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Abstract

This paper uses optimization theory to address a fundamental question of ethics:
how to divide resources justly among individuals, groups, or organizations. It formu-
lates utilitarian and Rawlsian criteria for distributive justice as optimization problems.
The formulations recognize that some recipients are more productive than others, so
that an inequitable distribution may create greater overall utility. Conditions are de-
rived under which a distribution of resources is utility maximizing, and under which it
achieves a lexicographic maximum, which we take as formulating the difference prin-
ciple of John Rawls. It is found that utility maximization requires at least as much
inequality as results from allotting resources in proportion to productivity, and typ-
ically a good deal more. Rawlsian justice requires a greater degree of equality than
utilitarianism, particularly when the distribution of productivities across recipients has
a short upper tail, although it is insensitive to the lower tail. It also requires greater
equality when there are rapidly decreasing returns to investment in productivity, and
ironically, when people have a stronger interest in getting rich.

1 Introduction

A fundamental issue for management ethics is the just distribution of resources. The
issue is most naturally associated with the public sector, which must allot resources to
individuals, institutions, and regions both productively and equitably. But it also arises in
private sector management, which allocates salaries to individuals and budgets to divisions
and subsidiaries. The ethical question is how one should allocate resources so that they
are put to good use, while making sure that everyone receives a fair share.

Perhaps the two best-known criteria for just distribution are utilitarianism and the
Rawlsian difference principle, one of which emphasizes efficiency and the other equity.
Utilitarianism distributes resources to individuals in such a way that maximizes total
utility, even if this results in inequality. The difference principle of John Rawls tolerates
inequality only when it makes the least advantaged better off.
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Much has been said about the philosophical underpinnings of these two ethical theories
[e.g. Daniels, 1989, Dworkin, 1977, Roemer, 1998, Stein, 1989, Williams and Cookson,
2000, Yaari and Bar-Hillel, 1984]. Yet there has been relatively little investigation of the
actual distributions that result when these theories are applied. A particularly important
issue is the extent to which an efficient distribution of resources requires inequality. It
is sometimes argued that more utility is created when greater shares of resources are
alloted to recipients that make more efficient use of it, perhaps because they are more
talented, more productive, or work harder. (For brevity, we will frequently use the term
“recipients” to denote the parties to whom resources are distributed, whether they be
individuals, groups, or institutions.)

As it happens, both criteria for distributive justice pose optimization problems. Util-
itarianism maximizes a social utility function whose arguments represent resources dis-
tributed to each recipient. The Rawlsian difference principle can be interpreted as calling
for a lexicographic maximum (lexmax) of the utilities allotted to recipients. That is, the
welfare of the least advantaged party should be maximized, after which the welfare of the
second least advantaged party is maximized, and so forth. This suggests that the theory
of optimization can provide some insight into the conditions under which a distribution of
resources satisfies a utilitarian or a Rawlsian criterion. In fact, we will find that a fairly
elementary analysis can lead to substantive and sometimes surprising conclusions about
the characteristics of a just distribution, whether it be utilitarian or lexmax. It can reveal
the extent to which a just distribution requires equality, and how its shape depends on
utility functions (how people value wealth), productivity functions (how their productivity
increases with investment), and the distribution of productivity among recipients. It can
also allow one to calculate utilitarian and Rawlsian distributions.

Our assumption that recipients can have different productivities is a departure from
axiomatic treatments in the social choice theory literature, which typically assume that
recipients are indistinguishable [e.g. Blackorby et al., 2002, Roberts, 1980, Sen, 2004].
It also differs from related work in the emerging subfield of computational social choice
theory, because our focus is primarily on structural properties of just distributions rather
than computational techniques or complexity [see Bouveret and Lemaitre, 2006, Matt
et al., 2006, Ogryczak, 2006].

A number of models for equitable distribution in specific application areas have ap-
peared in the optimization literature [e.g. Betts et al., 1994, Brown, 1979, 1983, Daskin,
1995, Eiselt, 1986, Katoh and Ibaraki, 1998, Ogryczak, 1997], but these do not deal with
the distributive justice problem in general. Luss [1999] discusses the lexmax (actually,
lexmin) model as a general approach to equitable distribution and surveys applications,
variations of the model, and algorithms that have been developed for them. (It studies
lexmin rather than the lexmax solutions because it measures the performance of an activity
to which resources are allocated by the shortfall from a target.) The applications include
large-scale allocation problems with multiple knapsack resource constraints, multiperiod
allocation problems for storable resources, and problems with substitutable resources.
However, there are no structural results, of the sort provided here, that characterize the
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shape of the distribution, and none of the models account for different productivities of
the recipients. In related work, Hall and Vohra [1993] describe an equity model based on
proportionality constraints.

2 Overview of the Models

We use the modeling device of assigning to each recipient i a productivity function ui(α)
that measures the total utility eventually created when recipient i is initially alloted re-
sources α. The utilitarian criterion can be interpreted as calling for a distribution of
initially available resources that ultimately results in the greatest total utility. Utilitari-
ans have historically argued that utility maximization favors a certain degree of equality,
because there are decreasing returns to greater investments in the most productive recipi-
ents. We investigate the extent to which this is true, and we derive conditions under which
a completely egalitarian distribution maximizes utility.

Another classical argument holds that excessive inequality leads to social disharmony
and thereby reduces utility, so that, again, utility maximization pushes the distribution
toward equality. We attempt to investigate this claim by adding a term in the objective
function that measures the social disutility created by inequality as proportional to the
gap between the largest and smallest allocations. We find that the optimality conditions
have a relatively simple closed-form solution. It allows us to determine when the cost of
inequality is high enough so that an egalitarian distribution of resources maximizes utility.

The Rawlsian difference principle states roughly that inequality should be tolerated
only when it makes the least advantaged better off. The principle is based on a social
contract argument, which begins with the premise that a rational allocation of primary
goods must be one on which people can agree in an “original position”—that is, before
they know which station in society they will occupy. Primary goods include such things as
rights, opportunities, income, and power. To put Rawls’ extended argument very briefly,
a rational person would not agree to an unequal allocation in which he or she might
end up in the least advantaged position, unless that position would be even worse in
another allocation. A rational allocation must therefore maximize the welfare of the least
advantaged, which results in a maximin solution. One might then consider all maximin
solutions and argue along the same lines that the welfare of the second least advantaged
party should be maximized, and so on recursively, resulting in a lexmax solution. We do
not claim that the lexmax model is a precise interpretation of Rawls’ own views, which,
after all, evolved over his career, as witnessed by the differences between Rawls [1971]
and Rawls [1993, 1999]. Our aim is to explore the mathematical implications of a lexmax
criterion for its own sake.

To formulate a lexmax criterion, we suppose that the individual utility function v(α)
measures the utility to any given recipient of possessing wealth α. The analysis is easily
extended to allow each recipient i a different utility function vi(α), but this complicates
notation without adding much insight. We further suppose that the fraction of the total
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utility that is eventually enjoyed by a recipient is proportional to the utility of that re-
cipient’s initial resource allocation. Thus, for example, individuals who receive a better
education or higher salary will have greater access to the fruits of those investments, or
groups that receive a larger initial budget will enjoy a larger share of the wealth created.

We find that, remarkably, the optimality conditions for an egalitarian distribution in
a lexmax problem have the same form as those for the utilitarian model that includes
the social cost of inequality. However, the solution is different due to different right-hand
sides. We derive conditions under which a distribution of initial resources satisfies the
lexmax criterion, as well as conditions under which the lexmax distribution is completely
egalitarian.

3 Utilitarian Model

The utilitarian thesis is that a just allocation of resources is one that maximizes total
utility. Some of the classical utilitarians saw utility as reducible to pleasure, happiness,
or some other universal end, but all that matters for our purposes that total utility can
somehow be measured.

We wish to enrich the utilitarian model by accounting for the fact that some recipients
have more productive potential than others. We suppose that each recipient i is given
an initial allocation of resources xi that enhance long-term productivity. For individuals,
these might include education, salary, health care, tax breaks, or other benefits, and
for groups or institutions they might include budget, personnel, or access to markets.
Over some appropriate period of time, the recipient creates total utility given by the
productivity function ui. For a given investment α, ui(α) > uj(α) when recipient i is
more productive or more responsive to material incentives than recipient j. We will speak
of the “productivity” of a recipient to mean its productive potential in this sense.

The utility created by a recipient reflects not only material wealth but other goods that
are not easily assigned economic value, such as justice or environmental quality. Moreover,
the utility eventually created by a recipient need not be identical with the utility enjoyed
by that recipient. We suppose only that each recipient contributes to a pool of utility
that is somehow distributed over all recipients. We do not describe this distribution in the
utilitarian model, because only the aggregate utility ultimately matters. This is not to
deny that the total utility of wealth and other goods depends on how they are distributed.
As already noted, a highly skewed distribution of a fixed amount of resources may result in
less utility than a more egalitarian distribution, due to the concavity of individual utility
functions. However, we suppose that the distribution of wealth and other goods is already
reflected in the productivity functions ui. The Rawlsian model, on the other hand, will
explicitly account for the distribution.

In the utilitarian model, the goal is to find an initial allocation of resources that
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maximizes
∑

i ui(xi). If the total resource budget is 1, the problem becomes

max
n∑

i=1

ui(xi) (a)

n∑

i=1

xi = 1 (b)

xi ≥ 0, all i (c)

(1)

If we associate Lagrange multiplier λ with the constraint (1b), any optimal solution of (1)
in which each xi > 0 must satisfy

u′
i(xi) − λ = 0, i = 1, . . . , n

Eliminating λ yields
u′

1(x1) = · · · = u′
n(xn) (2)

Thus a resource distribution is optimal only when the marginal productivity of resources
is the same for everyone.

Assume that recipients 1, . . . , n are indexed by increasing marginal productivity:

u′
i(α) ≤ u′

i+1(α) for all α ≥ 0 and i = 1, . . . , n− 1 (3)

In this case, (2) is satisfied only if x1 ≤ · · · ≤ xn. Thus the less productive recipients
receive less resources, as one might expect. Furthermore, a utilitarian distribution is
completely egalitarian (x1 = · · · = xn = 1/n) only when the marginal productivities are
equal:

u′
1(1/n) = · · · = u′

n(1/n) (4)

The result (4) is illustrated in Fig. 1, which shows productivity functions for five
recipients. The optimal distribution of resources is one at which the curves have equal
slope. Note that less productive recipients receive fewer resources.

To obtain some idea of how skewed the resource distribution might be, it is helpful to
assume a specific form

ui(xi) = cix
p
i (5)

for the productivity functions, where p ≥ 0 and each ci ≥ 0. Here ci is a productivity
coefficient for recipient i. When p = 1, recipient i produces utility in proportion to the
resources received. When 0 < p < 1, greater resources have decreasing marginal utility,
and p = 0 indicates inability to use resources to create utility. If recipients are indexed in
order of marginal productivity, we have that c1 ≤ · · · ≤ cn.

Since an optimal solution of (1) in which each xi > 0 must satisfy (1b) and (2), it is

xi = c
1

1−p

i




n∑

j=1

c
1

1−p

j




−1

(6)
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Figure 1: Optimal utilitarian resource allocation for five recipients. The curves show the
productivity functions ui(xi) = cix

p
i of the five recipients with p = 0.5 and (c1, . . . , c5) =

(1, 2, 3, 4, 5). The slopes shown at the optimal allotments are equal.

when 0 ≤ p < 1. When p ≥ 1, it is clear on inspection that an optimal solution sets xn = 1
and xi = 0 for i = 1, . . . , n− 1.

The optimal distribution is completely unequal when utility generated is proportional
to resources allocated (p = 1). The most productive recipient receives all the resources.
The distribution becomes increasingly egalitarian as p approaches zero, reaching in the
limit a distribution in which each recipient i is allotted resources in proportion to ci. Thus
the most egalitarian distribution that is possible in this utilitarian model is one in which
recipients are allocated resources in proportion to their productivity coefficient. Moreover,
this occurs only in the limiting case when the utility generated becomes independent of the
resources received (p → 0). This is illustrated in Fig. 2, in which the straight line indicates
the most egalitarian distribution of resources that can occur in a utilitarian solution.

When 0 < p ≤ 1, a utilitarian distribution can be completely egalitarian (x1 = · · · =
xn) only when c1 = · · · = cn. When p > 1, one recipient must receive all the resources
even when c1 = · · · = cn.
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Figure 2: Optimal utilitarian resource allocation to a recipient, as a function of that
recipient’s productivity coefficient. Each curve corresponds to a different exponent p in
the productivity function cix

p.

Figure 3 illustrates the optimal utilitarian distribution of initial resources in a multi-
class society, as a function of the exponent p. Here the classes are defined by productiv-
ity rather than5 actual wealth, although they may correspond roughly to socioeconomic
classes. In fact, differences in productivity may be due in part to social factors that allow
individuals in historically privileged classes to respond more effectively to investment of
resources. The dark bars indicate the relative population of each class, and the light bars
the total resources allocated to each class. The distribution is inegalitarian even for small
p, and extremely so as p → 1. Classes that are only somewhat less productive than others
may receive almost no investment. This extreme result may help to motivate subsequent
models, which make inequality a more explicit factor in evaluating distributive justice.

One can measure the utility that is sacrificed, if any, by imposing a completely egal-
itarian distribution of resources. In a maximum-utility distribution with 0 ≤ p < 1, the
total utility is (

n∑

i=1

c
1

1−p

i

)1−p

(7)
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Figure 3: Utilitarian resource allocation in a multiclass society. The optimal distribution
is shown for different values of the exponent p in the productivity function cix

p.

In a completely egalitarian distribution, each xj = 1/n, and the total utility is
(

1
n

)p n∑

i=1

ci (8)

The ratio (8)/(7) indicates the relative efficiency of complete equality; that is, the ratio of
total utility under complete equality to maximum utility.

Interestingly, this ratio tends to 1 as p → 0 (Fig. 4). Thus if individual output is
insensitive to investment, complete equality results in negligible utility loss, even though
the optimal distribution of resources is substantially inegalitarian.

4 Modeling the Social Cost of Inequality

The rudimentary utilitarian model above implies that a utilitarian solution can result in
considerable inequity when recipients differ in productivity. A classical defense of utilitar-
ianism, however, is that excessive inequity generates disutility by contributing to social
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Figure 4: Efficiency of a completely egalitarian distribution of resources. The curve shows
the ratio of utility under complete equality to maximum utility, as a function of the
productivity exponent p, in the multiclass society of Fig. 3.

disharmony. In an institution context, inequity may reduce morale or create friction in
the organization. A model with an additively separable productivity function, such as (1),
does not account for any such cost of inequality. A more adequate model may result in
utilitarian resource distributions that are more equitable.

A simple way to try to capture the cost of inequity is to model it as a proportional to
the total range of resource allocations. The model (1) becomes

max
n∑

i=1

ui(xi) − β

(
max

i
{xi} − min

i
{xi}

)

n∑

i=1

xi = 1

xi ≥ 0, all i

(9)

Presumably, a positive cost factor β could result in utilitarian solutions that distribute
resources more equally. It is also interesting to derive how large β must be to result in a
completely egalitarian distribution.

The analysis is easier if we linearize problem (9) using the following lemma. We again
assume that recipients are indexed by increasing marginal productivity, as in (3).
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Lemma 1 If the utility functions ui satisfy (3), and (9) has an optimal solution, then the
following problem has the same optimal value as (9):

max
n∑

i=1

ui(xi) − β(xn − x1) (a)

n∑

i=1

xi = 1 (b)

xi ≤ xi+1, i = 1, . . . , n− 1 (c)
xi ≥ 0, all i (d)

(10)

Proof. Let x∗ be an optimal solution of (9) with optimal value U∗. If x∗
j > x∗

k for some
j, k with j < k, then create a new solution x1 defined by x1

j = x∗
k, x1

k = x∗
j , and x1

i = x∗
i

for i 6= j, k. If U1 is the objective function value of solution x1 in (9), then

U1 = U∗ + uj(x∗
k) − uj(x∗

j) + uk(x∗
j) − uk(x∗

k) (11)

But due to (3),
uk(x∗

j) − uk(x∗
k) ≥ uj(x∗

j) − uj(x∗
k)

because j < k. This and (11) imply that U1 ≥ U∗. Now if x1
j > x1

k for some j, k with j < k,
create a new solution x2 in the same manner, and observe again that the objective function
of (9) does not decrease. Continue with the sequence x1, . . . , xt until xt

1 ≤ · · · ≤ xt
n. Then

xt is feasible in the problem

max
n∑

i=1

ui(xi) − β

(
max

i
{xi} − min

i
{xi}

)

n∑

i=1

xi = 1

xi ≤ xi+1, i = 1, . . . , n − 1
xi ≥ 0, all i

(12)

and has an objective function value no less than U∗. But (12) has an optimal value no
greater than U∗ because it is more highly constrained than (9). Thus (9) and (12) have
the same optimal value. But (12) is obviously equivalent to (10), which implies that (9)
and (10) have the same optimal value, as claimed.

To characterize optimal solutions of (10), we associate Lagrange multiplier λ with
(10b) and multipliers µ1, . . . , µn−1 with the constraints in (10c). The Karush-Kuhn-Tucker
(KKT) optimality conditions imply that x is optimal in (10) only if there are a value of λ

and nonnegative values of µ1, . . . , µn−1 such that

u′
1(x1) + β − λ − µ1 = 0

u′
i(xi) − λ + µi−1 − µi = 0, i = 2, . . . , n− 1

u′
n(xn) − β − λ + µn−1 = 0

(13)
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where µi = 0 if xi < xi+1 in the solution.
We first examine the case in which each recipient has a different resource allotment xi.

In this case each µi = 0, and we can eliminate λ from (13) to obtain

u′
2(x2) = · · · = u′

n−1(xn−1)
u′

1(x1) = u′
i(x2) − β, i = 2, . . . , n − 1

u′
n(xn) = u′

i(x2) + β, i = 2, . . . , n − 1

Thus all recipients who are not at the extremes of the distribution have equal marginal
productivity in a utilitarian distribution, just as they do in the solution of the original
model (1). The recipient at the bottom of the distribution, however, has marginal pro-
ductivity that is β smaller than that of those in the middle, while the recipient at the top
has marginal productivity that is β larger than that of those in the middle. This tends to
result in somewhat larger allotment for the recipient at the bottom, and a smaller allot-
ment for the one at the top. Since the remaining recipients are forced to lie between these
extremes, the net result is a distribution that is less skewed than in the original model.

This is illustrated in Fig. 5, in which p = 0.5 and β = 0.5. When β is raised to 0.87,
the two most productive recipients begin with the same allotment, and as β is further
increased, the differences continue to collapse until complete equality occurs (Fig. 6).

5 Equality in the Social Cost Model

We can determine what value of β results in a completely egalitarian solution. In this case
the multipliers µi can be nonzero. Again eliminating λ from the KKT conditions (13), we
get

2µ1 − µ2 = d1

µ1 + µi − µi+1 = di, i = 2, . . .n − 2
µ1 + µn−1 = dn−1

(14)

where
di = u′

1(x1)− u′
i+1(xi+1) + β, i = 1, . . . , n− 2

dn−1 = u′
1(x1) − u′

n(xn) + 2β
(15)

Remarkably, (14) has the following relatively simple closed form solution:

µk =
k

n

n−1∑

i=k

di −
(

1 − k

n

) k−1∑

i=1

di (16)

for k = 1, . . . , n − 1. Substituting (15) into (16), we get

µk = β − k(n − k)
n


 1

n − k

n∑

i=k+1

u′
i(xi) −

1
k

k∑

i=1

u′
i(xi)


 (17)
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Figure 5: Optimal resource allocation for five recipients in the social cost model, based on
the productivity functions of Fig. 1. The three slopes in the middle are equal to 3.52. The
rightmost slope is 3.52+ β = 4.02, and the leftmost slope is 3.52− β = 3.02. This reduces
the largest allotment and increases the smallest relative to Fig. 1, and the remaining
allotments are somewhat compressed as a result.

for k = 1, . . . , n − 1.
We now consider an egalitarian solution, in which each xi = 1/n. Since each µi ≥ 0 in

an optimal solution, we obtain the following from (17).

Theorem 1 Suppose that recipients are indexed in order of increasing marginal produc-
tivity. Then an utilitarian distribution in the model (9) is egalitarian (x1 = · · · = xn) only
if

β ≥ k(n − k)
n


 1

n − k

n∑

i=k+1

u′
i(1/n)− 1

k

k∑

i=1

u′
i(1/n)


 (18)

for k = 1, . . . , n − 1.

The quantity in parentheses is the difference between the average marginal productivity
of the n−k most productive recipients and that of the k least productive recipients, when
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p = 0.5 β = 3.354

Figure 6: Optimal resource allocation to five recipients for several values of the social cost
coefficient β. The productivity functions are as in Fig. 3.

initial resources are distributed equally. This may be easier to interpret for the specific
productivity functions defined earlier.

Corollary 1 If the productivity function ui are given by (5), a utilitarian distribution in
the model (9) is egalitarian only if

β ≥ p

np
k(n − k)


 1

n − k

n∑

i=k+1

ci −
1
k

k∑

i=1

ci




for k = 1, . . . , n − 1.

Thus to determine the minimum β required to ensure equality, we examine each group
of k smallest coefficients c1, . . . , ck. The value of β depends on the difference between the
average of these coefficients and the average of the remaining coefficients. Thus if there
is a group of recipients who are much less productive on the average than the remaining
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Figure 7: Minimum β for complete equality in a unimodal productivity distribution. The
brackets show the population split that results in the minimum β for which complete
equality is optimal in a multiclass society with a unimodal productivity distribution. The
quantity cavg on the left is the average productivity coefficient of individuals in the lowest
three classes, and cavg on the right is the average coefficient in the remaining classes.

recipients, relative to the overall range of productivities, a larger β is required to ensure
equality. This could occur in a two-class society with a relatively homogeneous underclass
and relatively homogenous elites, for example.

The variance of the productivity distribution does not capture this measure. If, for
example, there are three recipients, the productivity coefficients (c1, c2, c3) = (0, 1, 2) have
the same variance as (c1, c2, c3) = (α, α, 2), where α = 2− 31/2 ≈ 0.268. But if k = 2, the
difference of means is 1.5 for the first distribution and 31/2 ≈ 1.732 for the second. The
second imposes a stricter condition for equality because there is a greater productivity
gap between one homogeneous group of recipients (the first two) and the rest (the third).

The lower bound in Corollary 1 tends to be largest when the value of k is chosen to
maximize k(n−k), or when k ≈ n/2. For the five recipients of Fig. 6, the largest bound of
3.354 is achieved when k = 2, 3. Thus we have equality when β ≥ 3.354. In the multiclass
society of Fig. 3, the lower bound on β is largest when k is the number of individuals in
the three lowest classes (Fig. 7). In this case the bound is 9.68Umax, where Umax = 31.2
is the maximum possible utility, ignoring the social cost of inequality. Thus equality is
required only when β is quite large.

Figure 8 shows a similar analysis in a multiclass society with a bimodal productivity
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Figure 8: Minimum β for complete equality in a bimodal productivity distribution. The
notation is the same as in Fig. 7.

distribution. Most people occupy the three lowest classes, and small minority occupy the
highest class, with very few in between. In this case the critical cut point is between the
second and third social classes. Due to the large gap between the least and most productive
classes, a larger β = 12.19Umax (relative to Umax = 22.7) is necessary to enforce equality.

6 Rawlsian Distribution

A lexmax (lexicographic maximum) model can be used to represent a resource distribution
that satisfies the Rawlsian difference principle. As before we let ui(xi) be a productivity
function that measures the utility generated by a recipient i who begins with resources
xi. We also suppose that the fraction of total utility enjoyed by recipient i is proportional
to the utility v(xi) of recipient i’s initial resource allocation. Thus every recipient has
the same utility function, even though different recipients may have different productivity
functions.

Because the lexmax objective function is sensitive to how utility is distributed across
recipients, as well as the total utility, we let yi be the utility enjoyed by recipient i. Any
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solution of the following problem is a Rawlsian distribution:

lexmax y (a)
yi

y1
=

v(xi)
v(x1)

, i = 2, . . . , n (b)

n∑

i=1

yi =
n∑

i=1

ui(xi) (c)

n∑

i=1

xi = 1 (d)

xi ≥ 0, i = 1, . . . , n (e)

(19)

where y = (y1, . . . , yn). By definition, y∗ solves (19) if and only if y∗k solves problem Lk

for k = 1, . . . , n, where Lk is

max min {yk , . . . , yn}
(y1, . . . , yk−1) = (y∗1, . . . , y

∗
k−1)

(19b)–(19e)
(20)

The lexmax solution is frequently defined with respect to a particular ordering y1, . . . , yn

of the variables (e.g., in Isermann [1982]), in which case L1 maximizes y1 rather than max-
imizing min{y1, . . . , yn}. This is inappropriate for the Rawlsian problem because we do
not know in advance how the solution values y∗k will rank in size.

Suppose, however, that recipients 1, . . . , n are indexed by increasing marginal produc-
tivity as in (3). Then we can assume without loss of generality that recipients with less
marginal productivity are nearer the bottom of the distribution.

Lemma 2 Suppose that (3) holds and that v(α) is monotone nondecreasing for α ≥ 0.
Then if (19) has a solution, it has a solution in which y1 ≤ · · · ≤ yn.

Proof. Since v is monotone, it suffices to show that (19) has a solution (x̄, ȳ) in which
x̄1 ≤ · · · ≤ x̄n. For this it suffices to exhibit a solution (x̄, ȳ) that solves Lk for k = 1, . . . , n

and for which x̄1 ≤ · · · ≤ x̄n.
Let (x∗, y∗) be a solution of (19), and let (x0, y0) = (x∗, y∗). If x0

1 ≤ x0
i for i = 2, . . . , n,

then x0 solves L1 and we let x1 = x0. Otherwise we suppose x0
k = mini{x0

i } and define
x1 by x1

1 = x0
k, x1

k = x0
1, and x1

i = x0
i for i 6= 1, k. We define y1 to satisfy (19b)-(19c). We

can see as follows that (x1, y1) solves L1. If U0 =
∑

i ui(xi) is the total utility for solution
(x0, y0), then the total utility for solution (x1, y1) is

U1 = U0 + uk(x0
1) − uk(x0

k) + u1(x0
k) − u1(x0

1)

But we have from (3) that

uk(x0
1) − u1(x0

k) ≥ u1(x0
1)− u1(x0

k)
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Thus U1 ≥ U0, and x1 generates no less total utility than x0. Since utility is allotted to
the y1

i s in proportion to v(x1
i ), and v is monotone nonincreasing, we get y1

1 ≤ y0
1 . Thus

(x1, y1) solves L1.
Now if x1

1 ≤ x1
i for i = 2, . . . , n, then (x1, y1) solves L1, L2 and we let (x2, y2) = (x1, y1).

Otherwise we suppose x1
k = mini≥2{x1

i } and define x2 by x2
1 = x1

k, x2
k = x1

1, and x2
i = x1

i

for i > 2 and i 6= k. We can show as above that (x2, y2) solves L1, L2. In this fashion
we construct the sequence (x1, y1), . . . , (xn, yn) and let (x̄, ȳ) = (xn, yn). By construction,
x̄1 ≤ · · · ≤ x̄n. Since (x̄, ȳ) solves L1, . . . , Ln, it solves (19).

To analyze solutions of (19), it is convenient to eliminate the variables yi from each
Lk. Using constraints (19b)–(19c), we get

yi = v(xi)

n∑

j=1

uj(xj)

n∑

j=1

v(xj)
, i = 1, . . . , n

Using Lemma 2, Lk can be written

max v(xk)

n∑

i=1

ui(xi)

n∑

i=1

v(xi)
(a)

(x1, . . . , xk−1) = (x∗
1, . . . , x

∗
k−1) (b)

n∑

i=1

xi = 1 (c)

xk ≤ · · · ≤ xn (d)
xk ≥ 0 (e)

(21)

where x∗
1, . . . , x

∗
k−1 are previously computed solutions of L1, . . . , Lk−1, respectively.

We focus first on L1. Associating Lagrange multipliers µ1, . . . , µn−1 with the con-
straints in (21d), the KKT optimality conditions imply that a solution x with each xi > 0
is optimal in (21) only if there are nonnegative values of µ1, . . . , µn−1 such that

v′(x1)
Σu

Σv
+ v(x1)

u′
1(x1)Σv − v′(x1)Σu

(Σv)2
− λ− µ1 = 0

v(x1)
u′

i(xi)Σv − v′(xi)Σu

(Σv)2
− λ + µi−1 − µi = 0, i = 2, . . . , n − 1

v(x1)
u′

n(xn)Σv − v′(xn)Σu

(Σv)2
− λ + µn−1 = 0

(22)
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where

Σu =
n∑

i=1

ciui(xi), Σv =
n∑

i=1

v(xi)

and where µi = 0 if xi < xi+1 in the solution.
We begin by examining the case in which each recipient has a different allotment xi.

Here each µi = 0, and (22) implies

v′(x1)
v(x1)

+
u′

1(x1)
Σu

− v′1(x1)
Σv

=
u′

i(xi)
Σu

− v′i(xi)
Σv

for i = 1, . . . , n − 1, assuming v(x1) > 0. This says that the marginal difference between
productivity and utility is the same for every recipient except the lowest ranked recipient,
for whom the difference is somewhat less. This tends to increase the allotment to the
lowest recipient, reducing the gap between this recipient and the others. The optimality
conditions for L2 are similar and likewise move the second closest recipient closer to those
who are more highly ranked. Thus in general, the lexmax solution results in a distribution
that is more egalitarian than one in which the marginal difference between productivity
and utility is the same for every recipient.

We will find that the lexmax distribution for the five recipients of Fig. 1 is completely
egalitarian, with each recipient allotted 0.2. If the individual productivities are more
diverse, however, the Rawlsian distribution may not be completely egalitarian. This is
the case for the five recipients of Fig. 9, which shows the very skewed utility maximizing
distribution. Fig. 10 shows the Rawlsian distribution, which is much more egalitarian, if
not completely so.

7 Equality in a Rawlsian Distribution

We now examine conditions under which a Rawlsian distribution can be egalitarian. We
found earlier that a utilitarian distribution with productivity functions ui(xi) = cix

p
i

cannot be egalitarian unless recipients are identical in their productivity. We will show
that a Rawlsian distribution can, under certain conditions, be egalitarian in a more diverse
population.

We will suppose that the utility function has the form v(α) = αq. This means that if
one posses wealth α, the marginal value of wealth is qαq−1. Normally q < 1, indicating
a concave utility function, because the marginal value of wealth tends to decrease as one
becomes richer. A q that is close to one indicates that the marginal value of wealth remains
nearly constant as one accumulates wealth. Thus getting rich is important, because one
continues to value additional wealth even after having achieved riches. A small q indicates
that the marginal value of wealth is more or less inversely proportional to current wealth.
This can be interpreted as a relative lack of interest in getting rich, because the importance
of acquiring additional wealth rapidly falls off as one becomes more comfortable.
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Figure 9: Utility maximizing allocation for five recipients with diverse productivities. The
productivity functions are ui(xi) = cix

p
i , where (c1, . . . , cn) = (1, 1.5, 2, 4, 6.5).

In an egalitarian distribution any µi can be nonzero. We eliminate λ from the opti-
mality conditions (22) for L1 to obtain

v′(x1)
v(x1)

+
u′

1(x1)
Σu

− v′(x1)
Σv

− 1
v(x1)

Σv

Σu
µ1 =

u′
i(xi)
Σu

− v′(xi)
Σv

+
1

v(x1)
Σv

Σu
(µi−1 − µi) (23)

for i = 2, . . . , n − 1, and

v′(x1)
v(x1)

+
u′

1(x1)
Σu

− v′(x1)
Σv

− 1
v(x1)

Σv

Σu
µ1 =

u′
n(xn)
Σu

− v′(xn)
Σv

+
1

v(x1)
Σv

Σu
µn−1 (24)

Remarkably, these equations have the same form as the optimality conditions (14) for the
social cost model, but with different right-hand sides:

di = v(x1)
Σu

Σv

(
v′(x1)
v(x1)

−
u′

i+1(xi+1) − u′
1(x1)

Σu
+

v′(xi+1) − v′(x1)
Σv

)
, i = 1, . . . , n − 1

(25)
This yields the following.
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Figure 10: Lexmax distribution for the five recipients of Fig. 9. The individual utility
function is v(xi) = xq

i .

Theorem 2 Suppose the productivity functions are given by ui(α) = ciα
p and the utility

function by v(α) = αq. Then L1 has an egalitarian solution (x1 = · · · = xn) only if

1
n − k

n∑

i=k+1

ci −
1
k

k∑

i=1

ci ≤
(
k · p

q

)−1 n∑

i=1

ci (26)

for k = 1, . . . , n − 1.

Proof. The equations (23)–(24) can be written as (14) where the dis are given by (25).
Substituting x1 = · · · = xn = 1/n and the functions ui, v as given above, we obtain

di = qn−p
n∑

j=1

cj − pn−p (ci+1 − c1) (27)

Since (16) solves (14), we can substitute (27) into (16) and get

µk = p
k(n − k)

n1+p


 q

pk

n∑

i=1

ci +
1
k

k∑

i=1

ci −
1

n − k

n∑

i=k+1

ci
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for k = 1, . . . , n − 1. The KKT conditions imply that xk = · · · = xn = 1/n can be an
optimal solution only if µk ≥ 0 for k = 1, . . . , n− 1, which implies (26).

An egalitarian solution (x1 = · · · = xn) solves L1 if and only if it solves the lexmax
problem (19). If it solves L1, then a lexmax solution must have x1 = 1/n, which implies
by (19d) that x2 = · · · = xn = 1/n. If an egalitarian solution does not solve L1, then
some distribution with x1 < 1/n solves L1, which implies that x1 < 1/n in any lexmax
solution. Thus we have

Corollary 2 If the productivity functions are given by ui(α) = ciα
p and the utility func-

tion by v(α) = αq, then a lexmax distribution is egalitarian (x1 = · · · = xn) only if (26)
holds.

Thus a Rawlsian distribution is completely egalitarian when the gap between the aver-
age productivity of the k least productive recipients and that of the remaining recipients
is not too great for any k. The maximum gap is inversely proportional to k and p/q.
This means that a smaller gap is required when the marginal utility of wealth increases
rapidly with the level of wealth (p is large), and when the opposite is true of marginal
productivity (q is small). Thus an inegalitarian distribution is more likely when allocating
greater advantages to talented or industrious recipients reaps consistently greater rewards.
Inequality is also more likely when recipients do not care very much about getting rich
and are satisfied with a moderate level of prosperity.

An egalitarian distribution is also consistent with a much smaller productivity gap
between the highest class and the remaining population (i.e., when k = n − 1) than
between the lowest class and the remaining population (k = 1). Thus if the distribution
of talents and industry has a long tail at the upper end, as is commonly supposed, the
condition for equality could be hard to meet. However, a long tail at the lower end has
little effect on whether the productivity distribution meets the condition for equality.

The ratio p/q requires some interpretation. Recall that the productivity functions
ui(xi) = cix

p
i measure the utility of wealth created (as opposed to the wealth itself) and

therefore already reflect the concavity of the utility function v(xi) = xq
i . Thus we would

expect p to be somewhat smaller than q when the wealth created by a recipient is less
than proportional to investment xi. The wealth created could be more than proportional
to investment in some cases, as when one’s education level passes a critical level at which
productivity jumps, but probably not a great deal more in general. This suggests that p/q

will normally be less than 1, or in any event not much greater than 1, in most situations
familiar to us.

One can check that the conditions of Corollary 2 hold for the five recipients of Fig. 1
when p/q ≤ 1.5, which is very likely to hold in practice. The lexmax distribution is
therefore completely egalitarian.

In the unimodal productivity distribution of Fig. 7, Rawlsian justice requires complete
equality when p is somewhat smaller than q, in particular when p/q ≤ 0.852. Because we
do not expect p/q to be much larger than 1 in any case, this indicates that equality is
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required for a rather large range of utility and productivity functions. However, equality
is required in the bimodal distribution of Fig. 8 only when p/q ≤ 0.361, a much stronger
condition that is perhaps unlikely to be met in reality.

8 Conclusion

We addressed the ethical question of how one can best distribute resources under utilitar-
ian and Rawlsian models of justice. The resources allocated to an individual, group, or
institution are understood to be an investment in its productivity, perhaps in the form of
education, salary, incentives, health care, budget, market access, or tax breaks.

We find that a utilitarian distribution of resources can result in substantial inequality
when some recipients are more productive than others. The optimal distribution is com-
pletely egalitarian only when every recipient has the same marginal productivity. When
marginal productivities are unequal, the most egalitarian distribution that is possible is
one in which recipients are allocated wealth in proportion to their productivity, and this
occurs only when there are rapidly decreasing marginal returns for greater allocations of
wealth. However, if individual production is not very sensitive to investment, relatively
little utility is sacrificed by a distribution that is more egalitarian than one that maximizes
utility.

A more egalitarian optimal distribution results when the utility function includes a
penalty to account for social dysfunction that inequality may cause. In particular, if
the penalty is proportional to the gap between the richest and poorest recipients, we can
calculate a constant of proportionality that results in a completely egalitarian distribution.
This constant tends to be larger when there is large gap in average productivity between
two segments of the population. That is, there a group of recipients that have a much
smaller average marginal productivity than the remaining recipients, relative to the overall
range of productivities. This may occur, for example, in a society where elites and common
people form fairly homogenous groups separated by a large gap in average productivity.

Finally, the Rawlsian difference principle can result in a significantly more egalitarian
distribution than utility maximization. It can require a completely egalitarian distribu-
tion when no two segments of the population are separated by a large gap in average
productivity. Equality is more likely to be required when there are decreasing returns for
placing greater investment in more productive recipients. Somewhat surprisingly, equality
is also more likely when people are nearly as concerned about getting rich as about living
a minimally comfortable lifestyle. When people want riches more, a privileged class or a
highly paid executive corps is less likely to be consistent with Rawlsian justice.

Equality is less likely to be required when the most productive recipients are substan-
tially more productive than the average, as when a society has an elite intelligentsia or a
company has a few managerial superstars. One the other hand, the relative productivity
of the least productive recipients is much less relevant. The existence of an underclass of
unproductive or disabled citizens, or of unskilled workers in a company, does not reduce
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the degree to which equality must be achieved. This differs from the situation in the
utility-maximizing social cost model, where a long lower tail on the productivity distribu-
tion has the same effect as a long upper tail, but gaps in the middle of the distribution
are somewhat more important.

Rawlsian justice may well require a completely egalitarian distribution of resources, for
example in a society that has a large middle class in the sense that most people are near the
average in productivity. In particular, it requires equality when individual productivity
functions level off somewhat more quickly than individual utility functions. A Rawlsian
criterion is substantially less likely to require equality when there is a large productivity
gap between the most productive recipients and the rest.

The range of individual productivities are themselves likely to depend on the scale
and depth of the resource allocation. If society allocates resources only at the margin,
for instance by subsidizing higher education or providing tax breaks, then the response to
social investment will remain highly dependent on socioeconomic factors. Historically un-
derprivileged individuals will remain much less productive that those in the upper classes.
Because the productivity functions are very different across the population, it is unlikely
that a Rawlsian model will call for an equal distribution of resources. However, if society
controls distribution of a wide range of resources, including community services, early
childhood care, housing, health care, education, and a guaranteed income, then produc-
tivity functions will show less variation, depending primarily on such individual traits as
talent and industry. In this case, the Rawlsian solution is more likely to be egalitarian.

A similar principle applies in an institutional context. When managers take greater
control of resources that determine the productivity of employees or divisions, such as
training programs and incentive systems, then the allocations must be more nearly equal
to be fair in a Rawlsian sense. Conversely, when employees or divisions fund their pro-
ductivity development primarily from their own resources, as from commissions or inter-
nally generated revenue, rather than through allocations from headquarters, then those
resources that are allocated need not be so nearly equal to achieve Rawlsian fairness. In
general, managers who take greater responsibility for building productivity incur stricter
obligations for achieving distributive justice.
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