
Optimization Methods in Logic

John Hooker
Carnegie Mellon University

February 2003, Revised December 2008

1 Numerical Semantics for Logic

Optimization can make at least two contributions to boolean logic. Its solution meth-
ods can address inference and satisfiability problems, and its style of analysis can reveal
tractable classes of boolean problems that might otherwise have gone unnoticed.

They key to linking optimization with logic is to provide logical formulas a numerical
interpretation or semantics. While syntax concerns the structure of logical expressions,
semantics gives them meaning. Boolean semantics, for instance, focuses on truth func-
tions that capture the meaning of logical propositions. To take an example, the function
f(x1, x2) given by f(0, 1) = 0 and f(0, 0) = f(1, 0) = f(1, 1) = 1 interprets the expression
x1 ∨ x̄2, where 0 stands for “false” and 1 for “true.”

The Boolean function f does not say a great deal about the meaning of x1 ∨ x̄2, but
this is by design. The point of formal logic is to investigate how one can reason correctly
based solely on the form of propositions. The meaning of the atoms x1 and x2 is irrelevant,
aside from the fact either can be true or false. Only the “or” (∨) and the “not” (¯) require
interpretation for the purposes of formal logic, and the function f indicates how they
behave in the expression x1 ∨ x̄2. In general, interpretations of logic are chosen to be as
lean as possible in order to reflect only the formal properties of logical expressions.

For purposes of solving inference and satisfiability problems, however, it may be ad-
vantageous to give logical expressions a more specific meaning. This chapter presents the
idea of interpreting 0 and 1 as actual numerical values rather than simply as markers for
“false” and “true.” Boolean truth values signify nothing beyond the fact that there are
two of them, but the numbers 0 and 1 derive additional meaning from their role in math-
ematics. For example, they allow Boolean expressions to be regarded as inequalities, as
when x1 ∨ x̄2 is read as x1 + (1 − x2) ≥ 1.

This maneuver makes such optimization techniques as linear and 0-1 programming
available to logical inference and satisfiability problems. In addition it helps to reveal the
structure of logical problems and calls attention to classes of problems that are more easily
solved.

George Boole seems to give a numerical interpretation of logic in his seminal work,
The Mathematical Analysis of Logic, since he notates disjunction and conjunction with

1

symbols for addition and multiplication. Yet his point in doing so is to emphasize that one
can calculate with propositions no less than with numbers. The notation does not indicate
a numerical interpretation of logic, since Boole’s main contribution is to demonstrate a
nonnumeric calculus for deductive reasoning. The present chapter, however, develops the
numerical interpretation suggested by Boole’s original notation.

We begin by showing how Boolean inference and satisfiability problems can be solved
as optimization problems. When then use the numerical interpretation of logic to iden-
tify tractable classes of satisfiability problems. We conclude with some computational
considerations.

2 Solution Methods

The boolean inference problem can be straightforwardly converted to an integer program-
ming problem and solved in that form, and we begin by showing how. It is preferable,
however, to take advantage of the peculiar structure of satisfiability problems rather than
solving them as general integer programming problems. We explain how to generate spe-
cialized separating cuts based on the resolution method for inference and how to isolate
Horn substructure for use in branching and Benders decomposition. We also consider
Lagrangean approaches that exploit the characteristics of satisfiability problems.

2.1 The Integer Programming Formulation

Recall that a literal has the form xj or x̄j, where xj is an atom. A clause is disjunction of
literals. A clause C implies clause D if and only if C absorbs D; that is, all the literals of
C occur in D.

To check whether a Boolean expression P is satisfiable, we can convert P to conjunctive
normal form or CNF (a conjunction of clauses), and write the resulting clauses as linear
0-1 inequalities. P is satisfiable if and only if the 0-1 inequalities have a feasible solution,
as determined by integer programming.

Example 1 To check the proposition x1x̄2 ∨ x3 for satisfiability, write it as a conjunction
of two clauses, (x1 ∨ x3)(x̄2 ∨ x3), and convert them to the inequalities

x1 + x3 ≥ 1
(1 − x2) + x3 ≥ 1

(1)

where x1, x2, x3 ∈ {0, 1}. An integer programming algorithm can determine that (1) has
at least one feasible solution, such as (x1, x2, x3) = (0, 1, 1). The proposition x1x̄2 ∨ x3 is
therefore satisfiable.

2

To state this in general, let S be the set of clauses that result when P is converted to
CNF. Each clause C has the form

CAB =
∨

j∈A

xj ∨
∨

j∈B

x̄j (2)

and can be converted to the inequality

C01 =
∑

j∈A

xj +
∑

j∈B

(1 − xj) ≥ 1

where each xi ∈ {0, 1}. It is convenient to write C01 using the shorthand notation

x(A) + x̄(B) ≥ 1 (3)

If S01 is the set of 0-1 inequalities corresponding to clauses in S, then P is satisfiable if
and only if S01 has a feasible solution.

P implies a given clause CAB if and only if the optimization problem

minimize x(A) + x̄(B)
subject to S01

xj ∈ {0, 1}, all j

has an optimal value of at least 1. Alternatively, P implies CAB if and only if PC̄AB is
unsatisfiable. PC̄AB is obviously equivalent to the clause set

S ∪ {x̄j | j ∈ A} ∪ {xj | j ∈ B}

which can be checked for satisfiability by using 0-1 programming.

Example 2 The proposition

P = (x1 ∨ x3 ∨ x4)(x1 ∨ x3 ∨ x̄4)(x2 ∨ x̄3 ∨ x4)(x2 ∨ x̄3 ∨ x̄4)

implies x1 ∨ x2 if and only if the following problem has an optimal value of at least 1:

minimize x1 + x2

subject to x1 + x3 + x4 ≥ 1
x1 + x3 + (1 − x4) ≥ 1
x2 + (1 − x3) + x4 ≥ 1
x2 + (1 − x3) + (1 − x4) ≥ 1
x1, . . . , x4 ∈ {0, 1}

3

An integer programming algorithm can determine that the optimal value is 1.
Alternatively, P implies x1 ∨ x2 if the clause set

x1 ∨ x3 ∨ x4

x1 ∨ x3 ∨ x̄4

x2 ∨ x̄3 ∨ x4

x2 ∨ x̄3 ∨ x̄4

¬x1

¬x2

(4)

is infeasible. An integer programming algorithm can determine that the corresponding 0-1
constraint set is infeasible:

x1 + x3 + x4 ≥ 1
x1 + x3 + (1 − x4) ≥ 1
x2 + (1 − x3) + x4 ≥ 1
x2 + (1 − x3) + (1 − x4) ≥ 1
(1 − x1) ≥ 1
(1 − x2) ≥ 1
x1, . . . , x4 ∈ {0, 1}

(5)

It follows that (4) is unsatisfiable and that P implies x1 ∨ x2.

A Boolean expression can be written as an inequality without first converting to CNF,
but this is normally impractical for purposes of optimization. For example, one could write
the proposition x1x̄2 ∨ x3 as the inequality

x1(1 − x2) + x3 ≥ 1

This nonlinear inequality results in a much harder 0-1 programming problem than the
linear inequalities that represent clauses.

The most popular solution approach for linear 0-1 programming is branch and cut. In its
simplest form it begins by solving the linear programming (LP) relaxation of the problem,
which results from replacing the binary conditions xj ∈ {0, 1} with ranges 0 ≤ xj ≤ 1. If
all variables happen to have integral values in the solution of the relaxation, the problem is
solved. If the relaxation has a nonintegral solution, the algorithm branches on a variable xj

with a nonintegral value. To branch is to repeat the process just described, once using the
LP relaxation with the additional constraint xj = 0, and a second time with the constraint
xj = 1. The recursion builds a finite but possibly large binary tree of LP problems, each

4

of which relaxes the original problem with some variables fixed to 0 or 1. The original LP
relaxation lies at the root of the tree.

The leaf nodes of the search tree represent LP relaxations with an integral solution, a
dominated solution, or no solution. A dominated solution is one whose value is no better
than that of the best integral solution found so far (so that there is no point in branching
further). The best integral solution found in the course of the search is optimal in the
original problem. If no integral solution is found, the problem is infeasible. The method is
obviously more efficient if it reaches leaf nodes before descending too deeply into the tree.

The branching search is often enhanced by generating valid cuts or cutting planes at
some nodes of the search tree. These are inequality constraints that are added to the LP
relaxation so as to “cut off” part of its feasible polyhedron without cutting off any of the
feasible 0-1 points. Valid cuts tighten the relaxation and increase the probability that its
solution will be integral or dominated.

The practical success of branch and bound rests on two mechanisms that may result
in shallow leaf nodes.

Integrality. LP relaxations may, by luck, have integral solutions when only a few variables
have been fixed to 0 or 1, perhaps due to the polyhedral structure of problems that
typically arise in practice.

Bounding. LP relaxations may become tight enough to be dominated before one descends
too deeply into the search tree, particularly if strong cutting planes are available.

In both cases the nature of the relaxation plays a central role. We therefore study the
LP relaxation of a boolean problem.

2.2 The Linear Programming Relaxation

Linear programming provides an incomplete check for boolean satisfiability. For clause set
S, let SLP denote the LP relaxation of the 0-1 formulation S01. If SLP is infeasible, then S
is unsatisfiable. If SLP is feasible, however, the satisfiability question remains unresolved.

This raises the question, how much power does linear programming have to detect
unsatisfiability when it exists? It has the same power as a simple inference method known
as unit resolution, in the sense that the LP relaxation is infeasible precisely when unit
resolution proves unsatisfiability.

Unit resolution is a linear-time inference procedure that essentially performs back sub-
stitution. Each step of unit resolution fixes a unit clause U ∈ S (i.e., a single-literal clause)
to true. It then eliminates U and Ū from the problem by removing from S all clauses that

5

contain the literal U , and removing the literal Ū from all clauses in S that contain it. The
procedure repeats until no unit clauses remain. It may result in an empty clause (a clause
without literals), which is a sufficient condition for the unsatisfiability of S.

Since unit resolution is much faster than linear programming, it makes sense to apply
unit resolution before solving the LP relaxation. Linear programming is therefore used
only when the relaxation is known to be feasible and is not a useful check for satisfiability.
It is more useful for providing bounds and finding integral solutions. Let a unit refutation
be a unit resolution proof that obtains the empty clause.

Proposition 1 A clause set S has a unit refutation if and only if SLP is infeasible.

Two examples motivate the proof of the proposition. The first illustrates why the LP
relaxation is feasible when unit resolution fails to detect unsatisfiability.

Example 3 Consider the clause set (4). Unit resolution fixes x1 = x2 = 0 and leaves the
clause set

x3 ∨ x4

x3 ∨ x̄4

x̄3 ∨ x4

x̄3 ∨ x̄4

(6)

Unit resolution therefore fails to detect the unsatisfiability of (4). To see that the LP
relaxation (5) is feasible, set the unfixed variables x3 and x4 to 1/2. This is a feasible
solution (regardless of the values of the fixed variables) because every inequality in (5) has
at least two unfixed terms of the form xj or 1 − xj.

We can also observe that unit resolution has the effect of summing inequalities.

Example 4 Suppose we apply unit resolution to the first three clauses below to obtain the
following .

x̄1 (a)
x1 ∨ x2 (b)
x1 ∨ x̄2 (c)
x2 (d) from (a) + (b)
x̄2 (e) from (a) + (c)
∅ from (d) + (e)

(7)

Resolvent (d) corresponds to the sum of 1 − x1 ≥ 1 and x1 + x2 ≥ 1, and similarly for
resolvent (e). Now x2 and x̄2 resolve to produce the empty clause, which corresponds to
summing x2 ≥ 1 and (1 − x2) ≥ 1 to get 0 ≥ 1. Thus applying unit resolution to (7) has
the effect of taking a nonnegative linear combination 2 · (a) + (b) + (c) to yield 0 ≥ 1.

6

Proof of Proposition 1. If unit resolution fails to demonstrate unsatisfiability of S,
then it creates no empty clause, and every remaining clause contains at least two literals.
Thus every inequality in SLP contains at least two unfixed terms of the form xj or 1 − xj

and can be satisfied by setting the unfixed variables to 1/2.
Conversely, if unit resolution proves unsatisfiability of S, then some nonnegative linear

combination of inequalities in S01 yields 0 ≥ 1. This means that SLP is infeasible.

There are special classes of boolean problems for which unit resolution always detects
unsatisfiability when it exists. Section 3 shows how polyhedral analysis can help identify
such classes.

We can now consider how the branch and cut mechanisms discussed above might
perform in the context of Boolean methods.

Integrality. Since one can always solve a feasible LP relaxation of a satisfiability problem
by setting unfixed variables to 1/2, it may appear that the integrality mechanism will
not work in the Boolean case. However, the simplex method for linear programming
finds a solution that lies at a vertex of the feasible polyhedron. There may be many
integral vertex solutions, and the solution consisting of 1/2’s may not even be a
vertex. For instance, the fractional solution (x1, x2, x3) = (1/2, 1/2, 1/2) is feasible
for the LP relaxation of (1), but it is not a vertex solution. In fact, all of the
vertex solutions are integral (i.e., the LP relaxation defines an integral polyhedron).
The integrality mechanism can therefore be useful in a Boolean context, albeit only
empirical investigation can reveal how useful it is.

Bounding. The bounding mechanism is more effective if we can identify cutting planes
that exploit the structure of Boolean problems. In fact we can, as shown in the next
section.

2.3 Cutting Planes

A cutting plane is a particular type of logical implication. We should therefore expect to
see a connection between cutting plane theory and logical inference, and such a connection
exists. The most straightforward link is the fact that the well-known resolution method
for inference generates cutting planes.

Resolution generalizes the unit resolution procedure discussed above (see Chapter 3
of Volume I). Two clauses C,D have a resolvent R if exactly one variable xj occurs as a
positive literal xj in one clause and as a negative literal x̄j in the other. The resolvent R
consists of all the literals in C or D except xj and x̄j. C and D are the parents of R. For
example, the clauses x1 ∨ x2 ∨ x3 and x̄1 ∨ x2 ∨ x̄4 yield the resolvent x2 ∨ x3 ∨ x̄4.

7

Given a clause set S, each step of the resolution algorithm finds a pair of clauses in
S that have a resolvent R that is absorbed by no clause in S, removes from S all clauses
absorbed by R, and adds R to S. The process continues until no such resolvents exist.
Quine [66, 67] showed that the resolution procedure yields precisely the prime implicates
of S. It yields the empty clause if and only if S is unsatisfiable.

Unlike a unit resolvent, a resolvent R of C and D need not correspond to the sum of
C01 and D01. However, it corresponds to a cutting plane. A cutting plane of a system
Ax ≥ b of 0-1 inequalities is an inequality that is satisfied by all 0-1 points that satisfy
Ax ≥ b. A rank 1 cutting plane has the form duAex ≥ dube, where u ≥ 0 and dαe rounds
α up to the nearest integer. Thus rank 1 cuts result from rounding up a nonnegative linear
combination of inequalities.

Proposition 2 The resolvent of clauses C,D is a rank 1 cutting plane for C01,D01 and
bounds 0 ≤ xj ≤ 1.

The reasoning behind the proposition is clear in an example.

Example 5 Consider again the clauses x1 ∨ x2 ∨ x3 and x̄1 ∨ x2 ∨ x̄4, which yield the
resolvent x2 ∨ x3 ∨ x̄4. Consider a linear combination of the corresponding 0-1 inequalities
and 0-1 bounds, where each inequality has a multiplier 1/2:

x1 +x2 +x3 ≥ 1
(1 − x1)+x2 +(1 − x4) ≥ 1

x3 ≥ 0
(1 − x4) ≥ 0

x2 +x3 +(1 − x4) ≥ 1/2

Rounding up the right-hand side of the resulting inequality (below the line) yields a rank 1
cutting plane that corresponds to the resolvent x2 ∨ x3 ∨ x̄4.

Proof of Proposition 2. Let C = CA∪{k},B and D = DA′ ,B′∪{k}, so that the reso-
lution takes place on variable xk. The resolvent is R = RA∪A′,B∪B′. Consider the linear
combination of C01, D01, xj ≥ 0 for j ∈ A∆A′, and (1 − xj) ≥ 0 for j ∈ B∆B′ in which
each inequality has weight 1/2, and A∆A′ is the symmetric difference of A and A′. This
linear combination is

∑
j∈A∪A′ xj +

∑
j∈B∪B′(1−xj) ≥ 1/2. By rounding up the right-hand

side, we obtain R01, which is therefore a rank 1 cut.

Let the input resolution algorithm for a given clause set S be the resolution algorithm
applied to S with the restriction that at least one parent of every resolvent belongs to the
original set S. The following is proved in [38].

8

Proposition 3 The input resolution algorithm applied to a clause set S generates precisely
the set of clauses that correspond to rank 1 cuts of S01.

One way to obtain cutting planes for branch and cut is to generate resolvents from
the current clause set S. The number of resolvents tends to grow very rapidly, however,
and most of them are likely to be unhelpful. Some criterion is needed to identify useful
resolvents, and the numerical interpretation of logic provides such a criterion. One can
generate only separating cuts, which are cutting planes that are violated by the solution of
the current LP relaxation. Separating cuts are so called because they cut off the solution
of the LP relaxation and thereby “separate” it from the set of feasible 0-1 points.

The aim, then, is to identify resolvents R for which R01 is a separating cut. In principle
this can be done by screening all resolvents for separating cuts, but there are better ways.
It is straightforward, for example, to recognize a large class of clauses that cannot be the
parent of a separating resolvent. Suppose that all clauses under discussion have variables
in {x1, . . . , xn}.

Proposition 4 Consider any clause CAB and any x ∈ [0, 1]n. CAB can be the parent
of a separating resolvent for x only if x(A) + x̄(B) − x({j}) < 1 for some j ∈ A or
x(A) + x̄(B) − x̄({j}) < 1 for some j ∈ B.

Proof. The resolvent on xj of clause CAB with another clause has the form R = CA′B′,
where A \ {j} ⊂ A′ and B \ {j} ⊂ B′. R01 is separating when x(A′) + x̄(B′) < 1. This
implies that x(A) + x̄(B) − x({j}) < 1 if j ∈ A and x(A) + x̄(B)− x̄({j}) < 1 if j ∈ B.

Example 6 Suppose (x1, x2, x3) = (1, 0.4, 0.3) in the solution of the current LP relaxation
of an inference or satisfiability problem, and let CAB = x1∨x2∨x̄3. Here x(A)+x̄(B) = 2.1.
CAB cannot be the parent of a separating resolvent because x(A)+x̄(B)−x({1}) = 1.1 ≥ 1,
x(A) + x̄(B) − x({2}) = 1.7 ≥ 1, and x(A) + x̄(B) − x̄({3}) = 1.4 ≥ 1.

Proposition 4 suggests that one can apply the following separation algorithm at each
node of the branch-and-cut tree. Let S0 consist of the clauses in the satisfiability or infer-
ence problem at the current node, including unit clauses imposed by branching. Simplify
S0 by applying unit resolution, and solve SLP

0 (unless S0 contains the empty clause). If
the LP solution is nonintegral and undominated, generate cutting planes as follows. Let
set SSR (initially empty) collect separating resolvents. Remove from S0 all clauses that
cannot be parents of separating resolvents, using the criterion of Proposition 4. In each
iteration k, beginning with k = 1, let Sk be initially empty. Generate all resolvents R
that have both parents in Sk−1 and are not dominated by any clause in Sk−1. If R01 is

9

separating, remove from SSR all clauses absorbed by R, and put R into Sk and SSR; if R01

is not separating, put R into Sk if R meets the criterion in Proposition 4. If the resulting
set Sk is nonempty, increment k by one and repeat. The following is proved in [45].

Proposition 5 Given a clause set S and a solution x of SLP, every clause corresponding
to a rank 1 separating cut of S01 is absorbed by a clause in SSR.

SSR may also contain cuts of higher rank.

Example 7 Consider the problem of checking whether x1 follows from the following clause
set S:

x1 ∨ x2∨ x3 (a)
x1 ∨ x2∨ x̄3 ∨x4 (b)
x1 ∨ x̄2 ∨x4 (c)

x̄2∨ x3 ∨ x̄4 (d)

(8)

The 0-1 problem is to minimize x1 subject to S01. At the root node of the branch-and-
cut tree, we first apply unit resolution to S0 = S, which has no effect. We solve SLP

0 to
obtain (x1, x2, x3, x4) = (0, 1/3, 2/3, 1/3). Only clauses (a)-(c) satisfy Proposition 4, and
we therefore remove (d) from S0. In iteration k = 1 we generate the following resolvents
from S0:

x1∨ x2 ∨x4 (e)
x1 ∨ x̄3 ∨x4 (f)
x1 ∨ x3 ∨x4 (g)

Resolvents (e) and (f) are separating and are added to both S1 and SSR. Resolvent (g)
passes the test of Proposition 4 and is placed in S1, which now contains (e), (f) and (g).

In iteration k = 2 we generate the resolvent x1 ∨x4 from S1. Since it is separating and
absorbs both (e) and (f), the latter two clauses are removed from SSR and x1∨x4 is added
to SSR. Also x1 ∨ x4 becomes the sole element of S2. Clearly S3 is empty, and the process
stops with one separating clause in SSR, namely x1 ∨ x4. It corresponds to the rank 1 cut
x1 + x4 ≥ 1.

At this point the cut x1 +x4 ≥ 1 can be added to SLP
0 . If the LP is re-solved, an integral

solution (x1, . . . , x4) = (0, 0, 1, 1) results, and the 0-1 problem is solved without branching.
Since x1 = 0 in this solution, x1 does not follow from S.

2.4 Horn Problems

A promising approach to solving Boolean satisfiability problems is to exploit the fact that
they often contain large “renamable Horn” subproblems. That is, fixing to true or false a

10

few atoms x1, . . . , xp may create a renamable Horn clause set, which unit resolution can
check for satisfiability in linear time. Thus when using a branching algorithm to check for
satisfiability, one need only branch on variables x1, . . . , xp. After one branches on these
variables, the remaining subproblems are all renamable Horn and can be solved without
branching.

Originally proposed by Chandru and Hooker [16], this approach is a special case of
the more general strategy of finding a small set of variables that, when fixed, simplify the
problem at hand. The idea later re-emerged in the literature under the name of finding
a backdoor [25, 52, 51, 59, 64, 65, 72, 76] for boolean satisfiability and other problems.
Complexity results have been derived for several types of backdoor detection [25, 59, 76].

A Horn clause is a clause with at most one positive literal, such as x̄1 ∨ x̄2 ∨ x3. A
clause set H is Horn if all of its clauses are Horn. H is renamable Horn if it becomes Horn
when zero or more variables xj are complemented by replacing them with x̄j (and x̄j with
xj). Horn problems are discussed further in Chapter 6 of Volume I.

Example 8 The clause set
x1 ∨ x2

x̄1 ∨ x̄2

is renamable Horn because complementing x1 makes it Horn. On the other hand, the
following clause set is not renamable Horn.

x1 ∨ x2 ∨ x3

x̄1 ∨ x̄2 ∨ x̄3
(9)

Let positive unit resolution be a unit resolution algorithm in which every resolvent has
at least one parent that is a positive unit clause.

Proposition 6 A Horn set is satisfiable if and only if there is no positive unit refutation.
A renamable Horn set is satisfiable if and only if there is no unit refutation.

Proof. Suppose that positive unit resolution applied to Horn clause set S generates
no empty clause. Let S ′ be the clause set that remains. Then every clause in S ′ is a
negative unit cause or contains two or more literals, at least one of which is negative. The
clauses in S can be satisfied by setting all variables in S ′ to false and all variables on which
the algorithm resolved to true. Now suppose that unit resolution applied to a renamable
Horn clause set S generates no empty clause. For some renaming of the variables in S,
the resulting clause set S+ is Horn. There is no positive unit refutation of S+, because
otherwise, un-renaming the variables in this proof would yield a unit refutation of S. Thus
S+ is satisfiable, which means that S is satisfiable.

From this and Proposition 1 we immediately infer:

11

Proposition 7 A renamable Horn set S is satisfiable if and only if SLP is feasible.

Given a clause set S, we would like to find a smallest backdoor set. In particular,
we seek the shortest vector of variables x′ = (xj1 , . . . , xjp) that, when fixed to any value,
simplifies S to renamable Horn set. Following [16], let v = (v1, . . . , vp) be a 0-1 vector, and
define S(x′, v) to be the result of fixing each xj`

in x′ to v`. Thus if v` = 1, all clauses in S
containing literal xj`

are removed from S, and all literals x̄j`
are removed from clauses in

S, and analogously if v` = 0. Thus we wish to find the smallest variable set x′ such that
S(x′, v) is renamable Horn for all valuations v.

Let S(x′) be the result of removing from clauses in S every literal that contains a
variable in x′. Then since S(x′, v) ⊂ S(x′) for every v, S(x′, v) is renamable Horn for every
v if S(x′) is renamable Horn. To find the shortest x′ for which S(x′) is renamable Horn,
we introduce 0-1 variables yj, ȳj. Let yj = 1 when xj is not renamed, ȳj = 1 when xj is
renamed, and yj = ȳj = 0 when xj is removed from S by including it in x′. Then we wish
to solve the set packing problem,

maximize
∑

j

(yj + ȳj)

subject to y(A) + ȳ(B) ≤ 1, all clauses CAB ∈ S

yj + ȳj ≤ 1, all j

yj, ȳj ∈ {0, 1}

(10)

The first constraint ensures that each renamed clause in S contains at most one positive
literal.

A set packing problem can always be solved as a maximum clique problem. In this case,
we define an undirected graph G that contains a vertex for each literal xj, x̄j and an edge
between two vertices whenever the corresponding literals never occur in the same clause
of S and are not complements of each other. A clique of G is a set of vertices in which
every pair of vertices is connected by an edge. If W is a clique of maximum size, then we
put xj into x′ when xj, x̄j 6∈ W . The maximum clique problem is NP-hard, but there are
numerous exact and approximate algorithms for it [2, 3, 4, 5, 9, 12, 27, 28, 48, 61, 62, 70, 79].
One can also solve the maximum independent set problem on the complementary graph
[11, 26, 37, 53, 63, 73]. Two graph-based algorithms specifically for finding a small backdoor
set are presented in [52], and heuristic methods in [64, 65].

Example 9 Let us check again whether x1 follows from the clause set (8). This time we

12

do so by checking the satisfiability of

x1 ∨x2 ∨x3

x1 ∨x2 ∨ x̄3 ∨ x4

x1 ∨ x̄2 ∨ x4

x̄2 ∨x3 ∨ x̄4

x̄1

(11)

To find the shortest vector x′ of variables we must fix to obtain a Horn problem, we solve
the set packing problem

maximize y1 + y2 + y3 + y4 + ȳ1 + ȳ2 + ȳ3 + ȳ4

subject to y1 + y2 + y3 ≤ 1
y1 + y2 + y4 + ȳ3 ≤ 1
y1 + y4 + ȳ2 ≤ 1

y3 + ȳ2 + ȳ4 ≤ 1
ȳ1 ≤ 1

yj + ȳj ≤ 1, j = 1, . . . , 4
yj ∈ {0, 1}

An optimal solution is y = (0, 0, 0, 0), ȳ = (1, 1, 1, 0). The solution indicates that only x4

need be fixed to obtain a renamable Horn problem, which is converted to Horn by renaming
x1, x2, x3. Alternatively, we can find a maximum clique in the graph of Fig. 1. One such
clique is {x̄1, x̄2, x̄3}, which again indicates that x4 can be fixed and x1, x2, x3 renamed to
obtain a Horn problem.

We therefore branch only on x4. If we set x4 = 0, the resulting problem is renamable
Horn:

x1∨ x2 ∨x3

x1∨ x2 ∨ x̄3

x1∨ x̄2

x̄1

(12)

and unit resolution proves unsatisfiability. Taking the x4 = 1 branch, we obtain the re-
namable Horn problem

x1∨ x2 ∨x3

x̄2 ∨x3

x̄1

(13)

Unit resolution fixes x1 = 0 and leaves the clause set {x2 ∨ x3, x̄2 ∨ x3}, whose clauses we
satisfy by setting its variables to 0 in the renamed problem (which is Horn). Since x2, x3

are renamed in this case, we set (x1, x2, x3) = (0, 1, 1), which with x4 = 1 is a satisfying
solution for (11).

13

x1 ..

x2
....................

.....................
....................

....................
....................

....................
.....................

....................
....................

....................
.....................

....................
....................

....................
..

...

x3

.............
.............
............
............
............
.............
............
............
............
.............
............
............
............
.............
.............
............
............
............
.............
............
............
............
.............
............
............
............
.............
........

..

x4
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
..........
....
x̄1
..

...

...

..

..

x̄4
..............
.............
.............
.............
..............
.............
.............
.............
..............
.............
.............
.............
..............
.............
.

x̄2
..

..

x̄3

Figure 1: Maximum clique problem for finding renamable Horn substructure. One solution is
shown in double lines.

2.5 Benders Decomposition

Benders decomposition [6, 29] is a well-known optimization technique that can be applied
to Boolean satisfiability problems, particularly those with significant renamable Horn sub-
structure.

Benders decomposition normally applies to optimization problems, but we focus on
feasibility problems of the form

Ax + g(y) ≥ b
x ∈ Rn, y ∈ Y

(14)

where g(y) is a vector of functions gi(y). The method enumerates some values of y ∈ Y
and, for each, seeks an x such that (x, y) is feasible. Thus for each trial value ŷ, we solve
the linear programming subproblem that results from fixing y to ŷ in (14):

Ax ≥ b − g(ŷ)
x ∈ Rn (15)

If a solution x̂ exists, then (x̂, ŷ) solves (14). If the subproblem is infeasible, then by the
well-known Farkas Lemma there is a row vector û ≥ 0 such that

ûA = 0
û(b − g(ŷ)) > 0

14

Thus to obtain a feasible subproblem, we must find a y such that

û(b − g(y)) ≤ 0 (16)

We therefore impose (16) as Benders cut that any future trial value of y must satisfy.
In iteration k of the Benders algorithm we obtain a trial value ŷ of y by solving a

master problem that contains all Benders cuts so far generated:

û`(b − g(y)) ≤ 0, ` = 1, . . . , k − 1
y ∈ Y

(17)

Thus û1, . . . , ûk−1 are the vectors û found in the previous subproblems. We then formulate
a new subproblem (15) and continue the process until the subproblem is feasible or until
the master problem becomes infeasible. In the latter case, the original problem (14) is
infeasible.

The classical Benders method does not apply to general Boolean satisfiability problems,
because the Benders subproblem must be a continuous linear or nonlinear problem for
which the multipliers u can be derived. Logic-based Benders decomposition [80, 40, 46], an
extension of the method, allows solution of general Boolean problems, but here we consider
a class of Boolean problems in which the logic-based method reduces to the classical
method. Namely, we solve Boolean problems in which the subproblem is a renamable
Horn problem and therefore equivalent to an LP problem (Proposition 7).

To obtain a renamable Horn subproblem, we must let the master problem contain
variables that, when fixed, result in a renamable Horn structure. This can be accomplished
by the methods of the previous section.

It is inefficient to solve the subproblem with an LP solver, since unit resolution is much
faster. Fortunately, we can obtain u from a unit refutation, as illustrated by Example 4.
Recall that in this example the empty clause was obtained by taking the linear combination
2 · (a) + (b) + (c), where the coefficients represent the number of times each of the original
clauses are “used” in the unit refutation. To make this precise, let C be any clause that
occurs in the unit refutation, and let n(C) be the number of times C is used in the
refutation. Initially each n(C) = 0 and we execute the following recursive procedure by
calling count(∅), where ∅ denotes the empty clause.

Procedure count(C)
Increase n(C) by 1.
If C has parents P,Q in the unit refutation, then

Perform count(P) and count(Q).

The following is a special case of a result of Jeroslow and Wang [50].

15

Proposition 8 Suppose the feasibility problem Ax ≥ b represents a renamable Horn satis-
fiability problem, where each row i of Ax ≥ b corresponds to a clause Ci. If the satisfiability
problem has a unit refutation, then uA = 0 and ub = 1, where each ui = n(Ci).

Proof. When C is the resolvent of P,Q in the above recursion, the inequality C01 is
the sum of P 01 and Q01. Thus ∅01, which is the inequality 0 ≥ 1, is the sum of n(Ci) ·C01

i

over all i. Because C01
i is row i of Ax ≥ b, this means that uA = 0 and ub = 1 if we set

ui = n(Ci) for all i.

Benders decomposition can now be applied to a Boolean satisfiability problem. First
put the problem in the form of a 0-1 programming problem (14). The variables y are
chosen so that, when fixed, the resulting subproblem (15) represents a renamable Horn
satisfiability problem and can therefore be regarded as an LP problem. The multipliers û
are obtained as in Proposition 8 and the Benders cut (16) formed accordingly.

Example 10 Consider again the satisfiability problem (11). We found in Example 9 that
the problem becomes renamable Horn when x4 is fixed to any value. We therefore put x4 in
the master problem and x1, x2, x3 in the subproblem. Now (11) becomes the 0-1 feasibility
problem

x1 +x2 + x3 ≥ 1
x1 +x2 + (1 − x3)+ x4 ≥ 1
x1 +(1 − x2) + x4 ≥ 1

(1 − x2)+ x3 + (1 − x4) ≥ 1
(1 − x1) ≥ 1

where x4 plays the role of y1 in (14). This problem can be written in the form (14) by
bringing all constants to the right-hand side:

x1 +x2 + x3 ≥ 1
x1 +x2 −x3 + x4 ≥ 0
x1 −x2 + x4 ≥ 0

−x2 + x3 −x4 ≥ −1
−x1 ≥ 0

Initially the master problem contains no constraints, and we arbitrarily set x̂4 = 0. This
yields the satisfiability subproblem (12), which has the 0-1 form

x1 + x2 + x3 ≥ 1 (a)
x1 + x2 −x3 ≥ 0 (b)
x1 −x2 ≥ 0 (c)

−x2 + x3 ≥ −1 (d)
−x1 ≥ 0 (e)

16

(Note that clause (d) could be dropped because it is already satisfied.) This is a renamable
Horn problem with a unit refutation, as noted in Example 9. The refutation obtains the
empty clause from the linear combination (a) + (b) + 2 · (c) + 4 · (e), and we therefore let
û = (1, 1, 2, 0, 4). The Benders cut (16) becomes

[1 1 2 0 4]







1
0
0

−1
0



−




0
x4

x4

−x4

0







≤ 0

or 3x4 ≥ 1. The master problem (17) now consists of the Benders cut 3x4 ≥ 1 and has
the solution x4 = 1. The next subproblem is therefore (13), for which there is no unit
refutation. The subproblem is solved as in Example 9 by setting (x1, x2, x3) = (0, 1, 1), and
the Benders algorithm terminates. These values of xj along with x4 = 1 solve the original
problem.

Rather than solve each master problem from scratch as in the classical Benders method,
we can conduct a single branch-and-cut search and solve the subproblem each time a
feasible solution is found. When a new Benders cut is added, the branch-and-cut search
resumes where it left off with the new Benders cut in the constraint set. This approach
was proposed in [40] and tested computationally on machine scheduling problems in [74],
where it resulted in at least an order-of-magnitude speedup.

Although we have used Benders to take advantage of Horn substructure, it can also
exploit other kinds of structure by isolating it in the subproblem. For example, a problem
may decompose into separate problems when certain variables are fixed [46].

2.6 Lagrangean Relaxation

One way to strengthen the relaxations solved at nodes of a search tree is to replace LP
relaxations with Lagrangean relaxations. A Lagrangean relaxation removes or “dualizes”
some of the constraints by placing penalties for their violation in the objective function.
The dualized constraints are typically chosen in such a way that the remaining constraints
decouple into small problems, allowing rapid solution despite the fact that they are dis-
crete. Thus while Benders decomposition decouples the problem by removing variables,
Lagrangean relaxation decouples by removing constraints.

17

Consider an optimization problem:

minimize cx

subject to Ax ≥ b

x ∈ X

(18)

where Ax ≥ b represent the constraints to be dualized, and x ∈ X represents constraints
that are easy in some sense, perhaps because they decouple into small subsets of constraints
that can be treated separately. We regard Ax ≥ b as consisting of rows Aix ≥ bi for
i = 1, . . . ,m. Given Lagrange multipliers λ1, . . . , λm ≥ 0, the following is a Lagrangean
relaxation of (18):

minimize cx +
∑

i

λi(bi − Aix)

subject to x ∈ X
(19)

The constraints Ax ≥ b are therefore dualized by augmenting the objective function with
weighted penalties λi(bi − Aix) for their violation.

As for the choice of multipliers λ = (λ1, . . . , λm), the simplest strategy is to set each to
some convenient positive value, perhaps 1. One can also search for values of λ that yield
a tighter relaxation. If θ(λ) is the optimal value of (19), the best possible relaxation is
obtained by finding a λ that solves the Lagrangean dual problem maxλ≥0 θ(λ). Since θ(λ)
is a concave function of λ, it suffices to find a local maximum, which is a global maximum.

Subgradient optimization is commonly used to solve the Lagrangean dual ([78], pp.
174–175). Each iteration k begins with the current estimate λk of λ. Problem (19) is
solved with λ = λk to compute θ(λk). If xk is the solution of (19), then b − Axk is a
subgradient of θ(λ) at λk. The subgradient indicates a direction in which the current
value of λ should move to achieve the largest possible rate of increase in θ(λ). Thus
we set λk+1 = λk + αk(b − Axk), where αk is a stepsize that decreases as k increases.
Various stopping criteria are used in practice, and the aim is generally to obtain only an
approximate solution of the dual.

For a Boolean satisfiability problem, c = 0 in (18), and the constraints Ax ≥ b are 0-1
formulations of clauses. The easy constraints x ∈ X include binary restrictions xj ∈ {0, 1}
as well as “easy” clauses that allow decoupling. When the Lagrangean relaxation has a
positive optimal value θ(λ), the original problem is unsatisfiable, whereas θ(λ) ≤ 0 leaves
the optimality question unresolved.

18

Example 11 Consider the unsatisfiable clause set S below:

x̄1∨ x̄2∨ x3 (a)
x̄1∨ x̄2 ∨ x̄4 (b)
x1∨ x2 (c)
x1∨ x̄2 (d)
x̄1∨ x2 (e)

x̄3 ∨x4 (f)
x3 ∨ x̄4 (g)

(20)

SLP is feasible and therefore does not demonstrate unsatisfiability. Thus if we use the LP
relaxation in a branch-and-cut algorithm, branching is necessary. A Lagrangean relaxation,
however, can avoid branching in this case. Constraints (a) and (b) are the obvious ones to
dualize, since the remainder of the problem splits into two subproblems that can be solved
separately. The objective function of the Lagrangean relaxation (19) becomes

λ1(−1 + x1 + x2 − x3) + λ2(−2 + x1 + x2 + x4)

Collecting terms in the objective function, the relaxation (19) is

minimize (λ1 + λ2)x1 + (λ1 + λ2)x2−λ1x3 + λ2x4 −λ1 − 2λ2

subject to x1 + x2 ≥ 1
x1 −x2 ≥ 0

−x1 + x2 ≥ 0
−x3 + x4 ≥ 0

x3 −x4 ≥ 0
xj ∈ {0, 1}

(21)

The relaxation obviously decouples into two separate subproblems, one containing x1, x2

and one containing x3, x4.
Starting with λ0 = (1, 1), we obtain an optimal solution x0 = (1, 1, 0, 0) of (21) with

θ(λ0) = 1. This demonstrates that (20) is unsatisfiable, without the necessity of branching.

Bennaceur et al. [7] use a somewhat different Lagrangean relaxation to help solve
satisfiability problems. They again address the problem with a branching algorithm that
solves a Lagrangean relaxation at nodes of the search tree (or at least at certain nodes).
This time, the dualized constraints Ax ≥ b are the clauses violated by the currently fixed
variables, and the remaining constraints x ∈ X are the clauses that are already satisfied.
The multipliers λi are all set to 1, with no attempt to solve the Lagrangean dual. A

19

local search method approximately solves the resulting relaxation (19). If the solution x̂
satisfies additional clauses, the process is repeated while dualizing only the clauses that
remain violated. This continues until no additional clauses can be satisfied. If all clauses
are satisfied, the algorithm terminates. Otherwise, branching continues in the manner
indicated by x̂. That is, when branching on xj, one first takes the branch corresponding to
xj = x̂j. This procedure is combined with intelligent backtracking to obtain a competitive
satisfiability algorithm, as well as an incremental satisfiability algorithm that re-solves the
problem after adding clauses. The details may be found in [7].

3 Tractable Problem Classes

We now turn to the task of using the quantitative analysis of logic to identify tractable
classes of satisfiability problems. We focus on two classes: problems that can be solved by
unit resolution, and problems whose LP relaxations define integral polyhedra.

3.1 Two Properties of Horn Clauses

There is no known necessary and sufficient condition for solubility by unit resolution,
but some sufficient conditions are known. We have already seen that Horn and renamable
Horn problems, for example, can be solved in this manner (Proposition 6). Two properties
of Horn sets account for this, and they are actually possessed by a much larger class of
problems. This allows a generalization of Horn problems to extended Horn problems that
can likewise be solved by unit resolution, as shown by Chandru and Hooker [15].

Unit resolution is adequate to check for satisfiability when we can always find a sat-
isfying solution for the clauses that remain after applying unit resolution to a satisfiable
clause set. We can do this in the case of Horn problems because:

• Horn problems are closed under deletion and contraction, which ensures that the
clauses that remain after unit resolution are still Horn.

• Horn problems have a rounding property that allows these remaining clauses to be
assigned a solution by rounding a solution of the LP relaxation in a prespecified way;
in the case of Horn clauses, by always rounding down.

A class C of satisfiability problems is closed under deletion and contraction if, given a
clause set S ∈ C, S remains in C after (a) any clause is deleted from S and (b) any given
literal is removed from every clause of S in which it occurs. Since unit resolution operates
by deletion and contraction, it preserves the structure of any class that is closed under

20

these operations. This is true of Horn sets in particular because removing literals does not
increase the number of positive literals in a clause.

Horn clauses can be solved by rounding down because they have an integral least
element property. An element v ∈ P ⊂ Rn is a least element of P if v ≤ x for every x ∈ P .
It is easy to see that if S is a satisfiable set of Horn clauses, SLP defines a polyhedron that
always contains an integral least element. This element is identified by fixing variables
as determined by unit resolution and setting all remaining variables to zero. Thus if S is
the Horn set that remains after applying unit resolution to a satisfiable Horn set, we can
obtain a satisfying solution for S by rounding down any feasible solution of SLP.

Cottle and Veinott [23] state a sufficient condition under which polyhedra in general
have a least element.

Proposition 9 A nonempty polyhedron P = {x | Ax ≥ b, x ≥ 0} has a least element if
each row of A has at most one positive component. There is an integer least element if
every positive element of A is 1.

Proof. If b ≤ 0 then x = 0 is a least element. Otherwise let bi be the largest positive
component of b. Since P is nonempty, row i of A has exactly one positive component Aij.
The ith inequality of Ax ≥ b can be written

xj ≥
1

Aij

(
bi −

∑

k 6=j

Aikxk

)

Since Aik ≤ 0 for k 6= j and each xk ≥ 0, we have the positive lower bound xj ≥ bi/Aij.
Thus we can construct a lower bound x for x by setting xj = bi/Aij and xk = 0 for k 6= j.
If we define x̃ = x − x, we can translate polyhedron P to

P̃ =
{
x̃
∣∣∣ Ax̃ ≥ b̃ = (b− Ax), x̃ ≥ 0

}

We repeat the process and raise the lower bound x until b̃ ≤ 0. At this point x is a least
element of P . Clearly x is integer if each Aij = 1.

Since the inequality set S01 for a Horn problem S satisfies the conditions of Proposi-
tion 9, Horn problems have the integral least element property.

3.2 Extended Horn Problems

The key to extending the concept of a Horn problem is to find a larger problem class that
has the rounding property and is closed under deletion and contraction. Some sets with

21

the rounding property can be identified through a result of Chandrasekaran [13], which
relies on Cottle and Veinott’s least element theorem.

Proposition 10 Let Ax ≥ b be a linear system with integral components, where A is an
m×n matrix. Let T be a nonsingular n×m matrix that satisfies the following conditions:

(i) T and T−1 are integral.

(ii) Each row of T−1 contains at most one negative entry, and any such entry is −1.

(iii) Each row of AT−1 contains at most one negative entry, and any such entry is −1.

Then if x solves Ax ≥ b, so does T−1dTxe.

The matrix T in effect gives instructions for how a solution of the LP can be rounded.

Proof. We rely on an immediate corollary of Proposition 9: a polyhedron of the form
P = {x | Ax ≥ b, x ≤ a} has an integral largest element if A, b and a are integral and
each row of A has at most one negative entry, namely −1.

Now if ŷ solves AT−1y ≥ b, the polyhedron P̂ = {y | AT−1y ≥ b, y ≤ ŷ} has an
integral largest element, and dŷe is therefore in P̂ . This shows that

AT−1y ≥ b implies AT−1dye ≥ b

Setting x = T−1y we have

Ax ≥ b implies AT−1dTxe ≥ b (22)

Similarly, if ỹ satisfies T−1y ≥ 0, the polyhedron P̃ = {y | T−1y ≥ 0, y ≤ dỹe} has an
integral largest element and dỹe is in P̃ . So

T−1y ≥ 0 implies T−1dye ≥ 0

and setting x = T−1y we have

x ≥ 0 implies T−1dTxe ≥ 0 (23)

Implications (22) and (23) together prove the proposition.

To apply Proposition 10 to a clause set S, we note that SLP has the form Hx ≥ h, 0 ≤
x ≤ e, where e is a vector of ones. This is an instance of the system Ax ≥ b, x ≥ 0 in
Proposition 10 when

A =

[
H
−I

]
, b =

[
h
−e

]

22

From condition (ii) of Proposition 10, each row of T−1 contains at most one negative entry
(namely, −1), and from (iii) the same is true of −T−1. Thus we have:

(i′) T−1 is a nonsingular n × n matrix.

(ii′) Each row of T−1 contains exactly two nonzero entries, namely 1 and −1.

(iii′) Each row of HT−1 contains at most one negative entry, namely −1.

Condition (ii′) implies that T−1 is the edge-vertex incidence matrix of a directed graph.
Since T−1 is nonsingular, it is the edge-vertex incidence matrix of a directed tree T on
n + 1 vertices. For an appropriate ordering of the vertices, T−1 is lower triangular. The
inverse T is the vertex-path incidence matrix of T .

Example 12 Figure 2 shows the directed tree T corresponding to the matrices T−1, T
below.

T−1 =

A B C D E F G R


−1 0 0 0 0 0 0
1 −1 0 0 0 0 0
1 0 −1 0 0 0 0
0 0 0 −1 0 0 0
0 0 0 1 −1 0 0
0 0 0 1 0 −1 0
0 0 0 0 0 1 −1




1
0
0
1
0
0
0

T =

A
B
C
D
E
F
G




−1 0 0 0 0 0 0
−1 −1 0 0 0 0 0
−1 0 −1 0 0 0 0

0 0 0 −1 0 0 0
0 0 0 −1 −1 0 0
0 0 0 −1 0 −1 0
0 0 0 −1 0 −1 −1




The column corresponding to vertex R, the root of T , is shown to the right of T−1. In
this example all the arcs are directed away from the root, but this need not be so. An arc
directed toward the root would result in reversed signs in the corresponding row of T−1 and
column of T .

The entries in each row of the propositional matrix H can be interpreted as flows on
the edges of T . Thus each variable xj is associated with an edge in T . Condition (iii′) has
the effect of requiring that at most one vertex (other than the root) be a net receiver of
flow. To see what this means graphically, let an extended star be a rooted tree consisting
of one or more arc-disjoint chains extending out from the root. Then (iii′) implies that any
row of H has the extended star-chain property: it describes flows that can be partitioned
into a set of unit flows into the root on some (possibly empty) extended star subtree of T
and a unit flow on one (possibly empty) chain in T .

23

R
��������*

HHHHHHHHj

������

HHHHHY

x1

x4

A
��������*

PPPPPPPPq
PPPPPi

x2

x3

D
��������1

HHHHHHHHj

HHHHHj

�����) x5

x6

B

C

E

F --
x7

G

Figure 2: Extended star-chain flow pattern corresponding to an extended Horn clause.

Example 13 Suppose Hi = [−1 0 −1 −1 −1 1 1] is a row of H, corresponding
to the clause x̄1 ∨ x̄3 ∨ x̄4 ∨ x̄5 ∨ x6 ∨ x7. It defines the flow depicted by arrows in Fig. 2.
Note that a −1 in Hi indicates flow against the direction of the edge. The extended star
consists of the flows C → A → R and D → R, while the chain consists of E → D →
F → G. (Flow E → D could also be regarded as part of the extended star.) In this case
HiT

−1 = [0 0 1 1 1 0 −1], which satisfies (iii′).

A clause set S with the 0-1 formulation Hx ≥ h is renamable extended Horn if it
can be associated with a directed tree T in which each row of H has the extended star-
chain property. S is extended Horn if each edge of T is directed away from the root. If
each row of H describes flows into the root on a star subtree of T (i.e., an extended star
whose chains have length 1), then H is renamable Horn. Extended Horn is therefore a
substantial generalization of Horn. Clause set (9), for example, is not renamable Horn but
is renamable extended Horn. This can be seen by associating x1, x2, x3 respectively with
arcs (R,A), (A,B) and (B,C) on a tree with arcs directed away from the root R.

We can now see why an extended Horn problem can be solved by unit resolution. The
extended star-chain structure is clearly preserved by deletion and contraction. Thus if unit
resolution does not detect unsatisfiability, the remaining clauses have the extended star-
chain property and contain at least two literals each. Their LP relaxation can be solved by

24

setting all unfixed variables to 1/2, and Chandrasekaran’s theorem gives instructions for
rounding this solution to obtain an 0-1 solution. Let an edge e of T be even if the number
of edges on the path from the root to the closer vertex of e is even, and odd otherwise.
It is shown in [15] that variables corresponding to even edges are rounded down, and the
rest rounded up.

Proposition 11 Let S be a satisfiable extended Horn set S associated with directed tree
T . Apply unit resolution to S and let T ′ be the tree that results from contracting the edges
of T that correspond to fixed variables. Then a satisfying solution for S can be found by
assigning false to unfixed variables that correspond to even edges of T ′, and true to those
corresponding to odd edges.

The result is valid for renamable extended Horn sets if the values of renamed variables
are complemented. In the special case of a Horn set, one always assigns false to unfixed
variables, since all edges are adjacent to the root and therefore even. The following is a
corollary.

Proposition 12 A renamable extended Horn clause set S is satisfiable if and only if it
has no unit refutation, and if and only if SLP is feasible.

Example 14 Consider an extended Horn set S consisting of the single clause x̄1 ∨ x̄3 ∨
x̄4 ∨ x̄5 ∨ x6 ∨ x7, discussed in Example 13. Unit resolution has no effect, and SLP

has the solution x̂ = (1/2, 0, 1/2, 1/2, 1/2, 1/2, 1/2). Thus we obtain a satisfying so-
lution for S when we set x = T−1dT x̂e = T−1d(−1/2,−1,−1,−1/2,−1,−1,−3/2)e =
T−1(0,−1,−1, 0,−1,−1,−1) = (0, 1, 1, 0, 1, 1, 0). Note that we round down on even edges
and up on odd edges.

Interestingly, once a numerical interpretation has pointed the way to an extension
of the Horn concept, a slightly more general extension becomes evident. Note that the
extended star-chain property is preserved by contraction of edges in part because every
edge in the extended star is connected by a path to the root. The same is true if the paths
to the root are not disjoint. As Schlipf et al. [69] point out, we can therefore generalize the
extended star-chain property as follows: a clause has the arborescence-chain property with
respect to T when it describes flows that can be partitioned into a set of unit flows into
the root on some (possibly empty) subtree of T and a unit flow on one (possibly empty)
chain in T . A clause having this structure is clearly satisfied by the same even-odd truth
assignment as before. We can therefore further extend the concept of renamable extended
Horn problems as those whose clauses define flows having the arborescence/chain structure
on some corresponding directed tree T .

25

Example 15 Suppose the clause in Example 14 contains an additional literal x̄2. The
corresponding flow pattern is that shown in Fig. 2 with an additional flow on arc (A,B)
directed toward the root. Thus literals x̄1, x̄2, x̄3, x̄4 correspond to an arborescence, and
x5, x6, x7 to a chain. We conclude that the clause set S consisting solely of x̄1 ∨ x̄2 ∨ x̄3 ∨
x̄4 ∨ x6 ∨ x7 is extended Horn in the expanded sense.

From here out we understand extended Horn and renamable extended Horn problems
in the expanded sense of Schlipf et al. Propositions 11 and 12 continue to hold.

3.3 One-Step Lookahead

Renamable Horn sets have the double advantage that (a) their satisfiability can be checked
by unit resolution, and (b) a satisfying solution can be easily identified when it exists. We
have (b) because there are linear-time algorithms for checking whether a clause set is
renamable Horn and, if so, how to rename variables to make it Horn [1, 14, 56]. Once the
renaming scheme is identified, variables that are unfixed by unit resolution can simply be
set to false, or to true if they are renamed.

Renamable extended Horn sets do not have this double advantage. Although unit res-
olution can check for satisfiability, a satisfying solution is evident only when the associated
directed tree T is given. There is no known polynomial-time algorithm for finding T , even
in the case of an unrenamed extended Horn problem. Swaminathan and Wagner [71] have
shown how to identify T for a large subclass of extended Horn problems, using a graph
realization algorithm that runs in slightly more than linear time. Yet their approach has
not been generalized to full extended Horn sets.

Fortunately, as Schlipf et al. point out [69], a simple one-step lookahead algorithm
can solve a renamable extended Horn problem without knowledge of T . Let a class C of
satisfiability problems have the unit resolution property if (a) a clause set in C is satisfiable
if and only if there is no unit refutation for it, and (b) C is closed under deletion and
contraction.

Proposition 13 If a class of Boolean satisfiability problems has the unit resolution prop-
erty, a one-step lookahead algorithm can check any clause set in the class for satisfiability
and exhibit a satisfying solution if one exists.

Since renamable extended Horn problems have the unit resolution property, a one-step
lookahead algorithm solves their satisfiability problem.

One-step lookahead is applied to a clause set S as follows. Let S0 be the result of
applying unit resolution to S. If S0 contains the empty clause, stop, because S is unsat-
isfiable. If S0 is empty, stop, because the variables fixed by unit resolution already satisfy
S. Otherwise perform the following:

26

1. Let S1 = S0 ∪ {xj} for some variable xj occurring in S0 and apply unit resolution to
S1. If S1 is empty, fix xj to true and stop. If S1 is nonempty and there is no unit
refutation, fix xj to true, let S0 = S1, and repeat this step.

2. Let S1 = S0∪{x̄j} and apply unit resolution to S1. If S1 is empty, fix xj to false and
stop. If S1 is nonempty and there is no unit refutation, fix xj to false, let S0 = S1,
and return to step 1.

3. Stop without determining whether S is satisfiable.

The algorithm runs in time proportional to nL, where n is the number of variables and L
the number of literals in S.

Proof of Proposition 13. Since the one-step lookahead algorithm is clearly correct,
it suffices to show that it cannot reach step 3 when S belongs to a problem class with
the unit resolution property. Step 3 can be reached only if there is no unit refutation for
S0, but there is a unit refutation for both S0 ∪ {xj} and S0 ∪ {x̄j}, which means S0 is
unsatisfiable. Yet S0 cannot be unsatisfiable because it has no unit refutation and was
obtained by unit resolution from a problem S in a class with the unit resolution property.

Example 16 Consider the clause set S below:

x̄1∨ x2

x̄1∨ x̄2

x1∨ x2 ∨x3

x1∨ x2 ∨ x̄3

S is not renamable Horn but is renamable extended Horn, as can be seen by renaming
x1, x2 and associating x1, x2, x3 respectively with (A,B), (R,A), (B,C) in a directed tree.
However, without knowledge of the tree we can solve the problem with one-step lookahead.
Unit resolution has no effect on S0 = S, and we let S1 = S0∪{x1} in step 1. Unit resolution
derives the empty clause from S1, and we move to step 2 by setting S1 = S0 ∪ {x̄1}. Unit
resolution reduces S1 to {x2∨x3, x2∨x̄3}, and we return to step 1 with S0 = {x2∨x3, x2∨x̄3}.
Setting S1 = S0 ∪ {x2}, unit resolution reduces S1 to the empty set, and the algorithm
terminates with (x1, x2) = (0, 1), where x3 can be set to either value.

At this writing no algorithms or heuristic methods have been proposed for finding a
set of variables that, when fixed, leave a renamable extended Horn problem. The same
deficiency exists for the integrality classes discussed below.

27

3.4 Balanced Problems and Integrality

We have identified a class of satisfiability problems that can be quickly solved by a one-
step lookahead algorithm that uses unit resolution. We now consider problems that can be
solved by linear programming because their LP relaxation describes an integral polytope.
Such problems are doubly attractive because unit resolution can solve them even without
one-step lookahead, due to the following fact [18].

Let us say that a clause set S is ideal if SLP defines an integral polyhedron. If S01 is
the system Ax ≥ b, we say that A is an ideal matrix if S is ideal.

Proposition 14 Let S be an ideal clause set that contains no unit clauses. Then for any
variable xj, S has a solution in which xj is true and a solution in which xj is false.

Proof. Since every clause contains at least two literals, setting each xj = 1/2 satisfies
SLP. This solution is a convex combination of the vertices of the polyhedron described by
SLP, which by hypothesis are integral. Thus for every j there is a vertex v in the convex
combination at which vj = 0 and a vertex at which vj = 1.

To solve an ideal problem S, first apply unit resolution to S to eliminate all unit clauses.
The remaining set S is ideal. Pick any atom xj that occurs in S and add the unit clause
xj or x̄j to S, arbitrarily. By Proposition 14, S remains satisfiable if it was satisfiable to
being with. Repeat the procedure until a unit refutation is obtained or until S is empty
(and unit resolution has fixed the variables to a satisfying solution). The algorithm runs
in linear time.

One known class of ideal satisfiability problems are balanced problems. If S01 is the
0-1 system Ax ≥ b, then S is balanced when A is balanced. A 0,±1 matrix A is balanced
when every square submatrix of A with exactly two nonzeros in each row and column has
the property that its entries sum to a multiple of four. The following is proved by Conforti
and Cornuéjols [18]:

Proposition 15 Clause set S is ideal if it is balanced.

Related results are surveyed in [20, 22]. For instance, balancedness can be checked by
examining subsets of S for bicolorability. Let a {0,±1}-matrix be bicolorable if its rows
can be partitioned into blue rows and red rows such that every column with two or more
nonzeros either contains two entries of the same sign in rows of different colors or two
entries of different signs in rows of the same color. A clause set S is bicolorable if the
coefficient matrix of S01 is bicolorable. Conforti and Cornuéjols [19] prove the following:

Proposition 16 Clause set S is balanced if and only if every subset of S is bicolorable.

28

Example 17 Consider the following clause set S:

x1 ∨ x3

x̄1 ∨x4

x2∨ x3

x̄2∨ ∨x4

(24)

By coloring the first two clauses red and the last two blue, we see from Proposition 16
that all subsets of S are balanced, and by Proposition 15, S is ideal. We can also use
Proposition 14 to solve S. Initially, unit resolution has no effect, and we arbitrarily set
x1 = 0, which yields the single clause x̄2 ∨ x4 after unit resolution. Now we arbitrarily set
x2 = 0, whereupon S becomes empty. The resulting solution is (x1, x2, x3) = (0, 0, 1) with
either value for x4.

3.5 Resolution and Integrality

Since resolvents are cutting planes, one might ask whether applying the resolution algo-
rithm to a clause set S cuts off enough of the polyhedron defined by SLP to produce an
integral polyhedron. The answer is that it does so if and only if the monotone subproblems
of S already define integral polyhedra.

To make this precise, let a monotone subproblem of S be a subset Ŝ ⊂ S in which
no variable occurs in both a positive and a negative literal. A monotone subproblem is
maximal if it is a proper subset of no monotone subproblem. We can suppose without
loss of generality that all the literals in a given monotone subproblem Ŝ are positive (by
complementing variables as needed). Thus Ŝ01 is a set covering problem, which is a 0-1
problem of the form Ax ≥ e in which A is a 0-1 matrix and e a vector of ones. Ŝ can also
be viewed as a satisfiability problem with all positive literals (so that the same definition
of an ideal problem applies). The following result, proved in [39], reduces the integrality
question for satisfiability problems to that for set covering problems:

Proposition 17 If S contains all of its prime implicates, then S is ideal if and only if
every maximal monotone subproblem Ŝ ⊂ S is ideal.

One can determine whether S contains all of its prime implicates by checking whether
the resolution algorithm adds any clauses to S; that is, by checking whether any pair of
clauses in S have a resolvent that is not already absorbed by a clause in S.

Guenin [32] pointed out an alternate statement of Proposition 17. Given a clause set
S, let A be the coefficient matrix in S01, and define

DS =

[
P N
I I

]

29

where 0-1 matrices P,N are the same size as A and indicate the signs of entries in A. That
is, Pij = 1 if and only if Aij = 1 and Nij = 1 if and only if Aij = −1.

Proposition 18 If S contains all of its prime implicates, then S is ideal if and only if
DS is ideal.

Example 18 Consider the clause set S below:

x1∨ x2 ∨x3

x1∨ x̄2 ∨ x̄3

Since S is not balanced, Proposition 15 does not show that S is ideal. However, Proposi-
tion 17 applies because S consists of its prime implicates, and its two maximal monotone
subproblems (i.e., the two individual clauses) obviously define integral polyhedra. S is
therefore ideal. Proposition 18 can also be applied if one can verify that the following
matrix DS is ideal: 



1 1 1 0 0 0
1 0 0 0 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1




DS is not balanced, since there is no feasible coloring for the submatrix consisting of rows
1,2 and 4. DS is ideal but must be shown to be so in some fashion other than bicolorability.

Nobili and Sassano [60] strengthened Propositions 17 and 18 by pointing out that a
restricted form of resolution suffices. Let a disjoint resolvent be the resolvent of two clauses
that have no variables in common, except the one variable that appears positively in one
clause and negatively in the other. The disjoint resolution algorithm is the same as the
ordinary resolution algorithm except that only disjoint resolvents are generated.

Proposition 19 Let S ′ be the result of applying the disjoint resolution algorithm to S.
Then S is ideal if and only if DS′ is ideal.

Example 19 Consider the follow clause set S:

x1∨ x2

x̄1 ∨x3

x1∨ x̄2 ∨x3

30

Disjoint resolution generates one additional clause, so that S ′ consists of the above and

x2 ∨ x3

Further resolutions are possible, but they need not be carried out because the resolvents are
not disjoint. The matrix DS′ is




1 1 0 0 0 0
0 0 1 1 0 0
1 0 1 0 1 0
0 1 1 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1




DS′ is not balanced, since the submatrix consisting of rows 1, 3 and 5 is not bicolorable.
In fact DS′ is not ideal because the corresponding set covering problem DS′y ≥ e defines
a polyhedron with the fractional vertex y = (1/2, 1, 1/2, 1/2, 0, 1/2). Therefore S is not
ideal, as can be verified by noting that SLP defines a polyhedron with the fractional vertex
x = (1/2, 0, 1/2).

One can apply Proposition 17 by carrying out the full resolution algorithm on S, which
yields Ŝ = {x1 ∨ x2, x3}. Ŝ itself is its only maximum monotone subproblem, which means
Ŝ is ideal because it is obviously balanced.

4 Computational Considerations

Computational testing of integer programming methods for satisfiability dates back at least
to a 1988 paper of Blair, Jeroslow and Lowe [8]. A 1994 experimental study [35] suggested
that, at that time, an integer programming approach was roughly competitive with a pure
branching strategy that uses no LP relaxations, such as a Davis-Putnam-Loveland (DPL)
method [24, 55]. DPL methods have since been the subject of intense study and have
improved dramatically (see [30, 31, 81] for surveys). The Chaff system of Moskewicz et al.
[58], for example, solves certain industrial satisfiability problems with a million variables
or more. It is well known, however, that satisfiability problems of a given size can vary
enormously in difficulty (e.g., [21]).

Integer programming methods for the boolean satisfiability problem have received rel-
atively little attention since 1994, despite substantial improvements in the LP solvers on
which they rely. One might argue that the integer programming approach is impractical

31

for large satisfiability problems, since it requires considerable memory and incurs substan-
tial overhead in the solution of the LP relaxation. This is not the case, however, for the
decomposition methods discussed above. They apply integer programming only to a small
“core” problem and leave the easier part of the problem to be processed by unit resolution
or some other fast method.

The most straightforward form of decomposition, discussed in Section 2.4, is to branch
on a few variables that are known to yield renamable Horn problems at the leaf nodes of a
shallow tree. (One might also branch so as to produce renamable extended Horn problems
at the leaf nodes, but this awaits a practical heuristic method for isolating extended Horn
substructure.) The branching portion of the algorithm could be either a branch-and-cut
method or a DPL search. In the latter case, decomposition reduces to a DPL method with
a sophisticated variable selection rule.

Benders decomposition also takes advantage of renamable Horn substructure (Sec-
tion 2.5). A branch-and-cut method can be applied to the Benders master problem, which
is a general 0-1 problem, while unit resolution solves the renamable Horn subproblems.
(The subproblems might also be renamable extended Horn, which would require research
into how Benders cuts can be rapidly generated.) Yan and Hooker [80] tested a specialized
a Benders approach on circuit verification problems, an important class of satisfiability
problems. They found it to be faster than binary decision diagrams at detecting errors,
although generally slower at proving correctness. A related Benders method has been
applied to machine scheduling problems [40, 41, 42, 43, 47], resulting in computational
speedups of several orders of magnitude relative to state-of-the-art constraint program-
ming and mixed integer programming solvers. However, a Benders method has apparently
not been tested on satisfiability problems other than circuit verification problems.

A third form of decomposition replaces LP relaxation with Lagrangean relaxation,
again in such a way as to isolate special structure (Section 2.6). A full Lagrangean method
would solve the Lagrangean dual at some nodes of the search tree, but this strategy has
not been tested computationally. The Lagrangean-based method of Bennaceur et al. [7],
however, uses a fixed set of Lagrange multipliers and appears to be significantly more
effective than DPL. Since such advanced methods as Chaff are highly engineered DPL
algorithms, a Lagrangean approach may have the potential to outperform the best methods
currently in use.

The integrality results (Sections 3.4, 3.5) remain primarily of theoretical interest, since
it is hard to recognize or isolate special structure that ensures integrality. Nonetheless they
could become important in applications that involve optimization of an objective function
subject to logical clauses, since they indicate when an LP solver may be used rather than a
general integer solver. One such application is the maximum satisfiability problem [33, 34].

The ideas presented here are part of a more general strategy of merging logical inference

32

with optimization methods. There is growing evidence [36, 40, 44, 54, 57, 77] that logic-
based methods can enhance optimization, and similar evidence that optimization methods
can assist logical inference—not only in boolean logic, but in probabilistic, nonmonotonic,
and belief logics as well [17]. The guiding principle in each case is to employ concepts,
whether they be logical or numerical, that best reveal the structure of the problem at
hand.

5 Exercises

1. Show that the resolvent x1 ∨ x4 obtained in Example 7 corresponds to a rank 1 cut.

2. Formulate the problem of checking whether a clause set is extended Horn as a 2-
SAT problem (i.e., a satisfiability problem in CNF with at most two literals per
clause). The most straightforward 2-SAT formulation is quadratic in size, but there
are linear-size formulations (e.g., [1]).

3. Show that disjoint resolution adds nothing to the inferential power of unit resolution.
That is, unit resolution shows a clause set S to be unsatisfiable if and only if a
combination of unit and disjoint resolution shows S to be unsatisfiable. Hint: note
that a disjoint resolvent is the sum of its parents.

4. Let T be the set of satisfying solutions for a given Horn clause set. Show that if
x1, x2 ∈ T , then min{x1, x2} ∈ T , where the minimum is componentwise. This
property of Horn sets is generalized in [49, 68].

5. Exhibit a Horn clause set S for which SLP has a nonintegral extreme point.

6. Suppose that S contains all of its prime implicates. Show that a one-step lookahead
algorithm solves the satisfiability problem for S.

7. Exhibit a two-variable satisfiability problem that is not renamable extended Horn.

8. One can show that extended Horn sets have the unit resolution property, based
solely on the arborescence-chain structure and without reference to the numerical
interpretation. Construct such an argument.

9. Suppose that extended Horn sets were defined so that the arborescence-chain prop-
erty permitted as many as two chains rather than just one. Show that extended Horn
sets, under this definition, would not have the unit resolution property, by exhibiting
a counterexample. Where does the argument of the previous question break down?

33

References

[1] Aspvall, B., Recognizing disguised NR(1) instance of the satisfiability problem, Jour-
nal of Algorithms 1 (1980) 97–103.

[2] Balas, E., and W. Niehaus, Optimized crossover-based genetic algorithms for the
maximum cardinality and maximum weight clique problems, Journal of Heuristics 4
(1998) 107–122.

[3] Balas, E., and J. Xue, Minimum weighted coloring of triangulated graphs with ap-
plication to maximum weight vertex packing and clique finding in arbitrary graphs,
SIAM Journal on Computing 20 (1991) 209–221.

[4] Balas, E., and C. S. Yu, Finding a maximum clique in an arbitrary graph, SIAM
Journal on Computing 15 (1986) 1054–1068.

[5] Battiti, R., and M. Protasi, Reactive local search for the maximum clique problem,
Algorithmica 29 (2001) 610–637.

[6] Benders, J. F. 1962. Partitioning procedures for solving mixed-variables programming
problems, Numerische Mathematik 4 238–252.

[7] Bennaceur, H., I. Gouachi and G. Plateau, An incremental branch-and-bound method
for the satisfiability problem, INFORMS Journal on Computing 10 (1998) 301-308.

[8] Blair, C., R. G. Jeroslow, and J. K. Lowe, Some results and experiments in pro-
gramming techniques for propositional logic, Computers and Operations Research 13
(1988) 633–645.

[9] Bomze, I. M, M. Budinich, M. Pellilo, and C. Rossi, Annealed replication: A new
heuristic for the maximum clique problem, Discrete Applied Mathematics 121 (2002)
27–49.

[10] Boole, G. The Mathematical Analysis of Logic: Being a Essay Toward a Calculus of
Deductive Reasoning, Blackwell (Oxford, 1951), original work published 1847.

[11] Busygin, S., S. Butenko, P. M. Pardalos, A heuristic for the maximum independent set
problem based on optimization of a quadratic over a sphere, Journal of Combinatorial
Optimization 6 (2002) 287–297.

[12] Carraghan, R., and P. Pardalos, An exact algorithm for the maximum clique problem,
Operations Research Letters 9 (1990) 375–382.

34

[13] Chandrasekaran, R., Integer programming problems for which a simple rounding type
of algorithm works, in W. R. Pulleyblank, Progress in Combinatorial Optimization,
Academic Press Canada (1984) 101–106.

[14] Chandru, V., C. R. Coullard, P. L. Hammer, M. Montañez, and X. Sun, Horn, re-
namable Horn and generalized Horn functions, Annals of Mathematics and Artificial
Intelligence 1 (1990) 333–347.

[15] Chandru, V., and J. N. Hooker, Extended Horn clauses in propositional logic, Journal
of the ACM 38 (1991) 203–221.

[16] Chandru, V., and J. N. Hooker, Detecting embedded Horn structure in propositional
logic, Information Processing Letters 42 (1992) 109–111.

[17] Chandru, V., and J. N. Hooker, Optimization Methods for Logical Inference, John
Wiley & Sons (New York, 1999).

[18] Conforti, M., and G. Cornuéjols, A class of logic programs solvable by linear program-
ming, Journal of the ACM 42 (1995) 1107–1113.

[19] Conforti, M., and G. Cornuéjols, Balanced 0,±1 matrices, bicoloring and total dual
integrality, Mathematical Programming 71 (1995) 249–258.

[20] Conforti, M., G. Cornuéjols, A. Kapoor, and K. Vušković, Perfect, ideal and balanced
matrices, European Journal of Operational Research 133 (2001) 455–461.

[21] Cook, S. A., and D. G. Mitchell, Finding hard instances of the satisfiability problem:
A survey, in: D. Du, J. Gu, P. M. Pardalos, Satisfiability Problem: Theory and
Applications, DIMACS Series in Discrete Mathematics and Theoretical Computer
Science 35, American Mathematical Society (1997) 1–17.

[22] Cornuéjols, G., and B. Guenin, Ideal clutters, Discrete Applied Mathematics 123
(2002) 303–338.

[23] Cottle, R. W., and A. F. Veinott, Polyhedral sets having a least element, Mathematical
Programming 3 (1972) 238–249.

[24] Davis, M., and H. Putnam, A computing procedure for quantification theory, Journal
of the ACM 7 (1960) 201–215.

35

[25] Dilkina, B., C. Gomes, and A. Sabharwal, Tradeoffs in the complexity of backdoor
detection, in C. Bessiere, ed., Principles and Practice of Constraint Programming (CP
2007), LNCS 4741, 256–270.

[26] Feo, T. A., M. G. C. Resende, S. H. Smith, A greedy randomized adaptive search
procedure for maximum independent set, Operations Research 42 (1994) 860–878.

[27] Funabiki, N., Y. Takefuji and Kuo-Chun Lee, A neural network model for finding
a near-maximum clique, Journal of Parallel and Distributed Computing 14 (1992)
340–344.

[28] Gendreau, M., P. Soriano, and L. Salvail, Solving the maximum clique problem using
a tabu search approach, Annals of Operations Research 41 (1993) 385–403.

[29] Geoffrion, A. M., Generalized Benders decomposition, Journal of Optimization Theory
and Applications 10 (1972) 237–260.

[30] Giunchiglia, E., M. Maratea, A. Tacchella, and D. Zambonin, Evaluating search
heuristics and optimization techniques in propositional satisfiability, R. Gore, A.
Leitsch, and T. Nipkow, Automated Reasoning: First International Joint Conference
(IJCAR2001), Lecture Notes in Artificial Intelligence 2083, Springer (2001) 347–363.

[31] Gu, Jun, P. W. Purdom, J. Franco, and B. W. Wah, Algorithms for the satisfiability
(SAT) problem: A survey, in D. Du, J. Gu, P. M. Pardalos, Satisfiability Problem:
Theory and Applications, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science 35, American Mathematical Society (1997) 19–51.

[32] Guenin, B., Perfect and ideal 0, ±1 matrices, Mathematics of Operations Research 23
(1998) 322–338.

[33] Hansen, P., and B. Jaumard, Algorithms for the maximum satisfiability problem,
Computing 44 (1990) 279–303.

[34] Hansen, P., B. Jaumard, and M. P. De Aragao, Mixed-integer column generation
algorithms and the probabilistic maximum satisfiability problem, European Journal
of Operational Research 108 (1998) 671–683.

[35] Harche, F., J. N. Hooker, and G. Thompson, A computational study of satisfiability
algorithms for propositional logic, ORSA Journal on Computing 6 (1994) 423–435.

[36] Heipcke, S., Combined Modelling and Problem Solving in Mathematical Programming
and Constraint Programming, PhD thesis, University of Buckingham (1999).

36

[37] Hifi, M., A genetic algorithm-based heuristic for solving the weighted maximum in-
dependent set and some equivalent problems, Journal of the Operational Research
Society 48 (1997) 612–622.

[38] Hooker, J. N., Input proofs and rank one cutting planes, ORSA Journal on Computing
1 (1989) 137–145.

[39] Hooker, J. N., Resolution and the integrality of satisfiability polytopes, Mathematical
Programming 4 (1996) 1–10.

[40] Hooker, J. N., Logic-Based Methods for Optimization: Combining Optimization and
Constraint Satisfaction, John Wiley & Sons (New York, 2000).

[41] Hooker, J. N., A hybrid method for planning and scheduling, Constraints 10 (2005)
385–401.

[42] Hooker, J. N., An integrated method for planning and scheduling to minimize tardi-
ness, Constraints 11 (2006) 139–157.

[43] Hooker, J. N., Planning and scheduling by logic-based Benders decomposition, Oper-
ations Research 55 (2007) 588–602.

[44] Hooker, J. N., Integrated Methods for Optimization, Springer (2007).

[45] Hooker, J. N., and C. Fedjki, Branch-and-cut solution of inference problems in propo-
sitional logic, Annals of Mathematics and Artificial Intelligence 1 (1990) 123–140.

[46] Hooker, J. N. and G. Ottosson, Logic-based Benders decomposition, Mathematical
Programming 96 (2003) 33–60.

[47] Jain, V., and I. E. Grossmann, Algorithms for hybrid MILP/CP models for a class of
optimization problems, INFORMS Journal on Computing 13 (2001) 258–276.

[48] Jagota, A., and L. A. Sanchis, Adaptive, restart, randomized greedy heuristics for
maximum clique, Journal of Heuristics 7 (2001) 565–585.

[49] Jeavons, P., D. Cohen, and M. Gyssens, A test for tractability in E. C. Freuder, Prin-
ciples and Practice of Constraint Programming (CP96), Lecture Notes in Computer
Science 1118, Springer (1996) 267–281.

[50] Jeroslow, R. E., and J. Wang, Solving propositional satisfiability problems, Annals of
Mathematics and Artificial Intelligence 1 (1990) 167–188.

37

[51] Kilby, P., J. K. Slaney, S. Thibaux, and T. Walsh, Backbones and backdoors in
satisfiability, AAAI Proceedings (2005) 1368-1373.

[52] Kottler, S., M. Kaufmann, and C. Sinz, Computation of renameable Horn backdoors,
Theory and Applications of Satisfiability Testing, Eleventh International Conference
(SAT 2008), Lecture Notes in Computer Science 4996 (2008) 154–160.

[53] Lau, H. Y., and H. F. Ting, The greedier the better: An efficient algorithm for approx-
imating maximum independent set, in T. Asano, H. Imai, D. T. Lee, S. Nakano, and
T. Tokuyama, Computing and Combinatorics: 5th Annual International Conference
(COCOON’99), Lecture Notes in Computer Science 1627, Springer (1999) 483–492.

[54] Little, J., and K. Darby-Dowman. The significance of constraint logic programming
to operational research, in M. Lawrence and C. Wilson, eds., Operational Research
Tutorial Papers 1995, Operational Research Society (1995) 20–45.

[55] Loveland, D. W., Automated Theorem Proving: A Logical Basis, North-Holland (Am-
sterdam, 1978).

[56] Mannila, H., and K. Mehlhorn, A fast algorithm for renaming a set of clauses as a
Horn set, Information Processing Letters 21 (1985) 261–272.

[57] Milano, M., Constraint and Integer Programming: Toward a Unified Methodology,
Operations Research/Computer Science Interfaces Series, Springer (2003).

[58] Moskewicz, M. W., C. F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: Engineering
an efficient SAT solver, in Proceedings of the 38th Design Automation Conference,
ACM (New York, 2001) 530–535.

[59] Nishimura, N., P. Ragde, and S. Szeider, Detecting backdoor sets with respect to
Horn and binary clauses, Theory and Applications of Satisfiability Testing, Seventh
International Conference (SAT 2004).

[60] Nobili, P., and A. Sassano, (0,±1) ideal matrices, Mathematical Programming 80
(1998) 265–281.

[61] Ostergard, P. R. J., A fast algorithm for the maximum clique problem, Discrete
Applied Mathematics 120 (2002) 197–207.

[62] Pardalos, P., and G. Rogers, A branch and bound algorithm for the maximum clique
problem, Computers and Operations Research 19 (1992) 363–375.

38

[63] Pardalos, P. M., N. Desai, An algorithm for finding a maximum weighted independent
set in an arbitrary graph, International Journal of Computer Mathematics 38 (1991)
163–175.

[64] Paris, L., R. Ostrowski, P. Siegel, and L. Sais, Computing Horn strong backdoor sets
thanks to local search, 18th IEEE International Conference on Tools with Artificial
Intellignece (ICTAI 2006) 139–143.

[65] Paris, L., R. Ostrowski, P. Siegel, and L. Sais, From Horn strong backdoor sets
to ordered strong backdoor sets, Advances in Artificial Intelligence (MICAI 2007),
Lecture Notes in Computer Science 4827, Springer (2007) 105–117.

[66] Quine, W. V., The problem of simplifying truth functions, American Mathematical
Monthly 59 (1952) 521–531.

[67] Quine, W. V., A way to simplify truth functions, American Mathematical Monthly
62 (1955) 627–631.

[68] Schaeffer, T. J., The complexity of satisfiability problems, Proceedings, 10th Annual
ACM Symposium on Theory of Computing (STOC’78), ACM (New York, 1978) 216–
226.

[69] Schlipf, J. S., F. S. Annexstein, J. V. Franco, and R. P. Swaminathan, On finding
solutions for extended Horn formulas, Information Processing Letters 54 (1995) 133–
137.

[70] Shindo, M., and E. Tomita, A simple algorithm for finding a maximum clique and its
worst-case time complexity, Systems and Computers in Japan 21 (1990) 1–13.

[71] Swaminathan, R. P., and D. K. Wagner, The arborescence-realization problem, Dis-
crete Applied Mathematics 59 (1995) 267–283.

[72] Szeider, S., Backdoor sets for DLL subsolvers, Journal of Automated Reasoning 35
(2005) 73–88.

[73] Tarjan, R. E., and A. E. Trojanowski, Finding a maximum independent set, SIAM
Journal on Computing 6 (1977) 537–546.

[74] Thorsteinsson, E. S., Branch-and-check: a hybrid framework integrating mixed in-
teger programming and constraint logic programming, in T. Walsh, Principles and
Practice of Constraint Programming (CP2001), Lecture Notes in Computer Science
2239 Springer (2001) 16-30.

39

[75] Williams, R., C. Gomes, and B. Selman, Backdoors to typical case complexity,
Proceedings, International Joint Conference on Airtificial Intelligence (IJCAI 2003)
11731178.

[76] R. Williams, C. Gomes, and B. Selman. On the connections between heavy-tails,
backdoors, and restarts in combinatorial search, Theory and Applications of Satisfia-
bility Testing, 6th International Conference (SAT 2003), Lecture Notes in Computer
Science 2919, Springer (2004) 222-230.

[77] Williams, H. P., and J. M. Wilson. Connections between integer linear programming
and constraint logic programming–An overview and introduction to the cluster of
articles, INFORMS Journal on Computing 10 (1998) 261–264.

[78] Wolsey, L. A., Integer Programming, John Wiley & Sons (New York, 1998).

[79] Yamada, Y., E. Tomita, and H. Takahashi, A randomized algorithm for finding a
near-maximum clique and its experimental evaluations, Systems and Computers in
Japan 25 (1994) 1–7.

[80] Yan, H., and J. N. Hooker, Logic circuit verification by Benders decomposition, in
V. Saraswat and P. Van Hentenryck, eds., Principles and Practice of Constraint Pro-
gramming: The Newport Papers, MIT Press (Cambridge, MA, 1995) 267–288.

[81] Zhang, Lintao, and S. Malik, The quest for efficient Boolean satisfiability solvers, in
A. Voronkov, Automated Deduction (CADE-18), 18th International Conference on
Automated Deduction, Lecture Notes in Artificial Intelligence 2392, Springer (2002)
295–313.

40

