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In light of the recent financial crisis, credit risk models, and the way they are used, have become
the target of much criticism.1 A common concern is that the basic statistical properties of market
data are not the same in a crisis as they are during stable periods (Danielsson (2002)). Hence
the same models that price sophisticated financial instruments during normal times are virtually
useless during times of crisis. The insight that statistical models fail at times when credit markets
need them the most may motivate the search for a general framework in which stress testing can
be easily conducted.

In response to previous market downturns, the Basel Committee on Banking Supervision already
requires banks to conduct stress tests to limit their risk exposure throughout the business cycle
(Basel II (2006)). That notion was recently reinforced when the Federal Reserve urged major
investment banks to stress test their balance sheets in order to make sure they could survive under
the sort of pressures that led to the near-collapse of Bear Stearns (Quinn (2008)). But according to
a recent survey conducted by the Economist Intelligence Unit of The Economist (2008), 85 percent
of senior executives of financial services firms worldwide say that their stress-testing practices are
not adequate and need to be improved.

This paper develops a Markovian framework in the Heath, Jarrow, and Morton (1992) (hereafter
HJM) paradigm for pricing credit derivatives on both single and multiple names. It is uniquely
suitable for credit risk stress testing since it is both tractable and general at the same time. In
particular, the models we develop have the following properties. First, our framework, being
Markovian, permits the riskless and risky credit spread curves to be analytically computed at any
point in time, based on a limited collection of state variables. Second, the models fully incorporate
the current riskless term structure information as well as the full credit spread curve information
for each firm. Third, the term structure of interest rate and credit spread volatilities could be
time homogeneous, level dependent, and can be initialized to closely match the observable term
structures of volatilities. Fourth, the actual structure for the volatilities of instantaneous interest
rates and credit spreads can be selected from a large class, and need not be restricted to the affine
family of Duffie and Kan (1996). Fifth, the models allow for arbitrary correlations between riskless
interest rates and credit spreads as well as arbitrary correlations between credit spreads of different
firms. Sixth, the models permit shocks to the economy that cause interest rates to jump as well
as credit spreads of firms to change. Finally, we permit the default of some firms to cause jumps
in the term structure of credit spreads of other surviving firms, a feature that allows defaults to
cluster over time.

Duffie and Singleton (1999b), Schönbucher (2000), and others, previously showed how the HJM
paradigm can be extended to include risky debt. Specifically, necessary restrictions on the dy-
namics of drift terms of forward rates and risky forward credit spreads have been identified that
permit risky bonds to be priced in an arbitrage-free environment. Unfortunately, the resulting
dynamics of all riskless forward rates and risky forward credit spreads are not in general Markov
in a finite number of state variables. As a result, implementing these existing models, even via

1For recent commentary see, for example, Larsen (2007), Whitehouse (2007) and Danielsson (2008).
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Monte Carlo simulation, is delicate and computationally intensive. The problem is compounded
further if the derivative security that needs to be priced depends on the credit spreads of multiple
names. In contrast, by imposing modest restrictions on forward volatilities and jumps we are able
to obtain low-dimensional Markovian representations for the term structures of riskless rates and
credit spreads. The constraints will leave free the specification of the volatilities of instantaneous
riskless rates and credit spreads for each name, and only involve curtailing the volatilities of forward
rates relative to their spot rates.

Most studies of dynamic term structure models have focused on cases where both the drift vector
and the instantaneous covariance matrix are affine functions of the state variables. Duffie and Kan
(1996) establish that these affine models allow for an exponential affine association between bond
prices and the underlying state variables. This appealing property has made affine models the
workhorse term structure models over the past decade.2 However, the analytical tractability of
affine term structure models comes at a cost. Specifically, the admissibility conditions entail a
tradeoff where reasonable degrees of stochastic or level-dependent volatility can only be obtained
at the expense of restricting correlations to perhaps unreasonable levels. Indeed, Dai and Singleton
(2003) study this tradeoff and conclude that to obtain negative correlations between state variables,
a feature particularly important if the state variables include the spot riskless rate and spot default
intensity, the degree of heteroscedasticity in yields and/or spreads has to be dramatically curtailed.

Ahn, Dittmar, and Gallant (2002) extend affine to quadratic term structure models and show
that the latter can permit flexibility in correlations while having a broader choice of yield het-
eroscedasticity. Using risk-free term structure data, Brandt and Chapman (2002) conclude that
quadratic term structure models are superior to affine models in terms of fitting historical volatility.
But quadratic models also have some drawbacks, in that, unlike affine models, they are not that
easy to estimate and they cannot readily handle regime shifts and jumps in the state variables.
For the risky term structure, Berndt (2007) employs nonparametric specification tests developed
in Hong and Li (2005) to evaluate one-factor reduced-form credit risk models. She shows that
popular univariate affine model specifications are strongly rejected by the data, findings which
also are consistent with the evidence in Pan and Singleton (2008). Given the limitations of the
workhorse term structure models, it seems desirable to search for a larger class of specifications that
complements the affine class of Duffie-Kan, while at the same time retaining analytical tractability.

In this paper we establish families of models which permit analytical representations of risk-
less and risky bond prices. Perhaps somewhat surprisingly, our analytical representations of the
yield curve and credit spread curves are affine functions of the state variables, even though our
models are typically outside the Duffie-Kan framework. We accomplish this by curtailing volatil-
ity structures of forward rates and forward credit spreads relative to their spot rate counterparts
without unnecessarily curtailing the spot rate volatilities. The number of state variables that result
depends largely on the type of constraint imposed, with the most restrictive constraint leading to

2Dai and Singleton (2000) specify restrictions that produce a maximally flexible and empirically identifiable affine
term structure model.
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the smallest collection of state variables. For example, in a model where riskless rates are driven
by one factor and credit spreads by a correlated second factor, the restriction requires forward
rate volatilities relative to their spot rate volatilities to be decaying exponentially as a function of
their maturities. A less restrictive model, however, could permit volatility humps in both the term
structures of riskless volatilities as well as the term structure of credit spread volatilities, properties
that have been well documented in the literature and properties that cannot be accommodated in
affine models of the same dimensionality (Dai and Singleton (2003)).

The advantage of our results is that we now have a large class of arbitrage-free riskless and
credit spread term structure models to work with that allows us to entertain models with level
dependent volatilities that permit positive as well as negative correlations between interest rates
and credit spreads. Equally exciting, the family of models we establish can be estimated in similar
ways to the affine models. Indeed, the implementation issues are typically less difficult since the
more interesting affine models often require numerical solutions to systems of Riccati differential
equations (Duffie, Pan, and Singleton (2000)). Such requirements are absent when estimating our
models.

When the credit spread dynamics and jumps are shut down, our models reduce to the multivari-
ate extensions of Ritchken and Sankarasubramanian (1995), developed by Inui and Kijima (1998).3

With credit spreads, our HJM models become more interesting, especially if credit spreads are
correlated with interest rates, and if jumps are permitted. For such cases, we identify volatility re-
strictions that ensure that finite-state-variable models can be identified which make implementation
issues associated with the HJM paradigm easy to address.4

Using time series data on term structures of both riskless rates and credit spreads, we illustrate
how models within this family can be estimated using extended Kalman filters. We also provide
a detailed road map for future empirical studies and show that, from a practical perspective, esti-
mating models in our family is typically no more difficult than estimating models in the workhorse
affine family of Duffie-Kan. We also provide two applications to illustrate the important role of
correlations between interest rates and credit spreads. First, we investigate options on risky debt.
Second, we value insurance contracts that offer protection against default of a counterparty to an
underlying derivatives position. For both applications we find prices to be very sensitive to the
interest rate-credit spread correlations.

After establishing powerful theory for single-name credit derivatives, we extend our framework
to allow stress tests to be conducted for credit contracts that depend on multiple names. In our
models, we introduce default correlation in three ways. First, we correlate the intensity processes

3For further Markovian models of the riskless term structure, see Ramaprasad and Chiarella (1995).
4Specifying a HJM model actually requires specifying structures for the volatilities of forward rates, and a family

of forward rate curves, such as the Nelson-Siegel family, under which the forward rate curve is initialized. The specific
model and family of curves for the calibration are said to be consistent if all forward rates produced by the model
are contained in the family of forward rate curves used in calibration. A series of interesting papers have addressed
this consistency issue, including Bjork and Christensen (1999), Bjork and Svensson (2001), La Chioma and Piccoli
(2007) and the references therein.
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of different firms. Second, we allow shocks to the economy to cause jumps not only to the riskless
yield curve but also to the credit spread curves of individual firms. Third, we permit the default
of certain firms to affect the entire credit spread curve of other surviving firm, with the size of
the impact depending on the surviving firm, the firm that defaulted and on the maturity of the
forward credit spread. In this regard, our models are an extension of Jarrow and Yu (2001), and
especially Yu (2007).5

With these additions, clustering of defaults is permissible. Further, unlike most copula models,
where the risk-neutral probabilities of default are static, our models permit risk-neutral default
probabilities to adjust dynamically in response to changing information.6 We provide two illus-
trative applications of the resulting models. The first extends our earlier example of pricing an
insurance contract that protects against counterparty credit risk in an underlying derivatives con-
tract to the case where the insurer itself may not be immune from default. Our numerical results
highlight the necessity of including contagion effects in our models. The second application demon-
strates that our family of models can be implemented for a large portfolio of names. Specifically,
we price CDS index tranches, where the underlying pool consists of a portfolio of 100 firms, each
credit spread curve of which is modeled by its own dynamics and appropriately initialized to its
date-0 values. Interestingly, since information is used on all credits in the portfolio, we can easily
explore how heterogeneity in the composition of the portfolio affect tranche values.

Our models permit events to occur which can trigger dramatic interest and/or credit shocks
that may permeate through a large number of firms. They are therefore suited for stress testing
alternative systemic scenarios. In light of the recent financial crisis, the proposed models offer a
unique framework to study the impact of small probability events that cause large correlated losses
throughout the economy.

The paper proceeds as follows. In Section 1, we describe general HJM models of riskless and
risky term structures. In Section 2, we present our main results that allow us to price derivatives
contracts on single names using Markovian HJM models. Section 3 illustrates how model parameters
can be estimated using extended Kalman filtering, and highlights the importance of interest rate-
credit spread correlations using two numerical examples. In Section 4, we extend the analysis to
portfolios of credits where default of certain firms can impact the credit spread curves of other
firms, provide applications and perform a number of stress tests. Section 5 concludes.

1 HJM Models for Defaultable Bonds

Consider a collection of I firms. The default state of these firms is summarized by the process
Y (t) = (Y1(t), Y2(t), ...., YI (t)), where Yi(t) = 1 if firm i has defaulted by time t, and Yi(t) = 0
otherwise. Set τi = inf{t|Yi(t) = 1}, and let X(t) be a vector of state variables that influence

5This incorporates findings by Collin-Dufresne, Goldstein, and Helwege (2003) and Jorion and Zhang (2007) that
major credit events at one firm can be associated with significant increases in spreads of other firms.

6Li (2000) describes the copula approach to modeling default correlation.
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riskless yields and credit spreads of corporate debt. Given the state variables (X(t), Y (t)), the
defaults of surviving firms over the next time increment are independent, time-inhomogeneous
Poisson events. The risk-neutral default intensity for firm i at date t is ηi(t). In addition to the
default intensity for each firm, we also require assumptions on recovery given default. Let �i(t)
denote the risk-neutral expected fractional loss in market value if default of firm i were to occur
at time t, conditional on the information available up to time t. Both ηi(t) and �i(t) could depend
on the state variables (X(t), Y (t)). The instantaneous credit spread, λi(t), relates to the default
intensity ηi(t) by λi(t) = ηi(t)�i(t). The modeling of the credit spreads can be delicate because it
is here where interesting dependence between defaults arises, and care has to be taken to ensure
that feedback effects between Y (t) and X(t) are properly taken into account.

We begin our analysis by first focusing on an important element of X(t), namely the riskless
term structure that certainly affects the yields on corporate debt. Let P (t, T ) be the price at date
t of a pure riskless discount bond that pays $1 at date T . Then:

P (t, T ) = e−
∫ T

t
f(t,u)du, (1)

where f(t, u) represents the date-t forward rate for the future time increment [u, u+dt]. We assume
that the risk-neutral dynamics of forward riskless rates follow a jump-diffusion process of the form:

df(t, T ) = μf (t, T ) dt + σf (t, T ) dzf (t) + cf (t, T ) dNf (t) given f(0, T ), ∀T ≤ T ∗, (2)

with the date-0 riskless forward curve initialized to the observable values. T ∗ is a distant time
horizon, and zf (t) = (z1(t), z2(t), ..., zm(t))′ is an m-dimensional standard Brownian motion. Nf (t)
is an independent Poisson process that models jump events, with

dNf (t) =

{
1 with probability ηf dt,
0 with probability 1 − ηf dt.

We assume that μf (t, T ), σf (t, T ) and cf (t, T ) satisfy standard technical conditions to ensure
a strong solution to (2) and well-behaved spot rate and bond price processes.7 The volatility
structure, σf (t, T ), is a predictable 1 × m vector process that at date t depends on observable
state variables, while cf (t, T ) is a simple deterministic function of time to maturity, T − t. The
instantaneous spot rate at date t is r(t) = f(t, t).

The dynamics of the bond price follows by applying Ito’s lemma for jump-diffusion processes:

dP (t, T )
P (t, T )

=
(
r(t) +

1
2
σp(t, T )σ′p(t, T ) −

∫ T

t
μf (t, u) du

)
dt− σp(t, T ) dzf (t)

+
(
e−Kp(t,T ) − 1

)
dNf (t), (3)

7See Heath, Jarrow, and Morton (1992) for the case with no jumps and Bjork, Kabanov, and Runggaldier (1997)
for the case with jumps.
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where

σp(t, T ) =
∫ T

t
σf (t, u) du, (4)

Kp(t, T ) =
∫ T

t
cf (t, u) du. (5)

Now consider a risky zero-coupon corporate bond. Its yield can be broken down into a riskless
yield and a credit spread. We first consider firms whose credit spreads do not depend on the default
state of other firms. For such a firm, firm A say, that has not defaulted prior to date t, we have:

dYA(t) =

{
1 with probability ηA(X(t)) dt,
0 with probability 1 − ηA(X(t)) dt,

Firm A’s default intensity, ηA(X(t)), could depend on riskless factors as well as on other factors.
The time to default, τA, is a stopping time, and we have YA(t) = 1{τA≤t}. With the loss given
default being �A(X(t)), the instantaneous credit spread is given by λA(t) = ηA(X(t))�A(X(t)) and
could depend on all state variables in X(t).

Let ΠA(t, T ) represent the date-t price of a bond issued by firm A that promises to pay $1 at
date T . Then,

ΠA(t, T ) = VA(t, T ) 1{τA>t},

where

VA(t, T ) = e−
∫ T

t (f(t,u)+λA(t,u)) du (6)

= P (t, T )SA(t, T ).

Here, f(t, u) is the date-t riskless forward interest rate for date u, as before, and λA(t, u) is the
date-t forward credit spread for firm A for the future time increment [u, u + dt]. The risk-neutral
dynamics of the riskless forward rates are given by (2), and the risk-neutral dynamics of the forward
credit spreads are given by

dλA(t, T ) = μA(t, T ) dt + σA(t, T ) dzA(t) + cfA(t, T ) dNf (t), ∀ t ≤ τA, (7)

with the date-0 riskless forward curve and the date-0 firm A credit spread curve initialized to
their observable values. The forward credit spreads are driven by a continuous diffusive term,
dzA(t), where zA(t) = (zA1(t), . . . , zAn(t))′ is an n-dimensional standard Brownian motion with
E(dzf (t) dz′A(t)) = ΣA

m×n dt. E denotes expectation with respect to the risk-neutral measure, and

(
ΣA
)
ij

= ρAij .

Further, when there is a jump in the riskless curve, then there is a corresponding jump in the
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credit spread curve. We assume that μA(t, T ), σA(t, T ) and cA(t, T ) satisfy standard technical
conditions to ensure a strong solution to (7) and well-behaved credit spread and risky bond price
processes. Similar to the riskless forward rates, the 1 × n volatility factor, σA(t, T ), is predictable,
while cfA(t, T ) is a deterministic function of time to maturity, T − t. The instantaneous credit
spread at t is λA(t) = λA(t, t).

If there are several firms, then the correlation between their credit spread innovations will
presumably be determined by the nature of the operations and the capital structure of the firms.
However, the credit spread of any specific firm at any point in time will not be influenced by defaults
of any other firm. From a computational point of view then, the price of a zero-coupon bond of
such a firm is not dependent on the path of credit spreads of other firms up to that date, but is a
function of the riskless yield curve up to that date, as well as of the dynamics of the firm-specific
credit spreads.

Application of Ito’s lemma for jump-diffusion processes yields:

dSA(t, T )
SA(t, T )

=
(
λA(t) +

1
2
σSA

(t, T )σ′SA
(t, T ) −

∫ T

t
μA(t, u)du

)
dt − σSA

(t, T ) dzA(t)

+
(
e−KfA(t,T ) − 1

)
dNf (t),

where

σSA
(t, T ) =

∫ T

t
σA(t, u) du, (8)

KfA(t, T ) =
∫ T

t
cfA(t, u) du. (9)

Proposition 1

Assume the dynamics of forward rates and forward credit spreads under the risk-neutral measure
are given by equations (2) and (7). Suppose that at the time of default of the risky bond, the recovery
value is proportional to the market value of the bond just prior to default. Then, to avoid arbitrage
opportunities, the following drift restrictions must hold:

μf (t, T ) = σp(t, T )σ′f (t, T ) − cf (t, T ) e−Kp(t,T ) ηf (10)

μA(t, T ) = σSA
(t, T )σ′A(t, T ) + σf (t, T )ΣA σ′SA

(t, T ) + σp(t, T )ΣA σ′A(t, T ) + gA(t, T ), (11)

where

gA(t, T ) = ηf

(
cf (t, T ) e−Kp(t,T ) − (cf (t, T ) + cfA(t, T )) e−(Kp(t,T )+KfA(t,T ))

)
. (12)

Proof: See Appendix A.

Equations (10) and (11) curtail the drift expressions in terms of the volatility structures. For
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the case with no jumps, the restriction on the drift terms for riskless forward rates under the risk-
neutral measure was first identified by Heath, Jarrow, and Morton (1992), and the corresponding
restrictions for risky forward rates were identified by several authors, including Schönbucher (2000).
In comparison, the above equations incorporate jumps in riskless yields and credit spread curves.
The dynamics of riskless and risky bond prices are not Markovian in a finite collection of state
variables. This creates computational difficulties since the entire riskless and risky term structures
have to be stored along all the paths that are generated.

2 Markovian Models For Defaultable Bonds

We now impose modest restrictions on volatilities and jumps that enable us to obtain low-dimensional
Markovian representations for the term structures of riskless interest rates and credit spreads. The
constraints will leave free the specification of the volatilities of instantaneous riskless rate and in-
stantaneous credit spread for each name. Instead, the constraints will involve the volatilities of
forward rates relative to their spot rates.

Specifically, we need to curtail the volatility structures σf (t, T ) = (σf1(t, T ), . . ., σfm(t, T ))
and the impact factor cf (t, T ) for riskless debt, as well as σA(t, T ) = (σA1(t, T ), . . . , σAn(t, T )) and
cfA(t, T ) for risky debt as follows:

σfi
(t, T ) = hfi

(t) e−κfi
(T−t), i = 1, . . . ,m, (13)

σAj (t, T ) = hAj (t) e
−κAj

(T−t)
, j = 1, . . . , n. (14)

Here, hfi
(t) and hAj (t) are the loadings that determine the volatility of the instantaneous riskless

rate and credit spread, respectively. They are predictable functions that depend on state variables
at date t, and are subject only to standard technical conditions that ensure strong solutions to (2)
and (7). We require the jump impact factors to be of the form:

cf (t, T ) = cf e
−γf (T−t), (15)

cfA(t, T ) = cfA e
−γfA(T−t). (16)

Substituting these expressions into equations (4), (5), (8) and (9), the volatility expressions
σp(t, T ) = (σp1(t, T ), . . . , σpm(t, T )) and σA(t, T ) = (σA1(t, T ), . . . , σAn(t, T )) are given by:

σpi(t, T ) = hfi
(t)K(t, T ;κfi

), i = 1, . . . ,m,

σSAj
(t, T ) = hAj (t)K(t, T ;κAj ), j = 1, . . . , n,

8



where K(t, T ;x) = 1
x

(
1 − e−x(T−t)

)
. The impact factors Kp(t, T ) and KfA(t, T ) are computed as:

Kp(t, T ) = cf K(t, T ; γf ),

KfA(t, T ) = cfAK(t, T ; γfA).

With these volatility and impact restrictions, Markovian models with exponential affine riskless
and risky bond prices can be obtained.

Proposition 2

(i) Under the risk-neutral dynamics (2), with the volatility and impact restrictions given in (13)
and (15), the riskless bond price at date t is linked to the forward price of the bond at date 0 by:

P (t, T ) =
P (0, T )
P (0, t)

exp

(
−

m∑
i=1

H1,i(t, T )ψ1,i(t) −
m∑
i=1

H2,i(t, T )ψ2,i(t) −H3(t, T )ψ3(t) +HJ(t, T )

)
,

where

H1,i(t, T ) =
1
κfi

K(t, T ;κfi
), i = 1, . . . ,m,

H2,i(t, T ) = − 1
κfi

K(t, T ; 2κfi
), i = 1, . . . ,m,

H3(t, T ) = cf K(t, T ; γf ),

HJ(t, T ) = cf ηf

∫ T

t
Lf (t, u) du.

and
Lf (t, T ) =

1
cf

(
e−cfK(t,T ;γf ) − e−cfK(0,T ;γf )

)
.

The dynamics of the state variables, initialized to 0 at date 0, are given by:

dψ1,i(t) =
(
h2
fi

(t) − κfi
ψ1,i(t)

)
dt+ κfi

hfi
(t) dzfi

(t),

dψ2,i(t) =
(
h2
fi

(t) − 2κfi
ψ2,i(t)

)
dt,

dψ3(t) = −γf ψ3(t) dt + dNf (t).

(ii) Given the risk-neutral dynamics (2) and (7), the volatility and impact structures specified in (13)
through (16), and assuming that at the time of default, the recovery value is proportional to the
market value of the bond just prior to default, the price of a defaultable zero-coupon bond is given

9



by ΠA(t, T ) = VA(t, T ) 1{τA>t}, where VA(t, T ) = P (t, T )SA(t, T ) and

SA(t, T ) =
SA(0, T )
SA(0, t)

exp

⎛
⎝−A0(t, T ) −

n∑
j=1

(K0,j(t, T )ξ0,j −K1,j(t, T )ξ1,j)

⎞
⎠

× exp

⎛
⎝ m∑
i=1

n∑
j=1

(K2,ij(t, T )ξ2,ij −K3,ij(t, T )ξ3,ij −K4,ij(t, T )ξ4,ij) −K5(t, T )ξ5(t)

⎞
⎠ .

Here, A0(t, T ) =
∫ T
t GA(t, u) du, where gA is defined in (12) and GA(t, u) =

∫ t
0 gA(v, u)dv, and

K0,j(t, T ) =
1
κAj

K(t, T ;κAj ), j = 1, . . . , n,

K1,j(t, T ) =
1
κAj

K(t, T ; 2κAj ), j = 1, . . . , n,

K2,ij(t, T ) =
ρAij(κfi

+ κAj )
κfi
κAj

K(t, T ;κfi
+ κAj), i = 1, . . . ,m, j = 1, . . . , n,

K3,ij(t, T ) =
ρAij
κAj

K(t, T ;κfi
), i = 1, . . . ,m, j = 1, . . . , n,

K4,ij(t, T ) =
ρAij
κfi

K(t, T ;κAj ), i = 1, . . . ,m, j = 1, . . . , n,

K5(t, T ) = cfAK(t, T ; γfA).

The dynamics of the state variables, all initialized at date 0 to be 0, are given by:

dξ0,j(t) = (h2
Aj

(t) − κAjξ0,j(t)) dt + κAjhAj (t) dzAj (t),

dξ1,j(t) = (h2
Aj

(t) − 2κAj ξ1,j(t)) dt,

dξ2,ij(t) = (hfi
(t)hAj (t) − (κAj + κfi

)ξ2,ij(t)) dt,

dξ3,ij(t) = (hfi
(t)hAj (t) − κfi

ξ3,ij(t)) dt,

dξ4,ij(t) = (hfi
(t)hAj (t) − κAjξ4,ij(t)) dt,

dξ5(t) = −γfAξ5(t) + dNf (t).

Proof: See Appendix A.

This Proposition is a main theoretical contribution of our paper. It delivers exponential affine
riskless and risky bond prices. This is perhaps surprising given that the instantaneous covariance
matrix is not necessarily an affine function of the state variables. Indeed, the volatility loadings,
hf (t) and hA(t), can be chosen from a wide range of functions, and are subject only to standard
technical conditions that ensure strong solutions exist for the stochastic differential equations.
This feature greatly expands the possible choice of volatility structures that can be used to price
derivatives. It comes at a small cost of having to carry a few path statistics that allow a low-level

10



Markovian representation.

As an example, the volatility of spot interest rates and credit spreads could be specified as

hf (t) = min(|h̃f (t)|, h̄f ), (17)

hA(t) = min(|h̃A(t)|, h̄A), (18)

for large yet finite constants h̄f and h̄A. In particular, h̃f (t) and h̃A(t) could be affine in the state
variables. Since the spot and forward rates are affine functions of the state variables given by (A.2)
and (A.3) in the appendix, this means that the volatilities could be affine functions of points on the
forward riskless yield or credit spread curves, a specification that clearly falls outside the Duffie-
Kan class of models. While not always necessary, to prevent explosive processes and to ensure the
resulting stochastic differential equations have strong solutions, we place bounds on the volatility
structures.

The first part of the Proposition shows that, given an initial riskless term structure, risk-
less bond prices at any future date are fully characterized by 2m + 1 state variables, namely
(ψ1(t), ψ2(t), ψ3(t)), where ψ1(t) and ψ2(t) are of size m. When interest rates are driven by one
stochastic driver (m = 1) with no jumps, the model reduces to Ritchken and Sankarasubramanian
(1995). For the slightly more general case of m > 1, n = 0 and no jumps, the model corresponds
to that of Inui and Kijima (1998). With interest rate jumps we get a modest extension. And when
n is released from zero, we get a large new set of tractable models for risky bond prices.

The second part of Proposition 2 states that forward credit spreads of all maturities at date
t are linked to the credit spread curve at date 0 through a total of at most 2n + 3mn + 1 state
variables. Risky bond prices are determined by these 2n + 3mn + 1 state variables in addition to
the 2m+ 1 state variables for the riskless factors. Collectively then, the vector X(t) consists of at
most 3mn + 2(m + n + 1) state variables. Note, however, that these 3mn + 2(m + n + 1) state
variables are driven by a much smaller set of m+ n Brownian motions. This is crucial, as it limits
the computational burden of estimating parameters for our proposed class of models to that of
m+ n-dimensional affine models with jumps. For example, if m = 3 and n = 2, the total number
of state variables is at most 30. The estimation issues of such a model are comparable to an affine
model with five sources of uncertainty.

To illustrate the benefits of Proposition 2, consider a problem where cash flows occur monthly
over a 10-year time horizon, and that the terminal cash flow of some credit derivative depends on
the riskless and risky discount function going out another 20 years. In a typical HJM model, the
forward rates of 30×12 = 360 monthly interest rates as well as 360 credit spreads would need to be
tracked. As such, the model is Markovian in 720 state variables. If the time partitions are refined to
weeks, then weekly forward rates and spreads must be computed and the number of state variables
increases by a factor of four to 2, 880. In contrast, with our Markovian models, a maximum of nine
state variables need to be maintained, no matter how much the partition is refined.

To further highlight the computational effort involved with our models, consider the simple
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specification with two stochastic drivers, one for interest rates (m = 1) and one for credit spreads
(n = 1), and no jumps.

Corollary to Proposition 2

For the case m = n = 1 and no jumps, equivalent representations for riskless bond prices, P (t, T ),
and risky bond prices, ΠA(t, T ) = VA(t, T )1{τA>t}, where VA(t, T ) = P (t, T )SA(t, T ), are:

P (t, T ) =
P (0, T )
P (0, t)

exp
(
−K(t, T ;κf ) (r(t) − f(0, t)) − 1

2
K2(t, T ;κf )ψ(t)

)
, (19)

SA(t, T ) =
SA(0, T )
SA(0, t)

exp

⎛
⎝−K(t, T ;κA) (λA(t) − λA(0, t)) −

3∑
j=1

Kj(t, T )ξj(t)

⎞
⎠ . (20)

The terms in the exponent of SA(t, T ) are given as:

K1(t, T ) =
1
2
K(t, T ;κA)2,

K2(t, T ) = ρA
(

1
κf

+
1
κA

)
(K(t, T ;κA) −K(t, T ;κf + κA)) ,

K3(t, T ) =
ρA

κA
(K(t, T ;κf ) −K(t, T ;κA)) .

The dynamics of the state variables are given by:

dr(t) = μr(t) dt + hf (t) dzf (t), (21)

dλA(t) = μλA
(t) dt + hA(t) dzA(t), (22)

together with the path statistics:

dψ(t) =
(
h2
f (t) − 2κfψ(t)

)
dt, (23)

dξ1(t) =
(
h2
A(t) − 2κAξ1(t)

)
dt, (24)

dξ2(t) = (hf (t)hA(t) − (κf + κA)ξ2(t)) dt, (25)

dξ3(t) = (hf (t)hA(t) − κf ξ3(t)) dt. (26)

The drift terms are given by

μr(t) = κf (f(0, t) − r(t)) +
d

dt
f(0, t) + ψ(t),

μλA
(t) = κA(λA(0, t) − λA(t)) +

d

dt
λA(0, t) +

3∑
j=1

kjξj + ρAhf (t)hA(t),

where k1 = 1, k2 = ρA
(
κf

κA
+ 1
)
, k3 = ρA

(
1 − κf

κA

)
.
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Proof: See Appendix A.

For the above model, the number of state variables drops to six. Four of these (ψ(t), ξ1(t), ξ2(t)
and ξ3(t)) are simply path statistics, that is, deterministic functions conditional on sample paths
for r and λA. When interest rates and credit spreads are uncorrelated, the number of state variables
drops to four as ξ2(t) and ξ3(t) are no longer needed. Finally, if the predictable functions, hf (t) and
hA(t), are constants, then all path statistics fall away, and the generalized Vasicek (1977) models
for both riskless and risky bond prices obtains, with just the two state variables r(t) and λA(t).

The state variables for the riskless term structure in these simple model are Φ(t), say, where
Φ(t) = {r(t), ψ(t)}. The state variables for the price of a bond issued by firm A is XA(t), say, where
XA(t) = {Φ(t),ΥA(t)}. Here, ΥA(t) = {λA(t), ξ1(t), ξ2(t), ξ3(t)} are the additional state variables
for the credit spreads.

An attractive feature of the Markovian HJM models is that we can easily map the path statistics
to unique points on the term structure. As an illustration, we again consider the simple specification
with two stochastic drivers (m = n = 1) and no jumps. From equation (19), we obtain the forward
rate expression for date T = t+ s as:

f(t, t+ s) = f(0, t+ s) + e−κf s (r(t) − f(0, t)) +
e−κf s

κf

(
1 − e−κf s

)
ψ(t).

(For details, see equation (A.4) with T = t + s in Appendix A.) We can then replace the path
statistic ψ(t) with the forward rate f(t, t + s). Other forward rates can be expressed as affine
combinations of the new state variables, r(t) and f(t, t+ s). In particular, for maturity t+ s̃,

f(t, t+ s̃) = f(0, t+ s̃) +
(
e−κf s̃ −W (s, s̃;κf )

)
(r(t) − f(0, t))

+W (s, s̃;κf )(f(t, t+ s) − f(0, t+ s)),

where W (s, s̃;κf ) = 1−e−κf s̃

1−e−κf s . Hence changes in all forward rates can be expressed as functions
of changes in two forward rate points on the curve.8 This is in stark contrast with the general
(non-Markovian) HJM models that require all points on the forward rate curve be carried.

Similarly, for the credit spread curve, equation (20) for T = t+ si yields

λA(t, t+ si) = λA(0, t+ si) + e−κAsi(λA(t) − λA(0, t)) +
3∑
j=1

Dj(si, κA, κf , ρA) ξj(t),

where Dj(si, κA, κf , ρA) are the coefficients of ξj(t) which are provided in the appendix as the
coefficients in equation (A.5). The three state variables ξj(t), j = 1, 2, 3, can therefore be mapped
onto three forward rates, with maturities s1, s2, s3. Hence, all points on the credit spread curve can
be represented as maturity-dependent combinations of just four points on the credit curve. This,

8For more details of transforming the state variables to points on the forward curve, see Bliss and Ritchken (1996),
and especially Chiarella and Kwon (2002).
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again, is in contrast to the more general HJM model that requires all points on the credit curve.

Are the Volatility Restrictions Severe? The restrictions that permit a Markovian represen-
tation assume that forward rate volatilities of increasing maturities, normalized by the spot rate
volatility, are exponentially decaying with maturity. Empirical evidence suggests that there could
be a hump in the volatility structure of forward rates.9 This feature can easily be accommodated
in our multifactor models (m > 1, n > 1). In addition, Proposition 2 can be generalized to en-
able humped volatility structures even when m = n = 1. In fact, we are able to establish arbitrary
shapes in the term structure of volatilities. For example, in a single-factor model for riskless forward
rates, we could replace (13) by:

σf (t, T ) = hf (t)
k∑
i=1

ai e
−κi(T−t), k > 1, (27)

which permits humped structures for volatilities. To illustrate this, consider the case where k = 2.
Substituting equation (27) into the HJM drift restriction (10), using the resulting expression in
equation (2), and then integrating leads to:

f(t, T ) = f(0, T ) +
2∑
i=1

e−κi(T−t) ψ(i)(t) −
2∑
i=1

a2
i

κi
e−2κi(T−t) ψ(i,i)(t)

− a1a2

(
1
κ1

+
1
κ2

)
e−(κ1+κ2)(T−t) ψ(1,2)(t),

where the dynamics of the state variables are given by:

dψ(i)(t) =
(
ai

(
a1

κ1
+
a2

κ2

)
h2
f (t) − κiψ

(i)

)
dt + aihf (t) dzf (t), i = 1, 2,

dψ(i,j)(t) =
(
h2
f (t) − (κi + κj) ψ(i,j)(t)

)
dt, i, j = 1, 2.

Compared to our single-factor model of forward riskless rates in the Corollary to Proposition 2,
the entire term structure requires three additional state variables, while keeping the number of
stochastic drivers at m = 1. The volatility parameters ai and κi, i = 1, 2, can easily be chosen so
as to closely match the potentially humped volatility term structure of forward rates. In a similar
way, the volatility term structures of credit spreads can be generalized to permit humps as well.

Relationship with Duffie-Kan Affine Models. To set our results in perspective, we explain
the relationship between our framework and that of Duffie and Kan (1996). Focusing on riskless
bonds, the latter specify the spot rate as an affine function of some m-dimensional state vector,
X(t), as r(t) = δ0 + δ′1X(t). The risk-neutral dynamics of the state vector are given by dX(t) =

9For discussions of this issue, see Litterman and Scheinkman (1991), Heath, Jarrow, Morton, and Spindel
(1992), Amin and Morton (1994), Goncalves and Issler (1996) and Brigo and Mercurio (2001).
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μX(t) dt + σX(t) dz(t), where μX(t) = (μX1(t), . . . , μXm(t))′ and σX(t) = (σX1(t), . . . , σXm(t))′.
Bond prices are computed as P (t, T ) = Ete

− ∫ T
t r(u) du. Duffie and Kan find that a sufficient

condition for the bond price to be exponential affine in the state variables is that the risk-
neutral drift and instantaneous variance of the state vector are affine in X(t). To derive nec-
essary conditions, they observe that if P (t, T ) = eA(t,T )+B(t,T )X(t) for some functions A(t, T ) and
B(t, T ) = (B1(t, T ), . . . , Bm(t, T ))′ with A(t, t) = 0 and B(t, t) = 0, the following fundamental PDE
has to be satisfied:

a(X(t), t, T ) =
m∑
i=1

Bi(t, T )μXi(t) +
1
2

∑
i

∑
j

Bi(t, T )Bj(t, T )σXi(t)σ
′
Xj

(t), (28)

where a(X(t), t, T ) = r(t)−At(t, T )−B′
t(t, T )X(t) and subscripts on A and B represent derivatives.

This is equation (3.6) in Duffie and Kan (1996), which implies that a necessary condition for
exponential affine bond prices is the existence of N = m + m(m+1)

2 maturities t1, . . . , tN , with
t < t1 < .... < tN and a N ×N matrix C(t1, . . . , tN ) such that

C(t1, . . . , tN )

⎛
⎜⎜⎜⎜⎜⎜⎝

μ′X(t)
σX1(t)σ

′
X1

(t)
σX1(t)σX2(t)

. . .

σXm(t)σ′Xm
(t)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝

r(t) −At(t, t1) −B′
t(t, t1)X(t)

. . .

r(t) −At(t, tN ) −B′
t(t, tN )X(t)

⎞
⎟⎠ , (29)

where only σXi(t)σ
′
Xj

(t) with i ≤ j are included on the left-hand side. The necessary condition for
exponential affine bond prices in Duffie and Kan assumes that C = C(t1, . . . , tN ) can be chosen to
be non-singular. Clearly, if that is the case, we can multiply both sides in (29) by C−1 to obtain
μX and σXσ′X as affine functions of X(t). But if such a non-singular C matrix does not exist, then
the necessary condition does not need to hold.

For our family of models, C is indeed singular. To see this, consider the simplest case where
there is one stochastic driver and no jumps. In the notation of the Corollary to Proposition 2, the
state vector X(t) = (r(t), ψ(t))′ has risk-neutral dynamics:

dr(t) = μr(t) dt + hf (t) dzf (t),

dψ(t) = μψ(t) dt.

The fundamental PDE in (28) can be written as

a(X(t), t, T ) = B1(t, T )μr(t) +B2(t, T )μψ(t) +
1
2
B2

1(t, T )h2
f (t), (30)

where a(X(t), t, T ) = r(t) − At(t, T ) − B′
1t(t, T )r(t) − B′

2t(t, T )ψ(t). Since a(X(t), t, T ) is affine
in X(t), the same has to be true for the right-hand side in equation (30). And as long as (i)
B2(t, T ) = −1

2B
2
1(t, T ) and (ii) μr(t) and μψ(t) − h2

f (t) are affine in X(t), that is indeed the
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case, whether or not the instantaneous variance h2
f (t) is affine in X(t). Both (i) and (ii), as well

as (30), are clearly satisfied in the Corollary to Proposition 2, where, with f(0, t) = θf , μr(t) =
κf (θf − r(t)) + ψ(t), μψ(t) = h2

f (t) − 2κψ(t), B1(t, T ) = −K(t, T ;κf ), B2(t, T ) = −1
2K(t, T ;κf )2

and A(t, T ) = θ(K(t, T ;κf )− (T − t)). But as long as B2(t, T ) = −1
2B

2
1(t, T ) holds, the second and

third column of C in equation (29) are perfectly correlated, and hence C is singular for any choice
of maturities.

The above analysis highlights the fact that our family of models is not inconsistent with Duffie
and Kan, but rather complements their results. Our models are built on different underlying
stochastic processes, where the number of state variables is larger than the number of stochastic
drivers, and the drift terms of the path statistics offset spot rate volatilities in a manner that allows
bond yields to be affine in the states, even though the state variables themselves do not have to be
affine processes. As a result, the family of models we have established are very rich in structure,
yet are easy to implement.

3 Empirical Evidence and Sensitivity Analysis

This section describes a road map for empirical work for our proposed class of models, and provides
an estimation example for a specific model satisfying the Corollary of Proposition 2. We also per-
form a sensitivity analysis that highlights the importance of incorporating the interaction between
credit spreads and interest rates into our model structure using two additional examples.

3.1 Empirical Evidence

The majority of empirical studies on the term structure of riskless rates have been conducted within
the affine, and to a lesser degree the quadratic, families.10 Much fewer studies have focused on the
Markovian HJM family. Examples include the cross sectional studies by Fan, Gupta, and Ritchken
(2003 and 2007) on Markovian HJM models for riskless rates. While the former study uses cap
and swaption data and shows that Markovian models can explain the volatility skew in derivatives
markets very well, the latter argues that a one-factor multi-state-variable Markovian HJM model
can price caps and swaptions as well as four-factor models where the volatility structure is identified
from a principal component analysis as in Longstaff, Santa-Clara, and Schwartz (2001).

Studies that exploit information not only in the cross section but also the time series of bond
yields necessarily rely on specifications under both the physical and risk-neutral measures, and
are more likely to empirically discriminate between models. There are a few studies of Markovian
HJM models for riskless rates that are carried out along these dimensions. For example, De Jong
and Santa-Clara (1999) find that their one-factor two-state HJM Markovian models outperform
one-factor affine term structure models as proposed by Duffie and Kan (1996). Chiarella, Hung,

10See Dai and Singleton (2003) for a detailed survey on dynamic term structure models, and Piazzesi (2003) for a
survey paper on the use of affine term structure models in macroeconomics.
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and To (2009) develop an estimation framework that can be applied to the class of Markovian
HJM models. They examine several multifactor models in international markets, with extremely
promising results.

Empirical studies on the term structure of credit spreads have come under less scrutiny than the
term structure of riskless rates. Theoretical option models, starting with Merton (1974), Longstaff
and Schwartz (1995) and Jarrow, Lando, and Turnbull (1997), among others, permit credit spread
curves to be increasing, decreasing or hump-shaped.11 Given the increased liquidity over the past
five years of the credit default swap (CDS) market, where insurance against default is traded, firm-
specific credit spread curves can now be easily identified. Further, similar to riskless rates, the term
structure of credit spread volatilities can be analyzed.

In this section, we explain how the parameters of our family of models can be readily estimated
using full information on both the time series and cross section of riskless yields and credit spreads.
The top panel of Figure 1 shows the time series of weekly (Wednesday) riskless interest rates, for
maturities ranging from one to ten years. The data is provided by Gurkaynak, Sack, and Wright
(2006). Our sample covers the period from February 1, 2005 until May 15, 2009. The median
5-year riskless rate during that period was 4.1%. The bottom panel shows the time series of credit
spreads for two large U.S. firms, in this case, AMR and Lennar. Credit spreads are measured as
at-market default swap rates, which are provided by Credit Market Analysis, Inc. (CMA). AMR
Corporation is the parent company of American Airlines, the second largest airline in the world,
and Lennar is one of the top two homebuilders in the U.S. During the sample period, AMR and
Lennar had a median S&P long-term credit rating of B and BBB, respectively, representing the
high- and medium-credit-quality spectrum of the CDS market. The median 5-year CDS rates were
10.8% (AMR) and 88 basis points (Lennar).12

Figure 1 Here

The plots clearly reveal significant time variation in the levels and shapes of the riskless yield and
credit spread curves. Interest rates and credit spreads generally move in opposite directions, while
we observe positive correlations between changes in credit spreads of the two firms. Interestingly, the
correlations among changes in riskless yields of different maturities are lower than the correlations
among credit spread changes of the same maturities for the two firms, indicating that the former
are driven by a larger number of stochastic factors.

11Empirical studies conducted to investigate the shape of the term structure of corporate bond yield spreads
include Sarig and Warga (1989), Fons (1994), Bohn (1999), Helwege and Turner (1999), He, Hu, and Lang (2004)
and Bedendo, Cathcart, and El-Jahel (2007).

12Unlike most of the other legacy airlines, AMR has not filed for bankruptcy, has consequently not been able to
restructure itself under protection from creditors, and, as a result of especially high labor and pension costs, has been
at a competitive disadvantage. AMR’s debt is rated speculative grade, and its credit spreads have been extremely
high, even prior to the current financial crisis. Lennar, on the other hand, had investment-grade debt prior to the
subprime crisis, but has been downgraded to BB since. Both firms have liquid CDS contracts and are constituents
of the Markit CDX index family: AMR is in the high-yield index (CDX.NA.HY) while Lennar used to be part of the
investment-grade index (CDX.NA.IG), but is now a member of the crossover index (CDX.NA.XO).
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We use the data to illustrate the estimation procedure for a simple model in the family provided
by the Corollary to Proposition 2, but the same procedure carries forward to more general models.
For this case, the state variables are:

X(t) = (r(t), λA(t), ψ(t), ξ1(t), ξ2(t)ξ3(t))
′ ,

where r(t) and λA(t) are the two factors that capture instantaneous riskless rates and credit spreads,
and ψ(t), ξ1(t), ξ2(t) and ξ3(t) are simple path statistics.

We begin with the risk-neutral dynamics of our six state variables given in equations (21)
through (26). Since we use time series data, we also need to specify structures for the market prices
of risk. Let νf (t) denote the market price of interest rate risk and let νA(t) be the price of credit risk
orthogonal to interest rate risk. With these assumptions, the dynamics under the data-generating
measure are given by:

dr(t) = (μr(t) + νf (t)hf (t)) dt + hf (t) dwf (t),

dλA(t) =
(
μλA

(t) + νf (t)ρAhA(t) + νA(t)
√

1 − ρA
2
hA(t)

)
dt + hA(t) dwA(t),

where wf (t) and wA(t) are standard Brownian motions with respect to the data-generating measure.
The path statistics follow dynamics as in equations (23) to (26). We assume that the market prices
of risk are proportional to their spot rate volatilities as:

νf (t) = νf hf (t),

νA(t) = νA hA(t).

For our numerical examples, we choose a model for volatilities that does not overlap with the affine
class. In particular, we assume that σf (t, T ) = hf (t)e−κf (T−t) and σA(t, T ) = hA(t)e−κA(T−t),
where hf (t) and hA(t) are as in (17) and (18) with h̃f (t) = σfr(t) and h̃A(t) = σAλA(t). The
bounds on the spot rate volatilities ensure that the change of measure is arbitrage free.13 In a
stationary model, the yields on long bonds converge to a constant. Therefore, if considering the
steady-state behavior, we can assume the initial forward rate curve to be flat, with f(0, t) = θf

and, similarly, λA(0, t) = θA. While not necessary, this simplifies the drift terms in the dynamics
of the two state variables r(t) and λA(t).

We estimate the parameters of the model using an extended Kalman filter. The details of the
procedure are summarized in Appendix B. The measurement equation is given as:

y(t) = M0(Θ) +M1(Θ)′X(t) + ε(t), (31)
13Heath, Jarrow, and Morton (1992) discuss this approach in the context of their proportional forward rate volatility

structure. Amin and Morton (1994) find that ignoring the bounds for this structure has an insignificant effect for
valuing derivatives under realistic parameters. We confirm their result in the context of our numerical implementation.
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where y(t) is a vector that collects riskless yields and credit spreads of different maturities. While
model-implied values for y(t) can be computed from equations (19) and (20), we assume that the
data are measured with errors. Measurement errors are assumed to be uncorrelated and normally
distributed with mean zero and variance-covariance matrix, R say, with the variance of riskless
yield errors being σ2

εf
and the variance of credit spread errors being σ2

εA
. Given the vector of model

parameters,
Θ =

{
θf , θA, κf , κA, σf , σA, νf , νA, ρ

A, σεf , σεA
}
,

the form for M0(Θ) and M1(Θ) is determined by the Corollary to Proposition 2.

In addition to the measurement equation, we need a discretized transition equation:

X(t+ Δt) = F0(t,Θ) + F1(t,Θ)X(t) + v(t+ 1), (32)

where Δt is the width of the time increment between observations. Under the data-generating
measure, conditional on information up to time t, v(t+ 1) is normally distributed with mean zero
and variance-covariance matrix Q(t,Θ). A detailed derivation of F0(t,Θ), F1(t,Θ) and Q(t,Θ) is
provided in Appendix B. These functions depend on the state variables X(t), hence the need for
an “extended” Kalman filter.

In our implementation, we first estimate the interest rate parameters θf , κf , σf , νf and σεf from
the term structure time series data. To estimate the credit spread dynamics using firm-specific data,
we follow Duffee (1999) and assume that the riskless parameters estimated in the first phase are the
true parameters, and that the values of r(t) and ψ(t) predicted by the Kalman filter recursion are
their true values. To estimate the parameters for riskless yields, we include the 1- through 10-year
maturity yields into the measurement equation (31). For credit spreads, we rely on the 1-, 3-, 5-,
7- and 10-year CDS rates. To better interpret our findings, we fix θf and θA at the long-run mean
of 1-year riskless yields and credit spreads, respectively.

Table 1 reports the parameter estimates and their Monte Carlo standard errors for riskless rates,
credit spreads of AMR and credit spreads of Lennar. All parameter estimates are significantly
different from zero, except for the market prices of interest rate and credit risk. These prices are
notoriously difficult to estimate (see, for example, De Jong and Santa-Clara (1999)), which calls
for alternative structures, perhaps for market prices of risk that are affine in volatilities rather than
proportional, to be explored. The top panel of Figure 2 compares the time series of fitted riskless
yields with their observed counterparts. The fitted 5-year yield closely tracks the actual 5-year yield
over the entire sample period. However, the fit of the 1-year riskless yield is, on average, biased low
with rather poor fits in the middle of the sample period. At the long horizon, the fitted 10-year
yield (not shown) closely tracks its actual counterpart until the recent financial crisis. While the
one-factor model for riskless rates does a reasonable job, not surprisingly, the fit is not excellent.
This performance can be improved by incorporating the volatility hump in equation (27) and/or
by adding additional stochastic drivers.
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Table 1 and Figure 2 Here

The middle and bottom panel of Figure 2 show the model-implied credit spreads for AMR and
Lennar vis-a-vie their data counterparts. The fits appear to be fairly reasonable across maturities.
Note that 5-year credit spreads for AMR fluctuate from a low of 3.35% in November 2006 to a
high of over 56% in July 2008. Even before the recent financial crisis, AMR was plagued with
volatile credit spreads, a fact that is well captured by the model. The extreme volatility during
the financial crisis is also well picked up by the model. Disguised, perhaps by the scale, is the fact
that the fit is not always excellent. Indeed, there are time periods where the percentage errors in
5-year credit spreads are as large as 25%, suggesting that the one-factor model can be improved
upon. In contrast to AMR, the credit spreads of Lennar were low and fairly stable prior to Spring
2007. Since then credit spreads have surged. The plots clearly indicate that Lennar’s short-term
credit spreads were more volatile than the longer-maturity spreads. For the most part, the model
spreads closely track the actual values, but like AMR, there were occasions where errors were
significant. In summary, the two examples suggest that improvements in the fit can possibly be
obtained by adding additional structure to the volatilities of credit spreads, changing the structure
for the market price of credit risk, and/or increasing the number of stochastic drivers.

3.2 The Importance of Interest Rate-Credit Spread Correlations

We illustrate the importance of incorporating the interaction between credit spreads and interest
rates into our model structure with two examples.

3.2.1 Bond Options

We simulate the price of a 3-year European call option on a 5-year zero-coupon bond issued by a
risky firm, A say. Figure 3 shows the percentage change in the value of the at-the-money option as
the correlation between the riskless and the risky diffusive terms, ρA, moves away from zero.14 As
ρA becomes negative, as is the usual case in U.S. corporate bond markets (see, for example, Duffee
(1999)), the price of the at-the-money option decreases. For our benchmark set of parameters, as
ρA decreases from 0 to -0.9, option prices decline dramatically by more than twenty percent. The
owner of the call option profits from low interest rates and low credit spreads at expiration, which
implies that the value of the call option increases as ρA increases. Note that the sensitivity to ρA

is stronger for out-of-the-money options. It diminishes as the option moves into the money.

Figure 3 Here
14Based on the empirical evidence in Section 3.1, a benchmark set of parameter values is given by m = n = 1

and κf = κA = 0.1, h̃f (t) = r(t), h̃A(t) = 0.5λA(t), and h̄f = h̄A = 106. When jumps are permitted, they have a
dampening effect on rates as a function of maturity, with γf = γfA = 0.5. We set the jump size parameter cf equal
to -0.01. We assume there is no recovery at default, and that the initial yield curve is flat at 4% and the credit spread
curve is flat at 5%. Our Monte Carlo simulations use weekly time steps, and 10,000 sample paths with antithetic
sampling.
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In Table 2, we compare the sensitivity of bond option prices to ρA to the sensitivity of the
option prices to the jump intensity, ηf , and the impact factor, cfA. We find that even when the
jump intensity is increased to 0.5, while keeping cfA at a rather high level of 2.5%, the impact of the
shocks are relatively minor. We also document a lack of sensitivity of option prices to an increase
in the impact factor, cfA. Specifically, we increase cfA to 0.1, while keeping the jump intensity
constant at 100 basis points, with very little change in option prices. The lack of sensitivity of
option prices to jump intensities and impact factors is primarily due to the fact that the initial
credit spread curves are kept fixed. Therefore, increasing the frequency of jumps, or their impact
factors, forces the risk-neutral dynamics to adjust in an offsetting direction so as to keep credit
spreads curves in line with their initially observed values.

Table 2 Here

3.2.2 Insuring Credit Risk in Derivatives Contracts

The recent crisis has highlighted the importance of appropriately pricing credit risk in all financial
transactions. Here we focus on the pricing of counterparty credit risk in a derivatives contract.
Specifically, we consider an insurance contract that provides protection on an over-the-counter
derivative by ensuring that the instrument will be fully replaced upon the default of the derivative’s
counterparty. For our numerical implementation, we assume that firm F enters a 5-year floating-
for-fixed interest-rate swap with counterparty B. Firm F is concerned that firm B will default
before the maturity of the interest-rate swap contract. It therefore purchases counterparty risk
insurance from a third party, firm A, in form of a 5-year contract that stipulates that if firm B
defaults within the next five years, the third-party protection seller A pays to firm F the market
value of the floating-for-fixed swap, as long as it is positive at the time of default. In return, F
pays A a quarterly insurance premium until the end of the 5-year term or until default of firm B,
whichever occurs first. In this application, we ignore any potential default risk associated with the
third-party supplier of the insurance (firm A), but later we reconsider contracts where the insurer
may default. Insurance contracts of this form are quite common, and an over-the-counter market
for such products, also called contingent credit default swaps (CCDS), has emerged.

To compute the at-market insurance premium, or CCDS rate, assume that the interest-rate
swap pays every six months, in arrears. Let T1 = 6 months, T2 = 1 year, etc. until TK = T years.
The ex-coupon market value of the swap at some coupon date Ti is given by:

s

2

K∑
j=i+1

P (Ti, Tj) − (1 − P (Ti, T )),

where s denotes the annualized at-market 6-month swap rate determined at time 0. At Ti, firms F
and B also pay interest in the amount of 1/P (Ti−1, Ti) − 1 and s, respectively. If firm B defaults
at time τB , Ti−1 < τB < Ti, then the time-τB market value of the interest-rate swap, W (τB), can
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be computed as:

W (τB) =
s

2

K∑
j=i

P (τB , Tj) − (P (τB , Ti) − P (τB , T )) − P (τB , Ti)
(

1
P (Ti−1, Ti)

− 1
)
.

For sample path z, the time-0 value of the protection leg of the CCDS contract is

V
(z)
seller = e−

∫ τB
0 r(z)(u) du max

{
0,W (z)(τB)

}
. (33)

The fair market value of firm F’s insurance payments can be computed as CVbuyer, where C is the
annualized CCDS rate and

Vbuyer =
1
4

4T∑
j=1

P (0, j/4)SB (0, j/4).

The at-market CCDS rate is that choice for the insurance premium C at which the market values
of the payments by the buyer and seller of protection are equal.

Table 3 reports simulation results for the CCDS contract. The first two columns show the
sensitivity of prices to the correlation between interest rates and credit spreads when jumps are not
present. A negative correlation between the riskless term structure and the credit curve implies that
at times when default risk is high (and hence the CCDS is likely to trigger payment), interest rates
are low, and the value of the swap contract to F is high. Conversely, if ρB is positive, then at times
when default risk is high, interest rates are high, and the value of the swap to F is low, possibly
negative. As a result, the CCDS rate increases as correlation decreases. The second two columns of
the table report the sensitivity of prices to an increase in the jump intensity. We increase ηf from
zero to 0.5, while keeping the impact factor cfB constant at 2.5%, and find that although greater
jump intensities add to the value of the insurance, overall, the impact of increasing intensities is
small. Similarly, increasing the impact factor cfB from zero to 0.1 has limited implications for
the at-market CCDS rate. Overall, these results echo the results for bond options although, on a
relative basis, the impact of ρB on CCDS rates is much larger.

Table 3 Here

In summary, our two examples stress the fact that credit-sensitive products can be highly
sensitive to the diffusive correlation between interest rates and credit spreads. A unified framework
that prices all kinds of credit derivatives therefore needs to be flexible enough to allow for interest
rate-credit spread correlations.
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4 Systemic Credit Shocks and Default Clustering

We now extend the analysis of the earlier section to more fully incorporate systemic risk features
and clustering of defaults. The primary motivation for this extension is to permit meaningful stress
tests to be conducted on a portfolio of credits.

So far we incorporate systemic credit shocks by allowing a single market factor to induce an
exogenous jump not only in riskless rates, but also in each firm’s instantaneous credit spreads. In
addition, our models build in correlated defaults by correlating the default intensities. But condi-
tional on the realization of the default intensities, default rates are independent across firms. This
conditional independence may prevent us from generating the observed level of default clustering.15

The empirical evidence suggests that default contagion of some form is important. Collin-Dufresne,
Goldstein, and Helwege (2003) and Jorion and Zhang (2007) argue that a major credit event at
one firm may be associated with significant increases in spreads of other firms.16

We now extend our class of models to capture this feature by allowing the default event of
certain firms to have a ripple effect on credit spreads of other firms. In particular, we distinguish
between two types of firms: primary firms and secondary firms. The latter firms may be affected
by the demise of a primary firm. For example, a secondary firm may carry significant debt from
a primary firm, or a significant portion of its sales may flow through a primary firm. So, when
the primary firm defaults, the credit spreads of the secondary firm may jump up. Alternatively,
the default of a primary firm could be good news for a secondary firm, in that it now may play a
bigger role in the competitive market. In this case, an unanticipated default of its large competitor
could result in a surprise downward shock to all credit spreads along the maturity spectrum of
the secondary firm. Such unidirectional contagion models were first considered by Jarrow and Yu
(2001) and Yu (2007).

The models developed here require additional parameters, some of which can only be estimated
from historical data on a large cross section of firms as they relate to rare events. However, our
approach yields models that produce internally consistent prices that can then be used to assess the
impact of systemic shocks created by highly correlated jumps in credit spread curves across firms.
As such, the main application of the models presented below is geared towards revaluing credit-
sensitive derivative products under different systemic risk scenarios. They provide an important
tool for financial stress testing and risk management purposes.

15The limitations of the conditional independence assumption have been well-documented for reduced-form credit
risk models. Examples include Hull and White (2001) and Schönbucher and Schubert (2002). Yu (2005) argues that
the apparent low correlation is not a problem of the conditionally independent default approach, but rather with the
choice of state variables. Specifically, a limited set of state variables or factors may not be sufficient to model the
changes in intensities, and perhaps additional state variables are necessary. Using a fixed set of state variables, Das,
Duffie, Kapadia, and Saita (2007) test whether default events can be modeled as conditionally independent and
reject this hypothesis. Lando and Nielsen (2008), using the same sample, cannot reject this hypothesis, but, using
alternative tests, they do find support for contagion effects that take place through firm covariates. Duffie, Eckner,
Horel, and Saita (2008) estimate frailty models in which firms could be jointly exposed to unobservable risk factors.

16For further discussions on default clustering, contagion and the valuation of portfolio credit derivatives see Egloff,
Leippold, and Vanini (2007), Kraft and Steffensen (2007), and Zheng and Jiang (2009).
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Assume that there are mB primary firms whose default could affect the credit spreads of some
secondary firm B. The primary firms are labeled A1, . . . , AmB

. Their credit spreads do not depend
on the default state of other firms. As in Section 2, the state variables for primary firm Ai are
XAi(t) = {Φ(t),ΥAi(t)}. For our secondary firm B, the number of state variables influencing its
credit spread curve is significantly enhanced. In addition to Φ(t), we may need to know the credit
spreads of all relevant surviving primary firms. Let

XB(t) = {Φ(t),ΥA1(t), . . . ,ΥAmB
(t),ΥB(t), Y (t)},

where ΥAi(t), is empty if firm Ai has defaulted prior to date t. To model a secondary firm’s process,
we need to know the correlation structure among all the primary firms’ diffusive factors, as well as
how these diffusive terms correlate with the secondary firm’s diffusive component. In addition, we
need to track the primary firms’ default status. Given the instantaneous credit spread λAi(t) for
primary firm Ai, and the risk-neutral expected fractional loss in market value at default, �Ai(t),
we can compute its risk-neutral default intensity as ηAi(t) = λAi(t)/�Ai(t). It is this instantaneous
probability that determines firm Ai’s likelihood of default in the next time increment.

The risk-neutral dynamics of the forward riskless rates and credit spreads are given by (2) and

dλAi(t, T ) = μAi(t, T ) dt + σAi(t, T ) dzAi(t) + cfAi
(t, T ) dNf (t), ∀ t ≤ τAi , i = 1, . . . ,mB ,(34)

dλB(t, T ) = μB(t, T ) dt + σB(t, T ) dzB(t) + cfB(t, T ) dNf (t)

+
mB∑
i=1

cAiB(t, T ) (1 − YAi(t)) dYAi(t), ∀ t ≤ τB. (35)

The date-0 riskless forward curve and the date-0 credit spread curves of firms Ai andB are initialized
to their observable values. The forward credit spread of firm B is driven by a continues diffusive
term, dzB(t), where zB(t) = (zB1(t), . . . , zBn(t))′ is an n-dimensional standard Brownian motion
with E (dzf (t) dz′B(t)) = ΣB

m×n dt, where
(
ΣB
)
ij

= ρBij. In addition, it is correlated with firm Ai’s

diffusive term according to E(dzAi(t) dz
′
B(t)) = ΣAiB

n×ndt, where

(
ΣAiB

)
kl

= ρAiB
kl .

Similarly, the primary firms’ diffusive terms are correlated according to E(dzAi(t) dz
′
Aj

(t)) =

ΣAiAj

n×n dt, where
(
ΣAiAj

)
kl

= ρ
AiAj

kl .

When there is a jump in the riskless curve, then there is a corresponding jump in the credit
spread curve of firm B. Further, default of any of the primary firms Ai could transmit shocks in the
credit spreads of the secondary firm. As before, the volatility factor, σB(t, T ), is predictable, while
cfB(t, T ) and cAiB(t, T ) are deterministic functions of time to maturity, T − t. More specifically,
we impose volatility structures σB(t, T ) = (σB1(t, T ), . . . , σBn(t, T )) of the form:

σBj (t, T ) = hBj (t)e
−κBj

(T−t)
, (36)
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and jump impact factors given by:

cfB(t, T ) = cfBe
−γfB(T−t), (37)

where hBj (t) is a predictable function that depends on a set of state variables.

Proposition 3 below provides the linkage for credit spreads of a secondary firm to its date-0
credit spread curve, through a well-defined collection of state variables.

Proposition 3

Given the risk-neutral dynamics (2), (34) and (35) together with the volatility and impact structures
specified in (13) through (16), (36) and (37), assuming recovery of market value and that the impact
of a primary firm’s default on secondary firm, B, is constant, cAjB(t, T ) = cAjB, the price of
a defaultable zero-coupon bond issued by firm B is given by ΠB(t, T ) = VB(t, T ) 1{τB>t}, where
VB(t, T ) = P (t, T )SB(t, T ) and

SB(t, T ) =
SB(0, T )
SB(0, t)

exp

⎛
⎝−AB0 (t, T ) −

n∑
j=1

(
KB

0,j(t, T )ξB0,j −KB
1,j(t, T )ξB1,j

)⎞⎠

× exp

⎛
⎝ m∑
i=1

n∑
j=1

(
KB

2,ij(t, T )ξB2,ij −KB
3,ij(t, T )ξB3,ij −KB

4,ij(t, T )ξB4,ij
)−KB

5 (t, T )ξB5 (t)

⎞
⎠

× exp

(
mB∑
i=1

(
(1 − e−cAiB(T−t))UAiB(t) − cAiB(T − t)YAi(t)

))
. (38)

Here, AB0 (t, T ), the KB coefficients and the dynamics of the ξB state variables are all defined as in
Proposition 2, but now with respect to the secondary firm B, rather than the primary firm, A, and

UAiB(t) =
∫ t∧τAi

0
ηAi(u)e

−cAiB(t−u) du, i = 1, . . . ,mB .

Proof: See Appendix A.

Unlike primary firms, the prices of secondary firms’ bonds depend on the default status of pri-
mary firms, as well as the timing of the primary firms’ defaults. In addition, computing UAiB(t)
requires knowledge of firm Ai’s risk-neutral default intensity ηAi(t), which in turn requires know-
ledge of the state variables for the primary firm Ai.

To highlight the computational effort involved with our models for secondary firms, consider
a simple specification with two stochastic drivers, one for interest rates (m = 1) and one for each
firm’s credit spreads (n = 1). We show that bond prices are Markovian in at most 8 + 2mB state
variables, with no more than 3 +mB stochastic drivers. Even in this simple framework, systemic
credit shocks can be captured via the response of each firm’s credit spreads to shocks in the economy
that cause jumps in interest rates and in credit spreads, as well as ripple effects on credit spreads
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of secondary firms caused by defaults of primary firms.

Corollary to Proposition 3

For m = n = 1, an equivalent representation for secondary firm B’s bond prices, ΠB(t, T ) =
VB(t, T ) 1{τB>t}, is VB(t, T ) = P (t, T )SB(t, T ), where

SB(t, T ) =
SB(0, T )
SB(0, t)

exp
(−AB0 (t, T ) −K(t, T ;κB)(λB(t) − λB(0, t))

)

× exp

⎛
⎝−

3∑
j=1

KB
j (t, T )ξBj (t) −KB

5 (t, T )ξB5 (t)

⎞
⎠

× exp

(
−(T − t)

mB∑
i=1

cAiBYAi(t) +K(t, T ;κB)
mB∑
i=1

cAiBYAi(t)

)

× exp

(
−

mB∑
i=1

[
K(t, T ;κB) − 1

cAiB

(
1 − e−cAiB(T−t)

)]
cAiB UAiB(t)

)
.

Proof: See Appendix A.

Notice that if exogenous jumps in instantaneous riskless rates and credit spreads are turned
off, and if default of a primary firm does not induce any contagion effects, then this Corollary is
reduced to the Corollary to Proposition 2.

4.1 The Importance of Default Contagion

In this section, we implement our model to price an array of multi-name credit-sensitive products.
Our primary goals are to highlight the importance of building contagion effects into our model
structure, and to illustrate that these models can be used in larger applications involving multiple
names. In our first example, we price the counterparty risk in a default insurance contract. In our
second application, we price tranches of synthetic CDS indices, effectively extending the two-firm
setting of the first example to a much larger portfolio of credits.

4.1.1 Counterparty Risk in Insurance Contracts

Revisiting the CCDS example from Section 3.2.2, we now explicitly take into account the default
risk of the protection seller (firm A), and compute the price of the counterparty risk in the insurance
contract itself. This source of counterparty risk borne by the protection buyer, firm F, should not
be confused with the counterparty risk in the underlying interest-rate swap contract. Instead, it is
the risk associated with default of the protection seller in the insurance contract, firm A, prior to
default of the counterparty in the underlying interest-rate swap contract, firm B.

To better reflect reality, we assume that the protection seller, A, is a primary firm of good
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credit quality, and that the counterparty to the underlying swap contract, B, is a riskier secondary
firm. We first compute the at-market CCDS rate when the default risk of the protection seller is
ignored, and then the reduction in at market rates when the default risk of firm A is taken into
account.17 Figure 4 reports how the reduction in at-market CCDS rates due to the default risk of
the protection seller, expressed as a fraction of the at-market CCDS rates when the default risk
of the protection seller is ignored, varies as key correlation parameters change.18 The correlation
parameters under investigation are ρA and ρB, ρAB , cAB and ηf . For the latter two, it is important
to emphasize that the initial credit spread curves are kept fixed for each scenario to ensure that
the focus is on correlation effects, and not contaminated by changes to the level of the initial term
structure of credit spreads.

Figure 4 Here

In the top left panel, we find a significant negative relationship between the prices of insurance
against default of the protection seller in the CCDS contract and diffusive correlations between
interest rates and credit spreads, as measured by ρA and ρB . This is in line with the results from
Section 3.2. Moreover, we find a positive impact of the parameter ρAB, which captures the diffusive
correlation between credit spreads of firms A and B, on the difference between at-market CCDS
rates when the default risk of the protection seller is ignored and when it is priced. A positive
correlation between the protection seller in the CCDS contract, A, and the counterparty to the
underlying swap contract, B, implies that at times when firm A’s default risk is high (and hence
the protection seller in the CCDS contract is likely to default), default risk associated with the
underlying swap contract is also high. Conversely, if the correlation is negative, then at times when
firm A’s default risk is high, default risk associated with the underlying swap contract is low. As
a result, the reduction in CCDS rates due to the default risk of the protection seller increases as
ρAB increases.

When compared to the diffusive correlation parameters, the results for the credit spread impact
factor, cAB , which measures the impact of default of the protection seller A on the credit spread
curve of firm B, are striking. If cAB is increased from zero to 0.1, the reduction in CCDS rates
due to the default risk of the protection seller, expressed as a fraction of the CCDS rate when the
default risk of the protection seller is ignored, increases from two to over five percent. An increase
of the instantaneous credit spread by 1,000 basis points translates into an increase of almost twenty
basis points in the likelihood of default over the next week. The appropriate size of cAB ultimately

17The former is computed as in Section 3.2.2, but under the assumption that the interest-rate swap counterparty
is a secondary firm. To compute CCDS rates that take into account the default risk of the protection seller, we set
the value of the protection leg in equation (33) to zero if A defaults prior to B.

18A benchmark set of parameter values is given by κf = κA = κB = 0.1, h̃f (t) = r(t), h̃A(t) = 0.5λA(t),
h̃B(t) = 0.5λB(t), and h̄f = h̄A = h̄B = 106. When jumps in riskless rates are permitted, they have a dampening
effect on rates as a function of maturity, with γf = γfA = γfB = 0.5. We set the jump size parameter cf equal to
-0.01. When ρA and ρB are away from zero, we set ρAB equal to their product. We assume there is no recovery at
default, and that the initial yield curve is flat at 4%. Our Monte Carlo simulations use weekly time steps, and 10,000
sample paths with antithetic variates.
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depends on the closeness of the relationship between the primary firm A and the secondary firm
B. For example, cAB is likely to be higher if both firms belong to the same sector, and lower if
they are close competitors. The final figure shows the impact of ηf . Although increasing the jump
intensity parameter has a positive effect on the reduction in CCDS rates due to the default risk of
the protection seller, the impact is of moderate size when compared to that of cAB .

The relative importance of the credit spread impact factor cAB increases as the volatility of credit
spreads decreases. When credit spread volatility is low, the impact of the diffusive correlation
between interest rates and credit spreads, ρA and ρB, and of the diffusive correlation of credit
spreads across firms, ρAB, is significantly smaller. This highlights the importance of including
credit spread impact factors in our models.

4.1.2 CDS Index Tranches

To further emphasize the effectiveness of the credit spread impact factor cAB in generating a wide
range of prices for multi-name credit derivatives, we extend the two-firm setting of the previous sec-
tion to a much larger portfolio of credits.19 Specifically, we now investigative the sensitivity of CDS
index tranche prices to cAB . We mimic the setup of the benchmark 5-year high-yield CDS index
(ticker CDX.NA.HY, for details see www.markit.com) by considering a synthetic portfolio of 100
5-year speculative-grade CDS contracts, and price tranches on its loss distribution. CDX.NA.HY
indices are sliced into five tranches: the equity tranche that incurs the first 0-10% of losses, junior
mezzanine and senior mezzanine tranches that are responsible for the subsequent 10-15% and 15-
25% of losses, and a senior and super-senior tranche that account for the next 25-35% and 35-100%
of losses, respectively.

Figure 5 shows simulated tranche prices as a function of cAB , while holding everything else,
including the initial credit spread curves of the underlying names, fixed. We assume that there
are five primary firms and 95 secondary firms in the index. As the credit spread impact factor
increases from 0 to 0.1, senior tranche prices increase from less than 100 basis point to almost 600
basis points, due to an increase in the likelihood of a large number of defaults occurring within a
relatively short time span. At the same time, the value of the junior mezzanine tranche decreases
from 33.4% (at cAB = 0) to 17.9% (at cAB = 0.1). This decrease in value is due to the fact that
an increase in default contagion, while keeping the level of initial credit spread curves constant,
indirectly increases the likelihood of only a few firms defaulting, the only scenario under which
junior mezzanine tranche investors do not have to pay.

Figure 5 Here
19An alternative to modeling CDS index tranches based on the individual credit spread curves is proposed

in Longstaff and Rajan (2008). The authors argue that the distribution of total portfolio losses represents a suf-
ficient statistic for valuing tranches, and assume that the dynamics of total portfolio losses are driven by three
independent Poisson processes that capture firm-specific, industry-wide and market-wide default events, respectively.
Is is important to note that such a structure could easily be implemented using a straight-forward extension of the
model in Section 2 to include two additional jump processes.
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In summary, our results highlight the importance of including credit spread impact factors in
our models that permit jumps to occur in the intensities of secondary bonds when a primary bond
defaults. The senior tranche investor in a CDS index has to make payments only if a relatively
large number of defaults occurs within a rather short time frame. Similarly, the protection seller in
the CCDS contract fails to make a promised payment only in the scenario where it defaults before
the counterparty in the underlying swap contract, that is, in cases where the default of firm A is
followed within a short time period by a default of firm B. To further emphasize the effectiveness
of the credit spread impact factor cAB in generating such default clustering, Figure 6 shows sample
paths for the timing of default events over a 5-year period. Each sample path is associated with a
particular value for cAB , while everything else is kept the same. The plots indicate that for higher
credit spread impact factors, defaults are more likely to occur in clusters, and that they are spread
out more evenly across time if no feedback effects from defaults of primary firms are allowed.

Figure 6 Here

4.2 The Importance of the Initial Credit Spread Curve Distribution

For the correlation studies above, it has been crucial to keep initial credit spread curves fixed. But
since an appealing feature of our family of models is that they fully incorporate the current credit
spread curve information, we investigate how sensitive multi-name products are to the distribution,
across firms, of initial credit spread curves. Our goal is to demonstrate the importance of taking
into account the full credit spread curve information for each firm, and their distribution across
firms. The latter should be of particular concern when pricing basket credit derivatives.

Continuing with our CDS index example from Section 4.1.2, Table 4 shows the simulated tranche
prices of a 5-year CDX.NA.HY index for different distributions of initial credit spread curves. In
particular, we consider two simplified scenarios. First, we investigate the case where the initial
credit spread curve is flat for all firms, but possibly at different levels. The credit spread level for
each firm is simulated from a uniform distribution that is centered around 5%, say. Second, we
simulate tranche prices under the assumption that the initial credit spread curve is a linear function
of time, with a fixed point of 5% at 2.5 years (half the contract term).

Table 4 Here

Our results indicate that the mezzanine and senior tranche prices increase significantly as the
probability of higher initial forward credit spreads at the short end of the term structure increases.
In the first example, the junior mezzanine (senior) tranche price increases by 2% (9%) when moving
from a flat initial credit spread curve at 5% for all firms to a flat initial credit spread curve at a
level that is uniformly distributed, across firms, between 0 and 10%.

The effect of changes in the slope of the initial credit spread curves is even more dramatic. For
our second set of distributions, the results displayed in Table 4 show that the junior mezzanine
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(senior) tranche price increases by 43% (27%) as the initial spread curve, for each firm, is tilted
from being flat at 5% to being downward sloping from 8.75% (at 0-year maturity) to 1.25% (at
5-year maturity). Junior mezzanine tranche prices decrease dramatically as initial spread curves
are tilted from being flat to being upward sloping, whereas senior tranche prices remain fairly flat.

5 Conclusion

Our paper’s contribution has been to establish a family of multifactor HJM term-structure models
for valuing interest- and credit-sensitive cash flows that permit an exponential affine representation
of riskless and risky bond prices while offering significant flexibility in the choice of volatility
structures. We accomplish this without restricting our processes to the class of affine jump diffusions
(Duffie and Kan (1996), Duffie, Pan, and Singleton (2000)). Rather, we only need to curtail the
forward rate volatilities in relation to their spot rate volatility counterparts. Our class of resulting
volatility structures complements the Duffie-Kan family by allowing a broad choice of specifications
while still retaining an exponential affine representation.

To facilitate empirical studies, we provide an illustrative example of how estimation can proceed
using an extended Kalman filter. We show that, from a practical perspective, estimating models
in our family is typically no more difficult than estimating models in the workhorse affine family.
For cases where the affine models require solving systems of Riccati equations, estimating models
with the same number of stochastic drivers in our family may even be easier. It remains for future
empirical research to establish models within our family that best describe the joint dynamics of
interest rates and credit spreads.

This paper also considers how failures of certain firms could affect the credit spread curves of
other surviving firms. The complexity of such contagion models increases since the dimensionality of
the system of equations needed to characterize the economy expands. The applications considered
involve pricing multiple sources of counterparty credit risk in derivative transactions and credit
derivatives written on multiple names, both of which would not be feasible with general HJM
models. Interestingly, our models incorporate more information than most in pricing CDS index
tranches and allow us to explore more precisely the impact of heterogeneity in the index composition.

Our family of models captures systemic credit shocks through common jumps and, more impor-
tantly, default contagion. The primary role of incorporating the latter into our models is to permit
stress tests to be conducted on a large portfolio of credits. By revaluing derivative products like
CDS index tranches under different assumptions on credit spread impact factors, we can control
the degree of clustering of defaults. Moreover, our valuations under differing degrees of possible
impact factors are all conducted in a consistent no-arbitrage framework. As the recent financial
crisis reminded us, credit risks are not easily diversified, and the role of stress testing credit-sensitive
portfolios cannot be understated.
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Appendices

A Proofs

Proof of Proposition 1

Under the risk-neutral measure, the expected instantaneous return of the riskless bond should equal
the riskless rate, r(t). Absence of arbitrage therefore requires the expected instantaneous return in
equation (3) to be equal to r(t)dt. Hence:

r(t) +
1
2
σp(t, T )σ′p(t, T ) −

∫ T

t
μf (t, u) du+

(
e−Kp(t,T ) − 1

)
ηf = r(t),

from which: ∫ T

t
μf (t, u) du =

1
2
σp(t, T )σ′p(t, T ) +

(
e−Kp(t,T ) − 1

)
ηf .

Differentiating with respect to T , we obtain:

μf (t, T ) = σp(t, T )σ′f (t, T ) − cf (t, T )e−Kp(t,T )ηf .

This restriction on the drift term is the classic Heath-Jarrow-Morton restriction for forward rates
under the risk-neutral measure when the dynamics follow a jump diffusion as in (2).

Now turn to the risky bond. Under our assumptions, the dynamics for VA(t, T ) are:

dVA(t, T )
VA(t, T )

= μVA
(t, T ) dt − σp(t, T ) dzf (t) − σSA

(t, T ) dzA(t) +
(
e−Kp(t,T )−KfA(t,T ) − 1

)
dNf (t),

where

μVA
(t, T ) = λA(t) −

∫ T

t
μA(t, u) du +

1
2
σSA

(t, T )σ′SA
(t, T ) + r(t) −

(
e−Kp(t,T ) − 1

)
ηf

+σp(t, T )ΣA σ′SA
(t, T ). (A.1)

If we assume that at the time of default the recovery value is proportional to the market value
of the bond just prior to default, absence of arbitrage implies that we can price the risky bond
as the risk-neutral expectation of discounted cash flows. The discount rate is modified from r to
r + λA to reflect default and recovery risk (see Duffie and Singleton (1999a)). Given that

E

(
dVA(t, T )
VA(t, T )

)
= (r(t) + λA(t)) dt

=
(
μVA

(t, T ) +
(
e−Kp(t,T )−KfA(t,T ) − 1

)
ηf

)
dt,
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we have: ∫ T

t
μA(t, u) du =

1
2
σSA

(t, T )σ′SA
(t, T ) + σp(t, T )ΣA σ′SA

(t, T )

+
(
e−Kp(t,T )−KfA(t,T ) − e−Kp(t,T )

)
ηf .

Differentiating this expression with respect to T yields the result.

Proof of Proposition 2

(i) First consider the riskless bond. Substituting the volatility and impact expressions into equa-
tion (10), and using (2), leads upon simplification to:

f(t, T ) = f(0, T ) +
m∑
i=1

1
κfi

e−κfi
(T−t)

(
ψ1,i(t) − e−κfi

(T−t)ψ2,i(t)
)

+ cfe
−γf (T−t)ψ3(t)

− cfηfLf (t, T ), (A.2)

where, for i = 1, . . . ,m,

ψ1,i(t) =
∫ t

0
h2
fi

(u)e−κfi
(t−u) du+ κfi

∫ t

0
hfi

(u)e−κfi
(t−u) dzfi

(u),

ψ2,i(t) =
∫ t

0
h2
fi

(u)e−2κfi
(t−u) du,

ψ3(t) =
∫ t

0
e−γf (t−u) dNf (u),

and

Lf (t, T ) =
∫ t

0
e
−γf (T−u)− cf

γf

(
1−e−γf (T−u)

)
du

=
1
cf

(
e
− cf

γf

(
1−e−γf (T−t)

)
− e

− cf
γf

(
1−e−γf T

))
.

The result follows by substituting equation (A.2) into (1), and simplifying.

(ii) The forward credit spread, λA(t, T ), can be expressed as:

λA(t, T ) = λA(0, T ) +
∫ t

0
μA(u, T ) du +

∫ t

0
σA(u, T ) dzA(u) +

∫ t

0
cfA(u, T ) dNf (u).

Substituting the volatility and jump impact factor restrictions given in equations (13) through (16)
into the drift restriction from Proposition 1, and using the above equation, we obtain upon simpli-
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fication:

λA(t, T ) = λA(0, T ) +GA(t, T ) +
n∑
j=1

1
κAj

e
−κAj

(T−t)
ξ0,j(t) −

n∑
j=1

1
κAj

e
−2κAj

(T−t)
ξ1,j(t)

−
m∑
i=1

n∑
j=1

ρAij

(
1
κfi

+
1
κAj

)
e
−(κfi

+κAj
)(T−t)

ξ2,ij(t) +
m∑
i=1

n∑
j=1

ρAij
κAj

e−κfi
(T−t)ξ3,ij(t)

+
m∑
i=1

n∑
j=1

ρAij
κfi

e
−κAj

(T−t)
ξ4,ij(t) + cfAe

−γfA(T−t)ξ5(t), (A.3)

where GA(t, T ) =
∫ t
0 gA(u, T ) du. Note that if γfA = γf , analytic solutions are available for

GA(t, T ). For i = 1, . . . ,m and j = 1, . . . , n,

ξ0,j(t) =
∫ t

0
e
−κAj

(t−u)
h2
Aj

(u) du+ κAj

∫ t

0
e
−κAj

(t−u)
hAj (u) dzAj (u),

ξ1,j(t) =
∫ t

0
e
−2κAj

(t−u)
h2
Aj

(u) du,

ξ2,ij(t) =
∫ t

0
e
−(κfi

+κAj
)(t−u)

hfi
(u)hAj (u) du,

ξ3,ij(t) =
∫ t

0
e−κfi

(t−u)hfi
(u)hAj (u) du,

ξ4,ij(t) =
∫ t

0
e
−κAj

(t−u)
hfi

(u)hAj (u) du,

ξ5(t) =
∫ t

0
e−γfA(t−u) dNf (u).

The result then follows by substituting equation (A.3) into (6), and simplifying.

Proof of Corollary to Proposition 2

From equation (A.2), consider the case m = 1 with no jumps, and put T = t to obtain:

r(t) = f(0, t) +
1
κf

(ψ1(t) − ψ2(t)) ,

where second subscripts on the ψ variables have been dropped. From this, an expression for ψ1(t)
can be obtained. Substituting it back into equation (A.2) yields:

f(t, T ) = f(0, T ) + e−κf (T−t)(r(t) − f(0, t)) +
1
κf

(
e−κf (T−t) − e−2κf (T−t)

)
ψ2(t), (A.4)

from which the riskless bond price formula follows. The dynamics of r(t) follow using the equation:

dr(t) = df(t, t) +
d

dt
f(u, t)

∣∣
u→t

.

To compute the risky bond price, we use equation (A.3) for the case n = 1 and no jumps.
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Setting T = t, this allows us to express ξ0,1(t) in terms of λA(t) and the other state variables.
Substituting the resulting expression back into equation (A.3), dropping unnecessary subscripts
and rearranging terms leads to:

λA(t, T ) = λA(0, T ) + e−κA(T−t) (λA(t) − λA(0, t)) +
1
κA

e−κA(T−t)
(
1 − e−κA(T−t)

)
ξ1(t)

+ ρA
(

1
κf

+
1
κA

)
e−κA(T−t)

(
1 − e−κf (T−t)

)
ξ2(t)

+
ρA

κA

(
e−κf (T−t) − e−κA(T−t)

)
ξ3(t). (A.5)

Note that the ξ4(t) terms cancel out, effectively reducing the number of state variables that describe
credit spreads from five in Proposition 2 to four. SA(t, T ) then follows by integrating the above
equation, which allows us to compute the risky bond price ΠA(t, T ) = P (t, T )SA(t, T )1{τA>t}. The
dynamics of the path statistics follow from the main proposition, while the dynamics of λA(t) follow
from:

dλA(t) = dλA(t, t) +
d

dt
λA(u, t)

∣∣
u→t

.

Proof of Proposition 3

Under our assumptions, the dynamics for VB(t, T ) are:

dVB(t, T )
VB(t, T )

= μVB
(t, T ) dt − σp(t, T ) dzf (t) − σSB

(t, T ) dzB(t) +
(
e−Kp(t,T )−KfB(t,T ) − 1

)
dNf (t)

+
mB∑
i=1

(
e−KAiB(t,T ) − 1

)
(1 − YAi(t)) dYAi(t),

where σSB
(t, T ) and KfB(t, T ) are defined analogous to (8) and (9), KAiB(t, T ) =

∫ T
t cAiB(t, u) du,

and μVB
(t, T ) is given as in (A.1), with A replaced by B.

If we assume fractional loss of market value at default, absence of arbitrage implies that the
instantaneous risk-neutral expected return on firm B’s bond is (r(t) + λB(t)) dt. Substituting this
constraint into the expression for μVB

(t, T ), and following the same steps as for primary bonds in
the Proof to Proposition 1, yields:

μB(t, T ) = σSB
(t, T )σ′B(t, T ) + σf (t, T )ΣB σ′SB

(t, T ) + σp(t, T )ΣB σB(t, T ) + gB(t, T )

−
mB∑
i=1

ηAi(t) cAiB(t, T ) e−KAiB(t,T ) (1 − YAi(t)) , (A.6)

where gB(t, T ) = ηf
(
cf (t, T )e−Kp(t,T ) − (cf (t, T ) + cfB(t, T ))e−(Kp(t,T )+KfB(t,T ))

)
.

Following the same logic as used to develop the price of a primary bond in Proposition 2, the
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date-t credit spread of a secondary firm is linked to its date-0 value by:

λB(t, T ) = λB(0, T ) +
∫ t

0
μB(u, T ) du +

∫ t

0
σB(u, T ) dzB(u) +

∫ t

0
cfB(u, T ) dNf (u)

+
mB∑
i=1

∫ t

0
cAiB(u, T ) (1 − YAi(u)) dYAi(u). (A.7)

With the assumption that the impact of a primary firm’s default on firm B is constant across
maturities, the last term in equation (A.6) simplifies to

∑mB
i=1 ηAi(t)cAiBe

−cAiB(T−t)(1 − YAi(t)),
and the last term in (A.7) can be written as

∑mB
i=1 cAiBYAi(t).

The proof now follows by substituting the volatility and jump impact factor restrictions in (36)
and (37) into the drift expression, and using the simplifications obtained from assuming that
cAiB(t, T ) is constant. We obtain:

λB(t, T ) = λB(0, T ) +GB(t, T ) +
n∑
j=1

1
κBj

e
−κBj

(T−t)
ξB0,j(t) −

n∑
j=1

1
κBj

e
−2κBj

(T−t)
ξB1,j(t)

−
m∑
i=1

n∑
j=1

ρBij

(
1
κfi

+
1
κBj

)
e
−
(
κfi

+κBj

)
(T−t)

ξB2,ij(t) +
m∑
i=1

n∑
j=1

ρBij
κBj

e−κfi
(T−t)ξB3,ij(t)

+
m∑
i=1

n∑
j=1

ρBij
κfi

e
−κBj

(T−t)
ξB4,ij(t) + cfBe

−γfB(T−t)ξB5 (t)

+
mB∑
i=1

cAiBYAi(t) −
mB∑
i=1

cAiBe
−cAiB(T−t) UAiB(t), (A.8)

where GB(t, T ) =
∫ t
0 gB(u, T ) du. The ξB state variables are all defined as in the Proof of Proposi-

tion 2, but now with respect to the secondary firm B, rather than the primary firm, A. The result
then follows by substituting the above equation into equation (6), and simplifying.

Proof of Corollary to Proposition 3

With m = n = 1, setting T = t in (A.8) and dropping unnecessary subscripts yields the instanta-
neous credit spread at date t:

λB(t) = λB(0, t) +GB(t, t) +
1
κB

(ξB0 (t) − ξB1 (t)) − ρB
(

1
κf

+
1
κB

)
ξB2 (t)

+
ρB

κB
ξB3 (t) +

ρB

κf
ξB4 (t) + cfBξ

B
5 (t) +

mB∑
i=1

cAiB (YAi(t) − UAiB(t)) .

Using the above expression, we can represent ξB0 (t) in terms of the other variables. Substituting
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the expression into equation (A.8), and rearranging, leads to:

λB(t, T ) = λB(0, T ) +GB(t, T ) + e−κB(T−t) (λB(t) − λB(0, t) −GB(t, t))

+
1
κB

e−κB(T−t)
(
1 − e−κB(T−t)

)
ξB1 (t) + ρB

(
1
κf

+
1
κB

)
e−κB(T−t)

(
1 − e−κf (T−t)

)
ξB2 (t)

+
ρB

κB

(
e−κf (T−t) − e−κB(T−t)

)
ξB3 (t) + cfB

(
e−γfB(T−t) − e−κB(T−t)

)
ξB5 (t)

+
mB∑
i=1

cAiB

(
1 − e−κB(T−t)

)
YAi(t) +

mB∑
i=1

cAiB

(
e−κB(T−t) − e−cAiB(T−t)

)
UAiB(t).

The valuation formula for risky debt issued by a secondary firm then follows directly by substi-
tuting the credit spread and forward rate expressions into equation (A.9), and simplifying.

B The Extended Kalman Filter

The standard Kalman filter recursion for the system (31)–(32) of measurement and transition
equations begins with a candidate parameter vector Θ. It is used to compute the unconditional
expectation and covariance matrix for X, which we denote by X(0|0) and P (0|0). Simplifying
notation when possible, the steps in the recursion are:

1. Use X(t|t) and Θ to evaluate F0(t), F1(t) and Q(t).

2. Compute the one-period-ahead prediction and variance of X(t+ Δt):
X(t+ Δt|t) = F0(t) + F1(t)X(t|t) and P (t+ Δt|t) = F1(t)P (t|t)F1(t)′ +Q(t).

3. Compute the one-period-ahead prediction and variance of y(t+ Δt):
y(t+ Δt|t) = M0 +M ′

1X(t+ Δt|t) and V (t+ 1|t) = M ′
1P (t+ 1|t)M1 +R.

4. Compute the forecast error in y(t+ Δt): e(t+ 1) = y(t+ 1) − y(t+ 1|t).

5. Update the predictions: X(t+Δt|t+Δt) = X(t+Δt|t)+P (t+Δt|t)M1V
−1(t+Δt|t)e(t+Δt)

and P (t+ Δt|t+ Δt) = P (t+ Δt|t) − P (t+ Δt|t)M1V
−1(t+ Δt|t)M ′

1P (t+ Δt|t).

The estimated parameter vector Θ̂ solves:

Θ̂ = argmaxΘ

T∑
t=1

f(et, V (t|t− Δt)),

where my is the size of y(t) and

f(et, V (t|t− Δt)) = −0.5
(
my log(2π) + log |V (t|t− Δt)| + e(t)′V −1(t|t− Δt)e(t)

)
.

In applying the Kalman filter, there are two well known approximations that can cause the result-
ing estimates to be inconsistent. The first is the discretization mechanism for the continuous-time
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dynamics, and the second is the linearization of these dynamics over each time increment. These
approximations are typically of limited importance in practice. Indeed, extended Kalman filter-
ing typically produces very good estimates. For a more complete discussion on this issue and
the implementation of extended Kalman filters, see Duffee and Stanton (2002) and the references
therein.

For the example in Section 3.1, the dynamics of the state variables,

X(t) = (r(t), λA(t), ψ(t), ξ1(t), ξ2(t)ξ3(t))
′

under the data-generating measure can be expressed as:

dX(t) = μX(t) dt + σX(t) dw(t), (B.1)

where dw(t) = (dwf (t), dw̃A(t), 01×4)′ and (wf (t), w̃A(t))′ is a two-dimensional standard Brownian
motion with respect to the data-generating measure. We have

μX(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

μr(t) + νf (t)hf (t)

μA(t) + νf (t)ρAhA(t) + νA(t)
√

1 − ρA2hA((t)
h2
f (t) − 2κfψ(t)

h2
A(t) − 2κAξ1(t)

hf (t)hA(t) − (κf + κA)ξ2(t)
hf (t)hA(t) − κf ξ3(t),

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(B.2)

and

σX(t) =

(
σ̄X(t) 02×4

04×2 04×4

)
, (B.3)

where

σ̄X(t) =

⎛
⎜⎜⎝

hf (t) 0

ρAhA(t)
√

1 − ρA2hA(t)

⎞
⎟⎟⎠ . (B.4)

According to the transition equation (32), a closed-form expression for the discrete-time dy-
namics of X(t) is required. In cases where such expressions are not directly available, we take a
linearization of the dynamics described in (B.1) through (B.4). It follows:

F0(t) =
(
μX(t) − ∂μX(t)

∂X(t)′
∣∣
X(t)=X(t|t) X(t|t)

)
Δt,

F1(t) = I +
∂μX(t)
∂X(t)′

∣∣
X(t)=X(t|t) Δt,

Q(t) = σX(X(t|t))σ′X (X(t|t))Δt.
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The term “extended” Kalman filter refers to the fact that F0(t), F1(t) and Q(t) depend on the
state variables X(t). For details, see Duffee and Stanton (2002). With hf (t) = h̃f (t) = σfr(t) and
hA(t) = h̃A(t) = σAλA(t), F0(t) simplifies to:

F0(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

κfθf − νfh
2
f (t)

κAθA −
(
νA

√
1 − ρA2

h2
A(t) + ρA(1 + νf )hf (t)hA(t)

)
−h2

f (t)
−h2

A(t)
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Δt.

The structure for F1(t) also simplifies. Defining ∂hf (t) ≡ d
dthf (t) = σf , and ∂hA(t) ≡ d

dthA(t) = σA,

k1 = 1, k2 = ρA
(
κf

κA
+ 1
)
, and k3 = ρA

(
1 − κf

κA

)
, we have F1(t) = I +A(t)Δt, where

A(t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2νfhf (t)∂hf (t) − κf 0 1 0 0 0

ρA(1 + νf )∂hf (t)hA(t) νA

√
1 − ρA22hA(t)∂hA(t) 0 k1 k2 k3

+ρA(1 + νf )hf (t)∂hA(t) − κA

2hf (t)∂hf (t) 0 −2κf 0 0 0
0 2hA(t)∂hA(t) 0 −2κA 0 0

∂hf (t)hA(t) hf (t)∂hA(t) 0 0 −κf − κA 0
∂hf (t)hA(t) hf (t)∂hA(t) 0 0 0 −κf

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Similar formulas for F0(t) and A(t) are available if the bounds for hf (t) and hA(t) were binding.
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Table 1: Estimation Results The top panel shows the extended Kalman filter estimates for a one-
factor proportional model of riskless yields. Weekly 1- through 10-year yields are observed with normally
distributed measurement errors with variance σ2

εf
, independent across time and maturities. The value of θf is

fixed at the sample mean of the 1-year yield. The second panel reports the extended Kalman filter estimates
for AMR’s credit spread curve. Weekly 1-, 3-, 5-, 7- and 10-year credit spreads are observed with normally
distributed measurement errors with variance σ2

εA
, independent across time and maturities. The value of θA

is fixed at the sample mean of the 1-year spread. We set h̄f = h̄A = 106, but as long as sufficiently large,
the precise values of these caps do not alter the estimation results. This analysis is repeated for Lennar.
Small-sample Monte Carlo standard error estimates using 100 simulation runs are reported in parentheses.
The sample period is February 1, 2005 to May 15, 2009.

Riskless Rates
θf κf σf νf 100 σεf

Treasury 0.034 0.106 1.300 -8.753 0.287
– (0.007) (0.084) (28.580) (0.004)

Credit Spreads
θA κA σA νA ρA 100 σεA

AMR 0.118 0.041 0.422 8.750 -0.120 0.456
– (0.003) (0.015) (12.153) (0.059) (0.005)

Lennar 0.030 0.166 0.784 0.929 -0.201 0.077
– (0.007) (0.052) (42.889) (0.067) (0.001)
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Table 2: The Importance of Interest Rate-Credit Spread Correlations: Bond Options
Simulation results for the prices c (in dollar) of an at-the-money 3-year European call option on a 5-year zero-
coupon defaultable bond with a notional amount of $100, under different parameter specifications. Standard
errors are reported in parentheses. The benchmark set of parameter values is described in Footnote 14.
Additional scenario-specific parameters are listed at the end of the table. Our Monte Carlo simulations use
10,000 sample paths with antithetic sampling.

ρA c ηf c cfA c

-0.9 2.437 0.00 3.069 0.00 3.071
(0.026) (0.036) (0.036)

-0.7 2.589 0.05 3.082 0.01 3.070
(0.029) (0.036) (0.036)

-0.5 2.736 0.10 3.085 0.02 3.073
(0.031) (0.036) (0.036)

-0.3 2.881 0.15 3.092 0.03 3.073
(0.033) (0.036) (0.036)

-0.1 3.011 0.20 3.100 0.04 3.074
(0.035) (0.036) (0.036)

0.0 3.069 0.25 3.112 0.05 3.075
(0.036) (0.036) (0.036)

0.1 3.126 0.30 3.120 0.06 3.078
(0.036) (0.036) (0.036)

0.3 3.226 0.35 3.128 0.07 3.080
(0.037) (0.037) (0.036)

0.5 3.339 0.40 3.138 0.08 3.082
(0.038) (0.037) (0.036)

0.7 3.438 0.45 3.144 0.09 3.086
(0.039) (0.037) (0.036)

0.9 3.532 0.50 3.153 0.10 3.090
(0.040) (0.037) (0.036)

Parameter Specifications
ηf = 0 cfA = 0.025 ηf = 0.01
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Table 3: The Importance of Interest Rate-Credit Spread Correlations: CCDS Simulation
results for at-market rates C (in basis points) of a 5-year CCDS contract on a 5-year floating-for-fixed
interest-rate swap, under different parameter specifications. Standard errors are reported in parentheses.
The benchmark set of parameter values is described in Footnote 14, with A replaced by B. Additional
scenario-specific parameters are listed at the end of the table. Our Monte Carlo simulations use 10,000
sample paths with antithetic sampling.

ρB C ηf C cfB C

-0.9 23.771 0.000 17.957 0.000 17.922
(0.616) (0.523) (0.522)

-0.7 22.433 0.050 17.957 0.010 17.956
(0.594) (0.525) (0.522)

-0.5 21.198 0.100 18.045 0.020 17.926
(0.575) (0.528) (0.522)

-0.3 19.857 0.150 18.223 0.030 17.955
(0.555) (0.531) (0.523)

-0.1 18.584 0.200 18.209 0.040 17.968
(0.534) (0.531) (0.523)

0.0 17.957 0.250 18.296 0.050 17.985
(0.523) (0.534) (0.523)

0.1 17.395 0.300 18.411 0.060 17.994
(0.513) (0.536) (0.523)

0.3 16.452 0.350 18.505 0.070 18.027
(0.498) (0.538) (0.524)

0.5 15.038 0.400 18.578 0.080 18.055
(0.472) (0.540) (0.524)

0.7 13.713 0.450 18.678 0.090 18.032
(0.448) (0.543) (0.524)

0.9 12.602 0.500 18.933 0.100 18.061
(0.426) (0.548) (0.525)

Parameter Specifications
ηf = 0 cfB = 0.025 ηf = 0.01
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Table 4: The Importance of the Initial Credit Spread Curve Distribution Simulated tranche
spreads (in basis points) of the 5-year CDX.NA.HY index, for different distributions of initial credit spread
curves across the firms in the index. The benchmark set of parameter values is described in Footnote 18.
We set ηf = 0, and there are no feedback effects from defaults of primary firms.

Distribution of initial credit spread curves Tranche spreads
10–15 15–25 25–35

λ(0, t) = 0.05 3451 1450 111
λ(0, 0) ∼ Uniform(0.025, 0.075) and λ(0, t) = λ(0, 0) 3523 1528 128
λ(0, 0) ∼ Uniform(0, 0.1) and λ(0, t) = λ(0, 0) 3528 1528 121

λ(0, t) increases linearly from λ(0, t) = 0.0125 to λ(0, t) = 0.0875 2698 1340 107
λ(0, t) increases linearly from λ(0, t) = 0.025 to λ(0, t) = 0.075 2883 1366 108
λ(0, t) increases linearly from λ(0, t) = 0.0375 to λ(0, t) = 0.0625 3130 1405 110
λ(0, t) = 0.05 3451 1450 111
λ(0, t) decreases linearly from λ(0, t) = 0.0625 to λ(0, t) = 0.0375 3857 1514 115
λ(0, t) decreases linearly from λ(0, t) = 0.075 to λ(0, t) = 0.025 4345 1601 120
λ(0, t) decreases linearly from λ(0, t) = 0.0875 to λ(0, t) = 0.0125 4947 1772 141
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Panel A: Riskless Yield Curves

 Panel B: Credit Spread Curves
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Figure 1: Riskless Yield Curves and Credit Spreads The top panel shows the weekly time series
of riskless yields to maturity from February 1, 2005 to May 15, 2009. The bottom panel shows the weekly
time series of credit spreads for AMR (left) and Lennar (right) over the same period. This data is provided
by Gurkaynak, Sack and Wright (riskless yields) and CMA (credit spreads).
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Figure 2: Estimation Results This plot shows the observed (solid line) and fitted (dashed line) time
series of 1- and 5-year riskless yields and of 1- and 5-year credit spreads for AMR and Lennar. The sample
period is February 1, 2005 to May 15, 2009.
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Figure 3: The Importance of Interest Rate-Credit Spread Correlations Percentage changes
in the prices of a 3-year European call option on a 5-year zero-coupon defaultable bond for varying ρA,
relative to the value at ρA = 0. The strike price of the bond options is equal to K times the forward price,
for different K. The benchmark set of parameter values is described in Footnote 14. We set ηf = 0.
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Figure 4: The Importance of Default Contagion: Counterparty Risk in Insurance Con-
tracts Reduction in at-market CCDS rates due to the default risk of the protection seller, expressed as a
fraction of the at-market CCDS rates when the default risk of the protection seller is ignored, for varying
ρA = ρB, ρAB, cAB and ηf . The benchmark set of parameter values is described in Footnote 18, with the
number of sample paths increased to 50,000. We set λA(0, t) = 0.01 and λB(0, t) = 0.05, and, when ηf is
away from zero, cfA = 0.005 and cfB = 0.025.
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Figure 5: The Importance of Default Contagion: CDS Index Tranches Simulated tranche
spreads of the 5-year CDX.NA.HY index, as a function of cAB. The benchmark set of parameter values is
described in Footnote 18. There are 5 primary firms and 95 secondary firms. We set λA(0, t) = 0.025 and
λB(0, t) = 0.05.
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Figure 6: Generating Default Clustering Sample path of the number of defaults across time. The
benchmark set of parameter values is described in Footnote 18. There are 5 primary firms and 95 secondary
firms. We set λA(0, t) = 0.025 and λB(0, t) = 0.05.
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