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Abstract 

 

This work addresses some of the open challenges in guided-wave based structural health 

monitoring (SHM) of pipelines. In this dissertation, we review these challenges under three 

headings: (a) Multiple modes, (b) Multi-path reflections, and (c) Sensitivity to environmental and 

operational conditions (EOCs). The objective is to develop damage detection methods that (1) 

simplify guided-wave signals, and (2) have low sensitivity to EOC variations.  

 

First, I propose a supervised method for online damage detection. The detection performance is 

maximized under variety of EOCs, by imposing a sparsity constraint on the signals. In the 

training stage, data is recorded from an intact pipe, as well as the pipe with structural 

abnormalities. During the monitoring stage, test signals are projected on the extracted sparse 

discriminant vector, and these projections are used as damage-sensitive features. I conduct a 

diverse set of laboratory and field experiments to investigate and to validate the extent to which 

EOC variations, as well as the differences in characteristics of the structural abnormality in 

training and test data, can influence the discriminatory power of the damage-sensitive features. 

The validation results suggest that a simple binary-labeled training data (i.e., 

undamaged/damaged), obtained under a limited range of EOCs, is sufficient for the proposed 

method. In other words, the detection method does not require prior knowledge about the 

characteristics of the damage (e.g., size, type, location), and/or a training dataset that is obtained 

from a wide range of EOCs.  
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Next, I propose an unsupervised method to address some of the limitations of the aforementioned 

supervised approach. The unsupervised approach eliminates the need for training data captured 

from a pipe with structural abnormality, which can be a challenge for some applications such as 

pipes with restricted accessibility. Therefore, the damage-related training parameters that may 

affect the detection performance of the supervised method are not an issue for the unsupervised 

approach. The proposed unsupervised method takes advantage of two facts that are further 

verified throughout this work: (1) high-energy arrivals are less sensitive to EOC variations 

compared to the rest of the signal, and (2) damage changes the energy-content and/or time-

location of high-energy arrivals in the signal. For this method, the training dataset is not labeled, 

but is assumed to mostly include intact signals. In the training stage, a sparse subset of high-

energy arrivals from intact pipes is extracted so that energy estimation error is minimized. My 

experimental analysis proved that high-energy arrivals in intact signals are located at different 

time-points than those in damaged signals. Therefore, using the extracted sparse subset (which is 

mainly composed of high-energy arrivals), the energy estimation error will increase as damage 

occurs. The proposed method is proved successful for online detection of damage under varying 

EOCs. It is also shown that the wider the range of EOCs in the training dataset, the better the 

detection performance. This range, however, is not required to be comprehensive of all possible 

testing scenarios. For example, for a test dataset in which temperature varies between 24℃ and 

39℃, a training dataset with temperatures ranging between 24℃ and 30℃ results in separation 

accuracy of 99%, and detection delay of five observations, captured in one-minute intervals. 
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Chapter 1 

 

 

Introduction and Problem Statement 

 

1.1 Background 

 

Pipelines are crucial infrastructure components in several applications at different scales, ranging 

from building-level piping systems to inter-state transmission pipelines. According to the US 

Department of Transportation’s report (DOT, 2010), 100% of the natural gas and 71% of oil and 

refined petroleum products consumed in the United States are transferred by pipelines (see 

Figure 1.1). Reliable prediction of degradation in structural integrity of pipes throughout their 

lifetime is important to ensure delivery of expected serivces, to decrease environmental/human-

safety risks associated with not/late-detected damages, and to reduce cost/time of repair and 

handling impacts of damages.  

 

According to the Department of Transportation, Pipeline and Hazardous Materials Safety 

Administration report (PHMSA, Pipeline Incident 20 Year Trend), 10,613 incidents have been 

reported in US between 1994 and 2013, which translates to an average annual rate of 531 
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incidents, 19 fatalities, 71 injuries, property damage of more than $308.8 million, and more than 

133,000 barrels of spilled hazardous liquid, including crude oil. Recent advances in sensing and 

computing, however, do not seem to have had substantial impact on improving these statistics. 

For example, only 28% of the reported incidents in the instrumented pipes were identified by 

data acquisition and testing systems between 2010 and 2012 (PHMSA, 2012). According to a 

study conducted in 2013 at National Oceanic and Atmospheric Administration (NOAA) and the 

University of Colorado (Karion et al., 2013), the ratio of the leakage to the average hourly 

natural gas production can reach up to 14% in certain locations. Another example of pipeline 

application affected by missed or delayed detection of damages is water transmission. As 

reported by the American Water Works Association (AWWA), 237,600 breaks per year occur in 

the US, which leads to an approximate $2.8 million lost in annual revenue (EPA, 2007). One of 

the main causes of these losses is leakage due to different types of damages in pipes (Shinozuka 

et al., 2010).  

 

 

Figure 1.1: Map of the major natural gas and oil pipelines in United States (PHMSA, 2012) 
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Data acquisition and sensing systems, however, are valuable for continual monitoring, and for 

cases where accessing pipeline is not feasible (PHMSA, 2012). Therefore, research is needed to 

improve the effectiveness of these systems. 

 

1.2 Guided-waves and their Advantages for Structural Health 

Monitoring (SHM) of Pipelines 

 

Difficulties, cost, and safety risks associated with accessing different portions of the pipes make 

non-destructive evaluation (NDE) techniques attractive for pipeline damage detection and 

monitoring (Cawley et al. 2003). In the majority of applications, large portions of the pipelines 

are either insulated or covered by other structures or materials such as soil (Alleyne et al. 2001). 

Thus, the reliability of traditional destructive methods for timely detection of damages is limited, 

as only observable/accessible damages may be identified with these methods. 

 

Among various techniques, the benefits of guided-waves for non-destructive evaluation (NDE) 

purposes have been discussed for over half a century, since Worlton recognized their potential 

(Worlton, 1957). Guided-waves are mechanical stress waves propagating along a media, guided 

by its boundaries. There are different types of guided-waves depending on the type of the 

structure and excitation conditions, but they all have one requirement in common: a well-defined 

boundary. If the thickness of the wave guide (here, a cylindrical media, i.e., a pipe) is 

comparable to the wavelength of the excited wave modes, guided-waves will travel along the 
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axial, radial, and circumferential direction of the pipe wall (see Figure 1.2). Therefore, generally, 

three types of modes can be excited in a pipe-like structure:  

 

Longitudinal modes (L): travel throughout the axial direction of the pipe, and are identifiable 

with axial displacements (𝑢𝑧) and compressional displacements along the radial direction (𝑢𝑟). 

These modes are axisymmetric (see Figure 1.2).     

 

Torsional modes (T): travel parallel to the circumferential direction (𝜃) and introduce shear 

motions resulting in axial displacements (𝑢𝑧) and radial displacements (𝑢𝑟). These modes are 

axisymmetric (see Figure 1.2).  

 

Flexural modes (F): are not axisymmetric and introduce displacements in circumferential 

direction (𝑢𝜃) in addition to 𝑢𝑧 and 𝑢𝑟 (see Figure 1.2).  

 

Equations 1.1-1.3 summarize the particle displacements for a cylindrical media as given by  Rose 

(2004): 

 

𝑢𝑟 = 𝑈𝑟(𝑟) cos(𝑛𝜃) cos(𝜔𝑡 + 𝑘𝑧)                                                                                           (1.1) 

𝑢𝜃 = 𝑈𝜃(𝑟) sin(𝑛𝜃) cos(𝜔𝑡 + 𝑘𝑧)                                                                                            (1.2) 

𝑢𝑧 = 𝑈𝑧(𝑟) cos(𝑛𝜃) sin(𝜔𝑡 + 𝑘𝑧)                                                                                            (1.3) 

 

In these equations, 𝑛 ∈ {0,1,2, … } is the circumferential order, for different wave orders (𝑚 ∈

{0,1,2, … }) of the longitudinal, torsional and flexural modes. 
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Figure 1.2: Guided-wave modes and corresponding displacements in cylindrical media  

 

During the past decade, non-destructive monitoring and evaluation techniques for pipelines using 

guided-waves have been widely considered by researchers and service providers in different 

applications ranging from water supply pipes to gas/oil transmission, chemical or power 

generation pipes (e.g., Alleyne et al., 2001; Siqueira et al. 2004; Sun et al. 2000; Wang et al. 

2010). This is due to many favorable characteristics of guided-waves compared to conventional 

methods and it makes these systems a promising candidate for continous and automated damage 

detection of pipes (Rose, 2004; Vanlanduit et al., 2005). The advantages include full coverage of 

the thickness and surface of the pipe, long travel distances without significant energy loss, and 

high sensitivity to different sizes/types of damage. In addition, guided-wave based SHM systems 

can operate with small number of low-cost, low-power, transducers, making their 

implementation efficient (Cawley et al., 2003; Davies et al., 2008; Demma et al., 2003; Rose, 

2004; Shull, 2002; Vanlanduit et al., 2005). 
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1.3 Challenges for Guided-wave based SHM 

 

Despite their many advantages, real-world application of guided-waves for pipeline SHM is still 

quite limited (Cawley et al., 2003). The challenges leading to this can be discussed under three 

headings: (a) Multiple modes, (b) Multi-path reflections, and (c) Sensitivity to environmental and 

operational conditions (EOCs).  

 

1.3.1 Multiple Modes 

 

Generally, three types of modes can be excited in a pipe-like structure: (a) longitudinal modes, 

L(0,m), (b) torsional modes, T(0,m), and (c) flexural modes, F(n,m), m and n referring to wave 

orders and circumferential order of modes, respectively (Rose, 2004). The presence of at least 

two modes at any given frequency is one of the factors making the guided-wave problems 

complex as compared to bulk waves (Demma et al., 2003). Another complexity arises from the 

dispersive nature of guided-waves (Rose, 2004). That is, propagation velocities of different wave 

modes are themselves functions of frequency.  

 

To adderss these challenges, one of the most widely considered solutions is to excite limited 

number of modes in a non/less dispersive range by using either an array of transducers or multi-

element transducers (e.g., Davies et al., 2008; Demma et al., 2003). Among all, axisymmetric 

modes, L(0,2) and T(0,1) are mostly used in practice, mainly because they are easier to excite 

and the acoustic field is relatively simple (Alleyne et al., 2001; Demma et al., 2004, 2003). 

Studies such as Alleyne et al. (1998) have shown that reflection coefficients of incident L(0,2) 
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mode are linearly related to the circumferential extent of a damage. Wang et al. (2010) uses 

distinctive characteristics of the reflected L(0,2) mode from the front and end edge of a damage 

to characterize its axial extent. Lowe et al. (1998a) investigated the reflection of the non-

axisymmetric modes F(1,3) and F(2,3) as a result of mode conversion from a non-symmetric 

through-thickness notch when L(0,2) mode is used. However, L modes can be vulnerable to 

additional reverberation and energy leakage at the interference of fluid inside/outside the pipe 

(Rose, 2004). Moreover, exciting L(0,2) mode in the less dispersive range requires careful design 

of the transducer system to suppress L(0,1) mode (Demma et al., 2004, 2003). These issues have 

motivated the use of T(0,1), which has simpler dispersion characteristics (i.e., non-dispersive in 

all frequencies), insensitivity to liquid interference, and thus, longer travel distance. T(0,1) is 

currently the most frequently used mode for pipeline NDE (Løvstad and Cawley, 2012). Demma 

et al. (2003) have shown linear dependency between the reflection of incident T(0,1) mode and 

radial depth of a damage. Nurmalia et al. (2013) relate the change in the thickness of the pipe to 

the change in the group velocity of the propagated T(0,m) modes, which is the result of mode 

conversion from higher orders to the lower orders as the thickness is decreased due to damage. 

 

As can be inferred from these studies, different wave modes are sensitive to different 

characteristics of the damage. Considering the fact that the geometry of a real damage in pipes 

can extend in any or all of the axial, radial and circumferential directions, damage diagnostics 

based on single-mode excitation may lose the benefit of multiple modes. Moreover, as some of 

these studies have shown, mode conversions can still occur when the incident mode interferes 

with damage or other material such as flowing fluid (Aristégui et al., 2001). That is, the excited 

non-dispersive mode can be converted to other mode(s) that may be dispersive. In addition, even 
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in the case of successful single-mode excitation, multi-path reflections from structural features 

and/or damage, as well as the EOC effects, which will be discussed in the next sections, cause 

the guided-waves, traveling in an operating pipe, to be the result of superposition of multiple 

modes (Lu and Michaels, 2005). Other challenges include implementation difficulties/costs 

compared to simple broad-band multi-mode excitation transducers (Demma et al., 2004; 

Nurmalia et al., 2013).  

 

1.3.2 Multi-path Reflections 

 

Reflections from the features of the structure (e.g., boundaries, pipe welding, damage, etc.), and 

their superposition, adds to the complexity of guided-waves. A number of studies have worked 

on solutions to address the challenges of multi-path reflections. Many approaches rely on 

baseline-subtraction, (e.g., Croxford et al., 2010, 2007). Ideally, baseline-subtraction will remove 

the background complexities that are due to structural features. However, such reference signals 

should be recorded under similar EOCs as the new signal, or the effects of the EOC variation 

need to be compensated. Among all, effects of temperature have been the most widely studied 

(Croxford et al., 2007; Lu and Michaels, 2005; Scalea and Salamone, 2008; Schulz et al., 2003). 

Temperature effects on wave velocity are typically approximated as stretching/compressing of 

the signal. However, such stretching methods may successfully approximate only small ranges of 

temperature variation, i.e., 0.5℃ to 1℃, depending on the complexity of the structure and the 

number of propagating modes (Clarke et al., 2009; Lu and Michaels, 2005). Moreover, other 

EOCs, such as fluid flow rate and inner pressure (Degtyar et al., 1996; Eybpoosh et al., 2014a, 

2014b; Harley et al., 2012), can further degrade the performance of these methods.    
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A number of studies have employed methods based on time-frequency analysis to cope with the 

complexity of guided-waves. These applications include, among other approaches, denoising and 

rectifying damage-sensitive components extracted through wavelet transforms (Siqueira et al., 

2004), characterization of damages through matching pursuit decomposition (Tse and Wang, 

2013), deriving dispersion curves (Niethammer et al., 2000), extracting damage-sensitive 

features by tracking the principal frequency components through time (Guerrero-Mosquera et al., 

2010), and blind source separation (Belouchrani and Amin, 1998). One inherent limitation of 

most of these methods is the uncertainty principle, which states that achieving high frequency 

resolution requires sacrificing time resolution, and vice versa (Cohen, 1989). This becomes even 

a bigger challenge in a multi-modal signal in which multiple modes with relatively similar 

characteristics are excited at a given frequency. Moreover, the majority of these methods 

strongly depend on the selection of parameters like mother wavelet, dictionary of atoms, scaling 

and shift variables, detection thresholds, etc. It is also notable that the sensitivity of such 

parameters to EOC variations remains to be incorporated into the methods.    

     

Recently, Harley and Moura (Joel B. Harley and Moura, 2013) developed a method for 

recovering a denoised signal by removing random noise and multipath signal interference for 

lamb waves in plates. The method uses the sparse nature of the lamb waves in the frequency-

wavenumber domain, and identifies the sparse solutions satisfying equations of motions, using 

signals obtained from a network of transducers. This method has shown promising results in 

localizing damage in a plate by comparing the monitored signals to the reference denoised signal 

using a coherent matched field processor (Harley and Moura, 2014; J.B. Harley and Moura, 

2013; Joel B. Harley and Moura, 2013). However, further developments are still needed to 
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examine the performance of the method when the EOCs of test and reference signals are 

different, and when different reference signals are associated with different EOCs (e.g., non-

uniform temperature change in the plate). In addition, relying on a network of transducers can be 

a challenge for certain NDE applications, since it calls for wider spatial access to the structure. 

Finally, yet importantly, the disregarded multi-path reflections may include information 

regarding damage, as will be illustrated later in this manuscript. The findings of my work suggest 

that denoising multi-modal multi-path guided-waves, for damage diagnosis, should not simply 

mean removing the multi-path reflections, but rather retaining damage information from the 

whole signal. 

 

1.3.3 Sensitivity to Environmental and Operational Conditions (EOCs) 

 

Guided-wave based damage detection of pipelines becomes even more challenging when EOCs 

vary over time, e.g., changes in temperature, flow rate of the fluid carried by the pipe, inner 

pressure, interference with coupling material, etc., (Croxford et al., 2010; Eybpoosh et al., 2015, 

2014b; Harley and Moura, 2014; Harley and Moura, 2013; Liu et al., 2012b; Schulz et al., 2003). 

EOC effects range from generation of additional modes to changes in the wave velocity, changes 

in attenuation rate, shape distortion, and so on, (Aristégui et al., 2001; Long et al., 2003a; Scalea 

and Salamone, 2008). Such effects degrade the performance of damage diagnosis, by masking 

and/or appearing as the changes caused by structural anomalies and introducing type I and II 

errors. 

 



11 
 

Many studies have investigated, both theoretically and experimentally, the effects of EOCs, such 

as temperature and coupling material, on guided-waves (Aristégui et al., 2001; Scalea and 

Salamone, 2008; Schulz et al., 2003). However, few studies have tried to incorporate such effects 

into damage diagnosis approaches. These studies mainly include stretching of the reference 

signals to incorporate the effects of temperature on wave velocity of guided waves into baseline-

subtraction methods, e.g., (Croxford et al., 2007; Lu and Michaels, 2005). The challenges and 

limitations of such methods are briefly discussed in Section 1.3.2, and further illustrated in one 

of the authors’ works (Eybpoosh et al., 2015). The missing physical and analytical intuition 

about the way EOCs affect different aspects of damage diagnostics, limits their extensibility to 

diverse operating conditions.   

 

During the past two decades, a number of researchers have utilized data analysis techniques to 

overcome some of the EOC challenges and enhance the application of guided-waves for damage 

diagnosis, e.g., (Harley et al., 2012; Liu et al., 2012a; Lu and Michaels, 2009; Ying et al., 2013). 

Statistical and signal processing techniques have shown high potential for extracting damage-

sensitive features that are less sensitive to the particular EOCs considered. However, 

improvements are still needed to address limitations such as dependence on a network of 

transducers, reliance on a dictionary of atoms, case-specific tunning parameters, and linear 

decomposition of multi-modal signals whose bases may be related non-linearly (for more 

detailed discussion on this topic please refer to the authors’ work (Eybpoosh et al., 2015)). 
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Chapter 2 

 

Research Objective and Scope 

 

2.1 Research Objective 

 

The complexity of guided-waves is rooted in three features discussed in Section 1.3. The goal is 

to overcome these challenges for damage detection of pipes, while addressing the limitations of 

the current approaches. That is, the objective of this thesis is to develop feature extraction and 

damage detection methods that (a) simplify guided-wave signals, without the need for prior 

knowledge about the damage characteristics (e.g., type, size, location), and (b) have low 

sensitivity to EOC variations, so that they can be extensible to diverse operation scenarios. Next 

section summarizes the scope within which this objective is pursued.  
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2.2 Research Scope 

 

Before moving forward, it is important to define the scope within which the objective of this 

work will be satisfied. 

 

Diagnosis Task 

Among all diagnosis functionalities (e.g., characterization, localization, etc.), this work is 

focused on damage detection. As will be shown later in this manuscript, the proposed methods 

have shown potential for identifying the change in the severity of damage. However, this work 

does not explore such capabilities in detail. 

 

Damage Type 

The methods proposed in this work are not based on any assumption regarding the type of the 

damage. The objective is to develop methods that can detect occurrence of structural abnormality 

in the surface of the pipe, regardless of their type/shape. Below is the list of structural 

abnormalities/defects used in this work to investigate different aspects of the proposed methods, 

and to validate their detection performance: 

 

(1) Two different sizes of mass scatterer to simulate structural abnormality: A light 

aluminum bar with 1.2 cm height and 1.2 cm diameter, and a heavier aluminum bar with 

7.6 cm height and 5.08 cm diameter. 
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(2) Actual damage: A small cut (10% of the pipe’s thickness) on the surface of the pipe to 

simulate crack, and a small mass loss (8% of the pipe’s thickness).  More details on the 

morphology and orientation of these cuts will be provided in later sections. 

 

EOCs 

For the laboratory experiments in this work, temperature is intentionally controlled to produce 

variations between 24℃ and 39℃. In the laboratory experiments, temperature is the only varying 

EOC. However, since the objective of the proposed methods is to address the sensitivity of 

guided-waves to realistic EOC variation scenarios, these methods are validated using field data 

captured from an operating hot-water piping system, in which the list of varying EOCs is as 

follows:   

 

 Coupling flowing water inside the pipe 

 Temperature 

 Fluid flow rate 

 Inner pressure 

 Mechanical noise 

 

Pipe Material and Size 

The physics behind the proposed methods is valid for different sizes of pipe, as long as the pipe’s 

geometry supports propagation of guided-waves. In this work, three different sizes of pipes are 

used for experimental investigations and validations: (1) a Schedule-40 aluminum pipe segment, 

with 101.6 mm outer diameter and 5.8 mm thickness, (2) a Schedule-40 steel pipe with 33.5 mm 



15 
 

outer diameter and 3.3 mm thickness, and (3) a Schedule-40 steel pipe with 254 mm inner 

diameter and 9.27 mm wall thickness. In this work, only aluminum and steel pipes have been 

considered for experimental analysis. The extensibility of the results to other materials is not 

studied.     
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Chapter 3 

 

Experimental Setups 

 

3.1 Aluminum Pipe with Mass Scatterer 

 

To control the temperature variations, I designed and built a setup in laboratory, which consists 

of a 1.5m×1.5m box made of insulation foam, with 50.8 mm thickness, R-value of 10 (𝑓𝑡2℉ℎ𝑟/

𝐵𝑡𝑢), and maximum operation temperature of 74℃. Figure 3.1 shows this setup. Interior 

temperature of the box is maintained within ±0.5℃ of the specified setpoint, using a 

thermostatically controlled electric space heater. One of the pipe segments that I used for the 

experiments throughout this dissertation is a 1.2 m 3 ½ Schedule-40 6061 T6 aluminum pipe, 

with 101.6 mm outer diameter and 5.8 mm thickness. Pitch-catch records are obtained using two 

Lead Zirconate Titanate (PZT) transducers that are coupled to the outer surface of the pipe. To 

record the interior temperature of the box, I located three HOBO H08-001-02 temperature data 

loggers at three points throughout the 1.2m length of the pipe. Temperature readings show a 

uniform distribution of temperature along the pipe segment.  
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In order to excite guided-waves that are close to lamb waves in plates, the following criteria 

should be satisfied (Lefebvre et al., 2002; Protopappas et al., 2006): 𝑟 ≫ ℎ, 𝜆 ≫ ℎ, and 𝑟 ≫ 𝜆, 

where r, h, and λ are pipe radius, pipe thickness and wavelength, respectively. Therefore, for this 

aluminum pipe segment used in the laboratory, the desirable range for excitation frequency is 

approximately between 125 KHz and 1000 KHz. In all the laboratory experiments in which this 

pipe segment is used, I transmitted 0.1 ms Gaussian excitation signal with central frequency of 

250 KHz and recorded 10 ms of ultrasonic signals, with sampling frequency of 10 MHz, at the 

receiver.  

 

 

Figure 3.1: Laboratory setup for controlling temperature variation: 1) Thermally insulated 

box to contain the experimental pipe segments, 2) Thermostat, 3a & 3b) PZT transducer 

and receiver, respectively, 4) Grease-coupled mass scatterer to simulate a structural 

abnormality. 

  

Structural abnormalities are simulated by masses of different sizes, grease-coupled to the outer 

surface of the pipe. Figure 3.2 shows the four different layouts for the aluminum pipe segment 



18 
 

that are used in the experiments throughout this work. In Figure 3.2a and 3.2b, transducers are 

located as far as 1.0m from each other. I refer to this transducer layout as layout #1. In Figure 

3.2c and 3.2d on the other hand, the transducers are as close as one-third of the length of the pipe 

(0.4m). I refer to this transducer layout as layout #2. The perpendicular distance of the mass to 

the undamaged path A-B in Figure 3.2b and 3.2d is two times the distance in Figure 3.2a and 

3.2c. I refer to the closer mass location (Figure 3.2a and 3.2c) as Loc1, and the further location 

(Figure 3.2b and 3.2d) as Loc2. For all the four layouts, data is collected using two different sizes 

of mass to reflect different sizes and characteristics of structural abnormalities. The small mass is 

a light aluminum bar with 1.2 cm height and 1.2 cm diameter, and the bigger mass is a heavier 

aluminum bar with 7.6 cm height and 5.08 cm diameter. For simplicity, throughout this work, 

these eight layouts will be referred to as “[1 or 2]-[Loc1 or Loc2]-[sml or big]”, where the first 

number indicates the transducer layout, the second symbol refers to the location of the mass, and 

the third symbol indicates the size of the mass. 

 

 

Figure 3.2: Unrolled view of the laboratory aluminum pipe segment, for different 

transducer-mass layout used throughout this work. Note: The three symbols in the layout 

names (1 vs. 2, Loc1 vs. Loc2, and big vs. sml) indicate the transducer setup, mass location, 

and mass size, respectively. 
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3.2 Steel Pipe with Crack and Mass Loss 

 

This setup includes a Schedule-40 steel pipe (Figure 3.3) with 33.5 mm outer diameter and 3.3 

mm thickness. Before introducing the crack, I obtained ultrasonic pitch-catch records from the 

intact pipe and from the pipe with a small mass scatterer placed in a non-symmetric location 

shown in Figure 3.3, at temperatures ranging from 24℃ to 32℃. Later, I impose an oblique cut 

of 2.5 cm long, extended in both circumferential and longitudinal directions of the pipe (see 

Figure 3.3), at the middle of the length of the pipe, using a jewelers saw. The maximum 

thickness along the length of the crack is approximately 0.34 mm (10% of the pipe thickness), 

and the maximum depth is approximately 0.7 mm (20% of the pipe thickness). The second 

damage is a small mass loss (Figure 3.3) with 5 mm diameter and maximum depth of 0.25 mm 

(~8% of the pipe thickness). The location of the second damage differs from both the crack, and 

the mass scatterer location. Pitch-catch signals from the pipe with crack, and with both crack and 

mass loss are captured at 24℃ ≤ 𝑇𝑡𝑠𝑡 ≤ 32℃.  

 

 

Figure 3.3: The steel pipe used to examine the application of the proposed methods for 

detection of multiple actual damages, namely a crack and mass loss. 
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3.3 Steel Pipe Operating Under Multiple Varying EOCs 

 

For validation of the methods proposed in this work, the field data is obtained from a fully 

operational large-scale pressurized hot water piping system in the mechanical space of a campus 

building (Liu et al., 2012b). The characteristics of this testbed are completely different from the 

laboratory setups explained in the previous sections, which strengthen the generality of the 

validations.  

 

The mechanical space is 706 m
2
 and is mechanically and electrically noisy. This piping system is 

operating continuously and, unlike the laboratory pipes, is coupled with the flowing water with 

varying temperature, flow rate, and pressure. Due to the periodic pumping of hot water, the flow 

rate continuously varies between 45.5 m
3
/h and 102 m

3
/h, and water temperature fluctuates from 

38℃ to 60℃. It is notable that the temperature variation for the laboratory experiments ranges 

from a minimum of 24℃ to a maximum of 38℃. Therefore, the types/ranges of EOC variation 

are completely different from the laboratory data. The size and material properties of this 

pipeline are also different from the pipe segment used in the laboratory. This is also a Schedule-

40 steel pipe with 254 mm inner diameter and 9.27 mm wall thickness, covered by fiberglass 

insulation.  

 

Pairs of PZT transducers are permanently mounted on the pipe’s exterior surface, 3 m or 6 m 

apart from each other. These distances are 2.5 to 15 times longer than the 1.2 m and 0.4 m ranges 

used for the laboratory aluminum and steel pipes. To simulate damage, a small aluminum bar 

(1.2 cm diameter and 1.2 cm height) is acoustically coupled to the surface of the pipe at 1/3 of 
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the monitoring range. The pipe is excited with 0.1 ms broadband sinc signals with the frequency 

band of 100-300 kHz. This translates to frequency-thickness rate of 927-2781 kHz-mm as 

opposed to 1450 kHz-mm in laboratory experiments. The received 10 ms of ultrasonic signals are 

sampled with a sampling frequency of 10 MHz.   
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Chapter 4 

 

A Supervised Approach for Damage Detection of 

Pipelines 

 

4.1 Introduction 

 

As discussed in Section 1.3, the challenges of guided-wave based damage detection are rooted in 

the complex nature of these waves and their sensitivity to EOC variations. The objective of this 

work is to simplify guided-waves, while retaining damage information. The idea is to extract 

damage-sensitive features from the simplified signals so that they are less sensitive to EOC 

variations.  

 

A supervised method is proposed to extract a sparse subset of the guided-wave signals that 

contain optimal damage information for detection purposes. Ideally, if the arrivals scattered from 

damage are completely retrieved from the recorded signals, they could be used for damage 

detection. However, studies have shown that variation of EOCs affects scatter signals so that 
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damage information are suppressed by the EOC effects (Croxford et al., 2010; Eybpoosh et al., 

2015, 2014b; Lu and Michaels, 2005). The fundamental assumption for development of the 

proposed method is that, by maximizing the detection performance while imposing sparsity 

constraint, in the extracted sparse signals, the effects of damage are more dominant than the EOC 

effects. If true, this damage-sensitive subset can be used for damage detection rather than the 

complete scatter signal. This assumption, as well as different aspects of the proposed method, is 

validated later in this chapter.   

 

4.2 Motivation 

 

Being reflected from any scatterers in the structure (e.g., welding, geometric boundaries, 

damage), guided-waves in a medium travel through multiple paths. Depending on the wave 

velocities, travel path, boundary conditions, etc., these reflections will arrive to the receiver at 

different ranges of time throughout the sampling period. Any point in time will include different 

portions of these arrivals, either individually or as superposition of multiple arrivals. However, it 

is important to note that, not all these arrivals contain significant damage information. 

Intuitively, an arrival that has only illuminated the undamaged section of the medium will not 

contain significant information regarding the damage (note: this is true only if the damage size is 

small enough that the physical properties of the medium such as rigidity and Young’s modulus 

are not changed significantly). 

 

For example, considering a pipe with small wall thickness to diameter ratio (Pierce and Kil, 

1990), let Figure 4.1 be an unrolled view of the pipe, with a two-transducer pitch-catch setup, 
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where excitation happens at point A, and arrivals are recorded at point B. Let the small circle at 

point C be the damage on the pipe, and the two ends of the pipe symbolize any scatterer in the 

pipe, such as welding, boundaries, etc. Note that this figure is just a simple illustration and does 

not include all of the possible wave propagation paths. 

 

 

Figure 4.1. A schematic unrolled view of a pipe, illustrating example wave propagation 

paths passing through undamaged (dashed arrows) and damaged (solid arrows) sections of 

a pipe. 

 

In this schematic depiction (Figure 4.1), arrivals that have travelled through paths 1 to 4 (i.e., the 

paths that do not include point C) are not expected to contain significant information regarding 

damage. On the other hand, arrivals that have illuminated the damaged section of the pipe (i.e., 

paths 5 and 6 that include point C) may contain damage information. Any record during 

sampling period that contains part of these arrivals would include information regarding damage. 

However, the question is that in what subset of such records this information suppresses the 

irrelevant information and leads to optimal damage detection under varying EOCs.  
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4.3 Method 

 

The goal is to extract a subset of the guided-wave signals that contains enough information 

regarding existence of damage. The optimal solution will be the “simplest” subset, with 

minimum sensitivity to EOC variations, and maximal damage information for detection 

purposes. The main hypotheses of the proposed method are as follow:   

 

Hypothesis #1: A sparse subset of the arrivals in a diffuse-field signal contains enough 

information for optimal damage detection.   

 

Hypothesis #2: If hypothesis #1 is true, the extracted sparse subset is less sensitive to EOC 

variations and more sensitive to damage than the complete signal.    

     

These hypotheses will be addressed through research questions #1 and #2 presented in Section 

4.3.1, and will be verified through a variety of experiments reported later in this chapter. A 

supervised approach is proposed to find a discriminant vector in the time space of the signals so 

that the signals from damaged and undamaged pipes have different projections onto this vector. 

In other words, the vector obtained by this method (will be referred as sparse discriminant (SD) 

method) is located in a direction that the arrivals with significant damage information have 

distinguishable projections onto the vector. 
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4.3.1 Research Questions 

 

Based on the discussions in the motivation section (Section 4.2), and the hypotheses given in 

Section 4.3, following is the list of research questions that need to be answered: 

 

Question #1: How can a sparse representation of a diffuse-field guided-wave signal in a pipe 

(with specifications summarized in Section 2.2) be extracted while retaining enough damage 

information for detection purposes?   

 

Question #2: How sensitive are the extracted subset and any damage-sensitive feature used in 

Question #1 to the variations of EOCs specified in Section 2.2 of this manuscript? 

 

4.3.2 Overview of the Sparse Discriminant (SD) Method 

 

Proposed SHM Framework based on the SD Method 

Figure 4.2 illustrates the application of the proposed SD method for continuous, online damage 

detection of a pipeline. The process consists of an initial training stage, and the continuous 

monitoring stage. Different components of these stages are introduced in this section, and 

experimentally examined in the next sections of this chapter. 
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Figure 4.2: Application of the proposed SD method for continuous monitoring of pipelines. 

 

Training Stage 

As discussed in Section 1.3, when guided-waves are interfered by damage, their propagation 

characteristics may change in a number of ways, such as mode conversion, change in the 

phase/group velocities, multi-path reflections, energy dissipation, etc. (Belanger and Cawley, 

2009; Dehghan-Niri and Salamone, 2014; Nagy et al., 2014). At this point it, it is notable that the 

proposed method do not make any assumption regarding the nature of such interactions, but 

rather its goal is to extract a subset of the signal with optimal damage information, regardless of 

the physical phenomenon leading to such a subset.    

 

As shown in equation 4.1, the coefficients of a discriminant vector (�⃗�𝑛×1) are trained so that the 

projections of training signals (𝑍𝑚𝑡𝑟×𝑛) on �⃗�𝑛×1 are good predictors of the state of the pipe (i.e., 
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𝑌𝑗 = 1 for intact pipe and 𝑌𝑗 = −1 for pipe with structural abnormality, where 𝑌𝑗 is the label of 

the jth observation). Let 𝑚𝑡𝑟 be the number of signals in the training dataset, including signals 

from intact and damaged pipe, 𝑛 be the length of the time-trace of the signals, and Y be the 

vector of state labels.  

 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥{‖𝑍
𝑚𝑡𝑟×𝑛�⃗�𝑛×1 − �⃗⃗�𝑚𝑡𝑟×1‖

2
}                                                                                       (4.1) 

 

In equation 4.1, if the sample points in training signals are zero-meaned and normalized by 

standard deviation (i.e., standardize Z in column), the magnitude of the coefficients in �⃗� will 

reflect the significance of each of the n sample points in defining the state of the pipe.   

 

At this point, it is notable that linear discriminant analysis (LDA) is another method used in 

pattern recognition to find such linear subspaces that separate different classes. However, as 

discussed in one of the authors’ work (Eybpoosh et al., 2014b), LDA fails to find such a 

discriminant subspace for guided-waves when using the original time-trace of the signals. It is 

mainly because LDA assumes that the variables are normally distributed. However, as I will 

further discuss in Section 4.5.4, guided-wave signals do not satisfy this assumption.    

 

Although the method proposed in equation 4.1 does not assume any particular distribution for the 

n sample points, its performance can still be affected by the curse of dimensionality. If the 

number of training observations (𝑚𝑡𝑟, slow-time recording duration) is smaller than the number 

of predictor variables, n (thousands of sample points in a signal, i.e., fast-time recording 

duration), the extracted coefficients in the �⃗� vector may not be statistically significant. Satisfying 
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the 𝑚𝑡𝑟 > n condition is neither practical, nor favorable. Therefore, the dimensionality of the 

problem needs to be reduced.  

 

Common methods for dimensionality reduction in time-domain, such as down-sampling, 

filtering, etc., would be vulnerable to removing useful information, or would require prior 

knowledge about the propagating wave modes, wave reflection scenarios, damage properties, 

etc. The method proposed in this study assumes that a sparse subset of a guided-wave signal will 

contain sufficient damage information for optimal damage detection. This assumption is in line 

with the discussions provided earlier in Section 4.2 (Figure 4.1), and will be verified further in 

the validation section of this chapter (i.e., Section 4.5).   

 

The suggestion is to penalize the magnitude of the coefficients that correspond to the variables 

with less contribution in predicting the class labels �⃗⃗� (using a regularization scalar ξ in equation 

4.2). Ideally, this can be done by penalizing the ℓ0 norm of the �⃗� vector (‖�⃗�‖
0
). That is, forcing 

the optimization algorithm to assign zero coefficients to the variables with insignificant 

contribution in reconstructing �⃗⃗�, and non-zero otherwise. However, finding the solution for such 

a problem is NP-hard (Non-deterministic Polynomial-time hard) (Huang and Aviyente, 2006). 

An approximate solution to this problem can be found by penalizing ℓ1 norm of the �⃗� vector 

instead of ℓ0 norm (Donoho and Huo, 2001). This forces a sparse solution for the �⃗� vector, so 

that, variables with smaller contribution in defining the state of the pipe will be assigned close-

to-zero coefficients.   

 

 𝑎𝑟𝑔𝑚𝑖𝑛𝑥{‖𝑍
𝑚𝑡𝑟×𝑛𝑋𝑛×1 − 𝑌𝑚𝑡𝑟×1‖2  + 𝜉‖𝑋

𝑛×1‖1}                                                                (4.2) 
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Finding a sparse discriminant vector (�⃗�) in the time space of the signals addresses the 

complexity challenges of guided-waves discussed in Section 1.3 (through the second part of 

equation 4.2), while retaining damage information for detection purpose (through the first part of 

equation 4.2). The question remained to be answered is whether the effects of damage in the 

extracted sparse subset of the signals suppress the EOC effects under different scenarios.  

 

It is notable that equation 4.2 is based on the Lasso optimization principle which is different than 

ordinary regularization methods such as Tikhonov regularization, since Lasso minimizes ℓ1 

norm instead of Euclidean norm, and in this way, the sparsity is imposed to the solution. For the 

experiments reported in this chapter, the Matlab convex optimization package (i.e., cvx by Grant 

and Boyd (2008)) is used to solve the Lasso optimization problem formulated in equation 4.2. 

The regularization scalar ξ can be selected so that the sparsity is maximized while training error 

is minimized.    

 

Monitoring Stage 

The proposed SD method can be used to extract damage-sensitive features for damage detection 

during the monitoring stage depicted in Figure 4.2. Projecting a test signal 𝑑𝑗 (𝑑𝑗 ∈ 𝑅
𝑛, 𝑗 =

1, … ,𝑚𝑡𝑠𝑡) on the trained �⃗� vector will result in a scalar (equation 4.3) representing the predicted 

class label for the signal (ideally, �̂�𝑗 = 1 for intact pipe and �̂�𝑗 = −1 for pipes with structural 

abnormalities).  

 

�̂⃗⃗�𝑚𝑡𝑠𝑡×1 = 𝐷𝑚𝑡𝑠𝑡×𝑛�⃗�𝑛×1                                                                                                             (4.3) 



31 
 

4.3.3 Evaluation Criteria for the SD Method 

 

Detection Performance 

EOC variations, along with other parameters that may vary between training and monitoring 

stages (i.e., damage characteristics and location), may cause the values of �̂�s deviate from exact 

1 and -1. The first objective to be evaluated is the extent to which the extracted sparse 

discriminant vector, and hence the damage-sensitive features (�̂�s in equation 4.3), retain damage 

information.  

 

In order to examine the performance of these features in discriminating damaged and undamaged 

pipes, three metrics are used in this study:  

 

(a) Detection accuracy: the ratio of the number of correctly labeled damaged and undamaged 

observations to the total number of test observations. 

(b) False negative rate (FNR): the ratio of the number of incorrectly labeled damaged 

observations to the total number of damaged observations. 

(c) False positive rate (FPR): the ratio of the number of incorrectly labeled undamaged 

observations to the total number of undamaged observations.    

 

At this point, it is worth emphasizing that the SD method is not a detection algorithm, but a 

feature extraction approach for damage detection. Therefore, a number of classification methods 

can be used to evaluate discriminatory power of the features. A simple method is to cluster the 

predicted labels. In this work, a 2-class k-means clustering is used for this purpose. K-means is a 
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simple unsupervised partitioning method in which each observation is assigned to one of the 

clusters. K-means clustering is used since it is an unsupervised method that do not need training 

data, therefore, its performance will be independent from training parameters. After clustering 

different test observations, some heuristic process is applied to calculate the three 

aforementioned detection metrics. If more than 50% of the observations in a cluster are from the 

same class (e.g., intact), the cluster is considered to be representative of that particular class. 

Then, accuracy, FPR, and FNR can be calculated. It is also notable that K-means algorithm can 

be very sensitive to the initial values of cluster centroids. The results reported in this chapter are 

the average of different folds of cross-validations. Also, the initial centroid values are not 

optimized, which suggests that the reported findings can be even further improved if more 

sophisticated classifiers are applied. 

 

Sparsity 

In order to quantify the simplicity of the extracted sparse signals, for different scenarios, i.e., to 

verify the sparsity assumption of the SD method, I introduce a metric, Sparsity-ratio (Sr), which 

is the ratio of the number of zero coefficients to the total length of the signal n (equation 4.4). It 

is notable that, using the ℓ1 norm of the �⃗� vector in equation 4.2, the values of the coefficients 

may never be absolute zero, but rather be very small. To handle this, any coefficient whose 

magnitude is smaller than the largest coefficient (i.e., 𝑥𝑛𝑜𝑖𝑠𝑒
𝑚𝑎𝑥 (𝜉)) assigned to the initial part of the 

signal (i.e., before the first arrivals) is considered to be zero. This is because this part of the 

signal is expected to have no contribution in defining the state of the pipe. The Sr(𝜉) given in 

equation 4.4 is the sparsity ratio corresponding to the regularization scalar 𝜉. 
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𝑆𝑟(𝜉) =  
{𝑖∈{1,2,…,𝑛} ∶ |𝑥𝑖|≤|𝑥𝑛𝑜𝑖𝑠𝑒

𝑚𝑎𝑥 (𝜉)|}

𝑛
× 100                                                                                  (4.4) 

 

Sensitivity to EOCs 

The second objective to be evaluated is low sensitivity of the SD method to EOC variations. To 

evaluate this, I examine: (a) detection performance, and sparsity ratio (Sr), as the SD method is 

trained at different EOCs, and (b) detection performance as the EOCs between test and training 

data vary. It is notable that for the laboratory experiments used to evaluate the SD method, 

temperature is the only varying environmental factor. However, the performance of the SD 

method is later validated using field data recorded from a pipeline operating under dynamic 

conditions with wide range of varying temperature, fluid flow rate, and inner pressure, among 

others.  

 

4.4 Experimental Investigation of the SD Method 

 

This section provides a general proof of concept for the proposed SD method. The basic 

assumptions of the SD method, research questions, and different aspects of the framework 

proposed in Figure 4.2 are studied using the experimental data captured from the aluminum pipe 

discussed in Section 3.1.  
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4.4.1 Temperature Variation 

 

Detection Performance of Damage-sensitive Features  

As shown in equation 4.3, the trained coefficients can be used to predict class labels of new 

observations. In this section, I examine whether, for different temperature variation scenarios, the 

class labels predicted by SD method can be used as features to detect the structural 

abnormalities.    

 

In order to investigate the effect of temperature difference (∆𝑇) between training and test 

datasets, 5,500 observations from intact and 5,500 observations from the pipe with abnormality 

are measured, at temperatures ranging from 24℃ to 32℃, from 1-Loc1-sml pipe layout (Figure 

3.2a). A total of 55 datasets, each consisting of 100 intact and 100 damaged signals are created. 

The coefficients are trained and tested with each of these datasets at a time. 

 

As mentioned before, the focus of this study is not to propose a particular classifier for damage 

detection, but to propose an approach for extracting damage-sensitive features for damage 

detection. The discriminatory power of these features (�̂�s) can be tested using various 

classification methods. In this work, a simple K-means clustering method found to be 

satisfactory to separate the predicted test labels.  

 

A total of 6,050 training/test scenarios are examined (55 training datasets, each tested by 55 test 

datasets, through 2-fold cross validation CV). The ijth pixel in Figure 4.3a is the average 

accuracy of 2-fold CV for the ith testing dataset with temperature 𝑇𝑖 and the jth training dataset 
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with temperature 𝑇𝑗. As can be seen in this figure, for the majority of the scenarios, two classes 

are perfectly separated (detection accuracy is 100%). However, expectedly, detection 

performance drops slightly as ∆𝑇 between training and testing increases (the lower right and 

upper left corners of the figure). That is, the extracted sparse vectors become less representative 

of testing data as ∆𝑇 increases. The FPRs and FNRs are below 10% for 97% of the scenarios. 

 

 

Figure 4.3: (a) Average detection accuracy of 2-fold CV, for different training/test 

temperature combinations (𝟐𝟒℃ ≤ 𝑻 ≤ 𝟑𝟖℃), using the class labels predicted by SD 

method (�̂�s) as the only damage-sensitive feature for clustering. (b) ROC-curves for 

training/test scenarios with 𝟎℃ ≤ ∆𝐓 ≤ 𝟖℃). 𝐓𝐭𝐫: Training temperature, 𝐓𝐭𝐬𝐭: Test 

temperature. 

 

Figure 4.3b shows the receiver operating characteristic (ROC) curves for different cases in which 

training and test temperatures vary between 0.0℃ and 8.0℃. For almost all these cases, these 

curves are far from the 45-degree diagonal of the ROC curve, suggesting high sensitivity of the 

test (TPR) even with the drop in specificity (1-FPR). These results imply that, not only the 

predicted labels (�̂�s) are significantly damage-sensitive, but also, the separation between �̂�s of 

two classes has low sensitivity to ∆𝑇 (i.e., two classes can still be separated for large ranges of 
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∆𝑇s). Table 4.1 summarizes the average detection statistics for 2-fold CV of all 3,025 

training/test combinations with different ∆𝑇 scenarios.  

 

Table 4.1: Average statistics of 2-fold CV, reflecting the detection performance of class 

labels predicted by SD method (�̂�s), for a total of 3,025 training/test scenarios given in 

Figure 4.3. 

Average Detection Accuracy Average FPR Average FNR 

99.0% 1.0% 1.4% 

 

 

It is useful to have a closer look at the temperature effects on the predicted class labels. The 

distinction between intact and damaged observations is related to the distance between �̂�s in two 

classes. For each training/test combination, Figure 4.4 shows the change in the distance between 

average predicted labels for intact and damaged test observations, as a ratio of the standard 

deviation of the predicted labels for intact observations (𝑑𝑖𝑠𝑡 = |�̅̂�𝑖𝑛𝑡 − �̅̂�𝑑𝑚𝑔|/𝜎�̂�𝑖𝑛𝑡). The 

brighter colors indicate larger distance between the labels, and hence, clearer distinction between 

the two classes. These distances can get as large as 350 times the 𝜎𝑖𝑛𝑡, and for the worst 

training/test scenario, as low as two times the 𝜎𝑖𝑛𝑡. Expectedly, the distinction between predicted 

labels degrades as the ∆𝑇 increases (i.e., moving further from diagonal of the matrix in Figure 

4.4). The wider dark region in the lower triangle of the figure, compared to upper side, implies 

that the degradation in the distinction between the class labels may also be sensitive to training 

temperature in addition to ∆𝑇. Large dist. values for the majority of the scenarios implies that the 

class labels predicted by SD method can perform reasonably even at large ∆𝑇s (up to 8℃ in this 

experiment).  
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Figure 4.4: Variation of the distance between predicted labels for intact and damaged test 

observations at different training/test temperature scenarios. 𝑻𝒕𝒓: Training temperature, 

𝑻𝒕𝒔𝒕: Test temperature, �̅̂�𝒊𝒏𝒕: Average predicted labels for intact test observations, �̅̂�𝒅𝒎𝒈: 

Average predicted labels for damaged test observations, 𝝈�̂�𝒊𝒏𝒕: Standard deviation of the 

predicted labels for intact test observations. 

 

  

Online Damage Detection  

Low temperature sensitivity of the predicted class labels makes them attractive for online 

damage detection of pipelines. The state of a pipe operating under varying temperatures can be 

predicted as the new observations are streamed (equation 4.3). This implementation of the SD 

method is illustrated with an example in Figure 4.5. In this example, training data include 50 

intact and 50 damaged observations, all measured at 26℃, from the 1-Loc1-sml layout (Figure 

3.2a). Test dataset includes 550 observations from intact pipe, and 550 observations from the 1-

Loc1-sml pipe, in which the abnormality is simulated by introducing a small mass. As can be 

seen in Figure 4.5a, temperatures of the test observations can differ significantly from the 

training temperature (−4℃ ≤ ∆𝑇 ≤ +5℃). Figure 4.5b shows the correlation between each test 
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signal and the average training intact signal. No distinguishable pattern in the correlations of 

intact versus damaged test signals is observed.  

 

 

Figure 4.5: Illustration of online damage detection with varying temperature, using class 

labels predicted by SD method. (a) Temperature difference between the training dataset 

and the monitored observations, (b) Correlation between the monitored observations and 

average of training intact signals, (c) Predicted class labels for the monitored observations 

using equation 4.3. 

 

The online detection discussed here could be performed by updating the training dataset as the 

test observations are streamed. However, in this study, in order to investigate the performance of 

the SD method when the EOCs are different for test and training data, the training dataset, and 

thus the calculated �⃗� vector, are not updated. In other words, the online monitoring 

implementation reported in this work is not adaptive.  

 

To quantify the detection performance of the predicted labels (�̂�s) for online monitoring, a 

simple detection algorithm is used. First, predicted labels of the test observations are averaged 
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with a window of 20 records, which results in the values given in Figure 4.5c. It is notable that 

the observations are recorded in 1-minute intervals. When the distance between the label of the 

jth observation (�̂�𝑗) and the average of the labels in the window before the jth observation (�̂�𝑗−20 

to �̂�𝑗−1) is larger than ten times the standard deviation of the labels in the window, occurrence of 

damage is detected (∆�̂� > 10𝜎). This approach can be further improved by using the results 

given in Figure 4.4. That is, adjusting the standard deviation threshold based on the ∆𝑇 between 

the monitored signal and training data.  

 

Table 4.2: Detection performance of �̂�s for online monitoring of pipes, under varying 

temperatures. Note: 1-Loc1-sml layout is used. Test data includes 610 intact and 610 

damaged observations, recorded in 1-minute intervals. 

Training 

Temperature 

Range of ∆𝑇 Delay in Detection (No. of 

observations before detection) 

Detection 

Accuracy 

26℃  −2℃ ≤ ∆𝑇 ≤ 13℃ 9 99.2% 

27℃  −3℃ ≤ ∆𝑇 ≤ 12℃ 2 99.8% 

28℃  −4℃ ≤ ∆𝑇 ≤ 11℃ 6 99.5% 

29℃  −5℃ ≤ ∆𝑇 ≤ 10℃ 2 99.8% 

30℃  −6℃ ≤ ∆𝑇 ≤ 9℃ 6 99.5% 

31℃  −7℃ ≤ ∆𝑇 ≤ 8℃ 3 99.7% 

32℃  −8℃ ≤ ∆𝑇 ≤ 7℃ 6 99.5% 

Average 4.8 99.5% 

 

 

Table 4.2 summarizes the online monitoring results, when SD method is trained at different 

temperatures, ranging from 26℃ to 32℃. The test dataset includes a total of 1,220 intact and 

damaged signals at wide range of ∆𝑇s. In all these cases, occurrence of damage is detected, with 

an accuracy of above 99%. It is notable that the detection statistics of the simple algorithm 
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explained above (∆�̂� > 10𝜎) may vary depending on the selected window size and/or the 𝜎 

threshold. While the results given in Table 4.2 prove the concept, the online detection 

performance can be improved even further if more sophisticated approaches are used for 

detection of the divergence in values of �̂�s.  

 

Evaluation of the Sparsity Assumption 

Generally, no significant correlation could be observed between sparsity ratio (equation 4.4) and 

the temperature of the training dataset in my experiments. Table 4.3 summarizes the statistics for 

the sparsity ratios of training datasets recorded from 1-Loc1-sml pipe layout (Figure 3.2a) at 

24℃ ≤ 𝑇𝑡𝑟 ≤ 38℃. The results show that, regardless of the temperature of the training dataset, 

the solution of equation 4.2 is sparse, which, as shown earlier in this section, leads to high 

detection performances.  

 

Table 4.3: Sparsity ratio (Sr., equation 4.4) statistics as a result of training the SD 

algorithm with datasets of different temperatures. 

Range of Temperature Average Sr. Minimum Sr. Maximum Sr. Standard Deviation 

24℃ ≤ 𝑇𝑡𝑟 ≤ 38℃ 90.0% 60.0% 99.7% 10.0% 

 

 

4.4.2 Damage Size and Temperature Variation 

 

Considering a particular type of damage positioned in a particular location, the arrival time of the 

waves reflected from damage boundaries is determined by the distance of the boundaries to the 

transducers. The size and shape of the damage define the location of damage boundaries with 

respect to the transducers. For example, consider a case where the structural abnormality used for 
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training is so large that the front and back edge reflections can be separated in time. Intuitively, 

the trained coefficients in this case will not be a good representative for a test observation in 

which the damage is so small that the front and back edge reflections arrive around the same 

time, and are mostly overlapped. 

 

Wang et al. (2010) have used the distinction between the reflections from damage edges to 

characterize the extent of the damage. Their approach, however, require damage size to be large 

enough so that the front and end reflections are separable. For example, they show that, in order 

for the two damage edge reflections to be separable, minimum longitudinal extent of the damage 

should be around 86 mm and 170 mm, for 175 KHz and 200 KHz excitations, respectively. These 

values correspond to 2.5 and 5 times the diameter, and 4% and 8% of  the length of the pipe 

segment used in Wang et al. (2010). Obviously, real-world pipeline monitoring applications 

require detection of defects much smaller than these ranges. This implies that, in realistic 

detection scenarios, the reflections from damage edges are expected to arrive around the same 

time and be highly overlapped. Therefore, the time locations of the coefficients trained with 

different sizes of damage will not vary significantly (assuming that the damages are of the same 

type and are located at the same point in pipe). In light of this, the hypothesis being tested in this 

section is as follows:  

 

Hypothesis #3: For practical sizes of damage, the difference in damage size between training 

and test data will not adversely affect the detection performance of �̂�s predicted by the SD 

method.  
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Detection Performance of Damage-sensitive Features 

To test hypothesis #3 given above, the first set of experiments is to investigate detection 

performance of �̂�s when the size of structural abnormality in training and test data is different. 

Two different sizes of mass are used to simulate the variation in the size of the structural 

abnormalities. As explained in Section 3.1, the height and diameter of the bigger mass are about 

six and four times bigger than the small mass, respectively. If hypothesis #3 is verified for such a 

large difference, the findings can be safely expanded to smaller variations in the size of damages 

with similar characteristics as these experiments.  

 

A total of 25 training datasets (25℃ ≤ 𝑇𝑡𝑟 ≤ 33℃) are created. Each training dataset consists of 

100 observations from intact pipe and 100 observations from pipe with small mass (1-Loc1-sml, 

Figure 3.2a). Similarly, a total of 25 test datasets (25℃ ≤ 𝑇𝑡𝑠𝑡 ≤ 33℃) are created. Each test 

dataset consists of 100 observations from intact pipe and 100 observations from pipe with big 

mass (1-Loc1-big, Figure 3.2a). The coefficients are found for all 25 training datasets, and tested 

with all 25 test datasets, using K-means with 2-fold CV. This translates to a total of 1,250 

training/test scenarios. Table 4.4 summarizes the average detection statistics for all scenarios. It 

can be seen that the discriminatory power of �̂�s is not affected by variation of damage size, or 

temperature, between training and test datasets. 

 

Table 4.4: Average detection statistics for a total of 1,250 training/test scenarios with 

different damage sizes and temperatures. Note: 𝟐𝟓℃ ≤ 𝑻𝒕𝒓 & 𝑻𝒕𝒔𝒕 ≤ 𝟑𝟑℃. Pipe layout 1-

Loc1-sml is used for training and layout 1-Loc1-big is used for testing. 

Average Detection Accuracy Average FNR Average FPR 

99.0% 1.0% 0.9% 
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Online Damage Detection 

Table 4.5 summarizes the performance of �̂�s for online monitoring. The coefficients are found 

using seven different training datasets, at temperatures ranging from 26℃ to 32℃ (one training 

dataset for each temperature), using small mass (1-Loc1-sml). Test dataset includes 610 signals 

from intact pipe, 610 signals from pipe with small damage (1-Loc1-sml, Figure 3.2a), and 500 

signals from pipe with big damage (1-Loc1-big, Figure 3.2a). The temperatures of the test 

observations vary randomly between 24℃ and 39℃. As can be inferred from Table 4.5, although 

the coefficients are calculated using only the pipe with small damage, the occurrence of both 

small and big damages can be detected, for a wide range of ∆𝑇s. This also suggests the potential 

of the SD method for detecting changes in the severity of damage. 

 

Table 4.5: Detection performance of �̂�s for online monitoring of pipes, when sizes of 

damage, as well as the temperatures of training and test datasets are different. Note: 1-

Loc1-sml pipe layout is used for training, and both 1-Loc1-sml and 1-Loc1-big layouts are 

used for testing. Observations are recorded in 1-minute intervals. 

Training 

Temperature 

Range of ∆𝑇 Delay in Detection of Small 

Mass (No. of observations) 

Delay in Detection of Big 

Mass (No. of observations) 

26℃ −2℃ ≤ ∆𝑇 ≤ 13℃ 10 6 

27℃ −3℃ ≤ ∆𝑇 ≤ 12℃ 3 6 

28℃ −4℃ ≤ ∆𝑇 ≤ 11℃ 6 6 

29℃ −5℃ ≤ ∆𝑇 ≤ 10℃ 3 7 

30℃ −6℃ ≤ ∆𝑇 ≤ 9℃ 5 3 

31℃ −7℃ ≤ ∆𝑇 ≤ 8℃ 5 4 

32℃ −8℃ ≤ ∆𝑇 ≤ 7℃ 14 0 

Average 6.5 5.3 
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Evaluation of the Sparsity Assumption 

Similar to temperature variations, the size of the structural abnormality found to be weakly 

correlated to the sparsity ratios. Table 4.6 summarizes the statistics for sparsity ratios obtained 

through training the SD algorithm with small and big damages, using 2-Loc2-sml and 2-Loc2-big 

pipe layouts (Figure 3.2d), respectively. As shown in this table, the solution of equation 4.2 is 

sparse for both sizes of damage.    

 

Table 4.6: Sparsity ratio (Sr, equation 4.4) statistics as a result of training SD algorithm 

with signals from a pipe introduced to two different sizes of abnormality, at different 

temperatures (𝟐𝟒℃ ≤ 𝑻𝒕𝒓 ≤ 𝟑𝟖℃).  

Damage Size Average Sr. Minimum Sr. Maximum Sr. Standard Deviation 

Small  91.0% 63.0% 99.8% 11.0% 

Big  80.0% 60.0% 99.0% 12.0% 

 

 

4.4.3 Damage Location and Temperature Variation 

 

Difference in the location of damage in the pipe between training and test data is the third factor 

that may affect the performance of the SD method. Considering a particular type and size of 

damage, the position of the damage, with respect to the transducers, defines the arrival times of 

the waves reflected from damage. If damage locations in training and test data are so different 

that the arrival times from damage differ significantly, then the trained coefficients may not be a 

good representative of the subset of the test signals with significant damage information. In this 

section, we examine the impacts of damage location on detection performance of the SD method.  
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Figure 4.5a shows an unrolled view of a pipe with small wall thickness-diameter ratio (Pierce 

and Kil, 1990). Let C be the damage in the pipe. Here, I assume that the damage is located 

somewhere between the two transducers A and B, and both transducers are at the same elevation 

of the pipe. 𝐿𝑢 is the monitoring range. The solid red arrows show example helical paths from 

transducer to damage, and from damage to the receiver. 

A helical path of order 𝑛 between two transducers located in horizontal distance of 𝑙 and vertical 

distance of 𝑧 can be obtained through equation 4.5 (Dehghan-Niri and Salamone, 2014; Nagy et 

al., 2014): 

 

𝑙𝑛 = √𝑙2 + (𝑧 + 2𝜋𝑛𝑟)2               (4.5) 

 

The length of any damaged path in Figure 4.5a is the sum of the path from transducer A to the 

damage C (𝐿𝑑
𝑠 ), and the helical paths of different orders (𝑛) from the damage to the receiver B 

(𝐿𝑑
ℎ,𝑛

). To calculate the helical paths 𝐿𝑑
ℎ,𝑛

, damage can be considered as a virtual transducer, with 

𝑙 = 𝐿𝑢 − 𝑦. Therefore, damaged paths for the general case shown in Figure 4.5a are obtained as 

follows: 

 

𝐿𝑑 = 𝐿𝑑
𝑠 + 𝐿𝑑

ℎ,𝑛 = √(𝜋𝑟 − 𝑥)2 + 𝑦2 +√(𝐿𝑢 − 𝑦)2 + (𝑧 + 2𝜋𝑛𝑟)2                  (4.6) 

 

In any damage scenario, the shortest damaged path is of particular importance, because it defines 

the time of the first arrivals. For any damage location, the shortest helical path is 𝐿𝑑
ℎ,0

, that is 

when 𝑛 = 0, and damage is located in the same elevation as the receiver (i.e., 𝑧 = 0). Therefore, 

in Figure 4.5a, the minimum helical path would happen when the damage is located somewhere 
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on the AB path. In this case, the 𝐿𝑑
𝑠  is also minimal. For example, if 𝑥 = 𝜋𝑟, 𝑦 = 𝐿𝑢 2⁄  as shown 

in Figure 4.5b, referring to equation 4.6, minimum damaged path is as follows: 

 

𝐿𝑑
𝑚𝑖𝑛 = 𝐿𝑢                                                                                                               (4.7) 

 

The maximum 𝐿𝑑 can happen when damage is located in one of the pipe edges (i.e., 𝑥 ∈

{0, 𝜋𝑟}, 𝑦 ∈ {0, 𝐿𝑢}, 𝑧 = 2𝑟). An example position is shown in Figure 4.5c. Based on equation 

4.6, possible  𝐿𝑑
𝑚𝑎𝑥 values are as follow: 

 

𝐿𝑑
𝑚𝑎𝑥 =

{
 
 

 
 𝜋𝑟 + √𝐿𝑢2 + 4𝑟2(1 + 𝜋𝑛)2,   𝑥 = 0, 𝑦 = 0

 √𝜋2𝑟2 + 𝐿𝑢2 + 2𝑟(1 + 𝜋𝑛),      𝑥 = 0, 𝑦 = 𝐿𝑢  

 √𝐿𝑢2 + 4𝑟2(1 + 𝜋𝑛)2 ,             𝑥 = 𝜋𝑟, 𝑦 = 0

 𝐿𝑢 + 2𝑟(1 + 𝜋𝑛),                       𝑥 = 𝜋𝑟, 𝑦 = 𝐿𝑢

            (4.8) 

 

As can be seen in equation 4.8, 𝐿𝑑
𝑚𝑎𝑥 depends on the monitoring range 𝐿𝑢, radius of the pipe 𝑟, 

and order of helical path 𝑛 as a multiplier of 𝑟. In practice, guided-waves are used for long 

ranges, up to hundreds of meters (Alleyne et al., 2001; Cawley et al., 2003; Davies et al., 2008). 

That is, practical monitoring ranges are significantly larger, by several orders of magnitude, than 

the radius of typical pipes in different applications (𝐿𝑢 ≫ 𝑟). For example, the radius of the 

largest Schedule-40 pipe available is only about 0.3 m. If the monitoring range of this pipe is 100 

m, 𝐿𝑢
2  is more than 110,000 times larger than 𝑟2. Therefore, terms including 𝑟2 in the first three 

cases shown in equation 4.8 can be ignored. Note that the multiplier n needs to be very large (in 

this example, around 53) to compensate for such a huge difference between 𝐿𝑢
2  and 𝑟2. This 

number will be even larger for an smaller radius. I assume that, for damage detection purpose, 
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the arrivals from such large orders of helical paths can be ignored, since they will either be 

received after the sampling period or will be highly attenuated. After approximating the terms 

under square root in equation 4.8 with 𝐿𝑢, 𝐿𝑑
𝑚𝑎𝑥 depends on 𝐿𝑢 and a product of radius 𝑟. 

Following the same logic, assuming that monitoring range is significantly larger than the pipe 

eadius, 𝐿𝑑
𝑚𝑎𝑥 can be approximated with 𝐿𝑢, that is, 𝐿𝑑

𝑚𝑎𝑥 ≈ 𝐿𝑢.  

From the discussion above, it is concluded that 𝐿𝑑
𝑚𝑖𝑛 ≈ 𝐿𝑑

𝑚𝑎𝑥 ≈ 𝐿𝑢. In other words, for practical 

ranges of monitoring, regardless of the location of damage, the shortest damaged paths will be 

almost equal to the monitoring range.  

 

The arrival times, however, depend on the velocity of the waves propagating to and from the 

damage. The wave velocity can be affected by the nature of the interference of the waves with 

damage (e.g., mode conversion, velocity change, energy dissipation, etc.), which is mainly 

dictated by the type and geometry of the damage (Alleyne et al., 1998; Davies et al., 2008; 

Demma et al., 2004, 2003; Lowe et al., 1998a; Nurmalia et al., 2013). However, in this section, 

the type and geometry of the damage is considered to be constant and the only varying parameter 

between training and monitoring stages is the location of the damage. Therefore, the hypothesis 

to be tested in this section is as follows:  

 

Hypothesis #4: For a particular type and geometry of damage, the difference between the 

location of the damage in training and monitoring stages does not significantly affect the 

detection performance of the SD method. 
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Detection Performance of Damage-sensitive Features 

To test hypothesis #4 with high contingency, the 2-Loc1-big (Figure 3.2c) and 2-Loc2-big 

(Figure 3.2d) pipe layouts are used for training and testing, respectively. In the 2-Loc1-big layout 

used for training, the shortest damaged path (𝐿𝑑
𝑠 + 𝐿𝑑

ℎ,0
) is very close to 𝐿𝑢 (𝐿𝑑 = 1.07𝐿𝑢). 

However, in 2-Loc2-big layout used for testing, the 𝐿𝑑/𝐿𝑢 ratio is unrealistically large (𝐿𝑑 =

1.28 𝐿𝑢). This difference in the length of 𝐿𝑑 will cause time-location of the scattered arrivals in 

training and test signals to be different, and hence, will adversely affect the detection 

performance of the trained coefficients. If hypothesis #4 is verified for this extreme case, the 

findings can be safely expanded to smaller differences in damage location, for damages of the 

same type and geometry.  

 

A total of 30 training and 30 test datasets are created, with temperatures ranging from 25℃ to 

33℃. This translates to a total of 900 training/test combinations with different damage locations, 

and various ∆𝑇s. Table 4.7 summarizes the average detection statistics for 1,800 scenarios, as a 

result of K-means clustering with 2-fold CV. As expected, the significant difference in the 

lengths of 𝐿𝑑s in the training and test pipes has slightly degraded the discriminatory power of 

damage-sensitive features compared to when only temperature (Table 4.1) or temperature and 

damage size (Table 4.4) vary.  

 

Table 4.7: Average detection statistics for 900 training/test combinations trained and tested 

with different damage locations, and temperatures. Note: 𝟐𝟓℃ ≤ 𝑻𝒕𝒓 & 𝑻𝒕𝒔𝒕 ≤ 𝟑𝟑℃. Pipe 

layout 2-Loc1-big is used for training, and layout 2-Loc2-big is used for testing. 

Average detection accuracy Average FNR Average FPR 

91.0% 5.5% 11.0% 
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Online Damage Detection 

Table 4.8 summarizes the performance of �̂�s for online damage detection, using the coefficients 

trained by five different datasets, each for every temperature ranging from 25℃ to 30℃. Each 

training dataset includes 200 intact observations and 200 observations from 2-Loc1-big pipe 

layout (Figure 3.2c). Test dataset includes signals from 2-Loc2-big pipe layout (Figure 3.2d), 

including 620 intact and 580 damaged observations. Despite the extreme scenario considered 

here regarding the difference in damage location (𝐿𝑑 = 1.07𝐿𝑢 versus 𝐿𝑑 = 1.28 𝐿𝑢), detection 

performance of the SD method remains satisfactory, which verifies hypothesis #4.  

 

Table 4.8: Detection performance for online monitoring of pipes, using �̂�s, when 

temperature, as well as the location of damage in training and test data is different. Note: 

2-Loc1-big pipe layout is used for training, and 2-Loc2-big layout is used for testing. 

Observations are recorded in 1-minute intervals. 

Training 

Temperature 

Range of ∆𝑇 Delay in Damage Detection 

(No. of observations) 

Detection Accuracy 

25℃ 0℃ ≤ ∆𝑇 ≤ 7℃ 11 99.0% 

26℃ −1℃ ≤ ∆𝑇 ≤ 6℃ 13 98.9% 

28℃ −3℃ ≤ ∆𝑇 ≤ 4℃ 15 98.7% 

29℃ −4℃ ≤ ∆𝑇 ≤ 3℃ 13 98.9% 

30℃ −5℃ ≤ ∆𝑇 ≤ 2℃ 25 97.9% 

Average 15.4 98.7% 

 

 

Evaluation of the Sparsity Assumption 

Similar to previous experiments, the sparsity found to be weakly correlated with the location of 

damage in the training dataset. However, as can be inferred from Table 4.9, the average sparsity 

ratios found to be slightly lower for 2-Loc2-big pipe layout, in which the damage is located 



50 
 

further from the transducers (𝐿𝑑 = 1.28𝐿𝑢), as compared to the 2-Loc1-big layout (𝐿𝑑 =

1.07𝐿𝑢). All in all, in both cases, the solution of equation 4.2 remains sparse.  

 

Table 4.9: Sparsity ratio (Sr, equation 4.4) statistics as a result of training SD algorithm 

with signals from a pipe with damage at two different locations, at different temperatures 

(𝟐𝟓℃ ≤ 𝑻𝒕𝒓 ≤ 𝟑𝟑℃).  

Pipe Layout Average Sr. Minimum Sr. Maximum Sr. Standard Deviation 

2-Loc1-big 98.0% 88.0% 99.0% 3.0% 

2-Loc2-big 82.0% 60.0% 99.0% 10.0% 

 

 

4.4.4 Damage Size, Damage Location, and Temperature Variation 

 

In this section, the discriminatory power of �̂�s is investigated when all three factors, namely 

temperature, damage size, and damage location, vary between training and test data. Table 4.10 

summarizes the detection performance of the SD method for online detection implementation. 

Here, the coefficients are trained using data from 2-Loc2-big pipe layout (Figure 3.2d, big 

damage and 𝐿𝑑 = 1.28𝐿𝑢) at temperatures ranging from 25℃ to 30℃. Test data is randomly 

selected from a pool of observations recorded from 2-Loc1-sml pipe layout (Figure 3.2c, small 

damage, and 𝐿𝑑 = 0.07𝐿𝑢), including 575 intact and 617 damaged observations. As reported in 

Table 4.10, presence of damage can be detected with high accuracies. However, it is notable that 

the change in the severity of damage could not be detected in the majority of the scenarios.  
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Table 4.10: Detection performance of �̂�s for online monitoring of pipes, when temperature, 

damage size, and damage location in training and test data is different. Note: 2-Loc2-big is 

used for training, and 2-Loc1-sml is used for testing.  

Training 

Temperature 

Range of ∆𝑇 Delay in Damage Detection 

(No. of observations) 

Detection Accuracy 

25℃ 0℃ ≤ ∆𝑇 ≤ 7℃ 19 98.4% 

26℃ −1℃ ≤ ∆𝑇 ≤ 6℃ 23 98.0% 

28℃ −3℃ ≤ ∆𝑇 ≤ 4℃ 52 95.6% 

29℃ −4℃ ≤ ∆𝑇 ≤ 3℃ 28 97.6% 

31℃ −6℃ ≤ ∆𝑇 ≤ 1℃ 19 98.4% 

Average 28.2 97.6% 

 

 

4.4.5 Physical Intuition about the SD Coefficients 

 

Temperature Variation 

High detection performance of the SD method for wide range of temperature variations implies 

that, for different temperatures, the time-location of the non-zero coefficients do not vary 

significantly. That is, for the temperature range that is considered in this study, and the pipe 

layout used in the experiments reported above, the time-locations of the sample points containing 

dominant damage information fall around the same region of the signals’ time-trace. The change 

in the pipe layout, including location of transducers/damage and size of the damage, may affect 

the time-location of the coefficients, and therefore, affect the performance of the SD method. 

Effects of damage location and size of the coefficients will also be discussed. First, however, let 

us investigate the physical meaning of the extracted coefficients, for different temperatures.  
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Let 𝑥𝑖
𝑗
 be the coefficient corresponding to the ith sample point in time (𝑖 ∈ {1,… , 𝑛}), when SD 

algorithm is trained with the jth dataset, at temperature 𝑇𝑗 (𝑗 ∈ {1,… ,𝑁}). The average 

magnitude of the coefficients at each point of time 𝑖 is obtained by equation 4.9:  

 

�̅�𝑖 =
1

𝑁
∑ |𝑥𝑖

𝑗
|𝑁

𝑗=1 ∶ 𝑖 ∈ {1, … , 𝑛}  ⋀  𝑗 ∈ {1,… ,𝑁}                                                                    (4.9) 

 

Next, the �̅�𝑖 is normalized by the standard deviation of |𝑥𝑖| values for all N training datasets (𝜎𝑖). 

This results in standardized mean value of coefficients at point i: 

 

�̅�𝑖
′ = �̅�𝑖 𝜎𝑖⁄    ∶  𝑖 ∈ {1, … , 𝑛}                                                                                                     (4.10)  

 

The SD algorithm (equation 4.2) is trained at temperatures ranging from 24℃ to 32℃. For the 

experiments in this section, the 2-Loc2-big layout (Figure 3.2d) is used. The transducers are 

located further from the two ends of the pipe segment (at one-third of the pipe length) in order to 

make the first arrival path significantly shorter than the end-reflection paths. In this layout, the 

shortest end-reflection path (A-D-A-B) is three times longer than the shortest undamaged path 

(A-B). This will help the first arrivals to be more distinguishable from end-reflections. In 

addition, the mass is located further from the transducers, i.e., on the opposite side of the pipe, so 

that the first arrivals from the undamaged and damaged paths can be better distinguished. 

Considering the dispersion curve of this pipe layout, the first arrival from damaged path (A-C-B) 

should be received at about 50 μs after the last arrival from undamaged path (A-B).  
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Figure 4.6 depicts �̅�𝑖
′ values (equation 4.10) for a total of N=30 training datasets (24℃ ≤ 𝑇𝑡𝑟 ≤

32℃), from 2-Loc2-big pipe layout. PCDisp (Seco and Jiménez, 2012), an open source software 

for modeling guided-waves in cylindrical media, is used in this thesis to calculate the first arrival 

times shown in Figure 4.6.  

 

 

Figure 4.6: Mean of the coefficients at all sample points in time, normalized with the 

standard deviation of the magnitudes (equation 4.10), for 𝟐𝟒℃ ≤ 𝑻𝒕𝒓 ≤ 𝟑𝟐℃. Note: First 

arrival times are calculated for 2-Loc2-big pipe using PCDisp (Seco and Jiménez, 2012). 

 

Expectedly, the first arrivals from undamaged path are associated with smaller magnitudes of 

coefficients and/or with larger variance (smaller �̅�𝑖
′s). It can also be seen that the first arrivals 

from the shortest damaged path are associated with the largest coefficients, and/or smallest 

variance, for all ranges of training temperatures. These findings are in agreement with the 

reasoning behind development of the SD method. That is, the arrivals that have illuminated the 

damaged section of the pipe may include more significant damage information. Interestingly, 

several sample points consisting of later arrivals are also associated with large coefficients, 

indicating their importance in defining the state of the pipe. Denoising methods that are based on 

removing multi-path reflections should be applied with caution since, as can be seen in Figure 

4.6, multi-path reflections and later arrivals can contain significant damage information. 
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Damage Size and Temperature Variation 

In this section, the SD coefficients trained with different sizes of damage are compared. Similar 

to previous experiments, in order to better distinguish between the first and later arrivals, 2-Loc2-

sml and 2-Loc2-big pipe layouts are used (Figure 3.2d). The SD algorithm is trained with signals 

captured from the pipe exposed to two different sizes masses, at temperatures ranging from 24℃ 

to 33℃. Using equation 4.9, average coefficients are obtained for both cases, namely �̅�𝑠𝑚𝑙 and 

�̅�𝑏𝑖𝑔. Cross-correlation between �̅�𝑠𝑚𝑙 and �̅�𝑏𝑖𝑔 can be used to compare the time-location of the 

coefficients of the two cases. Figure 4.7 shows that the lag corresponding to the maximum 

correlation between �̅�𝑠𝑚𝑙 and �̅�𝑏𝑖𝑔 is zero. In other words, the peak values of the coefficients 

corresponding to both sizes of mass happen at, roughly, the same points in time. 

 

  

Figure 4.7: Cross-correlation between the mean of the coefficients trained with small 

damage (2-Loc2-sml) and big damage (2-Loc2-big), at 24℃ ≤ 𝐓𝐭𝐫 ≤ 33℃. 

 

Damage Location and Temperature Variation 

In this section, the SD coefficients trained with different locations of damage are compared. The 

2-Loc1-big and 2-Loc2-big pipe layouts are used (Figure 3.2c and 3.2d). The SD algorithm is 

trained for both locations, with temperatures varying between 24℃ and 33℃. Using equation 4.9, 

average coefficients are obtained for both damage locations, namely �̅�𝑙𝑜𝑐1 and �̅�𝑙𝑜𝑐2. Figure 4.8 
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shows the cross-correlation between �̅�𝑙𝑜𝑐1 and �̅�𝑙𝑜𝑐2. It can be seen that the lag corresponding to 

the maximum correlation among �̅�𝑙𝑜𝑐1 and �̅�𝑙𝑜𝑐2 is zero. That is, the peak values of the 

coefficients, trained with either of the damage locations, are generally located at the same points 

in time, even for the extreme location difference that is examined here.  

 

 

Figure 4.8: Cross-correlation between the mean of the coefficients trained for two different 

locations of damage (2-Loc1-big and 2-Loc2-big), at 24℃ ≤ 𝐓𝐭𝐫 ≤ 33℃. 

 

 

4.5 Validation of the SD Method 

 

4.5.1 Validate the Sparsity Assumption with Field Data 

 

In this section, I verify the sparsity assumption for addressing the curse of dimensionality 

brought about in equation 4.2. That is, I assume that a sparse subset of a guided-wave signal 

contains enough damage information for optimal damage detection.  

 

The objective is to verify whether damage detection performance increases as the signals become 

sparser. For this purpose, the feature extraction method proposed by.Liu et al (2013) is used, 



56 
 

because it has shown high potential for damage detection of pipes under varying EOCs. In their 

proposed approach, Singular Value Decomposition (SVD) is applied on guided-waves, and the 

projections of the signals on one of the left singular vectors is used as the damage-sensitive 

feature (for more details please refer to Liu et al. (2013)).   

 

A subset of the field data described in Section 3.3 is used here. Theoretically, increasing the 

value of the regularization parameter (ξ) in equation 4.2 will increase the sparsity of the solution. 

The SD algorithm is trained for different values of the regularization parameter ξ, with 0.01 

increments. Since the results do not vary significantly for very large values of ξ, Figure 4.9 only 

reports the findings for 0 ≤ ξ ≤ 1. The solid red line in Figure 4.9 shows the sparsity ratios 

(equation 4.4) at different values of ξ.  

 

 

Figure 4.9: Variation of sparsity ratio (solid red line) and detection accuracy of the SVD 

method (Liu et al., 2013) (dashed black line) for different values of regularization scalar ξ 

in equation 4.2. 
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It can be seen that for ξ values of up to around 0.2, a sharp increase in the sparsity is observed. 

After this point, the change in the sparsity becomes more gradual. This behavior implies that, 

after a certain point, increasing the sparsity while retaining enough damage information for 

prediction of class labels becomes more difficult.  

      

Sparse test signals are obtained using the coefficients trained with different ξs. At each ξ, sparse 

test signals are the subset of the signals that correspond to non-zero coefficients at that ξ. The 

dashed black line in Figure 4.9 shows the detection accuracy of the SVD method when applied to 

signals with different sparsities. As can be seen in this figure, applying the SVD method to the 

complete time-trace of signals (i.e., zero sparsity, ξ = 0), leads to a detection accuracy of around 

47%. As we increase the sparsity of the test signals, detection accuracies improve, and reach 

their maximum when the sparsity ratios are around 90% to 97%. This trend verifies the sparsity 

assumption of this study. That is, there is a sparse subset of the signals that can lead to optimal 

damage detection under varying EOCs. It is also worth noting that further increasing the sparsity 

leads to a decrease in detection accuracy until it again hits the accuracy range of zero-sparsity, or 

the case that classification is purely random. This pattern indicates that, similar to noisy non-

sparse signals, too sparse solutions can degrade the performance, because of losing damage 

information.    

 

4.5.2 Online Damage Detection under Multiple EOCs 

 

In the laboratory experiments reported throughout this chapter, temperature is the only EOC that 

is significantly varying during the data collection process. In this section, high performance of 
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the SD method for online damage detection is validated using the signals recorded under a wide 

range of varying EOCs. Figure 4.10 illustrates an example of online monitoring implementation 

for a subset of field data explained in Section 3.3. Figure 4.10a and 4.10b show the abrupt 

variation of temperature and fluid flow rate, respectively, among other EOCs discussed in 

Section 3.3. The sharp drop in the predicted labels of the test observations (Figure 4.10c) 

indicates the time when damage (mass scatterer) is introduced.  

 

 

Figure 4.10: Online damage detection using �̂�s for filed data explained in Section 3.3: (a) 

Temperature variation of the test observations, (b) Fluid flow rate variation of the test 

observations, (c) Predicted class labels (�̂�s) for test observations. 

 

Table 4.11 summarizes online detection performance of the SD method, as the average of 10-

fold CV, for data recorded from four different summer days and three winter days. The simple 

detection algorithm explained in Section 4.4.1 is used here. That is, when the distance between 

the label of the jth observation (�̂�𝑗) and the average of the labels in the window before the jth 
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observation (�̂�𝑗−20 to �̂�𝑗−1) is larger than ten times the standard deviation of the labels in the 

window, occurrence of damage is detected (∆�̂� > 10𝜎). This table also summarizes the average 

sparsity ratios for all the iterations of 10-fold CV.  The SD method improves the performance of 

the singular value decomposition (SVD) method reported by Liu et al. (2013) which is applied 

on part of the data reported in this section.  

 

Table 4.11: Average online detection performance and sparsity ratios, for 10-fold CV, using field 

data explained in Section 3.3, for four summer days and three winter days. Observations are 

recorded in 1-minute intervals. 

Data Average Delay in Detection 

(No. of observations) 

Average Detection 

Accuracy 

Average 

FNR 

Average Sparsity 

Ratio (Sr.) 

Aug 9
th

  3.8 99.5% 0.5% 98.0% 

Aug 10
th

  2.8 99.8% 0.3% 97.0% 

Aug 24
th

  5.2 96.2% 7.0% 99.0% 

Aug 31
st
  4.0 99.6% 1.3% 98.7% 

Jan 18
th

  2.2 99.8% 1.5% 98.6% 

Jan 19
th

  2.6 99.7% 2.0% 99.6% 

Jan 23
rd

  1.8 99.8% 0.2% 99.0% 

Average 3.2 99.2% 1.8% 98.6% 

  

 

4.5.3 Detection of a Small Crack and Mass Loss 

 

It is important to evaluate the performance of the SD method for detection of damages of 

different type from training stage. As discussed in Chapter 1, arrival times can be affected by the 

nature of the interference of the waves with damage (e.g., mode conversion, velocity change, 

energy dissipation, etc.), which is mainly dictated by the type and geometry of the damage 
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(Alleyne et al., 1998; Davies et al., 2008; Demma et al., 2004, 2003; Lowe et al., 1998a; 

Nurmalia et al., 2013). In this section, the proposed SD method is evaluated for detection of 

actual damages of different type from the mass scatterer that is used in training.  

 

A small crack is simulated by a saw-cut on the surface of the steel pipe explained in Section 3.2. 

Later, a small mass loss is introduced to the pipe, in a different location than the crack. For 

online monitoring applications, evaluating the SD method for detection of consecutive damages 

is important. As discussed in Section 4.4.1, in this work, I suggest a non-adaptive approach in 

which the training dataset is not updated as new signals are obtained during the monitoring stage. 

Therefore, failing in detecting the first damage does not affect detection of the second damage by 

degrading the accuracy of the trained discriminant vector. However, the question is whether the 

method can still distinguish between damaged and undamaged pipe when multiple damages 

occur at the same time, or ideally, can detect the change in the state of the pipe when the second 

damage occurs.  

 

For these experiments, a Schedule-40 steel pipe (Figure 3.3) with 33.5 mm outer diameter and 

3.3 mm thickness is used. Before introducing the crack, ultrasonic pitch-catch records are 

obtained from the intact pipe and from the pipe with a small mass scatterer placed in a non-

symmetric location shown in Figure 3.3, at different temperatures ranging from 25℃ to 27℃. 

These signals are used for training. Later, an oblique cut of 2.5 cm long, extended in both 

circumferential and longitudinal directions of the pipe (see Figure 3.3), is imposed at the middle 

of the length of the pipe, using a jewelers saw. The maximum thickness along the length of the 

crack is approximately 0.34 mm (10% of the pipe thickness), and the maximum depth is 
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approximately 0.7 mm (20% of the pipe thickness). The second damage is a small mass loss 

(Figure 3.3) with 5 mm diameter and maximum depth of 0.25 mm (~8% of the pipe thickness). 

The location of the second damage differs from both the crack, and training mass scatterer 

location. For testing, signals from the intact pipe and the pipe with crack, and with both crack 

and mass loss are used at 24℃ ≤ 𝑇𝑡𝑠𝑡 ≤ 32℃.  

 

In this set of experiments, in addition to the range of temperature variation, the location, size, 

number and the type of the structural abnormality in the training and test data are different, 

which strengthens the generality of the results. Figure 4.11 shows that not only can the proposed 

SD method can distinguish damaged and undamaged pipes when more than one damage present, 

but it may also detect the change in the severity of the damage and/or occurrence of subsequent 

damages.   

 

 

Figure 4.11: Online detection of a 2.5 cm long oblique crack (with maximum thickness of 

0.34 mm and maximum depth of 0.7 mm), and a subsequent small mass loss (with 

maximum depth of 0.25 mm), in a Schedule-40 steel pipe. 
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4.5.4 Non-Gaussianity of Guided-waves 

 

Linear discriminant analysis (LDA) is a common method in pattern recognition for extracting a 

subspace of the variables that discriminates between the observations of different classes (i.e., 

discriminant vector). However, LDA assumes that the variables are normally distributed. 

Therefore, in order to apply LDA in the time-domain of guided-waves, n sample points in the 

signals have to follow a Gaussian distribution. To evaluate Gaussianity, two common statistical 

tests, namely Chi-square goodness-of-fit (uses the variables’ mean and variance) and Jarque-

Bera test (without the knowledge of mean and variance) are used. These two metrics evaluate the 

null hypothesis that the variables (sample points in time) come from a normal distribution. The 

dataset includes 5,500 signals from the intact pipe, and 5,500 signals from the damaged pipe, at 

temperatures ranging from 24℃ to 38℃. The pipe layout 1-loc1-sml, shown in Figure 3.2a, is 

used for these experiments. Table 4.12 summarizes the percentage of the sample points in time, 

after the first arrivals, for which the null hypothesis is rejected at 5% significance level. As 

reported in this table, almost none of the sample points in these signals follow a normal 

distribution. This means that LDA cannot be applied to guided-waves in time-domain.  

 

Table 4.12: Percentage of the sample points, after the first arrivals, for which the null 

hypothesis of Gaussianity is rejected at 5% significance level. 

Gaussianity Test Signals from Intact Pipe Signals from Damaged Pipe 

Chi-square goodness-of-fit 100.0% 100.0% 

Jarque-Bera 99.8% 99.7% 
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Chapter 5  

  

An Unsupervised Approach for Damage Detection of 

Pipelines 

  

5.1 Introduction 

 

The SD method discussed in Chapter 4 addresses the challenges derived from complex nature of 

guided-waves and their sensitivity to EOC variations. Being a supervised approach, its 

performance may be affected by the differences between training and test signals. EOCs, damage 

characteristics and damage location are some of the parameters that may affect the detection 

performance of the SD method. The robustness of the method to these parameters is validated in 

Chapter 4 with extensive set of laboratory and field experiments.  These findings suggest that a 

simple binary labeled training data (i.e., damaged versus undamaged), obtained under a limited 

range of EOCs, is enough for optimal performance of the SD method.  
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However, the application of the SD method is limited to the cases where obtaining the training 

data from a pipe with abnormality is possible and practical. Moreover, it is useful to reduce the 

number of training parameters that may affect the performance of a detection method. Therefore, 

to address such issues, the objective of this chapter is to develop an unsupervised method for 

damage detection in pipes; specifically, one that can also deal with the complexity of guided-

waves and their sensitivity to EOC variations. In the following sections of this chapter, research 

motivations for the proposed unsupervised method are discussed. Next, research questions to be 

addressed are listed. An unsupervised method and the corresponding framework for continuous 

damage detection are proposed. The answer to the research questions are experimentally 

investigated. Finally, the performance of the proposed method is validated using both laboratory 

and field data.  

 

5.2 Motivation    

 

The unsupervised approach that will be proposed in this chapter is motivated by the nature of the 

damage effects on the signals, and thus on their energy content. Damage, either in the form of 

variation in wall thickness or change in surface roughness, can alter propagation of guided-waves 

in a pipe. These changes can be in the form of mode conversion, energy dissipation, change in 

phase and/or group velocities, modal attenuation, energy exchanges, etc. (Alleyne and Cawley, 

1992; Cawley et al., 2002; Davies et al., 2008; Long et al., 2003b; Løvstad and Cawley, 2012; 

Lowe et al., 1998b; Nurmalia et al., 2013). As discussed in Chapter 1, an intuitive method to 

detect these changes is to simply subtract the signal from a baseline signal captured from the 

undamaged pipe. Ideally, the changes caused by damage will result in an increase in the 
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amplitude of the residual. However, as discussed in Section 1.3.3, similar to damage, EOCs alter 

guided-wave signal, and therefore, may mask and/or appear as the effects of damage, leading to 

type I and type II errors (Croxford et al., 2010; Degtyar et al., 1996; Long et al., 2003a; 

Raghavan and Cesnik, 2007, 2007; Scalea and Salamone, 2008). Studies such as Clarke et al. 

(2009), and Konstantinidis et al. (2007) have shown that after compensating for the effects of 

temperature, the amplitude difference between the two signals is a good indicator of damage 

existence. However, these compensation methods may only be effective for small variations of 

temperature (±0.5 to 1.0 ℃), depending on the complexity of the structure and the number of 

propagating modes (Eybpoosh et al., 2015; Clarke et al., 2009; Lu and Michaels, 2005). In other 

words, although damage manifests itself as changes in the signals, detecting such changes in 

complex signals captured under realistic conditions is not trivial in practice.  

 

Let us refer again to a schematic depiction of wave propagation in an unrolled view of a pipe 

shown in Figure 5.1. Let point A be the transducer and point B be the receiver in a pitch-catch 

setup. The excited guided-waves travel in multiple paths, and depending on the modal properties, 

physical/geometric features of the pipe, and EOCs, different portions of these waves will arrive 

to the sensor B at different points in time during the sampling period. Among the recorded 

samples, the effects of EOCs will be more significant on low-energy arrivals with small signal-

to-noise ratios (SNR) compared to high-energy arrivals. For example, from the experiments 

conducted by Raghavan and Cesnik (2007) and Yeum et al. (2014), it can be inferred that the 

amplitude and time location of the arrivals from S0 mode with larger energy content are less 

affected by the temperature variation as opposed to latter arrivals of A0 mode with smaller 

energy. In terms of complex diffuse-field guided-waves, in which different wave modes are not 
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easily distinguishable from each other, studies such as Lu and Michaels (2005) and Eybpoosh et 

al. (2015) have shown that the effects of temperature on later arrivals, potentially with lower 

energy content, are more significant than initial arrivals.  

 

 

Figure 5.1: A schematic unrolled view of a pipe, illustrating example wave propagation 

paths in an undamaged pipe. 

 

Therefore, a hypothesis based on these observations is that, the effects of EOCs will be less 

dominant in a sparse subset of arrivals with higher energy content, as opposed to noisy complex 

diffuse-field signals. If this hypothesis is true, such a subset may be used for detecting the effects 

of damage. To be an unsupervised method, however, extracting such a subset should not require 

information about the state of the pipe.   

 

5.3 Method 

 

The goal is to develop an unsupervised method to extract a subset of the guided-wave signals 

that contains the majority of the signal’s energy. The optimal solution will be the “simplest” 

subset with minimum sensitivity to EOC variations. The main hypotheses of the proposed 

method are as follow:   
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Hypothesis #1: A sparse subset of the arrivals in a diffuse-field signal represents the majority of 

the signal’s energy.   

 

Hypothesis #2: The EOC effects are less dominant in a sparse subset of the arrivals that contains 

the majority of a diffuse-field signal’s energy, compared to the complete signal.    

      

These hypotheses will be addressed through research questions #1 and #3 presented in Section 

5.3.1, and will be verified through a variety of experiments reported later in this chapter. 

Research question #2 will evaluate whether the aforementioned sparse subset in Hypothesis #2 

can be used for damage detection or not. An unsupervised method is proposed to obtain a sparse 

representation of signals so that the signal energy can be optimally reconstructed. It is expected 

that such a sparse representation be mainly composed of high-energy arrivals. For this sparse 

energy method (which will be referred to as the SE method), the training dataset is not labeled, 

but assumed to be mostly composed of signals captured from an intact pipe. Section 5.5.4 

evaluates the performance of the proposed method as the number of damaged signals in the 

training dataset increases.  

 

5.3.1 Research Questions  

 

Based on the discussions in the motivation section, and the hypotheses given above, following is 

the list of research questions that need to be answered: 

 



68 
 

Question #1: Does a sparse subset of the arrivals in a diffuse-field guided-wave signal from a 

pipe (with the transducer setup and specifications defined in Chapter 2 of this thesis) contain the 

majority of the signal’s energy?  

Question #1.1: How does the sparsity of this subset relate to the amount of energy it 

represents? 

Question #1.2: How can a sufficient level of sparsity be selected for optimal damage 

detection?  

 

Question #2: How well, as measured by detection accuracy, false positive rate (FPR) and false 

negative rate (FNR), can the effects of damage be detected by using the extracted subset?   

 

Question #3: How sensitive are the extracted subset and any damage-sensitive feature used in 

Question #2 to the variations of EOCs specified in Section 2.2 of this manuscript? 

 

5.3.2 Overview of the Sparse Energy (SE) Method 

 

Proposed SHM Framework based on the SE Method 

Figure 5.2 shows the proposed SHM framework for continuous damage detection of pipelines 

using the method explained in this chapter. Different components of the two training and 

monitoring stages will be explained in the next section, and will be evaluated experimentally 

throughout this chapter.  
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Figure 5.2: Application of the SE method for continuous monitoring of pipelines. 

 

Training Stage 

Let 𝑚𝑡𝑟 be the total number of training signals, and 𝑛 be the length of the signal in time (i.e., the 

number of sample points in the time-domain). Let 𝐴𝑚𝑡𝑟×𝑛 (equation 5.1) be the matrix of 

element-wise squared values of training signals (assumed to be mostly from an intact pipe). In 

other words, the ith element in the jth row of matrix 𝐴𝑚𝑡𝑟×𝑛  (𝑑𝑖,𝑗
2  , 𝑖 ∈ {1, … , 𝑛} and 𝑗 ∈

{1,… ,𝑚𝑡𝑟}) is the energy of the ith arrival of the jth signal.  

 

𝐴𝑚𝑡𝑟×𝑛 = [
𝑑1,1
2 𝑑1,2

2 … 𝑑1,𝑛
2

… … … …
𝑑𝑚𝑡𝑟,1
2 𝑑𝑚𝑡𝑟,2

2 … 𝑑𝑚𝑡𝑟,𝑛
2

]           (5.1) 

 

Let �⃗⃗�𝑚𝑡𝑟×1 be the vector of training signals’ energy (equation 5.2). That is, the jth element in 

�⃗⃗�𝑚𝑡𝑟×1 vector (𝐸𝑗 , ∀ 𝑗 ∈ {1,… ,𝑚𝑡𝑟}) is the energy of the jth signal, or projection of 𝐴𝑚𝑡𝑟×𝑛 into 

the vector of ones (�⃗⃗⃗�). 
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�⃗⃗�𝑚𝑡𝑟×1 = [
𝐸1 = ∑ 𝑑1,𝑖

2𝑖=𝑛
𝑖=1

…
𝐸𝑚𝑡𝑟

= ∑ 𝑑𝑚𝑡𝑟,𝑖
2𝑖=𝑛

𝑖=1

] = 𝐴𝑚𝑡𝑟×𝑛 �⃗⃗⃗�                                                                             (5.2) 

 

The goal is to obtain a sparse vector of coefficients �⃗�𝑛×1 so that the projection of 𝐴𝑚𝑡𝑟×𝑛 onto 

this vector results in good reconstruction of signal energies in �⃗⃗�𝑚𝑡𝑟×1. That is, the sum of the 

energy residuals (i.e., the difference between the actual energy and the energy obtained through 

projection) for all training signals (𝑑𝑗
1×𝑛 ∀ 𝑗 ∈ {1,… ,𝑚𝑡𝑟}) approaches zero (equation 5.3). Here, 

it is worth reemphasizing that the training signals are not labeled (making it an unsupervised 

approach), but are assumed to mostly include intact signals (see Section 5.5.5).  

 

∑ |𝑑𝑗
2 �⃗� − 𝑑𝑗

2𝑗=𝑚𝑡𝑟
𝑗=1 �⃗⃗⃗�| ≈ 𝟎                        (5.3) 

 

In order to impose sparsity, similar to the method discussed in Chapter 4, a regularization scalar 

𝜉 is introduced to penalize the arrivals that have less contribution in estimating the signal energy. 

Equation 5.4 summarizes the proposed algorithm for extracting the vector of coefficients �⃗�𝑛×1. 

The ℓ1 norm in the first part of equation 5.4 minimizes the sum of the residuals shown in 

equation 5.3, and the ℓ1 norm of the �⃗�𝑛×1 vector enforces the sparsity by assigning close-to-zero 

coefficients to the arrivals with smaller contribution in reconstructing the energy.  

 

𝑎𝑟𝑔𝑚𝑖𝑛𝑥  {‖𝐴
𝑚𝑡𝑟×𝑛(�⃗�𝑛×1 − �⃗⃗⃗�)‖

1
 + 𝜉‖�⃗�𝑛×1‖

1
}                                                                   (5.4) 

 

 



71 
 

Monitoring Stage   

Damage interference can alter guided-wave signals. These effects, either in the form of the 

change in wave velocity, or energy dissipation and/or mode conversion, may change the location, 

in time, where the high-energy components appear in the signal. In that case, the coefficients 

obtained from the intact signals in equation 5.4, will not be a good representative of high-energy 

arrivals in a damaged signal.  

 

Equation 5.5 calculates the energy residual of the jth signal of the monitoring dataset (∆𝐸𝑗  , ∀𝑗 ∈

{1,… ,𝑚𝑡𝑠𝑡}). In other words, ∆𝐸𝑗 is the difference between the actual energy of the signal (𝐸𝑗) 

and the energy of the sparse signal (𝐸𝑗
𝑠𝑝𝑟𝑠

), estimated by projecting the jth squared signal (𝑑𝑗
2) 

onto the �⃗� vector.  

 

∆𝐸𝑗 =
|�⃗�𝑗
2𝑇�⃗⃗�−�⃗�𝑗

2 �⃗⃗⃗�|

�⃗�𝑗
2 𝟏⃗⃗⃗⃗

= 
|𝐸𝑗
𝑠𝑝𝑟𝑠

−𝐸𝑗|

𝐸𝑗
                                             (5.5) 

 

The coefficients in the �⃗� vector are obtained using mostly the intact signals. Therefore, the 

coefficients with larger magnitudes correspond to the arrivals, in an intact signal, with larger 

contribution in reconstructing the signal energy. Therefore, if the monitored jth signal is from an 

intact pipe, the residual ∆𝐸𝑗 in equation 5.5 is expected to be close to zero. However, if the jth 

signal is from a damaged pipe, the value of the residual ∆𝐸𝑗 is expected to increase. If so, energy 

residuals (∆𝐸) can be used as damage-sensitive feature for detection purpose. Therefore, the 

third hypothesis to be evaluated in this chapter is as follows: 
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Hypothesis #3: Due to the effects of damage, the extracted sparse vector of coefficients from 

training intact signals will not be a good representative of the energy of damaged signals, which 

will lead to an increase in the magnitude of the energy residuals (∆𝐸 in equation 5.5). 

 

5.4 Experimental Investigation of the SE Method 

 

This section provides a general proof of the concept for the proposed SE method. The basic 

assumptions of the SE method, research questions, and different aspects of the framework 

proposed in Figure 5.2 are studied using the experimental data captured from the aluminum pipe 

discussed in Section 3.1.  

 

5.4.1 Sparse Representation of Signals for Energy Estimation (Question #1) 

 

The objective of this section is (1) to investigate whether a sparse representation of diffuse-field 

guided-wave is sufficient to represent the majority of the total energy of the signal (i.e., 

hypothesis #1 and research question #1), and (2) to evaluate the relationship between the level of 

sparsity and the error in estimating the signals’ energy (i.e., research question #1.1). 

 

Pitch-catch records from the intact state of the aluminum pipe 1-loc1-sml (Figure 3.2a) are used 

for training. The temperature of the training signals varies between 24℃ and 38℃. The SE 

algorithm given in equation 5.4 is trained with different values of regularization scalars (𝜉). For 

simplicity, the 𝜉 increments increase as the values of 𝜉 get larger. These increments are listed in 

Figure 5.3.  
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Based on the SE algorithm given in equation 5.4, increasing the regularization scalar  𝜉 will 

enforce sparser solutions. At any given 𝜉, that is, at any level of sparsity, the average training 

error (∆𝐸) is used as a metric to evaluate the accuracy of energy reconstruction. In equation 5.6, 

∆𝐸̅̅ ̅̅ 𝜉 is the average training error corresponding to regularization scalar 𝜉, 𝑚𝑡𝑟 is the total number 

of training signals, 𝐸𝑗
𝑎𝑐𝑡 is the energy of the jth signal in the training dataset, and 𝐸𝑗

𝑠𝑝𝑟𝑠(𝜉)
 is the 

energy of the sparse jth signal corresponding to regularization scalar 𝜉.  

 

∆𝐸̅̅̅̅ 𝜉 =
1

𝑚𝑡𝑟
∑

|𝐸𝑗
𝑎𝑐𝑡−𝐸𝑗

𝑠𝑝𝑟𝑠(𝜉)
|

𝐸𝑗
𝑎𝑐𝑡

𝑗=𝑚𝑡𝑟
𝑗=1              (5.6) 

 

To evaluate the sparsity of the solution in each round, two metrics are considered: (1) the 

ℓ1 norm of the �⃗� vector, and (2) a sparsity ratio as is defined in equation 5.7.The ℓ1 norm is the 

sum of the absolute values of the coefficients in the �⃗� vector. The sparser the �⃗� vector, the 

smaller the ℓ1 norm. Sparsity ratio is a metric to measure the ratio of zero coefficients to the total 

length of the signal. It is notable that by using the ℓ1 norm of the �⃗� vector as a regularizer in the 

SE algorithm (equation 5.4), the value of the coefficients may never be absolute zero, but rather 

be very small. To handle this, any coefficient whose magnitude is smaller than the largest 

coefficient assigned to the initial part of the signal (i.e., before the first arrivals), when 𝜉 = 0, is 

considered to be zero. This is because the energy content of this part of the signal is expected to 

have minimal contribution to the total energy of the signal. In equation 5.7, 𝑛 is the number of 

sample points in time trace of the signal, 𝑥𝑖 is the coefficient assigned to the ith sample point in 

the signal, and 𝑥𝑛𝑜𝑖𝑠𝑒
𝑚𝑎𝑥 (𝜉) is the largest coefficient of the initial part of the signal corresponding to 
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regularization scalar 𝜉. Sr(ξ) in equation 5.7 is the sparsity ratio corresponding to the 

regularization scalar ξ.   

 

𝑆𝑟(𝜉) =  
{#𝑖∈{1,2,…,𝑛} ∶ |𝑥𝑖|≤|𝑥𝑛𝑜𝑖𝑠𝑒

𝑚𝑎𝑥 (𝜉)|}

𝑛
× 100                                                                                (5.7) 

   

Figure 5.3a shows the variation of training error ∆𝐸̅̅ ̅̅ 𝜉 with respect to regularization scalar ξ. As 

can be seen in this figure, ∆𝐸̅̅ ̅̅ 𝜉 remains close to zero for ξ up to around 1.0. This range 

corresponds to the sparsity ratios as large as 97-99% (Figure 5.3b). It is important to note that in 

these experiments, 300 training signals (𝑚𝑡𝑟 = 300) with length of 9000 sample points (𝑛 =

9000) are used. For very small values of 𝜉, the solutions of the algorithm will assign close-to-

zero coefficients to at least 8,700 (𝑛 −𝑚𝑡𝑟) of the sample points, and non-zero coefficients to the 

rest. This trend will go on until the 𝜉 values for which such solutions do not satisfy the objective. 

The sparsity ratio corresponding to 300 non-zero coefficients is about 97%. As can be seen in 

Figure 5.3b, this corresponds to 0.001 ≤ 𝜉 ≤ ~0.01. Therefore, true sparse solutions correspond 

to the 𝜉 values greater than 0.01, and of course smaller than 1.0, considering the training errors. 

Figure 5.3a shows the zoomed depiction of the training errors in this range. It can be seen that for 

sparsity ratios as large as 98%-99%, training errors as small as 0.5 × 10−3 − 4 × 10−3 can be 

obtained. In other words, with only 1%-2% of the arrivals in the time trace of the signal, the 

energy of the signal can be estimated with above 99% accuracies. This suggests that a sparse 

subset of the arrivals in a diffuse-field guided-wave signal is sufficient to estimate its total 

energy, and hence verifies hypothesis #1 and research question #1 discussed in Section 5.3.  
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Figure 5.3: Variation of (a) average training error (equation 5.6), (b) sparsity ratio 

(equation 5.7), and (c) 𝓵𝟏 norm of �⃗⃗⃗� vector, with respect to regularization scalar ξ. Note: 

Regularization scalars are presented in logarithmic scale. 

 

Figure 5.3, however, shows that increasing the sparsity more than a certain limit increases the 

training error significantly, reaching close to 100% for large values of ξ. This suggests that 

enforcing too sparse solutions will result in eliminating the arrivals that contain significant 

portion of the signal’s energy. Therefore, in order to select a suitable ξ, a tradeoff between the 

sparsity and estimation accuracy is needed. Section 5.4.7 summarizes an approach for selecting 

the optimal regularization scalar ξ by trading off between simplicity, energy estimation accuracy, 

and robustness to EOCs. These discussions will address the second half of question #1.  
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5.4.2 Stability of the SE Method 

 

Before moving forward, in order to ensure the repeatability of the findings, it is important to 

determine whether the SE algorithm produces unique solutions. For the experiments reported in 

this chapter, the Matlab convex optimization package (i.e., cvx by Grant and Boyd (2008)) is 

used to solve the Lasso optimization problem formulated in equation 5.4. This algorithm chooses 

random initial values at each run, therefore, it is important to ensure that the solution of the 

problem is a global optimum. For this purpose, 300 intact signals captured from the aluminum 

pipe 1-loc1-sml (Figure 3.2a), at temperatures ranging from 24℃ to 39℃, are used to train the SE 

algorithm for 10 times. The results show that the same arrivals in time trace of the signals are 

assigned a non-zero coefficient for all the 10 runs of the algorithm. The next question is whether 

the magnitude of the non-zero coefficients extracted in different runs match. At all 10 runs of the 

algorithm, every sample point in time is found to be assigned exactly the same value of 

coefficient. These results suggest stability of the proposed SE method and repeatability of the 

findings that will be reported in the next sections. 

 

5.4.3 Sensitivity of the Sparse Signals to Temperature Variation (Question #3) 

 

The results summarized in Section 5.4.1 verifies hypothesis #1, namely, the energy of guided-

wave signals can be estimated using only a sparse subset of the arrivals. The next question to be 

answered is whether the extracted subset is less affected by EOC variations compared to a 

complete diffuse-field signal. This section addresses this question.  
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Signals captured from the intact aluminum pipe 1-loc1-sml (Figure 3.2a) are used. The SE 

algorithm is trained with six different values of regularization scalar, namely, 𝜉 ∈{0.01, 0.05, 

0.1, 0.5, 1, 10}. A total of 300 intact signals, recorded at temperatures ranging from 24℃ and 

38℃, are randomly selected for training. The rest of the signals (6,200 intact signals) are used for 

analyzing the sensitivity to temperature.  

 

 

Figure 5.4: (a) Correlation between a reference complete/sparse signal (𝑻 = 𝟐𝟒℃) and 

complete/sparse test signals at different temperatures, for different values of 𝜉. (b) 

Deviation range for the correlations corresponding to 𝝃 = 𝟎 and 𝝃 = 𝟏. 𝟎. Note: Error bars 

represent 2𝝈.  

 

Correlation between the test signals and a reference signal at temperature 𝑇0 = 24℃ is used as a 

metric to quantify the sensitivity to temperature variation. As the temperature difference (∆𝑇) 

between a test signal and the reference signal increases, the correlation between the two signals 
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is expected to decrease. Six �⃗� vectors, corresponding to six different values of ξ, are used to 

extract the sparse test signals. That is, only the arrivals corresponding to the nonzero coefficients 

in �⃗� are retained and the rest of the signal is disregarded. Average correlations of sparse signals 

are reported in Figure 5.4a, for ∆𝑇s ranging from zero to approximately 9.0℃. These correlations 

are compared to the correlations of complete signals throughout the same range of ∆𝑇s. For both 

sparse and complete signals, as the ∆𝑇 between reference signal and the test signal increases, the 

correlation decreases. Figure 5.4b shows that the average values of the correlations for complete 

signals falls beyond the standard deviation range of the correlations found for 𝜉 = 1.0. As 

explained in previous sections of this thesis, current temperature compensation methods (e.g., 

Clarke et al. (2009), and Konstantinidis et al. (2007)) can only improve these correlations for 

very small temperature differences (i.e., 0.5-1℃, depending on the complexity of the structure). 

 

However, it is observed that by imposing the sparsity (even with small regularization factor 

𝜉 = 0.01), the rate of this decrease is reduced significantly compared to the complete signals. As 

we raise the regularization scalar from 0.01 to 1.0, i.e., increase the sparsity, the correlations 

increase for different ∆𝑇s (i.e., sensitivity of the signals to ∆𝑇 decreases). It is worth noting that 

0.01 ≤ 𝜉 ≤ 1.0 corresponds to the range with close-to-zero training errors shown in Figure 5.3. 

These observations suggest that simplifying guided-wave signals to a sparse subset of the high-

energy arrivals does improve their sensitivity to temperature variations. This addresses research 

question #3, and verifies hypothesis #2. Interestingly, by raising the ξ value to 10.0 the 

correlations drop even below the value of the correlations of the complete signals at larger values 

of ∆𝑇. This observation suggests that, in addition to the tradeoff between simplicity and 

estimation accuracy discussed in Section 5.4.1, sensitivity to the EOCs should be considered for 
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selecting suitable values of ξ for optimal damage detection. An approach to effectively make 

such tradeoffs is summarized in Section 5.4.7.  

 

5.4.4 Damage Detection with SE Method (Question #2) 

 

Comparing the SE Coefficients for Intact and Damaged Signals 

As discussed before, effects of damage may alter the location in time where different arrivals 

appear in the signal. Therefore, as stated in Hypothesis #3, using the sparse representation of 

intact signals for estimating the energy of damaged signals is expected to result in less accurate 

values than intact signals. In other words, energy estimation error (i.e., ∆𝐸 in equation 5.5) is 

expected to increase as damage occurs. This section investigates this hypothesis through a set of 

laboratory experiments. 

 

Comparing complex diffuse-field signals from intact and damaged pipes is not as simple as it 

may be for single-mode records. For hypothesis #3 to be valid, however, one needs to compare 

only the sparse subset of high-energy arrivals in these signals, rather than the complete time 

traces. The proposed SE algorithm (equation 5.4) is trained with a set of intact and damaged 

signals, separately. The goal is to compare the sparse representation of intact and damaged 

signals to determine whether the time-location of the extracted sparse arrivals matches. 

Hypothesis #3 will be rejected if there is significant overlap between the two subsets, implying 

that damage does not change high-energy components of the signal.        
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Signals captured from the intact and damaged aluminum pipe 1-loc1-sml (Figure 3.2a) are used. 

The temperature of both datasets ranges from 24℃ to 39℃. Figure 5.5a and 5.5b show the 

normalized coefficients of intact and damaged signals, respectively. It is observed that only 26% 

of the coefficients corresponding to intact signals overlap with the coefficients of damaged 

signals. In other words, the arrival times of 74% of the high-energy components in the intact 

signals do not match with the arrival times of high-energy components in damaged signals. This 

mismatch can be due to two possible effects of damage: (1) change in the time location of high-

energy arrivals, and/or (2) change in the energy content of the arrivals. It is also notable that the 

overlapping arrivals contain only about 6% of the total energy of the signals. Moreover, the 

correlation between intact and damaged coefficients is 16%, which further indicates the 

dissimilarity between the two subsets.     

 

In order to evaluate hypothesis #3, in addition to the time location of the coefficients, I compare 

their corresponding magnitudes. Figure 5.5c shows the difference between the two sets of 

coefficients, at every point in time (∆𝑥𝑖 = 𝑥𝑖
𝑖𝑛𝑡 − 𝑥𝑖

𝑑𝑚𝑔
 ∀ 𝑖 ∈ {1, … , 𝑛}). Positive values of ∆𝑥𝑖 

correspond to the arrivals with larger coefficients in the intact signals than in the damaged 

signals, and vice versa. The correlation of the positive side of Figure 5.5c with the intact 

coefficients in Figure 5.5a is 96%, while its correlation with the damaged coefficients is only 

3%. Similarly, the negative side of Figure 5.5c and the damaged coefficients in Figure 5.5b are 

93% correlated, while its correlation with intact coefficients is only 2%. These observations 

suggest that when ∆𝑥𝑖 > 0, that is, when the coefficient of the ith arrival is larger in intact 

signals compared to damaged signals (𝑥𝑖
𝑖𝑛𝑡 > 𝑥𝑖

𝑑𝑚𝑔
), 𝑥𝑖

𝑑𝑚𝑔
 is close to zero (i.e., 𝑥𝑖

𝑖𝑛𝑡 − 𝑥𝑖
𝑑𝑚𝑔

≈

𝑥𝑖
𝑖𝑛𝑡). Similarly, when ∆𝑥𝑖 < 0, that is, when 𝑥𝑖

𝑑𝑚𝑔
> 𝑥𝑖

𝑖𝑛𝑡, 𝑥𝑖
𝑖𝑛𝑡 is close to zero (i.e., 𝑥𝑖

𝑖𝑛𝑡 −
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𝑥𝑖
𝑑𝑚𝑔

≈ 𝑥𝑖
𝑑𝑚𝑔

). Therefore, not only the time location of the high-energy arrivals, but also the 

magnitudes of the corresponding coefficients differ substantially between intact and damaged 

signals.   

 

 

Figure 5.5: (a) The coefficients obtained by applying the SE method on intact signals, (b) 

the coefficients obtained by applying the SE method on damaged signals, (c) the difference 

between (a) and (b), i.e., 𝑿𝒊𝒏𝒕 −𝑿𝒅𝒎𝒈. 

 

The same set of analyses is repeated with the aluminum pipe exposed to a bigger mass scatterer 

(i.e., 1-loc1-big layout shown in Figure 3.2a). Results are similar to the pipe with smaller mass 

discussed above. 25% of the nonzero coefficients calculated for intact signals overlap with the 

coefficients obtained for the damaged signals. The overlapped arrivals contain only 10% of the 

total energy of the signals. Moreover, the correlation between the intact and damaged 

coefficients is 10%.  
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These findings imply that a sparse subset of high-energy arrivals extracted from intact signals 

will not be a good representative of damaged signals. Therefore, if these coefficients are used for 

estimating the signals’ energy, the estimation errors (∆𝐸s) for damaged signals will be larger 

than the ones for intact signals. This verifies hypothesis #3, and suggests that ∆𝐸s can be used as 

damage-sensitive features for the purpose of detection. 

 

Comparing the SE and the SD Coefficients 

In this section, the sparse representation of damaged signals obtained by the SE method is 

compared with the sparse representation of the signals obtained by the SD method (i.e., 

supervised method discussed in Chapter 4). As discussed in Chapter 4, the coefficients obtained 

by the SD method correspond to the arrivals with significant damage information. On the other 

hand, the coefficients obtained by the SE method correspond to the arrivals that contain the 

majority of the signal’s energy. A small overlap is expected between the SE coefficients and the 

SD coefficients, since one of the major effects of damage on guided-waves is energy dissipation 

(Long et al., 2003b). 

 

The SE algorithm is trained with the damaged signals explained earlier in this section. Figure 

5.6a shows the SE coefficients for these signals. The SD algorithm (equation 4.2) is trained with 

a dataset including both intact and damaged signals. Figure 5.6b shows the SD coefficients. No 

overlap is found between the two sets of coefficients. Same results are obtained when both 

algorithms are trained on the pipe with bigger mass. This suggests that damage causes significant 

energy dissipation in the signal so that none of the damage-sensitive arrivals has major 

contribution in the total energy of the signal. These results strengthen the findings discussed 
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earlier for verifying hypothesis #3 (Figure 5.5). That is, energy dissipation will alter the signals, 

thus, if the SE algorithm is trained with intact signals, energy estimation error ∆𝐸 will increase as 

damage occurs.   

 

 

Figure 5.6: (a) The coefficients obtained by applying SE method on damaged signals, (b) 

the coefficients obtained by applying SD method on a training dataset including both intact 

and damaged signals.  

 

5.4.5 Sensitivity of Damage-sensitive Features (∆𝑬s) to Temperature Variation 

(Question #3) 

 

Experiments reported in Section 5.4.3 shows that sparse signals have less sensitivity to 

temperature variations compared to original diffuse-field signals. Later, in Section 5.4.4, it is 

shown that energy estimation error (∆𝐸) can be used as damage-sensitive features for detection 

purpose. However, one question that remains to be answered is the sensitivity of these features to 

EOC variations. This section evaluates the sensitivity of ∆𝐸s to temperature variations.  
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In spite of their low sensitivity to temperature variations, time location of high-energy arrivals 

extracted by SE method may still vary as temperature changes. For example, let us consider a 

scenario in which the SE algorithm is trained with a limited range of temperature. During the 

monitoring stage, if the temperature of an intact signal deviates significantly from the training 

temperature, the sparse subset may not be a good representative of the test signal. In that case, 

the energy estimation error ∆𝐸 for the test signal may largely deviate from zero. This can lead to 

false positive errors. Therefore, the following hypothesis is evaluated in this section:  

 

Hypothesis #4: The wider the temperature range of the training dataset, the more robust the 

extracted sparse subset, and thus the ∆𝐸 values, are to temperature variations.  

 

A total of 6,200 intact signals from the aluminum pipe 1-loc1-sml (Figure 3.2a) are used to create 

a number of training datasets with different ranges of temperature variation (𝛿𝑇 ∈{2℃, 4℃, 6℃, 

8℃, 10℃, 12℃, 14℃}). Depending on the 𝛿𝑇 range, the lower bound temperatures are between 

24℃ and 37℃, and the upper bound temperatures are between 26℃ and 39℃. For example, to 

create training datasets with temperature variation range of 𝛿𝑇 = 2℃, the first dataset includes 

all the signals between 𝑇1 = 24℃ and 𝑇2 = 26℃, the second dataset includes all signals between 

𝑇1 = 25℃ and 𝑇2 = 27℃, and so on until the last dataset which includes all signals between 

𝑇1 = 37℃ and 𝑇2 = 39℃. In this way, for any training 𝛿𝑇 range, different magnitudes of 

temperature are considered. The SE algorithm is trained with each of these datasets. 

 

A test dataset, including 300 intact and 300 damaged observations is used. The signals in the test 

dataset are from a wide range of temperatures (24℃ ≤ 𝑇𝑡𝑠𝑡 ≤ 39℃). Using the coefficients 
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obtained from each of the training datasets explained above, energy estimation error (∆𝐸) is 

calculated for the test signals. Correlations of these ∆𝐸s with temperature of the test signals are 

calculated. Figure 5.7 reports these correlations with respect to training temperature range. 

Figure 5.7a is the correlation of ∆𝐸s for intact test signals, and Figure 5.7b is the correlation of 

∆𝐸s for damaged test signals. It can be seen that, by increasing the training temperature range, 

the correlation between the test ∆𝐸s and test temperatures drops, which verifies hypothesis #4. 

That is, the wider the range of training temperature, the less sensitive to temperature variations is 

the extracted sparse subset. The SE algorithm enforces solutions that represent the majority of 

training signals’ energy and are robust to the factors varying among the signals (in this case, 

temperature effects). Therefore, the wider the training temperature, the more robust are the 

extracted coefficients to temperature effects. It is also notable that the variance in the correlation 

values diminishes as the training temperature range increases.   

 

As training temperature range increases, correlation of the ∆𝐸s of intact signals drops more than 

the correlation of ∆𝐸s of damaged signals. This difference is expected, because the sparse subset 

extracted from intact training signals do not correspond to the high-energy, and thus more robust, 

arrivals in the damaged signals. Therefore, as can also be inferred from the figure, independent 

of training temperature range 𝛿𝑇, when damage occurs, in addition to the increase in energy 

estimation error ∆𝐸 (as discussed in Section 5.4.4), sensitivity of ∆𝐸s to temperature variations 

may also increase 
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Figure 5.7: Correlation of energy estimation errors (∆𝑬s) of (a) intact test signals and (b) 

damaged test signals, for different widths of training temperature range (𝜹𝑻). Note: 𝜹𝑻 is 

the difference between the maximum and minimum temperatures within different training 

datasets. 𝝁 is the mean of the correlations at each 𝜹𝑻, and 𝝈 is the standard deviation of the 

correlation values at each 𝜹𝑻. 

.  

5.4.6 Physical Intuition about the SE Coefficients  

 

In order to better understand the findings reported in this chapter, a set of experiments are 

conducted on the aluminum pipe 2-loc2-sml (Figure 3.2d). In this layout, the two transducers are 

located as close as 1/3 of the length of the pipe, and the mass scatterer (to simulate damage) is 

located on the opposite side of the pipe. In this case, the length of the shortest damaged path, as 

well as end-reflection paths, is much longer than the length of the shortest undamaged path. This 

will result in better separation of the first arrivals from damaged and undamaged sections of the 
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pipe. Therefore, using this layout, one can better understand the physical nature of what is 

extracted by the SE algorithm.   

 

A total of 300 intact signals, and 300 damaged signals, with temperatures varying between 24℃ 

and 38℃ are used. The SE algorithm is trained using the intact signals, as well as the damaged 

signals, separately. In addition, both the intact and damaged signals are used to train the SD 

algorithm (i.e., supervised method discussed in Chapter 4). Figure 5.8a and 5.8b show the 

normalized coefficients of the SE method when using intact and damaged signals, respectively. 

Figure 5.8c is the normalized coefficients obtained by supervised SD method. The expected 

time-location for first arrivals from the undamaged path and the first arrivals from the damage 

are marked in the figure.  

 

It is found that 42% of the coefficients in Figure 5.8a (i.e., SE method with intact signals) 

overlap with the coefficients in Figure 5.8b (i.e., SE method with damaged signals). This overlap 

rate is about 17% larger than what was found in Section 5.4.4 with 1-loc1-sml and 1-loc1-big 

pipe layouts. This can be due to the very short paths in the layout used in this section. The 

shorter travel path, and thus shorter travel time, can decrease the attenuation in 2-loc2-sml layout 

compared to the layouts used in Section 5.4.4 (considering that the pipe condition is the same for 

all pipe layouts). Therefore, part of the difference in the intact and damaged coefficients 

observed in Section 5.4.4 can be attributed to the larger attenuations of the waves traveling 

through longer damaged paths as compared to undamaged paths.  
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Figure 5.8: Normalized coefficients obtained by (a) SE method using intact signals, (b) SE 

method using damaged signals, and (c) SD method using both intact and damaged signals. 

Note: the aluminum pipe layout 2-loc2-sml shown in Figure 3.2d is used for these 

experiments. 

 

Table 5.1: The breakdown of the total energy, and the overlap between the coefficients 

extracted by SE method, using intact and damaged signals separately. Note: The aluminum 

pipe layout 2-loc2-sml shown in Figure 3.2d is used for these analyses. 

 Energy (% of total) Overlap between Intact and 

Damaged SE Coefficients 
Intact Signals Damaged Signals 

First arrivals from 

undamaged path 

28% 27% 10% 

First arrivals (from 

damaged path) 

38% 39% 25% 

Later arrivals 34% 34% 7% 
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The overlapped arrivals contain only 4.4% of the total energy of the intact signals, and 4.2% of 

the total energy of the damaged signals. Table 5.1 summarizes the energy breakdown between 

the three arrival zones shown in Figure 5.8. It can be seen that the second set of arrivals contains 

slightly larger portion of energy, compared to the first and later arrivals. Moreover, the majority 

of the overlapped coefficients between intact and damaged SE coefficients are among the second 

set of arrivals (i.e., 25% of the total 42% overlap). The question to be answered here is whether 

the overlapping high-energy arrivals in the second zone are from damaged sections of the pipe. 

Due to damage effects, it is expected that the majority of these arrivals are not reflected from 

damage, but rather are the second arrivals from the undamaged sections of the pipe.   

  

One way to examine whether the overlapping arrivals in the second zone include the reflections 

from damage is to compare these coefficients from the ones extracted by the SD method. By 

nature, the coefficients obtained by SD method correspond to the arrivals with significant 

damage information. It is found that only 0.4% of the SD coefficients (i.e., only one coefficient) 

in Figure 5.8c overlap with the SE coefficients obtained from damaged signals (Figure 5.8b). 

This coefficient is marked in Figure 5.8b and 5.8c. Moreover, no overlap is found between SD 

coefficients and the SE coefficients from intact signals. These findings strengthen the arguments 

presented in Section 5.4.4 regarding the energy dissipation effects of damage. That is, the 

arrivals containing significant damage information are not the ones with high energy content.  

    

Table 5.2 summarizes the energy breakdown of the sparse signals. It can be seen that the overall 

amount of energy covered by the second set of arrivals is ~10% lower for damaged signals 

compared to intact signals (i.e., 60% versus 71%). On the other hand, for damaged signals, the 
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contribution of the first set of arrivals in the total energy is almost two times larger than the intact 

signals (i.e., 30% versus 16%). These changes can be attributed to the drop in the energy content 

of the second and later sets of arrivals due to existence of damage. Therefore, for damaged 

signals, the share of the first arrivals in the signals’ total energy increases.  

 

Table 5.2: The breakdown of the total energy of the sparse signals, and the overlap between 

the coefficients extracted by SE method, using intact and damaged signals separately. Note: 

The aluminum pipe layout 2-loc2-sml shown in Figure 3.2d is used for these analyses. 

 Energy of sparse signals (% of total) Overlap between Intact and 

Damaged SE Coefficients 
Intact Signals Damaged Signals 

First arrivals from 

undamaged path 

16% 30% 10% 

First arrivals (from 

damaged path) 

71% 60% 25% 

Later arrivals 13% 10% 7% 

 

 

Minimal overlap between the SD and SE coefficients suggests that the SE coefficients of 

damaged signals in the second and third zones (Figure 5.8b) can correspond to either of the 

following: (1) high-energy arrivals reflected from damage that are less affected by damage 

interference, thus are not associated with large SD coefficients (such as the one marked in Figure 

5.8c), (2) high-energy arrivals from undamaged sections of the pipe, which can be different from 

the ones captured from intact pipe due to superposition of the reflections from damage. 
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Another noteworthy point is that only 10% of the arrivals in the first zone of the intact signals 

overlap with those of damaged signals. In the damaged pipe, these arrivals are captured before 

the reflections from damage are received. Therefore, one may expect large overlap between the 

intact and damaged coefficients in this section of the signals. However, damage changes the 

physical properties of the pipe (e.g., stiffness, young modulus, etc.), which can affect the time-

location of the high-energy arrivals. To elaborate more on this fact, let us consider the SD 

coefficients associated with this part of the signal (Figure 5.8c). It can be seen that a number of 

these arrivals are assigned non-zero SD coefficients. This implies that these arrivals contain 

significant damage information. Since none of these arrivals includes reflections from damage, it 

can be concluded that the damage does affect the physical properties of the pipe, and hence, the 

arrival time of the wave modes traveling through undamaged sections of the pipe. This justifies 

the low overlap between intact and damaged SE coefficients in the first zone.  

 

5.4.7 Selecting Regularization Scalar (ξ) for SE Method (Question #1) 

 

As it was shown in Section 5.4.1, by increasing the sparsity constraint (i.e., increasing 

regularization scalar ξ in equation 5.4), sparser solutions are obtained, at the cost of a decrease in 

energy estimation accuracy. Therefore, for selecting the ξ value, one tradeoff to be considered is 

between sparsity and the training error. On the other hand, in Section 5.4.3, I showed that 

increasing the sparsity could decrease the sensitivity of the sparse signals to temperature 

variations. However, too sparse solutions can be more sensitive to temperature variations than 

complete signals. Therefore, the objective is to select a ξ value that maximizes sparsity, while 

achieving minimal training error and sensitivity to EOC variations.  
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Intact signals from the aluminum pipe 1-loc1-sml (Figure 3.2a) are used to train the SE algorithm 

with different ξ values, ranging from 0 to 950. The temperatures of the training signals vary 

between 24℃ and 39℃. For simplicity, I used bigger increments between the ξ values for larger 

magnitudes (see Figure 5.9). The coefficients corresponding to each ξ are used to calculate the 

energy estimation error for every signal in the training dataset (∆𝐸𝑗  ∀𝑗 ∈ {1,… ,𝑚𝑡𝑟}), as given in 

equation 5.5. The correlation of the ∆𝐸𝑗 values to temperature of the training signals is used as a 

metric to reflect their sensitivity to temperature variation.  

 

 

Figure 5.9: (a) Average training error at different values of regularization scalar ξ (see 

equation 5.6), (b) Correlation between the energy estimation errors (∆𝑬𝒋 ∀ 𝒋 ∈ {𝟏,… ,𝒎𝒕𝒓}, 

see equation 5.5) and the temperatures of training signals (𝑻𝒋) at different values of 

regularization scalar ξ. 𝑬𝒋
𝒂𝒄𝒕: energy of the complete training signals.  
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Figure 5.9b shows ∆𝐸𝑗s and temperature correlations for different values of ξ. It can be seen that 

by increasing the sparsity, the sensitivity of the ∆𝐸 values to temperature decreases. The 

correlations can reach values up to 20% less than the correlation of the complete signals’ energy 

(shown with a dashed line). By further increasing the sparsity, however, the correlation rises 

back. These findings are in agreement with the results reported in Section 5.4.3. That is, sparsity 

decreases the sensitivity of the signals to temperature variations. However, too sparse solutions 

can be more sensitive than complete signals. It is notable that, at large values of ξ, the correlation 

drops again to its minimum value. These larger values of ξ correspond to large training errors. 

This trend is expected since too sparse solutions include very few arrivals (usually one arrival 

with very small coefficients), which cannot be correlated to temperature. These solutions would 

be rejected due to large training error. Based on this approach, for the training signals used in 

this figure, an optimum value of ξ would be between 0.01 and 0.05 (marked with a green box in 

Figure 5.9b).  

 

Physical Intuition: 

In order for better understanding of the pattern observed in Figure 5.9, let us use the aluminum 

pipe layout 2-loc2-sml (Figure 3.2d). As mentioned before, the first and later arrivals are more 

distinguishable in this layout, facilitating the interpretation of the findings. Figure 5.10 shows the 

average training error (∆𝐸̅̅ ̅̅ ), as well as the correlation between the temperature and energy 

estimation errors (∆𝐸𝑗). Based on the approach discussed above, for this pipe layout, suitable ξ 

values would be between 0.25 and 0.33.  
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Figure 5.10: (a) Average training error at different values of regularization scalar ξ (see 

equation 5.6), (b) Correlation between the energy estimation errors (∆𝑬𝒋 ∀ 𝒋 ∈ {𝟏,… ,𝒎𝒕𝒓}, 

see equation 5.5) and the temperatures of training signals (𝑻𝒋) at different values of 

regularization scalar ξ. 𝑬𝒋
𝒂𝒄𝒕: energy of the complete training signals. 

 

Similar to Section 5.4.6, the coefficients are studied with regard to three sets of arrivals, namely 

first arrivals from undamaged paths, second set of arrivals (if the pipe is damaged, would include 

first arrivals from damaged path), and the later arrivals. Figure 5.11 shows the change in the 

percentage of non-zero coefficients as ξ value is increased, at each of the three arrival zones. It 

can be seen that as sparsity constraint is increased, the majority of the first and later arrivals are 

set to zero much faster than the second arrivals. In the ξ range in which the optimal temperature 

correlation is observed (i.e., 0.25 ≤ ξ ≤ 0.33, marked with green box in Figures 5.10 and 5.11), 

the majority of the coefficients in the first and later arrivals are set to zero. However, it is notable 

that the few nonzero coefficients in these zones remain almost unchanged by further increasing 

the ξ. Among the three zones, the majority of the non-zero coefficients fall in the second set of 

arrivals. This is expected since according to Table 5.2, 71% of the energy of the intact signals is 
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represented by the second set of arrivals. Unlike the first and later coefficients, in the second 

zone, the drop in the percentage of non-zero coefficients continues as ξ increases. Therefore, as 

the ξ value is increased beyond the optimum range, the increase in the training error, and in the 

temperature sensitivity, is mainly because of losing the high-energy arrivals in the second zone. 

 

 

Figure 5.11: Change in the percentage of nonzero coefficients for different levels of sparsity 

(i.e., different values of regularization scalar ξ ) corresponding to (a) first set of arrivals, (b) 

second set of arrivals, and (c) later arrivals (see Figure 5.8 for clarification on first, second 

and later set of arrivals). 

 

5.5 Validation of the SE Method 

 

In this section, signals captured from laboratory and field testbeds are used to validate the 

discriminatory power of the damage-sensitive features proposed in this chapter.  
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5.5.1 Methods for Evaluating the Classification and Detection Power of ∆𝑬s 

 

At this point, it is worth emphasizing that, similar to SD method discussed in Chapter 4, the SE 

method is not a detection algorithm, but a feature extraction approach for damage detection. That 

is, the contribution of this chapter is in proposing an unsupervised feature extraction method for 

continuous damage detection of pipelines under varying EOCs. A number of detection methods 

may be used to evaluate discriminatory power of the features. However, unlike SD method, the 

SE method proposed in this chapter is an unsupervised approach. Therefore, to fulfil the 

objective of the SE method, an unsupervised detection approach should be applied for online 

damage detection using the extracted damage-sensitive features (∆𝐸s). Development of an 

optimal online detection algorithm is beyond the scope of this thesis. Nonetheless, in order to 

evaluate the discriminatory power of damage-sensitive features, to better understand the 

distribution of features in both classes (i.e., intact versus damaged), and to prove the concept of 

online damage detection with the SE features, three sets of detection/classification approaches 

are used for the experiments in this section that will be discussed in the following sub-sections.   

  

A Heuristic Unsupervised Classification based on K-means 

K-means is a simple unsupervised partitioning method in which each observation is assigned to 

one cluster. The performance of the K-means in separating the two classes will provide insight 

about the separation of the ∆𝐸 values in two populations. First, K-means is used to cluster the 

test observations based on the corresponding ∆𝐸s. Some heuristic process is then applied to 

predict the class labels. If more than 50% of the observations in a cluster are from the same class 

(e.g., intact), the cluster is considered to be representative of that particular class. Then, 
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accuracy, FPR, and FNR can be calculated based on the predicted labels. Good detection 

performance with K-means implies concentrated values of ∆𝐸s for a particular class, which 

suggests that occurrence of damage may be detectable with some simple outlier or threshold 

based approach. Expectedly, K-means will perform well if increase in the average ∆𝐸 values 

with occurrence of damage is larger than their variance in either of the classes.     

 

A Heuristic Supervised Classification based on Support Vector Machin (SVM) 

Support vector machines (SVM) are supervised learning methods that can be used for 

constructing a hyperplane in a high-dimensional space so that its distance to the nearest training 

feature of any class is maximized (Cortes and Vapnik, 1995). In this section, SVM with Gaussian 

Radial Basis Function (RBF) kernel is used in order to identify cases where a simple linear 

discriminator, like K-means, may not be sufficient for optimal separation of the two classes. As 

mentioned before, the proposed SE method is an unsupervised approach. However, to apply 

SVM, our prior knowledge about the class labels needs to be incorporated. It is worth re-

emphasizing that the SVM-based classification method applied here is not proposed as a 

detection approach, but is used to validate the discriminatory power of ∆𝐸s and to understand the 

nature of the separation between the ∆𝐸s in two classes. For each set of experiments that will be 

discussed in this section, 100 signals from the intact pipe and 100 signals from the damaged pipe 

are used to train the SVM algorithm. That is, these signals are projected on the extracted sparse X 

vector, ∆𝐸s are calculated, and used to train SVM. The trained SVM model is used to predict 

class labels of a different set of test signals, based on their corresponding ∆𝐸 values.  
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An Online Detection Method based on Kullback-Leibler Divergence (KL) 

Although the two methods described above evaluate the separation between the two populations, 

such approaches cannot be applied for online detection of damage. First, both of them are based 

on our prior knowledge regarding the class labels. Second, using pure classification methods, we 

lose the information regarding the order in which the features are observed, as well as the 

proximity of the observations. For example, an intact observation is not likely to happen after an 

observation from the damaged pipe. Similarly, if the ith observation is from an intact pipe, it is 

more likely than not that the (i+1)th observation is also from an intact pipe. Finally yet 

importantly, when damage occurs, the total population of observed ∆𝐸s may not be sufficiently 

separable from all the ∆𝐸s corresponding to intact pipe. However, this does not necessarily mean 

that the instance of occurrence of damage cannot be detected. As I discussed in previous sections 

of this chapter, when damage occurs, not only the ∆𝐸 values are expected to increase, but also 

the sensitivity of these values to EOC variations may increase compared to the intact 

observations. This implies that the distribution of the ∆𝐸 values is expected to change as damage 

occurs (see Figure 5.13 for an example).  

 

KL divergence method is a measure of the difference between two probability distributions (P & 

Q) (Kullback and Leibler, 1951). In other words, KL measures the amount of the information 

that would be lost if one distribution (Q) is used to approximate the other (P). For discrete 

probability distributions, KL divergence is defined as below: 

 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑥)𝑙𝑛
𝑃(𝑥)

𝑄(𝑥)𝑥                                  (5.8) 
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In this section, I use this method to detect occurrence of damage. After training the SE algorithm, 

the ∆𝐸 values are obtained for test signals. The first 100 ∆𝐸s from the test intact signals are used 

to obtain a reference distribution (P). Therefore, this approach assumes that the pipe is in intact 

state when testing starts. Test distributions (Qs) are obtained by a moving window of width 50 

∆𝐸s as new signals are observed. The KL measures are calculated for all the moving widows. 

Occurrence of damage is detected when KL measure deviates from its previous value by more 

than two times the standard deviation of all the previous measures up until the last window. 

Detection performance will be presented in terms of delay in detection (DiD), and false negative 

rate (FNR).      

 

5.5.2 Damage Detection with Varying Training and Test Temperatures  

 

The temperature range that is covered by the training dataset, as well as the temperature 

variations among the test signals can both affect the discriminatory power of the damage-

sensitive features (i.e., energy estimation errors, ∆𝐸s). In this section, detection performance of 

the SE method is validated for different scenarios regarding these factors.   

 

The aluminum pipe layout 1-loc1-sml (Figure 3.2a) is used. A total of 6,500 signals from the 

intact pipe and 6,300 signals from the pipe with structural abnormality are captured, at 

temperatures ranging from 24℃ to 38℃. Seven training subsets of intact signals, each including 

300 observations, are selected so that their temperature range increases from 2℃ to 14℃, with 2-

degree increments. In other word, the difference between maximum and minimum temperature 

in the first subset is 2℃, and in the seventh subset is 14℃. A test dataset of 200 intact and 200 
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damaged signals, with temperatures ranging from 24℃ to 39℃ is used. The SE method is trained 

with each of the training datasets. Using the coefficients corresponding to each training run, the 

∆𝐸 values are obtained for the test observations.  

 

Table 5.3: Average detection statistics for 10-fold cross validation with the ∆𝑬 values 

calculated with the coefficients corresponding to different ranges of training temperature. 

Note: The temperatures of test signals vary between 24℃ and 39℃. 

 K-means SVM KL 

Accuracy FPR FNR Accuracy FPR FNR DiD FNR 

24℃ ≤ 𝑇𝑡𝑟 ≤ 26℃ 92.5% 8.5% 6.5% 94.0% 5.0% 7.0% 17 8.5% 

24℃ ≤ 𝑇𝑡𝑟 ≤ 28℃ 93.0% 8.5% 5.5% 94.5% 2.0% 9.0% 18 9.0% 

24℃ ≤ 𝑇𝑡𝑟 ≤ 30℃ 97.5% 1.5% 3.5% 99.0% 1.0% 1.0% 5 2.5% 

24℃ ≤ 𝑇𝑡𝑟 ≤ 32℃ 97.3% 0.0% 5.5% 97.0% 0.0% 6.0% 1 0.5% 

24℃ ≤ 𝑇𝑡𝑟 ≤ 34℃ 97.8% 0.0% 4.5% 98.0% 0.0% 4.0% 1 0.5% 

24℃ ≤ 𝑇𝑡𝑟 ≤ 36℃ 97.0% 0.0% 6.0% 99.5% 0.0% 1.0% 1 0.5% 

24℃ ≤ 𝑇𝑡𝑟 ≤ 38℃ 97.0% 0.0% 6.0% 100.0% 0.0% 0.0% 1 0.5% 

 

Table 5.3 summarizes the average classification statistics for 10-fold cross validation, for K-

means and SVM based approaches, as well as online detection statistics for KL based approach. 

The K-means and SVM results suggest that ∆𝐸 values of intact and damaged signals can be 

separated satisfactorily, even with limited ranges of training temperature. The separation, 

however, improves as wider ranges of temperature are used for training of the SE algorithm. 

SVM performs slightly better than the K-means, particularly with wider ranges of training 

temperature. In terms of online detection, the KL based approach implemented here is able to 
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detect occurrence of damage in all cases, however, the detection performance improves 

considerably with wider ranges of training temperature.     

 

5.5.3 Detection of a Small Crack and Mass Loss  

 

As it is discussed in previous sections, detection performance of the SE method depends on the 

extent of the change caused by damage on high-energy arrivals of the signal. Therefore, it is 

important to validate the method for detection of small defects whose effects may not be 

significant compared to those of EOCs. In this section, the proposed SE method is used for 

detection of actual damages of different type and size. A small crack is simulated by a saw-cut 

on the surface of a steel pipe. Later, a small mass loss is introduced to the pipe, in a different 

location than the crack. The objective is to validate the proposed SE method for detection of 

small damages, as well as detection of occurrence of consecutive damages, under temperature 

variations.   

 

For these experiments, a Schedule-40 steel pipe shown in Figure 3.3 is used. Before introducing 

the crack, ultrasonic pitch-catch records are obtained from the intact pipe, at different 

temperatures ranging from 25℃ to 27℃. These signals are used for training the SE algorithm. 

Later, an oblique cut of 2.5 cm long, extended in both circumferential and longitudinal directions 

of the pipe (see Figure 3.3), is imposed at the middle of the length of the pipe. The maximum 

thickness along the length of the crack is approximately 0.34 mm (10% of the pipe thickness), 

and the maximum depth is approximately 0.7 mm (20% of the pipe thickness). The second 

damage is a small mass loss (Figure 3.3) with 5 mm diameter and maximum depth of 0.25 mm 
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(~8% of the pipe thickness). For testing, signals from the intact pipe and the pipe with crack, and 

with both crack and mass loss are used at 24℃ ≤ 𝑇𝑡𝑠𝑡 ≤ 32℃.  

 

Similar to the previous section, a heuristic approach based on k-means clustering, as well as a 

supervised binary classification with SVM is used to evaluate the separation among the ∆𝐸s 

calculated for the test signals at different states of the pipe. Moreover, the KL based detection 

approach discussed at the beginning of this section is applied to detect occurrence of each of the 

consecutive damages.  

 

Table 5.4: Average detection statistics for 10-fold cross validation with the ∆𝑬 values 

calculated for the intact steel pipe, the pipe with a small crack, and the pipe with both 

crack and small mass loss.  

 K-means SVM KL 

State of the pipe Accuracy FPR FNR Accuracy FPR FNR DiD FNR 

Intact & Crack 94.5% 1.2% 12.4% 95.0% 6.7% 1.3% 11 4.4% 

Crack & Mass Loss 98.7% 0.0% 3.9% 100.0% 0.0% 0.0% 1 0.8% 

 

 

Table 5.4 reports the statistics for detection of the crack, as well as the mass loss. As can be seen 

in this table, both classification methods are successful in separating the ∆𝐸s corresponding to 

two different states of the pipe. Expectedly, this distinction becomes more significant when the 

second damage is introduced. The KL based approach is also successful in detecting the 

occurrence of both damages. However, there is a delay of eleven observations in detection of the 
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first damage. Figure 5.12 is a visual depiction of the calculated ∆𝐸s at different states of the pipe, 

along with the temperature readings corresponding to each test observation.    

 

 

Figure 5.12: Online detection of a 2.5 cm long oblique crack (with maximum thickness of 

0.34 mm and maximum depth of 0.7 mm), and a subsequent small mass loss (with 

maximum depth of 0.25 mm), in a Schedule-40 steel pipe. 

 

5.5.4 Online Damage Detection under Multiple EOCs 

 

For the experimental analyses and validations so far, temperature is the only varying EOC. In 

this section, the performance of the SE method for damage detection under multiple varying 

EOCs is validated. Signals from a hot-water piping system (Liu et al., 2012b), operating under 

mechanically and electrically noisy environment, with varying temperature, fluid flow rate, and 
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inner pressure, are used for the purpose of this section. For more details on the specifications of 

the piping system and the data, please refer to Section 3.3.  

 

Table 5.5: Average detection statistics for 10-fold cross validation with the ∆𝑬 values 

calculated for a hot-water supply piping system, with and without a structural 

abnormality. 

 K-means SVM KL 

Accuracy FPR FNR Accuracy FPR FNR DiD FNR 

Winter Day #1 98.0% 0.0% 3.9% 99.1% 0.0% 1.9% 3 2.0% 

Winter Day #2 98.5% 1.5% 1.5% 99.3% 0.4% 0.9% 3 0.9% 

Summer Day #1 92.2% 1.5% 14.0% 94.5% 4.2% 6.7% 1 0.4% 

Summer Day #2 54.3% 0.0% 91.0% 76.8% 14.2% 32.0% 1 0.8% 

 

 

Table 5.5 summarizes the classification and detection statistics for two winter days and two 

summer days. For winter day #1 and #2, and for summer day #1, both classification methods can 

sufficiently separate the observations in two classes. In summer day #2, however, the features of 

the two classes are not as distinguishable as the ones in the other days. Nevertheless, as 

explained before, this does not necessarily mean that the occurrence of damage cannot be 

detected, since online damage detection is not a pure classification problem. As can be seen in 

the last two columns of Table 5.5, KL based approach can detect occurrence of damage with 

good precision in all of the four days. Figure 5.13 shows an example case where perfect 

classification of the two classes with K-means and SVM based approaches is not possible, but 

occurrence of damage can be detected successfully with KL based approach, because of the 

significant change in the distribution of the ∆𝐸s after occurrence of damage. In this particular 
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case, after introducing the damage, the ∆𝐸 values become very sensitive to periodic variation of 

temperature and flow rate.  

 

 

Figure 5.13: An example case from field data where perfect classification of the ∆𝑬s with 

K-means and SVM based approaches is not be possible, but occurrence of damage can be 

detected using KL based approach. 

 

5.5.5 Effects of Including Damaged Signals in the Training Dataset  

 

The proposed SE method assumes that the majority of the training dataset is composed of signals 

from intact state of the pipe. It is important to define the majority in this context, and to 

understand the behavior of the method at different levels of violation of this assumption.  

 

Signals from the aluminum pipe 1-loc1-sml (Figure 3.2a) are used. A total of 300 intact signals 

are randomly selected for training the SE algorithm. The temperature of these signals varies 

between 24℃ and 39℃. At different iterations of SE algorithm, a portion of the training intact 

signals is replaced with randomly selected damaged signals. The ratio of the damaged signals to 

the total number of training signals is increased in each iteration, from 0.3% (only one damaged 
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signal) to 99% (298 damaged signals). A fixed set of test signals, including 200 intact and 200 

damaged observations, are used for evaluating the SE coefficients at each iteration.  

 

 

Figure 5.14: (a) Classification accuracies, and (b) delays in detection of occurrence of 

damage, corresponding to different ratios of damaged signals in the training dataset. 

 

 

Figure 5.14a shows the classification accuracies of K-means and SVM based methods at each 

iteration, and Figure 5.14b shows the delay in detection of the occurrence of damage. 

Expectedly, as more damaged signals are included in the training dataset, the performance of the 

SE method in separating intact and damaged observations decreases. The classification accuracy 

of the SVM remains above 80% for damaged signal ratio of up to about 30%. Detection delay, 

however, is more sensitive to the increase in the ratio of damaged signals. Considering the 
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definition of KL divergence method, this behavior is expected. As the damaged signals are added 

to the training dataset, the extracted coefficients become more representative of damaged signals. 

Therefore, the distributions of ∆𝐸s for intact and damaged test signals become more similar to 

each other. It is also notable that further increasing the ratio of damaged signals, the 

classification accuracies of both methods rise back to their maximum range. In these cases, the 

calculated coefficients are mostly representative of damaged signals. Therefore, energy 

estimation error (∆𝐸) of intact test signals are expected to be larger than the ones for damaged 

test signals. Similar to the SE method, the ∆𝐸 values can be the discriminatory feature for the 

two classes. 
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Chapter 6 

 

Conclusion 

 

6.1 Summary of the Work 

 

The work presented in this dissertation addresses some of the open challenges in real-world 

application of guided-waves for pipeline damage detection. In Chapter 1, these challenges are 

discussed under three headings: (a) Multiple modes, (b) Multi-path reflections, and (c) 

Sensitivity to environmental and operational conditions (EOCs). The objective is to address these 

challenges through extracting simplified representations of guided-wave signals in which the 

effects of EOCs are supressed by the effects of damage. In Chapter 4 and Chapter 5, I proposed 

two frameworks for online damage detection of pipelines operating under varying EOCs.  

 

The first framework (Chapter 4) is based on a supervised method for extracting a linear sparse 

discriminant in the time domain of the signals (i.e., Sparse Discriminant (SD) method). The idea 

is that a sparse subset of the arrivals will include enough information for optimal damage 

detection. Therefore, extracting only the arrivals with significant sensitivity to damage, both 
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detection performance and the sensitivity to EOC variations will improve compared the complete 

signals. I validated this statement through a set of laboratory and field experiments, for EOCs 

such as temperature (24℃ ≤ 𝑇 ≤ 60℃), flow rate (45.5 m
3
/h and 102 m

3
/h), and inner pressure 

variation, operational noises, as well as flowing water inside the pipe.   

 

In the training stage of this framework, the sparse discriminant vector is obtained so that the 

projection of the signals on this vector is a good predictor of class labels (e.g., 1.0 for intact 

pipes, and -1.0 for damaged pipes). Every arrival in the time trace of the signal is assigned a 

coefficient representing their significance in predicting the class labels. Therefore, the arrivals 

with less contribution in defining the state of the pipe are assigned close-to-zero coefficients. 

 

It is important to evaluate the performance of the SD method when training and test data are 

different in terms of parameters that can affect time-location of the damage-sensitive arrivals. 

These parameters include EOCs, as well as damage characteristics, such as location, type, size, 

and number of damage(s). I analyzed and experimentally validated the detection performance of 

the SD method under different scenarios. Detection accuracies above 96% have been achieved 

for all the experiments reported in this chapter.   

 

Although the robustness of the SD method to training parameters has been validated, its 

application is limited to the cases where access to the pipe, to impose training abnormality, is 

possible and practical. Moreover, it is useful to reduce the number of training parameters that 

may affect detection performance. Therefore, in Chapter 5, I developed an unsupervised method 
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to address this limitation, in addition to the aforementioned challenges inherent in the nature of 

guided-waves.  

 

Damage changes guided-wave signals. However, due to complex nature of these signals, and the 

EOC effects, in practice, detecting such changes is not trivial. The proposed idea in Chapter 5 is 

to extract a sparse subset of the arrivals that represents the majority of the energy of the signals 

for wide range of EOCs. Therefore, in such a subset, the effects of EOCs are less dominant 

compared to those in complete signals. The training data in the proposed approach is not labeled, 

but is assumed to mostly include the signals from the intact pipe. Due to the effects of damage, 

this subset will not be a good representative of such arrivals in the damaged signals. Therefore, 

the error in estimating signals’ energy (∆𝐸) with this subset will increase when damage occurs. 

Moreover, occurrence of damage will increase the sensitivity of the ∆𝐸 values to EOC 

variations. These energy estimation errors (∆𝐸s) were used as damage-sensitive features in the 

proposed approach (namely, Sparse Energy (SE) method).     

 

To validate the discriminatory power of the damage-sensitive features, and to investigate their 

distribution in both populations, I applied two heuristic classification methods , namely, a 

clustering method based on K-means, and a method based on support vector machine (SVM) 

with RBF kernel. For online detection purposes, however, a detection method based on 

Kullback-Leibler Divergence (KL) was applied. I validated the SE method using the same set of 

field and laboratory data used in Chapter 4. According to these results, the proposed SE method 

is successful in online detection of damage under varying EOCs. However, it is shown that the 

wider the range of EOCs in the training dataset, the better the detection performance of the SE 
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method. This range, however, is not required to be comprehensive of all possible testing 

scenarios. For example, for a test dataset in which temperature varied between 24℃ and 39℃, a 

training dataset with temperatures ranging between 24℃ and 30℃ resulted in separation 

accuracy of 99%, and detection delay of five observations. Moreover, it was observed that 

detection performance could diminish as the training dataset includes damaged signals.  

 

Figure 6.1 depicts the proposed framework for online damage detection of pipelines using the 

two approaches proposed in Chapter 4 and Chapter 5.  

 

 

Figure 6.1: Overview of the proposed online damage detection framework. 
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6.2 Contributions     

 

In Chapter 4 of this dissertation, I tested the following hypothesis:  

 

A sparse subset of the arrivals in a diffuse-field guided-wave signal contains 

enough information for optimal damage detection, and this subset is less 

sensitive to EOC variations compared to the complete signal.   

 

Extracting damage information from complex guided-wave signals has been the topic of vast 

amount of studies for over half a century. A number of these studies are based on compensating 

for particular EOCs and/or extraction of scatter signals. However, as discussed in Chapter 1, 

these methods are often ad hoc to a particular damage scenario, EOC, or wave mode, and 

therefore, lack extensibility to different realistic operational conditions.   

 

To the best of my knowledge, the work presented in Chapter 4 is the first study that takes 

advantage of the sparsity of damage information in time domain of diffuse-field guided-wave 

signals for optimal detection of damages with different characteristics.  

 

I have proved that the proposed method does not rely on comprehensive training dataset that 

covers the majority of EOC scenarios and/or requires prior knowledge about the damage 

characteristics (e.g., type, location, size, number). Moreover, this study incorporates a formal 

understanding regarding the effects of several parameters on different aspects of the approach. I 
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believe that such physical and experimental intuitions are important for extending the approach 

to a variety of operational scenarios.  

 

The robustness of the method to wide ranges of EOCs makes it attractive for online monitoring. 

The proposed framework has proved successful for online detection of small damages of 

different type, as well as occurrence of consecutive damages, under varying EOCs. The non-

adoptive approach proposed here prevents the performance of the SD method to be affected by 

false alarms.  

 

In addition to the advantages of the proposed detection approach, the extracted sparse subset of 

the signal provides important insight regarding the role of different arrivals in the signals’ time 

trace. For example, I found that later arrivals and end-reflections could substantially contribute in 

estimating the state of the pipe. Moreover, my findings suggest that even small damages can 

affect the physical properties of the pipe, so that the first arrivals that do not include reflections 

from damage can contain significant damage information. Therefore, denoising and/or diagnosis 

methods that are based on removal of multi-path reflections and/or first arrivals may be 

vulnerable to eliminating useful information.  

 

The most widely used solution to address the complexity of guided-waves is single-mode 

excitation with an array of transducers. The limitations of such approaches are discussed in 

Chapter 1. The proposed method in Chapter 4, however, uses multi-modal signals obtained from 

a simple low-cost, low-power, pitch-catch method. Therefore, besides the simplicity of the 

implementation, this method makes it possible to benefit from distinct characteristics of multiple 
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modes, since different wave modes are sensitive to different features of damage/EOCs. This 

further expands the application of the method.  

 

In Chapter 5, an unsupervised method is proposed to address the potential challenges of the SD 

method in obtaining labeled data. Damage, in the form of variation in the pipe’s wall thickness or 

surface roughness, alters guided-wave signals. However, differentiating such changes from the 

ones caused by EOC variations is not trivial, especially, in complex diffuse-field signals. In 

Chapter 5, I suggest that, for optimal damage detection, one do not need to study the complete 

set of signals’ arrivals, but only a sparse subset of the arrivals that represents the majority of 

signals’ energy, for wide range of EOCs. 

 

For the method proposed in this chapter, the following facts are verified: (1) among the recorded 

samples, the effects of EOCs will be more significant on low-energy arrivals with small signal-

to-noise ratios (SNR) compared to high-energy arrivals, and (2) damage changes the energy-

content and/or time-location of the arrivals in guided-wave signals.  

 

Based on the aforementioned facts, in Chapter 5, I tested the following hypotheses: 

 

A sparse subset of the arrivals in a diffuse-field guided-wave signal 

represents the majority of the signal’s energy, and this subset is less sensitive 

to EOC variations than the complete signal.    
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Due to the effects of damage, the sparse subset of the arrivals representing 

the majority of intact signals’ energy is not a good representative of the 

energy of the damaged signals. Hence, such a sparse representation of intact 

signals is sensitive to occurrence of damage.  

 

The experimental analysis reported in Chapter 5 verified substantial differences between the time 

locations of high-energy arrivals in intact signals and the ones in damaged signals. I have shown 

that such differences can be detected under a wide range of EOCs if only a sparse subset of the 

arrivals is considered. To the best of my knowledge, these facts have not been formally 

incorporated into damage detection methods. Moreover, this work is the first study taking 

advantage of the sparsity of the arrivals that represent the majority of the energy of a complex 

diffuse-field signal for damage detection under varying EOCs. 

    

Similar to the SD method, detection capability of the SE method is not based on any assumption 

regarding a particular type, size and/or location of damage. That is, regardless of the nature of 

the physical phenomenon caused by damage (e.g., mode conversion, change in phase velocity, 

etc.), if the extracted sparse subset is affected by damage, it can be detected. The proposed SE 

method has proved successful for detection of damages with different characteristics (i.e., types, 

location, and size), under wide range of EOCs.  

 

The aforementioned advantages of the SD method in implementation simplicity, benefitting from 

multi-modal waves, and high online detection performance apply to the SE method as well.  
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Moreover, my experiments suggest that:  (a) The first set of high-energy arrivals has less 

contribution in total energy of the signals compared to the later arrivals. (b) Almost no overlap 

was observed between the SD and SE coefficients, suggesting that the arrivals with maximum 

damage information are the ones with least energy content. (c) Even small damages can affect 

the physical properties of the pipe. Such changes can affect the propagation of high-energy 

arrivals through undamaged sections of the pipe. Therefore, even the arrivals from undamaged 

sections may include damage information.     

 

The two proposed frameworks provide a novel approach (Figure 6.1) supporting continuous 

online monitoring of pipelines operating under wide ranges of varying EOCs.  

 

6.3 Limitations 

 

The supervised online monitoring framework proposed in Chapter 4 has proved high detection 

performance for a wide range of EOCs and damage scenarios. The tradeoff for this level of 

performance, however, is the requirement for labeled training data. The unsupervised framework 

proposed in Chapter 5 eliminates the damage-related training parameters. However, this is 

achieved at the cost of slight increase in the sensitivity of the method to EOC variations. As 

discussed in Chapter 5, the detection performance can degrade if training data is obtained under 

very limited ranges of EOCs compared to the test data. It is, however, notable that this method 

outperforms the current state-of-the-art approaches that, for example, can only compensate for 

temperature variations of 0.5-1℃. The final framework proposed in this thesis (Figure 6.1) 
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provides a guideline for practitioners to choose the suitable approach for a particular application, 

by trading off the pros and cons of each approach.      

   

6.4 Future Work 

 

The online detection framework presented in this thesis is an initial stage for a complete online 

diagnosis approach. Below is the summary of the future research avenues for achieving this 

vision. 

   

Damage Quantification and Characterization: 

Development of damage in real life is a gradual phenomenon. It is important to detect and 

quantify the changes in the severity of damage throughout its gradual development. Moreover, 

work needs to be done to formally define the types of the defects that the proposed methods can 

detect. Intuitively, in both SD and SE methods, the observations from an in-progress damage can 

be distinguished as soon as the corresponding sparse signals deviate from those of undamaged 

pipe. As shown in the validation sections of Chapter 4 and Chapter 5, such deviations can be 

quite significant for a crack as small as 10% of the thickness of the pipe. In addition, these 

experiments suggest that the change in the severity of damage might be detectable. Future work 

includes expansion of these methods for detection of gradual development of defects.  

 

Damage Localization: 

For complete damage diagnosis, once occurrence of damage is detected, its precise location on 

the pipe should be identified. Signals scattered from damage, so called scatter signals, are usually 
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used for localization. However, extracting scatter signals from multi-modal guided-wave signals 

is not trivial. Our study (Eybpoosh et al., 2015) shows that this becomes even more challenging 

when multi-modal signals are exposed to varying EOCs. In Eybpoosh et al., (2015), I have 

simulated guided-waves propagating in a pipe under different temperatures. The results suggest 

that different wave modes have different sensitivities to temperature variations. Therefore, 

generally, under varying temperatures, scatter signal is nonlinearly related to other components 

of the signal. I applied a nonlinear feature extraction method (namely, nonlinear principal 

component analysis, NLPCA) to remove nonlinear dependencies between signal components 

(Eybpoosh et al., 2015). Therefore, in order to expand the work presented in this thesis to 

localization of the detected damages, one path is to use nonlinear methods for extracting scatter 

signals. Based on the findings reported in Eybpoosh et al. (2015), I believe that such methods 

will improve localization with the diffuse-field guided-wave signals.      

 

Damage Detection of Buried Pipes: 

Coupling material outside the pipe (e.g., soil, water, etc.) can affect the propagation of the 

guided-waves, through energy leakage, mode conversion and/or additional mode generation. 

Evaluation of the proposed approaches for buried pipes was not within the scope of this thesis. 

However, since significant portion of the pipelines worldwide is buried, it is important to expand 

the proposed framework to such cases.     
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