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ABSTRACT 

 
The emerging paradigm of Web services opens a new way of engineering enterprise Web applications 
via rapidly developing and deploying Web applications, by composing independently published Web 
service components to conduct new business transactions. However, how to formally validate and 
reason about the properties of an enterprise system composed of Web service components remains a 
challenge. This chapter introduces an advanced topic of enterprise service computing – formal 
verification and validation of enterprise Web services. The authors introduce a Web Services Net 
(WS-Net), which is an executable architectural description language incorporating the semantics of 
Colored Petri Nets with the style and understandability of the Object-Oriented concept and Web 
services concept. As an architectural model that formalizes the architectural topology and behaviors 
of each Web service component as well as the entire system, WS-Net facilitates the simulation, 
verification, and automated composition of Web services. 
 
The layout of the chapter is as follows: 
 

• Introduction 

• Challenges of formal verification of Web services composition 

• Related work 

• Alternative tools and methodologies 

• Introduction to WS-Net approach 

• Conclusions and future trends 
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INTRODUCTION 
 

The emerging paradigm of Web services opens a new way of engineering enterprise Web 
applications. The key concept is to rapidly develop and deploy Web applications by composing 
independently published Web service components to conduct new business transactions. Accordingly, 
a Web services-oriented system refers to a Web application system that contains one ore more Web 
service components. In theory, a system containing Web service components may also contain some 
parts that are not Web services; however, in reality, every component in a Web services-oriented 
system is wrapped as a Web service. Thus, for the rest of this chapter, we will use the terms service 

components, services, and components interchangeably. 
 
The existing Web services model favors the creation, registration, discovery, and composition of 



distributed Web services. In this model, Web services basically adopt a triangular 
provider/broker/requester operational model, or so called Services Oriented Architecture (SOA), as 
shown in Figure 1. A service provider publishes services at a public service registry using Universal 
Description, Discovery, and Integration (UDDI) (UDDI 2004). The public interfaces and binding 
information of the registered services are clearly defined in a standard Web Service Description 
Language (WSDL) (WSDL 2004). Such a public service registry generally provides two interfaces: a 
registry interface serving service providers, and a query interface serving service requesters. As 
illustrated in Figure 1, published Web services are hosted by the service providers. A service requester 
queries the service registry for interested services registered, and obtains the binding information of 
the corresponding service provider. Then the service requester binds to the service provider, and 
remotely invokes the services from the service provider through a lightweight messaging protocol - 
the Simple Object Access Protocol (SOAP) (SOAP 2003). 
 
Although the paradigm of Web services has been extensively considered as the model of the next 
generation of distributed computing and Internet computing; how to formally validate and reason 
about the properties of an enterprise system composed of Web service components remains a 
challenge. As a matter of fact, the actual adoption of Web services in industry is quite slow, mainly 
because there lacks an established way of formally testing Web services-oriented systems (Zhang, 
2005). As a research aiming at facilitating Web services composition and verification, Web Services 
Net (WS-Net) is an executable architectural description language, which incorporates the semantics of 
Colored Petri Nets with the style and understandability of the Object-Oriented concept and Web 

 
 

Figure 1. Service-Oriented Architecture 



services concept. WS-Net describes each system component in three hierarchical layers: (1) An 
interface net declares the set of services that the component provides; (2) An interconnection net 
specifies the set of services that the component requires to accomplish its mission; and (3) An 
interoperation net describes the internal operational behaviors of the component. Each component 
maybe either an independent Web service or a composition of multiple Web services; and the whole 
system can be considered as the highest level component. Thus, WS-Net can be used to validate the 
intra-component and hierarchical behaviors of the whole system. As an architectural model that 
formalizes the architectural topology and behaviors of each Web service component as well as the 
entire system, WS-Net facilitates the simulation, verification, and automated composition of Web 
services. To our best knowledge, our WS-Net is the first attempt to comprehensively map Web 
services elements to Colored Petri nets, so that the latter can be used to facilitate the simulation and 
formal verification and validation of Web services composition. 
 
The remainder of the chapter is organized as follows. First, we will introduce the state of the art of 
Web services composition towards services-oriented engineering. Second, we will discuss the 
challenges of formal Web services-oriented verification. Third, we will compare options and make 
selections. Fourth, we will discuss related work. Fifth, we will introduce our WS-Net approach. 
Finally, we will make conclusions and discuss future work. 
 
 

STATE OF ART OF WEB SERVICES COMPOSITION AND CHALLENGES 
 

State of Art of Web Services Composition 
 
In this section, we will briefly introduce the state of the art of Web services composition. 
 

Concept of Web Services Composition 
 
The SOA model discussed in the section of introduction describes how to obtain a single Web service. 
In reality, however, a service requester typically needs to synergistically coordinate and organize 
multiple Web services into business processes. Web services composition thus refers to the 
construction process of composite services from Web services, as shown in Figure 2. It generally 
contains two procedures: selecting and constructing. The selecting procedure focuses on selecting 
qualified services, while the constructing procedure focuses on dynamically building flow structures 
over selected services. 
 
Figure 2 illustrates a simplified Web services composition. The composition is conducted by a 
composer residing at the final environment. The composer decides to integrate four existing Web 
services, namely, S1, S2, S3, and S4. As shown in Figure 2, there are temporal relationships between 
the four services. S1 will run first. Then depending on the output of S1, either S2 or S3 will be executed. 
If S2 is chosen, then S4 will be executed afterwards. As shown in Figure 2, the four service 
components will be implemented by four Web services, which belong to different service providers 
and reside on different sites. When the composer runs the composite service in the final environment, 
it will remotely invoke the corresponding Web services according to the predefined scenario. 
 



The construction of a composite Web service can be modeled by specifying a structure of service 
components using a service flow language, such as the BPEL4WS (BPEL4WS 2003) and Microsoft 
BizTalk Server (Microsoft 2003). The structure defines an e-Business process model; an invocation of 
the composite service is treated as an instance of the process model. Examples of composition model 
are eFlow (Casati, Ilnicki et al. 2000), the scenario-based service composition by Kiwata et al (Kiwata, 
Nakano et al. 2001), the quality-driven model by Zeng et al (Zeng, Benatallah et al. 2003; Zeng, 
Benatallah et al. 2004), the constraint-driven composition by Aggarwal et al (Aggarwal, Verma et al. 
2004), etc. 
 
With the rapid increase of the number of Web services published on the Internet on the daily basis, the 
demand for integrating heterogeneous services in an automatic or semi-automatic way becomes 
urgent. Efforts have been made to automate the service composition process by employing discovery 
agents. According to the information provided in a service request, these discovery agents generate a 
structure of service operations based on some registered services. Commonly used approaches for 
agents to make decisions are rule-based systems (Ponnekanti and Fox 2002) and ontology-based 
approaches (Arpinar, Aleman-Meza et al. 2004). However, to date fully automated approaches 
sometimes involve unavoidable unrealistic assumptions, e.g., rule-system-based approaches assume 
that the service requester knows the exact input and output interfaces of a desired composite service. 
Liang et al. thus utilized a semi-automatic approach to assist service composition (Liang, Chakarapani 
et al. 2004). 
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Figure 2. Web services composition 



 
As shown in Figure 2, Web services composition differs from traditional application component 
composition in several significant ways. First, unlike in a traditional component composition where 
component parts are deployed in the same final environment, Web services composition is a virtual 
composition in the sense that all participating services will never be physically deployed into the final 
environment. This is because Web services are hosted by corresponding service providers and can 
only be used through remote invocations. Second, Web services composition implies uncertainties. 
Since Web services are hosted and managed by their own service providers, their availabilities may 
autonomously change (Zhang 2005). An available Web service on a specific day may not be available 
in the next day. Furthermore, the Quality of Service (QoS) and even functionalities of Web services 
can also change over time, due to changes of adopted technologies or business models from the 
corresponding service providers. Therefore, Web services composition may have to be conducted 
upon per-usage basis. Third, Web services composition needs to serve more dynamic changes of user 
requirements. This is not a new issue; however, users adopt Web services for higher flexibility and 
adaptability thus they hold higher expectations than before. 
 

Architecture of Web Services-oriented Systems 
 
Just as an architectural diagram is an essential guideline for architectural constructions, software 
architecture is critical for the success of a Web services-oriented system and Web services 
composition. According to the American Heritage Dictionary, architecture is “the art and science of 
designing and erecting buildings, a structure of structures collectively, a style and method of design 
and construction.” (Mifflin 2000) In other words, software architecture plays an essential role in 
providing the right insights, triggering the right questions, and offering general tools for thoughts. 
Thus, Architecture Description Languages (ADLs) (Medvidovic and Taylor 2000) are commonly 
created to formally specify and define the architectural model of a software system as a guideline 
before construction. 
 
As shown in Figure 3, Web services composition is a process of composing multiple Web services as 
components into a composite Web services-oriented system. In order to facilitate services 
composition, the architecture specification (e.g., an ADL) that represents a complex Web services-
oriented system should capture two dimensions of design information: service dimension and 
architecture dimension. The service dimension focuses on specifying low-level interconnections 
between Web services, e.g., how to glue different service components together, how to communicate 
between services, how to orchestrate services, and how to choreograph services. The architecture 
dimension, on the other hand, focuses on specifying high-level compositional view or architectural 
view of a final composite service, e.g., hierarchical relationships among service components. 
 
In more detail, a Web services-oriented ADL needs to catch the following three categories of design 
information: (1) the structural properties and Web services component interactions, (2) the behavioral 
functionality of each major high-level Web services component, and (3) the behavioral functionality 
of the entire system. In recent years, researchers from both industry and academia have been 
developing a number of Web services-oriented ADLs, typically, Web Services Description Language 
(WSDL) (WSDL 2004), Web Services Flow Language (WSFL) (Leymann 2001), Business Process 
Execution Language for Web Services (BPEL4WS) (BPEL4WS 2003), Web Service Choreography 



Interface (WSCI) (WSCI 2002), XLANG (Thatte 2001), etc. 
 
 

CHALLENGES OF FORMAL VERIFICATION AND VALIDATION OF WEB 

SERVICES COMPOSITION 
 
Although Web services composition exhibits a boom to enterprise software engineering, it is not clear 
that this new model guarantees various Web service components can be composed and integrated 
seamlessly and properly (Zhang 2005). In detail, the flexibility of Web services-centered computing is 
not without penalty since the value added by this new paradigm can be largely defeated if, to name a 
few, selected Web service components do not thoroughly fulfill the requirements (i.e., functional or 
nonfunctional), selected Web service components act errantly in the composed environment, or if 
selected service components cannot collaborate harmoniously. Therefore, it is necessary to fully test a 
Web services-oriented system under various input conditions, and to logically verify certain 
maintenance and QoS conditions associated with Web services. Without ensuring the trustworthiness 
of Web services composition, it is difficult for Web services to be adopted in mission critical 
applications. In short, formally verifying and validating the correctness of logic inside of a 
composition of Web services-oriented systems become critical. 
 
Nevertheless, formal verification of Web services composition is not a trivial task. The last fifty years 
of software development history has witnessed the establishment of an independent research branch as 
software testing. Software testing contains a wealth of theories, technologies, methodologies, and 
tools to guide the verification process of a component-based software product. However, formal 
validation and verification over Web services composition poses new challenges due to the unique 
features of Web services composition. 

Service

Architecture

Service Service Service

Service Service

Service

 
 

Figure 3. Two dimensions of Web services composition 



 
We cannot simply apply the traditional software testing technologies to formally measure and test 
Web services-oriented system. First, such a testing needs to be highly efficient. There are times when 
service components cannot be decided until run time. Testing and making decisions at runtime require 
efficient strategies and techniques. Second, how to test a Web services-oriented system with limited 
information is challenging. Current Web services interfaces expose limited information. Web services 
are Web components only accessible via interfaces published in standard Web services-specific 
interface definition languages (e.g., WSDL) and accessible via standard network protocols (e.g., 
SOAP). Third, such a testing may have to be performed on the per-usage basis. Service components 
are hosted by service providers and invoked remotely; thus, it may be questionable to assume that the 
services stay at the same quality over time. Fourth, Web services-oriented testing has to be highly 
effective. The fundamental hypothesis of the existing testing methods is that exhaustive test cases can 
be conducted upon the testing software product if necessary. It is neither feasible nor practical to 
apply this assumption to Web services testing. Unlike traditional software products that are deployed 
into the target environment, Web services require remote accessing. Thus, conducting a significant 
amount of tests on a Web service implies expensive maintenance of network connections and network 
transmissions, let alone unpredictable Web conditions such as traffic and safety. Finally, since it is 
difficult to obtain precise function descriptions of a Web service, most of the time the only feasible 
and practical way of testing Web services-oriented system is through simulation. 
 
In summary, due to the specific distributed nature of Web services, these existing software testing 
models and methodologies deserve re-inspection in the domain of Web services composition. 
 
 

RELATED WORK 
 
Researchers have conducted significant work in the field of Web services composition description and 
verification. 
 

Web Services-oriented ADLs 
 
In recent years, researchers from both industry and academia have been developing a number of Web 
services-oriented Architecture Description Languages (ADLs), typically Web Services Description 
Language (WSDL) (WSDL 2004), Web Services Flow Language (WSFL) (Leymann 2001), Business 
Process Execution Language for Web Services (BPEL4WS) (BPEL4WS 2003), Web Service 
Choreography Interface (WSCI) (WSCI 2002), XLANG (Thatte 2001), etc. 
 
The common similarity is that all of these ADLs are built upon eXtensible Markup Language (XML) 
(XML) technology, which is extensively considered as a universal format for structured documents 
and data definitions on the Web. Among them, WSDL is the basis of other work. Intending to 
formally and precisely define a Web service, WSDL from W3C (http://www.w3c.org) is becoming 
the ad hoc standard for Web services publication and specification. However, it has been widely 
admitted that WSDL can only specify limited information of a Web service, such as function names 
and limited input and output information. In recognition of this problem, researchers have been 
developing other description languages to extend the power of WSDL to depict system architecture. 



The following are some outstanding examples: 
 

• Web Services Flow Language (WSFL) is a WSDL-based language focusing on describing the 
interactions between Web service components. WSFL defines the interaction patterns of a 
collection of Web services, as well as the usage patterns of a collection of Web services in order 
to achieve a specific business goal. 

 

• The Business Process Execution Language for Web Services (BPEL4WS) specifies an 
interoperable integration model aiming to facilitate the automatic integration of Web service 
components. BPEL4WS formally defines a business process and process integration. 

 

• Web Service Choreography Interface (WSCI) utilizes flow messages to define the relationships 
and interactions between Web service components. According to WSCI, a Web service 
component exposes both a static interface and a dynamic interface when it participates in a 
message exchange with other Web service components. 

 

• XLANG considers the behaviors of a system as an aggregation of the behaviors of each Web 
service component. Therefore, XLANG specifies the behaviors of each Web service component 
independently. The interactions between Web services are conducted via message passing, which 
is expressed as the operations in WSDL. 

 
However, these ADLs either merely focus on static functional descriptions of Web service 
components as a whole (e.g., WSDL), or concentrate only on the behavioral integrations between 
Web service components (e.g., BPEL4WS). In addition, these ADLs focus on topological descriptions 
and concentrate on describing interactions between Web service components. They lack the capability 
to describe the hierarchical functionality of the components. Moreover, there is little concern about 
expressing dynamic behaviors of the defined system. Furthermore, none of these current ADLs 
support dynamic verification and monitoring of the system integrated. Contrast to their work, our 
research focuses on supporting both static and dynamic Web services-based composition. 
 
Chang and Kim proposed I3 (Chang and Kim 1999), which is a layered executable architectural model 
defining component-based systems. However, I3 is based upon the Structural Analysis and Design 
Technology (SADT) (Ross 1984), which is a traditional functional decomposition- and data flow-
centered methodology. In contrast with I3, our WS-Net aims at integrating Colored Petri Nets (CPN) 
with the style and understandability of the Object-Oriented paradigm. In addition, I3 intends to present 
a generic specification model oriented to generic component-based software systems. WS-Net, on the 
other hand, focuses on Web services-oriented system architecture and seamlessly integrates with 
WSDL and XML technology. In other words, although WS-Net was strongly influenced by EDDA 
(Trattnig and Kerner 1980) and I3, we have enhanced the state of the art by supporting modern 
software engineering philosophy equipped with Object-Oriented and component-based notations. 
Furthermore, WS-Net is applied to Web services-oriented systems, as well as integrated with the ad 

hoc Web services standards, such as WSDL and XML. 
 

Formal Verification Work on Services-oriented Systems 
 



Narayanan and Mcllraith proposed to use Petri nets as tools to simulate, verify, and automate Web 
services composition (Narayanan and McIlraith 2002). Their Web services composition refers to the 
composition of programs into a Web service, and does not consider the composition of Web services 
into new Web services. Contrast with their work, our research covers both inter-Web services and 
intra-Web services composition. In detail, our Interconnection Net simulates and validates the 
interactions and composition among Web services. The Interoperation Net simulates and validates the 
composition inside of a Web service, which may or may not contain other Web services. Moreover, 
contrast to their work that does not provide detailed mapping between Web service elements and Petri 
nets elements, our approach provides a direct mapping between the two methodologies. Thus, our 
approach can be used as a guidance to construct Petri nets for Web services composition. 
Furthermore, unlike related work, WS-Net itself is an architectural description language that can 
facilitate hierarchical Web services composition description and definition, in addition to simulating 
Web services composition. 
 
Pi-Calculus, one form of process algebra, was the theoretical basis of the precursors of the ad hoc 

services composition definition language BPEL4WS (Pi-Calculus). The fundamental entity in Pi-
Calculus is a process, which can be an empty process, an I/O process, a parallel composition; a 
recursive definition; or a recursive invocation. Describing services in such an abstract way facilitates 
reasoning about the composition’s correctness through reduction. Pi-Calculus enables verification of 
liveness and behavioral properties. Salaun et al. adopted process algebraic notations to describe Web 
services and the inter-services interactions at an abstract level (Salaun, Bordeaux et al. 2004). Then 
they performed reasoning about the correctness over the services composition through simulation and 
property verification. They also explored the links between abstract descriptions and concrete 
descriptions. From the experience out of a sanitary agency case study, they found that process algebras 
are adequate to describe and reason about services composition, especially to ensure composition 
correctness. Furthermore, Ferrara defined a two-way mapping between abstract specifications written 
in process algebraic notations and executable Web services written in BPEL4WS (Ferrara 2004). In 
addition to temporal logic model checking, Bordeaux et al. adopted bisimulation analysis to verify the 
equivalent behaviors between two Web services (Bordeaux, Salaün et al. 2004). Contrast with their 
work based upon process algebra, our WS-Net roots in Petri nets that are more suitable to simulate 
and reason about large-scale Web services composition and verification. In addition, our WS-Net is 
an architectural description language that supports hierarchical description and definition. 
 
Some researchers focus on adopting finite state automata to verify Web services composition. Bultan 
et al. uses finite state automata to model the conversation specification thus to verify Web services 
composition (Bultan, Fu et al. 2003; Fu, Bultan et al. 2005). Their approach models each service 
component as a Mealy machine, which is a Finite State Machine (FSM) with input and output. 
Service components communicate to each other through asynchronous messages. A conversation 
between service components is modeled as a sequence of messages. Each service component has a 
queue to hold messages; while a centralized global “watcher” keeps track of all messages in the whole 
composite system. Berardi et al. proposed to describe a Web service’s behaviors as an execution tree 
and then translates it into an FSM (Berardi, Calvanese et al. 2003). An algorithm was also presented 
to check whether a possible composition exists, i.e., a composition will finish in finite number of 
steps. Contrast with their work based upon finite state automata, our WS-Net is based upon Petri nets 
that are more suitable to verify large-scale Web services composition. In addition, our WS-Net is an 



architectural description language that supports hierarchical definition of large-scale Web services 
composition and early-stage validation. 
 
 

ALTERNATIVE TOOLS AND METHODOLOGIES 
 
In this section, we will first discuss briefly alternative tools and methodologies, together with how 
they can be used to model Web services composition. By providing their comparisons, we will discuss 
our selection on Petri nets technology together with reasons. 
 
Currently there are generally three alternative techniques to formally verify Web services 
composition: (1) Petri nets, (2) process algebras, and (3) finite state automata. 
 

Petri Nets 
 
Petri nets is a well-established abstract language to formally model and study system composition 
(Jensen 1990). In general, a Petri net is a directed, connected, and bipartite graph with two kinds of 
node types: places and transitions. The nodes are connected via directed arcs; and tokens occupy 
places. When all the places pointing into a transition contain an adequate number of tokens, the 
transition is enabled and may fire; thus the transition removes all of its input tokens and deposits a 
new set of tokens in its output places. 
 
Web services can be modeled as Petri nets by assigning transitions to services and places to 
inputs/outputs. Each Web service has its own Petri net, which describes service behaviors. Each 
service may own either one or two places based upon the nature of the service: (1) one input place 
only, (2) one output place only, or (3) one input place and one output place. At any given time, a 
service can be in one of the following states: not initiated, ready, running, suspended, or completed. 
After defining a net for each service, services can be composed by applying various types of 
composition operators between nets: sequence, choice, iteration, parallel, etc. These composition 
operators will orchestrate nets in different execution patterns. 
 
After modeling Web services composition with Petri nets, one can investigate the generated Petri nets 
to verify system properties, such as deadlocks or nondeterministic status. 

 

Process Algebras 
 
Process algebras are formal description techniques that use temporal logic model to specify and verify 
component-based software systems, especially their concurrency and communication. Process algebra 
is known for its ability of describing dynamic behaviors, compositional modeling, and operational 
semantics, as well as its ability of behavioral reasoning via model checking and process equivalences. 
The central unit of process algebras is process. A process is an encapsulated entity that contains state. 
Different processes communicate with each other via interactions. An action (e.g., shipping an order) 
initiates an interaction. A set of processes can form a larger system. 
 
Process algebras can be adopted to model Web services composition. Each Web service can be 



modeled as a process. By studying algebraic services composition, one can verify composition 
properties such as safety, liveness, and resource management. As a matter of fact, Pi-Calculus, one 
form of process algebra, was the theoretical basis of Business Process Modeling Language (BPML) 
and XLANG, two precursors of the ad hoc services composition definition language BPEL4WS (Pi-
Calculus). 
 
In addition to temporal logic model checking, process algebras contains bisimulation analysis that can 
be used to verify whether two processes have equivalent behaviors, i.e., whether one service includes 
behaviors of another (Bordeaux, Salaün et al. 2004). Thus, bisimulation analysis can be used to decide 
whether two Web services are replaceable, as well as the redundancy of services. 
 

Finite State Automata 
 
A Finite State Machine (FSM) or so-called finite automaton is a well-established model of behaviors 
composed of states, transitions, and actions. A state stores information; a transition indicates a state 
change and is guarded by a condition that is required to be fulfilled; an action is a description of an 
activity to be performed at a given time point. Generally, four types of actions can be identified: entry 
action, exit action, input action, and transition action. 
 
Finite State Machines can be adopted to represent the aspects of a global composition process. In 
detail, Web services composition specification can be described using temporal logic; then the FSMs 
model can be traversed and checked to verify whether the workflow specification holds. Specially, 
this approach can be used to verify data consistency, unsafe state avoidance (deadlock), and business-
constraint satisfaction. Current research efforts along this direction can be further categorized into two 
groups: conversation specification and automatic services composition (Milanovic and Malek 2004). 
Research on the former one focuses on using Mealy machines to model asynchronous messages 
between service components, thus verify the realizability of a services composition specification. 
Research on the latter one focuses on modeling service behaviors as an execution tree, and then 
translating it into an FSM. The generated FSM then can be checked to verify whether a possible 
composition exists, i.e., whether it can be finished in finite number of steps. 
 

Comparisons 
 

Each of the three alternative techniques exhibits advantages and disadvantages over simulating and 
verifying Web services composition, as shown in Figure 4. 
 
Petri nets is a modeling approach that utilizes graphical representation to specify and simulate events 
and state changes. It has been widely used as a graphical formal modeling tool for systems involving 
communication, concurrency, synchronization, and resource sharing. However, Petri nets also has 
disadvantages. First, Petri nets are more expressive than Finite State Machines (Peterson 1981). 
Second, such a kind of graph is easy to understand when the graph contains small amount of elements. 
However, if the modeled system is large-scale and complex, the net will quickly grow large, and the 
graph will become too complicated to understand and extract useful information from it. High-level 
hierarchical Petri nets provide scalable support for modeling large-scale systems, such as Hierarchical 
CP-nets (HCP-nets). Third, there is no direct and explicit mapping between Petri nets constructs and 



Web services composition. For example, there is no concept of delimited process in Petri nets. Thus, 
one needs to find an appropriate implicit mapping between Petri nets constructs and Web services 
concepts, e.g., each Web service can be mapped to a transition in Petri nets, and its input and output 
can be mapped to places in Petri nets. 
 
Process algebras can model services composition in a simple and straightforward description. Each 
Web service component can be naturally modeled as a process, which is the fundamental entity of 
process algebras. Process algebra facilitates formal specification of message exchanges between Web 
service components. By studying the interactions between modeled processes, one can verify the 
services composition in a natural way. However, there exists no tool to automatically investigate and 
simulate generated algebraic services composition. Manual analysis through algebraic reduction can 
be both time consuming and error prone. 
 
The same issue exists for finite state automata, although FSMs are natural to model services 
composition through state modeling and transitions. Enduring the same situation as for process 
algebras, there is no tool existed to automatically investigate and simulate generated FSMs for 
services composition. This approach requires users to capture composition properties with temporal 
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logic formula. Manual analysis is impractical for dynamic and efficient verification, which is a 
compulsory requirement for services composition verification. 
 
In summary, as shown in Figure 4, all Petri nets, process algebras, and finite state machines can 
perform formal verification and possess analysis ability, and they all root in theoretical foundations. 
With the Hierarchical CP-nets (HCP-nets), high-level Petri nets can support more complexity. All 
Petri nets, process algebras, and finite state machines provide powerful mechanisms to model static 
system properties. However, only Petri nets support dynamic properties modeling. In addition, Petri 
nets provide available graphical tools for simulation, while the other two approaches do not. These 
tools provide powerful facility to analyze concurrency, deadlock, and asynchronous behaviors. Thus, 
user efforts involved can be relatively low, comparing to those involved in process algebras and finite 
state machines. However, Petri nets do not specify explicit concept of process; thus, modeling 
process-centric Web services composition requires special mapping mechanisms between Petri nets 
concepts and Web services concepts. 
 

Our Selection 
 
In our research, we chose to adopt Petri nets due to its combination of (1) rich computational 
semantics, (2) ability to formally model systems that are characterized as being concurrent, 
asynchronous, distributed, parallel, nondeterministic, and stochastic, (3) ability to conduct 
quantitative performance analysis, and (4) availability of graphical simulation tools. Petri nets also 
have natural representation of changes and concurrency, which can be used to establish a distributed 
and executable operational semantics of Web services. In addition, Petri nets can address offline 
analysis tasks such as Web services static composition, as well as online execution tasks such as 
deadlock determination and resource satisfaction. Furthermore, Petri nets possess natural way of 
addressing resource sharing and transportation, which is imperative for the Web services paradigm. 
Moreover, Petri nets have a set of available graphical simulation tools, represented by Design/CPN 
( Meta Software Corporation 1993). 
 
 

INTRODUCTION TO WS-NET APPROACH 
 
In this section, we will introduce our Web Services Net (WS-Net). First, we will provide a brief 
overview of Petri nets, focusing on their notions for high-level architectural design. We will also 
briefly describe a couple of high-level Petri nets techniques that will be used in our approach, such as 
Colored Petri Nets (CPN) and Hierarchical CP-nets (HCP-nets). 
 

Overview of Petri Nets 
 
The concept of Petri nets was coined by Carl Adam Petri in his Ph.D. thesis in 1962 (Petri 1962). 
Rooted in a strong mathematical foundation, Petri nets is a well-known abstract language to formally 
model and study systems that are characterized as being concurrent, asynchronous, distributed, 
parallel, nondeterministic, and/or stochastic (Jensen 1990). In general, a Petri net is a bipartite graph 
with two kinds of node types: places and transitions. The nodes are connected via directed arcs, and 
tokens occupy places. Graphically, circles represent places; rectangles represent transitions. All places 



holding zero or more tokens together exhibit a specific state of the system at a moment. Transitions 
can change the state of the system: when all the places pointing into a transition contain an adequate 
number of tokens, the transition is enabled and may fire; thus the transition removes all of its input 
tokens and deposits a new set of tokens in its output places. 
 
In other words, transitions are active components. They model activities that can occur (e.g., the 
transition fires), thus changing the state of the system (e.g., the marking of the Petri net). Transitions 
are only allowed to fire if they are enabled, meaning that all the preconditions of the activity must be 
fulfilled (e.g., there are enough tokens available in the input places). When the transition fires, it 
removes tokens from its input places and adds some at all of its output places. The number of tokens 
removed/added depends on the cardinality of each arc. The interactive firing of transitions in 
subsequent markings is called token game. 
 
Formally, a Petri net is a triple PN = (P, T, F) composed of: 

1. P is a finite set of places, P = {p1, p2, …, pm} 
2. T is a finite set of transitions, T = a. 
3. F is a set of arcs that represent the flow relation between places and transitions. F contains 

both input relations that map each transition from a set of places, and output relations that map 
each transition to a set of places, )()( PTTPF ΧΧ= ∪ . 

 
If we use Petri nets to model a system, the transitions model the active part of the system, the places 
model the passive parts, and the markings describe the system states. The arcs of a graph are classified 
into three categories: input arcs, output arcs, and inhibitor arcs. Input arcs are arrow-headed arcs from 
places to transitions; output arcs are arrow-headed arcs from transitions to places; inhibitor arcs are 
circle-headed arcs from places to transitions. 
 
Colored Petri Nets (CPN) (Jensen 1990) extend the Petri nets to model both the static and dynamic 
properties of a system. The notation of CPN introduces the notion of token types; namely tokens are 
differentiated by colors that may be arbitrary data values. Each place has an associated type, which 
determines the kind of data that the place may contain. The graphical part of CPN depicts the static 
architectural structure of a system. Combined with other powerful elements such as colored tokens 
and simulation rules, CPN is highly powerful in modeling dynamic behaviors of a system. 
Formally, a CPN is a tuple CPN = (∑, P, T, A, N, C, G, E, I) composed of: 

1. ∑ is a finite set of non-empty types, called color sets. 
2. P is a finite set of places. 
3. T is a finite set of transitions. 
4. A is a finite set of arcs such that: 

P ∩T = P ∩ A = T ∩ A = Ø. 
5. N is a node function. It is defined from A into )()( PTTP ΧΧ ∪ . 

6. C is a color function, which is defined from P into ∑. 
7. G is a guard function, which is defined from T into expressions such that: 

∑⊆∧=∈∀ )))((())(([, tGVarTypeBooltGTypeTt  

8. E is an arc expression function, which is defined from A into expressions such that: 

∑⊆∧=∈∀ )))((())(())(([, aEVarTypeapCaETypeAa MS  

 where p(a) is the place of N(a). 



9. I is an initialization function, which is defined from P into closed expressions such that: 

])())(([, MSpCpITypePp =∈∀  

 
In order to handle large-scale and complex systems, several variants of Petri nets emerged. The 
Hierarchical CP-nets (HCP-nets) were created to manage the complexity of large-scale systems by 
providing facility to specify the hierarchical relationships between nets. Hierarchical Colored Petri 
Nets (HCPN) introduce a facility for building Petri nets from subnets or modules. The HCPN theory 
intends to allow the construction of a large-scale model by using a number of small Petri nets, which 
are related to each other in a well-defined and well-organized manner. 
 
Earlier researchers have conducted a large amount of work to utilize CPN to model system 
architecture. EDDA (Trattnig and Kerner 1980) combines Petri nets and SADT technology for high-
level system specifications. Although EDDA successfully combines the semantics of Petri-nets with 
the syntax of SADT, it lacks the ability to specify modern software systems, as EDDA does not 
embody the Object-Oriented paradigm and the component-engineering concept (Chang and Kim 
1999). Pinci and Shapiro presented an automatic mechanism to translate SADT diagrams into 
Hierarchical CP-nets (HCP-nets), and in turn to convert HCP-nets into Standard ML-executable code 
(Pinci and Shapiro 1990). This SADT-like Petri nets-based system specification suffers the same 
problems faced by EDDA, due to the rigid structural nature of SADT and its lack of Object-Oriented 
concepts. 
 

WS-NET 

 
As we discussed in the previous sections, formal verification of Web services composition is highly in 
demand, and we decided to adopt the Petri nets technology for the specification and reasoning. 
Meanwhile, Architectural Description Languages are essential to facilitate services composition 
design. Therefore, we combine these two demands – we introduce an ADL that enables hierarchical 
formal verification of Web services-oriented system composition. 
 
In detail, our goal is to enable formal defining and automated reasoning technology to describe, 
simulate, test, and verify Web services composition. In other words, we intend to establish a formal 
modeling and specification framework for Web service composition. Our approach is to introduce a 
Web Service Net (WS-Net), which is a Petri nets-based executable architectural specification 
language. 
 
WS-Net specifies a Web services-oriented software system as a set of connected architectural 
components described as nets. The architectural components correspond to the functional units in the 
system, and one architectural component may in turn be composed of multiple smaller architectural 
components. The entire system can be viewed as the highest-level architectural component. Each 
architectural component is either statically or dynamically realized by a Web service component. 
Architectural components are connected to each other via XML message passing through Simple 
Object Access Protocol (SOAP), the ad hoc transportation standard in the realm of Web services. The 
message passing mechanism mediates the interactions between architectural components via the rules, 
which regulate the component interactions. In our model, we will use the concept of connector (Shaw, 
DeLine et al. 1995) in CPN to model message passing. 



 
As shown in Figure 5, WS-Net defines each architectural component in a three-aspect specification: 
(1) interface net, (2) interconnection net, and (3) interoperation net. The interface net declares the 
services to be provided by each Web service component; the interconnection net specifies the Web 
services to be acquired from other Web service components in order to accomplish its own mission; 
the interoperation net describes the functionality of each Web service component and the entire 
system in terms of control flow and data flow. 
 
Each component must have one interface net definition and it can be accessed only via the defined 
interface. The definition of the interface net follows that of WSDL. The interconnection net specifies 
the operations to be acquired from other Web services to perform its execution. It is possible for a 
service component not to have an interconnection net, in which case the service component is self-
sufficient and does not need support from other services to conduct its mission. In the interconnection 
net, each operation required is further specified by a set of foreign transitions, which represents the 
operations of other components. In other words, the interface net identifies each component in the 
system as a unique functional object, and the interconnection net specifies the relationships between 
components. As a result, we can visualize the entire topological view of a system by interconnecting 
each of the interconnection nets according to our unique component-interconnection technique, which 
will be discussed in later sections. The interoperation net describes the dynamic behaviors of a service 
component by focusing on its internal operational nature. The goal of the interoperation net is to 
dissect each operation into fundamental process units, which, taken together, define the required 
functional content of the operation. Each transition representing an operation of the component is 
decomposed into sub-transitions representing fundamental process units. Control flow and data flow 

are used for describing inter-communications between process units. 

 
 

Figure 5. WS-Net 



 
As illustrated in Figure 5, WS-Net covers various aspects of a Web service. The interface net 
publishes a Web service to outer world. The interconnection net specifies necessary support. The 
interoperation net not only handles the internal workflow of the Web service, but also handles 
incoming requests. As shown in Figure 5, a Web service typically adopts a passive invocation mode; 
meaning that the Web service will stay idle until triggered (i.e., requested). When a Web service is 
triggered (i.e., invoked), it will also accept incoming input arguments to start the interoperation net. In 
summary, the three nets of WS-Net together can represent a Web service in a large-scale system and 
system composition. 
 
To facilitate our discussions, throughout the rest of the chapter, we will use a simplified typical Web 
services messaging processing model as an example to elucidate the fundamental idea of WS-Net. As 
shown in Figure 6, this example illuminates a messaging system that provides a messaging service for 
users. The system is centered around a central storage place that acts as a message queue. All users 
submit messages to the message queue; and retrieve messages from the message queue. Three 
distributed Web service components are identified in the system: the message queue, a commit 
engine, and a message composer. As shown in Figure 6, if a message sender wants to publish a 
message, he will send the message to the commit engine that stores the message to the message queue. 
When a user wants to retrieve messages, the message composer will search the message queue on 
behalf of the user according to his profile, fetch messages, and compose them into a package before 
sending back to the user. In this example, different components interact with each other via SOAP. 
 

Interface Net 
 
Constructing a WS-Net specification starts from identifying the architectural components from the 
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Figure 6. Simplified message queue example 



system specification using a top-down approach. We use the term architectural component here 
instead of a service component, meaning that an architectural component may refer to the whole 
system, a sub-system, or a single service component. This generic feature enables the interface net to 
be applied to various levels of system composition. The interface net of a Web service defines 
expected responsibilities, or features, of each architectural component by specifying its interface as a 
set of semantically related services (i.e., operations) provided. The interface here denotes the names of 
the services provided and their signature information for invoking the services. A Web service can be 
accessed only through its interface. In an interface net, each service is modeled as a transition in Petri 
nets notation. Therefore, a transition is called a service transition in WS-Net. The name of a service 
transition refers to the service to be provided by the corresponding service component. Each service 
transition has an input place called input port where the service receives invocations; and an output 
place called output port where the result of a service is placed before being returned to the service 
requester. In other words, a Web service adopts an asynchronous communication mode. The interface 
net is complied with WSDL. 
 

A WS-Net specification of an architectural component j can be denoted as Ci. Ci ∈ C, where C is the 
set of all Web service components identified in the software architecture. The interface net of the 
component Ci can be represented as: 
 

iijij
j

i SSSC ∈= ,∪  

where Si is a set of services provided by Ci. Each service Sij ∈ Si is represented by a tuple 
 

Sij = (PIij, POij, Tij, Aij, c) 
where PIij and POij are the input port and the output port of Sij, respectively. 
 
Here we use port instead of place for compatibility with WSDL specifications, so as to facilitate 
automatic translation from WSDL specification to WS-Net. Tij represents the service Sij as a 
transition; Aij represents the input and output arcs of the transition Tij, and c is a color function for the 
place. The color inscriptions of the place represent the signature information of the operations as used 
in CPN. 
 
The goal of the interface net is to define the provided services that are provided by the service 
component. The names attached to the service transition inscription represent the names of the 
services. Note that the names of the places and transitions are the labels to identify the places and 
transitions, and they are not considered as semantic inscriptions of Petri nets ( Meta Software 
Corporation 1993). Instead, as defined in Colored Petri Nets (Jensen 1990), they are used to help 
designers understand the specifications and to support hierarchical composition of pages, such as 
transition substitution and place fusion. The signature information of each service can be described by 
color inscription on input and output ports (i.e., CPN places). However, it is not important to specify 
the detailed data structure at this stage of the design. The main purpose of coloring places is to help 
people understand the usage of a service component at the architectural level in the whole system. 
Therefore, the only imperative information to be specified is what kind of information needs to be 
provided to invoke the service of the service component. 
 



Using our message queue example, the interface net specification of the message queue component is 
illustrated in Figure 7. The message queue provides two services: enqueue service and dequeue 

service, which accept user submitted messages and retrieve user message requests respectively. In 
order for the services to be invoked, the corresponding input ports of the services must receive proper 
tokens. Enqueue service receives an item token and returns a Boolean result as either success or fail; 
Dequeue service receives a request as a unit token and returns a dq_rslt in case of success, or err in 
case of failure in case of an empty queue. The unit color set has no predefined service, but is very 
useful as a placeholder (Jensen 1990). 
 
In addition to the inscription for places, transitions, and arcs as used in CPN, WS-Net provides 
additional inscriptions for both service components and each service provided. In detail, for the 
service component inscription, service component name is provided to uniquely identify the service 
component. For a service inscription, service name and connector type information are provided. 
Connector type implies the possible protocols to be used when the service is invoked. In our example, 
both enqueue and dequeue services are invoked via the SOAP protocol. If multiple protocols can be 
used, the connector type can have multiple entries. Similar to the name inscription for places and 
transitions, these inscriptions for service components and services are not considered as Petri nets 
inscriptions. Instead, these inscriptions are used to interconnect architectural service components, 
which will be discussed in the interconnection net in the next section. 

Service Component Name: Message Queue
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Figure 7. Interface net for service component Message Queue

 



 
In our example, the two service components commit engine and composer (as shown in Figure 6) use 
the enqueue and dequeue services provided by the message queue service component. In other words, 
the commit engine and composer are client components for the message queue service component. 
Figure 8 shows the interface net of the commit engine, which provides one service called commit. The 
commit engine sends data as parameters to the message queue service component and receives an 
acknowledgement msg. Similarly, as shown in Figure 9, the composer provides one service called 
retrieve, and sends a request rqst to the message queue service component and receives data as reply. 
As we explained previously, the color of token is used here. We assume that the SOAP protocol is 
used when the commit engine and the composer service components communicate with the message 

queue service component. Note that an interface net specifies only the services provided by the 

corres



ponding service component; thus, it does not specify connections between components. 
 

Interconnection Net 
 
In order to describe the relationships between architectural components in a services-oriented system, 
we need to specify both the provided services (i.e. via the interface net specification) and required 
services of the service components. In other words, a service component may require supporting 
services in order to provide promised services. By specifying all required services of a service 
component, the interconnection net describes all the possible dependencies upon other service 
components in the system. The interconnection net is not mandatory however; instead, it is imperative 
only when a service component requires foreign services to perform its own commission. For 
instance, in our example, the message queue service component does not require any other services as 
support; therefore, there is no interconnection net associated with the message queue component. The 
interconnection net depicts a client/server relationship between components. If service component Ci 
requests a service from service component Cj, Ci is called a client service component, and Cj is called 
a server service component. A service component can act as a client service component at some time, 
and as a server service component at other times. 
 
WS-Net chooses to define required services as foreign services since the services need to be 
performed by other service components. Conforming to the definitions in CPN, in the interconnection 
net, the required services are specified as a special kind of transition called foreign transition. As in 
the interface net, the interconnection net specifies an architectural service component as a set of 
provided services. Each provided service containing foreign transitions is in turn decomposed into a 
set of required foreign services. A foreign transition is therefore an abstract view of the service 
provided by another service component. To differentiate with local service component, the input and 
output places of a foreign transition are called input plugins and output plugins, respectively. 
 
In order to link together a service component and its supporting service components, we introduce 
two extra transitions for each service component, namely, a start transition and an end transition. As 
shown in Figure 10, the input port (i.e., place) of the start transition is always the input port of the 
service component; the output port (i.e., place) of the end transition is always the output port of the 
service component. A service component may require support from multiple foreign service 
components before it can perform its execution. Figure 10 illustrates a service that requires n foreign 
transitions. With the introduction of start transition and end transition, this multiple support 
relationship can be denoted using WS-Net specifications. Using the notation we introduced above, if a 
service requires supporting service from multiple foreign services, it will have a set of input plugins 
and a set of corresponding output plugins. 
 
For services that do not require any foreign transitions, the service specification of the interface net 
will suffice. Foreign transitions also have inscriptions similar to the provided services of a service 
component. However, as shown in Figure 10, inscriptions of foreign transitions contain names of the 
remote service components, names of the services required from the service components, and the type 
of connectors to be used to invoke each foreign transition. These service names and component names 
are used to identify the services represented by foreign transitions. In addition to the inscriptions, the 
color set of the plugins of the foreign services in the client (i.e., local) service component and its 



corresponding color set for the services of the remote server service component must be compatible. 

 
 
Thus, a service Sij requiring foreign services is represented as a tuple: 

 
Sij = (PIij, POij, QIij, QOij, TSij, TEij, TFij, Aij, c), 

 
where PIij and POij are the input port and the output port of Sij respectively, as in the interface net. TSij 
and TEij represent the start transition and the end transition of the service component Sij. The input 
place of TSij is the input port PIij, and the output place of TEij is the output port POij. TFij is a set of 
foreign transitions. QIij is a set of input plugins, and QOij is a set of output plugins. Aij is a set of input 
and output arcs for the transitions. As in the interface net, c represents a color function. 
 
Figure 11 and Figure 12 show the interconnection nets of the service component commit engine and 
composer, respectively. The commit engine service component needs to invoke the enqueue service 
from the component method queue, and the composer service component needs to invoke the dequeue 
service. Therefore, enqueue and dequeue services are represented as foreign transitions. Inscriptions 
for the foreign transitions show that they are calling enqueue and dequeue services from the service 
component message queue via SOAP. 
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Service Component Name: Integrator
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Figure 12. Interconnection net for Integrator
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After specifying individual service components in terms of the interface nets and the interconnection 
nets, we are ready to visualize the entire topological view of a system by interconnecting all of these 
WS-Net components. Firing a foreign transition means executing the corresponding service transition 
of the server component. Therefore, connecting WS-Net components can be achieved by merging the 
ports of the client service components with the ports of the server service component, after removing 
foreign transitions from the client service components. In our WS-Net, we thus introduce a special 
kind of transition aiming at connecting ports. This transition is called a connector transition, and it is 
named by a connector type. Figure 13 shows the connected interconnection net that describes the 
entire information-communication model by interconnecting the commit engine and the composer 
with the message queue using SOAP connectors. 
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In summary, such an interconnection mechanism can be applied across different levels of service 
component diagrams. In detail, interconnections can be visualized in two levels: (1) interoperation 
nets of client/server service components, and (2) the folding/unfolding of interface nets of service 
components. This is an important feature to visualize very large systems. By applying such visual 



abstractions, such as replacing large interoperation nets with simpler interconnection nets or even with 
interface nets, complicated nets can be effectively visualized at various levels of abstraction. 
 

Interoperation Net 
 
The interoperation net describes the dynamic behaviors of a service component by focusing on its 
operational nature. The goal of the interoperation net is to dissect each service into fundamental 
process units which, taken together, define the required functional contents of the service. This is 
similar to the SADT functional decomposition, where each transition representing the operations of a 
component is decomposed into sub-transitions to represent fundamental operational state. One of the 
most important differences between the decomposition in our interoperation net and SADT is that, the 
interoperation net uses the decomposition as a means of expressing the behaviors of the services 
provided by an architectural service component, rather than functional decomposition for 
modularization used in SADT. As in SADT, the control flow and data flow are used to describe the 
interactions between process units. Note that it is important to distinguish foreign transitions from 
detailed processes. The foreign transitions along with plugin places are used to interconnect the 
interoperation nets to form the entire system view. Like other Petri nets-based high-level design 
representations, places are used to represent the control or data; and transitions are used to represent 
processes. 
 
Chang and Kim found that the straightforward techniques converting functional data flow to Petri nets 
have a potential problem in repeated (persistent) simulations of the nets (Chang and Kim 1999). To 
solve this problem, in WS-Net, we distinguish persistent data from transient data. Persistent places are 
represented as boldface circles. Persistent data items are similar to the data attributes of a class in the 
Object-Oriented paradigm. These persistent data items represent the state of a service component, and 
they exist throughout the lifetime of the service component. On the other hand, transient data items 
are produced by one process and are immediately consumed by another process. Therefore, transient 
data items are created only when they are needed and destroyed upon the completion of the service. 
 

A service Sij ∈ Si of service component Ci can be denoted as follows: 
 
Sij = (PIij, POij, PTij, PPij, QIij, QOij, TLij, TFij, Aij, c, G, E, IN), 

 
where PIij and POij are the input and output ports; PTij and PPij are a set of transient data places and a 
set of persistent data places respectively. TLij is a set of local transitions; and TFij is a set of foreign 
transitions. QIij is a set of input plugin places serving as input places for the foreign transitions; and 
QOij is a set of output plugin places serving as output places for the foreign transitions. Aij is a set of 
input and output arcs of the transitions. To describe the functional behaviors of a component, we can 
use all the inscriptions used in CPN (Jensen 1990). As before, c is a color function to represent the 
color sets for the places. G is a guard function for the transitions. E is an arc expression function, and 
IN is an initialization function for the tokens. 
 
In our example, the message queue service component has enqueue and dequeue services. The control 
and data are represented by places; and processes are represented by transitions. Figure 14 shows the 
first phase of the interoperation description of the message queue component. Count and storage 



places are defined as persistent data and represented with boldface circles. Since the persistent data 
may exist throughout the lifetime of a service component, we need to initialize the persistent places 
with proper tokens for later simulations. Tokens in the transient places are produced as a result of 
firing transitions. It is common for persistent data items to be shared by other services in the same 
component. If different services use the same persistent data, they need to be merged using the place-
fusion technique defined in high-level Petri nets. As shown in Figure 14, count and storage are 
persistent places of both the enqueue and dequeue services. By merging the persistent places of the 
two services, the interoperation net for the message queue component can be completed. 
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As we further decompose the functional behaviors of each service, we can get a more complex 
interoperation net. Figure 15 shows a more detailed interoperation net of the service enqueue of the 
message queue service component. First, the service receives a request to insert a message into the 
message queue. Both the content places and store places are checked for full before an item can be 
inserted. If the store place is not full, the message can be inserted into the queue. Then the service 
updates the full flag after the insertion of the message. A Petri net can be constructed by mapping 
each functional process into a transition, and input and output into places. After all the interoperation 
nets of the architectural service components are specified, we can again visualize the entire system 
topology by connecting the plugins of the client service components with the ports of the server 
components using the connector transitions. 



Figure 15. Interoperation net for Enqueue service
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Connected interoperation nets can be executed under different input scenarios to simulate the 
behaviors of a services-oriented system. The execution proceeds by assigning initial tokens to the 
input ports. The execution traces can be visualized to analyze the runtime quality attributes and to 
enhance communications with user communities by providing an executable model of the system 
early in the development process. 
 

WS-NET-BASED FORMAL VERIFICATION 
 
We have introduced the basic concepts and specifications of WS-Net. By using a typical Web services 
message processing as an example, we illustrate how to model a Web services-oriented system into a 
hierarchical WS-Net. How to model a software system using Petri nets has already been extensively 
discussed in many other publications, in this section, we will introduce the mappings between Web 
services concepts and Petri nets specifications, as general guidance of modeling Web services-
oriented systems using Petri nets. Figure 16 summarizes the mappings that are critical due to the fact 
that Petri nets do not explicitly support the concept of process. 
 
As shown in Figure 16, Web services (i.e., service components and services provided) are modeled 
using transitions. The input and output of a service are modeled by two kinds of places, namely, input 
places and output places, respectively. Messages exchanging between Web services are modeled as 
connectors in Petri nets. In order to enhance readability, labels are used to identify Web services by 
names. If a Web service requires other services as support, foreign transitions are used to model 
supporting Web services. Thus, the message interactions between Web services are modeled as data 



flow between input places and output places via connectors. In order to handle complexity, transition 
substitution is used to fold/unfold hierarchical services composition into modularized nets, according 
to architectural structure of a system. In WS-Net, data are modeled by tokens. The concept of color is 
used to specify the signature and data types of data. Persistent data and transient data are differentiated 
using persistent places and transient places. Data sharing between Web services are modeled by the 
place fusion concept in Petri nets. 
 
With the mapping mechanisms established, we can turn a Web services-oriented system into a 
simulatable Petri nets-based WS-Net. With this simulation, we can detect and identify services 
composition errors using the analysis mechanisms provided by Petri nets. The simulation of the 
executable system thus can be used to verify the correctness of the system. The interconnection 
mechanism of WS-Net enables analyzing complicated system composition at different granularities. 
Associated with the interoperation net, WS-Net provides a structured way to zoom in and out to 
analyze architectural system composition at various levels. 
 
Using WS-Net, formal verification can be conducted at design time of system composition, in order to 
detect potential composition errors at early stage thus to correct errors as early as possible. 
Particularly, WS-Net focuses on analyzing important composition criteria, such as reachability, 
boundedness, and liveness. By examining dead markings, we can verify the reachability of a certain 
WS-Net thus verify whether certain composition protocols (i.e., rules) are enforced and conformed. 
The state space analysis can be carried out to detect whether a deadlock possibly exists in the design 
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Figure 16. Mapping between Web services concepts  
and Petri nets specifications 



of the services composition. The visualization of the composition and interactions between Web 
service components help engineers verify compositional message exchanges and synchronizations. 
WS-Net analysis and simulation can start with an initial marking inputted into a WS-Net model. 
Running the simulations, we can check whether the service composition will execute as expected, and 
whether the service composition confirms with the conversational protocols between service 
components. Furthermore, different markings can be used to feed the constructed WS-Net to verify 
system behaviors under various situations. 
 
 

CONCLUSIONS AND FUTURE TRENDS 
 
In this chapter, we introduced an advanced topic of service computing: how to formally verify Web 
services-oriented system composition. We first introduced the basic concepts of services composition 
in the context of Web services technologies. Then we surveyed possible solutions and existing efforts 
for formally verifying Web services-oriented system composition. After comparing various options, 
we introduced Web Services Net (WS-Net), an executable Petri nets-based architectural description 
language to formally describe and verify the architecture of a Web services-oriented system. The 
behaviors of such a model can be simulated to detect errors and allow corrections and further 
refinements. As a result, WS-Net helps enhance the reliability of Web services-oriented applications. 
Furthermore, it is compatible with the Object-Oriented paradigm and component-based concepts. 
Supporting modern software engineering philosophies oriented to services computing, WS-Net 
provides an approach to verify and monitor the dynamic integration of a Web services-oriented 
software system. Specification formalism in WS-Net is Object-Oriented, executable, expressive, 
comprehensive, and yet easy to use. A wide body of theories available for Petri nets is thus available 
for analyzing a system design. To our best knowledge, our WS-Net is the first paper to 
comprehensively map Web services elements to CPN so that the latter can be used to facilitate the 
simulation and formal verification and validation of Web services composition. 
 
However, manually transferring WSDL specifications into the WS-Net specifications is not a trivial 
job. That is why currently we have only built some simple experiments, e.g., the example described in 
the paper. In order for WS-Net to monitor and verify real-life applications, the translation from 
WSDL into WS-Net must be automated. 
 
Meanwhile, since all transient tokens are created by local transitions and all persistent tokens are 
restored before the completion of the service, repeated simulation of the net is possible. Furthermore, 
in converting functional data flow models to Petri nets, we also face the concurrency and choice 
problems (Trattnig and Kerner 1980). Those problems need to be addressed properly by system 
engineers, who build the system architecture by using WS-Net. 
 
Despite of the challenges WS-Net is facing, our preliminary experiences prove its effectiveness and 
efficiency of formally verifying Web services-oriented system composition. WS-Net uses an iterative 
and top-down process of investigating and examining services composition using the Petri nets 
vehicle of technology. Future work will focus on building automatic translation tools from Web 
services system specification into Petri nets tool-based specifications to automate the simulation of 
Web services composition. 
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