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Abstract
Motivated by sponsored search auctions with hard budget constraints given by the adver-

tisers, we study multi-unit auctions of a single item. An important example is a sponsored
result slot for a keyword, with many units representing its inventory in a month, say. In this
single-item multi-unit auction, each bidder has a private value for each unit, and a private bud-
get which is the total amount of money she can spend in the auction. A recent impossibility
result [Dobzinski et al., FOCS’08] precludes the existence of a truthful mechanism with Pareto-
optimal allocations in this important setting. We propose Sort-Cut, a mechanism which does
the next best thing from the auctioneer’s point of view, that we term semi-truthful. While we are
unable to give a complete characterization of equilibria for our mechanism, we prove that some
equilibrium of the proposed mechanism optimizes the revenue over all Pareto-optimal mech-
anisms, and that this equilibrium is the unique one resulting from a natural rational bidding
strategy (where every losing bidder bids at least her true value). Perhaps even more signifi-
cantly, we show that the revenue of every equilibrium of our mechanism differs by at most the
budget of one bidder from the optimum revenue (under some mild assumptions).

1 Introduction

While billions of dollars are spent on keyword-based advertising in the web, a majority of it is
cleared through advertisement auctions for sponsored search results in search pages [BCI+05].
When a typical advertiser goes to a typical search engine company to sign up to bid in such auctions,
they specify the set of keywords whose search result pages they are interested in bidding for, with a
bid value per click; they also specify a total (monthly) budget for the total amount they are willing
to spend across all these keywords in this search company’s site. We focus our attention on the
budget constraint which we model as being a hard constraint (cannot be exceeded) and attempt to
design an auction mechanism for clearing this market. However, to better understand the difficulty
of the hard budget constraint, we simplify the other aspects by restricting ourself to the problem for
a single keyword, and within the keyword search results, restrict our attention to a single sponsored
search result slot (in contrast with the whole ladder of slots on the right of the results page). Thus,
one may view this, e.g. as the auction for the single shaded sponsored search slot right under the
search query window and above the organic search results in Google.com.

Our model abstracts the auction for this single item (one slot for a keyword) as a multi-unit
auction where the number of units is the inventory of such search results in the period for which

∗Tepper School of Business, Carnegie Mellon University {isaemin,ravi,ssayedir}@cmu.edu

1



the budget is specified. While this is not the way that current sponsored results are allocated (rather
an auction is run every time a query is made), it is quite a plausible scenario that the industry may
move to, especially as the market for such results mature, and a few major advertisers wish to plan
for their internet advertising campaigns in much the same way as for other media advertising (such
as the annual Fall market clearing event for prime-time TV advertising in New York). Our study
represents the first step towards the design of such a market.

Multi-unit auctions have been studied comprehensively in microeconomics, especially in auc-
tion theory [AC95, Wol98, Nau95]. However, the problem of budget-constrained bidders has been
paid surprisingly little attention, despite the fact that in practice, bidders face natural budget con-
straints. One reason the budget constraints have not received much attention is the traditional
economist’s view that such constraints are unnatural and that if an advertiser can make positive
payoff at her current true valuation by participating in the auction, then every extra dollar spent by
her in the auction should yield even more returns resulting in virtually no budget constraints. How-
ever, reality is different and the valuations announced do not scale forever. Furthermore, practical
considerations (business planning) also put a cap on how much can be spent by advertisers in each
period. Current keyword auctions get around this by treating each search page in the ad inventory
as an instance of an online matching of current advertisers to slots, where the bids are assumed to
be small compared to the budgets [MSVV07], and adjusting participation as the budget gets close
to being spent.

Another reason for this lack of attention to the problem may be the technical difficulty that the
utility of obtaining the items is compared to the total price at which the items are procured to give a
net payoff. The total price is now discontinuously influenced by a hard budget constraint. Perhaps
because of this, the theoretical framework of budget-constrained auctions is currently substantially
less well-developed than that of unconstrained auctions. This is unsatisfactory both from a theoreti-
cal viewpoint, and from the practical viewpoint, where the absence of appropriate framework might
potentially result in losses in revenue and efficiency.

1.1 Model

In this paper we study multi-unit auctions with budget-constrained bidders. We suppose there are
m identical divisible units of a single item for sale. Each bidder i has a private value νi for each
unit, and a private budget limit bi on the total amount she may pay. We assume that bidder i’s utility
from acquiring xi units and paying price pi is ui = xiνi − pi as long as the price is within budget:
pi ≤ bi, and is negative infinity if pi > bi. (i.e. the budget constraint is hard.)

Throughout the paper, by vi and bi we mean the submitted value and the submitted budget of
the i-th bidder; private value of the i-th bidder however, is shown by νi.

Our Contributions:

1. We propose a new mechanism, called Sort-Cut, (Section 2) for selling all the units. We prove
that Sort-Cut mechanism is semi-truthful (Section 3), i.e. no agent can benefit from lying
about her budget or understating her value, but may overstate her value at equilibrium (thus
address all but one of the four ways in which a bidder may lie about her budget and value) .
We show that the allocation of the Sort-Cut mechanism is Pareto-optimal (defined formally
later - Section 4); hence, it is nearly the best possible result that can be obtained for this
problem since the recent result of Dobzinski, Lavi and Nisan [DLN08] shows that there is no
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truthful Pareto-optimal deterministic 1 mechanism for this problem.

2. We obtain an upper-bound R∗ (which coincides with the revenue of ascending price auction
with truthful bids) for the revenue at equilibrium for any Pareto-optimal mechanism (Sec-
tion 5) and then show that if the sum of budgets of all bidders is at least twice of R∗, this
upper-bound is achievable at an equilibrium of the Sort-Cut mechanism.

3. Assuming reasonable behavior of the bidders where every losing bidder bids at least her true
value (defined as rational bidding - see definition 4), we show (also in Section 5) that any
equilibrium of Sort-Cut has a revenue of at least R∗ − bmax where bmax is the maximum
budget among the winners, and prove this bound is tight for equilibria of all Pareto-optimal
mechanisms which are budget-truthful (bidders can not benefit from lying about their bud-
gets).

4. We also study the properties of this auction under greedy bidding behavior (Section 6) and
show that under some natural assumptions, if the behavior leads to an equilibrium, the unique
one it leads to is the revenue-maximizing one (attains revenue R∗).

Previous Work:
The problem of multi-unit auctions with budget-constrained bidders was initiated by Borgs et

al. in [BCI+05]. Our model is identical to theirs. They introduce a truthful mechanism that is
asymptotically revenue-maximizing; however, it may leave some units unsold. The idea is to group
the bidders randomly into two groups, and use the market clearing price of each group as an offering
price to the other group, following [GHK+06]. Another paper that uses the same model is by
Abrams [Abr06] - it uses techniques similar to [BCI+05] but improves upon it; however, it may still
leave some units unsold.

A recent paper that analyzes this problem by Dobzinski et al. [DLN08], mainly proves an im-
possibility result. They assume that budgets of all players are publicly known, and give a truthful
mechanism which solves the problem under this assumption. Their mechanism is a direct applica-
tion of Ausubel’s auction [Aus04]. Then they show that this mechanism is the unique mechanism
which is both truthful and Pareto-optimal under the assumption of publicly known budgets. Finally
by showing that their mechanism is not truthful if the budgets are private knowledge, they conclude
that no mechanism for this problem can be both truthful and Pareto-optimal.

Both [BCI+05] and [DLN08] argue that lack of quasi-linearity (because of hard budget con-
straints) is the most important difficulty of the problem. Some papers, nonetheless, have tried to
solve the problem by relaxing hard budget constraints [Mas00], or modeling the budget constraint
as an upper bound on the value obtained by the bidder rather than her payment [MSVV07]. It has
also been shown [BCI+05] that modeling budget constraints with quasi-linear functions can lead to
arbitrarily bad revenue.

Another paper that has studied budget constraints, mainly for advertisement auctions, is the
work of Feldman et al.[FMNP08]. They give a truthful mechanism for ad auctions with budget-
constrained advertisers where there are multiple slots available for each query, and an advertiser
cannot appear in more than one slot per query. Their work is related to our work because they also
consider the game-theoretic aspects of the problem. However, the utility function that they use is
very different from ours. In [FMNP08] they define advertisers to be click-maximizers, while in our

1We emphasize that our mechanism is not deterministic.
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model, advertisers are profit-maximizers, which we believe to be more realistic in the case of ad
auctions.

Other papers that have considered budgets in auctions include [AM04],[BK98],[CG96]. How-
ever, [AM04] only considers the offline optimization problem and does not study the game theoretic
aspects of the problem. They also model budget constraints by value functions of the bidders, which
means bidders are not willing to get value more than their budget. In [BK98], they study an auction
for selling two single items to budget-constrained bidders. They mainly focus on the effect of bid-
ding aggressively on an unwanted item with the purpose of depleting other bidders budget. A similar
effect arises in our model as well, but the focus of our work is generally very different from theirs.
Another paper [CG96] compares first-price and all-pay auctions in a budget-constrained setting and
show that the expected payoff of all-pay auctions is better under some assumptions. However, they
do not consider multi-unit items.

The rest of the paper is organized as follows. In Section 2 we describe our proposed mechanism
and in Section 3 we show that our mechanism is semi-truthful. Then in Section 4 we show the
Pareto-optimality of Sort-Cut mechanismusing a natural observation from [DLN08]. We step into
revenue analysis in section 5 by proving some theorems which state Sort-Cut mechanism is almost
revenue optimal. In Section 6 we show that if bidders use a natural greedy algorithm for bidding,
the only equilibrium of the infinitely repeated game is revenue optimal.

2 Sort-Cut mechanism Description

In this section we describe how Sort-Cut mechanism allocates the units and charge the bidders.
Throughout the paper, for simplicity of description we always assume there exists a bidder with
value ε and budget mε (she has enough money to buy all the items with her value). As ε tends to
zero, the revenue of this modified instance approaches that of the original, and hence this assumption
is without loss of generality.

The idea of Sort-Cut is very similar to the idea of a second-price auction. In second-price
auctions without budget constraints, the highest bidder (highest value person in a symmetric equi-
librium) is allocated the object and what she pays to the auctioneer is the bid of the highest loser’s
bid. Uniform-price auction generalizes this idea to multi-unit auctions. The idea is to charge the
winners by the opportunity cost: the losers’ bids (or values in equilibrium). When the bidders have
budget constraints, however, losers might not be able to buy all the items if they were offered, they
might simply not afford it. Taken this into account, we modify the algorithm to charge the winners,
per item, for the value of the highest value loser, but only up to highest loser’s budget. After the
highest value loser’s budget is exhausted, she would not be able to afford any more items, so we
start charging the winners the value of the second highest value loser, up to her budget and so on.
Given this pricing idea , the winners and losers are determined via a cut-point to clear the market,
i.e. to be able to sell all the available items.

There is a caveat here, which is that the lowest value winner might not be able to exhaust all her
budget. Then all higher value bidders are charged first at the lowest value winner’s value up to her
unused budget. This makes sense as the lowest value winner is still a competitor to other winners
to buy further items. The pricing for the lowest value winner, for the same reason, starts from the
highest value loser. She cannot be a competitor to herself!

In our model, there are n bidders and m units available of the same item. The bidders have flat
demands, i.e. bidder i’s value per item is νi. Bidders submit their budget bi and their value vi to
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the mechanism and Sort-Cut decides about the allocation and pricing. Note that submitted budget
and submitted value might be different from the bidder’s actual budget and value. Throughout this
section, by value and budget we mean submitted value and submitted budget of the bidders.

The Sort-Cut mechanism has two main features: sorting and cutting. First, we sort the bidders
in non-increasing order of their values, and assume by relabeling that v1 ≥ v2 ≥ . . . vn. The second
part is the cutting by which the algorithm assigns the available m units to the bidders 1 through k (k
is not determined yet), and assigns nothing to the bidders k +1 through n. The bidders 1, . . . , k− 1
must have exhausted all their budget, and bidder k may be left with part of her budget. Bidders
k + 1, . . . , n do not pay anything. We describe later how we determine the exact cut-point which is
the index k and the portion of the budget of k that is used up in payments.

Suppose that the money left for bidder k is b′k, and define ck = b′k
vk

. For i > k define ci = bi
vi

.
Here, ci denotes the number of (fractional) units that bidder i can buy according to her value for
one unit. We now describe the pricing rule for Sort-Cut: For all bidders whose values are greater
than the cut point bidder (bidder i with i < k), we charge bidder i for the first ck items that she wins
a price of vk, for the next ck+1 items that she wins a price of vk+1, for the next ck+2 items that she
wins a price vk+2 and so on until her budget is exhausted. For the cut-point bidder k, the pricing is
slightly different: we start charging her a price of vk+1 for the first ck+1 items that she gets, vk+2

for the next ck+2 items that she gets and so on until she has exhausted all her allocated spending
budget of bk − b′k. We give each bidder i (i < k) as many units as she can afford according to the
pricing policy and her budget.

To finish the description, we need to specify how we determine k, and b′k (the money which is
left for the last winner), because they play an important role in our pricing mechanism. If the index
k is very large (close to n), then the prices for the units will be very low and the number of units
that each winner can afford increases, also the number of winners is large resulting in a shortage
of supply. On the other hand, if k is chosen very small (close to 1), we have few winners, and
relatively high prices, so a number of units will be left unsold. We seek to find the right point which
determines bidder k and the amount of money b′k left for her, such that the market clears at this
point.

To be more precise (see algorithm 1), define B =
∑n

i=1 bi. We are looking for a cut-point
R =

∑k
i=1 bi − b′k in the interval [0, B] that determines for us both k and b′k which will make the

number of allocated objects exactly equal to m. We want to sell all items. We must also guarantee
that the bidders 1, ..., k − 1 (which are determined by R) have exhausted all their budget. As we
increase R, the prices decrease, the number of winners and units demanded to be allocated increase,
and consequently the demand increases. We can find the solution by slowly increasing R from 0
until the demand becomes equal to supply (In algorithm 1 we use binary search). In other words,
we increase R until the total number of units that bidders 1 through k want (assuming that bidder k
can use only bk − b′k of her budget) becomes equal to the units that we have to sell. (A formal proof
of the fact as well as examples of such cut-points appear in Appendix A.)

Finally, to keep the bidders from overstating their budget, we add the following to Sort-Cut.
Suppose that the Sort-Cut mechanism wants to charge a bidder i an amount equal to pi, and her
announced budget is bi. Instead of charging her pi, we charge her bi with probability pi/bi and 0
otherwise. In this way, if somebody overstates her budget, she is accepting the risk of paying more
than her budget which makes her expected utility equal to minus infinity (this is because we have
hard budget constraints). To make this more practical, even if we perform this alternate pricing
process with probability ε, and simply charge the bidder i a price of pi in the rest of the cases, still
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bidders can not take the risk of overstating their budget2.

3 Semi-Truthfulness

Although Dobzinski et al. [DLN08] shows that no truthful Pareto-optimal mechanism exists for this
problem, it is still interesting to know how truthful a Pareto-optimal mechanism can be. In other
words, we want to know how the different ways of lying can benefit them in a mechanism.

There are four ways that a bidder can lie: overstating budget, understating budget, overstating
value and understating value. In different mechanisms, bidders may take different strategies and use
either of these ways to increase their utility. We show that in Sort-Cut mechanism, the only way
out of these four that the bidder can use to benefit from lying is by overstating value. This result
is interesting because first, we know that some kind of lying must be profitable for the bidders if
the mechanism is Pareto-optimal, and second, among four different ways of lying, this is the most
desirable one for the auctioneer – giving good revenue properties (This is formalized in Section 5).
It is easy to see that the revenue of Sort-Cut mechanism is monotone with respect to the vector of
bids. (i.e. if bidders increase their stated values, the revenue of the mechanism does not decrease.)

Definition 1 We say a mechanism A is semi-truthful if every strategy for the bidders that involves
mis-stating the budget or understating the value is dominated by a strategy that does not misstate
the budget and does not understate the value.

Semi-truthfulness limits the set of undominated strategies to those that budget is stated truthfully
and value is not understated. In other words, definition 1 states that in a semi-truthful mechanism
one should not expect from the bidders to lie about their budget or understate their values. Babioff
et al. [BLP09] and Jackson [Jac92] describe in more details how undominated strategy mechanisms
generalize the more usual framework of dominant strategy mechanisms. In this paper, as in [BLP09]
we rely on the fact that a strategy is reasonable if it is not dominated, and hence, we assume the
bidders do not understate their values and do not misstate their budgets.

Theorem 1 Sort-Cut mechanism is semi-truthful.

Proof:
First it is easy to see that no bidder can benefit by overstating her budget, since by design, if she

wins any allocation at all, there is positive probability that she will be charged more than her budget
which makes her utility minus infinity.

Next, we argue that no bidder can benefit by understating her budget. Consider the winners;
they (including the cut-point bidder) can pull the prices down by understating the budget. Consider
j < k (for current prices) who understates her budget from bj to b′j , and let the new allocation be
x′1, . . . , x

′
n. This deviation could be beneficial to the bidder only if she gets the x′j units at lower

average price than the average price of cheapest x′j units she was allocated before the deviation. For
this to be the case, we should have R′ ≥ R (where R and R′ represent winners’ total payments
before and after the deviation respectively.) because otherwise, she cannot get the extra units at
lower prices after deviation. But it is easy to see that this cannot happen. Consider R′ ≥ R, then

2It is not hard to argue that it suffices to use this kind of randomization for the cut-bidder, bidder k only. We can also
construct examples where the cut-bidder can benefit from over stating the budget without this modification.
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x′i ≥ xi for all winners except j, because they have the same budgets but face smaller prices. On
the other hand, x′j ≥ xj − (bj − b′j)/vk, and also x′k + . . . + x′n ≥ xk + (bj − b′j)/vk. Hence there
would be excess demand if R′ ≥ R. Similar argument shows that deviation by understating the
budget cannot be helpful for the cut-point bidder.

For the third kind of deviation (under-stating value), we argue in three cases:

1. Consider a bidder j where j ≤ k − 1. If bidder j understates her value, she may still remain
among the first k − 1 bidders which does not change anything for her, or, she may go to
the boundary which makes the situation trickier, or she may go below the boundary which
decreases her utility. So the only case that we must handle is when she goes to the boundary.

Suppose bidder j moves to the boundary by announcing a value v′j ≤ vk and she spends b
of her money while b′ of her money will be remaining. (so we have b + b′ = bj) We know
that before going to the boundary, with b′k of her budget she bought the units for price vk per
unit, and after that she had unit prices vk+1, .... Now when she goes to the boundary, she
buys for prices vk+1, vk+2, ... which are lower and seem to be better for her, but as we will
see, that is not the case because she is not using all her money when she is on the boundary.
First note that if b′ ≥ b′k, she can not benefit from going to the boundary (because previously
she was using b′k of her budget for getting the units for price vk per unit, but now she has b′

of her budget left unused). So we may assume b′ < b′k. Now, consider bidder k to see how
many units she wins after leaving the boundary. Now the bidder with value vk gets at least
b′k
v′j
≥ b′k

vk
≥ ck units (for a price of v′j) in addition to all the units that she had before (when

she was on the boundary). The prices for all other winners is less than or equal to what it was
before. Therefore, the number of units that bidder j wins after going to the boundary must be
reduced by at least these ck units. Bidder j’s costliest ck units were priced vk units each for
a total price of b′k = ckvk. After understating her value, she is paying bj − b′ > bj − b′k and
getting at least ck units less. Thus her average price per unit has increased so this is not an
improvement.

2. Now consider a bidder j where j > k. It is obvious that bidder j can not benefit from
understating her value, because it keeps her among the losers. However, overstating the value
may be beneficial for her in some cases.

3. For the person on the boundary (j = k), it is clear that she can not benefit from understating
her value, because it can not influence her price and she may even lose the units that she
already wins (by reducing the price for earlier winners). Again, overstating the value may
increase her utility in some cases.

2

4 Pareto Optimality

Definition 2 An allocation {(xi, pi)} is Pareto Optimal if for no other allocation {(x′i, p′i)} are all
players better off: ui(xi, pi) > ui(x′i, p

′
i) (Recall that ui(xi, pi) = xiνi − pi if pi < bi and −∞

otherwise), as well as the auctioneer:
∑

i p
′
i ≥

∑
i pi, with at least one inequality strict.

Pareto optimality is simply implied by a proposition from [DLN08].

7



Proposition 2 An allocation {xi, pi} is Pareto-optimal in the infinitely divisible case if and only
if (a) all units are completely sold, and (b) for all i such that xi > 0 we have that for all j with
νj > νi, pj = bj . I.e. a player may get a non-zero allocation only if all higher value players have
exhausted their budget.

Since Sort-Cut mechanism always allocates the units in decreasing order of the submitted val-
ues, a bidder with submitted value vi may be allocated some units only if the bidders with higher
submitted values vj > vi have exhausted their budget. Therefore, the allocation of the Sort-Cut
mechanism is Pareto-optimal with respect to submitted values by construction.

Notice that we are showing Pareto-Optimality with respect to the submitted vector of values v
instead of actual vector of values ν. Obviously, the definitions are not equivalent because Sort-Cut
is not truthful. However, in the following theorem we show that any ex post Nash equilibrium of
Sort-Cut in which losers bid at least their true values is Pareto-optimal with respect to private vector
of values.

Theorem 3 Any ex post Nash equilibrium of Sort-Cut in which all losers and the cut-point bidder
bid at least their true values is Pareto-optimal with respect to actual values. 3

Proof: Suppose the private values of the bidders 1, . . . , n are ν1, . . . , νn respectively. Note that
since vi’s are sorted decreasingly, νi’s are not necessarily in decreasing order. Take an arbitrary ex
post Nash equilibrium of Sort-Cut and assume the submitted vectors of values and bids are v and b
respectively. Suppose bidder with index i is a winner, bidder with index j is on the boundary and
bidder with index k is a loser. We show that νi ≥ νj and νj ≥ νk which together imply that any ex
post Nash equilibrium of Sort-Cut is Pareto-Optimal with respect to private values ν.

Assume for sake of contradiction that νi < νj . First consider the case where bi ≤ b′j (i.e.
budget of bidder i is less than or equal to the left-over budget of bidder j). Bidder i has to pay at
least vj ≥ νj (by theorem hypothesis) per unit for all units that she is getting; therefore, bidder i has
negative utility which contradicts the assumption of Nash equilibrium, since a bidder can always
get zero utility by bidding 0. Now assume bi ≥ b′j . We show that bidding vj − ε is a profitable
deviation for bidder i. By bidding vj − ε, the allocation of bidder i changes by ∆x = −b′j/vj and
her price changes by ∆p = −vjb

′
j/vj . Therefore, her utility changes by ∆u = −νib

′
j/vj + b′j .

Contradiction assumption νi < νj and theorem hypothesis vj ≥ νj imply that ∆u is positive, and
hence, contradicts the assumption of Nash equilibrium.

The argument for bidders j and k is very similar. Assume for sake of contradiction that νj < νk.
Suppose that β is the sum of the budget of all bidders who are ranked between j and k, including
bidder k and excluding bidder j. (i.e. β =

∑k
l=j+1 bl.) If bj ≤ β, bidder j has to pay at least

vk ≥ νk per unit for all units she is getting which yields to negative utility for her and consequently
contradicts the assumption of Nash equilibrium. If bj ≥ β, bidder j can benefit by deviating
and bidding vk − ε. The deviation changes her allocation by ∆x = −β/vk and her price by
∆p ≤ −vkβ/vk. Therefore, her utility changes by ∆u ≥ −νjβ/vk + β. Contradiction assumption
νj < νk and theorem hypothesis vk ≥ νk imply that the deviation strictly increases the utility of
bidder j, and hence contradicts the Nash equilibrium assumption.

2

3In an ex post Nash equilibrium, players have no incentive to change their bids even after the bids of other players are
announced.
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5 Revenue Analysis

Definition 3 The ascending price auction mechanism is defined as follows. The price starts at
p = 0 and increases infinitesimally and continuously; At any time, the demand of each bidder i is
di = bi/p if p ≤ vi and is di = 0 if p > vi. The price continues increasing as long as there is
over-demand

∑
di > m. The price v∗ = p, the first point when the demand equals the supply m, is

defined to be the market clearing price. All bidders i with value vi ≥ v∗ are allocated bi/v∗ units
for price v∗. (The lowest valued one may be partially allocated, but still for price v∗ per unit.) We
define R∗4 to be the revenue of ascending price auction in which bidders are bidding truthfully.

Note that ascending price auction is Pareto-optimal, but is not truthful; Specifically, bidders can
benefit by understating their budgets.

In the next lemma, we show an upper bound on the revenue of any mechanism which guarantees
Pareto-optimality.

Lemma 4 No individually rational, Pareto-optimal mechanism, in equilibrium, can guarantee rev-
enue more than R∗.

Proof: A mechanism will take announced values and bids and allocate the goods to some bid-
ders at some prices. A mechanism, per-item, should not charge any bidder more than her value.

Suppose that v∗ is the market clearing price and let l be the greatest index such that vl ≥ v∗. If a
mechanism A generates a revenue more that R∗, it must charge some bidder i (1 ≤ i ≤ l) more than
v∗ per unit. But if bidder i decreases her bid down to v∗ + ε, the mechanism still has to exhaust all
her budget (otherwise, because of Pareto-optimality, it can not charge the bidders who have value
v∗ or less, and consequently can not even make revenue R∗) but now with price of at most v∗ + ε.
That means that at an equilibrium of the mechanism, no bidder can be charged more than v∗ per
unit. 2

Proposition 5 If we assume that revenue R∗ of ascending price auction for truthful bids is less than
half of the total budget of all participants, i.e.

∑n
i=1 bi ≥ 2R∗, then there exists an equilibrium of

the Sort-Cut mechanism in which the payments and utilities are like those of the ascending price
auction with truthful bids.

Proof: The following vector of bids will be a Nash equilibrium in the game of complete infor-
mation. All those who have value greater than v∗ bid truthfully, those who have value less than or
equal to v∗ bid v∗. Therefore, all those who are bidding v∗ are the losers and will not be assigned
anything, and the winners have to pay v∗ per unit. (Note that if the last winner is partially using
her budget, then v∗ is equal to her value, and she has utility 0. Therefore she has no incentive to
increase her bid for depleting the budget of other winners.)

The condition on the revenue is required so that there is enough budget of unallocated bidders
to set the corresponding market clearing price for the ones that are allocated in the ascending price
auction equilibrium. 2

The rest of this section obtains a lower bound for the revenue of Sort-Cut mechanism5. Before
that, we need to introduce the concept of Rational Bidding. Since someone who is not winning

4R∗ is defined in [DLN08] as revenue of a non-discriminatory monopoly that knows the true budgets and true values
of the bidders, and has to determine a single unit-price at which the units will be sold.

5We do the revenue analysis for the announced values and budgets.
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Figure 1: Revenue Comparison

anything in the Sort-Cut mechanism can never benefit from understating her value, we have the
following definition.

Definition 4 We say that bidders are bidding rationally6, if those who do not win anything bid at
least their true value.

Since Sort-Cut is a semi-truthful mechanism, as stated and proved in section 3, every strategy
that understates value is dominated. Therefore, assuming that bidders bid rationally is weaker than
assuming they play an undominated strategy.

Theorem 6 Assuming rational bidding, the revenue of the Sort-Cut mechanism at any equilibrium
is at least R∗ − bmax where bmax is the maximum budget among the winners.

Proof: Suppose that Sort-Cut mechanism has used all the budget of bidders 1, ..., k − 1 and
a part of the budget of k-th bidder. Also suppose that market clearing price for truthful bids is v∗

where vl ≥ v∗ > vl+1. As we defined, bmax = max1≤i≤kbi, where bi is the budget of i-th bidder.
Note that the revenue of Sort-Cut mechanism is R =

∑k
i=1 bi−b′k where b′k is the amount of money

left unused by the k-th bidder. Also note that R∗ ≤ ∑l
i=1 bi (by the definition of ascending price

auction).
Now, we are ready to prove the claim. Consider an output of the Sort-Cut mechanism. Since the

revenue of Sort-Cut mechanism is less than R∗ and both mechanisms sell all m units, there must
be some winner i who is getting the item cheaper than v∗ per unit. Also we can assume that k > 1
since otherwise the claim holds trivially. We can either have i < k or i = k. First suppose that
i < k. According to our pricing scheme, bidder i has to pay at least v∗ per unit up to R∗ −R of her
budget (See Figure 1). That means if i is paying less than v∗ on average per unit, her budget must be
more than R∗−R. Therefore, bi > R∗−R which implies R > R∗− bmax. Now consider the case
where i = k. Here, bidder i is using bi − b′i of her budget, and she has to pay at least v∗ per unit up
to R∗−R− b′i of her budget. Therefore, if she pays less than v∗ on average per unit, the amount of
her budget that she is using, bi− b′i, must be more than R∗−R− b′i. That is bi− b′i > R∗−R− b′i,
equivalently, R > R∗ − bi. 2

Surprisingly, an independent analysis in [DLN08] shows exactly the same revenue result for a
different, still non-truthful, mechanism for this problem. The expression they prove for the revenue

6Rational bidding is a special case of undominated strategy discussed in [BLP09] and mentioned in section 3.
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of their mechanism reduces to
R ≥ (1− α)R∗

for the divisible case, where

α = maxi=1,...,n
x∗i∑n

j=1 x∗j
and x∗ represents the allocation in ascending price auction. Since ascending price auction is single-
price, α is equal to the highest budget among the winners divided by the total revenue R∗. Therefore,
αR∗ is simply the same as bmax and consequently,

(1− α)R∗ = R∗ − bmax.

Our analysis in the above theorem is tight: a simple example with one bidder demonstrates that
any Pareto-optimal mechanism which is truthful for the budgets (like Sort-Cut mechanism) can not
guarantee a revenue higher than R∗ − bmax. No budget-truthful Pareto-optimal mechanism can
charge this bidder more than 0. Therefore, our bound of R∗ − bmax is tight, and the best achievable
in budget-truthful Pareto-optimal mechanisms.

6 Revenue Optimal Equilibrium by Repeated Bidding

In this section, we are using the same approach that Edelman et al [EOS05] used to model the gen-
eralized second price (GSP) auctions. Like in their paper, we assume that the bidders are playing an
infinitely repeated game, and use this to obtain some equilibria properties for Sort-Cut mechanism.
We then take the approach of a consequent paper [CDE+07] which shows that a natural bidding
strategy played by all bidders leads to a unique Nash equilibrium of GSP, and that the Nash equilib-
rium coincides with the outcome of a VCG auction. Here, we show that a natural bidding strategy,
called Greedy Bidding, when it converges to an equilibrium, leads to one that coincides with the
outcome of ascending price auction with optimal revenue.

We focus on simple strategies and impose some assumptions and restrictions. First, we assume
that all budgets and values are common knowledge: over time, advertisers are likely to learn all
relevant information about each other. Second, since bids can be changed at any time, stable bids
must be best responses to one another. We define Greedy Bidding, a simple and natural response
algorithm for the bidders who are playing the infinitely repeated game without knowing anything
about bids and budgets of other bidders. Then we show that if running this algorithm converges,
it does so at an unique equilibrium with prices and allocations identical to those of the ascending
price auction with truthful bids.

Definition 5 (Greedy Bidding) Assume that each bidder always bids her true budget. Moreover,
she revises her bid at each round of the infinitely repeated game by executing the following rules in
order.

1. If what the bidder is paying per unit on average is higher than her value per unit (her bid is
too much above her value), she decreases her bid continuously over time.

2. If all or part of her budget is left unspent (trying to deplete the budget of those who are above
her, and winning more units), she increases her bid continuously over time.
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3. If she is using all her budget (she can not influence her own price according to the pricing
scheme), she does not change her bid.

Note that we are not specifying any order for the bidders to change their bids. As it will be clear
from the proof below, it does not matter how the bidders take turns to modify their bids as long as
they converge to some equilibrium.

Lemma 7 If all bidders use Greedy Bidding and converge to an equilibrium, this equilibrium has
prices and allocations identical to those of the ascending price auction with truthful bids, which
provides revenue R∗.

Proof: First we claim that all losers have the same bid in an equilibrium. This is because if any
of them bids slightly higher, she must be assigned something with a price higher than her value to
send her back to her previous bid using rule 1. Because of Pareto-optimality, this can happen only
if they all have the same bid. Moreover, this common bid must be the highest possible, otherwise
they all can increase their bid. Those who have higher value than the common bid of the losers must
bid higher than the losers. Therefore, the unique solution to this greedy bidding system is when all
losers are bidding exactly (or slightly lower than) the market clearing price and this completes the
proof. 2
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[Abr06] Zoë Abrams. Revenue maximization when bidders have budgets. In SODA ’06:
Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm,
pages 1074–1082, New York, NY, USA, 2006. ACM.

[AC95] Lawrence M. Ausubel and Peter Cramton. Demand reduction and inefficiency in multi-
unit auctions. Technical report, University of Maryland, Department of Economics -
Peter Cramton, November 1995.

[AM04] Nir Andelman and Yishay Mansour. Auctions with budget constraints. SWAT 04,
Lecture Notes in Computer Science, 3111:26–38, 2004.

[Aus04] Lawrence M. Ausubel. An efficient ascending-bid auction for multiple objects. Amer-
ican Economic Review, 94(5):1452–1475, December 2004.

[BCI+05] Christian Borgs, Jennifer Chayes, Nicole Immorlica, Mohammad Mahdian, and Amin
Saberi. Multi-unit auctions with budget-constrained bidders. In EC ’05: Proceedings of
the 6th ACM conference on Electronic commerce, pages 44–51, New York, NY, USA,
2005. ACM.

[BK98] Jean-Pierre Benoit and Vijay Krishna. Multiple-object auctions with budget constrained
bidders. Game Theory and Information 9805001, EconWPA, May 1998.

12



[BLP09] M. Babaioff, R. Lavi, and E. Pavlov. Single-value combinatorial auctions and algorith-
mic implementation in undominated strategies. 2009.

[CDE+07] Matthew Cary, Aparna Das, Ben Edelman, Ioannis Giotis, Kurtis Heimerl, Anna R.
Karlin, Claire Mathieu, and Michael Schwarz. Greedy bidding strategies for keyword
auctions. In EC ’07: Proceedings of the 8th ACM conference on Electronic commerce,
pages 262–271, New York, NY, USA, 2007. ACM.

[CG96] Yeon-Koo Che and Ian Gale. Expected revenue of all-pay auctions and first-price
sealed-bid auctions with budget constraints. Economics Letters, 50(3):373–379, March
1996.

[DLN08] Shahar Dobzinsky, Ron Lavi, and Noam Nisan. Multi-unit auctions with budget limits.
In to appear: Foundation of Computer Science, Philadelphia, PA, USA, October 2008.

[EOS05] Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and
the generalized second price auction: Selling billions of dollars worth of keywords.
Working Paper 11765, National Bureau of Economic Research, November 2005.

[FMNP08] Jon Feldman, S. Muthukrishnan, Evdokia Nikolova, and Martin Pal. A truthful mech-
anism for offline ad slot scheduling, 2008.

[GHK+06] Andrew V. Goldberg, Jason D. Hartline, Anna R. Karlin, Michael Saks, and Andrew
Wright. Competitive auctions. Games and Economic Behavior, 55(2):242–269, May
2006.

[Jac92] M.O. Jackson. Implementation in undominated strategies: A look at bounded mecha-
nisms. The Review of Economic Studies, pages 757–775, 1992.

[Mas00] Eric S. Maskin. Auctions, development, and privatization: Efficient auctions with
liquidity-constrained buyers. European Economic Review, 44(4-6):667–681, May
2000.

[MSVV07] Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and
generalized online matching. J. ACM, 54(5):22, 2007.

[Nau95] D. Nautz. Optimal bidding in multi-unit auctions with many bidders. Economics Let-
ters, 48(3-4):301–306, June 1995.

[Wol98] Catherine D. Wolfram. Strategic bidding in a multiunit auction: An empirical analy-
sis of bids to supply electricity in england and wales. RAND Journal of Economics,
29(4):703–725, Winter 1998.

A Sort-Cut Details

We first sketch here the proof that there exists k, b′k such that the number of allocated items allocated
is exactly m in the description of Short-Cut. First of all, x can span the whole interval [0, B], that
is there is continuity in (k, b′k). The only discontinuity can be when we change k to k + 1, but b′k
gives us enough continuity to span the whole interval, therefore the number of allocated objects is
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also going to be continuous in (k, b′k). Secondly, when x is low (close to zero by setting k equal
to 1 and b′1 close to b1), the number of allocated objects can be at most b1

v2
(which we assume to be

smaller than m) and is very low. On the other hand, when x is high (close to B, by setting k equal
to n) the number of allocated objects is very high (goes to infinity with the assumption that there
exists a fictitious last bidder with very low value and high budget). Hence, from intermediate value
theorem we can conclude that such k, b′k exists. Algorithmically, we can use a simple binary search
for finding the right value for x.

Example 1 We give an example to show how our mechanism works for selling 19 units of a divisible
item to a set of 4 bidders with the following (private) values per item and budgets.

i vi bi

1 10 55
2 9 60
3 7 40
4 6 30

We start with x = 128, so k = 3 and b′3 = 27. This means that the price of each unit (for the
first two bidders) is 7 for the first 27 that they spend, and after that for the next 30 that they spend,
the price for each unit is reduced to 6, and finally, after that the price is ε for each unit. Therefore,
the first bidder can afford x1 = 27/7 + 28/6 units with a total price of 55. But the second bidder
can afford all the remaining units now (which means nothing will be left for the third bidder, who
must be assigned something according to our cut-point). x2 = 27/7+30/6+3/ε. This means that
x is too large for the cut-point.

Our next guess is x = 122, so k = 3 and b′3 = 33. Here, the price (for the first two bidders)
is 7 per unit for the first 33 that they spend, and 6 per unit for the next 30 that they spend, and ε
per unit after that. Therefore, the first bidder can afford x1 = 33/7 + 22/6 and the second bidder
can afford x2 = 33/7 + 27/6 units. The third bidder can use 7 of her money and she has to pay 6
per unit for the first 30 that she spends. Therefore, she can afford x3 = 7/6 units. We can see that
x1 + x2 + x3 < m, therefore, x is too small for the cut-point.

By continuing the same procedure, we will see that x ' 123.11 is the right value for x. There-
fore, x1 ' 8.4, x2 ' 9.25 and x3 ' 1.35, and the prices they pay are p1 = 55, p2 = 60 and
p3 ' 8.11.
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Algorithm 1 The Sort-Cut Mechanism for divisible units to determine the cut-point x∗

1: {Initialization} Let B =
∑

i bi; Initialize x = B/2 and allocations yj = 0 for all j.
2: repeat
3: B ← B/2
4: {Cut-point determination} Let k be the largest index such that

∑k−1
i=1 bi ≤ x.

5: {Pricing} Let b′k =
∑k

i=1 bi−x, and define ck = b′k/vk. For i = k+1 to n define ci = bi/vi.
6: {Payments and Allocations until cut-point}
7: for i = 1 to k − 1 do
8: Set the payment pi = bi; Initialize allocation yi = 0 and j = k
9: while bi > 0 do

10: yi = yi + min(bi,cj .vj)
vj

11: bi = bi −min(bi, cj .vj)
12: j = j + 1
13: end while
14: end for
15: {Payments and Allocations for cut-point}
16: for bidder k do
17: Let b = bk − b′k and set the payment pk = b; Initialize allocation yk = 0 and j = k + 1
18: while b > 0 do
19: yk = yk + min(b,cj .vj)

vj

20: b = b−min(b, cj .vj)
21: j = j + 1
22: end while
23: end for
24: {Binary Search Update}
25: if

∑k
i=1 yi > m then

26: x ← x−B/2
27: end if
28: if

∑k
i=1 yi < m then

29: x ← x + B/2
30: end if
31: until the sum of allocations yj is the supply m
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