the processing time for
job i on machine j� If ti is the start time for job i� the job is completed at time

ti �
X
j�Ji

dij �

It is necessary to make sure that two jobs i� k are not scheduled to be in process at the same
time on the same machine j � Ji � Jk� The �nish time of job i on machine j is ti�Dij� where

Dij �
X

j� � Ji
j� � j

dij� �

and its start time is ti �Dij 	 dij � To avoid clashes one must say that for each machine j on
which jobs i� k are processed� job k starts after job i has �nished� or vice�versa� Thus for each
pair �i� k��

�ti �Dij � tk �Dkj 	 dkj� j � Ji � Jk� � �tk �Dkj � ti �Dij 	 dij � j � Ji � Jk�� �

The inequalities in either disjunct are the same except for the right�hand side� It is therefore
necessary to write only one disjunction in each disjunct� using the tightest right�hand side� An
MLLP model is�

min T

s�t� ti � �� T � ti �
X
j�Ji

dij � all i yik � yki� all i� k� i �� k�

yik � �tk 	 ti � rik�

����

where
rik � max

j�Ji�Jk
fDij 	Djk � dkjg�

A traditional MILP model can be formulated with big�M constraints�

min T ����

s�t� ti � �� T � ti �
X
j�Ji

dij � all i

tk 	 ti � rik 	M��	 yik�� all i� k� i �� k

ti 	 tk � rki 	Myik all i� k� i �� k

yik � f�� �g� all i� k�

The problem can also be solved by solving m traveling salesman problems� where m is the
number of jobs �����

��

Number of MLLP MILP CPLEX
jobs machines nodes time per nodes time per nodes time per

node node node
� � �	� ��� 	�		�� ��� �	�� 	�	��� ��� ��� 	�	���
� � ���� ���� 	�		�	 ���� ���� 	�	��� ���� ���	 	�	���
� � ����� ����	 	�		�� ����� ����� 	�	��� ����� ����� 	�	���

Table �� Computational results for �ow shop problems with zero�time transfer	 showing number

of nodes in the search tree	 time in seconds	 and seconds per node�

In this case one can anticipate that the logic�based formulation ���� is best� for two reasons�
a� the MILP representation of the disjunctions is not integral� and b� the linear relaxation of
��� scheduling constraints is weak �as discussed in Section ����� so that there is little to be lost
in forfeiting it� If there are m jobs and n machines� eliminating integer variables reduces the
number of variables in the LP relaxation from �m�mn to �m�

The nonintegrality of the MILP representation follows from Corollary �� which implies that
it is integral if and only if

max ftk 	 ti j ti 	 tk � rki� ��� �� � �ti� tk� � �mi�mk�g � rki 	Mki

max fti 	 tk j tk 	 ti � rik� ��� �� � �ti� tk� � �mi�mk�g � rik 	Mik�
����

De�ning Mki�Mik by ���� yields �Mki�Mik� � �rki �mk� rik �mi�� Also it is easy to see that
the two maxima in ���� are respectively equal to 	rki and 	rik� So ���� implies that the MILP
representation is integral if and only if �rki� rik� � �mk�mi�� which does not occur in practice�

Three �ow shop problems that represent process scheduling problems in a chemical plant
���� were solved� and the results appear in Table �� The logic�based approach generated about
��# as many nodes as MILP and used less than half as much time per node� It ran � to �
times as fast as MILP on these problems�

��� A Processing Network Design Problem

Another common problem in chemical engineering is the design ��synthesis�� of processing
networks� For instance� one may wish to separate the components �A� B� C� D� of a mixture
by passing it through various distillation units� as illustrated in Fig� ��� Each unit separates the
input mixture into two streams as indicated� The volumes of the outputs are �xed proportions
of the input� Clearly some of the units in the network of Fig� �� are redundant� The problem is
to choose units and �ow volumes so as to minimize �xed and variable costs� subject to capacity
and volume constraints� Such problems can involve processes other than distillation and are
often complicated by recycling of streams and waste heat� the latter typically resulting in a
nonlinear model that is not discussed here� In some problems the volume of streams into and
out of the network are semicontinuous variables�

Let E be the set of directed arcs in the network� The network contains a set I of unit
nodes� which represent processing units� and a set J of structural nodes� at which no unit is
present and �ow is conserved� The �ow on arc �i� j� is xij and incurs a unit cost of cij � typically
negative on output �ows to indicate revenue� The �xed cost of unit i is fi and its capacity is
ki� Flow xij on arc �i� j� is �ij times the total input to unit i�

��

ABCD

AjBCD

ABCjD

BjCD

BCjD

ABjCD

AjBC

ABjC

CjD

BjC

AjB

�
�
�
�
�
��

�
�
�
�
�
�R

�

��
��
��
��

hhhhhhhz

					
		

HHHHHHHj

HHHHHHH

�
�
�
�
�
�

��

�
�
�
�
�
�

��
��

��
�

��

Q
Q
Q
Q
Q
Q
Q

�
�
�
�
�
�
�

��

y�

y�

y�

y�

y	

y�

y

y�

y

y��

Figure ��� A ��component separation network�

If proposition yi is true when unit i is installed� an MLLP model can be written�

min
X

�i�j��E

cijxij �
X
i

zi

s�t�
X

�i�j��E

xij �
X

�j�k��E

xjk� j � J yi � y�i� i � I

xij � �ij
X

�k�i��E

xki� �i� j� � E� i � I

� � xij � ki� �i� j� � E
yi � �zi � fi�� i � I

y�i �

�
zi � �P

�i�j��E xij � �

�
� i � I�

An MILP model is�

min
X

�i�j��E

cijxij �
X
i

fiyi ����

s�t�
X

�i�j��E

xij �
X

�j�k��E

xjk� j � J

xij � �ij
X

�k�i��E

xki� �i� j� � E� i � I

� �
X

�i�j��E

xij � kiyi� i � I

yi � f�� �g� i � I

��

Semicontinuous variables xij are given the logical representation�

a� � xij � bT yt � y�t� t � �� � � � � T
yt � �xij � at�
y�t � �xij � bt���

����

and the MILP representation ����
Elementary inequalities can be generated for the disjunctions yi � y�i in ����� Because of

upper and lower bounds on the variables� the corresponding constraint sets can be written

yi � �zi � fi�

y�i �

�
	zi � �

	
P

�i�j��E xij � �

�

This expands into two disjunctions that can be relaxed�

�zi � fi� � �	zi � �� ����

�zi � fi� �

�
�	 X

�i�j��E

xij � �

A ����

Because fi is an upper bound on zi� the elementary inequality ���� for ���� is simply � � ��
which is useless� But the elementary inequality for ���� is

zi
fi
�

�

Mi

X
�i�j��E

xij � ����

where Mi is an upper bound on the �ow out of unit i� This inequality is easily seen to de�ne
a facet of the convex hull of the disjunction�

There are also some useful quasi�valid logic constraints� Note in Fig� �� that one should
not install a distillation unit unless at least one adjacent upstream unit is installed� and all
adjacent downstream units are installed� For example� unit � should not be installed unless
unit � is installed� nor should unit � be installed unless both units � and �� are present� This
produces the logic constraints

y� � y�� y	 � �y�� y����

which can be written as three clauses�

y� � �y�� �y	 � y�� �y	 � y��� ����

These constraints are nonvalid because there is nothing infeasible about installing a unit that
carries no �ow� One might suspect that a branch�and�bound search would not consider such
spurious solutions� so that the constraints ���� would have no e
ect� Experience reported in
���� ���� however� shows that they can be very e
ective� a fact that is con�rmed here�

Although the linear relaxation of the MILP model can be duplicated with elementary
inequalities� and quasi�valid logic constraints are available� there is reason to believe a logic�
based approach is slightly worse than MILP� Once valid inequalities are added� the logic�based
LP is actually slightly larger than the MILP model� The nonvalid logic constraints� although

��

Problem MLLP MLLP MLLP MILP CPLEX MLLP MLLP MILP CPLEX
�dual �elem �elem� �elem� �logic �logic
ineq� ineq� ineq� ineq� constr� constr�

�logic �logic
constr� constr�

�logic
relax�

Node count

�component sep� �� �� �� �� �� � � � �
� � unit restr� �� �� �� �� � � �
�component sep� ���� �	� �� ��� �� �� �� �� �	
� � unit restr� � ��� �� � � � ��
Seconds

�component sep� 	��� ���� 	��� 	��� 	��� 	��� 	��	 	��� 	��	
� � unit restr� 	��� ��	� 	��� 	��� 	��� 	��� 	���
�component sep� ���� ���� ��� ��� ��� ��� ��� ��� ���
� � unit restr� 	�� ��� ��	 	�� 	�� 	�� ���

Table �� Node counts and computation times in seconds for separation network synthesis prob�
lems�

logically inspired� can be added to an MILP model� Furthermore� Theorem � implies that the
��� formulation of the disjunction yi � y�i is integral� It is easily checked that if ��� variables
y�� y� correspond to the two disjuncts yi� y

�
i� then y���y�� � y���y�� � ��

Some of the synthesis problems are modi�ed by �xing the number of units to be installed�X
i

yi � k�

To generate elementary inequalities� the formula is written as two inequalities�

P
i yi � k�

P
i y

�
i � k�

Elementary inequalities of the form ���� for these are respectively�

P
i zi�fi � k�

P
ij xij�Mi � n	 k�

where n is the number of potential units�
Experimental results for two ��component and two ��component problems studied in ����

are displayed in Table �� The second ��component problem �xes the total number of units to
�� and the second ��component problem �xes it to �� The solution methods are grouped by the
strength of the formulation� The problems are �rst solved with pure MLLP branching� without
any relaxation of the disjunctive constraints� The very poor results in the �rst column of the
table indicate the importance of using relaxations� The next column illustrates the expense of
generating dual inequalities� as discussed in Section ����

The next three columns of the table compare MLLP� MILP and CPLEX using relaxations
that have the strength of the traditional continuous relaxation of the original problem� in the
MLLP case� this requires the elementary inequalities ����� The next column adds the logic
constraints described above to the MLLP model but not their relaxations� The last three
columns add logic constraints to the MILP and CPLEX models and elementary relaxations of
them to the MLLP model�

��

Problem Nodes Seconds
MLLP MILP CPLEX MLLP MILP CPLEX

�	 processes� version � � �� �� 	��� 	��� 	���
�	 processes� version � �� �� �� 	��� 	��� ����
�� processes� version � ��� �	�� ��� ��� ��� ���
�� processes� version � ��	� ���� ��� ��� ���� ���
�� processes� version � ���� ���� ��� �	� ��� �	�
�� processes� version � ��	� ���� ��� ��� �	�� ���
�� processes� version � �	�� ���� ��� ��� ��� ��

Table �� Node counts and computation times in seconds for ���process and ���process network

synthesis problems�

The results suggest that adding nonvalid logic constraints can bring a substantial improve�
ment in an MILP context� They also reduce the number of nodes generated by the CPLEX
MILP routine� which indicates that their employment does not merely duplicate the action of
the CPLEX preprocessor� Experiments reported in ���� provide a similar indication for the
OSL preprocessor� As predicted� MILP is slightly better than a logic�based approach�

The use of propositional variables is highly advantageous� however� for representing semi�
continuous variables are added to the problem� As noted earlier� the ��� representation is
nonintegral� and any continuous relaxation of it is useless�

The ���process and a ���process problem described in ���� were solved� All the valid
constraints described above were used� except that relaxations for the nonvalid logic constraints
were omitted form the logic�based model� The results appear in Table �� The ���process
problem has � semicontinuous variables� and the ���process problem has �� Di
erent versions
of the problem were obtained by varying the time horizon and the placement of intervals�

The results show that a logical representation of semicontinuity roughly halves the com�
putation time� even though semicontinuity accounts for only about half the discrete variables�
A reasonable approach for these problems would therefore be to use the traditional approach
for everything except the semicontinuous variables� The MLLP framework provides this kind
of �exibility�

The CPLEX preprocessor eliminated most of the rows and columns of the ���process prob�
lems �but not the ���process problems� and therefore obtained superior performance on these
problems� It is impossible to analyze this result without detailed knowledge of the preprocessor�
Perhaps the operation that proved so e
ective could be added to the MLLP algorithm�

��� A Warehouse Location Problem

A simple warehouse location problem is to choose a set of warehouses of limited capacity so
as to serve a set of demand points while minimizing �xed and transport costs� Let

xij � �ow from warehouse i to demand point j�
fi � �xed cost of warehouse i�
ki � capacity of warehouse i�
dj � demand at point j�
cij � unit transport cost from i to j�

��

An MLLP model can be written�

min
X
i

zi �
X
ij

cijxij

s�t�
X
j

xij � ki� all i yi � y�i� all iX
i

xij � dj� all j

zi� xij � �� all i� j
yi � �zi � fi�� all i
y�i � �

P
j xij � ��� all i

The traditional MILP model is

min
X
i

fiyi �
X
ij

cijxij

s�t�
X
j

xij � kiyi� all i

X
i

xij � dj � all j

xij � �� all i� j�

yi � f�� �g� all i�

The formulation of elementary inequalities for the disjunctive constraints yi�y
�
i is the same

as in the network synthesis problems� The fact that total installed warehouse capacity must
accommodate total demand gives rise to the valid knapsack constraint�X

i

kiyi �
X
j

dj � ����

It can be viewed as a logical formula whose elementary relaxation can be added to the LP
model� X

i

ki�zi�fi� �
X
j

dj�

��cuts can be derived from ���� as described in Section ���� and their elementary relaxations
added to the LP�

The ��� representation is again integral� The MLLP is also a little larger than the MILP
model� because it contains elementary inequalities for the disjunctions� and furthermore be�
cause the MILP model combines the capacity constraints with the big�M constraints� The
��cuts can be used in the MILP as well as the logic model� One would therefore expect an
MILP formulation to have a small advantage�

Seven warehouse location problems from ��� were solved� and the results appear in Table ��
Each problem has �� demand points with a total demand of ������� The number of warehouses
is shown� Each warehouse has the same capacity� and the ratio of total warehouse capacity to
total demand is shown as �Cap� ratio��

The ��cuts were used in the MLLP model but not the MILP model� They result in a ���
��# reduction in the number of nodes but contributed to a �����# increase in the amount of
time per node� because of they enlarge the LP model� The net result is that MLLP is slightly

��

Problem No� Cap� Nodes Seconds Seconds per node
whse ratio MLLP MILP CPLEX MLLP MILP CPLEX MLLP MILP CPLEX

CAP�� �� ���� �� �� �� ��� ��� ��� 	��� 	��� 	�	�
CAP�� �� ���� �� �� �� ��� ��� ��� 	��� 	��� 	��	
CAP�� �� ���� �� �� �� ��� ��� ��� 	��� 	��� 	��	
CAP�� �� ���� �� �� �	 ��� ��� ��� 	��� 	��� 	���
CAP�� �� ���� ���� ���� ���� ��� ��� �� 	��� 	�	� 	�	�
CAP�� �� ���� ���� ���� �	�� ��� ��� ��� 	��� 	�	� 	�	�
CAP�� �� ���		 ���� ���� ���	 �	� ��� ��� 	��� 	�	� 	�	�
� �	 ���� �� ��� �� ���� 	��	 	��� 	�	�	 	�	�� 	�	��
� �	 ���	 �� �� �� ���� 	��� 	��� 	�	�� 	�	�� 	�	��
� �	 ��	� �� �� �� ���� ���� ���� 	�	�� 	�	�� 	�	�	
� �	 ��	� �� ��� ��� ���� ���� ���	 	�	�� 	�	�� 	�	��
� �	 ��	� �� �� �� 	��� 	��� 	��� 	�	�� 	�	�� 	�	�	
� �	 ��	� � �� �	 	��� 	��	 	��� 	�	�� 	�	�� 	�	��

Table �� Node counts	 computation times in seconds	 and seconds per node for warehouse

location problems�

slower than MILP� The ��cuts are therefore useful� but as predicted� one should use them in a
traditional MILP relaxation�

Problems ��� in the table were solved to test the hypothesis that ��cuts have greater
e
ect when the problem is more tightly constrained� as roughly indicated by the ratio of total
warehouse capacity to total demand� The problems are identical except for the warehouse
capacity� There are � demand points with demands ��������������� The data tend to con�rm
the hypothesis�

��� The Progressive Party Problem

The �nal problem to be considered is a scheduling problem posed by a �progressive party�
that was organized at a yachting rally in England� The problem gained some notoriety when
a group of mathematical programmers and constraint programmers found it to be intractable
for the former and soluble by the latter� albeit with some manual intervention �����

In a progressive party� the object is for the crews of a �eet of yachts to visit a subset of
yachts and mingle with the other crews� The visiting crews move to di
erent boats at the end
of each phase of the party� Presumably to simplify the provision of refreshments and so forth�
the number of host yachts should be small�

The problem can be more precisely de�ned as follows� A set I of boats is given� Each boat
i occupied by a crew of ci persons and has space for Ki persons on board� The problem is to
minimize the number of host boats� Each crew i visits a di
erent host boat hit in each period
t� unless it is itself a host� indicated by the truth of proposition 	i� In the latter case hit � i for
all t� To encourage mingling� no pair of visiting crews are permitted to meet more than once�
The proposition mijt is true when non�host crews i and j visit the same boat in period t�

For checking capacity constraints it is convenient to de�ne a proposition vijt that is true
when hit � j� The only propositions that enforce linear inequality constraints are the 	i�s�
which force zi � � when true�

An MLLP model can be written as follows� The objective function counts the number of

��

host boats�

min
P

i�I zi
s�t� zi � �� i � I vijt � �hit � j�� i� j � I� t � T �a�

	i � �zi � ��� i � I 	i � alldi
�hi�� � � � � hijT j�� i � I �b�

	i � �hit � i�� i � I� t � T �c�P
i � I

i �� j

civijt � Kj 	 cj � j � I� t � T �d�

	i � 	j �mijt � �hit �� hjt�� i� j � I� i
 j� t � T �e�P
t�T mijt � �� i� j � I� i
 j �f�

hit � f�� � � � � jIjg� i � I� t � T
����

Formula �a� de�nes vijt� Formula �b� says that crew i should visit a di
erent boat in each
period unless it is a host crew� Formula �c� causes a crew to remain on its own boat if and
only if it are a host crew� Knapsack constraint �d� is the boat capacity constraint� Formula
�e� says that if crews i and j are both visiting crews �i�e�� 	i and 	j are false�� then either mijt

is true or hit �� hjt� i�e�� mijt is true if the two crews visit the same boat in period t� The next
formula �f� says that a pair of visiting crews should not meet more than once�

The entire model has O�jIj�jT j� variables and constraints� The LP is trivial� as it consists
only of an objective function and constraints of the form zi � �� The LP will become more
interesting when inequalities are added to strengthen the relaxation�

Formulation of an MILP model is more di	cult� The most challenging constraint is the
one that requires visiting crews to meet at most once� The authors of ���� remark that if this
is formulated using the variables vijt� O�jIj�jT j�� constraints are generated� Because this is
impractical� they introduce O�jIj�jT j� variables yijkt� which take the value � when crews j� k
meet on boat i in period t� But because there are �� boats in the problem� this results in an
enormous number of binary variables�

A more compact MILP model is suggested here� It reinterprets the multivalent variables
hit as numeric variables and enforces the all�di
erent constraints with big�M constraints� The
variables hit need not be explicitly constrained to be integral� because the remaining constraints
enforce integrality� The model has O�jIj�jT j� integer variables and constraints� many fewer
than the model of �����

The objective function �a� in the model below again counts the number of host boats�
Constraints �b� and �c� require a crew to remain on their own boat if and only if they are a
host crew� Constraints �d�� �f� use a disjunctive mechanism to relate vijt to hit� They say that
if hit � j �i�e�� ��ijt and ��ijt� which say that hit is neither less than nor greater than j��
then vijt � �� Constraint �h� plays the role of the all�di
erent constraint� Constraints �i���k�
again use a disjunctive mechanism to say that if i and j are visiting crews and hit � hjt� then

��

mijt � ��

min
P

i�I 	i �a�
s�t� 	j � ��	 vijt� � �� i� j � I� t � T �b�

��	 	i� � viit � �� i � I� t � T �c�
vijt � �ijt � �ijt � �� i� j � I� t � T �d�
	hit � j � �	 jIj�� 	 �ijt�� i� j � I� t � T �e�
hit 	 j � �	 jIj��	 �ijt�� i� j � I� t � T �f�P

i � I

i �� j

civijt � Kj 	 cj � j � I� t � T �g�

P
t�T vijt � �� i� j � I� i �� j �h�

	i � 	j �mijt � �ijt � �ijt � �� i� j � I� i
 j� t � T �i�
	hit � hjt � �	 jIj�� 	 �ijt� i� j � I� i
 j� t � T �j�
hit 	 hjt � �	 jIj�� 	 �ijt� i� j � I� i
 j� t � T �k�P

t�T mijt � �� i� j � I� i
 j �l�
� � hit � jIj� 	i� vijt� �ijt� �ijt�mijt� �ijt� �ijt � f�� �g� all i� j� t�

����

An alternate form of this model replaces constraints �d���f� with the constraints

hit �
X
j

jvijt�

resulting in a somewhat smaller formulation� In preliminary computational tests� this some�
times improved and sometimes worsened solution time�

The logic�based formulation was augmented with a simple logic constraint that requires
the number of host boats to be no less than the number of periods�X

i�I

	i � jT j� ����

This was represented by an elementary inequality in the LP relaxation at each node� As in the
warehouse location problem� there is a valid knapsack constraint that ensures there is enough
capacity to meet total demand� X

i�I

Ki	i �
X
i�I

ci� ����

An elementary inequality for this was added to the LP relaxation� ��cuts were also generated
for ���� and their relaxations added to the LP� Elementary inequalities were not generated for
the knapsack constraints ���d�� The logic processing was achieved by a section of code that in
e
ect implements the unit resolution algorithms of Figs� � and ��

The MILP model was also augmented with the logic constraints ����� There was no need
to add ���� because it is a linear combination of the other constraints�

The logic�based model ���� is not only simpler but has a substantial computational ad�
vantage� This is primarily because of the huge number of discrete variables� which are more
e	ciently processed in the logical part of the problem�

The computational results appear in Table �� Due to the di	culty of the problem� only
the CPLEX implementation of MILP was used� It was run with a feature that identi�es
specially ordered sets �sosscan�� because MLLP�s processing of propositional variables that
are not associated with linear constraint sets can be viewed as incorporating the advantage of
using type � specially ordered sets�

��

Boats Periods Nodes Seconds Seconds per node
MLLP CPLEX MLLP CPLEX MLLP CPLEX

� � ��� ���� ���� ����� ����� �����
� � ��� ���� ���� ���� ����� �����
� � �� ��� ���� ����� ����� �����
� � �� �� ���� ���� ����� �����
� � ��� ���� ���� ���� ����� �����
� � ��� ��� ���� ����� ����� �����

�� � ������� ������ ����� ������ ����� �����
�� � ����� ������ ��� ������ ����� �����

�Computation was terminated after ������ nodes� without �nding an integer solution�

Table �� Node counts� computation times in seconds� and seconds per node for the progressive
party problem�

The original problem described in ���� had �� boats and � periods and was solved by the
ILOG Solver� but only after specifying exactly which boats were to serve as hosts� and even
then only after manual intervention� The authors of ���� report that XPRESSMP solved an
MILP model of the problem with �� boats and � periods� but only after specifying that only
boats ��� �in descending order of Ki 	 ci� could serve as hosts and only crews ���� could visit
other boats �the optimal solution uses � hosts�� The problems were solved here without any
manual intervention� When the problem contains jIj boats� they are the jIj largest boats as
measured by Ki 	 ci�

Both solution methods could no doubt be improved with more intelligent branching and
other devices� But the underlying computational advantage of a logical representation is clear
and is due primarily to a much smaller LP relaxation and the speed of logic processing�

� Conclusions

We conclude that the larger repertory of modeling and solution options in MLLP can� if
judiciously chosen� provide a more �exible modeling environment than MILP alone� without
sacri�cing solution e	ciency and in some cases substantially improving it�

We attempt here to collect some rough guidelines for choosing the options� based on compu�
tational experience to date� The basic issue addressed is what part of the constraint set should
be given a logical formulation� and what part should be embedded in the linear model with
the help of integer variables� It is assumed throughout that constraints with purely continuous
variables appear in the continuous portion of the model�

Because the formulas pj of ��� all have the form yj in the problems solved� the discussion
here assumes that they have this form� In general some propositions yj enforce one or more
linear inequality constraints when they are true� and others do not� It is convenient to refer to
the former as linked and the latter as unlinked�

� As a general rule� constraints should receive the most convenient formulation� unless
one of the considerations to follow indicates otherwise� For example� a ��� knapsack
constraint ax � � �where some coe	cients aj are other than �� �� 	�� should be written
as a ��� inequality� Constraints with a logical �avor� however� should normally be appear

��

in logical form� These might include disjunctions� implications� etc�

� Constraints that contain primarily unlinked propositions in their logical form should
normally be written in that form� It is likely that logic processing is as useful as solving
the linear relaxation of the ��� formulation� it is equivalent when the logical formulas
are clauses� The advantage of a logical formulation can be substantial when there are a
large number of unlinked propositions� as illustrated by the progressive party problem�

� For constraints that contain primarily linked propositions in their logical formulation�
the best treatment depends on the nature of the relaxation�

� If there is no good linear relaxation� as in the case of the �ow job scheduling disjunc�
tions and the semicontinuous variables discussed earlier� then the constraints should
receive a logical formulation� In this case the overhead of using integer variables is
unjusti�ed�

� If a good linear relaxation exists� the following considerations apply� If the contin�
uous relaxation of the ��� formulation can be duplicated or improved upon using a
small number of �strengthened� elementary cuts or other cuts� then the logical for�
mulation should be used� and the cuts added to the LP� Examples of this were given
in Sections ��� and ���� If the cuts required to duplicate the continuous relaxation
are too numerous or unavailable� then the constraints should receive a traditional ��
� formulation� This was the situation in the warehouse location and process network
design problems �aside from the semicontinuous variables in the latter��

� It may be advantageous to use both a logical and a ��� formulation� so as to apply
logic processing to the former and obtain a relaxation from the latter�

� If the ��� representation is nonintegral� this argues against it� because branching may
continue unnecessarily� The �ow shop problems and semicontinuous variables serve as
examples�

� Any logic cuts �valid or nonvalid� that can be identi�ed are probably useful� Examples of
these include the nonvalid cuts generated for the network design problems and the ��cuts
used in the warehouse and party problems� Logic cuts can be represented in logical form�
��� form� or both� depending on factors already discussed�

� Optimal separating cuts have not been tested computationally� but the success of sep�
arating cuts and lift�and�project cuts �to which they are analogous� suggests that they
could be useful� It may also be bene�cial to use Benders cuts� which can be generalized
to a logic�based setting �����

� It may be possible to construct useful linear relaxations of common logical formulas that
contain multivalued discrete variables �other than integer variables�� such as all�di
erent
constraints� This issue is now under investigation�

A software package based on MLLP would probably require more expertise that existing
ones based on MILP� Ultimately� however� a large class of combinatorial problems may always
require a certain amount of expertise for their solution� The issue is how much user intervention

��

is appropriate� It seems unreasonable to restrict oneself to automatic routines in general�
purpose solvers when some simple additional devices may obtain solutions that are otherwise
out of reach� At the other extreme� it is impractical to invest in every new problem the years of
research e
ort that have been lavished on traveling salesman and job shop scheduling problems�
MLLP is designed to present a compromise between these two extremes�

References

��� Aiba� A�� K� Sakai� Y� Sato� D� J� Hawley and R� Hasegawa� Constraint logic programming
language CAL� Fifth Generation Computer Systems� Springer� �Tokyo� ������

��� Balas� E�� Disjunctive programming� Cutting planes from logical conditions� in O� L�
Mangasarian� R� R� Meyer and S� M� Robinson� eds�� Nonlinear Programming � Academic
Press �New York� ����� ��������

��� Balas� E�� A note on duality in disjunctive programming� Journal of Optimization Theory

and Applications �� ������ ��������

��� Balas� E�� Disjunctive programming� Annals Discrete Mathematics � ������ �����

��� Balas� E�� S� Ceria and G� Cornu"ejols� Mixed ��� programming by lift�and�project in a
branch and cut framework� Management Science �� ������ ����������

��� Barth� P�� Logic�Based ��� Constraint Programming� Kluwer Academic Publishers
�Boston� ������

��� Beaumont� N�� An algorithm for disjunctive programs� European Journal of Operational

Research �� ������ ��������

��� Beasley� J� E�� An algorithm for solving large capacitated warehouse location problems�
European Journal of Operational Research � ������ ��������

��� Blair� C�� Two rules for deducing valid inequalities for ��� problems� SIAM Journal of

Applied Mathematics �� ������ ��������

���� Blair� C�� R� G� Jeroslow� and J� K� Lowe� Some results and experiments in programming
techniques for propositional logic� Computers and Operations Research �� ������ ����
����

���� Bollapragada� S�� O� Ghattas and J� N� Hooker� Optimal design of truss structures by
mixed logical and linear programming� manuscript� Graduate School of Industrial Admin�
istration� Carnegie Mellon University� Pittsburgh� PA ����� USA �������

���� Bratko� I�� PROLOG Programming for Arti
cial Intelligence� International Computer

Science� Addison�Wesley �������

���� BULL Corporation� CHARME VI User�s Guide and Reference Manual� Arti�cial Intelli�
gence Development Centre� BULL S�A� �France� ������

���� Chandru� V�� C� R� Coullard� P� L� Hammer� M� Monta$nez� and X� Sun� On renamable
Horn and generalized Horn functions� Annals of Mathematics and AI � ������ ������

��

���� Chandru� V�� and J� N� Hooker� Extended Horn clauses in propositional logic� Journal of
the ACM �� ������ ��������

���� Chandru� V�� and J� N� Hooker� Detecting embedded Horn structure in propositional logic�
Information Processing Letters �� ������ ��������

���� Colmerauer� A�� H� Kanouia� R� Pasero and P� Roussel� Un syst%eme de communication
homme�machine en fran&cais� technical report� Universit"e d�Aix�Marseilles II� Groupe in�
telligence arti�cielle �������

���� Colmerauer� A�� An introduction to Prolog III� Communications of the ACM �� ������
������

���� Cooper� M� C�� An optimal k�consistency algorithm� Arti
cial Intelligence �� ������ ���
���

���� Dincbas� M�� P� Van Hentenryck� H� Simonis� A� Aggoun� T� Graf� F� Bertier� The con�
straint programming language CHIP� Proceedings on the International Conference on Fifth

Generation Computer Systems FGCS���� Tokyo� December �����

���� Drexl� A�� and C� Jordan� A comparison of logic and mixed�integer programming solvers
for batch sequencing with sequence�dependent setups� to appear in INFORMS Journal on

Computing�

���� Freuder� E� C�� Exploiting structure in constraint satisfaction problems� in B� Mayoh� E�
Tyugu and J� Penjam� eds�� Constraint Programming� Springer ������ ������

���� Glover� F�� Surrogate constraint duality in mathematical programming� Operations Re�

search �� ��������

���� Granot� F�� and P� L� Hammer� On the use of boolean functions in ��� linear programming�
Methods of Operations Research ������ ��������

���� Haken� A�� The intractability of resolution� Theoretical Computer Science �� ������ ����
����

���� Hammer� P� L�� and S� Rudeanu� Boolean Methods in Operations Research and Related

Areas� Springer Verlag �Berlin� New York� ������

���� Hooker� J� N�� Resolution vs� cutting plane solution of inference problems� Some compu�
tational experience� Operations Research Letters ������ ����

���� Hooker� J� N�� Generalized resolution and cutting planes� Annals of Operations Research

�� ������ ��������

���� Hooker� J� N�� A quantitative approach to logical inference� Decision Support Systems �
������ ������

���� Hooker� J� N�� Input proofs and rank one cutting planes� ORSA Journal on Computing �
������ ��������

���� Hooker� J� N�� Generalized resolution for ��� linear inequalities� Annals of Mathematics

and AI 	 ������ ��������

��

���� Hooker� J� N�� Logical inference and polyhedral projection� Proceeedings� Computer Sci�
ence Logic Workshop �CSL����� Lecture Notes in Computer Science 	�	 ������ ��������

���� Hooker� J� N�� Logic�based methods for optimization� in A� Borning� ed�� Principles and

Practice of Constraint Programming	 Lecture Notes in Computer Science �� ������ ����
����

���� Hooker� J� N�� Logic�based Benders decomposition� available at
http���www�gsia�cmu�edu�afs�andrew�gsia�jh���jnh�html �������

���� Hooker� J� N�� Testing heuristics� We have it all wrong� Journal of Heuristics � ������
������

���� Hooker� J� N�� Constraint satisfaction methods for generating valid cuts� available at
http���www�gsia�cmu�edu�afs�andrew�gsia�jh���jnh�html �������

���� Hooker� J� N�� and N� R� Natraj� Solving ��� optimization problems with k�tree relaxation�
in preparation�

���� Hooker� J� N�� and G� Rago� Partial instantiation methods for logic programming� Grad�
uate School of Industrial Administration� Carnegie Mellon University� Pittsburgh� PA
����� USA �������

���� Hooker� J� N�� H� Yan� I Grossmann� and R� Raman� Logic cuts for processing networks
with �xed charges� Computers and Operations Research �� ������ ��������

���� Howard� R� A�� and J� E� Matheson� In�uence diagrams� in R� A� Howard and J� E�
Matheson� eds�� The Principles and Applications of Decision Analysis� v� �� Strategic
Decision Group� Menlo Park� CA �������

���� Ja
ar� J�� and J��L� Lassez� Constraint logic programming� Proceedings of the ��th ACM

Symposium on Principles of Programming Languages� M'unchen� ACM ������ ��������

���� Ja
ar� J�� and J��L� Lassez� From uni�cation to constraints� Logic programming ��	 Pro�

ceedings of the �th Conference� Springer ������ �����

���� Jeroslow� R� E�� Representability in mixed integer programming� I� Characterization re�
sults� Discrete Applied Mathematics � ������ ��������

���� Jeroslow� R� E�� Logic�Based Decision Support� Mixed Integer Model Formulation	 Annals

of Discrete Mathematics ��� North�Holland �Amsterdam ������

���� Jeroslow� R� E�� and J� K� Lowe� Modeling with integer variables� Mathematical Program�

ming Studies �� ������ ��������

���� Kowalski� R� A�� Predicate logic as programming language� Proceedings of the IFIP

Congress� North�Holland �Amsterdam� ����� ��������

���� McAloon� K�� and C� Tretko
� �LP� Linear programming and logic programming� in P� van
Hentenryck and V� Saraswat� eds�� Principles and Practice of Constraint Programming�
MIT Press ������ �������

��

���� McAloon� K�� and C� Tretko
� Optimization and Computational Logic� to be published by
Wiley�

���� Piehler� J�� Ein Beitrag zum Reihenfolgeproblem� Unternehmenforschung � ������ ����
����

���� Puget� J��F�� A C�� implementation of CLP� Technical report ������ ILOG S�A�� Gentilly�
France �������

���� Quine� W� V�� The problem of simplifying truth functions� American Mathematical

Monthly �� ������ ���� ����

���� Quine� W� V�� A way to simplify truth functions� American Mathematical Monthly 	�
������ ��������

���� Raman� R�� and I� E� Grossmann� Relation between MILP modeling and logical inference
for chemical process synthesis� Computer and Chemical Engineering �� ������ ������

���� Raman� R�� and I� E� Grossmann� Symbolic integration of logic in MILP branch and bound
methods for the synthesis of process networks� Annals of Operations Research �� ������
��������

���� Raman� R�� and I� E� Grossmann� Symbolic integration of logic in mixed�integer linear
programming techniques for process synthesis� Computers and Chemical Engineering �
������ ��������

���� Raman� R�� and I� E� Grossmann� Modeling and conputational techniques for logic based
integer programming� Computer and Chemical Engineering �� ������ ��������

���� Remy� C�� Programming by constraints� Micro Systemes No� ��� ������ ��������

���� Robinson� J� A�� A machine�oriented logic based on the resolution principle� Journal of
the ACM �� ������ ������

���� Sahinidis� N� V�� I� E� Grossmann� R� E� Fornari and M� Chathrathi� Optimization model
for long range planning in the chemical industry� Computers and Chemical Engineering

�� ������ ����������

���� Schlipf� J� S�� F� S� Annexstein� J� V� Franco and R� P� Swaminathan� On �nding solutions
for extended Horn formulas� Information Processing Letters �� ������ ��������

���� Sciamma� D�� J� Gay� A� Guillard� CHARME� A constraint oriented approach to schedul�
ing and resource allocation� Arti
cial Intelligence in the Paci
c Rim� Proceedings of the
Paci�c Rim International Conference on Arti�cial Intelligence� Nagoya� Japan ������ ���
���

���� Sheng� C��L�� Threshold Logic� Academic Press �New York� ������

���� Simonis� H�� and M� Dincbas� Propositional calculus problems in CHIP� in F� Benhamou
and A� Colmerauer� eds�� Constraint Logic Programming� Selected Research� MIT Press
�Cambridge� MA� ����� ��������

��

���� Smith� B� M�� S� C� Brailsford� P� M� Hubbard� H� P� Williams� The progressive party prob�
lem� Integer linear programming and constraint programming compared� in U� Montanari
and F� Rossi� eds�� Proceedings of Principles and Pratice of Constraint Programming�
Cassis� France� Springer ������ ������

���� Sterling� L�� and E� Shapiro� The Art of Prolog� Advanced Programming Techniques� MIT
Press �Cambridge� MA� ������

���� Swaminathan� R� P�� and D� K� Wagner� The arborescence�realization problem� Discrete
Applied Mathematics �� ������ ��������

���� Tsang� E�� Foundations of Constraint Satisfaction �London� Academic Press� �����

���� Turkay� M�� and I� E� Grossmann� Logic�based MINLP algorithms for the optimal synthesis
of process networks� Computer and Chemical Engineering �� ������ ��������

���� Van Hentenryck� P�� Constraint Satisfaction in Logic Programming� MIT Press �Cam�
bridge� MA� ������

���� Williams� H� P�� Fourier�Motzkin elimination extension to integer programming problems�
Journal of Combinatorial Theory �� ������ ��������

���� Williams� H� P�� Logical problems and integer programming� Bulletin of the Institute of

Mathematics and its Implications �� ������ ������

���� Williams� H� P�� Linear and integer programming applied to the propositional calculus�
International Journal of Systems Research and Information Science � ������ �������

���� Williams� H� P�� An alternative explanation of disjunctive formulations� European Journal

of Operational Research � ������ ��������

���� Williams� H� P�� Logic applied to integer programming and integer programming applied
to logic� European Journal of Operational Research �� ������ ��������

���� Wilson� J� M�� Compact normal forms in propositional logic and integer programming
formulations� Computers and Operations Research �� ������ ��������

���� Wilson� J� M�� Generating cuts in integer programming with families of specially ordered
sets� European Journal of Operational Research �	 ������ ��������

���� Wilson� J� M�� A note on logic cuts and valid inequalities for certain standard �����
integer programs� manuscript� Loughborough University Business School� Loughborough�
Leicestershire LZE�� �TU� U�K� �������

��

