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Disagreement About Future Economic Outcomes

e Observed in every survey of financial analysts, households,
professional forecasters, FOMC members. ..

e At odds with full information rational expectation setup.

e Key in models with info. frictions / heterogenous beliefs.

e Macro: Mankiw-Reis (2002), Sims (2003), Woodford (2003),
Lorenzoni (2009), Mackowiak-Wiederholt (2009),
Angeletos-Lao (2013), Andrade et al. (2015) ...

e Finance: Scheinkman-Xiong (2003), Nimark (2009),
Burnside-Eichenbaum-Rebelo (2012) ...

e Are empirical properties of disagreement informative about
such models?

)

25



This Paper

e New facts related to the term structure of disagreement.

o People disagree about fundamentals (long-horizon forecasts).

e Introduce a class of expectation models to match the facts.

o Imperfect info. / Uncertainty about the long-run /
Multivariate.

e Use macro and survey data to calibrate the model.
e Reproduce most of the new facts.

e Informative about perceived macro-relationships (monetary
policy).
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The Blue Chip Financial Forecasts Survey

e ~ 50 professional forecasters.

e We look at forecasts for RGDP growth (g), CPI inflation (7),
FFR ().

e Sample period is 1986:Q1-2013:Q2.
e For 1Q, 2Q, 3Q, 4Q: observe individual forecasts.

e For 2Y, 3Y, 4Y, 5Y and long-term (6-to-11Y): observe average
forecasts, top 10 average forecasts, and bottom 10 average
forecasts.

e Our measure of disagreement: top 10 average — bot 10
average.
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The Term Structure of Disagreement in the BCFF
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The Time Series of Long Run Disagreement
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Model

Underlying state

e True state z = {g,m, i} where

ze = (I —®)ur + Pzp1 + V7,
mr = Ht-1 + Vt’fl7

with vZ ~ iid N(0,%?) and v{ ~ iid N(0,Z").

e Parameters: 6 = (o, X%, ¥#)
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Model

Information Friction: Noisy Information

Forecaster j observes:
Yie, = Zt+nj

with 7 ~ iid N(0,X"), X" diagonal.

Individual j's optimal forecast computed using the Kalman
filter.

Model parameters: (6, X").

Disagreement driven by variance of observation errors X".
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Model

Information Friction: Sticky Information
e At each date, a forecaster j observes k" element of y; with a
fixed probability \x; otherwise sticks to latest observation.

e Individual j's optimal forecast computed using the Kalman
filter with missing observations.

e Same number of parameters as in noisy info with \'s instead
of ¥,

e Generate time variance of disagreement (# noisy information).
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Calibration via Penalized MLE

Principle

Can we find (0,X") / (0, \) consistent with the data?

Rely on (i) realizations ) = {GDP, INF, FFR} and (ii)
moments S = {avg. forecast, disag} observed in surveys.

e \We minimize the Likelihood associated to true state -+ ...

e ... a penalty function measuring the distance between model
implied moments and their survey data counterpart.
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Calibration in Practice

We target 15 moments:
e Std-dev of consensus forecasts for Q1, Q4, Y2 and Y6-11.

e Disagreement about Q1 forecasts only.

e Various penalty parameters o =1, ..., 50.

Simulate R = 100 histories of shocks ¢; and observation
noises 7} with T = 120 (nb of dates) and N = 50 (nb of
forecasters).

Sample: realizations 1955Q1-2013Q2; survey 1986Q1-2013Q2.
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Summary of Parameter Estimates

True state parameters () robust to type of info. friction.

Long-run vol. (£#) much lower than short-run vol. (X?).

FFR is perfectly observed:
o Noisy: observation error (¥,)) for FFR is zero.

e Sticky: probability of observing FFR (};) is one.

Quantifying information frictions:

e Noisy: observation errors on GDP roughly twice as for CPI.

e Sticky: avg. proba. of updating g or 7 is ~ 4Q (A = 0.26).
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Data and Model-implied Term Structures of Disagreement
Noisy and Sticky
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Disagreement and Consensus Volatility
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Time Variation & Co-movement in Disagreement
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Time Variation & Co-movement in Disagreement
Sticky
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Role of Key Ingredients
e Imperfect information + permanent and transitory
components:
e Generate fundamental disagreement.

e Don't need asymmetric agents with different models /
immutable priors / signal-to-noise ratios.

= Appealing since hard to find “super forecaster” in the data.

e Multivariate model:

e Explain disagreement about future FFR even though perfectly
observed.

o Univariate version of our model cannot generate
upward-sloping disagreement unless o, > o,.
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Disagreement about FFR and the Taylor Rule

e Generate individual FFR forecasts from a Taylor rule
it = plt_1+(1—p)1:+€t
iy = th+<P7r‘(7Tt*7_Tt)+90g‘(gt*gt)

e Find Taylor rule parameters giving best fit of reduced form
model disagreement for FFR.

e Compare with various parametric restrictions.

e Std Taylor rule parameters: p = 0.9, ¢ =2, gz = 0.50.
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‘Standard’ Taylor Rule
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Role of Uncertainty about the Long-Run
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Conclusion

e Present new facts about forecaster disagreement.

e May help discriminate between models of expectation
formation.

e Show that imperfect info models combined with
permanent/transitory decomposition explains most of the
facts for sound parameter values.

e Minimal departure from REH: agents know and agree on true
model/params.

e Disagreement informative about both degree of imperfect info
and underlying DGPs.
e Help identifying parameters driving unobserved components.

e Informative about perceived structural relationships.
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Calibration via Penalized MLE

Details (1/2)

e Consider reaIi@tions as signals about z;: Y; = z; + 1) with
N ~ iid N(0,X7).

o — [ ()/1, . ,)hﬁ@,i") = likelihood obtained with Kalman
filter.



Calibration via Penalized MLE

Details (2/2)

e Given (0, ") we generate individual forecasts £ and compare
some associated moments with their survey data counterparts
St

o P(S1,---,87;0,X") = distance between model implied
expectation moments and their survey data counterpart.

e We minimize the penalized likelihood:

C (e,zmi") -y, (yl,--- ,yT;e,i’?)mP(sl,--- ,S7:0,%7).
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Noisy Information Model

] ¥ sqrt(diag(27))
0.378 —0.503 —0.153 3419 —0.019 0.561 [2.502]
0125 0974 —0.033 0019 0.645 0.365 1.429
0.147 0104 0.924 0561  0.365 0.632 10.000
[eig(®)] o sqrt(diag(27))
0.920 0.008 0.014 0.026 [4.317]
0.711 0.014 0.024 0.045 2.731
0.646 0.026 0.045 0.085 10,000,
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Sticky Information Model

]

¥ sqrt(diag(S7))
0.392 —0.478 —0.142 3.736 —0.065 0.564 _24586_
0.122  0.939 —0.024 —0.065 0.911 0.347 1.355
0.146  0.087 0.931 0.564 0.347  0.635 ,O'OOO,
leig(@)| DY A
0.920 0.007 0.012 0.022 _().26()_
0.674 0.012 0.021 0.039 0.260
0.674 0.022 0.039 0.073 _LOOO_
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