
Criteria Analysis and Validation of the Reliability of

Web Services-oriented Systems

Jia Zhang
1
 Liang-Jie Zhang

Department of Computer Science

Northern Illinois University IBM T.J. Watson Research

 jiazhang@cs.niu.edu zhanglj@us.ibm.com

1 Jia Zhang is also a Guest Researcher of National Institute of Standards and Technology (NIST).

Abstract

As Web services become more prevalent, the need to

ensure their quality increases. This paper explores the

criteria of reliability of Web services-oriented systems,

and discusses how to design and generate test cases to

conduct tests over Web services. A prototype system is

constructed to test the effectiveness and efficiency of our

algorithms. The preliminary results show that our

approach facilitates the testing of services-oriented

systems.

1. Introduction

The Web services paradigm is widely considered as the

strategic model for the next generation of distributed

computing. However, its extensive acceptance is currently

hindered by our lack of technologies to verify the quality

of Web services-related software [1]. Although last fifty

years of software development history has witnessed the

establishment of an independent research branch as

software testing to guide the quality verification process

of a software product [2], we cannot merely apply the

traditional software testing technologies to measure and

test Web services [3].

The model of Web services poses critical challenges on

software testing [4]. Here we just name a few. The

fundamental hypothesis of the existing testing methods is

that theoretically, it is possible to conduct exhaustive test

cases upon the tested software product. It is neither

feasible nor practical to apply this assumption to Web

services testing. Conducting a large amount of testing on

Web services over the Internet may consume significant

bandwidth thus be very expensive. In addition, the model

of Web services implies that the unique feature of

dynamic discovery and invocation requires highly

efficient testing and selection of Web services

components [5-8]. Furthermore, how to design test cases

for a Web service using its limited information exposed

remains a challenge. Meanwhile, how to mitigate the

overhead caused by the Web services-specific transport

protocols (e.g., SOAP) deserves further investigation [9].

Due to the specific properties of Web services, these

existing software testing models and methodologies

deserve re-inspection in the domain of Web services; and

new techniques may be required to perform effective and

efficient testing and measurements [3]. Software quality

generally contains a set of attributes, such as reliability,

scalability, efficiency, security, reusability, adaptability,

interoperability, maintainability, availability, portability,

etc [10]. As the first step, our research targets on how to

test the reliability of a Web services-oriented system. By

“Web services-oriented system”, we refer to a software

system consisting of components that will be fulfilled by

Web services. Here we adopt the standard definition of

software reliability: Musa defines software reliability as

the probability of failure-free operation of a computer

program for a specified time in a specified environment

[11].

This paper focuses on test cases criteria and

generation. The remainder of this paper is organized as

follows. In Section 2 we propose our approach. In Section

3 we present the design of our approach. In Section 4 we

present the implementation of our approach. In section 5

we present the experiments. In Section 6 we discuss the

evaluation of our work. In Section 7 we discuss related

work. In Section 8 we draw conclusions and describe

future work.

2. Generate Test Cases for Web Services

Reliability

Since Web services are remote Web applications

hosted by the corresponding service providers, testing has

to be conducted remotely by Simple Object Access

Protocol (SOAP) messages through Web services’

interfaces published using Web Service Description

Language (WSDL). In order to eliminate network traffic,

the challenge we are facing is that: How to effectively and

efficiently select test cases? As the first step to explore

how to generate test cases, our goal in this paper is to

decide how to generate test cases to test the reliability of a

remote Web service based upon its exposed interfaces.

Test cases generation based upon local operational

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

profiles and the final system context are future research

topics.

Before we can investigate how to generate test cases,

we need to examine which aspects of reliability we are

going to test in our context. In other words, what do we

mean by reliable Web services?

2.1 Criteria of Web services reliability

The software testing community has provided precise

definition for software reliability. IEEE defines it as “the

probability that software will not cause the failure of a

system for a specified time under specified conditions.”

[12] However, in order to make a Web service meet this

definition, more aspects have to be considered due to the

unique features of Web services.

We believe that a reliable Web service contains both

functional and non-functional requirements, as shown in

Figure 1. Along the functional requirements dimension, a

reliable Web service must exhibit correctness, fault

tolerance, and testability. Correctness here implies that the

Web service generates reasonable output from input

derived from the problem domain; fault tolerance implies

that the Web service is capable of producing acceptable

results even though it is faulty; testability implies that the

Web service allows existing faults to be detected at testing

time. Along the non-functional dimension, a reliable Web

service features timeliness and interoperability.

Interoperability implies that the Web service coexists with

other system components in the context of a specific

system environment. Timeliness in turn contains

availability and performance. Availability implies that the

Web service is available at the invocation time.

Performance implies that the Web service delivers at an

acceptable speed at the invocation time.

Compared with traditional software reliability [11],

reliability of a Web service contains unique requirements

of timeliness (availability and performance). Since Web

services are remote Web applications that can only be

invoked remotely, timeliness is of paramount importance:

if a Web service cannot be delivered to a service requester

within a predefined time threshold with promised

performance, the service will become useless.

Thus, reliability of a Web service can then be defined

as a combination of a set of six attributes: correctness (C),

fault tolerance (F), testability (T), interoperability (I),

availability (A), and performance (P). In other words, the

reliability of a Web service WS will be a function of the

specified six attributes:

where a, b, c, d, e, and f are quantitative or qualitative

measures of particular attributes, which imply that each

attribute may contribute differently to the reliability of a

Web service in a specific context or scenario. To simplify

the problem, in this paper, we only consider correctness

and fault tolerance.

2.2. Focus on eliminating Web services

candidates

As more and more Web services are published on the

Web on the daily basis, it is common that a set of Web

services will be found from some public registry with

similar functionalities. Instead of proving the correctness

of each Web service, our main strategy is to eliminate

Web services candidates in terms of their reliability. In

detail, if at some point, a candidate Web service fails to

meet a predefined lower threshold of reliability

requirements, the testing does not need to continue. In

other words, our research starts from a list of Web

services candidates with similar functionalities. Our goal

is to efficiently exclude some candidates using predefined

reliability criteria, so that further refined testing can be

conducted over the left smaller amount of candidates only.

Carefully designed assertions are used to judge the

exclusion process. When assertions cannot be satisfied,

the decision can be made safely. It should be noted that

the decision is made based upon a predefined threshold

instead of the failure of one single test case. We use

quantified reliability values as generic assertion standards.

Recall from the Formula 1, reliability of a Web service is

a function of six attributes. Each test case is designed to

R(WS) = f(aC, bF, cT, dI, eA, fP) (1)

Reliability

Functional Non -functional

Correctness TestabilityFault tolerance Timeliness Interoperability

Availability

Performance

Reliability

Functional Non -functional

Correctness TestabilityFault tolerance Timeliness Interoperability

Availability

Performance

Reliability

Functional Non -functional

Correctness TestabilityFault tolerance Timeliness Interoperability

Availability

Performance

Reliability

Functional Non -functional

Correctness TestabilityFault tolerance Timeliness Interoperability

Availability

Performance

Figure 1. Reliability requirements of Web services

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

target on one or multiple attributes, and in turn contributes

to the result of the reliability function. Note that different

attributes may weigh differently for different Web

services. Even different test cases targeting the same

attribute may weigh differently. Therefore, as each test

case is performed, a value will be added
2
 to the final value

of the reliability function. If at some point, the value over

the function exceeds a predefined threshold, which is the

assertion to go against, we can stop from further

operations. It should be noted that the thresholds are

application-specific, as well as the reliability functions.

2.3 Applying boundary values and faulty data to

test Web services candidates

Our major strategy is to create test cases to eliminate a

Web service candidate. Then the core challenge is that

what kind of test cases should be created to efficiently test

a Web service candidate. It is obviously neither practical

nor feasible to either randomly pick up test cases or try to

go through every possible test case from input data

domain. Our proposed solution is to utilize boundary

values together with faulty data perturbed from boundary

values to quickly verify the reliability of a Web service

candidate.

Each test case will test a Web service upon a function

call which signature contains several parameters. Each

parameter requires a specific data type with implicit

boundary constraints. Our approach focuses on finding out

the boundary values for each input parameter’s data type.

Let us take a simple example: suppose that a Web service

exposes a WSDL interface that includes a string-type

parameter defined as follows:

 <part name="loginId" type="xs:string"/>

For this parameter, we can test on boundary values

such as: null, “” (empty string), short string (i.e., one

character long), very long string (e.g., 200 characters

long), string containing “new line” character, non-string

value (i.e., integer 3), etc.

For every WSDL interface exposed by a Web service,

we will list boundary values for each input parameter.

Then we will assemble all boundary values for each input

parameter to obtain a list of test cases. For example,

suppose a Web service interface contains three input

parameters, each one being a string type without further

constraints. As discussed above, each parameter can have

five boundary values. Assembling them together, we will

get a list of fifteen different test cases for the functional

call.

2 This value can be either positive or negative based upon the

algorithm used.

In short, our strategy of generating test cases to test the

correctness of a Web service is to find boundary values

for each parameter. These boundary values are definitely

within the input domain. In order to test the fault tolerance

of a Web service, we will perturb the boundary values to

generate faulty data as test cases. Injecting faulty data to

verify fault tolerance is not new. Traditional software

testing establishes the fault injection technique [13, 14].

However, applying the traditional fault injection technique

to the domain of Web services testing remains

challenging. In more detail, we adopted the basic concept

of the fault injection; but we need to solve corresponding

technical issues.

Here we will first briefly review the concept of fault

injection and then discuss the technical challenges. Fault

injection is a set of techniques that provide worst-case

predictions for how badly a system will behave in the

future [13, 14]. It suggests to inject corrupted data to the

input of a system, and monitors the output of the system to

obtain knowledge of its fault tolerance and

interoperability [13]. However, although the basic concept

of fault injection technique seems appropriate to be

applied to test Web services, how to apply the technique

remains a challenge.

The core challenge of the fault injection technique is

how to create corrupted data for a testing component.

Voas and colleagues proposed to perturb the input domain

to find corrupted data [13]. In traditional component-

based testing, a testing component is already deployed in

its execution environment; thus, it is feasible to conduct

arbitrary amount of testing over the testing component.

When we deal with Web services, on the other hand, we

are facing remote Web components so that network traffic

needs to be considered imperatively, let alone the fact that

some Web services might have access charges associated.

Furthermore, unlike traditional software components,

Web services found from public registries oftentimes

reveal limited information except the access prototypes

defined in WSDL. Therefore, our strategy of designing

faulty data to test the fault tolerance of a Web service

focuses on perturbing the boundary values for each input

parameter’s data type. Let us take a simple example:

suppose that a Web service login function requires a

string-type input parameter with a length limitation of 6 to

16 characters. 6 and 16 character-long strings are both

boundary values for the input parameter. Perturbing these

two boundary values, we can obtain 5 and 17 character-

long strings, which can be used as faulty data to test the

fault tolerance of the Web service.

3. Design of generating test cases

In this section we will discuss the detailed design

issues and solutions to test case generation. To be specific,

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

a test case of a Web service is a set of mappings between

all published input variables and their values. Each test

case can be used to generate a SOAP input message to test

the corresponding Web service.

Here we will first briefly introduce the related WSDL

specifications on Web services interface definition; then

we will discuss how we extract test cases (including both

testing data and faulty data) from WSDL definitions.

WSDL is “an eXtensible Markup Language (XML)

format for describing network services as a set of

endpoints operating on messages containing either

document-oriented or procedure-oriented information”

[15]. Using the WSDL, a Web service is defined as a set

of ports, each publishing a collection of port types that

bind to network addresses using common binding

mechanism. Every port type is a published operation that

is accessible through messages. Messages are in turn

categorized into input messages containing incoming data

arguments and output messages containing results. Each

message consists of data elements; and every data element

must belong to a data type, either a XML Schema

Definition (XSD) simple type or a XSD complex type
3
.

Our basic strategy is to design test cases based upon

the boundary values of each formal argument of the

published WSDL definition of the Web service.

Therefore, our challenge here turns into how to find

efficient boundary values for each possible formal

argument. Since each input parameter must be a XML-

allowed data type, it can be either XML built-in primitive

types or user-defined compound types. Let us examine the

XML built-in primitive types first.

W3C Specification of the XML Schema language

defines nineteen built-in primitive types: string, decimal,

boolean, duration, dataTime, time, date, gYearMonth,

gYear, gMonthDay, gDay, gMonth, base64Binary,

hexBinary, float, double, anyURI, QName, and

NOTATION [16]. For each XML primitive type, we

extract boundary values based upon: (1) XML

constraining facets [16], (2) operational profiles, and (3)

semantic meanings.

W3C XML specification defines the constraining

facets for each primitive type. Taking string as an

example, it has the following constraining facets: length,

minLength, maxLength, pattern, enumeration, and

whiteSpace. We take these defined constraining facets as

guidelines to create boundary values. For example, for a

WSDL input argument that is an XML data type string,

we will generate test cases on its length, minimum length,

maximum length, null, and empty string, respectively.

XML constraining facets provide generic guidelines for

us to find boundary values; and the operational profiles of

3 Here we omit the fact that WSDL allows other data type

system in addition to XSD, since XSD is its canonical type

system.

a Web service will help us find more efficient boundary

values. For example, let us consider a login id field with

type string. From the XML constraining facets of string,

we know that we need to test on the length of the string. A

specific operational profile can help us decide to test

whether the string can accept more than 16 characters. In

addition, operational profiles can help decide the

boundary values for patterns testing, as defined by the

corresponding XML constraining facets.

Finally, the semantic meanings of an argument can

facilitate boundary values elicitation. Taking an input field

of credit card expiration year as an example, it is intuitive

for us to test the following cases: whether the input year is

a future year or a past year, whether the year is way too far

in the future, whether the combination of the year and the

month represents a date in the future, whether the month is

between 1 to 12, etc.

It should be noted that the first way of boundary value

elicitation approach using XML constraining facets can be

automated, while the second and third approaches using

operational profiles and semantic meanings require

manual involvement or more intelligence.

For user-defined compound data types, we can

navigate through the hierarchy tree of the data type and

design test cases based upon each leaf element that is a

XSD simple data type. Figure 2 shows a simplified XSD

compound data type AddressBook. The address book for

a person contains three elements: her id as a double type,

name as a string type, and addresses as a list of address

information. Each address is composed of five elements:

an address type as a double type, an address line as a

string type, a city as a string type, a state as a string type,

and a zip code as a string type. Therefore, there are seven

leaf elements in this AddressBook data type: id, name,

addrType, addrLine, city, state, and zipCode. Each

element belongs to a XSD simple data type, either double

or string. Then for each element, we can apply our

strategy of designing boundary values for XSD simple

data types, as we discussed above. Since we prefer to

locate errors if there is any, each test case only focuses on

testing one edge value of one leaf element, without

combining several edge values of multiple elements. In

other words, we have purposely limited the edge values to

single parameter to avoid the explosion that occurs in the

number of combinatorial edge values that could be set at

each SOAP input message. Accumulating all of these test

cases together, we will obtain a set of test cases targeting

at testing the overall AddressBook data type.

After generating test cases based upon boundary values

extracted from WSDL definitions, we perturb each value

in a test case to generate faulty test cases. For example, if

the maximum length of a string data type is 16, the

generated test case will be a string value with 16-character

long; the perturbed faulty test case will be a string value

with 17-character long.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

4. Implementation

We implemented a prototype that realizes the reliable

Web services selection, as shown in Figure 3. There are

six components and four databases. The six components

are: a test manager, a test case generator, a testing agent

creator, a Web service searcher, a reliability function

editor, and a system tester WS-Net. The four databases

are: a candidate database, a test case database, a system

test case database, and a log database. In Figure 3, dotted

lines represent control information, and solid lines

represent data interactions. Numbers associated with lines

represent the order of the operations that are performed by

the system in a process of selection. We will walk through

a complete procedure and discuss included components.

The test manager is the central coordinator of the

system. It directly controls the other three components: the

test case generator, the test agent creator, and the system

tester. The test manager will first start the test case

generator, which is responsible of creating all test cases.

The test case generator identifies test cases. The locations

and the binding information of the candidates are stored in

the candidates database. The generated test cases are also

stored in the test case database. In our prototype, our test

case generator automates test case generation using the

XML constraining facets approach discussed in Section 3.

After the initial set of test cases are generated and

stored in the corresponding databases, the test manager

initiates the test agent creator. Each Web service

candidate will be assigned a dedicated test agent. For each

Web service candidate, the test agent creator creates a test

agent, equipped with test data, assertions, and knowledge

from the test case database. A proxy is also created for

each test agent to receive information from the agent and

monitor its execution. Then the test agent can start to test

the remote Web service candidate site, using the location

and binding information from the candidate database. The

testing results are stored in the log database. By assigning

dedicated test agent to each Web service candidate,

testing over multiple candidates can be conducted parallel.

After a testing agent starts its testing work, the test

manager starts the system tester component, which is in

charge of system testing. The system tester then creates a

substitute for every component in the system by using

information from the log database. Finally the system

tester initiates the WS-Net [17] to run the tests, loading

test cases from the system test case database. WS-Net is

yielded from our previous research, which is a Petri nets-

based tool to simulate and validate the cooperation of

multiple Web services.

5. Experiments

In order to examine the effectiveness of our proposed

test agents-based testing and selection approach, we

carried out a series of simulations to study the system

performance. An environment was set up to simulate a

student registration and record system, where students can

register courses and retrieve course grades on line. The

system was designed to be composed of a sequence of

components, each being implemented by a Web service.

<element name=“AddressBook" type="tns:AddressBookType"/>

<complexType name=“AddressBookType">

<all>

<element name="id" type=“double/>

<element name="name" type="string"/>

<element name=“addresses">

<complexType>

<all>

<element name=“address" type="tns:Address"
minOccurs="0" maxOccurs="unbounded"/>

</all>

</complexType>

</element>

</all>

</complexType>

<complexType name=“Address">

<all>

<element name=“addrType" type=“double"/>

<element name=“addressLine" type="string"/>

<element name=“city" type="string"/>

<element name=“state" type="string"/>

<element name=“zipCode" type="string"/>

</all>

</complexType>

AddressBook

id name addresses

addrType addrLine city state zipCode

AddressBook

id name addresses

addrType addrLine city state zipCode

Figure 2. A simple example of XSD complex data type AddressBook

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

The requirements of each component were pre-defined;

and the interaction process of the whole system was pre-

defined. A component X intends to receive a set of input

arguments – a student id (string), course id (string), term

(string), and year (integer) – and checks databases to

return the corresponding course credit hours (integer) and

the grade (double). Its detailed WSDL definition was

presented and discussed in Section 4. Three Web services

candidates Y1, Y2, and Y3 implemented the same WSDL

definition.

To build three Web services candidates, we (1)

obtained three copies of the module, (2) injected errors to

the first two copies, (3) deployed the three copies to three

machines, and (4) wrapped each one with a Web service

interface. The errors we injected include: to make the

module crash upon receiving an empty string as the

student id, to remove semantic checking of the input term

and year, etc. The third candidate is error-free, so that it is

the one that should be selected.

We tested the efficiency of our boundary value-based

test cases and faulty test case generation algorithm. In Y1

and Y2, we embedded various types of errors, such as

computational faults, XML and SOAP processing faults,

data exception handling faults, etc. We perform three

categories of test case generation: (1) manually and

randomly pick up test cases from the input domain, (2)

manually go through possible test case from input data

domain, and (3) automatically generate test cases using

our boundary value-based approach. The number of test

cases in the second category is N times of the maximum of

the number of test cases in the first and third categories.

We tested many groups of experiments by embedding

various numbers of errors. We found that random test case

selection is the least robust algorithm to find errors. Based

upon the chosen number of number N, when almost all of

the possible test case is covered, the second exhaustive

approach can find all errors. However, it should be noted

that both algorithms have to go through manual process.

We found that our boundary value-based test case

generation approach is efficient to find computational

faults, XML and SOAP processing faults, as well as data

exception handling faults.

In order to further test the efficiency of three

algorithms, we chose to set up the reliability decision

threshold to zero, which means that all test cases will be

conducted. The testing results are similar to that was

described above.

In summary, our experiments show that our test case

generation is efficient.

6. Evaluations

By constructing test data including normal data and

corrupted data, our approach is capable of certifying

whether the tested Web service thoroughly fulfill the

functional requirements as desired. In addition, by

perturbing the test data to imitate unusual events, our

approach is capable of testing whether the hosts of Web

services act maliciously or errantly at invocation times.

Based upon remote Web services’ published

descriptions and service requester’s operational profiles,

currently our test agents can test the functionalities of the

Web services and their reliability. However, our method

has the potential to test more non-functional attributes of

Web services. For example, test agents can conduct a

matrix of test data to a remote Web service to test more

Figure 3. Prototype of reliable Web services selection

Test Manager

Test Case

Generator

Test Agent

Creator

Reliability

Function Editor

System

Tester

Web Service

Searcher

WS-Net

Proxy

Candidates

DB

Test Case

DB

Assertions

System

Test Cases

Log

1.1

1.2

1 4

1

2

3

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

attributes.

By perturbing the output data of a Web service

gathered by test agents in a system integration test, our

approach is capable of testing whether a Web service’s

errant action will affect the quality of a composed

environment.

In addition, it should be noted that, although our

method concentrates on testing the reliability of Web

services as components in an application system, this

method can be used to test the reliability of standalone

Web services. That being the case, the second level of

interoperability testing can be omitted.

Furthermore, although our current research focuses on

how to assist service requesters to select reliability-aware

Web services components, this research has the potential

to be applied to facilitate Web services certification

processes.

In summary, our approach provides a cost-efficient

method to reveal the testability of remote Web services

components. Our approach also provides an approach to

facilitate service requesters to make better decisions.

7. Related Work

Casati et al. suggested that Web service providers

define service quality metrics, which contain non-

functional parameters specifying the cost, duration, and

other characteristics of a service, to help service

requestors make decisions over multiple candidates [18].

However, their work remains as a high-level abstraction

without technical discussions such as how to construct

service quality metrics.

Maximilien and Singh proposed to adopt dedicated

agents to gather, store, aggregate, and share QoS data in

order to help dynamic service selection [7]. Contrast with

their work, we use agents for different purposes. Their

agents serve as independent information centers that

provide QoS data for service requestors; our agents are

dynamically created by service requestors and travel to

service candidates to gather QoS information at run time.

Menascé presented a way to calculate response time for

composite Web services on the perspective of service

requestors [19, 20]. Since our research concentrates on

efficient testing methods of Web services, we only

consider response time for a single Web service

component.

Zhang et al. built an XML-based search engine for

appropriate Web services from public entry [21]. Our

work starts from a list of Web services candidates pre-

selected by such a kind of method.

Offutt and Xu proposed to adopt data perturbation

technique to generate test cases of testing message

communications between pairs of Web services. In

contrast with their approach, our research aims to help

service requestors automatically create test cases to select

Web services found from public registry.

OASIS’ WS-Reliability [22] provides a standard to

ensure reliable message interactions between Web

services. Contrast with this standard that targets on

reliable messaging at the transport level, our research

targets on analyzing and testing reliability of a Web

service itself.

8. Conclusions and Future Work

This paper explores the criteria of reliability of Web

services-oriented systems, and discusses how to design

and generate test cases to conduct tests over remote Web

services.

Our future work will include exploring more selection

criteria to ensure more non-functional attributes and

conducting more case studies.

9. References

[1] N. Leavitt, "Are Web Services Finally Ready to

Deliver?" IEEE Computer, 2004: pp. 14-18.

[2] M.A. Friedman and J.M. Voas, Software Assessment:

Reliability, Safety, Testability, 1995, New York: John

Wiley & Sons, Inc.

[3] J. Zhang and L.-J. Zhang, "Web Services Quality

Testing", International Journal of Web Services

Research, 2005. 2(2): pp. 1-4.

[4] T. Tsai, R. Paul, Z. Cao, L. Yu, A. Saimi, and B. Xiao,

"Verification of Web Services Using an Enhanced UDDI

Server", Proceedings of the Eighth IEEE International

Workshop on Object-Oriented Real-Time Dependable

Systems (WORDS), Guadalajara, Mexico, Jan. 15-17,

2003, pp. 131-138.

[5] D.A. Menascé, "Composing Web Services: A QoS

View", IEEE Internet Computing, 2004: pp. 88-90.

[6] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam,

and Q.Z. Sheng, "Quality Driven Web Services

Composition", Proceedings of the twelfth ACM

International Conference on World Wide Web, Budapest,

Hungary, 2003, pp. 411-421.

[7] E.M. Maximilien and M.P. Singh, "A Framework and

Ontology for Dynamic Web Services Selection", IEEE

Internet Computing, 2004. 8(5): pp. 84-93.

[8] W.T. Tsai, Y. Chen, R. Paul, N. Liao, and H. Huang,

"Cooperative and Group Testing in Verification of

Dynamic Composite Web Services", Proceedings of 28th

Annual International Computer Software and

Applications Conference - Workshops and Fast Abstracts

- (COMPSAC), Sep., 2004, pp. 170-173.

[9] C. Werner, C. Buschmann, and S. Fischer, "WSDL-

Driven SOAP Compression", International Journal of

Web Services Research, 2005. 2(1): pp. 14-35.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

[10] P. Neumann, "Principled Assuredly Trustworthy

Composable Architectures, emerging draft of the final

report for DARPA's Composable High-Assurance

Trustworthy Systems (CHATS) program, 2004", 2004,

http://www.csl.sri.com/users/neumann/chats4.pdf.

[11] J.D. Musa, A. Iannino, and K. Okumoto, Software

Reliability Measurement Prediction Application, 1987:

McGraw-Hill.

[12] IEEE, IEEE Guide for the Use of IEEE Standard

Dictionary of Measures to Produce Reliable Software.

1988, IEEE Std 982.1-1988, Institute of Electrical and

Electronics Engineers.

[13] J. Voas and G. McGraw, Software Fault Injection:

Inoculating Programs Against Errors, 1998: New York:

John Wiley & Sons, ISBN 0-471-18381-4.

[14] J. Voas, "Certifying Off-The-Shelf Software

Components", IEEE Software, 1998: pp. 53-57.

[15] WSDL, 2004, http://www.w3.org/TR/wsdl.

[16] W.C.D. Types, http://www.w3.org/TR/xmlschema-2/.

[17] J. Zhang, C.K. Chang, J.-Y. Chung, and S.W. Kim,

"WS-Net: A Petri-net Based Specification Model for Web

Services", Proceedings of IEEE International Conference

on Web Services (ICWS), IEEE CS Press, San Diego, CA,

USA, Jul. 6-9, 2004, pp. 420-427.

[18] F. Casati, M. Castellanos, U. Dayal, and M.-C. Shan,

"Probabilistic, Context-sensitive, and Goal-oriented

Service Selection", Proceedings of the 2nd ACM

International Conference on Service Oriented Computing,

New York, NY, USA, 2004, pp. 316-321.

[19] D.A. Menascé, "QoS Issues in Web Services", IEEE

Internet Computing, 2002. 6(6): pp. 72-75.

[20] D.A. Menascé, "Response Time Analysis of

Composite Web Services", IEEE Internet Computing,

2004. 8(1): pp. 90-92.

[21] L.-J. Zhang, T. Chao, H. Chang, and J.-Y. Chung,

"XML-based Advanced UDDI Search Mechanism for

B2B Integration", Electronic Commerce Research

Journal, 2003. 1(3): pp. 25-42.

[22] WS-Reliability, 2004, http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsrm.

Proceedings of the IEEE International Conference on Web Services (ICWS’05)
0-7695-2409-5/05 $20.00 IEEE

