

 Silicon Valley Campus

Carnegie Mellon University

Mountain View, CA 94035

Data and Network Optimization Effect on Web Performance

Steven Rosenberg, Surbhi Dangi, Isuru Warnakulasooriya

February 10, 2012

CMU-SV-12-001

http://sv.cmu.edu
http://repository.cmu.edu/silicon_valley/91/

!
!
!

Data and Network Optimization Effect on Web

Performance

Steven Rosenberg, Surbhi Dangi & Isuru Warnakulasooriya

{steven.rosenberg, surbhi.dangi}@sv.cmu.edu, isuru.warn@alumni.cmu.edu

Carnegie Mellon University Silicon Valley | NASA Research Park | Bldg 23 (MS 23-11) | Moffett Field, CA 94035

Carnegie Mellon University Silicon Valley | NASA Research Park | Bldg 23 (MS 23-11) | Moffett Field, CA 94035

mailto:isuru.warn@alumni.cmu.edu

! 2!

0. Summary

!

In this study, we measure the effects of two software approaches to improving data and network

performance: 1. Content optimization and compression; and 2. Optimizing network protocols. We achieve

content optimization and compression by means of BoostEdge and employ the SPDY network protocol to

lower the round trip time for HTTP transactions. BoostEdge [1] by ActivNetworks is a leading Application

Delivery Controller (ADC) product, and SPDY [2] by Google is a network optimization protocol built into

the Chrome browser. Since the data and transport layers are separate, we conclude our investigation by

studying the combined effect of these two techniques on web performance. Using document mean load

time as the measure, we found that for our testing profile, with and without packet loss, both BoostEdge

and SPDY provide a significant improvement in speed over HTTP. When tested in various combinations,

we find that the effects are more or less additive and that the maximum improvement is gained by using

BoostEdge and SPDY together. Interestingly, the two approaches are also complimentary; i.e., in situations

where data predominates (i.e. “heavy” data, and fewer network requests), BoostEdge provides a larger

boost via its data optimization capabilities and in cases where the data is relatively small, or “light”, but

there are many network transactions required, SPDY provides an increased proportion of the overall boost.

The general effect is that relative level of improvement remains consistent over various types of websites.

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

! 3!

I. Introduction

It is expected that demand for affordable data bandwidth will outpace supply for the foreseeable future. In

developed countries, we are entering an era of all data available any time, any place, including pervasive

HD video streaming, augmented reality apps, mobile telepresence, connected cars, etc. In sparsely

populated rural areas and less developed countries, there is a need to expand the available bandwidth for

the increasing numbers of users who rely on their mobile devices as their primary service, and to build out

sufficient fixed line capacity, all within tight financial constraints.

To address these issues, many technologies are being developed or optimized to remedy the problem of

bandwidth congestion and degraded performance. In this situation, software techniques for increasing the

capacity of current infrastructure and web servers are very appealing to network providers and website

owners, as they are easy and quick to install, and do not require expensive capital and maintenance costs

for equipment. Two of the most promising software approaches are (a) content optimization and

compression, and (b) optimizing network protocols. Since network protocol optimization and data

optimization operate at different levels, there is an opportunity for improvement beyond what can be

achieved by either of the approaches individually. In this paper, we report on the performance benefits

observed by following a unified approach, using both network protocol and data optimization techniques,

and the inherent benefits in network performance by combining these approaches in to a single solution.

Specifically, to demonstrate our hypothesis, we have chosen SPDY [2] by Google, a network optimization

protocol built into the Chrome browser and BoostEdge [1] by ActivNetworks, a leading Application

Delivery Controller (ADC) product for data optimization and compression. SPDY is an application layer

protocol that improves on HTTP response times by crunching the latency effects of a network through

optimizing the “handshakes” and reducing the number of required connections for a session (very efficient

on high Round Trip Time sessions). SPDY is widely and transparently available to users via the Chrome

browser, although at the moment it is not widely supported on the server side.

BoostEdge, on the other hand, operates on the HTTP layer to compress data content, resulting in bandwidth

savings and lower page-load times (very efficient on congested networks). It also facilitates data

"optimization" on the client side in multiple ways such as:

1. Forcing a client to optimally cache data.

2. Introducing a time delay to send data to the client when the previously sent data requires time to

load.

3. Enabling lossy image compression that is geared to the client screen size.

! 4!

BoostEdge also facilitates “optimization” of transactions on the server side, as loads increase towards

saturation, by various techniques that take advantage of its knowledge of the nature of the connection and

client, such as speeding up very slow connections more than the already fast connections. While there are

other ADCs that can also compress data, BoostEdge’s approach is extremely flexible and transparent to the

client as it requires no special software or hardware on the client.

II. Testbed Description

To measure network performance, we built a testbed that would allow us to benchmark BoostEdge and

SPDY by measuring HTTP and HTTPS performance individually and in relevant combinations.

The testbed (Figure 1) is a fairly simple one and consists of a 1 Gbps switch bridging two loaders and the

BoostEdge device. The BoostEdge device then connects to two servers through another 1 Gbps switch that

play host to downloaded websites as a simulation of web traffic for this setup. Web requests are generated

using an external machine, connecting from the Carnegie Mellon University Silicon Valley (CMU SV)

Ethernet and wireless network to the testbed through the first switch. The external machine is used to

introduce web traffic and enable bandwidth throttling.

! 5!

Figure 1 - Testbed Description

The two loaders can also act as clients to generate web traffic, if desired. In addition, Loader01 contains the

QAC tool, an internal testing tool developed by ActivNetworks that simulates and measures web traffic.

Loader02 hosts the Flip server, which is built-in with the SPDY protocol.

When requests are generated by a Chrome Browser on an external machine, and routed through the loader

containing the Flip server, on their way to the BoostEdge device and the web servers, a SPDY connection

can be established between the Flip server and the external machine’s Chrome browser. The output of the

Flip server to/from the BoostEdge device and to the web servers will be HTTP.

The two servers hold copies of the 45 most-visited websites in the US, downloaded to a depth of two.

Selecting websites with homepage weights greater than 200 Kb, these 45 websites were derived from an

initial list of the 100 top US websites selected using the alexa.com index [3]. YSlow[4], a Google Chrome

tool, was used to determine homepage weights for all websites.

! 6!

The BoostEdge appliance, which sits in the center of the testbed, when set to the “pass through mode”

ensures that traffic passing through the appliance, goes untouched. When set in the active mode, all traffic

to the servers first passes through BoostEdge, which compresses and optimizes the traffic from the servers.

An external machine running Google Chrome generates web requests, measures web traffic, and gives us

the ability to throttle the CMU SV network as needed. It connects to the CMU SV Ethernet and wireless

networks. The wireless network is rated between 20 and 100 Mbit/sec. Our measurements of network

speeds show that we achieve speeds of 20Mbps to 72Mbps while connecting to the testbed to run tests. This

being greater than our desired speed of 1 Mbps, we throttle the network to achieve our desired speed.

The current benchmarking protocol only required us to use a subset of the testbed (Figure 2). A single

server was loaded with a number of large, popular sites with different content and transaction

characteristics. The external machine running Google Chrome was used to generate web requests for these

websites. Since the QAC tool on Loader01 and one of the web servers were not used for these tests, a

revised flow diagram of the testbed is used in the subsequent sections to make the test protocols easier to

follow.

Figure 2 – Components of the testbed used for benchmarking

! 7!

 III. Website Selection

Selecting websites to represent a real-world scenario was of essence to our study. The testbed was

populated with working replicas of 25 websites using the following methodology:

1. After identifying the 100 most visited websites using the Alexa Traffic Rank,

we downloaded copies (to a depth of 2) to our test bed servers using Wget[5]. In addition to

creating local copies of the websites, Wget also cleaned up most external resource requests in each

website.

2. For each downloaded website, we measured the home page weight and the number of HTTP

requests on our local server. YSlow, a Chrome add-on, was used to determine the above two

metrics.

3. Websites with a Home Page weight lower than 200 Kb were discarded. The remaining websites

were then ranked by their homepage weights and 45 websites with the highest weights were

shortlisted.

4. Since Wget only partially redirects external requests to the local machine, the websites were then

manually scrutinized to redirect the remaining external requests to the local server. Applying our

initial selection criterion of home page weight being greater than or equal to 200 Kb, 40 websites

remained at this stage.

5. The 40 websites were then benchmarked using home page weights and HTTP requests using

YSlow, as was done earlier. The 25 websites with the highest home page weight formed our final

test-set.

HTTP requests were considered as a secondary metric to give a different dimension to our tests, after

narrowing our test-set to 25 websites using the primary selection criteria of page weight being greater than

200 Kb. Table 1 documents both these metrics for the websites.

An external machine with the Chromium Page Benchmarking Tool[6] in a Chrome browser was used to

generate the web requests. The Mean Doc Load Time, which is the time taken for the document object

model (DOM) to load completely, was then recorded for each web request. A speed-up % was calculated to

clearly distinguish the effect of using SPDY and/or BoostEdge, and the same was depicted graphically and

in tables.

! 8!

Website! Home!Page!Size!(KB)! HTTP!Requests!
LATimes! 2049.6! 160!
WashingtonPost! 1487.6! 109!
CNN! 1379.8! 109!
MapQuest! 1231.7! 78!
Answers! 1035.2! 39!
Ehow! 1006! 27!
FoxNews! 981.8! 45!
Yahoo! 948.4! 50!
SalesForce! 944.1! 52!
Adobe! 913.6! 77!
GoDaddy! 811.5! 52!
BBC! 799.1! 79!
Yelp! 773.8! 45!
CareerBuilder! 638! 36!
AOL! 628.1! 23!
ATT! 601.9! 57!
BestBuy! 599.1! 75!
Ebay! 562.9! 41!
Comcast! 440.3! 51!
Wordpress! 394.8! 46!
USPS! 356.1! 86!
FoxSport! 346.9! 71!
TypePad! 330.4! 39!
Cj! 330! 88!
Huffingtonpost! 329.3! 32!
Zynga! 321.4! 26!
Clickbank! 304! 38!
Pandora! 274.4! 32!
NYTimes! 256.6! 114!
NFL! 233.5! 45!
Go! 218.9! 21!
Weather! 196.7! 37!
ESPN! 132.5! 33!
CBSSports! 130.3! 30!
IMDB! 123! 42!
Youtube! 113.9! 16!
Digg! 102.1! 25!
Photobucket! 60.8! 38!
Twitter! 54.4! 29!
MySpace! 46.9! 25!

Table 1: 40 Websites with most traffic – top 25 with the heaviest home page weights

! 9!

IV. Dataflow
Below are the data flow diagrams for the three test cases.

1. BoostEdge vs. HTTP

Figure 3 below shows the flow of data for the test case designed to compare the performance of BoostEdge

against HTTP. In both conditions, there is two-way network traffic from the Chrome Browser through

BoostEdge to the web server. In the “BoostEdge on” case, BoostEdge is active and acts on the data,

compressing and optimizing the traffic back to the Chrome browser. In the HTTP case, BoostEdge operates

in the “transparent mode”, merely passing any traffic through the network, without touching it. Thus the

right way to look at this is to think of the BoostEdge appliance being located just in front of or behind an

internet gateway for the web server, while the connection from BoostEdge to the Chrome Browser can be

any arbitrary internet distance (latency) and connection speed.

Figure 3 – Dataflow for BoostEdge vs. HTTP comparison

2. SPDY vs. HTTP

Figure 4 below shows the flow of data for the test case designed to compare the performance of SPDY

against HTTP. In both cases, the data first goes through the Flip Server, then through BoostEdge, to the

web server, and then back again. In both cases, BoostEdge operates in “transparent mode”, merely passing

any traffic through the network, without touching it. For the case of SPDY on, the Chrome browser

establishes a SPDY connection with the Flip server, and traffic between these two points uses the SPDY

protocol. The Flip Server emits HTTP for the network link to the Web server, and receives HTTP back.

! 10!

Thus the right way to look at this is to think of the Flip Server being located just in front of or behind the

internet gateway for the web server, while the connection from the Flip Server to the Chrome Browser can

be any arbitrary internet distance (latency) and connection speed.

Figure 4 – Dataflow for SPDY vs. HTTP comparison

3. SPDY and BoostEdge vs. HTTP

Figure 5 below shows the data flow for the BE+SPDY vs. HTTP comparison. In both cases, the data first

goes through the Flip Server, then through BoostEdge to the web server, and then back again. In the first

case, SPDY and BoostEdge are “on”, the Chrome browser establishes a SPDY connection with the Flip

server, and traffic between these two points uses the SPDY protocol. The Flip Server emits HTTP, which

goes through BoostEdge to the web server. On the return trip, BoostEdge processes the HTTP, compressing

and optimizing it and sending it on to the Flip server. The Flip server in turn takes the optimized HTTP,

and applies the SPDY protocol for the connection back to the Chrome browser. In the HTTP case, both the

Flip server and BoostEdge operate in “transparent mode”, merely passing any traffic through the network,

without touching it. Thus the right way to look at this is to think of the Flip Server and BoostEdge being

located just in front of or behind the internet gateway for the web server, while the connection from the Flip

Server to the Chrome Browser can be any arbitrary internet distance (latency) and connection speed.

! 11!

Figure 5 – Dataflow for BoostEdge and SPDY combined vs. HTTP comparison

V. Test Profiles and Findings

The benefits of SPDY and BoostEdge are dependent on the nature of the network session. For instance,

with a gigabyte network only extremely heavy loads would show apparent benefits in performance. Hence,

in our testing profile, we constrained the bandwidth to 1 Mbps with a latency of 100 msec. Although

BoostEdge has a wide range of settings that optimize overall performance in saturated and low speed

networks, since our testbed did not allow for saturating the BoostEdge load sufficiently to require tuning

the performance, we used the default or recommended settings for our tests.

In table 2 below, we set out the 6 test conditions used in all test cases. This testing sequence was constant

for all test cases. For each test condition, the activity status of the two protocols (SPDY & HTTP) along

with the BoostEdge status is noted in the table.

! 12!

Test

Condition
Iterations Protocol

SPDY

Status

Through

FlipServer

BoostEdge

Status

BoostEdge

Compression

1 10 SPDY ON Yes OFF n/a

2 10 SPDY OFF Yes OFF n/a

3 10 SPDY ON Yes ON MAX

4 10 SPDY OFF Yes ON MAX

5 10 HTTP n/a No OFF n/a

6 10 HTTP n/a No ON MAX

Table 2: Test conditions

Table 2 depicts the six test scenarios listed below (in the same order) for which the Mean Doc Load Times

were recorded for the websites in our test-set, relative to HTTP:

1. HTTP

2. HTTP through the Flip server

3. SPDY through the Flip server

4. SPDY through the Flip server via BoostEdge

5. HTTP through the Flip server via BoostEdge

6. HTTP via BoostEdge

Our study analyzes three different behaviors of the testbed (described in detail below):

Test Case 1: Average Performance

Test Case 2: Speed-up introduced primarily by BoostEdge

Test Case 3: Speed-up introduced primarily by SPDY

Test Case 1: Average Performance
To represent the typical behavior of the effects of SPDY and BoostEdge – individually and in

combinations, we used the following test protocol:

1. Average Performance without Packet Loss: Using the Page Benchmarking Tool in Google

Chrome on the external machine to generate requests, the 25 websites in our test bed were tested

individually over 10 iterations and their Mean Doc Load Time was recorded. The bandwidth was

throttled to 1 Mbps with no set packet loss. Testing was done using a direct Ethernet connection.

Throttling Settings
 Throttling - Bandwidth 1 Mbps

Throttling - Delay 100 ms
Packet loss set 0.00%
Packet loss Measured* 0.0% - 0.1%
*Packet loss measured over a 1000 ping requests

Table 3: Throttling Settings – Average performance without packet loss

! 13!

The results for average web performance without packet loss are tabulated below:

Testcase Average Page Load time (ms) Speed-up over HTTP % Error %

1. HTTP 8924.36 N/A 4.47

2. HTTP through FlipServer 9892.932 -10.8531256 5.29

3. SPDY through FlipServer 8676.04 2.782496448 2.75

4. SPDY through FlipServer w BoostEdge 3965.236 55.5683993 2.01

5. HTTP through FlipServer w BoostEdge 5266.584 40.98642368 3.22

6. HTTP w BoostEdge 4425.6 50.40988934 4.66

Table 4: Result for Average performance without packet loss

Results and Analysis:
1. HTTP: Test condition 1 represents our default condition - “plain old” HTTP.

2. HTTP through Flip Server: This condition shows the effect when we route the network

through the Flip Server, when still running HTTP. Looking at the impact of using the Flip

Server, we can see that we are paying about an 11% cost. Some of this is due to the added

time of running through the Flip Server, but is primarily due to the fact that the Flip Server

uses SSL.

3. SPDY through Flip Server: Turning SPDY on and passing it through the Flip Server results

in a net gain of 2.8% over plain HTTP, in condition 1. When comparing against condition 2,

and taking into account that this includes an 11% cost of running SSL, SPDY offers a

significant improvement in performance over HTTP, of ~13.8%.

4. SPDY through Flip Server with BoostEdge: The 4th condition shows the change in

performance when we now turn on BoostEdge. We see a further improvement of ~55.6% in

performance over HTTP.

5. HTTP through Flip Server with BoostEdge: Looking at the 5th condition, we can compare

HTTP through the Flip Server performance, to HTTP through the Flip Server with BoostEdge

performance on average page load times (conditions 2 & 5) as well as HTTP versus SPDY

performance with BoostEdge turned on (conditions 4 & 5). In the first case, we can see that

when the HTTP traffic is going through the Flip server, HTTP with BoostEdge improves

average page load times over plain HTTP by an average of ~52%. Since the traffic uses SSL

when the Flip server is used, this is really looking at the effects of using BoostEdge with SSL.

Looking at the effect of also turning on SPDY, we can see that SPDY provides an additional

15% boost in performance over HTTP when BoostEdge is also used. This is consistent with

the 13% improvement in test condition #2.

6. HTTP with BoostEdge: Looking at the 6th condition, HTTP with BoostEdge without using

the Flip Server, we can see an improvement due to BoostEdge of 50.4% in average page load

times. This is consistent with the ~52% improvement seen in test condition 5 as compared to

condition 2. The benefits of SPDY and BoostEdge over plain HTTP in average page load

! 14!

times appear to be consistent and additive, to within a few percent, across all the test

conditions.

We can see these results clearly when viewed as a chart:

Chart 1: Graphical Representation of Result – Average performance without packet loss

Result Summary: These results show that for our testing profile of 1 Mbps and 100 ms delay,

with no packet loss, for 25 websites, we gain the largest improvement in average page load time

using BoostEdge together with SPDY. We can conclude that the data optimization contribution of

BoostEdge and the network optimization contribution of SPDY appear to be complementary and

additive in effect. Both approaches show significant improvements in performance individually as

well. These results are averaged over 25 websites and, of course, the results in any particular case

will vary somewhat from the average. We include the specific measurements for all 25 websites in

Appendix 1.

2. Average Performance with Packet Loss: Using the Page Benchmarking Tool in Google Chrome

on the external machine, 25 websites in our testbed were tested individually over 10 iterations and

their Mean Doc Load Time was recorded. In the real world, particularly when using WiFi or

mobile networks, there can often be packet loss. Thus, we introduced a typical ~1.0% packet loss

(Jim Roskind, JAR@Google.com, personal communication, August 22, 2011) on the network

throttled to a bandwidth of 1 Mbps. Testing was done using a direct Ethernet connection.

Throttling Settings!
!Throttling - Bandwidth 1 Mbps

Throttling - Delay 100 ms
Packet loss set 0.50%
Packet loss Measured* 0.9% - 1.0%
*Packet loss measured over a 1000 ping requests

Table 5: Throttling Settings – Average performance with packet loss

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

HTTP

HTTP_through_FlipServer

SPDY_through_FlipServer

SPDY_through_FlipServer_w_BoostEdge

HTTP_through_FlipServer_w_BoostEdge

HTTP_w_BoostEdge

! 15!

The results for average web performance with packet loss are tabulated below:

Testcase Average Page Load time (ms) Speed-up over HTTP % Error %
1. HTTP 9179.8 N/A 5.71
2. HTTP_through_FlipServer 10535.6 -14.76938495 7.9
3. SPDY_through_FlipServer 9404.3 -2.44558705 8.02
4. SPDY_through_FlipServer_w_BoostEdge 4275.3 53.42708991 9.72
5. HTTP_through_FlipServer_w_BoostEdge 5443.1 40.70567986 5.27
6. HTTP_w_BoostEdge 4677.1 49.05008824 6.02

Table 6: Result for Average performance with packet loss

Results and Analysis:
General Observation: The first thing to note is that the introduction of packet loss, which is a

random occurrence, increases the error bars and also the average page load times. These effects

are expected - random packet loss will of course increase the error rate, while lost packets require

additional time to re-establish.

1. HTTP: Test condition 1 again represents the default condition, “plain old” HTTP.

2. HTTP through Flip Server: Test condition 2 shows the effect when we route the network

traffic through the Flip Server running SSL. Looking at the effect of using the Flip Server, we

can see that we are paying about a 15% cost, an increase of 4% over the condition of no

packet loss. Since SPDY uses fewer connections than HTTP, to enhance efficiency, the effect

of dropped packets can be more disruptive, which is the result we are seeing.

3. SPDY through Flip Server: Next, in the 3rd condition, we turn on SPDY, and we can

compare the effect of SPDY vs. HTTP, when using the Flip Server. Here we see that there is

about ~2.5% loss over HTTP, but compared to running HTTP through the Flip server using

SSL, SPDY offers a 12.5% improvement in performance, consistent with the case of no

packet loss. It appears, under our condition of packet loss that there is degradation in

performance due to packet loss, but the relative advantage of using SPDY over HTTP when

using the Flip Server is comparable to the same test condition with no packet loss.

4. SPDY through Flip Server with BoostEdge: The 4th condition shows the change in

performance when we now turn on BoostEdge in addition to SPDY. We see an improvement

of ~53% in performance over HTTP (condition 1), and ~51% compared to just SPDY. These

results are consistent with the results found when there is no packet loss (55.5% and 53%

respectively).

5. HTTP through Flip Server with BoostEdge: Looking at the 5th condition, we can compare

HTTP through the Flip Server performance, to HTTP through the Flip Server w. BoostEdge

performance on average page load times (conditions 2 & 5) as well as HTTP versus SPDY

performance with BoostEdge turned on (conditions 4 & 5). In the first case, we can see that

HTTP with BoostEdge improves average page load times over plain HTTP by an average of

~55%, when using the Flip Server. This shows that the improvement due to BoostEdge is

! 16!

consistent whether the traffic is routed through the Flip Server or not, and consistent whether

there is packet loss or not. Looking at the effect of also turning on SPDY, we can see that

SPDY provides an additional ~13% boost in performance over HTTP when BoostEdge is also

used. This is consistent with what we see when there is no packet loss (~15% improvement).

6. HTTP with BoostEdge: Looking at the 6th condition, HTTP with BoostEdge without using

the Flip Server, we can see an improvement due to BoostEdge of 49% in average page load

times, slightly less than the case of no packet loss (~50%). The “cost” of using the Flip server

and SSL is about ~10% in this case, (conditions 5 & 6), which is consistent with the cost

(~11%) when there is no packet loss.

We can see these results more clearly when viewed as a chart:

Chart 2: Graphical Representation of Result – Average performance with packet loss

Result Summary: These results show that for our testing profile of 1 Mbps and 100 ms delay,

when packet loss of ~1% is added to our 25 websites, we still gain the largest improvement in

average page load time using BoostEdge together with SPDY, while gaining the benefits of SSL.

That is, the data optimization contribution of BoostEdge and the network optimization

contribution of SPDY still appear to be complementary and additive in effect, at about the same

levels as with no packet loss. The introduction of packet loss does increase the average page load

times and slightly reduce some performance benefits of SPDY and BoostEdge. Both approaches

show significant improvements in performance individually as well. These results are average

results over all 25 websites, and of course the results in any particular case will vary somewhat

from the average. We include the specific measurements for all 25 websites in Appendix 2.

0

2000

4000

6000

8000

10000

12000

HTTP

HTTP_through_FlipServer

SPDY_through_FlipServer

SPDY_through_FlipServer_w_BoostEdge

HTTP_through_FlipServer_w_BoostEdge

HTTP_w_BoostEdge

! 17!

Test Case 2: Speed-up introduced primarily by BoostEdge

The above results describe an average performance over 25 websites. This has generated robust results - the

result paradigm persisted over successive refinements of test profiles in the process of attaining the final

testbed of 25 websites (i.e. reducing error bars, replacing bad websites and removing external resource calls

did not alter the relative nature of speed-up from plain HTTP even though the absolute magnitude of

measurements varied). However, averaging obscures the variation among individual websites.

To provide more insight, the speed-up introduced by BoostEdge was studied in more detail by comparing

the performance on targeted websites with high data content, where BoostEdge should show an inherent

advantage, against websites with relatively low data content, by using the following testing protocol:

1. 5 websites with the highest home page weights (amongst the 25) were tested over 10

iterations each, using a 1 Mbps network without packet loss, using the Page Benchmarking

Tool in Google Chrome on the external machine to record their Mean Doc Load Times.

Testing was done using a direct Ethernet connection.

2. Similarly, 5 websites with the lowest home page weights (amongst the 25) were tested over

10 iterations using a 1 Mbps network without packet loss, using the Page Benchmarking Tool

in Google Chrome on the external machine to record their Mean Doc Load Times. Testing

was done using a direct Ethernet connection.

The test profile for the above test scenarios is as below:

Throttling Settings
 Throttling - Bandwidth 1 Mbps

Throttling - Delay 100 ms
Packet loss set 0.00%
Packet loss Measured* 0.0% - 0.1%
*Packet loss measured over a 1000 ping requests

Table 7: Throttling settings to measure speed-up introduced primarily by BoostEdge

The five websites with the highest home page weight in our testbed are tabulated below:

Website
Homepage

(Kb)
HTTP

Requests
LATimes 2049.6 160

WashingtonPost 1487.6 109
CNN 1379.8 109

MapQuest 1231.7 78
Answers 1035.2 39

Table 8: Test websites with the highest Home Page weight - to measure speed-up introduced primarily by BoostEdge

! 18!

The results for the 5 heaviest websites are shown in Table 9 below:

Testcase Average Page Load time (ms) Speed-up over HTTP % Error %
1. HTTP 15778 N/A 3.5
2. HTTP_through_FlipServer 16962.5 -7.50728863 2.7
3. SPDY_through_FlipServer 15180.5 3.786918494 1.99
4. SPDY_through_FlipServer_w_BoostEdge 6200.1 60.70414501 1.86
5. HTTP_through_FlipServer_w_BoostEdge 8220.8 47.89707187 1.7
6. HTTP_w_BoostEdge 7249.1 54.0556471 3.3

Table 9: Results to study the speed-up introduced primarily by BoostEdge

Results and Analysis:
1. HTTP: Test condition 1 again represents the default condition, “plain old” HTTP. Not

surprisingly, the heaviest pages show page load times higher than the average for all 25

websites.

2. HTTP through Flip Server: Test condition 2 shows the effect when we route the

network through the Flip Server running SSL. Looking at the effect of using the Flip

Server, we can see that we are paying about a 7.5% cost.

3. SPDY through Flip Server: Next, in the 3rd condition, we turn on SPDY, and we can

compare the effect of SPDY vs. HTTP, when using the Flip Server. Here we see that

there is a net gain of ~4% over HTTP. However, if we take into account the cost shown

in test condition 2 of running SSL, SPDY offers an improvement in performance of

~11% over plain HTTP using SSL for these heaviest websites.

4. SPDY through Flip Server with BoostEdge: The 4th condition shows the change in

performance when we now turn on BoostEdge. We see an improvement of ~61% in

performance over HTTP (condition 1).

5. HTTP through Flip Server with BoostEdge: Looking at the 5th condition, we can

compare HTTP through the Flip Server performance, to HTTP through the Flip Server

with BoostEdge performance on average page load times (conditions 2 & 5) as well as

HTTP versus SPDY performance with BoostEdge turned on (conditions 4 & 5). In the

first case, we can see that HTTP with BoostEdge improves average page load times over

plain HTTP by an average of 55.5%, when using the Flip Server, consistent with the

previous measurements. Looking at the effect of also turning on SPDY, we can see that

SPDY provides an additional 13% boost in performance over HTTP when BoostEdge is

also used, also consistent with previous measurements.

6. HTTP with BoostEdge: Looking at the 6th condition, HTTP with BoostEdge without

using the Flip Server, we can again see an improvement due to BoostEdge of 54% in

average page load times, a slight improvement over previous measurements, perhaps

because BoostEdge’s data compression capabilities have more effect on performance

with heavier pages.

! 19!

Below is a graphical representation of the result:

Chart 3: Graphical representation of results to study the speed-up introduced primarily by BoostEdge

Result Summary: These results show that for the heaviest websites, we still gain the largest

improvement in average page load time using BoostEdge together with SPDY. That is, the data

optimization contribution of BoostEdge and the network optimization contribution of SPDY still

appear to be complementary and additive in effect. Both approaches show significant

improvements in performance individually as well, although for the heaviest websites, BoostEdge

offers an increased advantage, while the SPDY advantage is a bit reduced, compared to the

averages over all websites.

!
The five websites with the lowest home page weight in our testbed are tabulated below; these are

roughly 10% - 30% of the weights of the 5 heaviest:

Website
Homepage

(Kb)
HTTP

Requests
USPS 356.1 86

FoxSport 346.9 71
TypePad 330.4 39

Cj 330 88
Huffingtonpost 329.3 32

Table 10: Test websites with the lowest Home Page weight - to measure speed-up introduced primarily by BoostEdge

The results for 5 lightest websites are shown in Table 11 below:

Testcase Average Page Load time (ms) Speed-up over HTTP % Error %
1. HTTP 5536.1 N/A 1.65
2. HTTP_through_FlipServer 6151.9 -11.12335399 4.71
3. SPDY_through_FlipServer 5218.4 5.738696917 2.86
4. SPDY_through_FlipServer_w_BoostEdge 3201.3 42.17409368 3.61
5. HTTP_through_FlipServer_w_BoostEdge 4237.1 23.46417153 2.62
6. HTTP_w_BoostEdge 3645.6 34.14858836 1.75

Table 11: Results to study the speed-up introduced primarily by BoostEdge

0

2000

4000

6000

8000

10000

12000

14000

16000

18000
HTTP
HTTP_through_FlipServer
SPDY_through_FlipServer
SPDY_through_FlipServer_w_BoostEdge
HTTP_through_FlipServer_w_BoostEdge
HTTP_w_BoostEdge

! 20!

Results and Analysis:
1. HTTP: Test condition 1 again represents the default condition, “plain old” HTTP. Not

surprisingly, the lightest pages show page load times shorter than the average for all 25

websites.

2. HTTP through Flip Server: Test condition 2 shows the effect when we route the network

through the Flip Server running SSL. Looking at the effect of using the Flip Server, we can

see that we are paying about an 11% cost.

3. SPDY through Flip Server: Next, in the 3rd condition, we turn on SPDY, and we can

compare the effect of SPDY vs. HTTP, when using the Flip Server. Here we see that there is a

net gain of ~6% over HTTP. However, if we take into account the cost shown in test

condition 2, an 11% cost of running SSL, SPDY offers a significant improvement in

performance of 17% over plain HTTP for these lightest websites.

4. SPDY through Flip Server with BoostEdge: The 4th condition shows the change in

performance when we now turn on BoostEdge. We see an improvement of ~42% in

performance over HTTP (condition 1). Comparing this result to the third condition shows the

added impact of turning on BoostEdge, when SPDY is operating. This results in a 36.5%

gain, somewhat less than the performance improvement with the heaviest websites.

5. HTTP through Flip Server with BoostEdge: Looking at the 5th condition, we can compare

HTTP through the Flip Server performance, to HTTP through the Flip Server with BoostEdge

performance on average page load times (conditions 2 & 5) as well as HTTP versus SPDY

performance with BoostEdge turned on (conditions 4 & 5). In the first case, we can see that

HTTP with BoostEdge improves average page load times over plain HTTP by an average of

35%, when using the Flip server, consistent with our measurement in the fourth condition.

Looking at the effect of also turning on SPDY, we can see that SPDY provides an additional

19% boost in performance over HTTP when BoostEdge is also used. This is again consistent

with the measurement we saw in condition 3.

6. HTTP with BoostEdge: Looking at the 6th condition, HTTP with BoostEdge without using

the Flip Server, we can again see an improvement due to BoostEdge of 34% in average page

load times, consistent with the improvement we saw when traffic is running through the Flip

server. !

! 21!

Below is a graphical representation of the result:

Chart 4: Graphical representation of results to study the speed-up introduced primarily by BoostEdge

Result Summary: These results show that for the lightest websites, we still gain the largest

improvement in average page load time using BoostEdge together with SPDY. That is, the data

optimization contribution of BoostEdge and the network optimization contribution of SPDY still

appear to be complementary and additive in effect. Both approaches show significant

improvements in performance individually as well, although for the lightest websites, SPDY

offers an increased advantage, while the BoostEdge advantage is reduced, compared to the

averages over all websites. This is the opposite result to the case of the heaviest websites. It

appears that as websites get heavier, BoostEdge has a larger effect and SPDY less of an effect, but

combined, performance differences due to changes to website heaviness balance out when using

both BoostEdge and SPDY together.

Test Case 3: Speed-up introduced primarily by SPDY

In Test Case 2, the relative frequency of HTTP requests required for a website almost always mirrored the

relative weight of the home page (Tables 8 and 10). Thus, the results in Test Case 2 for the performance of

the top and bottom 5 websites among our top 25, as measured by home page weight would also hold true if

we had ranked those websites by # of HTTP requests instead. However, if we go back to our top 25

websites used in Test Case 1, we would find that the top and bottom 5 websites, when ranked by # of HTTP

requests are not identical to the top and bottom 5 websites, when ranked by home page weight. Therefore,

we ran tests over the 5 top and bottom websites that would have been chosen from our final set of 25, if the

only criteria was # of HTTP requests. These tests were run with the same settings as in Test Case 2.

Below are the Websites used for highest # and lowest # of HTTP requests, in this test. It can be seen that

the relative ordering of home page weights frequently do not correspond to the ordering by HTTP requests,

0

1000

2000

3000

4000

5000

6000

7000

HTTP

HTTP_through_FlipServer

SPDY_through_FlipServer

SPDY_through_FlipServer_w_BoostEdge

HTTP_through_FlipServer_w_BoostEdge

HTTP_w_BoostEdge

! 22!

although once again, the top and bottom groups are distinct.

The speed-up introduced by SPDY on websites with a large number of requests to the server where SPDY

shows an inherent advantage, versus websites with few server requests, was studied in more detail by using

the following testing protocol:

1. 5 websites with the highest # of HTTP requests (amongst the 25) were tested over 10 iterations

using a 1 Mbps network, both without packet loss and with ~1.00% packet loss, using the Page

Benchmarking Tool in Google Chrome on the external machine to record Mean Doc Load Times.

Testing was done using a direct Ethernet connection.

2. Similarly, 5 websites with the lowest # of HTTP requests (amongst the 25) were tested over 10

iterations using a 1 Mbps network both without packet loss and with ~1.00% packet loss, using the

Page Benchmarking Tool in Google Chrome on the external machine to record Mean Doc Load

Times. Testing was done using a direct Ethernet connection.

The 5 websites with the highest number of HTTP requests are tabulated below:

Website
Homepage

(Kb)
HTTP

Requests
LATimes 2049.6 160

WashingtonPost 1487.6 109
CNN 1379.8 109

Cj 330 88
USPS 356.1 86

Table 12: Test websites with the highest number of HTTP Requests - to measure speed-up introduced primarily by SPDY

The results for 5 websites with the highest number of HTTP requests are shown in Table 13 below:

Testcase Average Page Load time (ms) Speed-up over HTTP % Error %
1. HTTP 13685.1 N/A 3.31
2. HTTP_through_FlipServer 14839.8 -8.437643861 1.3
3. SPDY_through_FlipServer 12757.2 6.780366968 1.54
4. SPDY_through_FlipServer_w_BoostEdge 5846.2 57.280546 2.3
5. HTTP_through_FlipServer_w_BoostEdge 8112.1 40.72312223 2.13
6. HTTP_w_BoostEdge 7116.6 47.99745709 1.69

Table 13: Results with the highest number of HTTP Requests - to measure speed-up introduced primarily by SPDY

The 5 websites with the lowest number of HTTP requests are tabulated below:

Website
Homepage

(Kb)
HTTP

Requests
TypePad 330.4 39

CareerBuilder 638 36
Huffingtonpost 329.3 32

Ehow 1006 27
AOL 628.1 23

Table 14: Test websites with the lowest number of HTTP Requests - to measure speed-up introduced primarily by SPDY

! 23!

The results for 5 websites with the lowest number of HTTP requests are shown in Table 15 below:

Testcase Average Page Load time (ms) Speed-up over HTTP % Error %
1. HTTP 7211.4 N/A 3.23
2. HTTP_through_FlipServer 8021.9 -11.23914912 3.48
3. SPDY_through_FlipServer 7384.5 -2.400366087 0.89
4. SPDY_through_FlipServer_w_BoostEdge 3011.7 58.23695815 1.33
5. HTTP_through_FlipServer_w_BoostEdge 3797.8 47.33616219 3.43
6. HTTP_w_BoostEdge 3174.1 55.98496824 3.16

Table 15: Results with the lowest number of HTTP Requests - to measure speed-up introduced primarily by SPDY

Results and Analysis:
1. HTTP: Looking at test condition 1, which again represents the default condition, “plain old”

HTTP, we see that websites with more HTTP requests take significantly longer than those that

have few HTTP requests. No surprises here.

2. HTTP through Flip Server: Looking at test condition 2, we see that the cost to running HTTP

through the Flip server using SSL is ~8.5% for the highest 5 websites, and 11% for the lowest 5

websites. Thus the effect when we route the HTTP network traffic through the Flip Server is

consistent with the earlier test cases, with a proportionally higher cost for those websites with

fewest HTTP requests.

3. SPDY through Flip Server: Next, in the 3rd condition, we turn on SPDY, and we can compare

the effect of SPDY vs. HTTP, when using the Flip Server. Here we see that there is a net gain of

~15% for the highest 5 websites, and only ~9% for the lowest websites with the least HTTP

requests. These results are consistent with the earlier test cases, and show that SPDY provides

more benefit when more HTTP requests are necessary. Since SPDY is designed to optimize

network performance, this result is consistent with SPDY’s design.

4. SPDY through Flip Server with BoostEdge: The 4th condition shows the change in performance

when we now turn on BoostEdge. We see an improvement of ~44% in performance over SPDY

alone in the case of the highest 5 sites, and an improvement of 60% in the case of the 5 lowest

sites. However, the improvement over HTTP (test condition 1) is almost the same for both sets of

websites: 57% vs 58%. This is because, as we saw when looking at the heaviest vs. lightest

websites, in Test Case 2, when there is less opportunity for network optimization, the advantage of

data optimization via BoostEdge increases, and vice versa.

5. HTTP through Flip Server with BoostEdge: Looking at the 5th condition, we can see this

clearly, as we measure the effects of BoostEdge by comparing HTTP through the Flip Server

performance, to HTTP through the Flip Server with BoostEdge performance (conditions 2 & 5).

We also measure the effects of SPDY by comparing HTTP versus SPDY performance with

BoostEdge turned on (conditions 4 & 5). In the first case, we can see BoostEdge improves

performance over HTTP by 32%, for the highest 5 websites, and 58% for the lowest 5. Looking at

! 24!

the effect of also turning on SPDY, we can see that SPDY provides an additional 16.5% boost in

performance over HTTP when BoostEdge is also used, for the highest 5 websites, and 11% for the

lowest 5 websites.

6. HTTP with BoostEdge: Looking at the 6th condition, HTTP with BoostEdge without using the

Flip Server, we can see an improvement due to BoostEdge of 48% for the highest 5 websites and

56% for the lowest 5 websites.

A graphical representation of the results for the 5 websites with the highest number of HTTP requests is as

shown below:

Chart 5: Results for five websites with the highest number of HTTP Requests

0

2000

4000

6000

8000

10000

12000

14000

HTTP

HTTP_through_FlipServer

SPDY_through_FlipServer

SPDY_through_FlipServer_w_BoostEdge

HTTP_through_FlipServer_w_BoostEdge

HTTP_w_BoostEdge

! 25!

A graphical representation of the results for the 5 websites with the lowest number of HTTP requests is as

shown below:

Chart 6: Results for five websites with the lowest number of HTTP Requests

Result Summary: The results show that for websites with the highest # of HTTP requests, as well

as for the websites with the lowest # of HTTP requests, we continue to gain the largest

improvement in performance by using BoostEdge together with SPDY. The data optimization

contribution of BoostEdge and the network optimization contribution of SPDY appear to be

complementary and additive in effect. Both approaches show significant improvements in

performance individually over HTTP, and when combined each seems to provide the most benefit

under those conditions that reduce the benefit of the other. In other words, under conditions where

network performance is dominating, SPDY tends to provide increased benefits, and under

conditions where data optimization is dominating, BoostEdge provides increased benefits.

VI.!Discussion!

To address the burgeoning demand for affordable data bandwidth, in this study we investigated two

approaches: 1. Content optimization and compression; 2. Optimizing network protocols. In this paper, we

utilized content optimization and compression by means of BoostEdge and employed the SPDY network

protocol to lower the round trip time for HTTP transactions.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

HTTP

HTTP_through_FlipServer

SPDY_through_FlipServer

SPDY_through_FlipServer_w_BoostEdge

HTTP_through_FlipServer_w_BoostEdge

HTTP_w_BoostEdge

! 26!

 Further, since the data and transport layers are separate, we concluded our investigation by studying the

combined effect of these two techniques on web performance. Using document mean load time as the

measure, we found that for our testing profile, both with and without packet loss, both BoostEdge and

SPDY provided significant improvement in speed over HTTP, while in the case of SPDY also providing

SSL connections. When tested in various combinations, we found that the effects are more or less additive,

and that the maximum improvement was gained by using BoostEdge and SPDY together. Interestingly, the

two approaches are also complimentary. That is, in situations where data predominates (i.e. “heavy” data,

and fewer network requests), BoostEdge provides a larger boost via its data optimization capabilities. In

cases where the data is relatively small, or “light”, but there are many network transactions required, SPDY

provides an increased proportion of the overall boost. The general effect is that relative level of

improvement remains fairly consistent over various types of websites.

Our absolute measurements are of course dependent on our testing profile, and also the low level of server

saturation, as we were generating client requests one at a time. Thus these measurements will change as the

parameters change. However, we would expect that the relative ordering of the results in the various test

cases should hold up, unless of course the network and servers are so fast and under-loaded that

computation costs for optimization consume more time than the resulting performance gain.

Future work: In this initial benchmarking, we did not test the case of heavily loaded servers and networks.

This case is very interesting, as this represents the situation from the operator side. BoostEdge provides

various capabilities for such situations, allowing for features such as tradeoffs between handling larger

numbers of simultaneous connections and the level of data compression, providing greater optimization for

connections that have the poorest latencies, etc. SPDY is also intended to shine under situations of heavy

web traffic. It will be interesting to see how the combination of BoostEdge and SPDY perform under

circumstances of heavy web traffic and highly loaded servers. We would expect that the additive effect we

have seen in our tests should result in the ability to handle larger numbers of users before saturation, and

improve the response times for these users, compared to using either approach on its own. In particular, the

complimentary aspect of these two approaches should improve overall effectiveness as both data heavy and

transaction heavy connections should benefit.

VII.!Conclusion!
!
In this study, we measured the effects of two software approaches to improving network performance: 1.

Content optimization and compression; and 2. Optimizing network protocols. We utilized content

optimization and compression by means of BoostEdge and employed the SPDY network protocol to lower

the round trip time for HTTP transactions. Since the data and transport layers are separate, we concluded

! 27!

our investigation by studying the combined effect of these two techniques on web performance. Using

document mean load time as the measure, we found that for our testing profile, both with and without

packet loss, both BoostEdge and SPDY provided significant improvement in speed over HTTP. When

tested in various combinations, we found that the effects are more or less additive, and that the maximum

improvement was gained by using BoostEdge and SPDY together. Interestingly, the two approaches were

also complimentary. In situations where data predominated (i.e. “heavy” data, and fewer network requests),

BoostEdge provided a larger boost via its data optimization capabilities. In cases where the data was

relatively small, or “light”, but there were many network transactions required, SPDY provided an

increased proportion of the overall boost. The general effect is that the relative level of improvement

remained fairly consistent over various types of websites.

!

VIII.!Acknowledgements!

We would like to thank the many people who contributed to the success of this work. First, the many

students who participated and bore the brunt of the work – Simon Sibomana, Guntawee Tiwapong, Panat

Tayaporn, and David Lin-Shung Huang. Several faculty were kind enough to advise us on various

problems and decisions – particularly Prof. Collin Jackson and Prof. Patrick Tague. We’d also like to thank

the team at ActivNetworks for providing the BoostEdge appliance and spending many hours helping us

work through technical problems – Joel Levee, Abdelhafid Meziani and Caroline Paulin. We also received

very useful advice and feedback from the Google SPDY team - Jim Roskind and Mike Belshe. Finally, this

project could not have happened without the support and encouragement of Christian Martin, of the Institut

Telecom’s Silicon Valley Office.

IX.!References:!
1. “Making Web Apps and Networks Go Faster” http://www.activnetworks.com/BoostEdge/overview/

2. “SPDY: An experimental protocol for a faster web” http://www.chromium.org/spdy/spdy-whitepaper

3. http://www.alexa.com/siteinfo

4. “YSlow user guide” http://developer.yahoo.com/yslow/help/

5. “GNU Wget 1.13.4 User Manual” http://www.gnu.org/software/wget/manual/wget.html

6. “Chromium Benchmarking Extension” http://www.chromium.org/developers/design-

documents/extensions/how-the-extension-system-works/chrome-benchmarking-extension

! 28!

X.!Appendices!

1. Appendix 1: Test profile - 25 websites, 1 Mbps, 100 ms latency, no packet loss.

2. Appendix 2: Test profile - 25 websites, 1 Mbps, 100 ms latency, 0.9% - 1.0% packet loss!

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
29
!

Ap
pe

nd
ix
(1
:(T
es
t(p

ro
fil
e(
2(2

5(
w
eb

si
te
s,
(1
(M

bp
s,
(1
00

(m
s(l
at
en

cy
,(n

o(
pa

ck
et
(lo
ss
(

H
T

T
P

H
T

T
P_

th
ro

ug
h

_F
lip

Se
rv

er

SP
D

Y
_t

hr
ou

gh
_F

lip
se

rv
er

SP

D
Y

_t
hr

ou
gh

_F
lip

Se
rv

er
_w

_B
oo

st
E

dg
e

H
T

T
P_

th
ro

ug
h_

Fl
ip

Se
rv

er
_w

_B
oo

st
E

dg
e

H
T

T
P_

w
_

B
oo

st
E

dg
e

 w
as

hi
ng

to
np

os
t

16
77

4.
5

17
80

8.
6

16
14

7
64

53
.8

85

41
.1

77

49
.3

cn

n
15

94
0

16
99

7.
5

15
12

1.
9

61
43

.9

83
15

.5

72
43

.5

m
ap

qu
es

t
13

70
2.

8
14

37
8.

3
12

89
3.

6
56

02

74
08

.9

67
31

.3

A
ns

w
er

s
10

72
9.

3
11

58
8.

3
10

76
7.

5
44

27

52
54

.3

44
67

eh

ow

14
14

8.
5

14
99

2.
1

14
28

3.
5

46
68

.8

53
79

.8

48
88

fo

xn
ew

s
18

53
.5

23

05
.8

21

55
.6

16

16
.4

16

44
.6

14

68
.6

ya

ho
o

10
83

5.
4

11
29

9
10

27
0.

8
39

03
.3

50

76
.3

44

45

sa
le

sf
or

ce

96
67

.6

84
64

.9

80
85

.1

43
45

.6

52
58

.3

43
42

.4

ad
ob

e
87

60
.3

10

37
7.

1
85

96
.3

35

81
.1

56

79
.9

41

00
.9

go

da
dd

y
81

37
.1

88

68
.6

83

51
.1

37

32
.4

47

20
.9

39

53
.1

bb

c
92

93
.6

10

85
6.

1
94

60
.1

47

04
.8

65

10
.5

51

67
.5

ye

lp

90
35

.8

95
63

.3

87
93

.9

43
40

.6

54
58

.6

47
74

.3

ca
re

er
bu

ild
er

72

15
.4

87

71
.3

78

78
.8

29

18
.3

42

81
.1

30

23
.8

ao

l
63

13

72
58

.3

63
17

.8

28
35

.8

36
61

.9

31
14

.4

be
st

bu
y

83
64

.4

97
75

.8

78
91

.9

40
24

.3

59
12

.6

48
13

.1

eb
ay

56

79
.5

62

52
.6

57

96

31
89

.9

38
14

31

95
.5

co

m
ca

st

65
53

79

36
.8

65

58
.9

28

77
.6

41

63
.3

31

59
.9

w

or
dp

re
ss

44

12
.4

62

86

44
62

.8

28
15

39

42
.9

29

92
.1

us

ps

57
88

.5

68
02

.9

52
88

.5

31
59

.6

49
09

.8

40
19

.3

fo
xs

po
rt

56

13
.8

73

71
.4

56

29

32
20

31

42
.8

29

96
.3

ty

pe
pa

d
43

18

53
21

.5

44
08

.5

27
33

.3

37
75

.1

30
68

.4

cj

78
62

.8

88
06

.8

66
25

.1

48
01

.1

71
85

.8

63
69

.4

hu
ff

in
gt

on
po

st

37
17

.4

38
20

.9

39
51

.3

20
32

.6

21
30

.4

17
02

.6

at
t

65
86

.1

74
42

.9

62
72

25

05
.4

40

57
.3

28

87
.5

la

tim
es

21

80
6.

3
23

97
6.

5
20

89
4

84
98

.3

11
43

8.
9

99
66

.8

T

ab
le

 1
: T

ab
le

 o
f M

ea
n

D
oc

 lo
ad

 T
im

e
fo

r
T

es
t p

ro
fil

e
- 2

5
w

eb
si

te
s,

 1
 M

bp
s,

 1
00

 m
s

la
te

nc
y,

 n
o

pa
ck

et
 lo

ss

!
30
!

 !

C

ha
rt

 1
: P

lo
t o

f M
ea

n
D

oc
 lo

ad
 T

im
e

fo
r

T
es

t p
ro

fil
e

- 2
5

w
eb

si
te

s,
 1

 M
bp

s,
 1

00
 m

s
la

te
nc

y,
 n

o
pa

ck
et

 lo
ss

! ! ! ! ! ! !

0

50
00

10
00

0

15
00

0

20
00

0

25
00

0

washingtonpost+

cnn+

mapquest+

answers+

ehow+

foxnews+

yahoo+

salesforce+

adobe+

godaddy+

bbc+

yelp+

careerbuilder+

aol+

a8+

bestbuy+

ebay+

comcast+

wordpress+

usps+

foxsport+

typepad+

cj+

huffingtonpost+

la;mes+

H
TT

P
H

TT
P_

th
ro

ug
h_

Fl
ip

Se
rv

er

SP
D

Y
_t

hr
ou

gh
_F

lip
se

rv
er

SP
D

Y
_t

hr
ou

gh
_F

lip
Se

rv
er

_w
_B

oo
st

Ed
ge

H

TT
P_

th
ro

ug
h_

Fl
ip

Se
rv

er
_w

_B
oo

st
Ed

ge

H
TT

P_
w

_B
oo

st
Ed

ge

!
31
!

Ap
pe

nd
ix
(2
:(T
es
t(p

ro
fil
e(
2(2

5(
w
eb

si
te
s,
(1
(M

bp
s,
(1
00

(m
s(l
at
en

cy
,(0
.9
%
(2(
1.
0%

(p
ac
ke
t(l
os
s(

! !

H
T

T
P

H
T

T
P_

th
ro

ug
h

_F
lip

Se
rv

er

SP
D

Y
_t

hr
ou

gh
_F

lip
se

rv
er

SP
D

Y
_t

hr
ou

gh
_F

lip
Se

rv
er

_w
_

B
oo

st
E

dg
e

H
T

T
P_

th
ro

ug
h

_F
lip

Se
rv

er
_w

_
B

oo
st

E
dg

e
H

T
T

P_
w

_
B

oo
st

E
dg

e
 w

as
hi

ng
to

np
os

t
16

96
1.

1
18

12
3.

3
17

40
1.

3
70

04
.4

86

13
.5

82

64
.3

cn

n
16

13
1.

3
17

87
7.

8
16

42
0

66
34

86

28
.1

77

46
.1

m

ap
qu

es
t

13
67

4.
9

15
95

2
13

78
6.

8
60

49
.1

78

52
.3

66

25
.1

A

ns
w

er
s

11
09

7.
6

12
23

6
11

14
4.

5
46

94
.4

53

44
.3

50

59
.8

eh

ow

14
51

6.
5

15
74

5.
6

15
53

5
50

73
.3

57

33
.3

51

11
.3

fo

xn
ew

s
19

55
.9

32

29
.8

22

59
.4

16

59
.5

16

44

15
44

ya

ho
o

11
08

4.
6

11
91

6
11

57
9.

3
44

99
.5

51

04
.4

49

76
.3

sa

le
sf

or
ce

88

08
.6

96

28
.3

87

73
.9

44

92
.3

53

90
.8

46

70

ad
ob

e
91

78
.6

10

88
9.

6
92

33
.4

37

00
.4

59

42
.3

43

38
.5

go

da
dd

y
81

47
.4

95

23
.1

87

91
.1

39

62
.9

48

14
.8

39

93
.1

bb

c
95

09
.3

10

96
0.

8
10

18
1

50
40

.5

66
80

52

92
.8

ye

lp

99
31

.4

10
81

1.
4

96
27

.9

49
23

.1

56
17

.8

54
00

ca

re
er

bu
ild

er

72
36

89

03
.6

84

13
.6

32

85
.6

45

92
.9

33

74

ao
l

67
31

.4

79
69

.6

68
31

.6

29
13

38

51
.8

33

73
.6

at

t
67

53

10
56

2
84

01

43
11

.1

62
05

.4

30
15

be

st
bu

y
83

36
.4

77

56
.1

65

50
.4

26

83
.3

41

02
.3

49

56
.5

eb

ay

58
34

.8

68
30

.9

61
01

32

15

38
88

.1

33
02

.5

co
m

ca
st

68

79
.6

84

24
.6

68

30
.5

29

86
.3

45

93
.8

34

06
.8

w

or
dp

re
ss

45

45
.5

57

78
.8

45

64
.3

28

82
.3

38

71
.1

31

57

us
ps

59

89
.3

71

81
.3

54

68
.4

33

63
.8

49

87
.1

43

11
.5

fo

xs
po

rt

62
12

.6

75
11

.4

66
34

.3

33
47

.8

32
69

32

06

ty
pe

pa
d

46
83

.1

60
08

.6

48
37

.9

29
73

.1

37
46

.9

31
03

.9

cj

84
26

.5

94
39

.9

75
92

54

82
.8

75

18
.9

65

64
.6

hu

ff
in

gt
on

po
st

44

65
.4

60

19
.6

42

75
.8

22

06
.8

22

38
.3

19

83
.3

la

tim
es

22

40
3.

4
24

11
0.

1
23

87
2.

4
94

97
.5

11

84
7.

1
10

15
2.

3
!

T
ab

le
 2

: T
ab

le
 o

f M
ea

n
D

oc
 lo

ad
 T

im
e

fo
r

T
es

t p
ro

fil
e

- 2
5

w
eb

si
te

s,
 1

 M
bp

s,
 1

00
 m

s
la

te
nc

y,
 0

.9
%

-1
.0

%
 p

ac
ke

t l
os

s

!
32
!

C

ha
rt

 2
: P

lo
t o

f M
ea

n
D

oc
 lo

ad
 T

im
e

fo
r

T
es

t p
ro

fil
e

- 2
5

w
eb

si
te

s,
 1

 M
bp

s,
 1

00
 m

s
la

te
nc

y,
 0

.9
%

-1
.0

%
 p

ac
ke

t l
os

s

0+

50
00
+

10
00
0+

15
00
0+

20
00
0+

25
00
0+

washingto
npost+

cnn+

mapquest+

Answers+

ehow+

foxnews+

yahoo+

salesforce+

adobe+

godaddy+

bbc+

yelp+

careerbuil
der+

aol+

a8+

bestbuy+

ebay+

comcast+

wordpress+

usps+

foxsport+

typepad+

cj+

huffington
post+

la;mes+

