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Abstract

Static game-theoretic models of bilateral bargaining assume that the seller knows his valuation for the item
that is up for sale; that is, how the seller may determine this quantity is exogenous to these models. In this
paper, we develop and analyze a stylized Markov decision process that endogenizes the seller’s computation
of his marginal inventory valuation in an infinite horizon revenue management setting when each sale occurs
according to a given bilateral bargaining mechanism. We use this model to compare, both analytically
and numerically, the seller’s performance under four basic bilateral bargaining mechanisms with a tractable
information structure. These comparisons provide insights on the seller’s performance under the following
trading arrangements: buyer and seller posted pricing, negotiated pricing, and rule based pricing.

1. Introduction

Static game-theoretic models of single item bilateral bargaining, such as those discussed by Myerson

[10, 11], Myerson and Satterthwaite [13], and Chatterjee and Samuelson [3], assume that the seller

knows his marginal valuation, also referred to as his type, for the item whose sale is being negotiated.

In other words, how the seller might determine this quantity is exogenous to these models. In this

paper, we interpret the seller’s marginal valuation for an item as his optimal opportunity cost

(OC) of selling this item. We consider a revenue management setting, with a single seller, multiple

buyers, and multiple items, and develop and analyze a stylized Markov decision process (MDP)

that endogenizes the seller’s computation of his optimal OC.

Specifically, we consider a risk neutral seller who owns a finite inventory of a single prod-

uct that can be sold during an infinite horizon divided into discrete time periods. The initial

availability of this inventory is exogenously specified; that is, we abstract from the seller’s initial

stocking/production decision. At the beginning of each time period there is a positive probability

of at most one buyer’s purchase request (arrival) for a single unit of the seller’s inventory; that

is, demand is Bernoulli (Talluri and van Ryzin [19, §5.2.2.2]). Buyers are risk neutral and do not

strategize on when they arrive. The seller’s and each requesting buyer’s valuations for a unit of

product that is up for sale are their private information.

At the time of a buyer’s arrival, the seller and this buyer bargain over the sale of the requested

item. We model each such negotiation as a Bayesian bargaining problem whose outcome is governed
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by a given direct and feasible mechanism for bilateral bargaining (Myerson and Satterthwaite [13]).

In this modeling approach, which is rare in the revenue management literature (Talluri and van

Ryzin [19]), it is common knowledge that the beliefs of the seller and each arriving buyer about each

other’s valuations for the item that is up for sale are exogenously specified independent probability

distributions. Moreover, the bargaining outcome is a Bayesian Nash equilibrium. This feature

allows us to compare the seller’s performance under different trading formats in a consistent fashion.

In our MDP, the beliefs of the seller and each buyer are stationary, so that the seller faces

a sequence of stationary Bayesian bargaining problems linked by his inventory availability, which

changes dynamically as sales are made over time. We exploit the structure of the problem, in

particular the incentive compatibility constraints, to provide a compact MDP formulation. This

formulation is insightful, because it elucidates the role that the seller’s inventory plays in deter-

mining his type in a revenue management setting with bilateral bargaining. It is general, in the

sense that it does not depend on the specific (direct and feasible) mechanism used to determine the

outcome of a bilateral bargaining problem. It is useful, because it allows one to optimally solve our

MDP by solving a finite sequence of univariate fixed point problems, one for each inventory level.

We also compare in a dynamic setting any two direct and feasible mechanisms for which the

seller’s interim expected utility, his expected utility conditional on his type (Myerson and Satterth-

waite [13]), is ordered in the static setting. We show analytically that when these two mechanisms

are employed in our dynamic setting the seller’s optimal value functions satisfy the same ordering

relationship for each inventory level. This result is nontrivial, because in our MDP the seller’s

type with the same inventory availability is in general different under the two mechanisms, but the

assumed static ordering between them relies on the seller having the same type in both cases.

We apply these methodological results to investigate the seller’s performance in the context of

the symmetric uniform trading problem (SUTP) studied by Chatterjee and Samuelson [3] under

the four mechanisms investigated by Myerson [12]. These are the seller posted price (SPP), the

buyer posted price (BPP), the neutral bargaining solution (NBS), and the split the difference (STD)

mechanisms. We use these mechanisms as normative models of the following business situations:

the seller transacts with each arriving buyer by posting a take it or leave it price (SPP mechanism);

accepting or rejecting a take it or leave it price posted by this buyer (BPP mechanism); negotiating

a price with this buyer (NBS mechanism); and splitting the difference between his offer price and

that of this buyer (STD mechanism).

We find that the seller typically benefits by using the SPP mechanism. However, this is not

always the case; he can be better off under the STD mechanism when his relative inventory avail-
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ability is exceptionally high. Moreover, the seller’s performance is surprisingly similar under the

SPP and NBS mechanisms, even though the seller is always better off under the SPP mechanism

than the NBS mechanism. Finally, the seller is always worse off under the BPP mechanism.

These findings are significant because they largely support the superiority of posting prices for

the seller, which has been extensively studied in the revenue management literature (Talluri and

van Ryzin [19, Chapter 5]), and provide additional insights, some of which are unexpected, on

the relative performance of the seller under alternative trading arrangements. For example, most

transactions in business commerce are negotiated (Karmarkar [6], Kleindorfer and Wu [8]); our

numerical comparison of the SPP and NBS mechanisms provides normative insights on the relative

merit of this practice. Moreover, despite the exceptionally high relative inventory availability

required to obtain it, the finding that the seller can be better off under rule based pricing than by

posting prices is significant in theory, because it brings to light a situation where price posting by

the seller can be outperformed by another trading format.

Our modeling approach is novel with respect to the static game-theoretic bilateral bargaining

literature (see, e.g., Kennan and Wilson [7]) because it endogenizes the computation of the seller’s

marginal inventory valuation. When bargaining occurs via the SPP mechanism, our MDP corre-

sponds to the dynamic pricing model of Das Varma and Vettas [4]. Different from these authors,

we compare the seller’s performance under alternative mechanisms.

Our paper is related to the literature on the effectiveness of different transaction formats for

a seller. Riley and Zeckhauser [16] show the optimality of posted pricing by the seller, our SPP

mechanism, over any other selling mechanism when the seller has only one item to sell. Gallien

[5] extends this result to an arbitrary number of items. In contrast, we find that the seller can

be better off under the STD mechanism than the SPP mechanism for exceptionally high relative

inventory availability. Comparing the model and analysis of Gallien [5] to ours suggests that, with

multiple items, this finding is due to our use of the Nash Bargaining equilibrium concept rather

than the dominant equilibrium concept used by this author (the STD mechanism is not supported

by a dominant equilibrium). The equilibrium concept that we use also allows us to compare the

seller’s performance under the SPP mechanism against his performance under other mechanisms

not considered by this author.

Wang [22] and Roth et al. [17] compare posted pricing by the seller against price bargaining

when the latter is modeled using the generalized Nash bargaining solution (Binmore et al. [2]; see

Kuo et al. [9] for a related comparison in a finite horizon revenue management setting). Wang

[22] and Roth et al. [17] find that selling through price bargaining is better than posting prices,
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a conclusion that is opposite to our result that the seller is always better off under the SPP

mechanism than the NBS mechanism. This discrepancy is likely to stem from the fact that these

authors assume that customers honestly disclose their valuations to the seller before price bargaining

occurs, which allows these authors to use the generalized Nash bargaining solution that assumes

a complete information setting, while buyers retain their private information when the seller uses

posted pricing. Instead, as in Myerson [12], in our model buyers maintain their private information

in both cases. This modeling assumption allows us to perform a consistent comparison of the seller’s

performance under different bargaining mechanisms.

Our model is related to that of Vulcano et al. [21], who study auction mechanisms in revenue

management when the seller faces many buyers in each of a finite number of time periods. Different

from these authors, we study bilateral bargaining mechanisms in revenue management when the

seller faces at most one customer in each of an infinite number of time periods.

The remainder of this paper is organized as follows. In §2, we introduce bargaining mechanism

concepts in a static setting and illustrate them by discussing the four stated mechanisms for SUTP.

We present and analyze our MDP in §3. In §4, we compare in a dynamic setting the four mechanisms

for SUTP discussed in §2. We conclude in §5 by summarizing our work and by discussing its

limitations and opportunities for further research.

2. Static Bargaining Mechanisms

In this section, we present the static bargaining mechanisms that form the building blocks for

the MDP studied in §§3-4. We employ the basic direct mechanism framework of Myerson and

Satterthwaite [13]. A seller has one unit of inventory that a buyer wishes to purchase. The seller

is player 1 and the buyer is player 2. Both players are risk neutral. It is common knowledge

that from the other player’s perspective the valuation of player i for this inventory unit is random

variable ṽi, whose probability distribution function is Fi(vi) with support Vi := [ai, bi] (0 ≤ ai ≤ bi),

independently of the probabilistic beliefs of player i about the other player’s valuation. That is,

the buyer believes that the random variable seller’s valuation ṽ1 is distributed according to F1(v1)

independently of the fact that the seller believes that the random variable buyer’s valuation ṽ2 is

distributed according to distribution F2(v2). Each player i ∈ {1, 2} knows his marginal valuation

vi ∈ Vi at the time of trading.

By the well known revelation principle (see, e.g., Myerson and Satterthwaite [13]), for modeling

purposes one can restrict attention to direct and feasible mechanisms without loss of generality.

In a direct mechanism, the two players simultaneously report their valuations to a mediator, who
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Table 1: The SPP, BPP, NBS, and STD mechanisms for SUTP.
j pj(v1,v2) xj(v1,v2)
SPP 1{v2 ≥ (1 + v1)/2} pSPP (v1, v2)(1 + v1)/2
BPP 1{v2/2 ≥ v1} pBPP (v1, v2)v2/2
NBS 1{v2 ≥ 3v1 or 3v2 − 2 ≥ v1} 1{v2 ≤ 1− v1}pNBS(v1, v2)v2/2

+1{v2 > 1− v1}pNBS(v1, v2)(1 + v1)/2
STD 1{v2 ≥ v1 + 1/4} pSTD(v1, v2)(v1 + v2 + 1/2)/3
Note: 1{·} equals 1 if its argument is true and 0 otherwise.

determines whether the unit of inventory is transfered from the seller to the buyer and at what

price. A direct mechanism j consists of two outcome functions: contingent on the seller and the

buyer being of types v1 and v2, respectively, pj(v1, v2) : V1 × V2 → [0, 1] determines the transfer

probability, xj(v1, v2) : V1 × V2 → < the price paid (in general, the price is paid irrespective of

whether trading occurs or not). A mechanism is feasible if it is both incentive compatible and

individually rational (formal definitions are given below).

The seller’s and buyer’s utilities under mechanism j when their respective types are v1 ∈ V1

and v2 ∈ V2 are uj
1(v1, v2) := xj(v1, v2) − v1p

j(v1, v2) and uj
2(v1, v2) := v2p

j(v1, v2) − xj(v1, v2).

Under mechanism j, the seller’s and buyer’s expected transfer probability and price received/paid

conditional on these players’ types being v1 ∈ V1 and v2 ∈ V2 are pj
1(v1) := E[pj(v1, ṽ2)], xj

1(v1) :=

E[xj(v1, ṽ2)], and pj
2(v2) := E[pj(ṽ1, v2)], xj

2(v2) := E[xj(ṽ1, v2)], where for any function ·(v1, v2) :

V1×V2 → < we define E[·(v1, ṽ2)] :=
∫
v2∈V2

·(v1, v2)dF2(v2) and E[·(ṽ1, v2)] :=
∫
v1∈V1

·(v1, v2)dF1(v1).

The seller’s and buyer’s interim expected utilities under mechanism j, that is, their expected util-

ities conditional on their respective types being v1 ∈ V1 and v2 ∈ V2, are

uj
1(v1) := xj

1(v1)− v1p
j
1(v1) (1)

and uj
2(v2) := v2p

j
2(v2)−xj

2(v2). Mechanism j is incentive compatible if uj
1(v1) ≥ xj

1(v̂1)−v1p
j
1(v̂1),

∀v1, v̂1 ∈ V1, and uj
2(v2) ≥ v2p

j
2(v̂2) − xj

2(v̂2), ∀v2, v̂2 ∈ V2; it is individually rational if uj
1(v1) ≥ 0,

∀v1 ∈ V1, and uj
2(v2) ≥ 0, ∀v2 ∈ V2.

As in Myerson [12], we illustrate these concepts in the static SUTP context, where Vi ≡ [0, 1],

∀i ∈ {1, 2}, and Fi(vi) ≡ vi, ∀i ∈ {1, 2} and vi ∈ Vi, with respect to mechanisms SPP, BPP, STD,

and NBS (these mechanisms are numbered 1, 2, 3, and 4, respectively, in Myerson [12]; we use our

own labeling in the remainder of this paper). With the exception of Lemma 1, all the remaining

material in this section can be found in Myerson [12].

Table 1 summarizes the four mechanisms for SUTP. Mechanisms SPP and BPP, respectively,

consist of a posted take it or leave it price set by the seller and the buyer to maximize their respective
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interim expected utilities. With mechanism SPP, a sale occurs at the seller’s optimal posted price

(1 + v1)/2 if and only if the buyer’s valuation v2 is not below this price; with mechanism BPP, a

sale occurs at the buyer’s optimal posted price v2/2 if and only if the seller’s valuation v1 does not

exceed this price. The SPP mechanism is equivalent to the seller’s posted price trading format,

which is well studied in the price based revenue management literature (Talluri and van Ryzin [19,

Chapter 5]). Instead, mechanism BPP has not been apparently considered in this literature; in

this case, the optimal price posted by the type v2 buyer depends on his beliefs about the seller’s

type v1 through the distribution F1(v1) ≡ v1, because this price solves the following optimization

problem: maxx∈[0,1]

∫ x
0 (v2 − x)dv1.

The NBS axiomatic solution concept is Myerson’s [11] extension to an incomplete information

setting of the celebrated Nash bargaining solution (Nash [14]), and hence incorporates fairness

considerations. The corresponding NBS mechanism for SUTP combines mechanisms SPP and BPP

in a nontrivial manner. A sale occurs if and only if the buyer’s type v2 is not below the minimum

of 3v1 and (2 + v1)/3; conditional on there being a sale, if the buyer is in a stronger bargaining

position than the seller (v2 ≤ 1− v1; that is, v2 is closer to 0 than v1 is to 1), then mechanism NBS

employs the optimal buyer posted price; otherwise, it uses the optimal seller posted price.

Chatterjee and Samuelson [3] study a model where the buyer and the seller report to each other

offer prices B and S, respectively, and agree to transact at a price equal to K ·B +(1−K) ·S, with

K ∈ [0, 1], if and only if B ≥ S. The cases K = 0 and K = 1 correspond to mechanisms SPP and

BPP, respectively. The case K = 1/2 is of special interest in the SUTP context, because in this

case Myerson and Satterthwaite [13] show that the linear equilibrium derived by Chatterjee and

Samuelson [3] maximizes the ex ante expected total gains from trade. The STD mechanism is the

direct and feasible mechanism version of this equilibrium. With this mechanism, a sale occurs at a

price equal to the average of the buyer’s type, the seller’s type, and 1/2 if and only if the buyer’s

valuation exceeds that of the seller by at least 1/4.

For the ensuing development, Lemma 1 compares the SPP, BPP, NBS, and STD mechanisms

from the seller’s perspective in the static SUTP context; the proof of this result is easily established

and is omitted for brevity.

Lemma 1 (Seller’s interim expected utility in SUTP). For SUTP it holds that uSPP
1 (v1) ≥

uNBS
1 (v1) ≥ uBPP

1 (v1) and uSTD
1 (v1) ≥ uBPP

1 (v1), ∀v1 ∈ V1.
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3. MDP Model and Analysis

In this section, we present and analyze our MDP. Different from the static case discussed in §2,

where how the seller knows his valuation v1 for the single unit of inventory that is up for sale is

exogenous to the model, this MDP endogenizes the computation of the seller’s optimal marginal

OC when multiple units of inventory can be sold to a stream of buyers that arrive stochastically

during an infinite time horizon. Specifically, the seller has a given number Y ≥ 1 of inventory units

available at the beginning of this time horizon, which is partitioned into discrete time periods each of

equal length. We let y ∈ Y := {1, . . . , Y } denote the units of remaining inventory at the beginning

of any such time period. At each such time, the seller faces a buyer’s arrival with probability λ,

independently of the other periods. The seller’s one period discount factor is β ∈ [0, 1).

The model’s information structure is as follows. At any point in time, the quantities λ, β, Y ,

and y are the seller’s private information. Upon a buyer’s arrival, trading between the seller and

this buyer is governed by direct and feasible mechanism j under the following common knowledge

assumption: the seller believes that the marginal valuation of the arriving buyer is distributed

according to F2(v2) with support V2 := [0, 1], independently of the beliefs of this buyer and of any

other buyer who arrived in the past or will arrive in the future (the results of this section continue

to hold in the more general case when V2 := [0 ≤ a, 1]); each arriving buyer believes that the seller’s

marginal valuation is distributed according to F1(v1) with support V1 := [0, 1] independently of

the beliefs of the seller and of any other buyer. These distributions are independent of the demand

process.

Given that the seller’s and each buyer’s beliefs are stationary, so is the seller’s optimal value

function under mechanism j. This is denoted by V j(y) and is the seller’s optimal total expected

discounted revenue during the remaining time horizon, when the seller has y ∈ Y units of inventory

at the beginning of any time period and the outcome of bargaining between the seller and each

arriving buyer is determined by mechanism j.

To formulate our MDP, we define sj(v1, v2) : V1 × V2 → {0, 1} to be a function that is equal to

1 if one unit of inventory is sold to an arriving buyer under mechanism j when the seller’s and a

buyer’s marginal valuations are v1 and v2, respectively. The seller’s optimal value function solves

the following Bellman’s equations:

V j(y) = (1− λ)βV j(y) + λ max
v1∈V1

E
[
xj(v1, ṽ2) + βV j(y − 1)1{sj(v1, ṽ2) = 1}
+βV j(y)1{sj(v1, ṽ2) = 0}] ,∀y ∈ Y, (2)
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with boundary condition V j(0) := 0. In the optimization on the right hand side of (2), the decision

variable v1 is the marginal valuation to be reported by the seller to the mediator who applies

mechanism j. By defining V j(0) := 0 and ∆V j(y) := V j(y) − V j(y − 1), ∀y ∈ Y, we can easily

reformulate recursion (2) as follows:

V j(y) =
λ

1− β
max
v1∈V1

E
[
xj(v1, ṽ2)− β∆V j(y)1{sj(v1, ṽ2) = 1}] , ∀y ∈ Y. (3)

Furthermore, it holds that Exj(v1, ṽ2) ≡ xj
1(v1) and E

[
1{sj(v1, ṽ2) = 1}] ≡ E [

pj(v1, ṽ2)
] ≡ pj

1(v1).

Therefore, we can equivalently rewrite (3) as

V j(y) =
λ

1− β
max
v1∈V1

[
xj

1(v1)− β∆V j(y)pj
1(v1)

]
, ∀y ∈ Y. (4)

It is tempting to conclude that β∆V j(y) is an optimal solution to the maximization on the

right hand side of (4) by incentive compatibility of mechanism j. However, reaching this conclusion

requires some care, because one must first show that β∆V j(y) ∈ V1, ∀y ∈ Y. Lemma 2 shows that

this is in fact the case, so that we refer to this quantity as the seller’s optimal OC for the y-th

unit of inventory. Incidentally, part (a) of Lemma 2 establishes that the seller’s optimal OC weakly

decreases in inventory in addition to being nonnegative, or, equivalently, the seller’s optimal value

function is weakly concave in inventory in addition to being increasing in this quantity; these are

well known properties when mechanism j is set equal to SPP (Talluri and van Ryzin [19, Chapter

5]), but we show that they persist in a more general setting. Moreover, part (b) of Lemma 2 is

based on the natural assumption that mechanism j is normal for the seller in the sense of Myerson

[12]; that is, the expected seller’s gain from trading under this mechanism is zero when his type is

1 (uj
1(1) = 0).

Lemma 2 (Seller’s optimal value function and marginal valuation). (a) Given direct and feasible

mechanism j, the optimal value function V j(y) is weakly increasing and concave in inventory,

∀y ∈ Y∪{0}. Equivalently, the function β∆V j(y) is nonnegative and weakly decreases in inventory,

∀y ∈ Y. (b) If direct mechanism j is feasible and normal for the seller then β∆V j(y) ≤ 1, ∀y ∈ Y.

Proof. (a) Since V j(0) ≡ 0, it holds that ∆V j(1) = V j(1). Individual rationality of mechanism j,

that is, uj
1(v1) ≥ 0, ∀v1 ∈ V1, implies that xj

1(v1) ≥ v1p
j
1(v1) ≥ 0, ∀v1 ∈ V1, or that

xj
1(v1) ≥ 0, ∀v1 ∈ V1. (5)

Let v∗1(1) ∈ arg maxv1∈V1

[
xj

1(v1)− βV j(1)pj
1(v1)

]
. Notice that

V j(1) =
λ

1− β

[
xj

1(v
∗
1(1))− βV j(1)pj

1(v
∗
1(1))

]
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⇒ V j(1) =

[
1 +

λβpj
1(v

∗
1(1))

1− β

]−1 (
λ

1− β

)
xj

1(v
∗
1(1)) ≥ 0; by (5)

⇒ 0 ≤ ∆V j(1) ≡ V j(1).

Make the induction hypothesis that ∆V j(ȳ) ≥ 0 for all ȳ = 2, . . . , y − 1, and consider inventory

level y. Let

v∗1(y) ∈ arg max
v1∈V1

[
xj

1(v1)− β∆V j(y)pj
1(v1)

]

v∗1(y − 1) ∈ arg max
v1∈V1

[
xj

1(v1)− β∆V j(y − 1)pj
1(v1)

]
.

It holds that

∆V j(y) = V j(y)− V j(y − 1)

=
λ

1− β

[
xj

1(v
∗
1(y))− β∆V j(y)pj

1(v
∗
1(y))

−xj
1(v

∗
1(y − 1)) + β∆V j(y − 1)pj

1(v
∗
1(y − 1))

]

≥ λ

1− β

[
xj

1(v
∗
1(y − 1))− β∆V j(y)pj

1(v
∗
1(y − 1))

−xj
1(v

∗
1(y − 1)) + β∆V j(y − 1)pj

1(v
∗
1(y − 1))

]

=
λβpj

1(v
∗
1(y − 1))

1− β

[
∆V j(y − 1)−∆V j(y)

]
,

with the inequality following from the optimality of v∗1(y). This implies that

∆V j(y) ≥
[
1 +

λβpj
1(v

∗
1(y − 1))

1− β

]−1 (
λβpj

1(v
∗
1(y − 1))

1− β

)
∆V j(y − 1) ≥ 0,

with the last inequality following from the induction hypothesis. By the principle of mathematical

induction it holds that ∆V j(y) ≥ 0, ∀y ∈ Y.

Pick y ∈ Y, and notice that

∆V j(y) =
λ

1− β

[
xj

1(v
∗
1(y))− β∆V j(y)pj

1(v
∗
1(y))

−xj
1(v

∗
1(y − 1)) + β∆V j(y − 1)pj

1(v
∗
1(y − 1))

]

≤ λ

1− β

[
xj

1(v
∗
1(y))− β∆V j(y)pj

1(v
∗
1(y))

−xj
1(v

∗
1(y)) + β∆V j(y − 1)pj

1(v
∗
1(y))

]

=
λβpj

1(v
∗
1(y))

1− β

[
∆V j(y − 1)−∆V j(y)

]
,
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with the inequality following from the optimality of v∗1(y − 1). This implies that

∆V j(y) ≤
[
1 +

λβpj
1(v

∗
1(y))

1− β

]−1 (
λβpj

1(v
∗
1(y))

1− β

)
∆V j(y − 1) ≤ ∆V j(y − 1),

which establishes that ∆V j(y) decreases in inventory, ∀y ∈ Y.

(b) Let v∗1(1) ∈ arg maxv1∈V1

[
xj

1(v1)− βV j(1)pj
1(v1)

]
. If β∆V j(1) ≡ βV j(1) > 1 then

V j(1) =
λ

1− β

[
xj

1(v
∗
1(1))− βV j(1)pj

1(v
∗
1(1))

]

<
λ

1− β

[
xj

1(v
∗
1(1))− 1pj

1(v
∗
1(1))

]

≤ λ

1− β

[
xj

1(1)− 1pj
1(1)

]
; by incentive compatibility of j

= 0; by normality of j for the seller,

which contradicts the property that V j(1) ≥ 0 established in part (a) of this lemma. Thus, it

must be that β∆V j(1) ≤ 1. The property holds for all other inventory levels in set Y because

β∆V j(y) ≤ β∆V j(1), ∀y ∈ Y, by part (a) of this lemma. 2

Proposition 1 provides a compact formulation of our MDP; it follows from Lemma 2 and incen-

tive compatibility of mechanism j.

Proposition 1 (MDP formulation). If direct mechanism j is feasible and normal for the seller

then the seller’s optimal value function satisfies the following conditions:

V j(y) =
λ

1− β
uj

1(β∆V j(y)) =
λ

1− β

[
xj

1(β∆V j(y))− β∆V j(y)pj
1(β∆V j(y))

]
, ∀y ∈ Y. (6)

This result directly relates the seller’s optimal value function in our MDP to expression (1) in

§2; that is, it states that the seller’s optimal value function with y units of inventory is proportional

to his interim expected utility evaluated at his optimal OC. Although formulation (6) is directly

related to expression (1) in §2, there is a fundamental difference between the two: model (6) is

dynamic while expression (1) is static. The dynamic aspect of (6) is that in this formulation the

seller’s type is his optimal OC, which depends endogenously on his inventory availability and the

bargaining mechanism employed in the current and remaining periods; instead, the seller’s type is

exogenously specified in (1).

As now shown, Proposition 1 has useful computational and analytical ramifications.

Proposition 1 implies that V j(y) can be computed by means of a forward recursion in y ∈ Y,

which at each step involves the solution of a univariate fixed point problem. To see this, pick

10



y ∈ Y, suppose that V j(y − 1) is known, and let V j(y) be the unknown z, which must lie in set

Zj(y) := [V j(y − 1), 1/β + V j(y − 1)] because β∆V j(y) ∈ [0, 1] by Lemma 2. Define function

f j(z; y) : Zj(y) → [0, λxj
1(0)/(1− β)] as

f j(z; y) :=
λ

1− β

{
xj

1(β(z − V j(y − 1)))− β
[
z − V j(y − 1)

]
pj
1(β(z − V j(y − 1)))

}
,

where the specified range of f j(z; y) follows because this function weakly decreases on its domain

(this holds because uj
1(v1) weakly decreases in v1 ∈ V1, as shown in the proof of Theorem 1

in Myerson and Satterthwaite [13], and mechanism j is normal for the seller). The fixed point

problem involves solving equation z = f j(z; y) on the domain Zj(y) of f j(z; y), a problem that we

denote by FP
(
f j ,Zj , y

)
. A unique solution to this problem exists and can be found by standard

methods. (Existence and uniqueness of this solution follow from well known results in Stokey and

Lucas [18, Chapter 9], but also from noticing that f j(V j(y − 1); y) = λxj
1(0)/(1− β) > V j(y − 1),

which is straightforward to establish, f j(1/β + V j(y − 1); y) = 0, and f j(z; y) weakly decreases in

z ∈ Zj(y), ∀y ∈ Y.) Thus, the following forward recursion algorithm solves (6):

Step 0. Let V j(0) ← 0 and y ← 1.

Step y. If y > Y stop, else solve FP
(
f j ,Zj , y

)
. Denote its solution by z∗. Let V j(y) ← z∗,

y ← y + 1, and repeat this step.

We use this algorithm in our SUTP based numerical study reported in §4.

Proposition 1 is also useful to establish Theorem 1, which analytically compares in the dynamic

setting of this section the seller’s performance under any two direct and feasible mechanisms that are

are known to be ordered in a certain manner in a static setting (under the additional assumptions

that they are normal for the seller and satisfy the information structure of this section). We apply

this result in §4.

Theorem 1 (Optimal value function comparison). Suppose that direct and feasible mechanisms j

and k are normal for the seller, are defined on set V1 × V2 ≡ [0, 1]2, and are such that uj
1(v1) ≥

uk
1(v1), ∀v1 ∈ V1. Then it holds that V j(y) ≥ V k(y), ∀y ∈ Y.

Proof. By the stated assumptions, Proposition 1 applies to mechanisms j and k. Pick y = 1. The

assumption that uj
1(v1) ≥ uk

1(v1), ∀v1 ∈ V1, implies that

V k(1) =
λ

1− β

[
xk

1(βV k(1))− βV k(1)pk
1(βV k(1))

]

≤ λ

1− β

[
xj

1(βV k(1))− βV k(1)pj
1(βV k(1))

]

⇒ Aj,k(1)V k(1) ≤ xj
1(βV k(1)), (7)

11



where we define Aj,k(y) := (1 − β)/λ + βpj
1(β∆V k(y)), ∀y ∈ Y. Proposition 1 and incentive

compatibility of mechanism j imply that

V j(1) =
λ

1− β

[
xj

1(βV j(1))− βV j(1)pj
1(βV j(1))

]

≥ λ

1− β

[
xj

1(βV k(1))− βV j(1)pj
1(βV k(1))

]

⇒ Aj,k(1)V j(1) ≥ xj
1(βV k(1)). (8)

Combining inequalities (7)-(8) yields that V j(1) ≥ V k(1).

Make the induction hypothesis that the inequality V j(ȳ) ≥ V k(ȳ) holds for all inventory levels

ȳ = 2, . . . , y−1, and consider inventory level y. Proposition 1 and the assumption on the relationship

between the seller’s interim expected utilities under mechanisms j and k imply that

V k(y) =
λ

1− β

[
xk

1(β∆V k(y))− β∆V k(y)pk
1(β∆V k(y))

]

≤ λ

1− β

[
xj

1(β∆V k(y))− β∆V k(y)pj
1(β∆V k(y))

]

⇒ Aj,k(y)V k(y) ≤ xj
1(β∆V k(y)) + βpj

1(β∆V k(y))V k(y − 1). (9)

Proposition 1 and incentive compatibility of mechanism j imply that

V j(y) =
λ

1− β

[
xj

1(β∆V j(y))− β∆V j(y)pj
1(β∆V j(y))

]

≥ λ

1− β

[
xj

1(β∆V k(y))− β∆V j(y)pj
1(β∆V k(y))

]

⇒ Aj,k(y)V j(y) ≥ xj
1(β∆V k(y)) + βpj

1(β∆V k(y))V j(y − 1)

≥ xj
1(β∆V k(y)) + βpj

1(β∆V k(y))V k(y − 1), (10)

with the last inequality following from the induction hypothesis. Combining inequalities (9)-(10)

yields that V j(y) ≥ V k(y). The principle of mathematical induction implies that V j(y) ≥ V k(y),

∀y ∈ Y. 2

This result is nontrivial because even if mechanisms j and k are ordered in a static setting,

that is, uj
1(v1) ≥ uk

1(v1), ∀v1 ∈ V1, and the seller’s optimal value function is proportional to his

optimal interim expected utility as in expression (6), it is unclear how the seller’s optimal OCs

under mechanisms j and k would compare. In fact, these OCs could relate to each other in the

“wrong” way. For example, it could happen that β∆V j(y) < β∆V k(y) for some inventory level y

while at the same time uj
1(v1) and uk

1(v1) decrease in v1; this can indeed occur, as discussed after

Proposition 2 in §4. In this case, it is not at all clear that Theorem 1 should hold.
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4. Comparisons

In this section, we compare the seller’s performance under mechanisms SPP, BPP, NBS, and STD

by focusing on SUTP in a dynamic setting; that is, we assume that both the seller and each arriving

buyer believe that each other’s marginal valuations are independently and uniformly distributed

between 0 and 1.

We first establish some analytical comparisons of the seller’s performance in Proposition 2,

which holds by an application of Theorem 1 based on Lemma 1.

Proposition 2 (Optimal value function comparisons with SUTP). Suppose that Vi ≡ [0, 1], ∀i ∈
{1, 2}, and Fi(vi) ≡ vi, ∀i ∈ {1, 2} and vi ∈ Vi. Then it holds that V SPP (y) ≥ V NBS(y) ≥ V BPP (y)

and V STD(y) ≥ V BPP (y), ∀y ∈ Y.

The comparisons established in Proposition 2 are nontrivial for the following reason. It can

be verified that the seller’s interim expected utility (weakly) decreases in his type under all the

mechanisms studied in this paper. Moreover, given an inventory level, it can also be verified that the

seller’s marginal valuation in our MDP (optimal OCs) can strictly decrease when the mechanism

changes in the following order: SPP, NBS, STD, and BPP. However, the relevant optimal OC

differences are never “large enough” to invalidate the orderings stated in Proposition 2. This

illustrates in a concrete setting the situation discussed after the proof of Theorem 1 in §3.

We now numerically quantify whether the seller’s performance differences implied by Propo-

sition 2 are significant or negligible. This numerical investigation also allows us to compare the

seller’s performance under mechanism STD and mechanisms SPP and NBS, respectively (these

comparisons are not part of Proposition 2 because a complete ordering between these mechanisms

in the static case does not exist).

We divide the infinite horizon into daily periods. Thus, the seller faces at most one request per

day. Our numerical study encompasses the following parameter levels (with one exception discussed

later): annual interest rate r in set {0.05, 0.10} (the discount factor β is related to the interest

rate via the expression β = 1/(1 + r/365)); arrival probability λ in set {0.3, 0.6, 0.9}; and initial

inventory level Y equal to 90 units, which implies that the seller’s relative inventory availability,

Y/λ, corresponding to each considered arrival probability is 300, 150, and 100, respectively. Our

results are fairly similar across the various interest rate and arrival probability levels. Thus, for

brevity, the ensuing discussion pertains to the case of r = 0.05 and λ = 0.30.

Figure 1 displays the optimal value functions under mechanisms BPP, NBS, and STD, respec-

tively, relative to that of mechanism SPP. (This figure is a line chart even if inventory is a discrete
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Figure 1: Ratios of the optimal value functions under mechanisms BPP, NBS, and STD to the
optimal value function under mechanism SPP for r = 0.05 and λ = 0.30.

quantity, because using a chart format that emphasizes the discrete nature of inventory would

render it extremely clumsy.) In addition to what stated in Proposition 2, we make the following

observations. Surprisingly, the seller’s performance under mechanism NBS is not very different

from his performance under mechanism SPP, even though the relevant performance gap widens

somewhat for larger inventory levels. In other words, for the range of parameters considered, the

seller’s performance does not seem to dramatically degrade by negotiating the price with each arriv-

ing buyer rather than posting prices in a take it or leave it fashion. In contrast, the seller performs

significantly better under mechanisms SPP than mechanism STD. Put differently, he performs sig-

nificantly better by making a first and final price offer than splitting the difference between his

price offer and that of each arriving buyer. As discussed below, this does not always happen. The

seller’s performance gap is even wider when comparing his performance under mechanisms SPP

and BPP. Moreover, the seller’s performance is substantially better under mechanisms NBS and

STD than under mechanism BPP. Thus, there is significant benefit for the seller to be in a posi-

tion to influence, at least to some extent, the transacted price rather than accepting or rejecting

that requested by each buyer. It is interesting that the seller performs significantly better under

mechanism NBS than mechanism STD; that is, by negotiating the price with each arriving buyer

rather by splitting the difference between his offer and that of each arriving buyer.
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Finally, we investigate whether the seller can be better off under the STD mechanism than

mechanisms SPP and NBS in our dynamic setting. It can be verified that in a static setting the

seller can indeed be better off in terms of interim expected utility with mechanism STD than with

mechanisms SPP and NBS, respectively, when his marginal valuation is sufficiently low. Lowering

λ to 0.006 while keeping Y = 90 and r = 0.05 makes the seller fare better under mechanism STD

than under both mechanisms SPP and NBS when his inventory level is sufficiently high; that is,

his optimal OC is sufficiently low. We do not claim that this combination of parameter values is

realistic in terms of the ratio Y/λ; it simply allows us to emulate a situation where the seller’s

marginal valuation can be very low.

5. Conclusions

In this paper, we study a traditional price based revenue management problem with the twist

that transactions between the seller and each arriving buyer are governed by a mechanism for

bilateral bargaining. The novelty of our modeling approach relies on embedding static bargaining

mechanisms within an MDP formulation, which we simplify based on exploiting basic structural

properties. From this perspective, our model endogenizes the computation of the seller’s marginal

inventory valuation, which is assumed to be known to the seller in static game-theoretic models of

bargaining. We compare, both analytically and numerically, the seller’s performance in a tractable

information setting under four foundational bargaining mechanisms. Our findings largely support

the superiority of posting prices as a selling format, but also show that negotiating prices is only

slightly inferior to this format, and that posting prices is not always the best selling arrangement.

There are limitations in our work. Although we endogenize the seller’s computation of his

marginal valuation, his and each buyer’s beliefs about each other’s marginal valuations remain

exogenous to our model, the probability distributions representing these beliefs are stationary and

known, and buyers do not strategize over the timing of their purchase requests. Moreover, we only

deal with the infinite horizon case and our comparisons among bargaining mechanisms are only

based on the SUTP setting. These limitations could be addressed by further research.

Our model is stylized when compared to real business situations. Yet, it bridges two separate

streams of literature, bilateral bargaining in microeconomics and revenue management in operations

research, by endogenizing the computation of a seller’s optimal opportunity cost for his inventory

when sales are governed by a given bargaining mechanism. The concept of optimal opportunity

cost is related to the seller’s value for his best alternative to a negotiated agreement, which is widely

used in the largely prescriptive negotiation analysis literature (Raiffa et al. [15]). This literature
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does not typically discuss how a seller might systematically compute such value. We hope that our

work might stimulate the development of prescriptive revenue management models for this purpose.

From this perspective, it would be interesting to investigate the benefit of using descriptive models

of the negotiation process, for example, the model of Balakrishnan and Eliashberg [1] (see also

Terwiesch et al. [20]), rather than normative models of the outcome of a bilateral negotiation.
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