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1 Introduction

The spot price of crude oil, and commodities in general, experienced a dramatic price
increase in the summer of 2008. For oil, the spot price peaked in early July 2008 at $145.31
per barrel (see Figure 1). In real-terms, this price spike exceeded both of the OPEC price
shocks of 1970’s and has lasted much longer than the price spike at the time of the Iraq
invasion of Kuwait in the summer of 1990. This run-up in the price of oil begins around
2004. Büyükşahin et. al. (2010) and Hamilton and Wu (2011) document a structural break
in the behavior of oil prices around 2004. This 2004 to 2008 time period also coincides with
a large increase trading activity in commodities by hedge funds and other financial firms as
well as a growing popularity of commodity index funds (best documented in Büyükşahin
et. al. (2010)). In fact, there is much in the popular press that lays the blame for higher
commodity prices, food in particular, on the “financialization” of commodities.1 Others
point out that since these new traders in futures do not end up consuming any of the spot
commodity, the trading can have little (if any) effect on spot prices.2 Resolving this debate
requires modeling the equilibrium relationship between spot and futures prices. How do
spot and futures prices respond to a change in, say, speculative demand from a hedge fund
as opposed to the hedging demand of a firm in the oil market? To address this question,
however, we need a clearer understanding of hedging and speculation. To do this, we look
directly at the risk-sharing Pareto problem in an economy with heterogenous agents and
multiple goods and solve for equilibrium risk premia.

Our intuition about the use and pricing of commodity futures contracts is often expressed
with hedgers and speculators. This dates back to Keynes (1936) and his discussion of
“normal backwardation” in commodity markets. The term backwardation is used in two
closely related contexts. Often it is used to refer to a negatively sloped futures curve (where
the one-year futures price is below the current spot price).3 Here, Keynes use of the term

1See for example “The food bubble:How Wall Street starved millions and got away with it” by Frederick
Kaufman, Harpers July 2010 http://harpers.org/archive/2010/07/0083022

2The clearest argument along this lines is by James Hamilton
http://www.econbrowser.com/archives/2011/08/fundamentals sp.html. See also Hamilton (2009) and
Wright (2011)

3Often, backwardation refers to the contemporaneous slope of the futures curve. In oil markets – we
focus entirely on crude oil in this paper – the forward price is typically below the spot price. In our data,
of 1990 through 2010, the 12 month forward is smaller than the 1 month forward (as a proxy for the spot
price), a negatively sloped forward curve called backwardation, 61% of the time. This fact is an important
input to many derivative-pricing models in commodities. Typically, the slope of the forward curve is a
(exogenous) stochastic factor capturing the “connivence yield” to owning the physical good over a financial
contract (see Schwartz (1997)). Alternatively, the dynamics of storage or production can be modeled directly
to capture the contemporaneous relationship between spot and futures price (Routledge, Seppi, and Spatt
(2000), (2001), Titman (2011), and others).



“normal backwardation” (or “natural”) refers to the situation where the current one-year
futures price is below the expected spot price in one-year. This you will recognize as a
risk premium for bearing the commodity price risk. This relation is “normal” if there are
more hedgers than there are speculators. Speculators earn the risk premium and hedgers
benefit from off-loading the commodity price risk. First, there is no reason to assume that
hedgers are only on one side of the market. Both oil producers (Exxon) and oil consumers
(Southwest Air) might hedge oil. It happens to turn out that in oil markets in the 2004 to
2008 period there was a large increase on the long-side by speculators suggesting the net
“commercial” or hedging demand was on the short side. This is documented in Büyükşahin
et. al. (2010) who use proprietary data from the CFTC that identifies individual traders.
For many reasons it is interesting to see who is trading what. Second, if we are interested
in risk premia in equilibrium we need to look past the corporate form of who is trading.
We own a portfolio that includes Exxon, Southwest Air, and a commodity hedge fund and
consume goods that, to varying degrees, depend on oil. Are we hedgers or speculators?

It is hard to look at risk premium directly. However, it is easy to look at realized excess
returns to get a sense of things. Figure 2 plots the one-month holding period expected
excess returns. At all maturities, you can see from Figure 2(a), excess return or risk pre-
mium is much higher in the post-2004 sample. In the time series, Figure 2(b) you can see
the variation across the subsample is reflecting the steady increase in excess returns over
the 2000-2004 period particularly in the longer-dated contracts. Hamilton and Wu (2011)
estimate the time variation in the risk premium as a structural break around 2004. Of
course, time variation in risk premia is not surprising in modern asset pricing. We see it in
equity returns (Campbell and Cochrane (1999), Bansal and Yaron (2005), Routledge and
Zin (2010)) and bond returns Cochrane and Piazzesi (2005)).

Equilibrium risk premia properties depend on preferences, endowments, technologies,
and financial markets. In this model we focus on complete and frictionless financial markets.
We also leave aside production for the moment. Both of these are important aspects to
consider in future research. In this paper we look at an endowment economy with two
goods, one of which we calibrate to capture the salient properties of oil the other we think
of as composite good akin to consumption in the macro data. We consider two agents
with heterogenous preferences over the two goods as well as with different time and risk
aggregators. Preference heterogeneity is a natural explanation for portfolio heterogeneity
we see in commodity markets. Here we start with complete and frictionless markets, focus
on “perfect” risk sharing, and solve for the Pareto optimal consumption allocations. From
this solution, we can infer the “representative agent” marginal rates of substitution and
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calculate asset prices and the implied risk premia.

It is important in our model, to allow for a rich preference structure and so we start
with the recursive preference structure of Epstein and Zin (1989) and Kreps and Porteus
(1978). Preference heterogeneity can be over the time aggregator, the risk aggregator,and
the goods aggregator that modulates the trade off between oil and the numeraire consump-
tion good. This is important for several reasons. First, as we know from recent research
into the equity premium, recursive preferences are a necessary component to generating the
observed dynamics properties of the equity premium. For example, in Bansal and Yaron
(2005) the long-run risk component and the stochastic volatility of the consumption growth
process are not sufficient to generate a realistic equity premium. The recursive preference
structure is need to generate a non-zero price impact of these components. Second, and
more directly related to our interests here, we are interested in understanding the role of
commodity futures prices to manage risk and their related risk premium. To get at this issue
carefully, since this is a multi-good economy, we need to be careful with our intuition about
“risk aversion” (e.g., Kihlstrom and Mirman (1974)). An oil futures contract might hedge
direct future oil “consumption,” future consumption in general, or future continuation-
utility. Since portfolio choice is fundamentally a decision about intertemporal multi-good
consumption lotteries, all of these characteristics are important.

The bulk of the paper explores our a calibration of model that we solve numerically. The
example demonstrates how dynamic risk sharing between agents with different preferences
generates wide variation in prices, risk premia, and open interest over time. Each agent
holds a pareto-optimal portfolio, but realized returns may increase the wealth of one agent
versus the other. Although shocks to oil consumption may cause transitive changes to the
oil futures curve, gradual shifts in the wealth distribution produce long-run changes in the
typical behavior of futures markets. Depending on the endogenous wealth distribution,
the oil futures curve may be upward sloping 80% of the time, or only 6% of the time.
The expected risk premium on oil futures (averaged over a period of 10 years, say) may
be over 3%, or less than -4%. Open interest in futures markets may be trivial, or orders
of magnitude larger than the value of aggregate oil consumption. And the impact is not
limited to oil futures markets: we show that the interaction of the two agents may amplify
the equity premium, and also causes it to fluctuate over time.

Our dynamic analysis of the model shows that large changes in the behavior of asset
prices are not only possible, but likely to occur over the span of a few decades. Contingent
upon an initial wealth distribution, our economy is expected to produce a near doubling of
the spot price, a four-fold increase in open interest in oil futures markets, and roughly a
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1% decrease in the average risk premium on oil futures. These represent persistent changes
that occur in addition to short term fluctuations brought about by temporary oil supply
“crises” or “booms”, which can cause the risk premium to spike to 11% or plunge to -2%
immediately. In contrast to the changes brought about by temporary shocks, changes in
the wealth distribution are felt in the long term. Because they also occur endogenously,
they provide an alternative (or complementary) explanation for persistent changes in oil
futures markets that does not rely upon exogenously imposed “structural breaks”, such
as permanent alterations to the consumption growth process, or the changing access to
financial markets.

There are many related papers to mention. We mentioned some of the oil and commodity
papers above. We also build on many papers that look at risk sharing and models with
heterogenous agents. We are most closely building on on Backus, Routledge, and Zin (2009)
and (2008). Foundational work in risk sharing with recursive preferences includes Lucas
and Stokey (1984), Kan (1995), and more recently Anderson (2005). There are also several
recent papers that are related, such as Colacito and Croce (2011), (2012) and Gârleanu and
Panageas (2010). In our model, we focus on a risk sharing problem in an endowment setting.
This sets aside the many interesting properties of oil production and prices that come from
modeling the extraction problem. Interesting examples includes Carlson, Khokher, and
Titman (2007), Casassus, Collin-Dufresne, and Routledge (2007), and Kogan, Livdan, and
Yaron (2009). These papers all document and model important properties of commodity
prices; particularly the volatility structure of futures prices.

2 Facts

We are interested in the empirical properties of the time variation in the expected excess
returns to holding a long position in oil futures. Since a futures contract is a zero-wealth
position, we define the return as the fully collateralized return as follows. Define Ft,n as
the futures price at date t for delivery at date t + n, with the usual boundary condition
that the n = 0 contract is the spot price of oil; Ft,0 = Pt. The fully collateralized return
involves purchasing Ft,n of a one-month bond and entering into the t + h futures contract
with agreed price Ft,n at date t. Cash-flows at date t+ 1 come from the risk-free rate and
the change in futures prices Ft+1,n−1 − Ft,n. So,

rnt+1 = log

(
Ft+1,n−1 − Ft,n + (Ft,n(exp rft+1))

Ft,n

)
(1)
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We are interested in risk premiums, so will look at the return in excess of the risk-free rate
log rft+1 Note the dating convention: that is the return earned from date t to date t+ 1. For
the risk-free rate, this is a constant known at date t. Defining things this way means that
excess returns are approximately equal to the log-change in futures prices.

rnt+1 − r
f
t+1 ≈ logFt+1,n−1 − logFt,n (2)

The futures prices we use are for the one-month to the sixty-month contracts for light-
sweet crude oil traded at NYMEX.4 To generate monthly data, we use the price on the
last trading day of each month. The liquidity and trading volume is higher in near-term
contracts. However, oil has a reasonably liquid market even at the longer horizons, such as
out to the 60 month contract.

To get a feel for excess returns, Figure 2 plots the realized returns for one-month return
for a long position in an crude oil future at different maturities. Figure 2(a) realized excess
return, which is a noisy proxy for risk premium, is much higher in the post-2004 sample.
Figure 2(b) plots the average realized excess return for a rolling 60 month window (with the
convention that the plot at date t is the mean excess return from t to t+60). Here you can see
the the variation across the subsample is reflecting the steady increase in expected returns
over the 2000-2004 period, particularly in the longer-dated contracts. The estimation is
simplistic here. We are just look at average realized excess returns. Hamilton and Wu
(2011) estimate this more carefully with a VAR. Their paper, estimates a structural break,
concludes that the risk premium properties are quite different after 2004. In particular,
there is much greater variation in the risk premium post 2004.

All of the production-based or storage-based models of oil point to the slope of the
futures curve as an important (endogenous) state variable (e.g., Carlson, Khokher, and
Titman (2007), Casassus, Collin-Dufresne, and Routledge (2007), and Kogan, Livdan, and
Yaron (2009) Routledge, Seppi, and Spatt (2000)). Table 1 highlights that, indeed, this state
variable is an important component to the dynamic properties of the the risk premium
associated with a long position in oil. Across all the various sub-samples and contracts,
when the slope of the futures curve at date t is negative, the expected excess returns to a
long position in oil is higher. We can see two changes across the sub-periods, slitting the
sample at 2004. First, the frequency of a negatively slopped forward curve is much less in
the post-2004 period. Backwardation occurs 68% of the time pre-2004 and only 41% of the
months 2004 and beyond (the full sample has a 60% frequency of backwardation). Despite

4Data was aggregated by Barcharts Inc. All the contract details are at http://www.cmegroup.com/

trading/energy/crude-oil/light-sweet-crude_contract_specifications.html
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this change, excess returns are higher post 2004. They are higher in both cases where we
condition on the sign of the slope of the oil futures curve.5

The fact that oil seems to command a risk premium suggests its price is correlated with
economic activity (or, by definition, the pricing kernel). Of course, oil is an important
commodity directly to economic activity. Hamilton (2008) documents that nine out of ten
of the U.S. recessions since World War II were preceded by a spike up in oil prices with the
“oil-shocks” of the 1970’s as the most dramatic examples. Even the most recent recession
follows the dramatic spike in oil prices. The NBER dates the recession as December 2007
to June 2009. The peak oil price was the summer of 2008 – right before the collapse of
Lehman Brothers. However, by December of 2007, the WTI spot price was $91.73 per
barrel. Table 2 looks at the one-month excess returns on holding US Treasury bonds over
the same time-frame and conditioning information as Table 1. Notice in the upper-left
hand panel the familiar pattern that excess returns on bonds are increasing in maturity. As
you would expect from Cochrane and Piazzesi (2005), the evidence suggests that bond risk
premia are time varying (again, subject to the caveat we are measuring these with ex-post
realized returns). Over the time-subsamples we use here, there is little variation in the
excess returns. What is an interesting characteristic (and perhaps even new), is that the
risk-premia depend on the slope of the oil futures curve. When the oil curve is negatively
sloped, excess returns on bonds are larger. The effect is strongest for longer-horizon bonds.
Unconditionally, however, the correlations of the excess returns across the bonds and oil
futures are small (slightly negative).

The classic empirical method to explore risk premiums is by way of a forecasting regres-
sion of Fama and French (1987) (and many related papers in non-commodities). To remind
us of the basic idea, write define φt,n as φt,n = Et[Pt+n] − Ft,n. Predictable movement in
prices reflect risk premium and just a bit of algebra formally relates the φt,n to the covari-
ance with the pricing kernel.6 We can run the following regressions (one for each futures
horizon, n).

Pt+n − Pt = an + bn (Ft,n − Pt) + εt+n

= an + bn (Et[Pt+n − Pt]− φt,n) + εt+n

And note that if φt,n is a constant, then bn should be one. Table 3 confirms that the bn ,
particularly at longer horizons is significantly less than one. Interestingly, the coefficient is

5Casassus and Collin-Dufresne (2005) use the closely retated fact that the negative slope is highly corre-
lated to a high spot price of oil.

6It is easiest to describe this with futures price and the future spot price (using Ft+n,0 = Pt+n). However,
implementing this empirically we use a near-term contract with φt,n,k = Et[Ft+n−k,k]−Ft,n with n < k. In
Table 3, k = 1 and we also transform things by log.
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also broadly decreasing in maturity suggesting more variation in the risk premium associated
with the longer-dated oil futures contracts.

There is certainly more work to do here, but we think we have established an interesting
fact worth pursing: The risk premium in oil is time varying with interesting connections
to economic activity. So, perhaps, if we want to understand the oil markets in the 2004 to
2008 period and the increased “financialization” of commodity markets, getting a handle
on the source of the time variation is a good place to start.

3 Exchange Economy - Two Goods and Two Agents

We model an exchange or endowment economy as in (Lucas 1978). We specify a stochastic
process for the endowment growth. Specifically, we will have one good xt we think of as the
“numeraire” or composite commodity good. Our second good, which we calibrate to be oil,
we denote yt. We specify both of these endowment processes to have finite state stationary
Markov growth rates. This is the usual tree structure where here we have two trees. We
use the short-hand notation subscript-t to indicate conditional on the history to date t.
Similarly, we use Et and µt to indicate expectations and certainty equivalents conditional
on information to date-t. Heterogeneity in our set-up will be entirely driven by preference
parameters. Beliefs across all agents are common.

We are interested in the Pareto optimal allocation or “perfect” risk sharing solution. So
with complete and frictionless markets, we focus on the social planner’s Pareto problem.
This means, for now, we need not specify the initial ownership of the endowment; we treat
xt and yt as resource constraints. However, we can use this solution to characterize portfolio
policies that implement the optimal consumption policies allowing us to investigate open
interest in oil futures contracts. The preferences, which we allow to differ across our two
agents, are recursive as in Epstein and Zin (1989) and Kreps and Porteus (1978). They
are characterized by three “aggregators” (see Backus, Routledge, and Zin (2005)) First,
a goods aggregator determines the tradeoff between our two goods. This is, of course,
a simplification since oil is not directly consumed. But the heterogeneity across our two
agents will capture that some of us are more reliant on or more flexible with respect to the
consumption of energy-intensive products. The other two aggregators are the usual time
aggregator and risk aggregator that determine intertemporal substitution and risk aversion.
Finally, the familiar time-additive expected utility preferences are a special case of this set
up.
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3.1 Single Agent, Two Goods

To get started, consider a single-agent economy with two goods. In this representative
agent setting, optimal consumption is simply to consume the endowment xt and yt each
period. We model utility from consumption of the “aggregated good” with a Cobb-Douglas
aggregator: A(xt, yt) = x1−γ

t yγt with γ ∈ [0, 1]. Intertemporal preferences over the aggregate
good are represented with an Epstein-Zin recursive preference structure

Wt = W (xt, yt,Wt+1) = [(1− β)A(xt, yt)ρ + βµt(Wt+1)ρ]1/ρ ,

µt(Wt+1) = Et
[
Wα
t+1

]1/α
,

For the finite-state Markovian growth process for endowment of (xt, yt), denote the state
st, and the probability of transitioning to next period state st+1 given by π(st, st+1) (for
st, st+1 ∈ S with S finite). We will denote growth in the numeraire good as in ft+1 =
f(st+1) = xt+1/xt and similar for the oil-good gt+1 = g(st+1) = yt+1/yt. With a little
algebra, we can write intertemporal marginal rate of substitution, written here as a pricing
kernel or stochastic discount factor.

mt+1 =
∂Wt/∂xt+1

∂Wt/∂xt
(πt+1)−1 = β

(
xt+1

xt

)−1(At+1

At

)ρ( Wt+1

µt(Wt+1)

)α−ρ
(3)

Note this is denominated in terms of the numeraire good (x). So we can use mt+1 to
compute the price at t of arbitrary numeraire-denominated contingent claims that pay-off
at t+1. Claims to oil good y at t are converted to contemporaneous numeraire values using
the “spot price” of oil,

Pt =
∂Wt/∂yt
∂Wt/∂xt

=
γxt

(1− γ)yt
. (4)

The pricing kernal and spot price can be used in combination to price arbitrary contingent
claims to either good.

The homogeneity of the Cobb-Douglas aggregator along with the standard homogeneity
of the time and risk aggregators allow us to rescale things so utility is stationary (as in
Hansen, Heaton, and Li (2008)). Define, Ŵt = Wt/A(xt, yt).

Ŵt =
[
(1− β) + βµt

(
Ŵt+1

A(xt+1, yt+1)
A(xt, yt)

)ρ]1/ρ

=
[
(1− β) + βµt

(
Ŵt+1A(ft+1, gt+1)

)ρ]1/ρ
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Note this uses the Cobb-Douglas property that A(xt+1,yt+1)
A(xt,yt)

= A(ft+1, gt+1). Written, in this
form, note that Ŵt is stationary and is a function only of the current state st. Similarly,
substituting Ŵt into the pricing kernel, we have

mt+1 = β (ft+1)−1 (A(ft+1, gt+1))ρ
(

A(ft+1, gt+1)Ŵt+1

µt(A(ft+1, gt+1)Ŵt+1)

)α−ρ
. (5)

The pricing kernel depends on the current state st, via the conditional expectation in the
risk aggregator, and t+ 1 growth state st+1.

The price of oil depends on the relative levels of the two goods. However, changes in
the oil price will depend only on the relative growth rates:

Pt+1

Pt
=

γ

(1− γ)
ft+1

gt+1
.

This implies the change in price depends only on the growth state st+1. To keep the level
of the price rate plausible requires a joint assumption about the growth rates of the two
goods (e.g., cointegrated).

The advantages and limitations of a single agent single good representative agent model
are quite well known. For example, with a thoughtfully chosen consumption growth pro-
cess one can capture many salient feature of equity and bond markets (Bansal and Yaron
(2005)). Alternatively, one can look at more sophisticated aggregators or risk to match re-
turn moments (Routledge and Zin (2010)). Presumably, one could take a similar approach
to extend to a two-good case to look at oil prices and risk premia (see Ready (2010) as a
nice example). It would require some work in our specific set up, since oil prices (and all
derivatives) will simply depend on the current growth state st in combination with constant
preference parameters γ. Instead, we extend this model to a second (but similar) agent.
The dynamics of the risk sharing problem we discuss next will provide us a second state
variable, besides st+1, to generate realistic time variation in the oil risk premium. This also
lets us look at the portfolios and trades the two agents choose to make. (Lastly note, that
the single agent case in this section corresponds to the boundary cases in the two-agent
economy where one agent receives zero Pareto weight or has no wealth).

3.2 Two Agents, Two Goods

Next we consider our model with two agents. The two-good endowment process and re-
cursive preference structure is unchanged. What is new is we allow the two agents to have

9



differing parameters for their goods, risk, and time aggregators. Denote the two agents “1”
and “2” (these subscripts will denote the preference heterogenity and the endogenous goods
allocations). The risk sharing or Pareto problem for the two agents is to allocate consump-
tion of the two goods across the two agents, such that cx1,t+c

x
2,t = xt and cy1,t+c

y
2,t = yt. Agent

one derives utility from consumption of the aggregated good A1(cx1,t, c
y
1,t) = (cx1,t)

1−γ1(cy1,t)
γ1 .

The utility from the stochastic stream of this aggregated good has the same recursive form
as above.

Wt = W (cx1,t, c
y
1,t,Wt+1) =

[
(1− β)A1(cx1,t, c

y
1,t)

ρ1 + βµ1,t(Wt+1)ρ1
]1/ρ1

,

µ1,t(Wt+1) = Et
[
Wα1
t+1

]1/α1 ,

(6)

Agent 2 has similar preference structure with A2(cx2,t, c
y
2,t) = (cx2,t)

2−γ2(cy2,t)
γ2 and recursive

preferences

Vt = V (cx2,t, c
y
2,t, Vt+1) =

[
(1− β)A2(cx2,t, c

y
2,t)

ρ2 + βµ2,t(Vt+1)ρ2
]1/ρ2

,

µ2,t(Vt+1) = Et
[
V α2
t+1

]1/α2 .

(7)

The idea is that the two agents can differ about the relative importance of the oil good,
risk aversion over the “utility lotteries”, or the inter-temporal smoothing. Recall that with
recursive preferences all of these parameters will determine the evaluation of a consumption
bundle. “Oil risk” does not just depend on the γ parameter since it involves a inter-temporal,
risky consumption lottery. Note we give the two agents common rate of time preference β.7

The two-agent Pareto problem is a sequence of consumption allocations for each agent
{cx1,t, c

y
1,t, c

x
2,t, c

y
2,t} that maximizes the weighted average of date-0 utilities subject to the

aggregate resource constraint which binds at each date and state:

max
{cx1,t,c

y
1,t,c

x
2,t,c

y
2,t}

λW0 + (1− λ)V0

s.t. cx1,t + cx2,t = xt and

cy1,t + cy2,t = yt for all st

where λ determines the relative importance (or date-0 wealth) of the two agents. Note that
even though each agent has recursive utility, the objective function of the social planner is
not recursive (except in the case of time-additive expected utility). We can rewrite this as
a recursive optimization problem following, Lucas and Stokey (1984), and Kan (1995):

J(xt, yt, Vt) = max
cx1,t,c

y
1,t,Vt+1

[
(1− β)A1(cx1,t, c

y
1,t)

ρ1 + βµ1,t(J(xt+1, yt+1, Vt+1))ρ1
]1/ρ1

s.t. V (xt − cx1,t, yt − c
y
1,t, Vt+1) ≥ Vt.

(8)

7Differing β’s are easy to accommodate but lead to uninteresting models since the agent with the larger
β quickly dominates the optimal allocation. E.g., Yan (2010)
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The optimal policy involves choosing agent one’s date-t consumption, cx1,t, c
y
1,t and the

resource constraint pins down agent two’s date-t bundle. In addition, at date-t, we solve
for a vector of date-t + 1 “promised utility” for agent two. Note this promised utility is a
vector since we choose one for each possible growth state st+1 at date t+ 1. Making good
on these promises at date t + 1 means that Vt+1 is an endogenous state variable we need
to track. That is, optimal consumption at date t depends on the exogenous growth state
st and the previously promised utility Vt. Finally, note that the solution to this problem
is “perfect” or optimal risk sharing. Since we consider complete and frictionless markets,
there is no need to specify the individual endowment process.

Preferences are monotonic, so the utility-promise constraint will bind. Therefore with
optimized values, we have Wt = W (cx1,t, c

y
1,t,Wt+1) = J(xt, yt, Vt) and Vt = V (xt − cx1,t, yt −

cy1,t, Vt+1). The first order and envelope conditions for the maximization problem with
date-t-dependent Lagrange multiplier λt8 are

Wx(cx1,t, c
y
1,t,Wt+1) = λtVx(xt − cx1,t, yt − c

y
1,t, Vt+1) (9)

Wy(cx1,t, c
y
1,t,Wt+1) = λtVy(xt − cx1,t, yt − c

y
1,t, Vt+1) (10)

WV (cx1,t, c
y
1,t,Wt+1) = λtVV (xt − cx1,t, yt − c

y
1,t, Vt+1) (11)

JV (xt, yt, Vt) = −λt, (12)

Rearranging these optimality conditions implies, not surprisingly, that the marginal utilities
of agent 1 and agent 2 are aligned across goods and inter-temporally. These equations imply
that

mt+1 = β

(
cx1,t+1

cx1,t

)−1(
A1,t+1

A1,t

)ρ1 ( Wt+1

µ1,t(Wt+1)

)α1−ρ1

= β

(
cx2,t+1

cx2,t

)−1(
A2,t+1

A2,t

)ρ2 ( Vt+1

µ2,t(Vt+1)

)α2−ρ2
.

(13)

Recall that beliefs are common across the two agents so probabilities drop out. Note that
we can use this marginal-utility process as a pricing kernel. Optimality implies agents agree
on the price of any asset. Similarly, the first-order conditions imply agreement about the
intra-temporal trade of the numeraire good for the oil good. Hence the spot price of oil:

Pt =
γ1c

x
1,t

(1− γ1)cy1,t
=

γ2c
x
2,t

(1− γ2)cy2,t
. (14)

8Many papers directly characterize the “stochastic Pareto weight” process. E.g, Basak and Cuoco (1998),
Basak (2005), Dumas, Kurshev, and Uppal (2009).
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As in the single agent model, it is helpful to use the homogeneity to scale things to be
stationary. Here is the analogous scaling in the two-agent setting. Define

ĉx1,t =
cx1,t
xt

, ĉy2,t =
cx2,t
xt

= 1− ĉx1,t

ĉy1,t =
cy1,t
yt

, ĉy2,t =
cy2,t
yt

= 1− ĉy1,t

The ĉ’s are consumption shares of the two goods. Scale utility values by their respective
aggregated goods.

Ŵt =
Wt

A1(xt, yt)
, V̂t =

Vt
A2(xt, yt)

Notice we scale the utilities by the total available goods (and not just the agent’s share).
This has the advantage of being robust if one agent happens to (optimally) get a declining
share of consumption over time. Plugging these into the equation (13), and we can state
the pricing kernel as

mt+1 = β

(
ft+1ĉ

x
1,t+1

ĉx1,t

)−1(
A1(ft+1ĉ

x
1,t+1, gt+1ĉ

y
1,t+1)

A1(ĉx1,t, ĉ
y
1,t)

)ρ1 (
A1(ft+1, gt+1)Ŵt+1

µ1(A1(ft+1, gt+1)Ŵt+1)

)α1−ρ1

(15)

(or equivalently from the perspective of agent 2). In the one-agent case, the pricing kernel
depends on the current growth state st (via conditional exceptions) and the future growth
state st+1. Now, in the two agent case, the pricing kenel depends on both the growth
state and the level of utility (scaled) of agent 2, (st, V̂t). The current state shows up in
expectations and the promised utility influences the allocations of the goods across agent
one and two. In addition, the pricing kernel depends on the date-t + 1 values, (st, V̂t+1)
realized.

3.3 Financial Prices

As is standard in an exchange economy, we can now use the pricing kernel to price assets
and calculate their returns. To start, we can look at the value of the agents’ consumption
streams (i.e., a measure of their wealth). Agent 1’s claim to numeraire consumption good
x has value at date-t denoted Cx1,t

Cx1,t = Et

[ ∞∑
τ=t

mτ c
x
1,τ

]
. (16)

12



Note, by convention this is the “cum dividend” value including current consumption. To
solve this, conjecture that Cx1,t =

cx1,tW
ρ1
t

(1−β)A
ρ1
1,t

, and verify. Note it is easier here to use the

kernel defined in equation (13)

Cx1,t = cx1,t + βEt

(cx1,t+1

cx1,t

)−1(
A1,t+1

A1,t

)ρ1 ( Wt+1

µ1,t(Wt+1)

)α1−ρ1 cx1,t+1W
ρ1
t+1

(1− β)Aρ11,t+1


= cx1,t +

βcx1,tµ1,t(Wt+1)ρ1−α1Et
[
Wα1
t+1

]
(1− β)Aρ11,t

=

[
(1− β)Aρ11,t + βµ1,t(Wt+1)ρ1

]
(1− β)Aρ11,t

=
cx1,tW

ρ1
t

(1− β)Aρ11,t

=

(
ĉx1,tŴ

ρ1
t

(1− β)A1(ĉx1,t, ĉ
y
1,t)ρ1

)
xt.

(17)

Note that the price of claims to numeraire consumption is independent of the level of oil
consumption (it does depend on ratio of oil to numeraire good.).; that is the ratio Cx1,t/xt
is stationary and depends only on our state variables st and V̂t. To price the claim to the
oil consumption good, we use the oil price to convert to units of numeraire good.

Cy1,t = Et

[ ∞∑
τ=t

mτPτ c
y
1,τ

]
.

From the spot price, (14), we can write Ptc
y
1,t =

γ1cx1,t
1−γ1 , so

Cy1,t = Et

[ ∞∑
τ=t

mτ c
x
1,t

γ1

1− γ1

]
=

γ1

1− γ1
Cx1,t

Again, note the level of oil does not play a role and the ratio Cy1,t/xt is stationary and
depends on the state variables st and Vt (alternatively we could scale by yt). Lastly, summing
the value of the numeraire and oil claim we calculate the total wealth of agent one.

C1,t = Cx1,t + Cy1,t =
1

1− γ1
Cx1,t (18)
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By equivalent logic, the values of agent 2’s consumption claims are

Cx2,t =

(
ĉx2,tV̂

ρ2
t

(1− β)A2(ĉx2,t, ĉ
y
2,t)ρ2

)
xt.

Cy2,t =
γ2C

x
2,t

1− γ2

C2,t =
Cx2,t

1− γ2

With the wealth of each agent, we can calculate the wealth of both sectors of the
economy, numeraire and oil, and the overall wealth of the economy. Wealth in the numeraire
sector,

Cxt = Cx1,t + Cx2,t, (19)

in the oil sector,

Cyt =
γ1C

x
1,t

1− γ1
+
γ2C

x
2,t

1− γ2
, (20)

and the overall wealth in the economy,

Ct =
Cx1,t

1− γ1
+

Cx2,t
1− γ2

. (21)

Given these processes for wealth, we can calculate the return to a claim on these assets.
We define the equity return as a claim to the numeraire stream of consumption, so

rxt+1 = logCxt+1 − log(Cxt − xt)

(We could also compute the equity return including the entire wealth in the economy. Given
our calibration in the next section, the difference is minor).

Bond (and the risk-free rate) all follow from the pricing kernel in the usual way. Define
the price of a zero-coupon bond recursively as

Bt,n = Et[mt+1Bt+1,n−1], (22)

where Bt,n is the price of a bond at t paying a unit of the numeraire good at period
t + n period with the usual boundary condition that Bt,0 = 1. Rates follow as rnt+1 =
−n−1 log(Bt,n) (with n = 1 as the risk-free rate used to compute excess returns).
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Define the futures price of the oil good, y, is defined as follows. Ft,n is the price agreed
to in period t for delivery n period hence. Futures prices satisfy

0 = Et[mt+1(Ft+1,n−1 − Ft,n)]

Ft,n = (Bt,1)−1Et[mt+1Ft+1,n−1],

logFt,n = − logBt,1 + logEt [exp {logmt+1 + logFt+1,n−1}] ,

(23)

with the boundary condition Ft,0 = Pt. Recall, from our discussion of futures returns
earlier we focus on the fully collateralized one-period holding period returns. In particular,
rnt+1 − r

f
t+1 ≈ logFt+1,n−1 − logFt,n.

3.4 Portfolios and open interest

One interesting feature of a multi-agent model is we can look directly at the role of financial
markets in implementing the optimal allocations. We are solving for Pareto allocation of the
two resources, so implementing this in a decentralized economy generally requires complete
markets. In particular, we are interested in who oil futures can be used to implement
the optimal consumptions. We defer that specific question to our numerical calibration of
the model since we lack analytical expressions for futures prices. However, we can look
analytically at how “equity” claims can implement the optimal allocations.

Recall that Cxt is the value of a claim to the stream of numeraire good and Cyt is the
value of the claim to a stream of the oil good. We think of these as (unlevered) claims to
the equity in the numeraire and oil sectors and normalize the shares outstanding in each
sector to be one. Suppose these were traded claims in the economy, what portfolio of φx1,t
shares numeraire and φy1,t shares in oil generate optimal consumption? It turns out this is
easy to solve since all we need to do is replicate the wealth processes that represents optimal
consumptions of the two goods for agent one (and, analogously agent two). The agents’
budget constraint are:

C1,t = φx1,tC
x
t + φy1,tC

y
t

C2,t = φx2,tC
x
t + φy2,tC

y
t

Substitute in the definition of the aggregate value of the numeraire sector in equation (19)
and oil sector in equation 20). The key here is that for each agent, the value of the oil
consumption stream is proportional to the value of the numeraire stream, i.e.,

Cy1,t
Cx1,t

=
γ1

1− γ1
,
Cy2,t
Cx2,t

=
γ2

1− γ2
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This all implies, for agent one:

Cx1,t =
(1− γ1) ((−γ2C

x
t + (1− γ2)Cyt )

γ1 − γ2
(24)

and

φx1,t =
−γ2

γ1 − γ2

φy1,t =
1− γ2

γ1 − γ2
.

(25)

(And similarly for agent two). Note the right hand side is a constant. As we will see in the
numerical section in a moment, optimal consumption for the two agents in this setting and
the implied prices and asset returns have many interesting dynamic properties. However,
the homogeneity of the preference structure means portfolio policies are “buy and hold.”
This is a similar result to the portfolio separation results with single good and time-additive
CRRA utility.

While this result is interesting, perhaps, it might not be all that practical. Most of the
aggregate consumption of oil is not captured in an easily traded claim. There is a large
production in state-owned enterprises (e.g., Saudi Aramco, PDVSA, and indirect state
claims from oil royalties and well-head taxes). In the numerical section, next, we look at
portfolio policies that implement the optimal consumption using oil futures contracts. This
also gives us a perspective on open-interest dynamics.

4 Calibrated Numerical Example

The recursive Pareto problem is hard to characterize analytically, so we look at a numer-
ical example. We calibrate our example so one of the goods matches oil consumption and
match basic moments of the observed risk premia. To compare the model’s implications
with the data, we study an example with a four-state Markov growth process loosely cal-
ibrated to annual moments. We assume that the numeraire (x) and oil (y) processes are
cointegrated, with unconditional (i.e., long-run) mean growth rates of 2% per year. Un-
conditional standard deviations of numeraire and oil consumption growth are 3% and 6%,
respectively, reflecting the higher variability of oil relative to aggregate consumption. To
obtain a reasonable equity premium in this setting, we need either small highly persistent
risks to consumption growth as in Bansal and Yaron (2005), or rare disaster-like risk as in
Barro (2009). To make our numerical computations feasible, we have a four state Markov
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structure. This gives our calibration the flavor of a disaster model, and allows for the
possibility of a sharp drop in either x or y, with the likelihood of such occurrences substan-
tially lower than that of moderate, positive growth in both x and y. Table 4 gives the full
specification of the growth process. Of course a simple 4-state Markov cannot realistically
replicate all aspects of household oil-derived and non-oil consumption but does seem to
generate some interesting results. For a more thorough investigation of empirical issues
calibrating a model with household consumption of oil products, see Ready (2010).9 Our
objective is a simple growth process that preserves numerical tractability, yet allows for
comparisons with asset prices observed from 1990 through 2010. In particular, since our
main aim is to study the time-variation in risk-premia that occurs endogenously through
dynamic risk-sharing, we wish to avoid divergent growth trends or “structural breaks” that
would amount to exogenously imposed trends or shifts in risk premia. In this context our
stationary growth process seems reasonable.

We choose preference parameters to capture a few key characteristics of asset prices.
Numerical values for each parameter are given in Table 5. Historically, oil consumption has
represented around 4% of US GDP Hamilton (2008). In our model this characteristic is
governed chiefly by the choice of goods aggregation parameters. We set γ1 and γ2 = 2γ1

to give agent 2 a substantially greater preference for oil consumption while keeping oil
within a plausible range of the 4% historical average. Risk aversion (α) and intertemporal
substitution (ρ) parameters address the risk premia on equity and oil futures. We aim
to match the large level of the equity premium. For oil risk premium, our goal is to
generate variation consistent with what we infer from the data. Hamilton and Wu (2011),
for example, suggests a range 4 % to −3% over the 1990-2010 period. Specifically, that
paper suggests a lower oil-risk premium in recent years. Our parameters imply a positive
oil risk premium in an economy dominated by agent 1, and a negative risk premium under
agent 2. The dynamic properties of the risk-sharing model with generate the variation. We
set the common time-preference parameter, β such that the average risk-free rate is around
2%. Finally, we choose initial consumption levels x0 and y0 to put the level of spot prices
in the ballpark of those observed; the choice has no impact upon returns or the dynamics
of the model.

Because of our assumptions of infinitely lived agents and a Markovian growth process,
the state of our economy at any point in time is fully characterized by output levels for each
good xt and yt, the growth state st, and promised agent 2 (normalized ) utility V̂t. Therefore

9 One issue we omit here is technological progress. A gallon of gasoline in 1975 is consumed much
differently than the same gallon in 2012. This is a central issue in resource economics that more carefully
considers the long run implications of “peak oil.”
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we drop time subscripts and describe the economy as a function of the state variables. As a
standing assumption we set x and y to the values in Table 5 unless otherwise specified. We
further focus our analysis on the key state variable V̂ , by taking expectations over growth
states according to their stationary distribution where necessary, given in Table 4. Section
4.1 shows how V̂ governs wealth and consumption sharing between agents. Section 4.2
demonstrates the importance of shifts in wealth for asset prices and risk premia, whereas
Section 4.3 relates these effects to trade in financial markets. Section 4.4 discusses the
models dynamics, and suggests that endogenous changes in V in response to growth shocks
offer a possible explanation for observed changes in prices, risk premia, and open interest.

4.1 Wealth and consumption

The key of our model is the presence of two agents with different preferences, who interact to
determine prices in competitive markets. The novel state variable governing this interaction
is V̂ , the utility promised by agent 1 to agent 2. It is interesting to see how this state variable
maps to observable indicators of an agent’s relative importance in the economy: his wealth
and consumption shares. Recall V̂ is bounded and stationary. To facilitate comparison, we
re-normalize things so that this state variable is on the domain [0, 1].10 Roughly, a value
for the V of 0.25 corresponds to agent 2 owning 25% of the wealth. To see this, Figure 3
relates V to the wealth and consumption shares of each agent. The plots show expectations
over growth states s ∈ S taken according to stationary distribution π̄.11 In the top panel,
we see that V relates to wealth in a nearly linear, one-to-one mapping. Therefore V is a
close proxy for agent 2’s share of aggregate wealth. Similarly, the center panel shows that
agent 2’s share of numeraire consumption rises almost (but not exactly) linearly with his
wealth, and agent 1’s share declines correspondingly. The consumption sharing rule for oil
is substantially different. The bottom panel illustrates agent 2’s higher preference for oil
consumption relative to agent 1; as V increases, his share of oil consumption increases more
rapidly than his wealth share, such that he consumes roughly 50 % of oil when he holds
around 33 % of the wealth. The results for consumption follow directly from the goods

10 Although an agent’s utility may grow without bound as the economy expands, we have observed
previously that V̂t = Vt

A2(xt,yt)
is bounded for any xt and yt. However the domain of V̂ is determined in

equilibrium based on the model parameters. Its minimum value is 0, and its maximum V̂max corresponds to
the case where agent 2 consumes the aggregate output of each good, i.e. cx2,t = xt, c

y
2,t = yt in perpetuity.

Therefore we further normalize by dividing V̂ by V̂max, to obtain a state variable between zero and 1.In fact
there is a further nuance, since V̂max depends upon the current growth state; to be precise, we normalize V̂
by its conditional maximum.

11Although results do differ for each s ∈ S, to the naked eye they are all very similar to the mean values
shown.
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aggregation parameters: because γ2 = 2γ1, agent 2 is twice as inclined to spend on oil as
agent 1. However since oil represents a relatively small fraction of expenditures for either
agent (γ1 is small), shares of numeraire consumption are closely related to wealth. The
conclusion (given our calibration) is that V can safely be interpreted as a measure of wealth
distribution, but not consumption distribution.

4.2 Prices and risk premia

Changes in the wealth distribution have a dramatic impact upon the level, term structure,
and risk premia of financial assets. This section first examines the effects of V uncondi-
tionally of the growth state s. Later we condition our analysis on the growth state, as felt
through its effect upon the slope of the futures curve.

Figure 4 shows the average term structure of oil futures prices conditional on a given
V (effectively wealth distribution). The most obvious impact is on the level of prices,
which increase dramatically with higher V , doubling prices at short maturities and almost
tripling prices at longer horizons. The slope of the futures curve changes from moderately
downward sloping at low V to sharply upward sloping for high V . Although the affects
of preferences towards risk and consumption goods cannot be cleanly separated (recall
Kihlstrom and Mirman (1974)), the difference in level at the short end is attributable to
different preferences over consumption baskets (γ), whereas changes in slope are strongly
impacted by preferences towards risk and intertemporal substitution (α and ρ). To the
extent that our two agents represent a fair approximation to the broad range of consumer
preferences relevant for international oil markets, Figure 4 illustrates that large changes
in the average level or shape of the futures curve needn’t imply a structural change in oil
output, the imposition or removal of market frictions, or other stimuli: they may simply
represent an endogenous change in the “tastes” of the representative agent driven by trade,
and the resulting shifts in wealth. Large variations in V can and do occur within our model,
as we will see in Section 4.4. Changes in V are analogous to endogenous “demand shocks”,
even though they do not represent an additional source of randomness. For example, the
increasing absolute wealth of China represents an additional demand for oil commonly
offered as a partial explanation for the spike in oil prices in 2007-2008 Hamilton (2011). It
seems reasonable to suppose that the increasing relative wealth of China would also have
an impact upon oil markets, through different attitudes towards energy consumption and
risk. We do not explicitly impose the role of countries on our agents, but this is one possible
interpretation.
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The changes observed in the slope of the futures curve imply changes in risk premia,
which are illustrated in Figure 5. On average, an economy dominated by agent 1 (low
V ) implies a positive and hump-shaped term structure of oil futures risk premia, with the
highest risk premium on the 2-year contract. As the share of wealth given over to agent 2
increases, the level of risk premium decreases across maturities, with the term structure first
flattening and then turning concave for high V . For example, for small V , the 2-year contract
offers a positive risk-premium that is higher than that of the 1-year contract. But for large
V , the two-year contract has a negative risk-premium that is lower than that of the 1-year
contract. Figure 6 offers another view of the effect of V on the oil risk premium, plotting
the 2-year contract premium continuously versus V . The premium declines monotonically
but non-linearly, from almost 3 % when agent 1 is wealthy to just above -2 % when agent 2
is wealthy. Shown on the figure are the risk-premium conditional on the economic growth
state. Recall that our parameterization puts the economy most frequently in state 2 and 3.

In Table 1 we see a negatively sloping oil futures curve implies higher excess returns.
Table 6 summarizes expected excess holding returns on oil futures conditional on a positive
or negative slope in our calibration. We define the slope as the difference between the
spot price and the 2-year futures price. In the model, conditioning on slope in addition
to V amounts to conditioning on the occurrence of certain growth states (s). For all
contract maturities and all V , a negative slope implies a higher risk premium, consistent
with the empirical results in Table 1. In particular, conditional on a negative slope, the
1-year contract always offers a positive risk premium in the model. The model diverges
from empirical estimates in that the risk premium is not generally increasing with contract
maturity, and risk premia may be sharply negative, particularly when the slope is positive.
The evidence is that the premium at the short end is both smaller and less volatile. Our
model is giving a more uniform pattern. Table 8 reproduces the Fama predictive regressions
from Table 3. Note the time variation of the risk premia on oil is seen in the slope coefficient
(b) being less than one. While the b’s are decreasing with horizon, the effect is not as
pronounced as in the data.

We can also examine relationships between the oil futures curve and the term structure
of interest rates. Figure 7 shows the average term structure for bonds for different V , which
exhibit wide variation in level and slope. The case where agent 1 is dominant (low V )
produces the highest short rate of any curve (around 2.5 %), but due to a sharp downward
slope, it also leads to the lowest long rate (nearly 0). For larger V the term structure
flattens, then becomes upward sloping when agent 2 is dominant. The impact of V at the
short end of the term structure is very different than at the long end: the short rate is
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non-monotonic in V , first decreasing then increasing, whereas the long rate is increasing in
V . The net result is a positive risk premium on long bonds given high V , but a negative one
given low V . On average, bond risk premia move opposite oil risk premia in relation to V .
The situation is more nuanced when we condition on the slope of the futures curve. We saw
in Table 2 that negatively sloping oil futures implied higher excess returns on long bonds.
Although that finding is not robust in the model, a negative futures slope does imply higher
excess returns on long-horizon bonds, except when V is very small.

The non-monotonicity evident in the risk-free rate is also present in the equity premium,
per Figure 8, which plots the average equity premium relative to V . The smallest values of
V correspond approximately to an economy populated only by agent 1, whereas the largest
V imply an economy nearly dominated by agent 2. What is surprising is that the equity
premium peaks around V = 0.5, when each agent has a similar share of the wealth. The
opportunity for risk-sharing between agents actually increases the equity premium! A shift
in wealth towards an agent who would individually demand a lower equity premium says
nothing regarding the direction of the equilibrium effect: depending on the initial wealth
distribution, the equity premium may either increase or decrease.

4.3 Portfolios and open interest

As we saw in Section 3.3, when claims to aggregate consumption of the numeraire and oil
are traded in financial markets, then the agents can implement their optimal consumption
plans with a constant portfolio. In our calibrated example, agent 1 would hold 2 shares of
the non-oil (numeraire) stock and roughly -32.3 shares of the oil stock. Since we normalize
net supply of each stock to 1 share, agent 2 holds -1 and 33.3 shares, respectively.12 Even
if the agents are allowed to trade oil futures, they find it unnecessary to do so. However,
in practice investors are unable to trade a claim to aggregate consumption of oil, and close
proxies may not exist in the stock market: multinational oil companies produce a small
fraction of global output, with much of production due to state owned enterprises (e.g.,
Saudi Aramco, PDVSA) that are not publicly traded. And, it is perhaps not feasible to
have such large short positions in an equity claim. An alternative and a direct way for
investors to manage their exposure to oil is through oil futures contracts. We approximate
this situation by allowing agents to trade in markets that are complete, but lack a directly
tradable claim to aggregate oil consumption. Instead agents may trade the numeraire stock,

12When one agent or the other is dominant in the economy, that agent must hold 1 share of the x stock
and one share of the y stock to clear markets. A little algebra confirms that the portfolios specified are
equivalent to the dominant agent holding one share of each stock when V → 0 or V → 1.
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a one-period bond, and “collateralized” 1 and 2 year oil futures contracts (labeled F1 and
F2, respectively). Figure 9 shows each agent’s optimal portfolios for a range of V . Since
agent 2’s holdings of futures contracts are approximately the mirror image of agent 1’s, we
describe only agent 1’s position, in the top panel. We plot portfolios averaged over growth
states according the the stationary distribution; however results for individual growth states
are very similar to the mean. In contrast, changing V has a large effect on portfolios, with
the value of agent 1’s exposure to F1 ranging from roughly 0 to -1000, and his exposure
to F2 from roughly 0 to 500. Despite his simple objective - to have constant exposure
to oil consumption - his replicating portfolio may change substantially. Furthermore the
direction of his exposure to oil futures is not the same for contracts of different maturity -
he is short the 1-year contract and long the 2-year contract. What might appear to be a
hedging strategy that “bets” on a change in the spread between 1 and 2 year contracts is
actually a reflection of a simple preference characteristic: agent 1 desires less exposure to
oil than agent 2.

Since much is made of changes to open interest in oil futures, we highlight this in the
top panel of Figure 10, computed as the absolute value of agent 1’s futures contracts. If we
instead plotted the number of contracts outstanding (rather than their value), the results
would remain similar in shape: what we see is not merely a reflection of changes in the value
of contracts, rather it reflects changes in the number of outstanding contracts. Open interest
differs dramatically depending upon V , and may be negligible, or orders of magnitude larger
than the total value of oil consumed in the economy. It is also non-monotonic in V , peaking
around V = 0.35. For comparison, the bottom panel of Figure 10 shows the impact of V
on the spot price of oil, which is monotonic and almost linear in V , peaking when agent 2
is dominant in the economy (V → 1), reflecting his higher preference for oil consumption.
Obviously open interest is not a sufficient statistic to determine the price of oil, even if
we know the current growth state. Ceteris paribus, if V increased from 0.1 to 0.3, we
would observe a dramatic increase in open interest and a roughly 20 % increase in the spot
price, whereas a decrease in V from 0.6 to 0.4 would also produce a significant increase in
open interest, but accompanied by a roughly 20 % decline in the spot price. Therefore the
directional change in open interest does not relate to spot prices, neither does it reflect an
increase in “speculation” on the part of the agents in the economy.

4.4 Dynamics

The value of V has a strong impact upon spot prices, risk premia, and open interest. As
the economy evolves, so does V , reflecting changes in the wealth distribution brought about
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by realizations of the exogenous growth process. This section examines how V and key
economic variables change over time. We argue that the economy will tend toward higher
spot prices, higher open interest, and a lower futures risk premium.

To illustrate the range of possible outcomes in our economy, we have thus far allowed for
four widely dispersed values of V . Rather than consider the possible paths of our economy
from each of four starting points, we select one initial V0 to roughly match historical data.
That data suggests lower spot prices and open interest in the past. Although risk premia
are difficult to estimate with precision, at least one study Hamilton and Wu (2011) suggests
that futures risk premia were larger in the past. These facts recommend V0 = 0.05, a state
in which most economic wealth belongs to agent 1, as a reasonable starting value for V in
our economy. Figure 11 shows how the probability density of V evolves, conditional on our
chosen starting value. Over time, the possible values of V become dispersed, allowing for a
good deal of variation over time in the economic variables driven by V . The second feature
is evidence of drift; V tends to increase over time. Although lower values remain possible,
after 50 years V is likely to be above 0.1, and after 100 years it is extremely unlikely that
V will be near its small initial value of 0.05. However V is unlikely to take values much
larger than 0.4, even after 100 years. A typical 100 year path through the economy involves
wide variation in V , spot prices, the term structure of bonds and futures, and related risk
premia. There is a strong tendency for agent 2’s wealth to increase, but neither agent will
have a dominant position in the terminal period.

To directly relate changes in V over time to economic outcomes, we turn to the mean
path of the economy. Figure 12 shows the average 50-year path of the economy, computed
using Monte Carlo simulation. As before, we choose V0 = 0.05. The initial growth state,
s0, is chosen from the stationary distribution. In the top panel, we see that V is expected
to increase from 0.05 to more than 0.12 over 50 years. Interestingly the spot price, in the
second panel, shows a much larger expected increase than would be implied directly by the
mean change in V : it increases by more than 2/3, from around 32 to more than 55. If we
had statically adjusted V0 to a value of 0.12, the corresponding spot price at t = 0 would
only be around 35. The surprisingly large expected increase in the spot price is the result
of the joint distribution of x, y, s, and V , of which the spot price is a nonlinear function.
Despite the expectation that x and y grow at the same rate, the spot price is expected to
increase dramatically.

The third panel of Figure 12 shows the expected futures risk premium, which is quite
volatile, and therefore leads to somewhat noisy estimate even after 10000 simulated paths.
However there is a clear downward trend, with the premium decreasing from over 2%
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initially to less than 1.5%. This occurs despite a likely shift in wealth towards agent 2,
for whom oil is a more important commodity, and an increase in the spot price. The
decreasing risk premium is also accompanied by a large increase in open interest in oil
futures markets, shown in the fourth panel. Although analysts confronted with these results
might be tempted to reason that increasing open interest and a decreasing risk premium
represented evidence of “increased demand from buyers of futures pushing down the risk
premium,” the connection is illusory. As discussed earlier in the analysis of Figure 10,
the relationship between the open interest and other variables - including risk premia - is
nonmonotonic. However, given the initial state of our economy, increasing open interest
is very likely to coincide with a decreasing futures risk premium. In fact the increase in
open interest is quite dramatic, with a four-fold rise expected over 50 years. Some of this
change results from growth in the economy, as the size of each agent’s portfolio, and hence
of open interest, grows with aggregate wealth. To isolate the impact of changes in V (or
the wealth distribution) on open interest, the final panel of Figure 12 presents the average
open interest over time as a fraction of aggregate wealth. Even with this normalization,
open interest is expected to more than double over 50 years.

5 Conclusions

There is, of course, much to do. Our model has abstracted from the complex dynamics of
oil exploration, development, storage, and refinement. We have also abstracted from all the
production decisions and technological innovations surrounding oil consumption. Instead
we have focussed on heterogenous exposure to oil risk as an important source that drives
the complicated oil-risk premium dynamics evident in the data. To attack this question,
we look at the optimal Pareto consumption sharing problem with two agents with different
attitudes towards consumption risk and, specifically, the oil-component of consumption.
The solution lets us look at consumption and wealth paths and the implications for risk
premia. In one calibrated example, we can generate rising oil prices, decreasing risk premia
as well as capturing salient properties of financial returns in general. A nice feature of this
set up is that we can look directly at optimal positions in futures markets to also note that
rising open-interest is a natural consequence of the risk sharing outcome.
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Table 1: Monthly Excess returns on oil futures contracts

ALL Pre 2004 Post 2004
Horizon Obs Mean St. Dev. Obs Mean St. Dev. Obs Mean St. Dev.

1 241 0.68 9.36 168 0.74 9.26 73 0.54 9.65
3 240 1.03 8.23 167 0.93 7.85 73 1.28 9.08
6 240 1.06 7.09 167 0.85 6.37 73 1.56 8.53

ALL 12 237 0.98 5.85 164 0.63 4.73 73 1.76 7.79
18 189 1.25 5.36 116 0.87 3.57 73 1.86 7.34
24 203 0.96 5.05 130 0.43 3.40 73 1.90 7.03
36 153 0.78 5.04 88 0.01 3.06 65 1.81 6.75
48 97 0.87 5.72 37 -0.02 3.53 60 1.41 6.69
60 91 0.86 5.87 31 -0.24 3.83 60 1.43 6.64

Horizon Obs Mean St. Dev. Obs Mean St. Dev. Obs Mean St. Dev.
1 95 -0.61 9.44 53 -0.38 9.16 42 -0.89 9.89
3 95 -0.17 8.36 53 -0.29 7.65 42 -0.03 9.28
6 95 -0.03 7.31 53 -0.24 6.17 42 0.23 8.60

Slope + 12 93 0.02 6.23 51 -0.35 4.67 42 0.47 7.74
18 68 0.45 6.08 26 0.17 3.88 42 0.62 7.15
24 77 0.25 5.41 35 -0.33 3.27 42 0.73 6.70
36 60 0.30 5.34 20 -0.84 2.45 40 0.86 6.26
48 43 0.41 5.68 6 -0.38 2.74 37 0.54 6.04
60 44 0.26 5.60 7 -1.60 3.49 37 0.61 5.89

Horizon Obs Mean St. Dev. Obs Mean St. Dev. Obs Mean St. Dev.
1 145 1.52 9.27 114 1.26 9.34 31 2.49 9.12
3 144 1.84 8.09 113 1.51 7.94 31 3.05 8.65
6 144 1.80 6.89 113 1.37 6.46 31 3.36 8.21

Slope - 12 143 1.61 5.54 112 1.09 4.73 31 3.51 7.61
18 121 1.70 4.88 90 1.07 3.47 31 3.53 7.39
24 126 1.39 4.78 95 0.71 3.42 31 3.48 7.26
36 93 1.09 4.84 68 0.26 3.19 25 3.34 7.36
48 54 1.23 5.78 31 0.05 3.70 23 2.82 7.56
60 47 1.42 6.12 24 0.16 3.90 23 2.74 7.66

Holding period returns are monthly (shown as percent per month) on fully collateralized futures position in

oil. The “Slope+” and “Slope-” correspond to the sign of Ft,18 − Ft,1 (the 18 month futures contract price

less the one month price) at the date the position is initiated (i.e., date t + 1 return conditional on date t

slope). The “pre 2004” is the period 1990-2003. The “post 2004” is 2004 to 2010.
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Table 2: Monthly Excess returns on US Treasury Bonds

ALL Pre 2004 Post 2004
Horizon Obs Mean St. Dev. Obs Mean St. Dev. Obs Mean St. Dev.

6 240 0.03 0.06 168 0.04 0.05 72 0.02 0.08
12 240 0.07 0.17 168 0.09 0.16 72 0.05 0.20
18 240 0.11 0.32 168 0.13 0.31 72 0.05 0.34

ALL 24 240 0.13 0.47 168 0.16 0.46 72 0.08 0.48
30 240 0.16 0.61 168 0.19 0.60 72 0.10 0.64
36 240 0.19 0.75 168 0.21 0.74 72 0.13 0.78
42 240 0.21 0.89 168 0.24 0.87 72 0.14 0.92
48 240 0.22 1.02 168 0.25 1.00 72 0.15 1.07
54 240 0.24 1.15 168 0.26 1.13 72 0.18 1.21
60 240 0.23 1.25 168 0.26 1.23 72 0.17 1.31
120 240 0.26 1.45 168 0.29 1.37 72 0.19 1.62
>121 240 0.33 2.54 168 0.37 2.32 72 0.25 3.03

Horizon Obs Mean St. Dev. Obs Mean St. Dev. Obs Mean St. Dev.
6 94 0.03 0.05 53 0.03 0.05 41 0.02 0.05
12 94 0.05 0.15 53 0.06 0.16 41 0.05 0.14
18 94 0.06 0.28 53 0.08 0.29 41 0.05 0.26

Slope + 24 94 0.08 0.41 53 0.08 0.44 41 0.08 0.38
30 94 0.09 0.54 53 0.09 0.58 41 0.10 0.50
36 94 0.11 0.68 53 0.09 0.72 41 0.13 0.64
42 94 0.12 0.81 53 0.10 0.85 41 0.14 0.76
48 94 0.11 0.96 53 0.09 0.98 41 0.14 0.94
54 94 0.12 1.12 53 0.09 1.11 41 0.17 1.13
60 94 0.11 1.21 53 0.07 1.21 41 0.16 1.23
120 94 0.10 1.59 53 0.07 1.46 41 0.14 1.77
>121 94 0.10 2.89 53 0.07 2.28 41 0.15 3.55

Horizon Obs Mean St. Dev. Obs Mean St. Dev. Obs Mean St. Dev.
6 145 0.04 0.07 114 0.04 0.05 31 0.03 0.10
12 145 0.09 0.19 114 0.10 0.16 31 0.05 0.25
18 145 0.14 0.34 114 0.16 0.31 31 0.06 0.42

Slope - 24 145 0.17 0.50 114 0.20 0.46 31 0.08 0.60
30 145 0.21 0.65 114 0.25 0.61 31 0.10 0.80
36 145 0.25 0.79 114 0.28 0.74 31 0.12 0.95
42 145 0.28 0.93 114 0.32 0.88 31 0.14 1.11
48 145 0.30 1.05 114 0.34 1.00 31 0.16 1.23
54 145 0.32 1.17 114 0.36 1.12 31 0.18 1.32
60 145 0.33 1.27 114 0.36 1.22 31 0.19 1.43
120 145 0.37 1.34 114 0.40 1.31 31 0.25 1.44
>121 145 0.51 2.27 114 0.54 2.30 31 0.39 2.22

The data is the Fama Bond Portfolio’s from CRSP. These are the one-month holding period return of an

equally weighted portfolio of bonds of similar maturity. For example, horizon 18 is bonds of maturity 13-18

months, the 120 is bonds from 61-121 months and >120 is all bonds of a longer horizon that 121 months

or more. All returns are excess of the one-month risk-free rate. The “Slope+” and “Slope-” is from the oil

futures process. It correspond to the sign of Ft,18 − Ft,1 (the 18 month futures contract price less the one

month price) at the date the position is initiated (i.e., date t + 1 return conditional on date t slope). The

“pre 2004” is the period 1990-2003. The “post 2004” is 2004 to 2010.
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Table 3: Predictive regression for crude oil

a b
Horizon (n) a. t (a = 0) b t (b = 1) R2 nobs

3 .0187209 1.720852 1.069224 -.2222553 .0427325 266
6 .0452831 2.967716 .8309402 .7552679 .0501505 263
12 .0879378 4.721614 .9119217 .5278193 .1048359 257
18 .1394924 6.779568 .9735516 .1796232 .1493467 251
24 .1836817 7.941727 .8189865 1.215011 .1152461 234
36 .2582488 8.407877 .2833659 4.402931 .0173169 174
48 .4259285 9.551207 .2318959 3.420123 .0122456 88
60 .6186527 13.91229 .0719869 4.764505 .0020346 69

Crude oil futures data for 1990-2011. Regression of:

logFt+n,1 − logFt,1 = a+ b (logFt,n − logFt,1) + εt+n

Note the t-stat shown for a is for a different from zero and for b is the t-stat reflects b different from one.

29



Table 4: Aggregate Consumption Growth Process

s ∈ Sf(s)
g(s)

 =

 1 2 3 4
0.99 1.03 1.05 0.93
0.90 1.04 1.06 1.07



π =


0.80 0.10 0.05 0.05
0.05 0.85 0.05 0.05
0.05 0.18 0.72 0.05
0.05 0.05 0.63 0.27


π̄ =

[
0.20 0.48 0.26 0.06

]
Growth process characteristics. The first matrix shows possible growth

outcomes for the numeraire (f(s)) and oil (g(s)) for each growth state

(s). In matrix π, entry πi,j is the probability of transitioning from

current growth state i to next period state j. The stationary (long-run)

probability of being in a given growth state is shown in π̄.

Table 5: Parameters

Parameter Value Description
α1 -20 risk aversion, agent 1
α2 -12.6 risk aversion, agent 2
ρ1 -1.12 intertemporal substitution, agent 1
ρ2 0.754 intertemporal substitution, agent 2
γ1 0.03 oil preference, agent 1
γ2 0.06 oil preference, agent 2
β 0.96 impatience, agents 1,2
x0 1000 initial aggregate consumption, numeraire
y0 1 initial aggregate consumption, oil

Preference parameters and initial aggregate consumption levels used in

numerical examples.
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Table 6: Model-implied expected excess returns on oil futures contracts (%)

Horizon (yrs) V = 0.05 V = 0.35 V = 0.65 V = 0.95
1 2.128 0.336 -0.379 -0.704
2 2.975 0.348 -1.154 -1.882
3 2.923 -0.208 -2.065 -2.963

All 4 2.665 -0.789 -2.820 -3.790
5 2.401 -1.256 -3.375 -4.376
6 2.185 -1.595 -3.760 -4.774
7 2.021 -1.827 -4.018 -5.037
1 -0.136 -1.232 -0.686 -0.962
2 -0.400 -1.958 -1.650 -2.283
3 -0.751 -2.577 -2.676 -3.446

Slope + 4 -1.049 -3.034 -3.506 -4.323
5 -1.275 -3.355 -4.110 -4.939
6 -1.442 -3.576 -4.528 -5.357
7 -1.563 -3.725 -4.807 -5.633
1 2.683 0.721 4.129 3.085
2 3.804 0.914 6.120 3.995
3 3.825 0.373 6.906 4.117

Slope - 4 3.576 -0.238 7.242 4.018
5 3.304 -0.740 7.403 3.886
6 3.075 -1.109 7.494 3.775
7 2.901 -1.361 7.553 3.694

Annual holding returns on fully collateralized oil futures in excess of the 1-period bond

rate, in percent. Results are shown for different horizons to maturity and values of state

variable V . Increasing values of V correspond to an increasing wealth share for the agent

with lower risk aversion and higher preference for oil consumption. Slope is defined as the

difference between the spot price and the 2-year futures price. Although the magnitude

of the effect varies, a negative slope always implies a higher risk premium on holding the

contract. For the two smallest values of V , the slope is negative 80% of the time. For the

two largest V , the slope is negative 6% of the time. The stark contrast in these percentages

is an artifact of our simple, 4-state growth process.

31



Table 7: Model-implied expected excess returns on bonds (%)

Horizon (yrs) V = 0.05 V = 0.35 V = 0.65 V = 0.95
1 0.000 0.000 0.000 0.000
2 -1.078 -0.166 0.009 0.063
3 -1.656 -0.244 0.041 0.128

All 4 -1.997 -0.279 0.082 0.190
5 -2.218 -0.291 0.124 0.248
6 -2.369 -0.294 0.165 0.299
7 -2.480 -0.291 0.202 0.344
1 0.000 0.000 0.000 0.000
2 -0.279 -0.196 -0.019 0.039
3 -0.520 -0.365 -0.008 0.086

Slope + 4 -0.727 -0.512 0.017 0.135
5 -0.907 -0.640 0.047 0.182
6 -1.062 -0.752 0.078 0.226
7 -1.198 -0.849 0.108 0.264
1 0.000 0.000 0.000 0.000
2 -1.274 -0.159 0.428 0.416
3 -1.934 -0.214 0.765 0.741

Slope - 4 -2.309 -0.221 1.035 0.998
5 -2.539 -0.206 1.254 1.205
6 -2.690 -0.181 1.435 1.373
7 -2.795 -0.154 1.585 1.512

Annual returns on zero-coupon bonds in excess of the 1-period bond rate, in percent. Re-

sults are shown for different horizons to maturity and values of state variable V . Increasing

values of V correspond to an increasing wealth share for the agent with lower risk aversion

and higher preference for oil consumption. Slope is defined as the difference between the

spot price and the 2-year futures price. The connection between the slope of the oil futures

curve and the bond risk premium depends upon V . For V = 0.35, the risk premium is

somewhat higher given a positive slope. All other values of V imply higher excess returns

given a negative slope. For the two smallest values of V , the slope is negative 80% of the

time. For the two largest V , the slope is negative 6% of the time. The stark contrast in

these percentages is an artifact of our simple, 4-state growth process.

32



Table 8: Predictive regressions (model)

V Horizon (yrs) a b R2

1 0.009 0.600 0.225
0.05 2 0.018 0.526 0.207

3 0.025 0.480 0.181
1 -0.001 0.640 0.225

0.35 2 -0.006 0.585 0.204
3 -0.016 0.546 0.176
1 -0.005 0.688 0.264

0.65 2 -0.017 0.646 0.240
3 -0.036 0.623 0.204
1 -0.007 0.741 0.304

0.95 2 -0.024 0.727 0.281
3 -0.051 0.728 0.251

On simulated data from our model, regress:

logFt+n,1 − logPt = a+ b (logFt,n − logPt) + εt+n

33



Figure 1: Time Series Oil Prices
(a) Real Spot Price (1970)
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(b) Futures Prices (from 1990)
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Figure 2: Term Structure of Holding Period Returns
a. By Horizon
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Figure 3: Wealth and Consumption Shares
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Wealth and consumption shares of each agent, relative to state variable V . Results are

averages over the stationary distribution of growth states (s). However results conditional

on a particular s are similar to the mean. The mapping from V to the wealth share

of agent 2 is almost linear and 1-to-1. However consumption shares, particularly the

distribution of oil, are very nonlinear in V , reflecting the different preferences for oil

consumption. Therefore V can safely be interpreted as a measure of wealth distribution,

but not consumption distribution.
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Figure 4: Oil futures prices
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Futures prices, averaged over the stationary distribution of growth states. Higher V cor-

respond to much higher average price levels. In addition, the slope changes: futures are

downward sloping on average for small V , but upward sloping on average for large V .

Although we show averages over growth state s to emphasize the role of V (i.e., wealth

distribution), the growth state has a large (but relatively transitive) impact. For example,

conditional on state s = 1, all futures curves are downward sloping, whereas conditional

on state s = 4, all curves are upward sloping.
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Figure 5: Oil futures risk premia
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Annual risk premia (excess returns) on oil futures, averaged over the stationary distribution

of growth states. V influences the level and slope of risk premia. Low V (low agent 2

wealth) produce a positive and hump-shaped term structure of risk premia, whereas high

V (high agent 2 wealth) produce downward sloping and negative risk premia. Although we

emphasize the role of V by averaging over growth states s, the growth state is important

for risk premia. For example, conditional on state s = 1, risk premia are positive for all

V , whereas for s = 4, risk premia are negative for all V .
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Figure 6: Futures risk premium (2-year contract)
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Annual risk premium on 2-year oil futures (shown for each growth state). Note the average

across all growth states is approximately equal to that of state 2 and 3. The plot provides

intuition as to the magnitude and direction of changes in risk premia due to V , which

evolves endogenously. For our calibration, the average risk premium is monotonically

decreasing in V .
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Figure 7: Zero-coupon bond rates
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Annual interest rates on zero coupon bonds, averaged over the stationary distribution of

growth states. Depending on V , the term structure may be downward sloping (low V )

or upward sloping (high V ). In addition, the risk-free rate (rate on the 1-year bond) is

non-monotonic in V . The interaction of these effects leads to bond risk premia that may

be positive or negative, and increasing or decreasing with maturity.
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Figure 8: Equity premium
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Annual equity premium, averaged over the stationary distribution of growth states. The

equity premium is non-monotonic in V . Strikingly, the maximum equity premium occurs

when the two agents have roughly equal wealth shares - around V = 0.5 - rather than when

one agent dominates the economy. The equity premium may be higher in the multi-agent

economy than in an economy populated by either agent 1 or agent 2 alone.
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Figure 9: Portfolios
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Portfolios for each agent, in terms of numeraire value of investment in each asset, versus

V . Markets are completed using the numeraire stock, one-period bonds, and fully collat-

eralized 1 and 2 year futures contracts. Plots are averages over growth states using the

stationary distribution; however results for each growth state are very similar. Holdings

of the x-stock are monotonic in V , approximately following changes in wealth. Holdings

of bonds and futures are non-monotonic in V , more reflective of the level of trade between

agents for different wealth distributions. Positions in bonds and futures for agent 1 are

approximately the negative of those for agent 2.
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Figure 10: Open interest in oil futures and spot prices
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The top panel shows open interest in 1 and 2 year oil futures contracts, expressed as the

numeraire value of the contracts. The bottom panel shows spot price of oil for various

V. Results are averaged over the stationary distribution of growth states (s). However

results conditional on a particular s are similar to the mean. Open interest varies widely

and nonmonotonically with V , from nearly 0 to orders of magnitude more than the total

value of oil consumed in the economy. Although the spot price of oil varies also, it does

so monotonically with V. Therefore an increase in open interest has no clear implication

for the spot price of oil, contrary to claims in popular news outlets.
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Figure 11: Probability density of V
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The probability “density” of V is plotted at increasing horizons, of 10, 25, 50, and 100

years, conditional on initial value V0 = 0.05. Although V has a discrete distribution

conditional on V0, we plot a continuous analog to the probability mass function for ease

of visualization. The resulting plot has two main features: (1) V exhibits an upward drift,

such that values Vt > V0 become very likely at longer horizons and (2) the probability

mass becomes more dispersed, such that the range of probable values for Vt becomes much

wider for larger t. Results are computed using Monte Carlo simulation with 10000 paths.
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Figure 12: Evolution over time
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The plots illustrate the average path of the economy over a 50-year period, conditional

initial V0 = 0.05. The initial growth state is selected according to the stationary distribu-

tion. From top to bottom, the panels show V (indicative of agent 2’s wealth share), the

oil spot price, risk premium on one-year oil futures, open interest on 1-year futures, and

open interest normalized by aggregate wealth. Over time, the economy is likely to exhibit

a rising spot price, increasing open interest, and decreasing futures risk premium. Results

are computed using Monte Carlo simulation with 10000 paths.
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