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2 Data Mining in Systems Health Management

1.1 Introduction

Bayesian networks have established themselves as an indispensable tool in
artificial intelligence, and are being used effectively by researchers and prac-
titioners more broadly in science and engineering [31, 8, 17]. The domain
of system health management, including diagnosis, is no exception. In fact,
diagnostic applications have driven much of the developments in Bayesian net-
works over the past few decades [1, 40, 13, 20, 36, 37, 25, 34]. In this chapter,
we provide a gentle and accessible introduction to modeling and reasoning
with Bayesian networks, with the domain of system health management in
mind.

Formally, a Bayesian network is a type of statistical model that can com-
pactly represent complex probability distributions. Bayesian networks are par-
ticularly well-suited to modeling systems that we need to monitor, diagnose,
and make predictions about, all under the presence of uncertainty. The system
under consideration may be a natural one, such as a patient, where our goal
may be to diagnose a disease, given the outcomes of imperfect medical tests
[1, 40, 13]. The system may be artificial, such as an aerospace vehicle, where
our goal may be to isolate a component failure, given a vector of unreliable
sensor readings [20, 36, 37, 25, 34]. In aerospace, these goals and algorithms
are useful in developing techniques for what is often referred to as fault detec-
tion, fault isolation and recovery (FDIR). Bayesian networks can also model
large-scale systems, even in settings where reasoning must be done in real-
time. For example, in an online system, we may want to detect impending
failures, given access to possibly noisy observations.

Our goal in this chapter is to provide the reader with a high-level perspec-
tive on Bayesian networks, with a focus on systems health management. We
also hope to give a taste for the capabilities that Bayesian networks bring,
in terms of modeling, reasoning, and learning in complex systems. First, in
Section 1.2, we highlight briefly the problem of system health management,
and introduce a small system that will be used as a running example in the
following few sections. Section 1.3 provides an introduction to Bayesian net-
works, and Section 1.4 highlights the process by which Bayesian networks are
constructed. Section 1.5 illustrates the reasoning capabilities that Bayesian
networks provide, again through simple examples. Section 1.6 gives a brief
overview of the types of algorithms, developed in the artificial intelligence
community over the past three decades, available for reasoning in Bayesian
networks. Section 1.7 does similarly for the task of learning Bayesian networks
from data. Section 1.8 presents a real-world application of Bayesian networks
in diagnosing Electrical Power Systems, developed for a testbed located at
the NASA Ames Research Center. Finally, Section 1.9 concludes this tutorial,
which also includes references to relevant books and software systems, for the
interested readers.
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1.2 System Health Management and Uncertainty

System health management is often needed due to uncertainty regarding
a system’s operation as well as in the system’s environment. For example, a
system might be an aerospace vehicle, and we may consider how uncertainty
plays a key role during a NASA vehicle’s mission. Uncertainty may be induced
by: (i) the varying and uncertain environments in which vehicles operate; (ii)
the unpredictability of hardware and software failures that can take place in
these vehicles; (iii) noisy and ambiguous sensor systems; (iv) incomplete and
uncertain knowledge of the physics of dynamic systems, both terrestrially and
extra-terrestrially.

Beyond the requirement for dealing with uncertainty, there are often re-
quirements on the ease of modeling and on real-time reasoning [25]. Ease of
modeling is critical for practitioners to employ Bayesian networks in their spe-
cific domains, without becoming experts on Bayesian networks themselves.
Real-time reasoning is critical for those applications that require inferences
made about the system to be reported within strict time limits, so that the
system is able to react to it.

In the context of ADAPT [32], an electrical power system testbed at NASA
discussed in more detail in Section 1.8, we can illustrate these requirements
as follows. Modeling requirements can be addressed by using procedures that
take as input high-level specifications, and synthesize Bayesian networks from
them. The benefit of this automated approach is that it enables the model-
ing of real-world systems, even by practitioners who may not be well-versed
in Bayesian networks. The second requirement, for real-time reasoning, may
be addressed by embedding powerful and efficient reasoning algorithms into
hard, real-time systems [28]. The real-time requirement has at least two facets,
namely the need for predictability and the need for fast inference. Some of the
reasoning algorithms we discuss in Section 1.5, for example, the compilation
to arithmetic circuits, address these concerns.

1.2.1 An Electrical Circuit Example

Consider Figure 1.1, which depicts a simple electrical system, composed of
a number of components and equipped with a number of sensors. First, there
are three components of interest: a battery B, a relay R, and a load L, which
may be, for example, a lamp or a fan. Second, there are three sensors: a current
sensor C, a voltage sensor V, and a feedback sensor F on the relay. Finally, a
command may be issued to the relay R, to open or close the electrical circuit.
The system components are also summarized in Table 1.1.

In this simple example, there are two nominal modes of operation, depend-
ing on the most recent command given to the relay. Given an open command,
the current and voltage sensors are expected to read low and the feedback sen-
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FIGURE 1.1: A diagram of a simple electrical system, with battery B,
current censor (ammeter) C, voltage sensor (voltmeter) V , a relay (or switch)
R, a feedback (touch) sensor F , and a load L.

TABLE 1.1: System Components
location part mode health states

B battery
healthy healthy
stuck disabled stuck-disabled
stuck enabled stuck-enabled

W

voltage sensor
healthy healthy
reading stuck high stuck-hi
reading stuck low stuck-lo

current sensor
healthy healthy
reading stuck high stuck-hi
reading stuck low stuck-lo

R

relay
healthy healthy
stuck open stuck-open
stuck closed stuck-closed

feedback sensor
healthy healthy
reading stuck open stuck-open
reading stuck closed stuck-closed

L load
healthy healthy
stuck disabled stuck-disabled
stuck enabled stuck-enabled
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sor is expected to read open. Given a close command, the current and voltage
sensors are expected to read high and the feedback sensor is expected to read
closed. Suppose that we have an abnormal reading, for example, if the com-
mand is to close the circuit and our current sensor reads low. We can imagine
a number of faults that would explain this behavior. For example, the relay
could be faulty and stuck open, or the sensor reading could be unreliable.

In this chapter, our goal is to illustrate how to reason, in an automated
and principled way, about such problems by means of Bayesian networks. We
shall illustrate first how to model small-scale systems such as the one described
above, and then highlight how this process can be scaled to state-of-the-art
approaches to real-world diagnostic problems. More specifically, we hope to
illustrate that Bayesian networks provide an expressive and natural framework
for modeling systems health management problems, both small and large.
We further hope to illustrate that Bayesian networks provide an even more
powerful framework for analyzing and reasoning about such problems. For
illustrative purposes, we will use the simple electrical system of Figure 1.1 as
a running example throughout the next few sections. First, we shall illustrate
how a Bayesian network model can be constructed automatically from a formal
system design (such as a schematic).

Next, we highlight some of the queries supported by Bayesian networks.
For example, it is natural to ask for a given set of abnormal sensor readings:

• How likely are our observations, and how likely is each individual com-
ponent to be the cause of an abnormality?

• What is the likeliest explanation of our observations, i.e., what is the
likeliest joint health state?

• How robust are our estimates and explanations under perturbations in
the Bayesian network?

We then provide a high-level overview of the variety of algorithms available
for reasoning and learning in Bayesian networks, such as those that are more
suitable for embedded systems, and powerful approximation algorithms for
reasoning in large and complex systems. Finally, we highlight a successful
application of the Bayesian network models and techniques that we introduce,
for the purposes of diagnosing electrical power systems.

1.3 Bayesian Networks

A Bayesian network is a directed acyclic graph (DAG) that is annotated
with local conditional probability tables (CPTs). Nodes represent random
variables, and directed edges typically denote causal relationships between
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PV HV

SV

PV θPV

hi 0.5
lo 0.5

HV θHV

healthy 0.99
stuck-hi 0.005
stuck-lo 0.005

PV HV SV θSV

hi healthy read-hi 1.0
hi healthy read-lo 0.0
hi stuck-hi read-hi 1.0
hi stuck-hi read-lo 0.0
hi stuck-lo read-hi 0.0
hi stuck-lo read-lo 1.0
lo healthy read-hi 0.0
lo healthy read-lo 1.0
lo stuck-hi read-hi 1.0
lo stuck-hi read-lo 0.0
lo stuck-lo read-hi 0.0
lo stuck-lo read-lo 1.0

FIGURE 1.2: A Bayesian network model of a voltage sensor, along with the
network’s conditional probability tables (CPTs).

variables (although causality is not a requirement). For example, an edge
C → E may represent a direct cause and effect relationship between random
variables C and E. More precisely, the DAG of a Bayesian network encodes
a set of conditional independence statements that reads as follows: Every
variable is independent of its non-descendants given its parents. When edges
represent direct causal influences, these independencies read: Every variable
is independent of its non-effects given its direct causes.

As a concrete example, consider Figure 1.2, which depicts a simple
Bayesian network model of a voltage sensor. This model is also a sub-model of
a larger Bayesian network model that we shall construct for the simple electri-
cal system in Figure 1.1 (we discuss this larger Bayesian network, in Figure 1.3,
later in this chapter). In this example, we have three random variables:

• variable PV represents the presence of voltage on a wire. The voltage
may be either high, PV =hi, or it may be low, PV = lo.

• variable SV represents the reading of a voltage sensor. The sensor either
reads high, SV = read-hi, or it reads low, SV = read-lo.

• variable HV represents the health of a sensor. We assume that a sensor
has 3 modes: one nominal mode HV =healthy, and two failure modes,
either stuck at a high reading, HV =stuck-hi, or stuck at a low reading,
HV =stuck-lo.

In this example, variables PV and HV are parents of variable SV , as the
presence of voltage and the health of a sensor dictates the value of its reading.

In a Bayesian network, we must quantify the local relationships between a
variable and its parents. In particular, we specify a CPT for each variable X
in the network, which is a conditional probability distribution for a variable



A Tutorial on Bayesian Networks for System Health Management 7

X given its parents U. These local conditional distributions induce a global
probability distribution over all network variables X. Let x denote an instan-
tiation of these variables, where each variable X ∈ X is assigned to one of its
values x. The probability associated with a variable instantiation x is then a
product of these conditional probabilities Pr(x|u) for each value of x that was
set in x:

Pr(x) =
∏
X∈X

Pr(x|u)

where u are the sub-instantiations of x over the parent variables U. One
main feature of Bayesian networks is this compact representation of the joint
probability distribution in terms of local conditional distributions.

In our example, we need to specify the conditional distribution Pr(SV |
PV , HV ) that a sensor has a particular reading, given the presence or absence
of voltage, and the health of the sensor. In these terms, we can specify the
operation of a sensor as a functional relationship: (1) if a sensor is healthy, then
the sensor’s reading reflects the presence or absence of voltage, or otherwise
(2) if a sensor is stuck high (or stuck low), then the reading is always high (or
always low). For example, we have Pr(SV = read-hi | PV =hi, HV =healthy) =
1.0, i.e., the sensor is sure to read high given that voltage is present and the
sensor is healthy. We also refer to these conditional probabilities as parameters
θSV |PV ,HV

of the Bayesian network model. Variables PV and HV are root
nodes in the DAG, so we need to specify the prior (unconditional) distributions
Pr(PV ) and Pr(HV ), or equivalently, the parameters θPV

and θHV
. In our

example, the probability Pr(HV =healthy) that our sensor is healthy is 99.0%,
and the probabilities Pr(HV =stuck-hi) and Pr(HV =stuck-lo) that our sensor
is stuck at a high and low readings are both 0.5%. We further assumed a
uniform distribution for the prior Pr(PV ) on the presence of voltage. We will
describe in more detail in Section 1.4 the process of constructing Bayesian
networks.

As we described before, the network’s parameters (i.e., the three CPTs
θPV

, θHV
and θSV |PV ,HV

) define a global probability distribution over the
three variables PV , HV , and SV which can be decomposed as follows:1

Pr(PV , HV , SV ) = Pr(PV )Pr(HV )Pr(SV | PV , HV ) = θPV
θHV

θSV |PV ,HV

(1.1)
We can visualize this joint distribution by enumerating over all possible as-
signments of variables to values. Consider the following table, where we list
all such assignments along with their corresponding probabilities:

1This decomposition follows from the chain rule, and the property that every variable is
independent of its non-descendants given its parents (and thus, root variables are marginally
independent).
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PV HV SV Pr(PV , HV , SV )
hi healthy read-hi 49.50% ?
hi healthy read-lo 0.00%
hi stuck-hi read-hi 0.25% ?
hi stuck-hi read-lo 0.00%
hi stuck-lo read-hi 0.00%
hi stuck-lo read-lo 0.25% ?
lo healthy read-hi 0.00%
lo healthy read-lo 49.50% ?
lo stuck-hi read-hi 0.25% ?
lo stuck-hi read-lo 0.00%
lo stuck-lo read-hi 0.00%
lo stuck-lo read-lo 0.25% ?

where we have starred the scenarios with non-zero probability. In this sub-
model, we find that the two nominal scenarios,

{PV =hi, HV =healthy, SV = read-hi} & {PV = lo, HV =healthy, SV = read-lo}
are the most likely, both with probability 49.5%. There are four other pos-
sible scenarios (that have non-zero probability), although they are relatively
unlikely scenarios that correspond to sensor failures.

In general, the number of entries in a joint probability table is exponential
in the number of variables in the model. In contrast, a Bayesian network is
defined in terms of local conditional distributions, i.e., its CPTs, which are
relatively compact. In particular, a CPT has a size that is exponential in the
number of variables that appear in it: the variable itself and its parents in the
DAG. This local representation (coupled with a small number of parents for
all nodes) is what allows us to compactly represent what would otherwise be
an intractably large distribution.

As we shall see in Section 1.4, having to define only local CPTs greatly
simplifies the process of constructing Bayesian network models. Moreover, the
structure of a Bayesian network model, and the conditional independencies
that we are able to infer from it, can be exploited for the purposes of efficient
and effective inference and learning. In Section 1.5, we will highlight the utility
of Bayesian networks in terms of the queries one can pose with respect to the
joint probability distributions that they encode.

1.4 Modeling with Bayesian Networks

There are three basic approaches for building Bayesian networks [8]: (1)
they can be constructed by expert knowledge, (2) they can be synthesized
automatically from formal system designs, and (3) they can be learned au-
tomatically from data. Considering the domain of interest here is in system
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health management, it is likely that we already have available a formal system
design (such as a schematic) from which we can construct a Bayesian network,
so we will focus in this section on this particular approach.

Speaking more generally, there are three basic steps for specifying a
Bayesian network.

1. Define the network variables and their values. Certain variables
represent events that we are interested in estimating, such as the health
of components. Such variables are often referred to as query variables.
Other variables represent observables or Bayesian networks inputs, such
as the readings of sensors. Such variables are often referred to as evidence
variables. A Bayesian network may also involve intermediary variables
which are neither targets for queries, or observable events. They may aid
the modeling process by relating query variables to evidence variables.

2. Define the network structure. That is, we need to specify the edges
of a Bayesian network. In most domains, a causal interpretation of the
network structure will be the most natural, where edges indicate a cause
and effect relationship between variables. In this case, deciding what
variables point to a variable X reduces to identifying its direct causes.

3. Define the network CPTs. How to specify a network’s CPTs varies
from domain to domain. In our example from the previous section, our
sensor model was composed largely of functional relationships between
variables, and we can rely on our domain knowledge to guide us. In other
cases, we can rely on data to learn these parameters automatically, as
we shall see in Section 1.7.

Consider again Table 1.1, which depicts a number of components, and Fig-
ure 1.1, which depicts how these components are connected to each other. To
induce a Bayesian network model from this design, we can start by specifying
a procedure for constructing Bayesian network fragments from components of
interest. For example, we have already seen a sub-model for a voltage sensor,
which we constructed based on the knowledge of how such sensors operate.
We may incorporate this sub-model in a larger model, say by feeding the ap-
propriate outputs of the larger model (e.g., variables that represent voltage
on a wire) to the inputs of our sensor model. By connecting the sub-models
of components, we can construct sub-systems, and by connecting sub-systems
we can construct a complete Bayesian network which can then be used for
system health management. When the system of interest is well understood
and well-defined, as it typically is for electrical power systems for instance,
this construction process can be completely or largely automated [24].
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1.5 Reasoning with Bayesian Networks

In this section, we illustrate the reasoning capabilities enabled by a
Bayesian network model. In particular, we use as an example the Bayesian
network depicted in Figure 1.3, which we analyze using SamIam, a compre-
hensive tool for modeling and reasoning with Bayesian networks, available for
download at http://reasoning.cs.ucla.edu/samiam/. The network used
in our example is also available at http://reasoning.cs.ucla.edu/samiam/
tutorial/system.net. Our network in this example was automatically con-
structed from formal design [24], where we modeled each component Table 1.1
(including the voltage sensor model from Figure 1.2), as well as their interac-
tions as suggested by Figure 1.1.

Suppose in our electrical circuit that we issued a command for the relay to
close, but after doing so, we observed unexpected sensor readings: although
the current sensor reports a high current, we find that the voltage sensor
reads low and the feedback sensor reads open. We denote the command by
{R=close} and our sensor readings by {SC = read-hi, SV = read-lo, SF =open}.
In such a situation, we are interested in inferring the failures that led to the
abnormal sensor readings that we observed.

In Figure 1.3, we modeled the health of our components using variables HB

(for the battery), HR (for the relay), and HL (for the load). We also modeled
the health of our sensors using variables HC (for the current sensor), HV (for
the voltage sensor), and HF (for the feedback sensor). These random variables
are the focus of the queries that we will pose in our Bayesian network, with the
goal of acquiring actionable health information about our electrical system.

1.5.1 Posterior Marginals

Let e = {R=close, SC = read-hi, SV = read-lo, SF =open} denote the as-
signment of variables to values, which we call the observed evidence. One
of the most common queries that we pose in a Bayesian network is for the
posterior probability Pr(X | e) of a network variable X under evidence e.

For example, we may ask what is our belief that current is present in the
circuit. In this case we have probability Pr(PC =hi | e) = 98.51%. Surprisingly,
although two of our sensors suggest that the circuit is open and that there is
no voltage present in the circuit, our model suggests that current is indeed
flowing in our circuit. When we query for the marginal probabilities that our
components are healthy, we find:

Pr(HB=healthy | e) = 98.51%
Pr(HR=healthy | e) = 98.51%
Pr(HL=healthy | e) = 99.49%

which is consistent with our belief that current is in fact flowing in the circuit.
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Consider now the marginal probabilities of the sensor health nodes:

Pr(HC =healthy | e) = 98.01%
Pr(HV =stuck-lo | e) = 99.01%

Pr(HF =stuck-open | e) = 99.01%

which indicates that the voltage sensor is stuck at a low reading, and inde-
pendently, that the feedback sensor is stuck at an open reading.

Note, however, that it may still be unlikely that the voltage sensor and
the feedback sensor are both stuck at the same time. Indeed, observing two
otherwise independent faults is typically considered much less likely than ob-
serving a single fault. As we shall soon see, observing these two faults is much
more likely than any of the alternative scenarios in this particular example.

1.5.2 Explanations

In this section, we illustrate how Bayesian networks are capable of provid-
ing explanations for our observations. In our example, the Bayesian network
model has suggested that current is flowing in our circuit despite two sen-
sors suggesting otherwise. To consider why this may be, we can compute the
Maximum a Posteriori (MAP) explanation.

Let H = {HB , HR, HL, HC , HV , HF } denote the set of our component
and sensor health variables, and let h denote an assignment of these variables
to values. Given a piece of evidence e, the MAP explanation is then the
assignment h having maximum probability Pr(h | e). In our running example,
the MAP explanation is the assignment:

h = {HB=healthy, HR=healthy, HL=healthy,

HC =healthy, HV =stuck-lo, HF =stuck-open}

with probability Pr(h | e) = 96.54%. According to this explanation, there
are two faults: the voltage sensor is stuck at a low reading, and the feedback
sensor is stuck at an open reading. This helps to explain why we observed
that the probability that current is present in the circuit was 98.51%. If we
look further, the next most likely instantiations of our variables H assume
that there are three simultaneous faults, for example:

h = {HB=disabled, HR=stuck-open, HL=healthy,

HC =stuck-hi, HV =healthy, HF =healthy}

which is significantly less likely with probability Pr(h | e) = 0.4878%.2

2Note if we had assumed instead that no current is flowing in the network: (1) the current
sensor is stuck at a high reading, (2) we issued a close command to the relay, so either the
feedback sensor is stuck or the relay is stuck, and (3) even if the circuit is open, the voltage
sensor should still be able to read a voltage, so either the voltage sensor is stuck or the
battery is disabled.
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There are two notable classes of MAP explanations that are worth men-
tioning here. If the variables of interest consist of all network variables X
(excluding those evidence variables E that are already observed), the MAP
explanation is also called the Most Probable Explanation (MPE). In addition,
the MPE is generally not as difficult to compute as MAP explanations. On
the other hand, the MPE will mention any (and all) auxiliary variables that
may not be of immediate interest. Moreover, the MPE and the MAP expla-
nation may not agree on the variables of interest. On the other extreme, it is
common to seek the most likely state of an individual variable X, as it can
easily be identified from its marginal probabilities Pr(X | e). Again, MAP
explanations are in general more difficult to compute than marginals [29]. On
the other hand, maximizing two variables independently may not lead to a
good explanation. As we already mentioned, a Bayesian network may find
that two components are likely to be faulty, yet it may still be unlikely that
both are faulty at the same time.

1.5.3 Sensitivity Analysis

The question we ask now: can we quantify the degree to which we are
confident in the conclusions made by a Bayesian network? Suppose, for ex-
ample, that we are in the position to make a decision based on a probability
computed using a Bayesian network. For example, we may decide to take one
action if the probability Pr(PC =hi | e) were greater than some threshold T ,
and another action if this probability were less than T . Can we quantify the
robustness of such a decision under perturbations in the Bayesian network
model?

In this case, we can appeal to sensitivity analysis where we are interested in
the sensitivity of probabilistic queries with respect to changes in the network
parameters of a Bayesian network. Suppose, for example, that we want to
perform an action that depends on whether current is flowing in our circuit,
and that we make a decision to do so if we believe that current is flowing
with probability greater than 50%. In our running example, this probability
was Pr(PC =hi | e) = 98.51%, which significantly surpasses our threshold.
However, would a decision we make here be robust under changes in the
network parameters? From a different perspective, we can ask how much do
we need to change our network parameters so that Pr(PC =hi | e) < 50.0%,
contradicting our current decision.

These types of queries are supported by Bayesian networks [3, 8], and
in this case, one finds that significant changes in the model would be called
for to contradict our current decision. For example, the parameter θSV=stuck-lo,
which is the prior probability that the voltage sensor is stuck on a low reading,
would have to be changed from 0.5% to less than 0.0051%. This corresponds
to a sensor that is around two orders of magnitude more reliable, which is a
fairly extreme assumption. We find that a similar change is required in the
parameter θSF=stuck-open, the prior probability that the feedback sensor is stuck
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open. We could also change, for example, the parameter θSC=healthy, the prior
probability that the current sensor is healthy. In this case, we need to change
the value from 99.0% to less than 33.78% to contradiction our decision, which
is also quite an extreme change.

We can also perform sensitivity analysis on the MPE, and ask what pa-
rameter changes are required to change the likeliest scenario [4]. The MPE
in our running example also identifies two faults: that the voltage sensor is
stuck at a low reading, and that the feedback sensor is stuck open. Again,
we find that to flip the most likely scenario calls for extreme changes to our
parameters. For example, we would need to change the value of the parameter
θSC=healthy from 99.0% to less than 33.33%.

1.6 Reasoning Algorithms

There are several classes of algorithms for reasoning in Bayesian networks,
for computing marginal probabilities and finding explanations. Each algorithm
has its own advantages, which we shall highlight here.

Elimination algorithms include variable elimination [42, 10] and jointree
algorithms [15, 19]. These are among the most common algorithms imple-
mented in practice. These types of algorithms take advantage of the global
structure of a Bayesian network in order to perform inference efficiently. In
particular, these types of algorithms are exponential only in the treewidth
of a Bayesian network, which is a graph theoretic property that measures,
intuitively, the degree to which a graph resembles a tree [8]. Inference in a
tree-structured Bayesian network, for example, can be performed efficiently
in time that is only linear in the diameter of the network [31].

Conditioning algorithms include cutset conditioning [31] and recursive
conditioning [9]. Intuitively, these are approaches based on decomposing the
inference task into simpler cases, where each case can be solved easily, and then
aggregating the results. These algorithms can have attractive computational
properties compared to elimination-based algorithms. Recursive conditioning
for example allows a natural anyspace-inference framework, where one is al-
lowed to trade space with time [9].

Compilation algorithms are generally based on compiling a Bayesian net-
work into arithmetic circuits [5, 7]. The aim of these algorithms is to push most
of the computational overhead into an offline phase, while producing secondary
structures (arithmetic circuits) that can be processed quite efficiently in the
online inference phase. Compilation-based algorithms can be based on elim-
ination or conditioning techniques and seek to take advantage of the global
structure of a network, in addition to the local structure that may be present
in the network CPTs. Exploiting local structure can be quite time consuming
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in general, but since this is done only offline, the overhead is not incurred
during the critical online phase.

All of the inference approaches discussed above lead to exact results and
are therefore known as exact inference methods. In the case exact inference is
not tractable, we can appeal to approximation algorithms, which have been
influential in their own right in numerous applications.

“Loopy” belief propagation, along with many other message-passing
algorithms inspired by it, have in the past decade been particularly successful,
and have enabled new and influential applications in fields as diverse as infor-
mation theory [11], computer vision, satisfiability and more broadly in artifi-
cial intelligence [31, 41]. More recent generalizations of belief propagation also
provide a means by which computational accuracy can be traded for compu-
tational resources. For example, the perspective given by [6] formulates belief
propagation as a way to compensate for structural relaxations, which yields
a spectrum of approximation. On one end, with a coarse, fully-disconnected
approximation, we have loopy belief propagation. On the other end, with the
original unrelaxed model, we have exact inference. Given constraints on the
computational resources available, we can then to try to identify an approxi-
mation along this spectrum that is as accurate as possible.

Stochastic sampling and search algorithms, such as importance sam-
pling, Gibbs sampling, and stochastic local search, have the attractive prop-
erty that they tend to give increasingly accurate estimates as they are given
more time to run and can also work well on Bayesian networks with high
treewidth. Stochastic sampling algorithms are typically used to compute
marginals [12, 39], while stochastic local search algorithms are more successful
when computing MAP and MPE [29, 23, 27]. The disadvantage of these algo-
rithms is that an impractical number of samples may be needed to produce
accurate estimates, and convergence may be hard to diagnose.

Variational algorithms have also been successful, particularly in applica-
tions such as information retrieval and extraction, as well as text analysis [2].
Variational approaches reduce the inference problem to an optimization task.
For example, we may specify an approximation with a tractable structure,
and optimize its parameterization so as to minimize the distance between the
original and approximate distributions (typically the Kullback-Leibler diver-
gence). Another attractive property of variational approaches is that they tend
also to yield bounds on quantities of interest [14].

1.7 Learning Bayesian Networks

As we have discussed before, Bayesian networks can be constructed by
human domain experts or they can be synthesized automatically from de-
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sign. In this section, we highlight how Bayesian networks can also be learned
automatically from data.

Consider again our voltage sensor model from Figure 1.2, and the following
data set:

case PV HV SV
1 hi healthy read-hi
2 lo healthy read-lo
3 hi healthy read-hi
4 hi stuck-hi read-hi
5 lo ? read-hi
6 ? healthy read-lo
...

...
...

...

which consists of a number of cases where we have observed the state of a
voltage sensor, which consists of three values: the presence of voltage PV ,
the health of the sensor HV , and the sensor reading SV . In this example, we
see that in some of these cases, particular values may be missing, which are
marked with a “?”.3

One can use such a data set to learn the network parameters given its
structure, or learn both the structure and its parameters. Learning parameters
only is an easier task computationally. Moreover, learning either structure or
parameters always becomes easier when the data set is complete — that is,
the value of each variable is known in each data record.

Since learning is an inductive process, one needs a principle of induction
to guide the learning process. The two main principles for this purpose lead to
the maximum likelihood and Bayesian approaches to learning. The maximum
likelihood approach favors Bayesian networks that maximize the probability
of observing the given data set. The Bayesian approach on the other hand uses
the likelihood principle in addition to some prior information which encodes
preferences on Bayesian networks.

We remark here that the term “Bayesian network” does not necessarily
imply a commitment to the Bayesian approach for learning networks. This
term was coined by Judea Pearl [30] to emphasize three aspects: the often
subjective nature of the information used in constructing these networks; the
reliance on Bayes conditioning when reasoning with Bayesian networks; and
the ability to perform causal as well as evidential reasoning on these networks,
which is a distinction originally underscored by Thomas Bayes.

The above learning approaches are meant to induce Bayesian networks
that are meaningful, independently of the tasks for which they are intended.
Consider for example a network which models a set of diseases and a corre-
sponding set of symptoms. This network may be used to perform diagnostic

3Typically, the health of a sensor is unobservable. However, we can learn Bayesian net-
works with hidden or latent variables, where a variable’s value will always be missing in
data.
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tasks, by inferring the most likely fault given a set of observed sensor read-
ings. It may also be used for prediction tasks, where we infer the most likely
sensor readings given some faults. If we concern ourselves with only one of
these tasks, say diagnostics, we can use a more specialized induction principle
that optimizes the diagnostic performance of the learned network. In machine
learning jargon, we say that we are learning a discriminative model in this
case, as it is often used to discriminate among failures according to a pre-
defined set of classes (e.g., stuck or healthy). This is to be contrasted with
learning a generative model, which is to be evaluated based on its ability to
generate the given data set, regardless of how it performs on any particular
task.

1.7.1 Learning a Bayesian Network’s Parameters

Suppose we are given a data set D consisting of N cases Di, and that we
have the graph structure G of a Bayesian network whose parameters we want
to learn from data set D (the graph structure may have, for example, been
given to us by an expert, or synthesized from design).

Let θ denote a parameterization of this Bayesian network, and let Prθ
denote the probability distribution induced by graph structure G and param-
eters θ. Under the maximum likelihood approach to learning, the maximum
likelihood parameters θ? that we seek are those that maximize the likelihood
of the data:

θ? = argmax
θ

N∏
i=1

Prθ(Di)

(assuming that the cases in our data Di are independent and identically dis-
tributed). In the case our data is complete, computing the maximum likeli-
hood parameters is a simple task. In the case our data is not complete, and
has missing values, the computation is not as straightforward, but there are
a number of effective algorithms that we can employ in this case.

1.7.2 Learning with Complete Data

In the case where our data set D is complete, i.e., it has no missing values,
then the maximum likelihood parameter estimates have a simple closed form,
that is based on the “empirical” probability distribution that the data set
itself induces.

In the case of Bayesian learning, instead of seeking point estimates θ?, we
seek a posterior distribution (density) over network parameterizations ρ(θ |
D), conditioned on the data. This posterior can in turn be used to identify
point estimates (such as the mean or the mode), or one can otherwise average
over all possible parameterizations. We remark that in the complete data case,
we again have a simple closed form, when a suitable prior over parameters is
assumed.
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1.7.3 Learning with Incomplete Data

In the case our data set D is incomplete, and has missing values, the pa-
rameter learning task is more difficult since, in general, there is no tractably
computable closed form. However, there are still effective learning algo-
rithms in this case, such as gradient ascent, Gibbs sampling and expectation-
maximization (EM). Such algorithms are often iterative, and intuitively, make
inferences about the data to complete the missing values, which in turn are
used to update the model parameters.

The EM algorithm, for example, is an efficient iterative procedure that
searches for maximum likelihood estimates, in the presence of missing data.
At a high level, each iteration of the EM algorithm consists of two steps:
The E-step, and the M-step. We start with some initial guess of the network
parameters. In the expectation, or E-step, we compute expected counts, based
on our current estimates. In the M-step, we treat the expected counts like
complete data, and compute the maximum likelihood estimates from them. We
typically repeat this iterative process until it no longer improves the likelihood.

For more on learning Bayesian networks from data, including how to learn
the structure of a Bayesian network, we recommend [8, 17].

1.8 Applications and Scalability Experiments

We now discuss recent, large-scale applications of Bayesian networks and
arithmetic circuits in the area of electrical power systems. These studies
demonstrate our successful probabilistic approach to diagnosis of an elec-
trical power system (EPS) known as the Advanced Diagnostics and Prog-
nostics Testbed (ADAPT) [32]. ADAPT facilitates the benchmarking of
different technologies, and we have developed of a probabilistic approach,
called ProDiagnose, to model-based diagnosis and applied it in this setting
[22, 25, 33, 26, 16, 34, 35, 24]. In the industrial tracks of two international
diagnostic competitions, which were based on ADAPT, ProDiagnose achieved
the best scores in three of the four industrial tracks. In this section we dis-
cuss ProDiagnose and related work, illustrating how many of the techniques
discussed earlier scale up in a real-world application.

1.8.1 Electrical Power Systems

Our society relies on electrical power in many ways. Obviously, there is the
electrical power grid, which currently is under-going a major upgrading effort
in the context of creating a smart grid. In addition, electrical power plays a
key role in vehicles, including in cars and aerospace vehicles. Spacecraft and
aircraft, for example, contain multiple sub-systems including navigation sys-
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tems, power systems, and propulsion systems, and it is crucial to keep them
all operational, even under adverse conditions. A real-world (hardware) EPS
that is representative of EPSs in aerospace vehicles, namely the Advanced
Diagnostic and Prognostic Testbed (ADAPT), has been developed and is lo-
cated at the NASA Ames Research Center [32]. ADAPT includes capabilities
for power storage, distribution, and consumption, and serves as a platform for
development and proof-of-concept demonstrations of system health manage-
ment concepts in a realistic environment. ADAPT also provides a controlled
environment in which to inject failures, either through software or hardware,
as well as for benchmarking of diagnostic and prognostics software in a re-
peatable manner.

For experimentation using real-world data, EPS scenarios were gener-
ated using ADAPT [32]. These scenarios cover component, sensor, or both
component and sensor faults. A scenario is nominal or contains one, two,
or three faults, and faults may be discrete or (parametric) continuous. In
2009 and 2010, international diagnostics competitions DXC-09 and DXC-
10 were arranged with ADAPT as the real-world testbed (see https://
c3.ndc.nasa.gov/dashlink/projects/36/ and https://www.phmsociety.
org/competition/dxc/10 for information and data sets). In DXC-09, all in-
serted faults were abrupt and persisted until the end of the scenario. DXC-10,
on the other hand, also included drift (non-abrupt) and intermittent (non-
persistent) faults. In the following we discuss our development of BNs for
ADAPT as well as the results of experiments with these BNs on nominal and
fault scenarios.

1.8.2 Bayesian Network Models

Based on the ADAPT EPS, several Bayesian networks have been devel-
oped, compiled into arithmetic circuits, and used in diagnosis experiments.
While several variants of this Bayesian network exist [25, 33, 34, 35, 24], we
here focus mainly on the one that had the best performance in the industrial
track of the diagnostic competition DXC-09. This Bayesian network has 671
discrete nodes and 789 edges; domain cardinalities range from 2 to 16 with
an average of 2.86 [33, 34]. An ADAPT Bayesian network variant from 2008
contains 434 nodes and 482 edges, with node cardinalities ranging from 2 to
4 with mean 2.27 [25, 24].

Before we briefly discuss experimental results, we would like to highlight
that this approach satisfies two important requirements that often arise in
system health management, mentioned in Section 1.2, namely the modeling
and real-time performance requirements [22, 25, 24]. To address the modeling
requirement, we have developed a systematic way of representing electrical
power systems as Bayesian networks, supported by an easy-to-use specifica-
tion language and an auto-generation algorithm that generates Bayesian net-
works. The specification language and auto-generation algorithm are based
on the principles laid out in Section 1.3, Section 1.4, and Section 1.5. To
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address the real-time requirement, Bayesian networks are compiled into arith-
metic circuits. We used the ACE system to compile an ADAPT Bayesian
network into an arithmetic circuit and to evaluate that arithmetic circuit
[5, 7] (see http://reasoning.cs.ucla.edu/ace/). Arithmetic circuits sup-
port real-time diagnosis by providing faster and more predictable inference
trials. In addition, it is an exact reasoning system, with deterministic behav-
ior.

We now briefly discuss experimental results that illustrate how our ap-
proach scales to real-world systems such as ADAPT, as well as how it com-
pares to other approaches.

1.8.3 Experiments with Real-World Data

Using ADAPT data sets (see Section 1.8.1), experiments were used to
benchmark the diagnostic quality of the ADAPT Bayesian networks and the
ProDiagnose algorithm (see Section 1.8.2). Since our probabilistic models do
not contain continuous random variables, experiments with continuous faults
are especially challenging, and one key contribution of this work was how to
handle continuous faults. Continuous data, including continuous sensor read-
ings, were discretized before being used for clamping the appropriate discrete
random variables in the ADAPT Bayesian network.

In early experiments, using 16 fault scenarios, each with one to three faults,
a correct diagnosis was computed in a majority of the scenarios [25]. In fact,
there was an exact match between our estimated diagnosis and the actual
fault(s) inserted in 10 of the 16 scenarios, giving an accuracy of 62.5%. Even
in cases where there was not exact agreement, our diagnosis was either partly
correct or at the very least reasonable.

Later experiments were conducted as part of diagnostics competition DXC-
094. ProADAPT, an adaptation of ProDiagnose to the ADAPT setting of
DXC-09’s industrial track, achieved the best performance [33] in both the Tier
1 and Tier 2 tracks of DXC-09. ProADAPT had the highest-ranking scores in
both the Tier 1 (among 9 international competitors) and Tier 2 (among 6 inter-
national competitors) categories. On the Tier 1 data set, ProADAPT’s score
was 72.8, while the second-best competitor’s score was 59.85. On the more
difficult Tier 2 data set, ProADAPT’s score was 83.20, while the second-best
competitor’s score was 81.50. ProADAPT’s Bayesian network and other diag-
nostic parameters were later further improved [34]. In DXC-10, ProADAPT
was further extended to include novel feature transformation algorithms—
including the use of cumulative sum (CUSUM) techniques from statistics
[35]—for handling offset faults, drift faults, and intermittent faults using dis-
crete Bayesian networks. In DXC-10, ProADAPT was declared the winner in
one of the two industrial tracks.

4See https://dashlink.arc.nasa.gov/topic/diagnostic-challenge-competition/ for
information about the competition.
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1.8.4 Experiments with Synthetic Data

In addition to experiments with real-world data from ADAPT, we have
also performed experiments with synthetic data generated from ADAPT BNs
[25, 24]. The purpose of these experiment was to understand the performance
of arithmetic circuit evaluation (using ACE) versus alternative Bayesian net-
work reasoning algorithms, and variable elimination (VE) and jointree prop-
agation (JTP) in particular. Synthetic data was created by a procedure that
(i) generated a set of failure scenarios according to the probabilities of the
ADAPT Bayesian network’s health nodes, and (ii) generated evidence by per-
forming stochastic simulation for each failure scenario. These evidence sets
were then used as evidence in the three different inference systems. Both MPEs
and marginals were computed for 200 simulated evidence sets generated from
an ADAPT Bayesian network.

The following timing measurements are for a PC with an Intel 4 1.83 GHz
processor with 1 GB RAM and running Windows XP. Considering means
only, MPE computation took on average 17.79 ms for VE and 0.2370 ms for
ACE, with standard deviations of 1.513 and 0.2137 respectively. Computation
of posterior marginals, on the other hand, required on average 10.02 ms for
JTP and 0.6981 ms for ACE, with standard deviations of 4.451 and 0.6669
respectively [25].

In summary, we have observed strong performance for our probabilistic
approach in these synthetic ADAPT experiments, and would like to make two
main points. First, all three approaches are relatively fast when using this
ADAPT BN, with average computation time always less than 18 ms. Second,
both marginals and MPEs were computed in less than 1 ms by ACE, while
the competing approaches (JTP and VE) needed 10 ms or more.

1.8.5 Discussion

Empirically, we have shown that the ProDiagnose diagnostic algorithm
combined with arithmetic circuits compiled from Bayesian networks provides
high-quality diagnostic results for a real-world EPS called ADAPT. We be-
lieve that these ADAPT case studies clearly demonstrate the power of our
Bayesian network modeling principles and how arithmetic circuits offer a scal-
able inference technique with potential for real-time evaluation in aircraft and
spacecraft, thereby enabling substantial improvements in aviation safety in
the future. This technology has potential impact on system health manage-
ment beyond EPSs in aerospace. While we discussed EPS diagnosis above, it
is clear that our approach supports real-time, on-line diagnosis and progno-
sis for many types of large-scale systems more generally. Consequently, these
empirical results should be of interest to the broader system health manage-
ment community interested in fast and exact computation with predictable
inference times.
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1.9 Conclusion

Over the past few decades, the Bayesian network research community has
developed powerful tools and algorithms for modeling, reasoning and learning
complex systems. These tools and algorithms have been leveraged to solve
challenging problems in fields as diverse as: artificial intelligence and machine
learning; information theory [11]; computer vision; computational biology;
text analysis and information extraction [2, 21]; and in diagnosis, prognosis,
and system reliability [18]. The ADAPT electrical power system, which we
highlighted in this chapter, is one of many examples where Bayesian networks
have been applied to real-world diagnostic problems.

In this chapter, we have sought to illustrate that Bayesian networks pro-
vide a simple and natural language for modeling problems in systems health
management. Moreover, as we highlighted, they support a variety of prob-
abilistic queries, which provide a means to qualitatively and quantitatively
reason about system health and reliability. Further, there are a variety of ef-
fective and principled approaches to inducing Bayesian networks from data,
with or without prior expert knowledge.

There are several popular software systems for modeling and reasoning
with Bayesian networks that are freely available. In this chapter, we employed
UCLA’s SamIam (Sensitivity Analysis, Modeling, Inference and More) system
for performing the variety of probabilistic queries we considered.5 ACE, also
developed at UCLA, is an advanced system for reasoning in Bayesian networks
that was successfully used in the ADAPT system described in the previous sec-
tion.6 Other popular alternatives include, Kevin Murphy’s Bayesian Network
Toolbox for use in Matlab computing environments,7 and the University of
Pittsburgh’s GeNIe & SMILE system, which includes specialized features for
Bayesian networks used in diagnostic applications.8 There are also a variety
of commercial systems for modeling and reasoning in Bayesian networks.

There are several excellent textbooks available covering Bayesian networks.
A good undergraduate-level introduction is provided in Russel & Norvig’s pop-
ular AI textbook [38], now in its 3rd edition. We recommend Darwiche’s recent
book [8], which provides an accessible introduction to modeling with Bayesian
networks, as well as a thorough treatment of both classical and advanced algo-
rithms for reasoning and learning. Another recent book by Koller & Friedman
[17] provides a thorough and comprehensive treatment on probabilistic graph-
ical models (including Bayesian networks), which we recommend for readers
with a background in machine learning. We also suggest Judea Pearl’s seminal
book on Bayesian networks [31].

5Available for download at http://reasoning.cs.ucla.edu/samiam/
6Available for download at http://reasoning.cs.ucla.edu/ace/
7Available for download at http://code.google.com/p/bnt/
8Available for download at http://genie.sis.pitt.edu/
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