
Developing Software Engineering Leaders
at Carnegie Mellon Silicon Valley

Ray Bareiss

Carnegie Mellon University
Silicon Valley Campus

MS 23-11
Moffett Field, CA 94035

011-650-335-2801
ray.bareiss@sv.cmu.edu

Todd Sedano
Carnegie Mellon University

Silicon Valley Campus
MS 23-11

Moffett Field, CA 94035
011-650-335-2812

todd.sedano@sv.cmu.edu

Abstract

The Carnegie Mellon’s Silicon Valley Campus

offers a master’s degree in Software Engineering, with
technical and development management tracks,
targeted at working software professionals in Silicon
Valley. We believe the program to be unique in that it
is entirely team-based and project-centered. Students
learn by doing as they are coached just in time by
faculty in the context of their work on authentic
projects, and they are evaluated based on what they
produce. In response to our interactions with an
industry characterized by innovation and short project
development timelines, the program evolved from one
focused on “high ceremony” processes to one focused
on agile software development methodologies. Student
satisfaction is high: Eighty-seven percent of our
alumni believe that the program has given them a
competitive advantage with respect to their
professional peers, and their promotion and salary
histories bear out this belief.

1. Introduction

Students typically enroll in a professional master’s
program to gain practical knowledge and skills, which
enhance their career prospects, and to grow their
professional networks. These students have typically
been out of college for some time and approach
traditional graduate study with considerable
trepidation. They are used to the rhythm and evaluation
criteria of the workplace. Standardized entrance exams
(e.g., the Graduate Record Examination) stress them
out. The thought of returning to the artificial evaluation
of academic grading reminds them that the skills and
incentives of the workplace are all too often different
than those of academia. From the working
professionals’ point of view, the most useful graduate

education would align with their professional work,
and it would provide an enhanced, guided and practical
version of the life-long learning they must do on the
job.

The overarching goal of Carnegie Mellon Silicon
Valley’s professional master’s programs is to provide a
transformative educational experience to our students,
one that effects a fundamental change in the way that
students behave as software engineers, not just in the
educational context, but more importantly in their
professional work as well:
- During the course of our program, students are

equipped with a broad range of knowledge and
skills directly relevant to their professional
practice, and they gain facility at applying these
skills to real-world problems

- Students' decision-making processes
significantly improve as they learn principled
decision-making frameworks and how to apply
such frameworks logically

- Students learn to express their ideas clearly and
persuasively, and they become able to negotiate
effectively and with authority

- Students become adept at working effectively in
teams, perhaps the key skill in software
development of any scale

- Students become effective self-directed learners,
which is essential in a field in which some put
the typical half-life of knowledge at
approximately two years.

Juxtaposing this overarching goal of professional
transformation with Cognitive Science research on
how people think and learn (see, e.g., [1]) suggests the
properties of an effective educational approach:
- The approach should center on active problem

solving to promote the acquisition of usable
knowledge rather than a collection of
memorized facts

- The approach should situate learning in a
realistic context, highly similar to the
environment in which students are expected to
apply the knowledge, thus promoting transfer

- Tasks in the realistic context should ensure that
the targeted knowledge and skills are required
for successful problem solving

- Instruction should be “just in time,” when
problem solving tasks provide a context for
processing new information and storing it in the
learner’s memory in a useful form with
appropriate indices

- Knowledge and skills should be taught
holistically, as they will be applied, rather than
separated into academic silos

- The learning experience should equip students
with the fundamental skill of self-directed
learning.

In response, we have adopted a pedagogy based
heavily on team-oriented projects, simulations, just-in-
time coaching and tutorials, and industrial practicums,
delivering our courses as Story-Centered Curricula [2].
Our curriculum design and course delivery methods
rely heavily on experience gained from Carnegie
Mellon’s successful Studio-based experience with the
Master’s of Software Engineering program in
Pittsburgh [3], several analyses of emerging core
requirements to train professional software engineers
(e.g., [4], [5]), and a growing body of cognitive science
knowledge of how adults learn effectively. We have
heavily modified the Carnegie Mellon Pittsburgh
delivery model and the content of the program to better
match the style of fast-paced software engineering
practiced in Silicon Valley. We have instantiated this
educational approach to offer a professional master’s
program in Software Engineering with tracks in
Technical Software Engineering and Development
Management, as well as a sister program in Software
Management which addresses the needs of senior
professionals.

When we launched the Software Engineering
program in 2002, our initial strategy was to play to the
strengths of Carnegie Mellon’s software engineering
education, focusing on “the development of business-
critical, network-centric, software-intensive systems of
systems (employing commercial off-the-shelf
components, outsourcing, and internal development)
requiring predictability and quality in their
development and operation” (language from our first
brochure). Such systems are typically developed by
companies employing relatively high ceremony
development processes and measuring their
organizational capabilities via the Capability-Maturity
Models of Carnegie Mellon’s Software Engineering

Institute [6]. We also emphasized use of the Personal
Software Process at the individual level [7].

Not surprisingly, our initial partners in launching
this degree program were large companies, especially
aerospace and defense companies. Nearly 50% of our
initial class of students came from such companies.
The remainder came primarily from Silicon Valley
companies possessing quite a different world view.
These companies, and thus their employees, are
product focused, generally engage in smaller projects,
favor agile development methodologies over high-
ceremony processes, measure development cycles in
weeks instead of years, and are part of the
entrepreneurial culture of Silicon Valley.

During the early years of the program, we
experienced a significant tension between the needs of
these two constituencies. Enrollment trends resolved
this tension. The number of Silicon Valley
professionals enrolling in our program increased, while
the enrollment of aerospace and defense professionals
decreased. Only 16% of the graduating class of 2009
work for aerospace or defense companies. To meet the
needs of our students, our program has evolved to
feature a strong product development focus, agile
development within short development cycles, and
entrepreneurship. During this evolution, we have
retained the dual emphasis on business and technical
skills. And over time, the tension is diminishing; in
fact, our students from aerospace, defense, and other
large companies increasingly share these interests as
well and have established a history of taking agile
development ideas back to their large projects.

We believe this program to be unique. While other
US and European schools offer software engineering
education, none adopt as intense a learn-by doing
approach with the goal of producing a transformative
experience for practicing software professionals.

2. Details of the Software Engineering
Program

The Master’s of Science in Software Engineering
(MSSE) degree program has two tracks which mirror
the central career choice of each software engineer:
whether to stay technical or to move to management.
The two tracks prepare students for different career
paths while providing a common core of software
engineering knowledge to all students. The Technical
track is for students who want to remain close to
writing software, most often aspiring to be technical
leads or software architects; the track teaches students
to effectively architect, design, develop, and deploy
complex software systems. The Development
Management track is for students who want to move

from hands-on development to technical management,
aspiring to be project or functional managers; the track
focuses on managing processes, people, and projects,
whether in-house or outsourced.

Typical applicants have several years of work
experience, a computer science or related degree, and
some team-based software development experience.
We expect incoming students to have completed lower
division CS courses or to have the equivalent practical
experience. When evaluating a student, we weigh a
combination of industry experience and academic
preparation: thus, a recent computer science graduate
might be given the same consideration as an applicant
with 10 years of software development experience and
an undergraduate degree, say, in mechanical
engineering. For our full time program, one third are
domestic students and two thirds are international
students. For our part time program, virtually all are
domestic, and thirty to forty percent of the students are
remote; many of these are employees of aerospace
companies. Local students are drawn from a large
range of Silicon Valley companies, comprising early-
stage start-ups to IBM, HP, Oracle, and Google – and
everything in between. To encourage a strong sense of
community, all students, whether remote or local, are
required to come to campus for a three-day orientation,
on campus “Gatherings” before the third and fifth
semesters, and for graduation. All students are also
strongly encouraged to attend commencement in
Pittsburgh.

2.1 Example: The Foundations of Software
Engineering

The Software Engineering curriculum begins and
ends with end-to-end software development
experiences. Foundations of Software Engineering, the
first course in our program, provides students with an
intensive software development experience with
significant scaffolding to ensure that they follow
industrial and team best practices. The scope of student
projects differs as they renegotiate and refine project
requirements throughout the course, but all students
share a baseline experience with respect to one
software method, currently a slightly modified form of
Extreme Programming. At the end of the program, a
real-world Practicum project provides no scaffolding
as students decide for themselves which practices to
follow given unique customer project requirements and
constraints. This capstone project allows the student to
demonstrate mastery over software engineering
concepts and aids in the final transition of knowledge
and skills from academia to professional practice.

The overall objectives of Foundations are to
establish a baseline of principled software development
skills and to prepare the student for the remainder of
the program. Each student comes to recognize
individual strengths and weaknesses and establishes
targets for improvement during the rest of the program.
The student also becomes familiar with our learn-by-
doing pedagogy and our philosophy of effective team-
based work, as well as a selection of foundational
elements from computer science and software process.

Teams of three to four students “work for” ND
System Solutions, a small fictional company which is
developing a tool for software project definition, effort
estimation using historical data, and effort tracking. As
in industry, the faculty assign students to teams and
hold a project kickoff describing the project, their
stakeholders, milestone deadlines, key constraints, and
available resources. In addition to covering all the key
concepts found in an industrial kickoff, the faculty also
place significant emphasis on how students will learn,
specific learning objectives, working with faculty,
working effectively in teams, et cetera. A faculty
member plays the role of Vice President of
Engineering (VP), monitoring the team’s progress, and
providing coaching and mentoring. As part of the
scaffolding, we provide students with a high-level
project plan, but student teams manage the specifics of
the project plan as they implement the requirements
and respond to customer feedback throughout the
project. There are no formal tests during the course;
students are graded on the work they produce, taking
into account both team and individual
accomplishments.

The Foundations of Software Engineering course
originally taught a high ceremony approach to software
development. However, as Silicon Valley companies
have embraced agile methods, we have changed our
course to teach agile practices emphasizing iterative
development, frequent customer interaction,
adaptability to change, agile estimation, continuous
builds, and a releasable product at the end of each
iteration. The faculty selected Extreme Programming
as the agile method to teach because:
It is an agile method reflective of the Silicon Valley
development culture

- It has a strong emphasis on engineering
practices whereas many agile methods focus on
process practices

- While student interest is high, many industry
managers are reluctant to allow their employees
to try aspects of Extreme Programming such as
test-driven development or paired programming
on the job.

The course provides a safe environment to allow
students to try new ideas, and many become strong

advocates by the end of the course. While the VP
encourages students to follow Extreme Programming
faithfully, students need to customize the method since
many of them are on distributed teams and all have
limited access to the customer.

The 14 week course is divided as follows:
- Start-up: one week to sort out tools, technology

decisions, team processes, begin the readings,
and determine how the team will capture
requirements in Iteration 0. The team deliverable
is a team requirements template. Each
individual also delivers a briefing on Extreme
Programming.

- Iteration 0: three week requirements gathering
sprint during which students elicit, refine, and
prioritize requirements while prototyping and,
thus, learning the technology used in the course.
Team deliverables are prioritized story cards, a
user interface specification, a data dictionary,
and iteration planning meeting minutes.

- Iterations 1-3: three week implementation
sprints culminating in a final presentation and a
working product. Team deliverables are the
product (including test cases, code, and design
documents), weekly cycle meeting minutes,
iteration planning meeting minutes, and a final
presentation. Each individual also delivers a
Myers Briggs briefing and peer evaluations.

- Retrospective: a one week wrap-up during
which the team conducts a postmortem and
reflects on what they have learned. The team
deliverable is a retrospective report on the
project.

Throughout the course, the Vice President of
Engineering (i.e., the supervising faculty member)
meets weekly with each student team to review their
work and check on their progress as a team.

The VP provides the voice of the customer. The VP
is not a de facto manager, telling the team what to do
but rather helps the team to decide its own direction
and to move forward effectively; in many situations,
this is operationalized as open-ended questioning as the
team considers decisions, cf., [8], [9]. Through
interaction with the VP, students learn agile
requirements elicitation and prioritization, test-driven
development, paired programming, continuous
integration, agile project metrics and reporting
mechanisms, how to analyze test coverage, how to
release a project and how to give a demo presentation.
A strong emphasis in this interaction is on balancing
agility and discipline appropriately to achieve the goals
of the project. The faculty member playing the role of
VP must be an expert software engineering
practitioner.

The VP serves as the team’s coach. We emphasize
high-performance teamwork at every opportunity.
During an intensive three-day orientation for new
students, we introduce the students to their teams,
engage them in team-building exercises, and provide
conceptual tools such as Situational Leadership [10]
and Tuckman’s model of team development [11]. We
use the Myers-Briggs personality sorter as a
mechanism to help each student to realize how their
teammates are different than themselves. A significant
portion of faculty interaction revolves around team
development. The VP also helps the team to define its
learning processes, to plan its work, and to accomplish
its goals effectively. In team meetings, the VP uses the
questions such as “What is working well for the
team?”, “What can the team improve upon?”, and
“What is the stress level of each team member on a
scale of one to ten?” to provide opportunities for
“micro-reflections” on team development at least once
a week.

Throughout the semester, students also attend
weekly faculty-led discussion sessions and practice
sessions. In the discussion sessions, students explore
the reading topics much like a graduate seminar by
participating in faculty-facilitated discussions. In the
practice sessions, we address common skills deficits,
including the use of new development technologies
such as Ruby on Rails, version control, test driven
development, and writing and presentation skills. Such
sessions combine small amounts of faculty
presentation with extensive hands-on practice by the
students.

2.2 The Remainder of the Curriculum

During the first year, all students take the
curriculum’s core courses. The core courses address
most of the key skills needed by software engineers.
Foundations of Software Engineering has already been
discussed in detail. In Requirements Engineering
students experience the requirements process in depth;
they use techniques drawn from Human-Computer
Interaction to better understand and document the
requirements for a software product. In Architecture
and Design, students are guided through an
examination of many architectural styles, looking at
the strengths and limitations of each and determining
how they can best be applied; the students create two
distinct architectures for the product specified during
Requirements Engineering and use ATAM to evaluate
how well each architecture satisfies the product’s
quality attributes.

During the second year, the technical track courses
prepare students for a technical career path. In

Avoiding Software Project Failures, students are
guided through several case studies of failed software
projects to understand the root causes of costly
mistakes. In Metrics for Software Engineers, students
analyze and propose metrics initiatives for software
development teams in agile and traditional
organizations, focusing on metrics designed by
engineers for engineers. In the Practicum Project,
teams apply what they have learned to a real-world
problem; working with a client, the team negotiates
plans, schedules, and deliverables, and then develops
their final product while adhering to high standards for
software engineering approaches, accountability, and
teamwork.

The development management track courses
prepare students for a project or development
management career path. In Elements of Software
Management, students are guided to assess real
software businesses from marketing, business strategy,
financial, and overall business perspectives, applying
fundamental methods, models, and frameworks. In
Metrics for Software Managers, students analyze and
propose metrics initiatives for fictional software
organizations with specific software management
problems, aligning the initiatives with business and
stakeholder goals. In Project and Process
Management, students explore the component
processes of agile and traditional software
development; they then propose a hybrid development
methodology for a particular project and manage the
project through a series of critical events in simulation.
In Managing Software Professionals, students address
a range of “people issues,” in simulation, related to
hiring, retention, and dismissal of employees, as well
as cultural considerations of managing a diverse team.

Electives are chosen purely on the basis on student
interest. Popular electives include Innovation and
Entrepreneurship, Human-Computer Interaction, Open
Source Software, and Managing Outsourced
Development. Development management students (for
whom a capstone project is not required) can opt to do
a Practicum Project in lieu of electives.

In addition to the primary subject matter of the
courses, several “threads” are woven into the
curriculum, providing regular opportunities to practice
soft skills such as:
- teamwork, including facilitating collaboration

and virtual, distributed teamwork
- written and verbal communication, including

making effective presentations
- effective meetings
- negotiation
- conflict resolution and working with people

from different cultures
- principled decision making

- self awareness and reflection.
Interestingly, in our surveys of alumni, nearly all

count these skills among the most valuable things they
learned in the program.

3. Overview of Instruction at Carnegie
Mellon Silicon Valley

3.1 How Students Work and Learn

As noted earlier, nearly all student work is done in
teams. Teamwork is fundamental to the program for
several reasons, most notably:
- Virtually all real-world software projects are of

a scope that requires significant teamwork
- Teamwork enables students to have the

experience of completing a realistic project and
producing a full range of authentic work
products

- Students are highly motivated by being
members of a high-performing team working on
an intense project.

Students also do some individual work to ensure
that each is learning and contributing, to broaden their
knowledge, and to aid in student assessment. Most
frequently, this work takes place in the form of
“management briefings” in which individual students
must produce short written memos on development
methodologies, decisions confronting their teams, or
concepts the faculty want to verify that every student
understands.

Teams are formed according to a number of criteria:
- Pre-existing knowledge and skills of each team

member, gleaned from pre-admission interviews
of each student. In subsequent semesters, teams
are re-formed repeatedly based on faculty
knowledge of students’ strengths and
weaknesses.

- Balance, so that each team member has some
relative strengths and weaknesses, making each
member valuable and providing the potential for
peer teaching.

- Geographic location is also considered, but
student teams sometimes include remote
members requiring students to learn virtual
teamwork skills.

Teams are expected to self-organize to achieve the
tasks that they are assigned. In addition to roles related
to managing and carrying out their work, teams are
encouraged to add a “learning manager” who
coordinates team learning activities such as producing
an explicit learning plan in addition to the work plan
for each task, dividing responsibility for optional

learning materials, and facilitating the team’s
discussions of readings and other learning resources.

Each team has a faculty coach (not a teaching
assistant) who assists the team in assigning roles,
defining its own processes, and executing those
processes effectively with appropriate monitoring. In
addition to learning from faculty coaching, students
learn from rich curricular materials indexed to their
tasks, and they learn from responding to in-depth
faculty feedback on their deliverables and revising
those deliverables to improve mastery of targeted
knowledge and skills. At the end of each project, they
learn from reflection activities designed to promote
generalization of their learning experiences. Finally,
they perhaps learn most of all from each other by
sharing a range of knowledge and professional
experiences ranging from work at small start-ups to
large aerospace companies.

3.2 Curricular Materials

Curricular materials are provided on a program
website. Note however, that this is not eLearning, per
se; the materials are supplementary to faculty and
student interaction. Each course is divided into several
tasks, each yielding authentic deliverables for
evaluation. The website provides teams with
significant performance support for their tasks. In most
courses, each task is assigned via a simulated email
from a “company executive,” and follow-up emails
convey additional scenario materials providing grist for
a team’s work. A plan of attack provides a skeletal
work plan to assist the students in planning their work.
Tips and traps provide expert heuristic advice on
aspects of the task, especially pointing out subtle
pitfalls which students should avoid. Readings and
other learning resources are indexed to aspects of the
task to direct students to material directly relevant to
their contextualized learning needs and to establish the
relevance of all such material in practice. Finally, a
pre-submission checklist encourages students to self-
check all deliverables against faculty-formulated
grading criteria before final submission.

3.3 How Faculty Teach

Faculty provide several kinds of educational
support. In addition to supervising the running of a
course, faculty play several instructional roles.
Depending on the total course enrollment, all roles can
be filled by a single faculty member, or multiple
faculty might be involved.

Team Coach. Since the bulk of student work and
learning is done in teams, the faculty role of team

coach is preeminent. A team coach assists teams in
developing an effective team process, helps resolve
team issues, mentors students to use relevant materials
and approaches effectively, and reviews early drafts of
student deliverables. Coaches sometimes provide direct
guidance, such as a just-in-time mini-tutorial, but more
often they model problem solving techniques and ask
open-ended questions to lead the students to discover
relevant knowledge and to solve problems themselves.
Coaches typically meet with teams once per week and
have frequent email and telephone follow-ups with
individuals as well as the team as a whole. The coach’s
closeness to a team enables him or her to provide
accurate input into the grading process regarding
individual performance. At the end of each project, the
coach also facilitates a team reflection session to
reinforce what was learned, discuss team process, and
facilitate peer reviews. In large courses, different
faculty members provide overall course supervision
and coaching. When course size permits (usually 25 or
fewer students), however, faculty play both roles, and
students appreciate the instructional and grading
continuity.

Subject Matter Expert. The course supervisor (or
lead instructor) is typically the primary subject matter
expert for the course, but additional faculty or outside
experts may be available as consultants to provide just-
in-time tutorial instruction and to answer questions
about technologies and methods that students might
choose to explore in depth. All courses also have
weekly “seminar sessions,” involving the entire class,
in which subject-matter expert faculty facilitate
discussions of readings and topics of general interest;
these sessions also sometimes feature just-in-time
tutorials on knowledge and skills relevant to the
students’ immediate work.

Roleplayer. Depending on the nature of the
simulated scenario, one or more faculty members will
play fictional management roles to provide guidance,
data, and informal information as grist for the students’
work. Typically, such a faculty member will meet with
student teams individually or during seminar sessions
several times during the course, for example as the VP
of Engineering or Marketing or the CEO. Having
several distinct roleplayers allows students to
encounter and deal with divergent opinions and, thus,
to sharpen their analysis and negotiation skills. All
student presentations are made to roleplaying faculty.
These faculty members also provide appropriate
contextualized instruction and suggest additional
learning opportunities.

To summarize a key aspect of the discussion above,
faculty employ a range of research-validated teaching
strategies:

- Open-ended questioning to guide students to
discover knowledge themselves, cf. [10], [11]

- Cognitive Apprenticeship, especially modeling
effective problem-solving approaches, typically
in problem contexts analogous to the students’
work [12]

- Just-in-time mini-tutorials whose content is
immediately relevant to the students’ work, cf.
[13]

- Encouraging peer learning.
We recently surveyed our students’ and graduates’

attitudes towards our teaching methods. 77% believe
that our teaching methods are more effective, in
general, than others they have experienced at the
university level (12% are neutral and 11% believe they
are worse).

Student comments accompanying the survey
responses suggest that faculty are sometimes too
“Socratic” in their approach to teaching, tending to turn
questions back to the students rather than providing
answers and expressing their own opinions. Students
would also like faculty to lay out theoretical
frameworks when new disciplines are introduced rather
than focusing entirely on coaching in reaction to team
and individual decisions. That said, however, only
three of the 120 students and alumni who responded
suggested that formal lectures would improve the
educational experience.

Our teaching faculty are unique because each has
significant real-world experience in large companies
and/or entrepreneurial ventures, as well as traditional
academic credentials and significant teaching
experience. Our faculty might thus be regarded as a
“clinical faculty” in the sense envisioned by the
Harvard Business School symposium on business
education [14].

3.4 How Students Are Assessed

Although students work in teams, individual grades
are assigned at the end of each course. This can be
challenging for faculty members, but several
mechanisms are employed to ensure that weaker
students do not “hide in teams” and that stronger
students receive credit for their higher performance.

Team Grades. The team’s grades for the various
deliverables are a starting point for assigning final
grades, and the team grade typically contributes about
80% of each student’s grade. An individual’s grade
can, thus, vary up to two letter grades from the team’s
grade; however, a range of one letter grade plus or
minus is typical. We employ what might be called a
“limited mastery” approach to team deliverables and
assessment. Teams are encouraged to turn in draft

work for in-depth feedback and have one opportunity
to revise the work before it is graded.

Individual Work. Components of team deliverables
are often attributable to individuals. Students are also
required to produce individual work at regular intervals
and to present regularly; furthermore, faculty may
require individual work on an ad hoc basis, when it
seems necessary to assess a particular student’s
performance.

Peer Review. Student teams are also required to
complete a peer review at the conclusion of each
course. Each student uses a structured instrument to
assess the strengths and weaknesses of each team
member, including himself or herself. Students are not
penalized for accurately assessing personal
weaknesses; instead, these become targeted areas for
self-improvement.

Coach’s Input. Finally the coach, who has spent
many hours working with the team during the course,
provides input. The supervising faculty member and
coach look for a confluence of indicators when
adjusting an individual’s grade relative to the team’s
grade.

5. Outcomes

Carnegie Mellon Silicon Valley has graduated 236
students with an MS in Software Engineering -- 171 in
the Technical Track and 65 in the Development
Management Track. We have also graduated 104
students with an MS in Software Management. (The
MS in Software Management is distinct from the
Development Management track of Software
Engineering. It attracts mid-career professionals
aspiring to senior management, and the curriculum is
not discussed in this paper.)

For the past two years, we have surveyed alumni of
all Carnegie Mellon Silicon Valley programs to
ascertain the career value they attribute to their
graduate education. (No comparison data for other
programs are available.) In September 2008, 45 of 236
Software Engineering alumni completed the survey.
Eighty-seven percent of respondents believe the
program gave them a competitive advantage in their
careers relative to their corporate peers. Many of our
students have been promoted: 41% during the program
and 45% after graduation; 82% changed jobs (either
within their company or by moving to a new
company).

Our students have also seen significant salary
increases:

- 26% of respondents, greater than 40%
- 13% of respondents, 21-40%
- 33% of respondents, 11-20%

- 28% of respondents, less than 10%.
As noted earlier, most students tended to value soft

skills, such as teamwork and effective communication,
more than technical skills in hindsight. Eighty-three
percent of respondents included one or more specific
soft skills among the most important three things they
learned. Proficiency in technical skills is assumed of
graduates from top graduate programs; facility in soft
skills is a key differentiator -- and one that is
sometimes sorely lacking in graduates of traditional
programs.

Finally, 87% of respondents would recommend
Carnegie Mellon Silicon Valley to friends with
interests similar to their own. Rather than ending this
discussion with dry statistics, however, let us end it by
letting some of our students speak for themselves:

The program’s learn-by-doing curriculum mimics
the way the software industry works in the real
world. The faculty guided us through software
processes, assigning work that consisted of writing
code, completing projects, leading teams, and
negotiating with stakeholders about requirements
and deliverables. The program exposed me to a
variety of techniques and methodologies for
developing software, which I really appreciated,
since at work I am only exposed to my company’s
process. However, the program truly exceeded my
expectations in how it taught me the importance of
team building and soft skills. Understanding the
importance of these skills and honing them
throughout my two years has helped me not only
professionally but personally as well.
 — Silicon Valley MSSE 2008 graduate
I am already taking away a lot from my schoolwork
and applying it to my job because I can leverage it
right away. What I learn on Monday, I can apply on
Wednesday.
 — a student early in the Silicon Valley program

5. Acknowledgments

Our thanks to Martin Griss and the rest of the
Carnegie Mellon Silicon Valley Software Engineering
faculty, past and present, for their energy and
innovation that have made this program a success.

6. References

[1] J.D. Bransford, A.L, Brown, and R.R Cocking (Eds.),
How People Learn: Brain, Mind, Experience, and School.
National Academy Press, Washington, DC, 2000.

[2] R.C. Schank, Making Minds Less Well Educated than
Our Own. Lawrence Erlbaum Associates, Mahwah, NJ,
2004.

[3] D. Root, M. Rosso-Llopart, and G. Taran, “Proposal
Based Studio Projects: How to Avoid Producing “Cookie
Cutter” Software Engineers,” CSEE&T 2008, pp. 145-151.

[4] M. Shaw (Ed.), Software Engineering for the 21st
Century: A basis for rethinking the curriculum. Technical
Report CMU-ISRI-05-108, Carnegie Mellon University,
Institute for Software Research International, Pittsburgh, PA,
2005.

[5] A. Pyster (Ed.), Graduate Software Engineering
Reference Curriculum (GSwRC), Stevens Institute of
Technology, Hoboken, NJ, Version 0.50, October 2008.

[6] M.C. Paulk, B. Curtis, M.B. Chrissis, and C.V. Weber,
Capability Maturity Model for Software, Version 1.1,
Technical Report, CMU/SEI-93-TR-024, ESC-TR-93-177,
February 1993.

[7] W.S. Humphrey, Introduction to the Personal Software
Process, Addison-Wesley, Reading, MA, 1996.

[8] C.E. Hmelo-Silver, and H.S. Barrows, Goals and
Strategies of a Problem-Based Learning Facilitator.
Interdisciplinary Journal of Problem-Based Learning 1, 1
(Spring 2006), 21-39.

[9] Staff, Harvard Business School. Case Method Teaching,
Report 9-581-058. November 6, 1998.

[10] K. Blanchard, The One Minute Manager Builds High
Performing Teams, William Morrow, New York, NY, 2000.

[11] Wikipedia.org, Forming – Storming – Norming -
Performing, http://en.wikipedia.org/wiki/Tuckman_Model,
June 22, 2009.

[12] A. Collins, J.S. Brown, and A. Holum, “Cognitive
Apprenticeship: Making Thinking Visible,” American
Educator, Winter 1991.

[13] J.D. Bransford, and D.L. Schwartz, Rethinking Transfer:
A Simple Proposal With Multiple Implications, Review of
Research in Education, 3(24), 2001, pp. 61-100.

[14] Staff, “Harvard Business School Discusses Future of the
MBA,” HBS Alumni Bulletin
(http://hbswk.hbs.edu/item/6053.html) November 24, 2008

