
Planning and Scheduling to Minimize Tardiness

J. N. Hooker

Carnegie Mellon University
john@hooker.tepper.cmu.edu

Abstract. We combine mixed integer linear programming (MILP) and
constraint programming (CP) to minimize tardiness in planning and
scheduling. Tasks are allocated to facilities using MILP and scheduled
using CP, and the two are linked via logic-based Benders decomposi-
tion. We consider two objectives: minimizing the number of late tasks,
and minimizing total tardiness. Our main theoretical contribution is a
relaxation of the cumulative scheduling subproblem, which is critical to
performance. We obtain substantial computational speedups relative to
the state of the art in both MILP and CP. We also obtain much better
solutions for problems that cannot be solved to optimality.

We address a planning and scheduling problem that occurs frequently in
manufacturing and supply chain contexts. Tasks must be assigned to facilities
and scheduled on each facility subject to release dates and due dates. Tasks
assigned to a given facility may run in parallel if desired, subject to a resource
constraint (cumulative scheduling). We consider two objectives: minimizing the
number of late tasks, and minimizing total tardiness.

The problem can be formulated entirely as a constraint programming (CP)
problem or a mixed integer/linear programming (MILP) problem. However,
these models are hard to solve. By linking CP and MILP in a hybrid method,
we obtain significant speedups relative to the state of the art in both MILP and
CP. The linkage is achieved by logic-based Benders decomposition. The facility
assignment problem becomes the master problem and is solved by MILP, while
the scheduling problem becomes the subproblem (slave problem) and is solved
by CP.

The primary theoretical contribution of this paper is a linear relaxation of
the cumulative scheduling subproblem. We find that including such a relaxation
in the master problem is essential to the success of the Benders method.

We solve problem instances in which tasks have the same release date and
different due dates, although the the method is valid for different release dates
as well. We obtain substantial speedups on nearly all instances relative to MILP
(as represented by CPLEX), which in turn is generally faster than CP (as rep-
resented by the ILOG Scheduler). On larger instances, the hybrid method gen-
erally achieves speedups of two or three orders of magnitude when minimizing
the number of late tasks, and it solves significantly more problems to optimality.

There is a lesser but still significant speedup when minimizing total tardiness,
and even when the hybrid method cannot obtain provably optimal solutions, it
obtains much better solutions than provided by MILP in the same time period.

1 Previous Work

Logic-based Benders decomposition, which generalizes the classical Benders de-
composition method [1, 3], was introduced in [8] for purposes of logic circuit
verification. The idea was later formally developed in [4] and applied to 0-1
programming in [7].

The application of logic-based Benders to planning and scheduling was pro-
posed in [4]. Jain and Grossmann [10] successfully applied such a method to
minimum-cost planning and scheduling problems in which the subproblems are
disjunctive scheduling problems, where tasks must run one at a time, rather
than cumulative scheduling problems. The Benders cuts are particularly sim-
ple in this case because the subproblem is a feasibility problem rather than
an optimization problem. Thorsteinsson [11] improved on these results using a
“branch-and-check” method suggested in [4].

It is less obvious how to define Benders cuts when the subproblem is an
optimization problem. We showed in [5, 6] how to derive effective Benders cuts
for at least one such case, minimum makespan problems. The cuts are valid for
cumulative as well as disjunctive scheduling, provided all tasks have the same
release date. Computational tests showed the hybrid method to be 100 to 1000
times faster than MILP or CP when all tasks have the same deadline.

In this paper we address minimum tardiness problems, in which the sub-
problem is again an optimization problem. We obtain effective cuts by repeat-
edly solving the subproblem with slightly different task assignments. The idea
is related to finding “minimal conflict sets” of tasks, or small sets of tasks that
create infeasibility when assigned to a particular facility. Cambazard et al. [2]
applied such an approach to real-time scheduling of computing resources. Here
we develop cuts for an optimization rather than a feasibility subproblem.

As observed in [5, 11], the success of hybrid methods in planning and schedul-
ing relies on including a relaxation of the scheduling subproblem in the master
problem. We find that deriving a useful relaxation requires deeper analysis when
minimizing total tardiness than when minimizing cost or makespan. A relaxation
of the cumulative scheduling problem is presented in [9], but it is expressed in
terms of the start time variables, rather than the assignment variables as required
for the Benders master problem. We derive here a very different relaxation in
terms of 0-1 assignment variables, which is suitable for the MILP master prob-
lem.

2 The Problem

The planning and scheduling problem may be defined as follows. Each task
j ∈ {1, . . . , n} is to be assigned to a facility i ∈ {1, . . .m}, where it consumes

processing time pij and resources at the rate cij . Each task j has release time rj

and due date dj . The tasks assigned to facility i must be given start times sj in
such a way that the total rate of resource consumption on facility i is never more
than Ci at any given time. If xj is the facility assigned to task j, the problem
may be written

minimize g(x, s)
subject to rj ≤ sj , all j (a)∑

j∈Jit(x)

cij ≤ Ci, all i, t (b)
(1)

where xj , sj are the variables and Jit(x) = {j | xj = i, sj ≤ t ≤ sj + pij} is the
set of tasks underway at time t in facility i.

Precedence constraints may be imposed on tasks that are assigned to the
same machine. Thus one may require that tasks j and k be scheduled on the
same facility, and that task j precede k, by writing the constraints xj = xk and
sj + pxjj ≤ sk.

We investigate two objective functions:

– number of late tasks, given by g(x, s) =
∑

j δ(sj + pxjj − dj), where δ(α) is
1 if α > 0 and 0 otherwise.

– total tardiness, given by g(x, s) =
∑

j(sj + pxjj − dj)+, where α+ is α if
α > 0 and 0 otherwise.

3 Constraint Programming Formulation

A CP formulation of the problem can be written

minimize g(x, s)
subject to rj ≤ sj , all j

cumulative((sj |xj = i), (pij |xj = i), (cij |xj = i), Ci), all i

(2)

where (sj |xj = i) denotes the tuple of start times for tasks assigned to facility i.
When minimizing the number of late tasks, g(x, s) =

∑
j Lj where Lj is binary,

and the constraint (sj + pxjj > dj) ⇒ (Lj = 1) is added for each j. When mini-
mizing total tardiness, g(x, s) =

∑
j Tj , and the constraints Tj ≥ sj + pxjj − dj

and Tj ≥ 0 are added for each j.
For purposes of computational testing we formulated (2) using the modeling

language of OPL Studio. We used the assignAlternatives and setTimes search
options specify a branching method that results in substantially better perfor-
mance than the default method.

4 Mixed Integer Programming Formulation

The most straightforward MILP formulation discretizes time and enforces the
resource capacity constraint at each discrete time. Let the 0-1 variable xijt = 1

if task j starts at discrete time t on facility i. The formulation for minimizing
the number of late tasks is

min
∑

j

Lj

subject to NLj ≥
∑

i

(t + pij)xijt − dj , all j, t (a)

∑

it

xijt = 1, all j (b)

∑

j

∑

t′∈Tijt

cijxijt′ ≤ Ci, all i, t (c)

xijt = 0, all j, t with t < rj or t > N − pij (d)

(3)

where each xijt and each Lj is a 0-1 variable. Also N is the number of discrete
times (starting with t = 0), and Tijt = {t′ | t− pij < t′ ≤ t} is the set of discrete
times at which a task j in progress on facility i at time t might start processing.
Constraint (b) ensures that each task starts once on one facility, (c) enforces
the resource limit, and (d) the time windows. The minimum tardiness problem
replaces the objective function with

∑
j Tj and constraint (a) with

Tj ≥
∑

i

(t + pij)xijt − dj , Tj ≥ 0, all j, t

We also investigated a smaller discrete event model suggested by [12], which uses
continuous time. However, it proved much harder to solve than (3).

5 Hybrid Method for Minimizing Late Tasks

The Benders approach formulates a master problem that assigns tasks to facilities
and a subproblem that schedules the tasks assigned to each facility. We write the
master problem using an MILP model that minimizes the number of late tasks.
In iteration h of the Benders algorithm, the master problem is

minimize L

subject to
∑

i

xij = 1, all j (a)

Benders cuts generated in iterations 1, . . . , h − 1 (b)
relaxation of subproblem (c)

(4)

Here the binary variable xij is 1 when task j is assigned to facility i. The Benders
cuts and relaxation will be described shortly.

Once an assignment x̄ij of tasks to facilities is determined by solving the
master problem, a cumulative scheduling subproblem is solved by CP. The sub-

problem decouples into a separate scheduling problem on each facility i:

minimize
∑

j∈Jhi

Lj

subject to (sj + pij > dj) ⇒ (Lj = 1), all j ∈ Jhi

rj ≤ sj , all j ∈ Jhi

cumulative((sj |j ∈ Jhi), (pij |j ∈ Jhi), (cij |j ∈ Jhi))

(5)

where Jhi is the set of tasks for which x̄ij = 1 (i.e., the tasks assigned to facility
i in the master problem solution). If L∗

hi is the optimal value of (5), then
∑

i L∗
hi

is the minimum number of late tasks across all facilities.
At this point we know that whenever the tasks in Jhi (perhaps among others)

are assigned to facility i, the number of late tasks on facility i is at least L∗
hi.

This allows us to write a valid lower bound Lhi on the number of late tasks in
facility i for any assignment of tasks to machines. Since xij = 0 when task j is
not assigned to facility i, we have

Lhi ≥ L∗
hi − L∗

hi

∑

j∈Jhi

(1 − xij), all i

Lhi ≥ 0, all i

(6)

By summing over all facilities, we have a lower bound on the total number L of
late tasks:

L ≥
∑

i

Lhi (7)

The inequality (7), together with (6), provides a Benders cut for iteration h. The
cut says that the number of late tasks will be at least the number obtained in
the subproblem unless a different assignment of tasks to facilities is used.

In iteration h, the Benders cuts (b) in the master problem (4) consist of
inequalities (6)–(7) obtained in iterations 1, . . . , h−1. The algorithm terminates
when the optimal value of the master problem equals the optimal value of the
subproblem in the previous iteration. At any point in the algorithm, a feasible
solution of the subproblem is a feasible solution of the original problem, and the
optimal value of the master problem is a lower bound on the optimal value of
the original problem.

Unfortunately the Benders cuts (6)–(7) are weak and do not perform well in
practice. The cuts can be strengthened by identifying, for each facility i, a smaller
set Jhi of tasks that result in the same number of late tasks. One way to do this is
to track which tasks actually play a role in the determining the minimum number
of late tasks, as suggested in [6]. However, since this information is not available
from commercial CP solvers, the information must be obtained indirectly by
repeatedly solving subproblems with different assignments of tasks to facilities.

The following approach was found to yield effective cuts with a modest
amount of computation. Let Li(J) be the minimum number of late tasks on
facility i when the tasks in J are assigned to facility i. First identify a set

Let J0
hi = Jhi.

For all j ∈ Jhi: if Li(J
0
hi \ {j}) = L∗

hi then let J0
hi = J0

hi \ {j}.
Let J1

hi = J0
hi.

For all j ∈ J0
hi: if Li(J

1
hi \ {j}) = L∗

hi − 1 then let J1
hi = J1

hi \ {j}.

Fig. 1. Algorithm for generating Benders cuts when minimizing the number of late
tasks.

J0
hi ⊆ Jhi of tasks that, when assigned to facility i, result in a minimum of L∗

hi

late tasks; that is, a set J0
hi such that Li(J0

hi) = L∗
hi. This is done via the simple

greedy algorithm in Fig. 1. Then identify a set J1
hi ⊆ J0

hi of tasks such that
Li(J1

hi) = L∗
hi − 1, again using the algorithm of Fig. 1. The inequalities (6) can

now be replaced by the generally stronger inequalities

Lhi ≥ L∗
hi − L∗

hi

∑

j∈J0
hi

(1 − xij), all i

Lhi ≥ L∗
hi − 1 − L∗

hi

∑

j∈J1
hi

(1 − xij), all i

Lhi ≥ 0, all i

(8)

These cuts remain valid for any set of additional constraints that may be added
to the subproblems.

It is straightforward to relax the subproblem when minimizing the number
of late tasks. (It will be harder when minimizing total tardiness.) Let J(t1, t2)
be the set of tasks whose time windows are contained in [t1, t2]. Thus J(t1, t2) =
{j | [rj , dj] ⊆ [t1, t2]}. When executed on facility i, these tasks span a time
interval of at least

M =
1
Ci

∑

j∈J(t1,t2)

cijpij (9)

If M > t2 − t1 then at least one task is late, and in fact the number of late tasks
on facility i is at least

M − (t2 − t1)
max

j∈J(t1,t2)
{pij}

(10)

rounded up to the nearest integer.
Define r̄1, . . . , r̄nr to be the distinct values among the release times r1, . . . , rn

in increasing order, and similarly for d̄1, . . . , d̄nd
. Then from (9) and (10) we have

the following relaxation:

L ≥
∑

i

Li

Li ≥

1
Ci

∑

`∈J(r̄j ,d̄k)

ci`pi`xi` −
(
d̄k − r̄j

)

max
`∈J(r̄j ,d̄j)

{pi`}
, j = 1, . . . , nr, k = 1, . . . , nd, all i

which becomes (c) in the master problem (4).

6 Hybrid Method for Minimizing Total Tardiness

In iteration h of the Benders method, the master problem for minimizing total
tardiness is

minimize T

subject to
∑

i

xij = 1, all j (a)

Benders cuts for iterations 1, . . . , h − 1 (b)
relaxation of subproblem (c)

(11)

The subproblem again decouples into a cumulative scheduling problem for each
facility i:

minimize
∑

j∈Ji

Tj

subject to Tj ≥ sj + pij − dj , all j ∈ Ji

rj ≤ sj , all j ∈ Ji

cumulative((sj |j ∈ Ji), (pij |j ∈ Ji), (cij |j ∈ Ji))

(12)

We found the following scheme to generate effective Benders cuts. As before
let Jhi be a set of tasks assigned to facility i in iteration h, and let T ∗

hi be the
resulting minimum tardiness on facility i. Let Ti(J) be the minimum tardiness
on facility i that results when the tasks in J are assigned to facility i, so that
Ti(Jhi) = T ∗

hi. Let Zhi be the set of tasks in Jhi that can be removed, one at a
time, without reducing the minimum tardiness. That is,

Zhi = {j ∈ Jhi | Thi(Jhi \ {j}) = T ∗
hi}

Finally, let T 0
hi be the minimum tardiness that results from removing the tasks

in Zhi all at once, so that T 0
hi = Ti(Jhi \ Zhi). Thus any or all tasks in Zhi can

be removed from facility i without reducing the minimum tardiness below T 0
hi.

This yields the following Benders cuts in iteration h:

T ≥ T 0
hi − T 0

hi

∑

j∈Jhi\Zhi

(1 − xij), all i

T ≥ T ∗
hi − T ∗

hi

∑

j∈Jhi

(1 − xij), all i
(13)

The second cut is redundant and can be eliminated for a given h, i when T 0
hi = T ∗

hi.
This in fact substantially reduces the size of master problem, since computational
testing suggests that T 0

hi = T ∗
hi very often.

These cuts are again valid for any set of additional constraints that may be
added to the subproblem.

7 Relaxation for Minimizing Total Tardiness

Our relaxation of the minimum tardiness scheduling subproblem has two parts.
The first and simpler part is similar to the relaxation obtained for minimizing
the number of late tasks. It is based on the following lemma. Recall that J(t1, t2)
is the set of jobs with time windows between t1 and t2.

Lemma 1. Consider a minimum total tardiness problem in which tasks j =
1, . . . , n with time windows [rj , dj] are scheduled on a single facility i, where
minj{rj} = 0. The total tardiness incurred by any feasible solution is bounded
below by

 1
Ci

∑

j∈J(0,dk)

pijcij − dk

+

for each k = 1, . . . , n.

Proof. For any k, the last scheduled task in the set J(0, dk) can finish no
earlier than time t = 1

Ci

∑
j∈J(0,dk) pijcij . Since the last task has due date no

later than dk , its tardiness is no less than (t − dk)+. Thus total tardiness is no
less than (t − dk)+.

This gives rise to a relaxation consisting of

T ≥ 1
Ci

∑

j∈J(0,dk)

pijcijxij − dk, all i, k (14)

and T ≥ 0.
The second part of the relaxation can be developed on basis of the follow-

ing lemma. For each facility i let πi be a permutation of {1, . . . , n} such that
piπi(1)ciπi(1) ≤ · · · ≤ pπi(n)cπi(n).

Lemma 2. Consider a minimum tardiness problem in which tasks 1, . . . , n with
time windows [rj , dj] are scheduled on a single facility i. Assume minj{rj} = 0
and index the tasks so that d1 ≤ · · · ≤ dn. Then the total tardiness T of any
feasible solution is bounded below by T =

∑n
k=1 T k, where

T k =

 1

Ci

k∑

j=1

piπi(j)ciπi(j) − dk

+

, k = 1, . . . , n

Proof. Consider any feasible solution of the one-facility minimum tardiness
problem, in which tasks 1, . . . , n are respectively scheduled at times t1, . . . , tn.
Thus

T =
n∑

k=1

(tk + pik − dk)+ (15)

Let σ0(1), . . . , σ0(n) be the order in which tasks are scheduled in this solution,
so that tσ0(1) ≤ · · · ≤ tσ0(n). For an arbitrary permutation σ of {1, . . . , n} let

T k(σ) =

 1

Ci

k∑

j=1

piπi(j)ciπi(j) − dσ(k)

+

(16)

and T (σ) =
∑n

k=1 T k(σ).
We show first that T ≥ T (σ0). Since σ0 is a permutation we can write (15)

as

T =
n∑

k=1

(
tσ0(k) + piσ0(k) − dσ0(k)

)+

We observe that

tσ0(k) + piσ0(k) ≥
1
Ci

k∑

j=1

piσ0(j)ciσ0(j) ≥
1
Ci

k∑

j=1

piπi(j)ciπi(j)

where the first inequality is based on the areas required by tasks, and the second
inequality is due to the definition of πi. From this and (16) it follows that T ≥
T (σ0).

Now suppose a bubble sort is performed on the integers σ0(1), . . . , σ0(n) so
as to put them in increasing order, and let σ0, . . . , σP be the resulting series of
permutations. Thus (σP (1), . . . , σP (n)) = (1, . . . , n), and σp+1 is obtained from
σp by swapping two adjacent terms σp(k) and σp(k+1), where σp(k) > σp(k+1).
This means σp and σp+1 are the same except that σp+1(k) = σp(k + 1) and
σp+1(k + 1) = σp(k). Since T ∗ ≥ T (σ0) and T (σP) = T , to prove the theorem it
suffices to show T (σ0) ≥ · · · ≥ T (σP).

Thus we consider any two adjacent permutations σp, σp+1 and show that
T (σp) ≥ T (σp+1). We observe that

T (σp) =
k−1∑

j=1

T j(σp) + T k(σp) + T k+1(σp) +
n∑

j=k+2

T j(σp)

T (σp+1) =
k−1∑

j=1

T j(σp) + T k(σp+1) + T k+1(σp+1) +
n∑

j=k+2

T j(σp)

(17)

Using (16), we note that T k(σp) = (a−B)+, T k+1(σp) = (A− b)+, T k(σp+1) =
(a − b)+, and T k+1(σp+1) = (A − B)+ if we set

a =
1
Ci

k∑

j=1

piπi(j)ciπi(j), A =
1
Ci

k+1∑

j=1

piπi(j)ciπi(j)

b = dσp(k+1), B = dσp(k)

Note that a ≤ A. Also, b ≤ B since σp(k) > σp(k + 1) and d1 ≤ · · · ≤ dn. From
(17) we have

T (σp) − T (σp+1) = (a − B)+ + (A − b)+ − (a − b)+ − (A − B)+

It is straightforward to check that this quantity is always nonnegative when
a ≤ A and b ≤ B. The theorem follows.

The bound of Lemma 2 can be written in terms of the variables xik :

n∑

k=1

T ′
ikxik

where

T ′
ik ≥ 1

Ci

k∑

j=1

piπi(j)ciπi(j)xiπi(j) − dk, k = 1, . . . , n

and T ′
ik ≥ 0. We linearize the bound by writing it as

n∑

k=1

T ik (18)

where

T ik ≥
1
Ci

k∑

j=1

piπi(j)ciπi(j)xiπi(j) − dk − (1 − xik)Uik , k = 1, . . . , n (19)

and T ik ≥ 0. The big-M term Uik is given by

Uik =
1
Ci

k∑

j=1

piπi(j)ciπi(j) − dk

Note that although Uik can be negative, the right-hand side of (19) is never
positive when xik = 0. Finally, to obtain a relaxation of the subproblem, we sum
(18) over all facilities and write

T ≥
m∑

i=1

n∑

k=1

T ik (20)

The relaxation (c) of the master problem now consists of (14), (20), and (19)
for i = 1, . . . , m. The relaxation is valid only when tasks are indexed so that
d1 ≤ · · · ≤ dn.

8 Problem Generation

Random instances were generated as follows. We set the number of facilities at
3, and the number of tasks at n = 10, 12, . . . , 24. The capacity limit was set to
Ci = 10 for each facility i. For each task j, cij was assigned the same random
value for all facilities i and drawn from a uniform distribution on [1, 10]. The
processing time pij was drawn from a uniform distribution on [2, 20], [2, 25] and
[2, 30] for facilities i = 1, 2, 3, respectively. For 22 or more tasks we used the
intervals [5, 20], [5, 25] and [5, 30] since otherwise the minimum tardiness tends
to be zero in the larger problems. The release dates were set to zero and the due
date drawn from a uniform distribution on [βn/4, βn]. We used β = 20/9, partly
since this was consistent with parameter settings used in earlier research, and
partly because it leads to reasonable results (a few late tasks in most instances,
and no late tasks in a few instances). No precedence constraints were used, which
tends to make the scheduling portion of the problem more difficult.

9 Computational Results

We solved randomly generated problems with MILP (using CPLEX), CP (using
the ILOG Scheduler), and the logic-based Benders method. All three methods
were implemented with OPL Studio, using the OPL script language.

Table 1 shows computational results for minimizing the number of late tasks
on three facilities using CP, MILP and the hybrid method. Since problem dif-
ficulty tends to increase with the minimum number of late tasks, the instances
are ordered accordingly for each problem size. The problem instance identifier k
appears in the last column. The instances are named ddnj3mk, where n is the
number of tasks and k the instance identifier. The instances are available at the
web site web.tepper.cmu.edu/jnh/planning.htm.

On all but two problem instances the hybrid method is faster than MILP,
which in turn is generally faster than CP. The advantage of the hybrid method
becomes greater as the instances grow in size. The speedup is generally two
or three orders of magnitude for instances with 16 or more tasks. The average
speedup factor relative to MILP is 295 for these instances. This is almost cer-
tainly a substantial underestimate for the instances averaged, since the MILP
solver was cut off after two hours. (The average omits instances in which the
hybrid method was also cut off.) In addition MILP failed to solve 10 instances,
while the hybrid method failed to solve only one instance.

Table 2 shows computational results for minimizing total tardiness. Again
the hybrid method is almost always faster than MILP, which is faster than CP.
The advantage of the hybrid approach is not as great as in the previous table,
but the speedup factor is still significant on instances with 16 or more tasks. The
average speedup factor on these instances is 25, which is again an underestimate
for these instances. (The average omits instances for which the hybrid method
was also cut off.)

The hybrid method failed to solve 6 of the 40 instances to optimality, only a
modest improvement over the 10 that were intractable for MILP. However, when

Table 1. Computational results for minimizing the number of late tasks on three
facilities. Computation is terminated after two hours (7200 seconds).

Tasks Time (sec) Hybrid/ Best solution
CP MILP Hybrid MILP value found1 Instance

speedup MILP Hybrid
10 0.09 0.48 0.05 9.6 1 1 1

2.5 0.51 0.17 3.0 1 1 2
0.28 0.46 0.27 1.7 2 2 5
0.15 0.41 0.93 0.4 3 3 4
1.7 3.9 3.0 1.3 3 3 3

12 0.01 0.73 0.07 10 0 0 1
0.01 0.70 0.22 3.2 0 0 5
0.02 0.64 0.06 11 1 1 3
3.2 1.4 0.18 7.8 1 1 4
1.6 1.7 0.34 5.0 1 1 2

14 1092 5.8 0.52 11 1 1 3
382 8.0 0.69 12 1 1 2
265 3.2 0.69 4.6 2 2 1
85 2.6 1.3 2.0 2 2 5

5228 1315 665 2.0 3 3 4
16 304 2.7 0.51 5.3 0 0 2

?2 31 0.24 129 1 1 4
310 22 0.41 54 1 1 5

4925 29 2.7 11 2 2 3
19 5.7 24 0.2 4 4 1

18 >7200 2.0 0.11 18 0 0 5
?2 8.0 0.21 38 1 1 4

>7200 867 8.5 102 1 1 2
>7200 6.3 1.4 4.5 2 2 3
>7200 577 3.4 170 2 2 1

20 97 0.37 262 0 0 1
>7200 2.3 >3130 1 1 5

219 5.0 44 1 1 2
>7200 11 >655 2 2 3

843 166 5.1 3 3 4
22 16 1.3 12 0 0 4

>7200 3.7 >1946 1 1 1
>7200 49 >147 3 2 5
>7200 3453 >2.1 5 2 3
>7200 >7200 6 6 2

24 25 0.8 31 0 0 3
>7200 18 >400 1 0 5
>7200 62 >116 2 0 4
>7200 124 >58 3 1 1
>7200 234 >31 2 1 2

1Values in boldface are proved optimal.
2Computation terminates with a segmentation fault.

the hybrid method failed to find provably optimal solutions, it obtained much
better feasible solutions than obtained by MILP in the same two-hour period. In
most cases these solutions were found very early in the solution process. Table 2
also shows the lower bounds obtained from the master problem, which in these
instances are not very tight.

Table 3 illustrates the importance of relaxations in the hybrid approach,
particularly when minimizing total tardiness. Lemmas 1 and 2 are clearly critical
to the success of the hybrid method, especially when there are more than 16 tasks
or so.

10 Conclusions

We find that integrating CP and MILP through a Benders scheme can substan-
tially improve on the state of the art in planning and scheduling to minimize
tardiness. The hybrid method is often two or three orders of magnitude faster
than CP or MILP when minimizing the number of late tasks, and it solves
significantly more problems. It is roughly an order of magnitude faster when
minimizing total tardiness, and when it fails to solve the problem to optimality,
it nonetheless finds a much better feasible solution in the same time period.

The problems become hard for all the methods examined when there are
more than a few late tasks in the optimal solution. However, in such cases it
is probably best to relax some of the time windows so as to reflect scheduling
priorities, perhaps by postponing due dates for less critical tasks. This makes
the problem easier to solve and yields a more meaningful compromise solution
in practice.

References

1. Benders, J. F., Partitioning procedures for solving mixed-variables programming
problems, Numerische Mathematik 4 (1962) 238–252.

2. Cambazard, H., P.-E. Hladik, A.-M. Déplanche, N. Jussien, and Y. Trinquet, De-
composition and learning for a hard real time task allocation algorithm, in M.
Wallace, ed., Principles and Practice of Constraint Programming (CP 2004), Lec-
ture Notes in Computer Science 3258, Springer (2004).

3. Geoffrion, A. M., Generalized Benders decomposition, Journal of Optimization
Theory and Applications 10 (1972) 237–260.

4. Hooker, J. N., Logic-based Methods for Optimization: Combining Optimization and
Constraint Satisfaction, John Wiley & Sons (2000).

5. Hooker, J. N., A hybrid method for planning and scheduling, in M. Wallace, ed.,
Principles and Practice of Constraint Programming (CP 2004), LNCS 3258, 305–
316.

6. Hooker, J. N., A hybrid method for planning and scheduling, Constraints, to ap-
pear.

7. Hooker, J. N. and G. Ottosson, Logic-based Benders decomposition, Mathematical
Programming 96 (2003) 33–60.

Table 2. Computational results for minimum tardiness problems on three facilities.
Computation is terminated after two hours (7200 seconds).

Tasks Time (sec) Hybrid/ Best solution Benders
CP MILP Hybrid MILP value found1 lower Instance

speedup MILP Benders bound2

10 13 4.7 2.6 1.8 10 10 2
1.1 6.4 1.6 4.0 10 10 1
1.4 6.4 1.6 4.0 16 16 4
4.6 32 4.1 7.8 17 17 5
8.1 33 22 1.5 24 24 3

12 4.7 0.7 0.2 3.5 0 0 5
14 0.6 0.1 6.0 0 0 1
25 0.7 0.2 3.5 1 1 3
19 15 2.4 6.3 9 9 4

317 25 12 2.1 15 15 2
14 838 7.0 6.1 1.2 1 1 2

7159 34 3.7 9.2 2 2 3
1783 45 19 2.4 15 15 5

> 7200 73 40 1.8 19 19 1
> 7200 > 7200 3296 >2.2 26 26 4

16 > 7200 19 1.4 14 0 0 2
> 7200 46 2.1 22 0 0 5
> 7200 52 4.2 12 4 4 4
> 7200 1105 156 7.1 20 20 3
> 7200 3424 765 4.5 31 31 1

18 187 2.8 67 0 0 5
15 5.3 2.8 3 3 4
46 49 0.9 5 5 3

256 47 5.5 11 11 1
> 7200 1203 >6.0 14 11 2

20 105 18 5.8 0 0 1
4141 23 180 1 1 5

39 29 1.3 4 4 2
1442 332 4.3 8 8 3

> 7200 > 7200 75 37 9 4
22 6.3 19 0.3 0 0 4

584 37 16 2 2 1
> 7200 > 7200 120 40 7 3
> 7200 > 7200 162 46 11 5
> 7200 > 7200 375 1413 34 2

24 10 324 0.03 0 0 3
> 7200 94 >77 20 0 5
> 7200 110 >65 57 0 4
> 7200 > 7200 20 5 3 2
> 7200 > 7200 25 7 1 1

1Values in boldface are proved optimal.
2When omitted, the lower bound is equal to the optimal value shown in the previous column.
3Best known solution is 128, obtained using a slightly weaker relaxation.

Table 3. Effect of relaxations on performance of the hybrid method. Computation
time in seconds is shown.

Minimizing late tasks: Minimizing tardiness:
Tasks with without with without Instance

relaxation relaxation relaxation relaxation
16 0.5 2.6 1.4 4.4 2

0.4 1.5 2.1 6.5 5
0.2 1.3 4.2 30 4
2.7 4.2 156 199 3

24 18 765 763 1
18 0.1 1.1 2.8 10 5

0.2 0.7 5.3 17 4
3.4 3.3 47 120 1
1.4 15 49 354 3
8.5 11 1203 5102 2

20 0.4 88 18 151 1
2.3 9.7 23 1898 5
5.0 63 29 55 2

11 19 332 764 3
166 226 >7200 >7200 4

8. Hooker, J. N., and Hong Yan, Logic circuit verification by Benders decomposition,
in V. Saraswat and P. Van Hentenryck, eds., Principles and Practice of Constraint
Programming: The Newport Papers, MIT Press (Cambridge, MA, 1995) 267–288.

9. Hooker, J. N., and Hong Yan, A relaxation for the cumulative constraint, in P. Van
Hentenryck, ed., Principles and Practice of Constraint Programming (CP2002),
Lecture Notes in Computer Science 2470 (2002) 686–690.

10. Jain, V., and I. E. Grossmann, Algorithms for hybrid MILP/CP models for a class
of optimization problems, INFORMS Journal on Computing 13 (2001) 258–276.

11. Thorsteinsson, E. S., Branch-and-Check: A hybrid framework integrating mixed in-
teger programming and constraint logic programming, Lecture Notes in Computer
Science 2239 (2001) 16–30.

12. Türkay, M., and I. E. Grossmann, Logic-based MINLP algorithms for the optimal
synthesis of process networks, Computers and Chemical Engineering 20 (1996)
959–978.

