Succinct Relaxations for Some Discrete Problems

J. N. HOOKER AND HAK-JIN KIM
Graduate School of Industrial Administration

Carnegie Mellon University

Pittsburgh, PA 15213 USA

April 1998

Abstract

A discrete problem can be relaxed by taking the continuous relaxation of an integer
programming formulation. An equivalent relaxation is obtained by projecting this relax-
ation onto the original continuous variables. The projection is simple for piecewise linear
functions, fixed charge problems, and some disjunctive constraints. This allows one to
solve much smaller relaxations without sacrificing the quality of bounds. In particular the
projected relaxations for some classical network design and warehouse location problems
are minimum cost network flow problems, a fact that can dramatically accelerate their

solution.

A relaxation for a problem with discrete elements is often obtained by adding integer
variables to the model. The integrality constraints not only capture the discrete element but
can be dropped in order to obtain a continuous relaxation of the model.

An equivalent relaxation can be obtained, however, by projecting the traditional continuous
relaxation onto the original continuous variables. Projection can generate a large number of
inequality constraints, but in some important special cases it does not. In such cases one
can obtain a relaxation that is of the same quality as the conventional one but much more
succinct, due to the absence of integer variables. Occasionally the projected relaxation has
special structure that the convention relaxation lacks and can be more easily solved for that

reason as well.



Once integer variables are removed from the relaxation, they can be eliminated entirely.
Logical expressions can be used to express the discrete elements of a problem, perhaps more
naturally, as noted in [3]. Branching on logical possibilities or propositional variables can re-
place branching on integer variables. This may even allow branching to terminate sooner than
in an integer programming context, as argued in [3]. In any case, the use of projected relax-
ations almost certainly accelerates the solution of the problem, because it provides the same
bounds as traditional integer programming, and does so more rapidly because the relaxations
are smaller.

This paper examines three projected relaxations. First, Beaumont’s use of elementary
inequalities [2] to relax logical disjunctions is briefly reviewed and strengthened, due to the
usefulness of disjunctions for expressing the discrete aspect of a problem. Next a simple convex
hull relaxation of piecewise linear functions is presented. Finally, it is noted that fixed charge
problems also have a compact projected relaxation. In particular, the projected relaxation of
fixed charge network flow problems, including warehouse location problems, has the structure
of a minimum cost network flow problem, whereas the conventional relaxation does not. This
permits a far more rapid solution of the relaxation than is otherwise possible. Because solving
the relaxation consumes nearly all the solution time in branch-and-bound algorithms, projected
relaxations can dramatically accelerate the solution of these problems.

The relaxations presented here are simple. Nonetheless they and their advantages are

normally overlooked.

1 Elementary Inequalities

Beaumont [2] showed that a single elementary inequality relaxes a disjunction of linear inequal-
ities,

\/ alz > o, (1)
el

where the disjunction operator V states that at least one of the inequalities should be satisfied.

If it is assumed that 0 < z < m, the traditional big-M relaxation is,

a'z > o' — Mj(1—vy;), i€l (2)
Zyi >1 (3)
el



Each M; is chosen so that a; — M; is a lower bound on the value of a'z:

a; — M; = Zmin{(),a;}mj. (6)
J

It can be assumed without loss of generality that M; > 0, because otherwise the inequality is
vacuous and can be dropped. Beaumont obtains the elementary inequality by taking a linear
combination of the inequalities in (2)-(5), where each inequality 7 receives weight 1/M;. This

yields,

(Z%>zzz%—|f|+1. (7)
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Beaumont showed that (7), together with the bounds 0 < z < m, is equivalent to the integer
programming relaxation (2)-(5).
In many cases the elementary inequality can be strengtened by using a better lower bound
on a'z than that in (6). One can minimize a’z subject to each of the other disjuncts and

0 <z <m and pick the smallest of the minimum values. M; is therefore chosen so that

a; — M; = min{n}pin{aix oz >ap, 0<z < m}} . (8)

il
The resulting inequality can sometimes be further tightened by increasing the right-hand side,
according to a closed-form formula presented in [3].

If there are k disjuncts and n continuous variables, projection reduces the n + k variables
and k constraints of the big-M relaxation to n variables and one constraint. The convex hull
relaxation [1] is generally stronger than the big-M relaxation, but it is even larger, because it
contains additional continuous variables as well as 0-1 variables.

The projected relaxation is generally much more complex for a disjunction of linear systems

that contain several inequalities. In such cases it may be better to use the traditional relaxation.

2 Piecewise Linear Functions

The conventional integer programming formulation of a piecewise linear function introduces a
0-1 variable for each linear segment of the function. Fortunately, a compact projected relaxation

is available.



Let f(z) be a piecewise linear function to be represented, where z is a scalar variable. Let
Vg, - .., Vi be the endpoints of the linear segments, so that f(z) = f(vg_1) + (u — vg_1)px for
u € [vk—1, ], where py is the slope of the k-th linear segment.

A traditional 0-1 relaxation can be written by viewing f(z) as a convex combination of two
consecutive values in the sequence f(vp),..., f(vk). Every occurrence of f(z) is replaced by

Zszo aif(vr), and the following constraints are added to the model.

K
=1 (9)
k=1

K

Zakzl

k=0

ap < Y1, Ok < YK

ap <yg—1+yk, k=1,...,K—-1

ye >0, k=1,..., K.

When y, = 1, f(z) becomes a linear combination of f(vg_1) and f(vg); in other words, z lies
in the interval [vg_1, vg].
To write a projected relaxation that does not involve 0-1 variables yj, assume for the sake

of definiteness that f(z) occurs
a) in an objective function to be minimized that is nondecreasing with respect to f(z), or

b) on the left-hand side of an inequality G < 0, where G is nondecreasing with respect to

/().

For example, f(z) might occur as a term in a summation. Let the epigraph of f(z) be the
area that lies above the graph of the f(z); i.e., the set {(z,2) | z > f(z)}. A relaxation of
the optimization problem can be created by replacing f(z) with a lower approximation; i.e.,
a function f(z) whose epigraph is the convex hull of the epigraph of f(z). This is illustrated
in Fig. 1. The relaxation produced by the lower approximation is, by definition, a convex hull
relaxation and is therefore just as good as the traditional relaxation. In fact it is easily shown
to be equivalent to the traditional relaxation.

Because the lower approximation is piecewise linear and convex, it can be given a linear

formulation. Suppose that the piecewise linear segments of f (x) terminate at z = wy, ..., wgr,
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Figure 1: The shaded area is the epigraph of the piecewise linear function shown, f(z). The
area above the dashed line is the convex hull of the epigraph, and the dashed line itself represents

the lower approzimation of f(z).

so that f(z) = f(wp_1) + (z — wg_1)qe for © € [wy_1, wi]. Every occurrence of f(z) in the

model is replaced by
Kl

flwo) + Y ra,

k=1
and the constraints
Kl
T = Ek:1 Tl

OS(L‘kka—wk,h kZl,...,K,.

(10)

are added to the model. Because f (z) is convex, the slopes ¢ are nondecreasing; i.e., g <
q1 < ... < qgr. Due to this and the assumption (a) or (b) above, any optimal solution of the
constraints can be replaced by one in which z; > 0 only if z 1 = wg_1, without affecting
feasibility or the value of the objective function.

This relaxation requires K’ + 2 inequalities and K’ additional continuous variables, but K’

may be considerably less than the number K of linear segments in the original function f(zx).
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Figure 2: A fized charge problem. The feasible set is the shaded area, plus the ray that extends

vertically from the origin. The convex hull of the feasible set is the area above the dashed line.

3 Fixed Charge Problems

Fixed charge problems typically contain functions of the form,

0 ifz=0
flz) =
F+cx ifx>0,

where 0 < z < M. Again it may be assumed that f(x) occurs as in (a) or (b) above. The
epigraph is depicted in Fig. 2. It is the union of two polyhedra: a ray that extends upward
from the origin, and the shaded trapezoidal area that lies above the sloped line.

The traditional relaxation is obtained by replacing each occurrence of f(z) by Fy+ cz and

adding the constraints,

0<x< My
(11)
0<y<l1
In is clear from Fig. 2, however, that a convex hull relaxation can be written by replacing each

occurrence of f(x) by (% + c) z and adding the constraint 0 <z < M.

3.1 Fixed Charge Network Problem

The projected convex hull relaxation is only slightly smaller than the continuous relaxation
of (11), because it eliminates a single 0-1 variable y. The size reduction could be significant,

however, when there are a large number of fixed charges. Consider, for example, a network



design problem in which the objective is to decide which arcs are to be present in a network so
as to minimize cost. The cost includes the fixed cost of installing the arcs, plus the minimum
cost of carrying a prescribed amount of flow over the resulting network. The problem can be

written,
min Z 2ij
]
s.t. (zij =z = 0) V (255 = Fij + cijxiz), alli,j
Z:L‘ij — Z]?ji = Oy, allj
i i
0< Lij < Mija all Z,]
F;j is the fixed cost of installing directed arc (4, j), x;; is the flow placed on the arc, ¢;; is the
unit cost of carrying the flow, and M;; is the capacity of the arc. §; is the net supply available
at node j of the network.
The traditional relaxation is,
min Y Fjjyi; + cijai

ij
s.t. 0<mj; < My, alli,j

Z:L‘ij — Z]?ji = Oy, allj
i i
The projected relaxation is equivalent but only about half this size.
min Z <M—Z] + cij> Tij (12)
ij Y
st. 0<umxjy <M, alli,j
in]’ - Z(I,‘ji = 9y, all _]
i i
In addition, the projected relaxation, unlike the traditional one, can be solved with a specialized

minimum cost network flow algorithm. This can provide a substantial advantage, because

network flow algorithms run much faster than general linear programming algorithms.

3.2 Warehouse Location Problem

The same device can provide a network flow relaxation of problems with fixed node charges. A
node 7 with a fixed charge need only be replaced by an arc (h;,t;) with the same fixed charge,

with all the incoming arcs to node 7 attached to h; and all the outgoing arcs to ¢;.



An important special case is a warehouse location problem, which may be written
m n n
win 33 ey + 3 Fu
i=1j=1 =1

n
s.t. Zx”SKZ, izl,...,m
j=1

m
injZDj’ jzl,...,n
=1

y; €{0,1}, i=1,...,m

Nodes 7 = 1,...,m are potential warehouse locations, each with fixed cost C; and capacity K;.
Nodes j = 1,...,n are demands points with demand D;.

The problem can be transformed into a network design problem with fixed arc costs. First
a bipartite graph forms with potential warehouse sites and places supplied by warehouses. ¢; ;
becomes the cost on the arc from the warehouse ¢ to place j together with infinite capacity.
Then add two nodes, a source s and a sink ¢ with arcs from the source to the warehouse sites
and from the places to the sink. An arc from s to a warehouse site 7 has cost F; and capacity
K; for all i € {1,...,m}. An arc from a place j to ¢t has zero cost and capacity D;. Also, add
an arc from the source to the sink with zero cost and capacity >3 | K; — 3°7_; D;. As before,
the projected relaxation is a minimum cost network flow problem, which can substantially

accelerate the solution of the problem.
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