
Carnegie Mellon University

CARNEGIE INSTITUTE OF TECHNOLOGY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR THE DEGREE OF Doctor of Philosophy

TITLE A Framework for Estimating Energy Consumed by Electric

 Loads Through Minimally Intrusive Approaches

PRESENTED BY Suman Giri

ACCEPTED BY THE DEPARTMENTS OF

 Civil and Environmental Engineering

 Mario Berges April 27, 2015

 ADVISOR, MAJOR PROFESSOR DATE

 David A. Dzombak April 30, 2015

 DEPARTMENT HEAD DATE

APPROVED BY THE COLLEGE COUNCIL

 Vijayakumar Bhagavatula May 4, 2015

 DEAN DATE

A framework for estimating energy consumed by electric

loads through minimally intrusive approaches.

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Advanced Infrastructure Systems

Suman Giri

B.A., Physics, Mathematics, Oberlin College

M.S., Civil Engineering, Carnegie Mellon University

Carnegie Mellon University
Pittsburgh, PA

May, 2015

©2015 Suman Giri. Some rights reserved. Except where indicated, this work is

licensed under a Creative Commons Attribution 3.0 United States License. Please

see http://creativecommons.org/licenses/by/3.0/us/ for details.

The views and conclusions contained in this document are those of the author, and

should not be interpreted as representing the official policies, either expressed or

implied, of any sponsoring institution, the U.S. government, or any other entity.

Keywords: non-intrusive load monitoring, NILM, energy estimation, virtual sens-

ing, finite state machines, error correction.

http://creativecommons.org/licenses/by/3.0/us/

Abstract

This dissertation explores the problem of energy estimation in su-

pervised Non-Intrusive Load Monitoring (NILM). NILM refers to a set

of techniques used to estimate the electricity consumed by individual

loads in a building from measurements of the total electrical consump-

tion. Most commonly, NILM works by first attributing any significant

change in the total power consumption (also known as an event) to a

specific load and subsequently using these attributions (i.e. the labels

for the events) to estimate energy for each load. For this last step, most

proposed solutions in the field impart simplifying assumptions to make

the problem more tractable. This has severely limited the practicality

of the proposed solutions. To address this knowledge gap, we present

a framework for creating appliance models based on classification labels

and aggregate power measurements that can help relax many of these

assumptions. Within the framework, we model the problem of utilizing

a sequence of event labels to generate energy estimates as a broader class

of problems that has two major components (i) With the understanding

that the labels arise from a process with distinct states and state tran-

sitions, we estimate the underlying Finite State Machine (FSM) model

that most likely generated the observed sequence (ii) We allow for the

observed sequence to have errors, and present an error correction algo-

rithm to detect and correct them. We test the framework on data from

43 appliances collected from 19 houses and find that it improves errors

in energy estimates when compared to the case with no correction in 19

appliances by a factor of 50, leaves 17 appliances unchanged, and nega-

tively impacts 6 appliances by a factor of 1.4. This approach of utilizing

event sequences to estimate energy has implications in virtual metering

of appliances as well. In a case study, we utilize this framework in order

to substitute the need of plug-level sensors with cheap and easily de-

ployable contacless sensors, and find that on the 6 appliances virtually

metered using magnetic field sensors, the inferred energy values have an

average error of 10.9%

iv

aAmAko lAEg ...

Acknowledgments

Although, and I presume for practical reasons, this thesis bears my

name alone, it is a byproduct of hundreds of helpful discussions, and

thousands of words of encouragement and prayers from those who willed

me on. So, I would be remiss if I did not mention, at the very start, that

this contribution- however insignificant it maybe- is as much theirs as it

is mine.

I owe much gratitude to my advisor, Dr. Mario Bergés, for taking a

huge risk by accepting me as his PhD student. Although I sometimes still

question if that was right decision on his part, what I am absolutely sure

of is that I could not have made a better choice in selecting an advisor.

Your patience and approach to life (both personal and professional) have

been contagious and inspiring, and have shaped my evolution as a human

being and researcher through these years. So, thank you for being there,

and for being awesome.

I am also indebted to my committe members (Dr. Lucio Soibelman,

Dr. Chris Hendrickson, Dr. Artur Dubrawski, and Dr. Mario Bergés)

who are all extremely busy people in their own rights, but who always

made the time to give me valuable feedback when I needed guidance.

Without their experience, and helpful suggestions during my proposal,

this thesis would not have materialized. I would also like to acknowledge

the role Dr. Soibelman, Anu dai, and Adrian played in me selecting

Carnegie Mellon as my grad school of choice- guidance for which I am

forever thankful. People from industry including Sean and Mark from

Samsung Electronics, and Sri and Marco from SmartB have also helped

me at various parts of my tenure with invaluable feedback, and I would

like to thank them. A shoutout also to Samrachana for her statistics

input, Patrick and Niranjini (and Anthony’s lab) for hardware support,

Dr. Zico Kolter and Farrokh for generously sharing their data, and

Jingkun and Emre for help with miscellaneous (but important) bits. I am

also indebted to Kyle, Farrokh, and Lucas for various helpful discussions

on NILM related topics, and colleagues at Inferlab for listening to my

presentations and giving feedback.

My work was supported at various points by Samsung Telecommu-

nications America, and the NSF. In addition, the Bertucci fellowship

and Dean’s fellowship also sponsored part of the research work. I would

like to thank them all. Grad school, now I can safely say, is a long and

taxing process, both emotionally and intellectually, and -as the Beatles

so eloquently put it- I got by with a little help from my friends ; and

more than just a little at times. Thanks to Darshana for being with

me through the ups and downs, you have shaped my life in ways you’ll

never know. Thanks to Amsul, Regeant, Prabhat, Sariph, Samrachana,

Ashish, Samikshya, Ankit, Sona, Ichhuk, Isha, etc. for ensuring I had

some semblance of a social life through these years. Thanks also to Pra-

tiva and Maya for being more excited about my impending graduation

than I could ever be. Thanks to Shimon, Amy, and Steve and family,

for being my mentors/ adopted-family-members. Thanks to my mom

who has always been my biggest fan and my source of inspiration, and

to both my parents for having complete faith in all the decisions I made.

Finally, thanks to my younger brother, because why not.

vii

Contents

1 Introduction 1

1.1 Non-Intrusive Load Monitoring . 1

1.2 The need for appliance models in NILM 7

1.3 The need for error correction . 9

1.4 The case for virtual metering . 13

2 Motivating case studies 16

2.1 Case studies on appliance models . 16

2.1.1 Formalizing the energy estimation process 17

2.1.2 A more general view of the problem 19

2.1.3 Energy estimation in supervised settings without appliance

models . 21

2.1.4 Energy estimation in unsupervised settings without accurate

appliance models . 22

2.1.5 Energy estimation with basic appliance models 25

2.2 Case studies on Virtual Metering . 27

2.2.1 System Hardware . 28

2.2.2 System Software . 31

viii

2.2.3 System Evaluation . 34

3 An Energy Estimation Framework 40

3.1 State of the art in appliance behavior modeling 41

3.1.1 Finite State Machine formulations 42

3.1.2 Probabilistic prior models for appliances 43

3.1.3 Other ways of modeling appliances 44

3.2 Introduction to the framework . 45

3.3 Classifying distinct state transitions 49

3.4 Perturbance . 57

3.5 Creating transition probability matrices 61

3.5.1 Finding feasible cycles . 61

3.6 Creating state transition models . 62

3.7 Correcting errors . 64

3.8 Computing energy . 65

3.8.1 Further evaluation with simulated data 67

3.9 Discussion . 69

3.9.1 Discussion of results . 69

3.9.2 Discussion of framework . 70

3.9.3 Evaluation criteria . 74

3.10 Chapter Conclusion . 74

4 An Error Correction Framework 77

4.1 Introduction to the framework . 78

4.2 Shortest-path formulation . 82

4.3 Evaluation . 84

ix

4.3.1 Evaluation metrics . 85

4.3.2 Evaluation on Simulated Data 87

4.3.3 Evaluation on real data . 92

4.4 Discussion . 102

4.5 Chapter Conclusion . 105

5 Virtual metering of electrical appliances 107

5.1 Literature Survey . 108

5.1.1 Direct metering techniques . 108

5.1.2 Indirect metering techniques 109

5.2 Framework for analyzing sensor data 111

5.3 Experiment and Results . 113

5.4 Discussion . 115

5.5 Chapter Conclusion . 123

6 Summary 124

6.1 Summary and Broader Impact . 124

6.2 Future Work . 125

x

List of Figures

1.1 Break-down of annual energy savings by type of feedback. This graph,

adapted from [1], is based on the results of 36 studies that looked into

potential energy savings based on different kinds of feedback provided

to consumers. 3

1.2 Overall power consumption of a residential building during a twenty

minutes interval. Some appliances change states quickly during op-

eration (like the stove burner). By extracting appropriate features

from these power signatures, appliance types can be classified. 5

1.3 Steps involved in supervised NILM. In this thesis, we explore the

step of energy estimation by assuming results of the previous steps

are already available . 6

1.4 FSM diagram for a refrigerator from BLUED-1 (left), tv from BLUED-

1 (center) and laptop from BLUED-2 (right). 8

1.5 A generic communication model for a sequential data stream as it

gets corrupted on passing through a channel. 12

xi

1.6 Ground truth power trace for Refrigerator extracted from a public

dataset (BLUED [2]) plotted against a power trace reconstructed us-

ing event labels. As can be seen, missing a couple of events results in

a reconstructed trace that is very different from ground truth. 15

2.1 Section of a power trace reconstructed using event labels at mains for

refrigerator (above) and TV (below) 21

2.2 Section of a power trace reconstructed using event labels and appli-

ance models at mains for refrigerator, TV and computer 26

2.3 Data extracted for training HMM models for a dishwasher in House 4

for REDD from the aggregate using different priors (above), and the

ground truth for dishwasher as measured at circuit level (below). The

newer model is capable of extracting the right segment for learning,

contributing to better energy estimation results 27

2.4 Network Architecture . 30

2.5 EMF Event Detector Waveforms. Top: Ceiling fan with light switch

activated at point (a), manually turned on at point (b), and turned

off at point (c). Bottom: Desktop computer is an example of a noisy

signal due to switching. 31

2.6 EMF event detector stacked on FireFly3 sensor node. 32

2.7 Experimental Setup . 33

2.8 Piecewise appliance energy estimator running on a refrigerator. Thick

vertical lines at bottom show EMF event inputs onto the mains power

waveform. The bars across the top represent regions where power is

estimated to be constant. 34

xii

2.9 EMF sensor event detection confusion matrices. Total event count in

parentheses after appliance name. 36

2.10 Energy estimation performance . 38

2.11 Error vs Mains sampling window . 38

3.1 The input and output associated with the framework proposed in this

Chapter. 41

3.2 Summary of the major steps involved in the energy estimation frame-

work presented in the chapter. Steps B and C, and steps E and F

can be carried out in parallel, as their inputs are independent of each

other. 48

3.3 Weighted sum of errors in predicting the number of clusters, and the

values for exemplars for state transitions for different algorithms. . . . 53

3.4 RMS error evaluated on simulated data for different clustering algo-

rithms. 54

3.5 Clustering results on P-Q features using affinity propagation for the

Refrigerator and AV system on BLUED. The labels show the mean

∆P values of each cluster. The histograms show the frequency of

∆P ’s associated with the appliances. 55

3.6 State-transition diagrams for a Refrigerator (left) and TV (right)

learnt from the time series of events. 64

3.7 FSM diagram for a Refrigerator from BLUED-1 (left), TV from

BLUED-1 (center) and Laptop from BLUED-2 (right) created using

adjacency matrices . 65

xiii

3.8 Flow of data through the framework pipeline for the refrigerator in

BLUED-1. For illustration purposes, we pick a segment between 18:00

and 20:00, and note the actual values of Cseq, C
′
seq and X for that

portion only. The cluster number highlighted in red shows the error

that was corrected (from transition 3 to 4) in step F. 68

4.1 The input and output associated with the framework proposed in this

Chapter. 78

4.2 Network flow diagram for the sequence Cseq = {c1 . . . cm}. Three dif-

ferent kinds of error corrections are possible: Substitution, Insertion

and Deletion. 82

4.3 DTW cost matrix for two sequences (original and corrupted) for a

washer (label: 3) in dataset REDD-1. The appliance only has two

states, and hence the sequence fluctuates between two values. 86

4.4 Path (shown in white) with minimal cost of alignment for the original

sequence and corrupted sequence as shown in Figure 4.3. The DTW

distance was 5808. 86

4.5 Median error in energy estimation (e) for varying values of µ and ν,

with γ = 16. The medians were calculated after 100 simulations of

each cost combination. 91

4.6 Standard Deviations for the median errors as reported in Figure 4.5

for 100 iterations of different cost combinations. 92

xiv

4.7 Box plots of logarithmic values of the energy estimation error: e (top),

DTW distance of corrected sequences (middle), and RMS error of

reconstructed power traces (bottom), with box margins representing

the 25th and 75th percentile values, and median was calculated after

1000 simulation trials. EC stands for Error Correction. 93

4.8 The inputs and outputs involved in the evaluation process when the

error correction is applied on BLUED and REDD datasets. Energy

estimation framework refers to the framework from Chapter 3, and

Error correction framework is the one proposed in this chapter. . . . 95

4.9 A log-log plot of the change in energy estimation error upon using

the framework (y-axis) and the energy estimation error without the

framework (x-axis) for 43 appliances. 97

4.10 A log-log plot of the energy estimation error versus cluster quality

as measured by Dunn Index. Each dot represents appliances in the

same order as they appear in Table 4.3. 99

4.11 Change in energy estimation error (logarithmic) as the number of

clusters were varied for a sample set of appliances from the dataset.

The red circle denotes the number of clusters and error value the

algorithm converges to if it is not forced to assume a certain number

of clusters. 99

5.1 The vision for a contactless appliance-level energy metering setup.

The sensors log state changes in appliances, and send that info to a

central computational platform. The platform also receives aggregate

electricity data sampled using some energy meter. Combining the

two, it calculates energy for each appliance. 112

xv

5.2 HOBO motor on/off loggers (sensors) placed next to 6 appliances

for virtual metering. The red rectangle shows the location in the

appliance where the sensors were placed. 114

5.3 Ground truth power traces for two cycles each of washer (top), dryer

(middle), and AC (bottom) as measured by Firefly plug meters on a

specific day (24th February 2015) . 117

5.4 Left (a): P and Q power trace of a refrigerator mapped in the

PQ plane to extract steady states. Right(b): Simultaneous events

occuring within a window (above) and transient spikes that can affect

∆P computation (below) for two event instances of a dryer. 118

xvi

List of Tables

2.1 Energy estimation errors based on a framework with and without ap-

pliance models. The basic model that is used for comparison assumes

that the observed changes in power lie within the set of ∆P ’s that

are assigned. 23

2.2 Errors in energy estimation with (AT) and without (NT) training

using generic prior models of appliance types in REDD data. The old

prior models are models used by the author in [3] and the updated

models are empirical models chosen by us. 24

3.1 Summary of the datasets used for evaluation in this chapter 46

3.2 Results of perturbance on state transition values extracted after clus-

tering in different datasets . 60

3.3 Actual and estimated error for estimated energy for a select group

of appliances in 3 houses from different datasets. The energy was

estimated using the framework presented above. 75

3.4 Models for generating simulated data for analysis. 100, week-long,

power traces were generated for each appliance 76

3.5 Average error in energy estimation for simulated data for a 100 houses. 76

4.1 Summary of the parameters used in the simulation model 89

xvii

4.2 Summary of the datasets used for evaluation in the chapter. Dataset

index B stands for BLUED and R stands for REDD. Appliances are

indexed as follows: A-Refrigerator; B-Lights; C-TV; D-Computer; E-

Laptop; F-AV System; G-Washer; H-Oven; I-Dishwasher; J-Microwave;

K-Dryer; L-Furnace; M-PoolPump; N-HairDryer. 96

4.3 Results of energy estimation on 43 appliances from 19 houses with and

without the error correction framework. The sequence for error cor-

rection, and subsequent energy estimation was done using the frame-

work discussed in Chapter 3. Dataset index B stands for BLUED and

R stands for REDD. 100

5.1 A summary of the appliances used in the experiment and the events

associated with each appliance along with the results from energy

estimation using the virtual metering framework. 115

xviii

Chapter 1

Introduction

1.1 Non-Intrusive Load Monitoring
Electricity use in residential buildings is a big contributor to the total electricity

and total energy consumption, and, consequently, total fossil fuel exploitation. In

the U.S., 38% of the total electricity consumption is attributed to the residential

sector, which makes them contributors of around 17% to the total greenhouse gas

emissions [4]. Over the years, this realization has motivated academic and industrial

research in finding ways to reduce electricity consumption in residential buildings.

One way of reducing electricity consumption is by giving feedback to users on their

electricity consumption habits and patterns. From as far back as 1976, studies had

established that such feedback would amount to sizable savings in energy consump-

tion [5]. Multiple researchers have looked at different kinds of feedback and the

extent of savings each can potentially produce [1, 6]. Figure 1.1, adapted from a

meta-review of previous studies reported in [1], lays out the potential savings from

different kinds of feedback mechanisms. Darby, in her review of the effectiveness

of feedback in reducing consumption, has noted that direct feedback on aggregate

1

1.1. Non-Intrusive Load Monitoring

electricity consumption (immediate and easily visualized) can produce savings rang-

ing from 5-15% [6]. One form of meaningful feedback about electricity consumption

could be the appliance-level breakdown of electrical energy usage in a building. Nu-

merous studies have looked into savings generated in electricity consumption based

on feedback mechanisms, and real time disaggregated (appliance-level) feedback has

been found to generate the maximum savings [1]. Dennis et al. have claimed that

the reason feedback on aggregate electricity consumption is not as effective as it

should be is because consumers do not know what each component of their electric-

ity consumption is costing them [7]. Dobson and Griffin later studied the efficacy of

real time appliance-level consumption feedback to users [8]. Based on a two-month

long study on 25 households, they attributed savings of up to 12.9% to such feed-

back. Since then, four other studies have looked at the potential for savings from

giving appliance-level energy consumption information to users and have reported

savings from 9-15% [9, 10, 11, 12]. Based on these studies, Martinez et al. have

estimated the expected average savings from such feedback to be around 12% [1].

The sample size and duration of these studies demand caution before the results

are generalized, but the savings-potential of appliance-level feedback is promising.

Such information can also be valuable for other stake-holders in the energy efficiency

chain. For instance, other stake-holders like facility managers, energy auditors, and

even suppliers of electricity (e.g., Electric Utilities, Independent System Operators

(ISOs), energy retailers, etc.) can make informed decisions about issues like energy

management, planning, generation, and feedback. In addition to feedback about

usage patterns, such information also enables consumers and/or auditors to identify

appliances that are not operating optimally and need to be replaced. The potential

use cases can go as far as alerting users for any anomalous behavior (e.g., oven left

2

1.1. Non-Intrusive Load Monitoring

on), and pre-emptive fault/failure detection for appliances.

Figure 1.1: Break-down of annual energy savings by type of feedback. This graph, adapted
from [1], is based on the results of 36 studies that looked into potential energy savings based
on different kinds of feedback provided to consumers.

The straightforward way to obtain appliance level power consumption informa-

tion is through the use of plug-through power meters, also referred to as plug-meters.

Although several alternatives and easily deployable products are available in the

market, as discussed in Section 5.1, they suffer from two major limitations. First

one being the cost associated with these solutions. Berges at al. note that although

direct metering using plug-meters is a useful way to perform energy audits, their

payback periods (based on current market prices and estimated savings due to in-

stallation of such technologies) are fairly long [13]; typically, it is more than what

most customers are willing to engage in. The second major limitation is that not

all appliances can be monitored using plug-meters. Appliances whose plugs are typ-

ically diffcult to access or those that do not have a standard two or three-pronged

plugs (e.g, dishwashers, light fixtures, garbage disposals, dryers, HVAC, etc.) are

3

1.1. Non-Intrusive Load Monitoring

all examples where a plug-meter cannot perform the task of energy metering.

A less invasive and perhaps more cost-effective approach would be one pioneered

in the 1980s: Non-Intrusive Load Monitoring (NILM) [14]. NILM refers to a set

of techniques that algorithmically estimate the power consumed by individual de-

vices in a building from measurements of voltage and/or current taken at a limited

number of locations in the electrical distribution system of the premise. The event-

based approach to solving this problem attempts to attribute statistically signifi-

cant changes in the total power consumption (events) to changes in the operational

mode of specific devices, by classifying features of the signal changes (e.g., a change

in magnitude, frequency content). Figure 1.2 illustrates the initial idea proposed

in [14], where step changes of power in the main power line are used to determine

which appliance caused such change. Every time an appliance turns on within the

house, there is a change on the overall power consumed by the building, which

manifests as a step change - also known as power deltas (∆P). Features based on

these step changes, including the step change magnitude, the spike at the moment

of change (also known as transient) [15], and other quantities describing higher fre-

quency content on the voltage [16, 17] and/or current signals [18], have been found

to be characteristic to specific appliance types and may be used to distinguish one

appliance from another. A good review of the field including the features used and

popular methods can be found in [19]. Based on the presence or absence of the

need for training labels for the associated algorithms to identify and disaggregate

appliances, the common approaches in the NILM literature can be classified as su-

pervised and unsupervised approaches. Approaches that exploit meta-information

about an appliance’s operation (like sound, magnetic field, etc.) to facilitate NILM

4

1.1. Non-Intrusive Load Monitoring

algorithms, known as sensor-aided NILM approaches, have also been gaining trac-

tion lately [20, 21].

18:00 18:05 18:10 18:15 18:20
0

1000

2000

3000

time [hh:mm]

P
o
w

e
r

[k
W

]

Stove
state
changes

Refrigerator
off

Refrigerator
on

Figure 1.2: Overall power consumption of a residential building during a twenty minutes
interval. Some appliances change states quickly during operation (like the stove burner).
By extracting appropriate features from these power signatures, appliance types can be
classified.

In this thesis, we explore the sub-problem of energy estimation for appliances

through automated learning of appliance models, as it applies to supervised NILM.

Typically, supervised NILM consists of following steps: training, event detection,

feature extraction, classification, and energy estimation as summarized in Figure

1.3. Briefly, the process runs as follows: first, a signal S[t] (typically active power) is

monitored at the aggregate level. Then an event detection alogrithm (ED) searches

for change-points in S[t], which are assumed to indicate when appliances change

their state of operation (this also assumes that each operational state has a relatively

stable power consumption during steady state). Following this, a feature-extraction

algorithm (FE) extracts features associated with these events. A model is created

in advance – through a training phase – to learn a function (φ) that maps features

(X) of the events to labels (Y) corresponding to the appliances (and, optionally, the

5

1.1. Non-Intrusive Load Monitoring

state transitions) that were responsible for these events. In the classification step,

the function φ – learnt during training – classifies the extracted features into one

of the appliance labels. Finally, in the energy estimation step, the classified event

labels are used to estimate the energy consumed by each appliance. By definition, if

Pk[t] is the power consumed by appliance k at timestamp t, then the total energy as

consumed by the appliance over all time t is given by
∑

t Pk[t]. The total aggregate

energy, by definition (and principles of conservation of energy) is given by Equation

1.1. Here, N represents the total number of appliances being supplied by the mains,

and ε captures contributions of noise, cross-talk, etc. In Section 2.1.1, we formalize

the process of energy computation for an appliance as given by ∆P values at event

timestamps as detected by ED.

∑
t

P [t] =
N∑
k=1

(
∑
t

Pk[t]) + ε (1.1)

Monitor aggregate signal (S[t])

Event Detection (ED)

Feature Extraction (FE)

Training (ϕ: XàY)

Classification (ϕ (FE(ED(S[t])))

Energy estimation

! !
!

= !![!]
!

+
!

!!!
!!!!!!!!!!!!!!!!(!")

Classifying state transitions

Inferring state models

Correcting for errors

Estimating energy

Figure 1.3: Steps involved in supervised NILM. In this thesis, we explore the step of energy
estimation by assuming results of the previous steps are already available

6

1.2. The need for appliance models in NILM

Although an intriguing concept in theory, the problem of identification and dis-

aggregation can become very complex as the number of appliances in the house

increases. As of date, no complete NILM solution suitable for all types of household

appliances has been developed. Roth and Zeifmann in [19] note that the available

solutions are either unsuitable for some appliances or still at an early developmental

stage and that no complete set of robust and widely accepted appliance features has

been identified. Other authors who reviewed the field [22, 23] have reached similar

conclusions.

1.2 The need for appliance models in NILM
Part of the reason no generalizable solution for NILM exists yet is that the solu-

tions proposed to tackle energy estimation have typically assumed appliances to be

two-state machines exhibiting only on and off states1. However, many appliances

exhibit more complex behavior and thus, in many cases, it is necessary to learn from

data, the kinds of states an appliance can exist in, and the different state transitions

that are possible. Zeiffman and Roth note that appliances can be grouped into the

following categories based on their operational behavior: (1) On-Off appliances, (2)

Continuously variable loads, (3) Permanent devices, and (4) Finite state machines

(FSMs) [19]. Efforts to model FSMs, power consumption patterns of variable loads,

or power consumption between distinct state changes of appliances (for both On-

Off and FSMs) have been distinctly lacking so far. The FSM model is a directed

graphical representation with the nodes representing the different states that can

occur within an appliance and the edges representing the possible transitions be-
1For instance, of the 40 studies compared by Armel et al. in Appendix A in [23], none perform

energy estimation in multi-state appliances.

7

1.2. The need for appliance models in NILM

tween them. Figure 1.4, taken from [24] shows the FSM models for a refrigerator,

tv, and laptop from a publicly available dataset called BLUED [2]. Using the FSM

model, it is possible to constrain the power trace and energy estimates resulting

from power delta sequences to mitigate some of the errors resulting from NILM.

 0

 42 86

128

256

 0

197

 0

13

66

Figure 1.4: FSM diagram for a refrigerator from BLUED-1 (left), tv from BLUED-1 (cen-
ter) and laptop from BLUED-2 (right).

The majority of the proposed NILM solutions are supervised and event-based.

Energy estimation is traditionally an overlooked problem within supervised ap-

proaches, and most of the focus is on event-detection and appliance identification

(classification) [25]. Again, for context, we look at the 40 approaches summarized

in the meta-review by Armel et al. in [23], and find that only 6 perform energy

estimation. This trend is reflective of most proposed solutions in this realm. In

other words, most studies to date have stopped short of providing a solution that

estimates the energy consumed by each appliance and instead provide simply a time-

indexed list of operational state changes for each appliance. As we show in Chapter

2, energy estimation fares poorly in supervised solutions without a proper appliance

model. Unsupervised approaches typically require prior knowledge of appliance be-

8

1.3. The need for error correction

havior, which is assumed to be input by an expert [26, 3]. In some cases, they

assume a simplistic two state model for appliances, e.g., [27]. Learning such models

from data, and using them to supplement the algorithm has not been studied in

detail2. We argue that such a process could increase the appeal of both supervised

and unsupervised methods by increasing their accuracy. Likewise, having appliance

models could help a sensor-aided NILM system estimate energy accurately, even

when the input from the additional sensor is not directly related or translatable

to power consumption of the appliance it is monitoring. Details on the motivation

behind such methods can be found in Section 1.4 and, in Chapter 5, we present a

case study that achieves the same.

In Chapter 2, we build the case for the need for appliance models to perform ac-

curate energy estimation for both supervised and unsupervised NILM approaches by

evaluating some methods with and without the models on some standard datasets.

1.3 The need for error correction
As shown in Figure 1.3, the output of the classification step in supervised NILM

is a time series of state-transition labels assigned to the observed events. Formally,

we represent labels as tuples of the form (yi, tj) where yi is the appliance ID for the

appliance that caused the event, and tj is the timestamp at which the event occured.

It is trivial to extract ordered sequences of such labels pertaining to each appliance

from this time series. Each such sequence will be denoted as Cseq. Assume that an

operating model for the appliance that represents each such sequence, as described

in Section 1.2 is also available in the form of an FSM. The sequence Cseq is a direct
2As will be discussed in later, some authors like Kolter et al have proposed a semi-supervised

way to learn appliance models from data for unsupervised approaches, but the generalizability and
feasibility of such models have not been validated [28]

9

1.3. The need for error correction

product of the event detection and classification steps and errors occuring in these

steps (e.g., missed events, misclassifications, etc.). This results in a sequence that

violates the FSM that generates it, and causes erroneous energy estimation results.

Hence, an additional step of error identification and correction is required before

energy estimation is performed.

To get a better understanding of this, let’s assume an appliance with three states

of operation labelled 1, 2, and 3 corresponding to ∆P values of 40, −40 and −20

respectively. Say, the FSM model is available for the appliance and is represented by

a transition probability matrix as given by A =
[0 .5 0
.1 0 .6
1 0 0

]
. Also, assume a sequence

of events are observed to occur as Cseq = (1, 2, 1, 2, 1, 2). Now, the net power

consumption of the appliance at each of the events are (40, 0, 40, 0, 40, 0). For

simplicity, if we assume the units of the power deltas to be in kilowatt-hour (kWh),

and if each event lasts for 1 hour, the total energy consumption for the appliance,

over the span of 6 hours, is 120 kWh. Now, assume there was an error in Cseq re-

sulting from misclassification, and the third event was classified as a 2 instead of 1,

resulting in Cseq = (1, 2, 2, 2, 1, 2). As we can see, this observed sequence of events

violates the FSM model that generates it, as the transition from state 2 to itself is

not possible as given by A. The new Cseq indicates that the net power consumption

would now be (40, 0, −40, −80, −40, −80), and the energy consumption under

previous assumptions would be 40 kWh3. As can be seen, due of one error in the

sequence, the energy estimates were off by 3 times. An ideal error correction al-

gorithm should be able to recognize this and replace the erroneous state with its

proper substitute.
3negative energy consumption were treated as zeros.

10

1.3. The need for error correction

The problem of correcting errors in sequences generated by FSMs has been stud-

ied extensively for problems in communication theory, DNA sequencing, pattern

recognition, etc [29, 30]. Figure 1.5, adapted from [31] shows a typical channel data

stream as it goes through corruption from a noisy channel, and subsequent correc-

tion via some error correction mechanism (decoder). Hart drew similarities between

the NILM problem and the problem of decoding additive signals on a Multiple-

Access Channel (MAC) [32]. He cited the low signal to noise ratio, and low message

rate to channel capacity ratio as some of the desirable features of this channel. But

compared to other decoding problems where error correction is required, the NILM

channel presents a unique set of challenges. Typically, solutions for correcting errors

assume certain properties about the noise in the channel, which makes the correction

process more systematic. In addition, as shown in Figure 1.5 most error correcting

algorithms have a coder for the input sequence that allows it to be encoded in a spe-

cific way to facilitate decoding. The NILM problem does not allow for either of these

steps, as it has no control over the input sequence. Essentially, the only flexibility

that exists is the capacity to exploit information about the constraints imparted

by the FSM to correct for errors. It is also worth noting that the definition of the

channel in this problem not only includes the NILM hardware, but also the process

by which the algorithm arrives at appliance specific time-series. Finally, since the

goal of correcting errors in NILM is to perform energy estimation, errors are highly

sensitive to propagation, and hence the error-correction algorithm for such errors

needs to minimize such possibilities.

Hart also proposed an algorithm to correct errrors in sequences generated by

11

1.4. The need for error correction

Coder	

Channel	

Channel	

Inverter	

Code	

Inverter	

Decoder	
 Input	

Data	

Coded	

Data	

Corrupt	
 	

Data	

Corrected	

Data	

Figure 1.5: A generic communication model for a sequential data stream as it gets cor-
rupted on passing through a channel.

FSMs in [31] where he mentioned NILM as one of the potential use cases for his al-

gorithm. His framework introduces the idea of channel rules, where the user knows,

a priori, the kinds of modifications the channel-inverter can impart on the observed

sequence. In Chapter 4, we modify his concept to allow for the same channel rules

(namely single bit insertion, deletion or substitution) for all sequences, which makes

the method more generalizable. In addition, we introduce constraints specific to

energy estimation in the algorithm, which caters to the ultimate goal of the error

correction. Although the algorithm utilizes prior beliefs specific to appliance behav-

ior, we believe the general framework of incorporating domain knowledge to correct

for errors in sequential data streams can be beneficial in other fields like character

recognition, automated spelling correction, DNA sequencing, etc. The appliances,

in our case, act as coders (Figure 1.5) constraining the input data to assume a finite

number of states. Utilizing this information about appliance behavior, and some

assumptions about how the channel is likely to corrupt the coded data, we create

an appropriate decoder that inverts the effect of the channel. As mentioned before,

this approach has the potential to be transferred to other fields once the effects of

the coder and channel have been established. To summarize, our major contribution

in this particular chapter (Chapter 4) are: (a) an extended algorithm for correcting

errors in supervised NILM with novel evaluation metrics (b) results from real data

from 43 appliances collected from 19 different houses.

12

1.4. The case for virtual metering

1.4 The case for virtual metering
Until NILM becomes a practical and viable solution, one temporary way to

obtain appliance level power consumption information and overcome the aforemen-

tioned limitations of direct plug-through meters, is through the use of indirect sens-

ing methods to infer the electricity consumption of appliances. The idea is to use

sensors that do not necessarily need to be in contact with the power source that

feeds the appliance4 to measure effects in the appliance that correlate with its power

consumption. This kind of arrangement when information from the physical imple-

mentation of a system (also known as side-channel information) is exploited in order

to infer its intrinsic characteristics is also common in cryptography, where there have

been demonstration of possible attacks to an encrypted communication by making

use of information leaked through side-channels such as the power consumed by the

computers (e.g., [33, 34]). Sensors like sound sensors, light sensors, magnetic field

sensors, vibration sensors, etc. are possible alternatives [35]. Such sensors typically

are cheaper than plug-sensors by orders of magnitude, sometimes ranging as low as

2-3 dollars [21]. They are also easy to deploy, and can sense effects from appliances

that do not have a dedicated or traditional plug power supply. Appliance metering

using such a setup typically also requires the monitoring of aggregate power in the

building using an energy meter.

But use of such sensors to meter appliance-level energy comes with challenges of

its own. The first challenge is that of calibration. Typically methods that rely on

converting the effect sensed by the sensor directly into power values require proper

calibration. Factors like sensor placement, orientation, ambient noise, etc. can
4Hence, called contactless sensors

13

1.4. The case for virtual metering

greatly affect readings in such situtations. To avoid this, some methods rely on

utilizing these sensors only as state or event estimators for the appliance. These

methods typically also require the aggregate power to be measured using an electric

meter. They then use the aggregate power measurements, during events as reported

by such sensors, to calculate the change in power observed during events. Once all

such power changes are logged, energy is then inferred by assuming power values

to be constants between events. Such methods are prone to errors resulting from

simultaneous events occuring at the aggregate level, and false readings from the sen-

sors. This is especially likely for complex appliances with multiple states. Figure 1.6

shows a case where missing an event can result in accumulation of errors, which can

significantly impact the estimation of energy consumed by the appliance. Knowing

the exact states that the appliance can exist in, and the respective power consump-

tions of those states are also crucial in estimating the energy consumed. In Chapter

5, we utilize our energy estimation framework for virtual metering of appliances.

Although NILM in itself provides an exciting alternative to the appliance-metering

problem by only requiring single point sensing to perform appliance-level metering,

the technology is not yet at a stage where it can be implemented in a realistic set-

ting [19, 22]. But the framework we proposed for energy estimation can be used

to virtually meter appliances in the case where several contactless sensors provide

state change information to the aggregate power monitor. This method is attractive

because it requires minimal calibration5, and has the ability to correct for errors im-

parted by noise, false events, etc. This provies a practical method for energy audits

of appliances using commercially available and easily deployable sensors and using a

framework that addresses some of the major issues in the energy metering process.
5The power meter at the electric panel needs to be calibrated to read accurate values.

14

1.4. The case for virtual metering

1:00 PM 1:30 PM 2:00 PM 2:30 PM 3:00 PM 3:30 PM 4:00 PM 4:30 PM
0

50

100

150

200

250

300

350

400

450

500

Time

P
o
w

e
r

(W
a
tt
s
)

Missed
Event

Missed
Event

Reconstructed Signal
Ground Truth Signal

Figure 1.6: Ground truth power trace for Refrigerator extracted from a public dataset
(BLUED [2]) plotted against a power trace reconstructed using event labels. As can be
seen, missing a couple of events results in a reconstructed trace that is very different from
ground truth.

We test this using 6 different appliances with multiple states as monitored using

such contactless sensors and show that results are promising. Until NILM becomes

viable, or plug-level meters become cost-effective, we believe this is a practical way

to conduct appliance metering.

15

Chapter 2

Motivating case studies

In this chapter, we build an empirical case for the need and purpose of an energy es-

timation framework. In Section 2.1, we empirically evaluate some standard datasets

to understand how lack of a robust framework affects energy estimates. In Section

2.2, we explore the feasibility of a cheap and easily deployable Electro-magnetic

Field (EMF) sensor to provide event labels for virtual metering.

2.1 Case studies on appliance models
This section explores the advantages of having appliance models for energy esti-

mation. Throughout this section, and the thesis in general, we use publicly available,

and standard datasets: namely, REDD [37] and BLUED [2] for the purposes of our

analysis. BLUED contains high frequency current and voltage data sampled at 12

kHz for a week from one house. The dataset also contains real and reactive power

sampled at mains (at 60 Hz) with each event timestamp labelled with the ID of the

appliance that caused it. To our knowledge, it is the only dataset available publicly

that has appliance-level event labels. We add two more houses in BLUED, which

This chapter is partly based on the manuscript in [36]

16

2.1. Case studies on appliance models

are not public yet, but are collected using the same methodology later in the thesis.

These will be referred to as houses BLUED-2 and BLUED-3. REDD, on the other

hand, has real power sampled at 1 Hz, with sub-circuit level ground truth sampled

at ∼ 0.25 Hz. It contains data from 6 houses collected for varying periods of time

(almost a month). Although a couple of houses in REDD have high frequency data,

the files were found to be corrupt with usable data missing for the most part. The

appliances we choose to analyze are selectively picked based on their complexity,

and availability of ground truth. In the case of REDD where only sub-circuit level

ground truth is available, and event labels are not, we label the events at the sub-

circuit level manually to the best of our knowledge. Inevitably, only appliances that

have a dedicated sub-circuit get chosen because of this limitation on the availability

of ground truth labels. Through this section, we aim to make the case that learning

better appliance models can improve energy estimates of an appliance, irrespective

of the technique used for energy estimation.

2.1.1 Formalizing the energy estimation process

Terms like energy estimation and appliance models will be used throughout the

thesis; in this section we formalize the definition for these terms. The process

of appliance modeling refers to the estimation of the following aspects of a given

appliance yi :

1. The number of distinct state transitions possible for yi, denoted by the set

∆P = {∆P1, . . . ,∆Pn}

2. The number of distinct states yi can exist in, denoted by the set P = {P1, . . . , Pn}

3. The transition probabilities between the state transitions, as denoted by the

matrix A, with aij ∈ A indicating the probability of transition between ∆Pi

17

2.1. Case studies on appliance models

and ∆Pj.

As illustrated in Figure 1.4, FSM diagrams provide a good visual way to illustrate

these properties.

To perform energy estimation the event timestamps associated with yi are re-

quired, and we assume they are denoted by the set T = {t1, . . . tm}. At each

timestamp ti, the state transition that the appliance went through (from the set

∆P) needs to be computed. Once ∆P values are calculated, a simplistic approach

to obtain the power trace for an appliance given a ∆P sequence, would be to as-

sume piece-wise constant power between each element of this sequence, along with

an initial power value P0, and then perform the following sum to obtain the power

value at timestamp t: P̂ [t] = P0 +
∑|R|

j=1 ∆P j where |R| denotes the cardinality of

set R = {tj : tj < t; ∀ tj ∈ T}. Energy (Êi) for yi between timestamps t1 and tm

can then be computed with the following relation:

Êi = P̂ [t1](t2 − t1) + P̂ [t2](t3 − t2) + · · ·+ P̂ [tm−1](tm − tm−1) (2.1)

It is worth reiterating that this method of energy estimation assumes that power

consumption for appliances remains constant between consecutive events, and is

referred to as the piece-wise constant assumption. In Sections 2.1.3 and 2.1.4, when

we compute energy without appliance models, we assume that sets ∆P and P are not

available, and hence, power differentials, and consequently P̂ [t] values are computed

as they are observed during events. As a result, P̂ [t] will assume a wide range of

values, which effects the energy estimation results. In Section 2.1.5, we assume that

this information is available and force P̂ [t] to take on a finite set of values.

18

2.1. Case studies on appliance models

2.1.2 A more general view of the problem

In a sense, the whole problem of energy estimation in NILM is the problem of in-

ferring the appliance model (∆P , P , and A) from event labels, and using the model

to, first, correct for any erroneous labels, and, second, estimate energy as given

by Equation 2.1. This problem statement can be made more general by drawing

comparisons with a communication model as depicted in Figure 1.5. The appliance

is the coder which forces the input data to assume certain properties as dictated

by their FSMs. The electric circuit along with the algorithms for ED, FE, and

φ constitute the channel. The process of inferring the appliance model is the code

inverter which takes in the times series of event labels as the input, and outputs

the appliance model (∆P , P , and A). The process of error correction is akin to

the channel inverter, which takes in the corrupt sequence as input, and outputs the

corrected sequence. The process of inferring energy from the corrected sequence is

through a straightforward implementation of Equation 2.1.

Notationally, we denote the code inverter as a function g : Ξ → Ψ, which

maps a time-series ξ in a vector-space of time-series data dentoed by Ξ, where

ξi ∈ Rn,∀ ξi ∈ ξ, to the model-space Ψ, where each ψ ∈ Ψ is a set of the form

{∆Pψ, Pψ, and Aψ}. Similarly, the channel inverter is denoted by a function

h : (Υ × Ψ) → Υ′, where υ is a time-series in a vector-space denoted by Υ, with

υi ∈ Zn,∀ υi ∈ υ. All the time-series in Υ have a specific number of unique elements

(given by the cardinality of their respective ∆Pψ sets, i.e. |∆Pψ|, in (υ, ψ)). Υ′ is

a subspace of the vector-space Υ (denoted mathematically as Υ′ ≤ Υ), where all

elements υ′i, of time-series υ′ ∈ Υ′, follow the transitions according to Aψ. Basically,

function hmaps a time-series and its associated model, denoted by (υ, ψ), to another

19

2.1. Case studies on appliance models

time-series, denoted by υ′, that follows certain Markovian restrictions imparted by

the transition probability matrix (Aψ)1.

We spend most of Chapter 3 in presenting a method to infer the function g. The

inference of a function with such kind of mapping has been studied in literature for

various applications including FSM estimation [32], topology estimation for latent

variable models [38, 39], etc. The available solutions typically work by iteratively

creating an FSM that maximizes the likelihood of the observed data. As will be

shown, the case of energy estimation carries a unique set of properties that allow for

the use of certain techniques that is not possible in a typical topology estimation

problem. We utilize these properties in our framework presented in Chapter 3.

Similarly, Chapter 4 presents a method for learning function h. This is a problem

that has been studied under fields like error correction techniques in noisy channels

in communication theory [32], inference of hidden states in latent variable models

[40], etc. We present a solution that incorporates certain appliance behavior related

properties, and prior belief about noise in the channel, in the Chapter 4. The

solutions in this framework (specifically, inference of functions g and h) can be

utilized in similar problems where an observed stream of data assumes a specific

number of states, and is supposed to follow defined rules of transition. Auotmated

spelling correction, character recognition, DNA sequencing, etc. are some possible

examples.
1In fact, and as we will show later, the time series υ′ that h maps to is the one in Υ′ that has

the least cost of alteration from Υ.

20

2.1. Case studies on appliance models

2.1.3 Energy estimation in supervised settings without ap-

pliance models

We use the first house in BLUED data for this analysis. Event detection and

classification labels were assumed to be perfect, and available to perform energy

estimation. Without any models for appliance behavior, the algorithm looks for

power differentials observed at the aggregate level around each event, and uses that

as the state change in power for the associated appliance. The power consump-

tion is assumed to be a piece-wise constant between consecutive events. A similar

method was applied in [36] to perform energy estimation in the sensor-aided case.

Throughout this thesis, we use percentage error in energy estimation as the metric

for evaluating our frameworks (Ê−E
E
× 100%). Here Ê is the estimated energy and

E is the ground truth energy as measured in kilowatt hours (kWh).

1.3192 1.3192 1.3192 1.3192 1.3192 1.3193 1.3193 1.3193 1.3193

x 10
9

0

500

1000

1500

Refrigerator

Time stamps (Unix)

P
o

w
e

r
(W

a
tt

s
)

1.3191 1.3192 1.3193 1.3194 1.3195 1.3196 1.3197

x 10
9

0

50

100

150

200

250

TV

Time stamps (Unix)

P
o

w
e

r
(W

a
tt

s
)

ground truth

reconstructed signal

Figure 2.1: Section of a power trace reconstructed using event labels at mains for refriger-
ator (above) and TV (below)

The first row for each appliance in Table 2.1 shows the accuracy of such energy

estimation techniques based on perfect classification labels, but with no models used

for energy estimation (labelled "without a model"). As is evident from the errors,

21

2.1. Case studies on appliance models

the energy estimation fares poorly. Even with almost-perfect ground truth, the

observed discrepancy exists because of the following reasons:

1. Sensitivity to outliers (caused either through mislabeling or simultaneous events)

which results in accumulation of errors.

2. Step changes in power are different when appliances turn on and off. So, the

model will accumulate errors because of this.

In addition, figuring out the transient window to calculate power differentials is not

trivial, as some transients are longer than others. This impacts the sensitivity of the

energy estimation framework significantly as well. Figure 2.1 serves to elucidate the

shortcomings of this method. The traces in red are the reconstructed power traces

based on observed power differentials at the mains, and the ones in blue show the

respective ground truth traces; the trace of the refrigerator shows the accumulation

of errors because of points (1) and (2) mentioned above.

2.1.4 Energy estimation in unsupervised settings without ac-

curate appliance models

In this section, we highlight some of the shortcomings of expert based prior mod-

els for appliances in unsupervised solutions. As a representative case, we choose the

HMM models proposed by Parson et al. in [3] and point to where models based on

general expert input might fail. The method relies on a training process where prior

knowledge (which includes the states, emission probability, and transition probabil-

ity) of generic appliance types are tuned to specific appliance instances using the

aggregate power consumption data. Each appliance is represented using a probabilis-

tic graphical model, and the training process corresponds to learning the parameters

22

2.1. Case studies on appliance models

Table 2.1: Energy estimation errors based on a framework with and without appliance
models. The basic model that is used for comparison assumes that the observed changes
in power lie within the set of ∆P ’s that are assigned.

House Appliances
(label)

Models for ∆P
(Watts)

Estimated
Energy
(kWh)

Actual
Energy
(kWh)

Error
(%)

BLUED

Without a model 213.7 6.7 3089.6
Refrigerator

(111) [70, 135, -135, -70,
350, -410]

7.1 6.7 6.0

Without a model 1.1 1.1 0
Lamp
(101) [12, -12] 1.1 1.1 0

Without a model 4.9 6.4 -23.4
TV
(129) [20, 180, -180, -200] 6.2 6.4 -3.1

Without a model 13.2 2.0 560.0
Computer

(118) [49, -49] 2.1 2.0 5.0

Without a model 7.4 0.8 825
Laptop
(120) [25, -25] 1.4 0.8 75.0

Without a model 7.3 4.9 49
AV System

(112) [41, -16, 8, -41, 48] 4.8 4.9 -2.0

of this model. The training process deploys an Expectation Maximizastion (EM)

algorithm using prior models on small overlapping windows of aggregate data to

find clean signatures of individual appliances. These signatures are then used to

futher tune the prior models. Once the models are fine-tuned, a modified version

of Viterbi algorithm is used to infer appliance level energy consumption. We pick

two implementations of the paper in particular: one without training (NT) and one

with aggregate training (AT). The former relies purely on the expert input of priors

23

2.1. Case studies on appliance models

Table 2.2: Errors in energy estimation with (AT) and without (NT) training using generic prior models
of appliance types in REDD data. The old prior models are models used by the author in [3] and the
updated models are empirical models chosen by us.

Expert models Improved models

Appliances House
(REDD)

Old
State
means
(Watts)

Old
Transi-
tion

proba-
bilities

Error
(NT)
(%)

Error
(AT)
(%)

Updated
State
means
(Watts)

Updated
Transi-
tion

proba-
bilities

Error
(NT)
(%)

Error
(AT)
(%)

Color
Scale
(0-1)

Refrigerator

2

 2
180
160

 91 33

 6
186
160

 86 26 1.0

 3

 2
180
160

 121 109

 1
132
118

 71 92

Microwave

1
[

1
1700

]
81 74

[
4

1575

]
63 70

2
[

1
1700

]
68 55

[
6

1800

]
54 62

0.5

3
[

1
1700

]
95 95

[
2

1745

]
92 94

Dishwasher 4
[

1
1400

]
105 101

[
0

1300

]
96 76

Washer/
Dryer

1
[

0
5000

]

447 70

 1
5420
650

 220 64
0.0

3
[

0
5000

]

4930 48

 1
4408
4564

 78 43

24

2.1. Case studies on appliance models

and transition probabilities to estimate appliance states, the latter picks segments

from aggregate data where only the appliance of interest is operating (by perform-

ing EM calculations on the observed data with expert based appliance models as

priors) in order to tune the model parameters. Putting aside, for a moment, the

possibility that such segments where only one appliance operates at a time might

not be found for training in a given aggregate power time series, we focus on how

the procedure is limited by appliance models; namely, the training process itself is

dependent heavily on the type of prior chosen. Table 2.2 (columns labelled "expert

models") shows the performance of both methods on a few appliances in the REDD

dataset using the same parameters as used by the author in [3]. In section 2.1.5, we

choose better appliance models and show improvements in energy estimation (Table

2.2). The error values reported are the percentage error in energy estimation over

the duration of the datasets. All pre-processing and un-listed parameters are kept

the same as in the original implementation to provide a fair comparison.

2.1.5 Energy estimation with basic appliance models

To illustrate how simple appliance models can significantly improve energy es-

timation, we manually assign possible state changes for an appliance based on its

labels at the aggregate power data. Tables 2.1 and 2.2 serve to elucidate this point.

The third column in Table 2.1 shows all the empirically built state transitions that

different appliances in BLUED could partake in. A heuristic is added such that all

observed power differentials at the mains are classified as the closest power differ-

ential (in terms of Euclidean distance) that the appliance can have. The results

in terms of energy estimation are found to be very close to ground truth, and sig-

nificantly better than the case with no models. Figure 2.2 illustrates the difference

between the estimated power traces and ground truth. Similarly, Table 2.2 (columns

25

2.2. Case studies on appliance models

1.3193 1.3193 1.3193 1.3194 1.3194 1.3194 1.3194

x 10
9

0

200

400

600

TimeStamps (Unix)

P
o

w
e

r
(W

a
tt

s
)

Refrigerator

1.3192 1.3192 1.3193 1.3193 1.3194 1.3194 1.3195 1.3195 1.3196 1.3196 1.3196

x 10
9

0

50

100

150

200

250

TimeStamps (Unix)

P
o

w
e

r
(W

a
tt

s
)

TV

1.3192 1.3193 1.3194 1.3195 1.3196 1.3197

x 10
9

0

20

40

60

80

TimeStamps (Unix)

P
o

w
e

r
(W

a
tt

s
)

Computer

Figure 2.2: Section of a power trace reconstructed using event labels and appliance models
at mains for refrigerator, TV and computer

labelled "improved models") demonstrates improved performance on appliances us-

ing better prior models. Figure 2.3 provides some insight into how better appliance

models provide improved energy estimation results in an HMM based approach; the

training data selected for learning a dishwasher model from aggregate data using

EM for a house in REDD extracts the right training data with better models.

For the supervised case (Table 2.1), apart from the models being fairly primitive,

the discrepancies probably also result from modeling power values as step-wise con-

stants and not taking into account different behaviors appliances exhibit in between

state transitions. In the case of unsupervised modeling (Table 2.2), the values are

empirically extracted without any sophisticated modeling, or training from ground

truth. The conclusion from this analysis is that appliance models can improve the

energy estimation techniques drastically. In Chapter 3, we propose some meth-

ods for learning appliance models automatically from data, and provide subsequent

validation.

26

2.2. Case studies on Virtual Metering

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

Time (Min)

P
o

w
e

r
(W

a
tt

s
)

improved model

expert model

0 5 10 15 20 25 30 35 40 45 50
0

500

1000

1500

Time (Min)

P
o

w
e

r
(W

a
tt

s
)

ground truth

Figure 2.3: Data extracted for training HMMmodels for a dishwasher in House 4 for REDD
from the aggregate using different priors (above), and the ground truth for dishwasher as
measured at circuit level (below). The newer model is capable of extracting the right
segment for learning, contributing to better energy estimation results

2.2 Case studies on Virtual Metering
The case for utilization of the energy estimation framework to perform virtual

metering hinges on the feasibility of using a cheap and easily deployable sensor that

can provide (side-channel) information in the form of event labels. To achieve this,

we worked on the design an implementation of an Electro-Magnetic Field (EMF)

sensor that amplies the magnetic field power values that it receives from appliances

and conveys this to a central computing platform via a wireless interface. We com-

pleted the system with a three-phase meter that can sample current and voltage

readings from the aggregate level at high frequencies, and a plug-level meter than

can collect ground truth data. The goal of this case study was to establish the

feasibility of using external sensors to label events. Hence, the values were sampled

at higher frequencies than what commercially (and easily) available sensors might

be able to achieve. This work was done in collaboration with Dr. Anthony Rowe,

and Niranjini Rajagopal, and is based on the manuscript in [36]

27

2.2. Case studies on Virtual Metering

2.2.1 System Hardware

The system consisted of a three-phase meter and EMF sensors that, in conjunc-

tion, collected and correlated appliance on/off events to meter them. Figure 2.4

shows an overview of the general system architecture which consists of the three-

phase meter used for overall mains power metering, plug-meter devices used for

ground-truth data collection and our EMF detectors. These components are con-

nected to a networked backend and displayed on the dashboard described in [41].

The circuit panel meter was a a custom three-phase power meter that employs

ADE7878 energy metering chip from Analog Devices, specifically to collect high

resolution data which can be correlated with events from our EMF detectors. Off-

the-shelf energy meters often make it difficult to capture high-speed raw waveforms.

In contrast, the meter samples both the current and the voltage on each phase at

1KHz, and uses an on-chip Digital Signal Processor (DSP) to compute true, appar-

ent and reactive power, as well as several other energy metrics.

Both for ground-truth validation and for devices that can benefit from remote

actuation, we used a FireFly plug meter [42]. Each plug meter contains the ability to

monitor and control two electrical outlets using wireless communication. The meter

uses an efficient switching power supply that draws less than 0.1 watts ensuring that

it does not unnecessarily increase building power consumption. The meter measures

true power, apparent power, power factor, frequency, rms current and rms voltage

with a sampling rate of 1KHz. Two solid-state relays are used to independently

control each outlet.

To get events associated with appliances through contactless methods, as de-

28

2.2. Case studies on Virtual Metering

scribed in Chapter 1, we designed a custom EMF sensor (Figure 2.6). The core

principle behind the EMF event detector is the ability to sense when an appliance

changes state by monitoring changes in nearby electromagnetic fields. From the laws

of physics, we know that alternating current flowing through a conductor will gen-

erate a corresponding magnetic field (H). Typically AC wires run as parallel pairs

and hence most of the magnetic fields cancel out. However, imbalances in wires

and stray currents flowing on ground lines as well as through appliances produce a

significant magnetic field. The amplitude of this field is generally small (millivolts),

but if sufficiently amplified, one can reconstruct the original source to a reasonable

degree of approximation.

Each time an appliance changes how much power it is consuming (e.g. for exam-

ple transitioning between on and off) there is a corresponding change in the nearby

magnetic field. In contrast, differences in voltages are responsible for creating electric

fields. This means that an appliance that is not drawing current may still generate

a strong electric field (E). The distinction between the electric and magnetic field

is useful for two reasons. First, the electric field can be used to detect if a device is

"live" or not. For example, overhead lights often switch the hot AC lines which can

easily be detected by inspecting the electric field. Second, if a device is powered,

but not active, the electric field strength can be used as a guide to find placement

areas where there will be a strong magnetic field once current begins to flow. Since

the electric field is not dependent on current flowing, abnormal fluctuations in the

electric field tend to indicate potential noisy situations. For example, if people are

nearby or touching the sensor, both the electric and magnetic field will be disturbed.

Figure 2.5 shows two example waveforms received by the circuit when placed

29

2.2. Case studies on Virtual Metering

Router Node

Gateway

Dashboard

Server

802.15.4

Plug
Transducer

TCP/IP
Network

EMF Sensor

3 Phase Meter

Figure 2.4: Network Architecture

near a ceiling fan and a desktop computer. Point (a) in the ceiling fan waveform

denotes when the wall switch is turned on which generates a corresponding electric

field. At point (b), the ceiling fan is manually switched on (by pulling the hanging

cord) causing current to flow and hence generating a magnetic field. The bottom

line in the upper graph shows the root mean square (RMS) value of the magnetic

field signal averaged over a window of 16ms (1/60Hz). The bottom graph shows the

magnetic field and the same sliding RMS value for a desktop computer. In both of

these cases the edges in the RMS signal are quite pronounced.

Figure 2.6 shows a picture of the EMF detector hardware connected to a Fire-

Fly wireless sensor node. The FireFly node is responsible for periodically sampling

the magnetic field in order to report appliance activation events. Since the signal

from the EMF detector has a steady-state value associated with the current of the

appliance, the FireFly node can duty-cycle its sampling to save energy. We explore

30

2.2. Case studies on Virtual Metering

¯

a	

b	
 c	

Electric	
 Field	

Magne0c	
 Field	

Detector	

Overhead	
 Fan	

¯

Magne0c	
 Field	

Detector	

Desktop	
 Computer	

Figure 2.5: EMF Event Detector Waveforms. Top: Ceiling fan with light switch activated
at point (a), manually turned on at point (b), and turned off at point (c). Bottom: Desktop
computer is an example of a noisy signal due to switching.

this and provide additional evaluation results related to the sensor’s sensitivity and

detection range in [21]. We measured that the EMF detection front-end consumes

approximately 45µW but this value can vary depending on the strength of the mea-

sured magnetic field.

2.2.2 System Software

In this section we first describe and evaluate the event detection algorithm run-

ning on each EMF detector. We then describe the approach used to label and record

per-appliance energy usage by communicating with the three-phase meter.

Event Detection Firmware

The EMF sensor locally performs two main tasks: (1) it adjusts a hardware gain

setting on the magnetic field sensing front-end to maintain a fixed peak-to-peak

value for the sensed signal and (2) it is responsible for detecting significant changes

31

2.2. Case studies on Virtual Metering

Figure 2.6: EMF event detector stacked on FireFly3 sensor node.

in field strength and reporting those to the wireless sensor node.

Our first challenge was choosing an adequate ADC sampling rate such that the

EMF sensor could accurately reconstruct the magnetic field signal. Sampling too

slowly would lead to poor performance, while sampling too quickly would waste

energy. In order to determine a sufficient sampling rate, we validated the detection

accuracy as compared to sampling rate using the experimental setup shown in Fig-

ure 2.7. The EMF sensor was placed at a distance of 5 cm from the wire while two

different appliances were transitioned (switched on/off) 40 times each. The accuracy

metric is computed as the number of correct transitions divided by the total transi-

tions detected in order to penalize false positives. For this experiment we used a 60

Watt fan and a 60 Watt incandescent light bulb since one is composed of a largely

inductive load and the other almost entirely resistive. Based on the experiment, we

decided on 1 kHz as the sampling frequency. Further details can be found in [36]

32

2.2. Case studies on Virtual Metering

Load~
Sensor120VAC

 60Hz

d 0.1-1KW

12 Gauge Wire

Figure 2.7: Experimental Setup

Appliance Metering

Each time an event is detected by an EMF sensor, a time-stamped message is

sent back to the gateway. Our algorithm then determines the change in power across

a time window before and after the event (the size of this window is evaluated in

Section 2.2.3). This power change can be positive or negative based on whether

the appliance went from a low-power to high-power state (eg. going from OFF to

ON) or vice versa. We then make an assumption that the power for this appliance

remains constant until the next observed event. At the next event, we either add or

subtract the new power delta and integrate energy over the previous period. This

process is continuously repeated while the system runs. Figure 2.8 illustrates this

power computation process for a couple of hours while metering a refrigerator.

A benefit of estimating power based on events, apart from its simplicity and

effectiveness, is that it can handle finite state transitions of an appliance to estimate

varying power consumption over a cycle, which has traditionally been a hard prob-

lem to tackle. The main limitation is that this approach fails to correctly estimate

energy usage for devices whose power consumption varies slowly over time (and be-

33

2.2. Case studies on Virtual Metering

13:00 13:15 13:30 13:45 14:00 14:15 14:30 14:45 15:00 15:15 15:30
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (in hrs:min)

P
o
w

e
r

c
o
n
s
u
m

p
ti
o
n
 (

w
a
tt
)

+129

−124
= 5

+228
=232

+127
=132

−229
=5

−119
=233

+120
=352

Figure 2.8: Piecewise appliance energy estimator running on a refrigerator. Thick vertical
lines at bottom show EMF event inputs onto the mains power waveform. The bars across
the top represent regions where power is estimated to be constant.

tween events) or devices that have significant phantom loads. This is admittedly a

very rudimentary way to estimate energy based on events, as the focus here is on the

ability of contactless sensors to provide events. The focus of this thesis, however,

is on creating a software framework to make this process robust and accurate. In

Chapter 5, we actually incorporate our energy estimation framework for the pur-

poses of virtual metering.

2.2.3 System Evaluation

In order to evaluate overall energy metering performance, we deployed our system

in a single-family residential building, and collected data for 1 week. We installed

our three-phase energy meter on the two 150amp mains lines that feed the house.

We installed plug-level meters (28 total) on any accessible plug-load appliances. Fi-

34

2.2. Case studies on Virtual Metering

nally, we installed 7 EMF sensors on the following appliances: LCD TV, Washing

Machine, Toaster Oven, Window AC, Laser Printer, Refrigerator and Iron. Each

appliance with an EMF sensor also had a plug-meter which could be used to mea-

sure ground-truth readings.

Event Detection Performance

First, we evaluate how accurately each EMF sensor was able to detect appliance

transitions. Over the period of 1 week, we compared the EMF sensor’s threshold-

based event detector with a hand-tuned threshold selected for each plug-meter.

When looking at the plug-meter data, we selected thresholds that represented each

appliance in either an on or an off state. Figure 2.9 shows the confusion matrix

for each appliance as well as the overall average across all appliances. The confu-

sion matrix was generated by comparing the amount of time that the EMF sensor

categorized an appliance in a state that agreed or disagreed with the ground-truth.

This is a more telling metric then doing an event-by-event comparison since one

poor event transition could potentially set an appliance in the wrong state for an

extended period of time.

From the confusion matrix, we can observe that the system in general performed

well in categorizing the appliance-state in agreement with the ground-truth. We also

observe that the Iron, TV and Laser Printer show above average misclassification. In

the case of the Iron, the EMF-node was accidentally moved away from the appliance

around the fifth day in the week of testing, hence it failed to detect some of the on

events. The EMF-detector assumed that every appliance takes only two states, but

the TV takes three states - on, off and standby. When the TV was in the standby

35

2.2. Case studies on Virtual Metering

99.8	
 0.1	

0.2	
 99.9	

Ground	
 Truth	

EM
F	

Se
ns
or
	

On	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Off	

O
ff	

	
 	
 O

n	

Refrigerator	
 (195)	

99.7	
 0.08	

0.03	
 99.2	

Ground	
 Truth	

EM
F	

Se
ns
or
	

On	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Off	

O
ff	

	
 	
 O

n	

Toaster	
 Oven	
 (5)	

92.6	
 0.08	

7.4	
 99.2	

Ground	
 Truth	

EM
F	

Se
ns
or
	

On	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Off	

O
ff	

	
 	
 O

n	

TV	
 (20)	

99.1	
 0.00	

0.09	
 100	

Ground	
 Truth	

EM
F	

Se
ns
or
	

On	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Off	

O
ff	

	
 	
 O

n	

Window	
 AC(2)	

99.5	
 0.00	

0.05	
 100	

Ground	
 Truth	

EM
F	

Se
ns
or
	

On	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Off	

O
ff	

	
 	
 O

n	

Washer	
 (47)	

83.1	
 0.50	

16.9	
 99.5	

Ground	
 Truth	

EM
F	

Se
ns
or
	

On	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Off	

O
ff	

	
 	
 O

n	

Iron	
 (29)	

96.5	
 2.7	

3.5	
 97.3	

Ground	
 Truth	

EM
F	

Se
ns
or
	

On	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Off	

O
ff	

	
 	
 O

n	

Printer	
 (24)	

95.8	
 0.7	

4.2	
 99.3	

Ground	
 Truth	

EM
F	

Se
ns
or
	

On	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Off	

O
ff	

	
 	
 O

n	

Total	
 (322)	

Figure 2.9: EMF sensor event detection confusion matrices. Total event count in paren-
theses after appliance name.

mode, the signal strength was not sufficient to be classified as an On-state by the

EMF-detector, resulting is a misclassification. Notice that all appliances except the

Printer perform well while the appliance is off. The EMF-sensor corresponding to

the Printer was physically close to a monitor and was detecting the signal due to

both appliances. Hence the EMF-sensor detected an an on state even though the

Printer was off.

Appliance Metering Performance

We then evaluated how well the system worked at estimating the energy con-

sumption of each appliance. We analyzed how the system performed in two steps.

First, we computed the ground-truth energy consumption of each device as recorded

by the plug-meters. Next, we ran our energy estimation algorithm based on main

measurements and using hand-selected thresholds derived from the plug-meters.

The idea was that this would show appliance-metering performance assuming per-

fect event detection. Finally, we let the system compute the energy for each ap-

pliance using the actual EMF sensor data. Figure 2.10 shows a stacked bar-graph

plot of each scheme. In this example, we choose a before-event and post-event win-

dow size of 2 seconds for determining the change in mains power for the appliance.

Figure 2.11 shows the error for the EMF sensor as we vary this window size. In

36

2.2. Case studies on Virtual Metering

certain cases, having too small a window leads to poor performance because the

appliance has a slow on or off transient. For example, an appliance like a refrigera-

tor draws an abnormally high amount of current for a second or two while starting

up. If the window is too small, the system miscalculates the energy consumption

by assuming the high transient-power for the entire on cycle of the appliance. On

the other hand, even if we select a large window size, the system runs the risk of

miscalculating the energy due to events that occur nearby in time. A window size

of 2 seconds performed the best, with an overall error of 0.83%, which can also be

observed in Figure 2.11.

Consistent with the confusion matrix, we observe that the EMF-based energy

estimate of the TV and the Iron are lower than the ground truth, due to the mis-

classification of few on states as off states. The estimate of the energy consumption

of the Laser Printer is much higher than ground truth. As mentioned earlier, the

corresponding EMF-sensor was also detecting a monitor placed nearby. Though

the power-consumption of the monitor is much lower than the printer, the moni-

tor was on for a much longer duration, resulting in a several-fold increase in the

energy-estimation.

Limitations

There are three main limitations to this approach. First, a local event detector

still has the challenge associated with determining which internal state transitions

are significant. In our system, we were focused on signaling large state changes, but

often appliances could have a sequence of small internal states or continuously vari-

able consumption. In these cases, a different type of detection algorithm may need

to be investigated; perhaps one that analyzes the signals in the frequency domain.

37

2.2. Case studies on Virtual Metering

En
er

gy
 (W

at
t H

ou
rs

)

Ground Truth Plug−based Estimation EMF−based Estimation0

1000

2000

3000

4000

5000

6000

Fridge
Toaster
TV
Window AC
Washer
Iron
Laser Printer

Figure 2.10: Energy estimation performance

1 2 3 4 5 6 7 8 9 100

20

40

60

80

En
er

gy
 E

st
im

at
io

n
Er

ro
r (

%
)

Window size (seconds)

Figure 2.11: Error vs Mains sampling window

The second limitation is that these devices can suffer from cross-talk with different

appliances if the devices or cabling are in close proximity of each other. We see

this in our evaluation of certain devices present in our experiments. For example,

the laser printer suffers from false positives. Part of optimizing the design is to

build a device where the range is large enough to detect hard to reach wires, but

small enough to minimize overhearing other signals. The third limitation is that the

system cannot attribute static base-load values to appliances. In certain cases, the

energy consumed while the appliance is supposedly off may be larger than its active

energy. Despite these limitations, we believe that the EMF sensor and three-phase

38

2.2. Case studies on Virtual Metering

meter provide a simple and low-cost alternative to appliance-level energy metering.

These studies done on custom-designed hardware lead us to believe that obtain-

ing accurate event labels from appliances is poosible through the use of external

sensors. In Chapter 5, we utilize our energy estimation framework and study this

problem in detail by utilizing off-the-shelf solutions for energy metering and external

sensing.

39

Chapter 3

An Energy Estimation Framework

This chapter presents a framework for creating appliance models (as previously

defined in Section 2.1.1) based on classification labels and aggregate power mea-

surements that can help to relax many of simplistic assumptions that are currently

used. The framework automatically builds models for appliances to perform energy

estimation. From the communication theory analogy in Figure 1.5, this is similar to

creating a code inverter for the received message. This inference is possible because

of prior belief about how the appliance typically codes the message. Using the nota-

tion we used in Section 2.1.2, this Chapter presents a set of algorithmic techniques

to estimate the function g : Ξ → Ψ, with the time-series ξ ∈ Ξ here denoting the

time-series of event timestamps observed at the aggregate power data for a specific

appliance. The output ψ ∈ Ψ is the set of state transitions, states, and transition

probabilities, i.e. {∆Pψ, Pψ, and Aψ}, for the appliance. This process is illustrated

in Figure 3.1.

This chapter is based on the manuscript in [24]

40

3.1. State of the art in appliance behavior modeling

Event time series
ξ ∈ Ξ

Code Inverter
g: Ξ à Ψ

Appliance model
ψ = {ΔPψ, Pψ, Aψ}, ψ ∈	
 Ψ

Figure 3.1: The input and output associated with the framework proposed in this Chapter.

The framework relies on feature extraction, clustering via affinity propagation,

perturbation of extracted states to ensure that they mimic appliance behavior, cre-

ation of finite state models, correction of any errors in classification that might

violate the model, and estimation of energy based on corrected labels. In this chap-

ter, we evaluate our framework on 3 houses from standard datasets in the field and

show that the framework can learn data-driven models based on event labels and use

that to estimate energy with lower error margins (e.g., 1.1-42.3%) than when using

the heuristic models used by others. A major component of the framework is the

error correction algorithm, which we discuss in detail in Chapter 4. For simplicity

and contrast, we use a primitive version of the error correction algorithm that relies

on Maximum Likelihood Estimates (MLE) in this chapter.

3.1 State of the art in appliance behavior modeling
This section summarizes the efforts that have hitherto attempted to model ap-

pliance behavior with the goal of tackling different problems within NILM; it briefly

discusses the contributions and potential drawbacks as well. Researchers have typi-

cally explained appliance behavior either through deterministic models learned from

data (for e.g., FSMs) or using probabilistic models; some have used certain heuristic

based methods as well.

41

3.1. State of the art in appliance behavior modeling

3.1.1 Finite State Machine formulations

Hart briefly touched on the problem of learning appliance states and transitions

from power differentials observed at the aggregate level using certain heuristics like

the zero loop sum constraint (ZLSC), and the uniqueness constraint (UC) [14].

These will be expanded on later in the chapter. This method, however, is simplistic

in that it assumes that power differences observed at mains do not include simul-

taneous events, and that the power differentials observed for each state transition

are identical. His framework was a simple way of computing ∆P values at event-

sites and matching them in chronological order, similar to the energy estimation

framework without appliance models in Section 2.1.3. Although he focused on only

validating two-state appliances, he conjectured that possible FSMs for all appliances

could possibly be learnt directly from the sequence of ∆P events, the same way it

is done in certain coding theory applications. However, the prevalance of errors and

the need for perturbation (as discussed later) makes this possibility highly unlikely.

Baranski and Voss [43, 44] presented a completely unsupervised method of estimat-

ing appliance behavior based on observed power differentials, and optimization of

a quality function using genetic algorithms (GA). They calculate ∆P values based

on a fuzzy clustering algorithm, and rely on the optimization step to automatically

build the FSMs for appliances. The quality function in the optimization step assigns

penalties according to the total sum of state transitions assigned to an appliance

(forcing them to be close to zero), the relative frequency of each state transition,

and the number of states for a particular appliance. The results from GA are filtered

further using a variant of the Viterbi algorithm. Although this method is notable for

acknowledging the need to model appliance behaviors, it has not been quantitatively

validated so far, and the optimization algorithm involved does not guarantee con-

42

3.1. State of the art in appliance behavior modeling

vergence to an optimal solution [19]. More recently, Streubel and Yang proposed the

modeling of appliance behavior using FSM formulations by separating power traces

of a single appliance into transients and steady-state modes [45]. They propose

heuristics to identify segments that are transients (based on some prior modeling

of transient distribution), and segments that are steady states from the power time

series of a particular appliance. Then, distance metrics are used to calculate which

segments represent the same operational state. This analogous to computing the

set ∆P for all appliances. This information then feeds into the final FSM of that

particular appliance. Their approach remains to be validated, and the requirement

that only one appliance has to be operating at a given time to model it is one of

the drawbacks. In their more recent work, the authors in [15] have continued to

refine their approach (e.g., [46, 47]). However, their main objective is to use these

algorithms for direct disaggregation and thus is different from the objectives of this

thesis.

3.1.2 Probabilistic prior models for appliances

Kim et al. modeled appliance behavior for their HMM models by learning the

parameters for prior distributions of appliance states, on and off durations, and an

appliance’s state at a certain time of day using data [27]. But they assume appli-

ances to be composed of two states only, which is not how many appliances behave.

Johnson and Willksy manually set Gaussian priors for modeling power consumption

levels, and a Negative Binomial prior for modeling the duration for which the state

lasts, for the appliances that they are interested in [26]. These are set using some

expert knowledge of how appliances are likely to behave and how they might im-

pact the Hierarchical Dirichlet Process Hidden Semi-Markov Model (HDP-HSMM)

formulation. Parson et al. follow a similar philosophy while modeling appliances in

43

3.1. State of the art in appliance behavior modeling

their HMM framework; they expect an expert to provide generic models (including

Gaussian priors for states, transitions, and respective probabilities) for appliances

[3]. They also note that such parameters could be learnt from segments in aggregate

data where only the appliance of interest is operating. Learning these models for

appliances from data as opposed to relying on manual input (which by itself might

not be possible or feasible in many cases) could potentially improve the performance

of the respective algorithms.

3.1.3 Other ways of modeling appliances

Kolter et al. modeled appliance behavior based on real power transitions ob-

served at the main circuit [28]. They employed an unsupervised method where

"snippets" of the power signal were extracted when power consumption increases

over some threshold and returns back to its original level. They then calculated

pairwise transition probabilities between these snippets (probability of one snippet

generating another) and used spectral clustering to group them together. Finally,

the snippets that belonged to the same cluster were assumed to represent the be-

havior of one appliance, and were combined to create "motifs". An expert then

manually labeled the motifs with labels of appliances they most likely represent.

The authors acknowledge that this approach is limited to learning models for de-

vices with relatively short cycles, and propose using an iterative implementation

where the same technique is applied on the remaining “unexplained” part of the

power signal. However, this version remains to be validated and could have limita-

tions of its own.

As is evident, several researchers have indirectly incorporated the modeling of

appliance behavior into their framework, but generalizable and completely data-

44

3.2. Introduction to the framework

driven methods are lacking. The method proposed in [28] is perhaps the closest

candidate as it looks to extract a general set of features from the aggregate data

to build appliance-specific models automatically, yet it needs further validation.

Among other reasons, data-driven appliance models are important because:

1. Energy estimation in the supervised setting fails without having proper appli-

ance models. Even in cases where sub-state level classification is available, a

few errors can drastically change energy estimates.

2. In supervised cases where only appliance labels are available, or equivalently,

in the sensor-aided case, these models are the only cue the system has for

estimating energy reasonably. Otherwise errors caused by simultaneous events,

spikes, etc. can affect the results drastically.

3. Unsupervised models that utilize prior models of appliances (beyond two state)

can benefit from knowing what states an appliance can exist in; in fact, as will

be shown later, their accuracies can improve significantly.

In the following sections, we propose a method for learning appliance models

automatically from data, and test it on data from three houses. We use publicly

available standard datasets, namely REDD [37] and BLUED [2] for the purposes of

our analysis. Table 3.1 summarizes the major properties of these datasets.

3.2 Introduction to the framework
Notationally, we formalize the process of appliance modeling in supervised NILM

as follows. We denote the signal being monitored at the aggregate level at time t

by S[t]. Typically, S[t] is real power, but other signals like reactive power, apparent

power, features of voltage, etc. are also possible candidates. If T = {t1, t2, . . . , tm}

45

3.2. Introduction to the framework

Table 3.1: Summary of the datasets used for evaluation in this chapter

Dataset Sampling
Frequency

Duration
(days) Appliances used # of

events

BLUED-1 12 kHz 7

Refrigerator
Lamp
TV

Computer
Laptop

AV System

616
26
54
45
14
8

BLUED-2 12 kHz 7

Refrigerator
Laptop
TV

Washer

287
53
289
1897

REDD-1 1 Hz 26

Oven
Refrigerator
Dishwasher
Lighting
Washer

Microwave
Dryer

800
56
452
154
65
443
236

represents the set of timestamps where events occur for a particular appliance, and

X = { ~x1, ~x2, ~x3, . . . , ~xm} is the set of corresponding features that are extracted from

the events, then, appliance modeling is the process of learning, from those features

and the power signal, the set of states of operation Γ = {Γ1,Γ2, . . . ,Γk} and the

set of state changes ∆Γ = {∆Γ1,∆Γ2,∆Γ3, . . . ,∆Γn} possible for the appliance.

In addition, the process of appliance modeling also involves using the time series

sequence of events to learn the probabilities of transition between different state

changes.

Typically, the set Γ represents real power consumed by the appliance during its

different states of operation, and the set ∆Γ represents the step changes in real

46

3.2. Introduction to the framework

power observed during state transitions. In order to estimate ∆Γ, the step changes

in real power observed at all events points S[ti] need to be computed. Such step

changes (denoted by ∆Γ̂i for the event in timestamp ti) are typically computed over

some predefined time window around the detected event, and will be referred to as

power differentials throughout this thesis. Various methods can be used to estimate

the step change from each event. A very simplistic approach is to compute the

difference between the first and last points of the window. So, if the time window is

µ samples wide, then the power differential for the ith event at timestamp ti is given

by:

∆Γ̂i = S[ti +
µ

2
]− S[ti −

µ

2
] (3.1)

Even though this method can be significantly affected by noise, we use it through-

out the remainder of the chapter and relegate further improvements as future work.

Also throughout this chapter we perform analysis on real power signals only, and

use a time window of 1 second. For real power computed at 60 Hz, this means

µ = 60. Accordingly, the states Γ are represented by P , power differentials ∆Γ are

represented by ∆P , and the signal S[t] is represented by P [t].

Once ∆P values are calculated, a simplistic approach to obtain the power trace

for an appliance given a ∆P sequence, would be to assume piece-wise constant power

between each element of this sequence, along with an initial power value P0, and

then perform the following sum to obtain the power value at timestamp t: P̂ [t] =

P0 +
∑|R|

j=1 ∆P j where |R| denotes the cardinality of set R = {tj : tj < t; ∀ tj ∈ T}.

However, errors in the observed ∆P values (due to mislabeling, measurement noise

or other reasons) would accumulate in the P̂ estimation. Furthermore, the piece-

wise constant power consumption assumption does not always hold, which further

47

3.2. Introduction to the framework

A	

B	
 C	

D	
 E	
 F	

G
	

• P
ow

er
 si

gn
al

 (
P

[t]
)

• E
ve

nt
 ti

m
es

ta
m

ps
 (

t i)

 (

 fo
r a

pp
lia

nc
e

y j
)

Se
qu

en
ce

 o
f c

lu
st

er
s

(C
se

q)

C
lu

st
er

 c
en

te
rs

(C

 =
 {

c1 ,
…

 , cn }
)

 Fe
at

ur
es

(X

=
{x

1,
…

 ,
x m

})

 R
ep

. s
ta

te
 tr

an
si

tio
ns

Pe
rtu

rb
ed

 st
at

es

 (
ΔP

)

Tr
an

si
tio

n

pr
ob

ab
ili

ty
 m

at
rix

 (A
)

Se
t o

f f
ea

si
bl

e

cy
cl

es
 (χ

’)

A
dj

ac
en

cy

 m

at
rix

St
at

es
 o

f o
pe

ra
tio

n

(P
={

P 1
 ,

…
 ,

P k
})

C
or

re
ct

ed
 S

eq
ue

nc
e

(C

’ se
q)

 A
.

C
lu

st
er

in
g

to
 fi

nd
 d

is
tin

ct
 st

at
e

 tr
an

si
tio

ns

B

. 
Pe

rt
ur

b
st

at
e

tr
an

si
tio

ns
 so

 n
o

re
si

du
al

en

er
gy

 r
es

ul
ts

 a
ft

er
 a

n
ap

pl
ia

nc
e

cy
cl

e

C
.

C
al

cu
la

te
 tr

an
si

tio
n

pr
ob

ab
ili

tie
s

D
. 

D
is

ca
rd

 st
at

e
tr

an
si

tio
ns

 in
co

ns
is

te
nt

w

ith
 Z

L
SC

 (b
y

fin
di

ng
 fe

as
ib

le
 c

yc
le

s)

E
.

C
re

at
e

st
at

e
tr

an
si

tio
n

m
od

el
s

F
.

C
or

re
ct

 E
rr

or
s (

vi
ol

at
io

n
of

 Z
L

SC
 in

or

ig
in

al
 se

qu
en

ce
)

G
. C

om
pu

te
 E

ne
rg

y
fr

om
 c

or
re

ct
ed

se

qu
en

ce

En
er

gy
 (Ê

)

(!
!
=
{!
! !
,…
!,!
! !
})!

F
ig
ur
e
3.
2:

Su
m
m
ar
y
of

th
e
m
aj
or

st
ep
s
in
vo
lv
ed

in
th
e
en

er
gy

es
ti
m
at
io
n
fr
am

ew
or
k
pr
es
en
te
d
in

th
e
ch
ap

te
r.

St
ep

s
B

an
d
C
,

an
d
st
ep
s
E

an
d
F
ca
n
be

ca
rr
ie
d
ou

t
in

pa
ra
lle

l,
as

th
ei
r
in
pu

ts
ar
e
in
de

pe
nd

en
t
of

ea
ch

ot
he

r.

48

3.3. Classifying distinct state transitions

increases the error accumulation. In essence, our framework redefines the values of

the elements of ∆P (or, more generally ∆Γ) so that error accumulation is avoided.

The following sections will elaborate on the major steps involved in the frame-

work, and relate it to the problem of energy estimation within NILM. Figure 3.2

provides a graphical summary of major steps in the framework. All the compu-

tation mentioned in the framework was carried out in MATLAB 2013a, with a

computer of 2.8 GHz i7 processor, and 4 GB RAM. The run times vary depend-

ing on the optimization process and the number of events associated with the ap-

pliance in question; on average the framework takes 10-15 seconds per appliance

on the dataset we tested. We have made code and dataset available online in

https://github.com/sumangiri/EE-framework under the Apache (2.0) license.

3.3 Classifying distinct state transitions
This first step, depicted as step A in Figure 3.2, attempts to infer the actual

number and type of state transitions for an appliance from observed features and

labels. In other words, what is the number of elements of ∆P? Thus, the challenge

here is to identify the true number of such step changes in real power that exist for

an appliance, and assign each event with an appropriate ∆P value in a way that

avoids error accumulation. Although this information could be extracted purely

using the observed power differentials only, other features that are observed during

events can also be used to enhance the analysis.

This is a problem that lends itself naturally to the idea of clustering. Several

features that are associated with events themselves can be exploited to estimate the

49

3.3. Classifying distinct state transitions

true state transitions. Ideally, such features should be extractable from the aggre-

gate power data itself. In this chapter, we explore the P-Q plane (step change in

real and reactive power) as done by Hart [14], the real power transients observed at

mains as analyzed by Norford et al. [15], and the projections of the transients onto

the first two principal component axes of the set of all transients. Each resulting

cluster represents a state transition that the appliance can make. All the events

associated with the appliance are assigned the labels of the cluster that they are

grouped into. Depending on the sampling rate at which the data is being captured,

this assignment may not always be reflective of reality. This is because for lower

sampling rates, there is a higher possibility of simultaneous events (from multiple

appliances). However, it is reasonable to assume that such events are still sparse,

and steps such as de-noising and error correction that are explained later in the

framework can counter the adverse effect such faulty assignments may have on the

energy estimation process. Moreover, for notational convenience, in the remainder

of the chapter, we assume that appliances are being evaluated one at a time. Hence,

unless specifically noted, all representations are for events collected from one par-

ticular appliance.

Notationally, features extracted from an event occurring at timestamp ti will

be denoted as ~xi, where ~xi ∈ Rb is an b dimensional vector. Let the set X =

{ ~x1, ~x2, ~x3, . . . , ~xm} denote the set of features extracted from events occuring at

timestamps {t1, t2, t3, . . . , tm}, with 1 ≤ i ≤ m,∀i ∈ N. The clustering step uses a

clustering algorithm g to map the set of features X to a set of cluster labels C, where

C = {c(1), c(2), . . . , c(n)}, with n ∈ N. The result of the mapping g : X 7→ C is an

ordered sequence of cluster transitions (g(~x1), g(~x2), g(~x3), . . . , g(~xm)), denoted by

50

3.3. Classifying distinct state transitions

Cseq = (c1, c2, c3, . . . , cm) where ci ∈ C. For clustering, various options are available,

some of which we explore and evaluate in this section. Although the algorithms will

be briefly mentioned in text, we invite the interested reader to explore Xu et al.’s

review for a more detailed description [48]. The most popular technique, perhaps, is

k-means, which is based on centroid calculations for clusters and divides data based

on distances to clusters. The drawback of this method is that the number of clusters

has to be known in advance for it to work properly, the end value depends upon

initialization, and it is easily affected by noisy data. These shortcomings can be

overcome by techniques such as gap statistics, which find the optimal value for the

number of cluster [49]. Methods like k-means ++ are available, which provide the

optimal set of starting points [50]; another modification to the standard algorithm,

namely weighted k-means, assigns low weights to data that have low-confidence as-

sociated with them, thus tackling the noise issue [51]. We augment the standard

k-means with these modifications in our use case, and denote it by k-means*. Other

methods like DBSCAN and OPTICS that rely on relative spatial density to form

clustering, conveniently termed as density based clustering methods, were also ex-

plored [52, 53]. These are desirable because they are more robust to noise and do

not require the number of clusters beforehand; in turn, they need the minimum

number of points needed to form a cluster, and minimum distance between points

as the input. To ensure that all clustering forms were explored, we also looked at

spectral clustering (based on similarity measures between points), and affinity prop-

agation (relies on message passing between data points)[54, 55]. Typically, spectral

clustering requires the number of clusters as an input, but in this case, we used

a self-tuning version of the algorithm that exploits the eigenvalues of the affinity

matrix to find the number of clusters [56].

51

3.3. Classifying distinct state transitions

To evaluate the suitability of these clustering methods in finding the right num-

ber of clusters and appropriate exemplars for appliance models, we tested them

with simulated data. 1000 appliances were simulated with each appliance having

anywhere from 2-10 states (as is typically the case with appliances). The number

was assigned randomly according to a uniform distribution between 2 and 10. After

this, a mean and variance was assigned as the representative value to each state.

This, in turn, was sampled from a uniform distribution between 50 and 2500, with

a variance between 1 and 400, as state transitions in most appliances typically lie

within this range. Finally, 100 samples were drawn for each state transition for each

appliance from a Gaussian distribution with the mean and variance assigned to it.

This comprised as the ground truth data. For evaluating the suitability of different

algorithms in clustering this data, we devised certain metrics that are more suited

to the end goal of energy estimation. First, we evaluate the model created, and the

factors that matter here are the strength of the algorithm in predicting the number

of clusters correctly, and in picking the exemplars correctly. We evaluate this with

weighted model error, which, in turn, is a function of value prediction error and

cluster number prediction error. They are described as follows :

en = |n̂−ntrue|
ntrue

Here, en is the error in predicting the number of clusters. n̂ is the number of

clusters estimated by the algorithm, and ntrue is the true number of clusters.

e∆P =
∑
i

|∆P̂i−∆Pi|
∆Pi

52

3.3. Classifying distinct state transitions

Here, e∆P is the error made by the algorithm in predicting the means of the

state transitions correctly. ∆Pi is the mean value of the state transition for an ap-

pliance and ∆P̂i is the value in the predicted exemplar set that is closest to the mean.

Finally, the model error is calculated as the weighted sum of value prediction

error and cluster number prediction error.

emodel = w1 en + w2 e∆P

We used w1 = 0.5 and w2 = 0.5 for our evaluation. Figure 3.3 depicts the values

of emodel for different algorithms. The average value was taken for appliances with

the same number of states. Affinity propagation outperformed other clustering

algorithms, both in terms of predicting the true number of state transitions, and

the mean values for state transitions.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

number of states

m
o
d
e
l
e
rr

o
r

affinity propagation

DBSCAN

OPTICS

spectral clustering

k−means*

Figure 3.3: Weighted sum of errors in predicting the number of clusters, and the values
for exemplars for state transitions for different algorithms.

To evaluate the effectiveness of the clustering algorithms in correctly assigning

true state transition values to observed state transitions, we also evaluated another

error metric that measures the total RMS error between precited states and true

states. This metric is especially useful as it gives insight into how a clustering al-

53

3.3. Classifying distinct state transitions

gorithm will affect the energy estimation process. The metric was defined as follows:

eRMS = ||∆~P−∆P̂ ||
||∆~P ||

Here, ∆~P is the vector form of the ordered sequence with mean values for state

transitions associated with an appliance. ∆P̂ is the estimated value assigned by

clustering algorithms. Figure 3.4 shows the results of this evaluation on our simu-

lation data. As before, the average value was taken for appliances with the same

number of states to be depicted in the graph. Affinity propagation outperforms

other algorithms here as well. As a result, we chose it as our choice of clustering

algorithm for further analysis.

1 2 3 4 5 6 7 8 9
0

0.5

1

1.5

2

2.5

3

number of states

R
M

S
 e

rr
o
r

affinity propagation

DBSCAN

OPTICS

spectral clustering

k−means*

Figure 3.4: RMS error evaluated on simulated data for different clustering algorithms.

Affinity propagation relies on the concept of message passing between data

points. For a good introduction to the AP clustering algorithm and its applica-

tions, we recommend reading references [57] and [55]. The inputs to this clustering

algorithm are similarities between datapoints s(i, k) defined as the suitability of

datapoint k to act as exemplar for datapoint i. Self-similarities, i.e. s(k, k), also

known as preference, control the suitability of a data-point to be an exemplar. We

54

3.3. Classifying distinct state transitions

−50 0 50
−50

0

50

∆ P

∆
 Q

AV System Clusters (PQ)

−500 0 500
−40

−20

0

20

40

∆ P

∆
 Q

Fridge Clusters (PQ)

−500 500
0

100

200 Fridge

∆ P

F
re

q
u

e
n

c
y

−50 50
0

5 AV System

∆ P

F
re

q
u

e
n

c
y

−118

−86

−42

42

86

128

−40

44

Figure 3.5: Clustering results on P-Q features using affinity propagation for the Refrigera-
tor and AV system on BLUED. The labels show the mean ∆P values of each cluster. The
histograms show the frequency of ∆P ’s associated with the appliances.

use Euclidean distance as the similarity metric, and all preferences are set to a com-

mon value (equally likely to be exemplars). Figure 3.5 shows the results of using

affinity propagation on P-Q features for the Refrigerator and AV system in BLUED.

Once clustering is done, the effect of noisy data and misclassifications is negated

to some extent by throwing away small clusters. Such noisy features could have

resulted from simultaneous events, incorrect labeling, or the use of inappropriate

window sizes during feature extraction. A simple heuristic is used here, where any

cluster with less than 3 elements is assumed to be noise. This is based on empirical

observation of noisy features in the clustering step, though a more thorough analysis

of other de-noising strategies can be performed in the future. The new cluster labels

for such noisy events are assigned according to the closest valid cluster in terms of

Euclidean distance. For notational convenience, we denote the de-noised clusters

and the resulting sequence with the same notation as before.

55

3.4. Classifying distinct state transitions

After de-noising the clusters, we then calculate the power differential associated

with each feature. We represent the power differential observed during the event

corresponding to feature ~xj with ∆Pj. The mean power differential value (step

change) of each cluster is first assumed to be the representative value of that state

transition. So,

∆Pc(i) =
1

k

k∑
j=1

(∆Pj);∀j : g(~xj) = c(i) (3.2)

is the representative value of power state differential for all events in cluster c(i),

with k being the total number of elements in the cluster.

The representative state-transition values calculated in this way will typically not

conform to the way appliances draw power. For instance, say we have a refrigerator

that has six state transitions: +86 W (compressor on), +43 W (door-light on), +129

W (both on), -86 W (compressor off), -43 W (door-light off), -129 W (both off).

Now, owing to both the electromechanical operation of the appliance, and potentially

erroneous extraction of power step changes, or misclassification, as discussed earlier,

the cluster centers may be calculated as (+85.9 W (compressor on), +42.3 W (door-

light on), +128.3 W (both on), -85.8 W (compressor off), -42.2 W (door-light off),

-118.3 W (both off)). A cycle is assumed to have happened when an appliance

operating at any state, undergoes changes in operational modes, and returns to the

same state. So, 86+43-129 is one possible cycle as the power consumption returns

from zero to zero. If the values given by clustering algorithm are taken without

modification, for each cycle like the one just mentioned (86+43-129), a value of

(85.9+42.2-118.3) will be recorded, and an error of 9 W will accumulate throughout

the remainder of the power trace. This will negatively impact the energy estimation

process. To avoid such accumulation, we introduce the concept of perturbation in

56

3.4. Perturbance

the next section.

3.4 Perturbance
A central idea to the perturbation framework is that of the Zero Loop Sum Con-

straint (ZLSC), introduced by Hart [14]. It stipulates that the sum of all power

transitions over a valid cycle of an appliance should be zero. We utilize this concept

to define a cycle as a set of state transitions that satisfy this constraint with a slack

of ε. The cluster centers are perturbed in such a way that the number of cycles

is maximized. This captures typical appliance behavior during state transitions for

multi-state appliances. Step B in Figure 3.2 shows the inputs and outputs of the

perturbation step.

The perturbation is done so that the total sum of all positive and negative ∆P

values sum up to zero. We model this new assumption as a constraint in an optimiza-

tion formulation, explained below, to find the values with which the representative

state transitions from the previous steps need to be perturbed by so that they follow

the ZLSC. We begin with definitions for the terms used in the optimization.

Let ∆P̂ = {∆Pc(1) ,∆Pc(2) ,∆Pc(3) , . . . ,∆Pc(n)} be a set of representative state

transitions. For notational convenience, it will be denoted simply as: ∆P̂ =

{∆P1,∆P2,∆P3, . . . ,∆Pn}. Also, let ∆P̂pos = {∆Pi | ∆Pi ∈ ∆P̂ ,∆Pi > 0} be

the set of all positive state transitions within ∆P̂ , and a similar definition for the

negative state transitions, ∆P̂neg.

U is the power set of all subsets of ∆P̂ such that ∀Ui ∈ U , there is at least one

57

3.4. Perturbance

element ui ∈ Ui | ui ∈ ∆P̂pos and at least one element uj ∈ Ui | uj ∈ ∆P̂neg. This

is meant to represent all the possible cycles that can occur within the appliance.

Using the basic principles of cardinality of subsets, it can be seen that the size of

the set U is (2 |∆P̂pos| − 1) (2 |∆P̂neg| − 1), where |∆P̂pos| represents the cardinality

of the set ∆P̂pos and likewise for |∆P̂neg|.

f : R 7→ {0, 1} is a function that takes in all elements of a given set W , where

W ⊂ R, as an input and maps it to either 0 or 1 according to the following condi-

tional:

f(W) =


1 if

∑
j

wj < ε ∀wj ∈ W ; ε ∈ R

0 otherwise
(3.3)

Logically, this function amounts to a counter that counts whether or not a pos-

sible permutation is a cycle that can theoretically exist in the appliance, and it does

this by enforcing the ZLSC with a maximum error of ε.

The set E = {e1, e2, . . . , en | ei ∈ R} is a set of perturbations that can be applied

to elements in ∆P̂ so that they follow the ZLSC.

Let Ei denote a set that is the same size as Ui, and has direct correspondence

with elements of Ui. So, if Ui = {ua, ua+1, . . . , uk | ui ∈ U}, Ei is the set of correc-

tions that correspond to those elements, i.e., Ei = {ea, ea+1, . . . , ek}

Now the optimization framework is:

58

3.5. Perturbance

arg maxE
∑
i

f(Ui + Ei) ∀Ui ∈ U ; Ei ⊂ E (3.4)

s.t.− c < ei < c ; ∀ ei ∈ E

This amounts to altering the representative state transitions in such a way that

the number of resulting cycles is maximized. Here c is the perturbation threshold

that controls how flexible the alteration of representative state transitions is. Clearly,

this is a combinatorial optimization problem and is NP-hard. We solve it by creating

the following convex approximation of the objective function instead.

arg minei −|f(~uj + ~ej)|1 + λ~e|1 ; where ~e =



e1

e2

...

en


; ei ∈ Ei (3.5)

s.t.− c < ei < c; ~uj + ~ej = 0 ∀ ~uj | f(~uj) = 1

Here ~uj represents the vector form of the set Uj and likewise for ~ej. λ is a

regularizing parameter that forces the error terms to be sparse and hence controls

unnecessary perturbations. Table 3.2 shows the result of this analysis on represen-

tative state transitions extracted from appliances in three houses in three different

datasets. Resulting state transitions that are below 5 Watts are removed from anal-

ysis.

59

3.5. Perturbance

Table 3.2: Results of perturbance on state transition values extracted after clustering in
different datasets

House Appliances
(label)

Unperturbed state
transitions (after
clustering) [Watts]

Perturbed state
transitions [Watts]

Refrigerator
(111)

{85.9, 128.3, 42.3,
-42.2, -85.8, -118.3}

{86, 129, 43, -43, -86,
-129}

Lamp (101) {27.1, -34.6} {31, -31}

TV (129) {170.3, -224.4} {197, -197}

BLUED-1 Computer (118) {27.2, -26.9] {27, -27}

Laptop (120) {57.2, -47.9} {53, -53}

AV Syst.(112) {43.6, -39.8} {42, -42}

Refrigerator
(111)

{122.9, 173.8, -106.1,
-274.0}

{106, 171, -106, -277}

Laptop (120) {2, 18.9, 44.1, -23.9,
-50.9}

{21, 48, -21, -48}

BLUED-2 TV (129) {36.1, -24.3, -47.2} {42, -42}

Washer (183) {15.5, 110.6, 149.9,
336.5, -13.1, -96.2,
-191.7, -361.5}

{103, 164, 350, -103, -164,
-350}

Oven (3) {2471.3, -2443.5} {2457, -2457}

Refrigerator (5) {34.6, 222.9, -37.2,
-173.8}

{36, 196, -36, -196}

Dishwasher (6) {207.7, 930.4, 1145.7,
-40.5, -200.9, -380.2,
-871.5, -1117.1 }

{205, 1037, 1152, -40,
-205, -271, -765, -1113,

-197}

REDD-1 Lighting (9) {29.6, 79.3, -30.1,
-77.1}

{31, 78, -31, -78}

Washer (10) {692.3, -650.6} {671, -671}

Microwave (11) {1512.0, -1511.2} {1512, -1512}

Dryer (120) {2832.4, -2676.3} {2754, -2754}

60

3.5. Creating transition probability matrices

3.5 Creating transition probability matrices
This step deals with the calculation of probability of transition between all of

the state changes extracted from the previous step. As will be shown in subsequent

sections, this matrix is required for calculating the set of possible cycles that can

exist in the appliance, and also for correcting errors in the sequence Cseq. Figure

3.2 (referred to as step C) illustrates the steps in which the transition probability

matrix is used, and the inputs and outputs of the step. It is of size n × n, where

n is the number of possible state transitions for the appliance. To calculate it,

a first order Markovian transition probability matrix is populated using the time

series information about transitions between clusters. This is done by counting the

number of state transitions from one state to another and subsequently normalizing

the counts. This is denoted by the matrix A of dimensions n×n, where an element

in row i and column j, i.e. aij, denotes the probability of transition from cluster c(i)

to c(j).

3.5.1 Finding feasible cycles

The transition probability matrix populated directly from data can allow state-

transitions that are not possible (and violate the ZLSC). The goal of this step is

to find and discard all such violations and preserve only the feasible cycles for the

appliance so that an appropriate adjacency matrix can be created. This step is

denoted as step D in Figure 3.2. As will be shown in Section 3.7, the adjacency

matrix created this way is central to identifying errors in the time series of cluster

assignments. We use the perturbed states to represent distinct edges in a state

transition diagram. Using the edges, and transition probabilities learned from the

event time series, a list of feasible cycles are extracted. To do this, the states are

61

3.6. Creating state transition models

modeled as the nodes (vertices) of a graph, and the transition probability matrix

as an adjacency matrix. The goal is equivalent to finding the strongly connected

components of a directed graph, and extracting all the possible sub-graphs. Several

solutions have been proposed to solve this problem in graph theory, and we use a

modification of Tarjan’ s strongly connected algorithm to extract all the existing

cycles [58]. Once the cycles are extracted, they are checked for feasibility of ZLSC.

The ones that violate ZLSC are discarded. Additionally, a check is placed which

enforces the total sum of all state transitions for each feasible cycle to be more

than or equal to zero at any given point. The diagonal elements of the adjacency

matrix are set to zero since we are not interested in modeling steady state operation.

Notationally, the set of perturbed state transitions, i.e., ∆P = {∆P1, . . . ,∆Pn},

denote the nodes of a graph. Let the set of all possible cycles be denoted by χ =

{χ1, . . . , χk}, where each χi ⊂ ∆P is an ordered set of state transitions (∆Pi) such

that the transition probability ai,i+1 6= 0 for all i | ∆Pi ∈ χi. The set of feasible

cycles χ′ = {χ′1, . . . , χ′k} is a subset of the set of all cycles that satisfy the ZLSC.

Notationally, χ′ ⊂ χ | ∀χ′i ∈ χ′, f(χ′i) = 0. Here, the function f is the same function

defined in Equation 3.3 in Section 3.4.

3.6 Creating state transition models
The operations in Section 3.5.1 are trivial for two state appliances, but for appli-

ances with multiple states, this process can reduce the number of cycles considerably.

For instance, for the Refrigerator in BLUED 1, the number of feasible cycles reduces

from 168 to 24. The adjacency matrix for the Refrigerator in BLUED 1 as calculated

from data and transition probabilities is:

62

3.6. Creating state transition models

(0 0 0 1 0 1
1 0 1 1 1 1
1 1 0 0 1 1
1 1 1 0 0 1
1 1 1 0 0 1
1 1 1 0 0 0

)

The values for state transitions are presented in Table 3.2. Using the strongly con-

nected algorithm, the number of cycles in this graph amounts to 168, but only 24 of

them follow the ZLSC. Using the feasible cycles, a new adjacency matrix is created

that accurately reflects the possible state transitions. A state transition diagram is

then created for an appliance based on this information. Figure 3.6 displays state

transition diagrams for the Refrigerator and TV. These diagrams represent the pos-

sible transitions between state changes as observed from the time series of events.

This is different from the FSM diagram of the device, which basically shows the

different states (as opposed to state transitions) that an appliance can operate in.

Figure 3.7 details the FSMs extracted from the state transition diagrams. Although

the FSMs do not have a direct role in energy estimation framework presented here1,

they provide information on how an appliance operates. For models that are not

based on differential HMM and rely on the current state of the observed data to

estimate the states of the appliances, such FSMs are needed. For instance, stan-

dard unsupervised NILM techniques like Additive Factorial Hidden Markov Models

(AFHMM), need information about the states that an appliance can exist in, and

the transition probabilities between such states [28]. For such cases, an FSM model

can improve the accuracy of the inference process.

We extract FSMs using the set of feasible cycles. For each feasible cycle χ′i ∈ χ′,

the sum of state transitions are noted to get the possible states that an appliance can

exist in. For instance, if χ′i = {∆Pa,∆Pa+1, . . . ,∆Pa+k} denotes one such ordered
1They provide the upper limit for power consumption of an appliance, which, as is explained

later, can be used as an additional heuristic during energy estimation.

63

3.7. Correcting errors

 42

 86

 128

 −42

 −86

−128

 197

−197

Figure 3.6: State-transition diagrams for a Refrigerator (left) and TV (right) learnt from
the time series of events.

set of feasible cycles (with a, k ∈ N), then the set of states extracted from χ′i are

given by:

χ′i = {
a+1∑
i=a

∆Pi,
a+2∑
i=a

∆Pi, . . . ,
a+k∑
i=a

∆Pi} (3.6)

This process is repeated for all such feasible sets χ′i. The redundant resulting

states are removed to get the final set of states P = {P1, . . . , Pk}. States that are

too close to each other (i.e., differing by less than the minimum state transition

possible), are averaged to represent one single state. Figure 3.2 shows how this step

(labelled step E) fits into the whole energy estimation framework.

3.7 Correcting errors
A simple error correction heuristic is applied to correct state transitions in the

original events time-series that violated the models learnt about the appliance (step

F, in Figure 3.2). Any state transition that had a zero probability of transition from

its previous state is replaced by the most likely state transition (learnt in Section

64

3.8. Computing energy

 0

 42 86

128

256

 0

197

 0

13

66

Figure 3.7: FSM diagram for a Refrigerator from BLUED-1 (left), TV from BLUED-1
(center) and Laptop from BLUED-2 (right) created using adjacency matrices

3.5). Correcting errors in sequences generated by probabilistic FSMs is a complex

research problem, and we discuss it in detail in Chapter 4. Here, however, a simple

algorithm is deployed to automatically correct for such errors, as our primary goal

in this chapter to make a case for the need of a framework for energy estimation.

Mathematically, the heuristic used amounts to the following:

If Cseq = (c1, c2, c3, . . . , cm) represents the ordered sequence of cluster assign-

ments as defined previously such that ci denotes the state transition that occurs at

event associated with timestamp ti. If ci−1 = c(i); ci = c(j);∀c(i) ∈ C, an error occurs

whenever aij = 0. The correction applied is as follows:

c(i) = {cx : x = arg maxx(aix); 1 ≤ x ≤ n; aij ∈ A}. (3.7)

3.8 Computing energy
Once the appliance models are created, and errors in transitions are corrected

for, energy is estimated assuming power consumption between events to be piece-

65

3.8. Computing energy

wise constants. This is the final step of the framework (step G in Figure 3.2). The

total power consumption at any event point is the net sum of all transitions leading

up to that point. Mathematically, power at any time point for an appliance is given

by

P̂ (t) =
t∑
i=1

[h(ci)] (3.8)

where ci ∈ C denotes the state transition that occurs at time ti. The function h

maps the cluster label ci to the representative power transition (∆Pij + eij). By

definition, energy is calculated as

Ê =
∑
t

P̂ (t) (3.9)

As an additional heuristic, a check is put in place at each event timestamp ti in

order to ensure that the value of power consumption does not exceed the power level

of the maximum state in the FSM derived for the appliance. If it happens, the power

value is simply set to the maximum value for that device to avoid accumulation of

errors. Similarly the power value has a lower bound of zero, and any value that

amounts to less than zero is set to zero, i.e., if P = {P1, . . . , Pk} denote the finite

states that an appliance can exist in, then the following checks are put in place:

P̂ (t) =

 max(P) if P̂ (t) > max(P)

0 if P̂ (t) < 0
(3.10)

Table 3.3 shows the results of energy estimation using the aforementioned frame-

work on a few datasets. We use the percentage error in energy estimation as the

metric for evaluating the framework (Ê−E
E
× 100%). Here, E referes to the ground-

truth energy. The features used for calculation of clusters are different for each.

66

3.8. Computing energy

For the house in BLUED-1, both real and reactive power differentials are available

and are labeled reasonably accurately. So we use a 2-D feature vector (∆P,∆Q)

for this house. For BLUED-2, we found the labeled reactive power to be unreliable,

and hence the projection of the real transient on the first two PC axes are used as

features. It is worth mentioning here that both these houses have high frequency

data sampled at mains (real power was sampled at 60 Hz). For the third house, we

use house 1 of REDD. This is different from the previous dataset as the power is

sampled at 1 Hz only, and only the real power information is available. So, we use

∆P as the feature vector for this house.

To better illustrate how the framework operates on actual data, we take the

example of the refrigerator in BLUED. Figure 3.8 shows how different steps of the

energy estimation framework would work on real data. For illustration purposes, we

pick a segment between 18:00 and 20:00 of a particular day, and show the features

extracted from events during that time. One of the events during this time is

mislabeled, and subsequently corrected for during error correction (highlighted in

red).

3.8.1 Further evaluation with simulated data

In this section, we evaluate the framework further on simulated data. Week-

long power traces for five appliances, sampled at 1 Hz, are generated assuming a

Markovian model; the appliances, assumptions of transition probabilities, and states

are shown in Table 3.4. The hmmgenerate function in MATLAB is used to create

the power traces; emission probabilities (probability of a hidden state generating the

observed state) were set to identity matrices as the hidden states and observed states

67

3.8. Computing energy

t i =
 {

…
,1

7:
15

, 1
8:

10
, 1

8:
55

, 1
9:

15
,

19
:5

5,
 1

9:
56

, 1
9:

58
, 1

9:
59

, 2
0:

05
, …

}
y j

=
Fr

id
ge

X
={

…
, 8

6,
 -8

3,
 8

1,
 -8

9,
 4

1,
 -3

5,
 4

3,
 1

40
, 9

1,
 …

}

C
 =

 {
42

.3
, 8

5.
9,

 1
28

.3
, -

42
.2

, -
85

.8
, -

11
8.

3}

 C
se

q
=

{…
, 2

, 5
, 2

, 5
, 1

, 4
, 1

, 3
, 2

, …
}

A
 =
	

ΔP
 =

{4
3,

 8
6,

 1
29

,
 -4

3,
 -8

6,
 -1

29
}

χ’
 =

 {
 [1

,4
]

 [1

,4
,6

,2
,3

,5
]

 [1
,6

,4
,3

]
[1

,4
,2

,3
,5

,6
]

 [1
,4

,6
,2

,5
,3

]
 [1

,6
,4

,3
,2

,5
]

[1
,4

,2
,5

]
 [1

,4
,6

,3
]

 [1
,6

,4
,3

,5
,2

]
[1

,4
,2

,5
,3

,6
]

 [1
,4

,6
,3

,2
,5

]
 [2

,3
,5

,6
]

[1
,4

,2
,5

,6
,3

]
 [1

,4
,6

,3
,5

,2
]

 [2
,5

]
[1

,4
,2

,6
,3

,5
]

 [1
,6

,2
]

 [2

,5
,3

,6
]

[1
,4

,3
,2

,5
,6

]
 [1

,6
,2

,4
,3

,5
]

 [2
,5

,6
,3

]
[1

,4
,3

,5
,2

,6
]

 [1
,6

,3
,5

,2
,4

]
 [2

,6
,3

,5
]

[1
,4

,3
,5

,6
,2

]
 [1

,6
,4

,2
,3

,5
]

 [3
,6

]
[1

,4
,3

,6
]

 [1
,6

,4
,2

,5
,3

]
 [1

,2
,3

,4
,5

,6
]

[1
,4

,3
,6

,2
,5

] }

P=
 {

0,
 4

2,
 8

6,
 1

28
, 2

14
, 2

56
}

A	

C	
 B	

D	

E	
 F	

G
	

C
’ se

q
=

{…
, 2

, 5
, 2

, 5
, 1

, 4
, 1

, 4
, 2

, …
}

Ê=
6.

6
kW

h

18
:0

0
18

:3
0

19
:0

0
19

:3
0

20
:0

0
0

10
00

20
00

Ti
m

e
[h

h:
m

m
]

P [t]

∆!
=
!{4
2.3
,8
5.9
,1
28
.3,
−4
2.2
,−
85
.8,
−1
18
.3}
!

 A
.

C
lu

st
er

in
g

to
 fi

nd
 d

is
tin

ct
 s

ta
te

 tr

an
si

tio
ns

B
. 

Pe
rt

ur
b

st
at

e
tr

an
si

tio
ns

 s
o

no
 r

es
id

ua
l

en
er

gy
 r

es
ul

ts
 a

ft
er

 a
n

ap
pl

ia
nc

e
cy

cl
e

C
.

C
al

cu
la

te
 tr

an
si

tio
n

pr
ob

ab
ili

tie
s

D
. 

D
is

ca
rd

 s
ta

te
 tr

an
si

tio
ns

 in
co

ns
is

te
nt

w

ith
 Z

L
SC

 (b
y

fin
di

ng
 fe

as
ib

le
 c

yc
le

s)

F.
 C

or
re

ct
 E

rr
or

s
(v

io
la

tio
n

of
 Z

L
SC

 in

or
ig

in
al

 s
eq

ue
nc

e)

G
. C

om
pu

te
 E

ne
rg

y
fr

om
 c

or
re

ct
ed

se

qu
en

ce

E
.

C
re

at
e

st
at

e
tr

an
si

tio
n

m
od

el
s

F
ig
ur
e
3.
8:

F
lo
w

of
da

ta
th
ro
ug

h
th
e
fr
am

ew
or
k
pi
pe

lin
e
fo
r
th
e
re
fr
ig
er
at
or

in
B
LU

E
D
-1
.
Fo

r
ill
us
tr
at
io
n
pu

rp
os
es
,
w
e
pi
ck

a
se
gm

en
t
be

tw
ee
n
18

:0
0
an

d
20

:0
0,

an
d
no

te
th
e
ac
tu
al

va
lu
es

of
C
se
q
,
C
′ se
q
an

d
X

fo
r
th
at

po
rt
io
n
on

ly
.
T
he

cl
us
te
r
nu

m
be

r
hi
gh

lig
ht
ed

in
re
d
sh
ow

s
th
e
er
ro
r
th
at

w
as

co
rr
ec
te
d
(f
ro
m

tr
an

si
ti
on

3
to

4)
in

st
ep

F
.

68

3.9. Discussion

are the same for this particular use case. For each iteration, and for each appliance,

the values for the states are sampled from a Gaussian with the mentioned mean

and variance. The models are taken from the generic prior models described for

these appliances in [3] 2. Next, we add Gaussian white noise with a signal to noise

ratio (SNR) of 1 dB; this decision is based on the kind of noise we observed at

plug-level data for BLUED. Before adding the noise, we ran an event-detector on

these individual power traces to find the exact event timestamps for ground truth.

Given that the minimum state-transition value is known and that there are no

simultaneous events, event detection at plug-level is a fairly trivial process. Finally,

for each appliance trace, we randomly sample a week-long power segment (collected

at 1 Hz) from the available houses in REDD, and added the two together. This

gave us a realistic power trace with perfect ground truth for one appliance. We

ran our framework (Section 3.3 -Section 3.8) on this power trace to estimate the

energy consumed by that appliance. We repeated this process a 100 times for all 5

appliances, hence simulating a case with 100 houses where ground truth data was

available for 5 major appliance types. The results, in terms of average percentage

error in energy estimated for the week for 100 houses, are summarized in Table 3.5.

3.9 Discussion

3.9.1 Discussion of results

The results in Table 3.3 show that the energy estimation framework works rea-

sonably well for the three houses analyzed. Appliances that are traditionally con-

sidered difficult for event-based approaches, like laptop and TV, were selected for

evaluation. The superior accuracies for BLUED-1 are probably because of more ac-
2The transition probabilities are altered to properly resemble the case for 1 Hz sampling

69

3.9. Discussion

curate labels. The labels in BLUED-2 are not as accurate as BLUED-1 because of

manual errors in labeling. Out of the three houses, REDD-1 performs poorly. This

is expected because (1) the events were manually labeled by us for the purposes

of this work and given that REDD-1 has measurements for almost a month, there

is a higher probability of mislabeling; (2) only ∆P was available as the feature for

estimating states. Also, given the low frequency of the dataset (as compared to the

other two datasets), there is a higher probability that the time window selected for

∆P has multiple events occurring within it. To test how much of the error was due

to poor labeling versus simultaneous events, we performed this analysis on simulated

data mimicking REDD data as closely as possible in the simulations (Table 3.4).

The fact that the errors decrease significantly indicate that most of the contribu-

tions in the error for REDD is likely due to manual errors in labeling. Appliances

like the microwave still continue to have large errors due to the fact that they are

used during times when simultaneous events are most likely in low frequency data.

Moreover, supervised and event-based NILM is typically done on higher frequency

data, so results BLUED-1 is indicative of how this framework would perform in such

scenarios. A better error correcting algorithm (Section 3.7) could probably improve

the performance of BLUED-2 given the presence of incorrect or missing labels.

3.9.2 Discussion of framework

The proposed framework has room for improvement, which we discuss here and

leave its implementation as future work. Foremost, we believe the need for auto-

mated appliance modeling in NILM, which is the primary goal of this chapter, has

been made clear through our analysis in previous sections; hence, in this section we

provide our thoughts on how the framework could be improved.

70

3.9. Discussion

One of the more important parameters that controls how representative state

transition values, energy estimates, and even cluster centers are calculated is the

∆P parameter. The extraction of ∆P is dependent on the time window that is

considered. If the window is larger than necessary, then it can include events from

appliances that are not of interest, hence skewing the results. On the flip side, if

it is too small, it might not capture the actual ∆P because the transients might

not have stabilized into steady-state within that window span. Although we used

a generic time window of 1 second for our analysis, perhaps a more robust method

can exist that extracts this parameter directly from data by maximizing the window

size while constraining the number of events seen in each window to one. An ideal

implementation would use different window sizes for different appliances in a house

based on values learnt from data.

Another major assumption in the framework is that the convex approximation

closely approximates the optimization framework in the perturbation step. Although

the results seem to make sense empirically (Table 3.2), evaluating this step exhaus-

tively and identifying the cases where it is likely to fail is left as future work. Simi-

larly, there might be other formulations of the optimization framework, for instance,

mixed integer programs, which can be solved by dynamic programming tools. Evalu-

ating those options and comparing them with the convex formulation is left as future

work as well. One of the drawbacks of the current optimization formulation is that

a unique solution is not guaranteed. This is evident in the case of the Washer for

BLUED 2 as shown in Table 3.2. The state transitions 15.5 and -13.1 are perturbed

to result in new state transitions: 0.1 and -0.1 (and hence are removed as they are

below 5 W, as explained in the section). A more reasonable solution perhaps is to

71

3.9. Discussion

perturb those to 15 and -15, and still preserve the total number of cycles (which is

4). Incorporating this extra constraint for more reasonable solutions is also part of

our future improvements.

Moreover, the framework has also assumed power values to be piece-wise con-

stants between events. Incorporation of frameworks such as those proposed by

Barker et al. that model appliance behavior between events based on the dominant

electric component of the operating load could be beneficial as well [59].

Model selection and estimation of parameters for latent variable models like

Hidden Markov Models (HMM) are well studied problems in various applications

[60, 38, 39]. Our problem of discovery of appliance models fits well in this paradigm

of topology learning in HMMs. Typically, such methods work by assuming that

the model has a small number of states, and continously splitting states until the

likelihood of the observed data is maximized [60]. New variants of the algorithm

have proven to be computationally efficient as well [60, 61]. Modeling the problem

of energy estimation in this manner would perhaps be excessive, both in terms of

computation and complexity. Because of the fact that hidden states and observed

states are relaying the same information, clustering allows for a more efficient and

arguably accurate way to estimate the number of states in energy estimation. Esti-

mating emission probabilities would be problematic and prone to errors, as we are

not assuming that training data (ground truth) is available from the appliances.

Our estimation of transition probabilities is based on a maximum likelihood estima-

tor, as opposed to a Baum-Welch algorithm which is used for parameter estimation

in HMMs. Regardless of how the states and transitions were discovered, steps like

72

3.9. Discussion

perturbation would be required to ensure errors do not get accrued upon reconstruc-

tion of power traces. In addition, checking for feasible cycles and getting rid of ones

that violate appliance behavior is a definitive way to enforce zero probabilities on

certain transitions. So, these checks would still be necessary even if the models were

discovered using alternative techniques. In Chapter 3, we talk about how the error

correction algorithm is analogous to inference in HMMs, and provide our case for the

algorithm we use (as opposed to Viterbi). We believe comparison of computational

performance and model accuracy of existing model discovery methods like STACS

[60], ML-SSS [38] against our method would be intriguing. We delegate it as future

work.

Although the results from the limited set of houses and limited set of appliances

cannot be taken as validation of the proposed method itself, they do reflect its utility.

Collecting data with extensive ground truth and event labels is a very cumbersome

undertaking, and as a result, the state of the art has been limited to testing on

controlled laboratory testbeds [62, 19, 22]. In addition, because we are introducing

the first formalized framework dedicated for energy estimation, comparison with

other methods or even benchmarking against a standard is not meaningful. In this

thesis, we have extended the standards for “demonstration of utility” of proposed

methods by working with publicly available datasets, and by labeling them manually

when labels were not available. To overcome the potential for errors due to manual

labeling of events, a clear strategy is required in the long term. For instance, labeling

by multiple experts with a posterior cross-validation step would be one possible

solution.

73

3.10. Chapter Conclusion

3.9.3 Evaluation criteria

In our analysis, we use the percentage error in energy estimation as the metric

for evaluating the framework (Ê−E
E
× 100%). Although separate steps of the frame-

work could be evaluated individually, the ultimate reflection of the robustness of

the method is in its ability to predict energy consumption. Measures of model com-

plexity such as Bayesian Information Criteria (BIC) could be evaluated if multiple

energy estimation frameworks are to be compared against each other.

3.10 Chapter Conclusion
In this chapter, we presented the case for the need of automated appliance mod-

eling, and its importance in energy estimation for NILM. We surveyed relevant

literature for propose ways to model appliances, and their suitability for energy es-

timation. We proposed a framework for energy estimation that incorporates the

following steps (1) clustering of features observed at events using affinity propaga-

tion, (2) perturbation of extracted state transitions so that they follow ZLSC, (3)

creation of FSMs based on observed transitions, (4) correction of any errors in la-

beling that might violate ZLSC, and (5) estimation of energy using the new states.

We evaluated the framework for energy estimation on public datasets from 3 houses

and 17 appliances, and presented the results as errors in energy estimation as com-

pared to ground truth. Finally, we discussed ways in which the framework could be

improved. In the next chapter, we explore the step of error correction in detail and

study the framework further.

74

3.10. Chapter Conclusion

Table 3.3: Actual and estimated error for estimated energy for a select group of appli-
ances in 3 houses from different datasets. The energy was estimated using the framework
presented above.

House Appliances
(label)

Estimated
Energy
(kWh)

Actual
Energy
(kWh)

Error
(%)

BLUED-1

Refrigerator
(111)

6.6 6.7 1.3

Lamp (101) 0.9 1.1 18.2
TV (129) 6.2 6.4 2.2

Computer (118) 2.1 2.0 -5.3
Laptop (120) 0.9 0.8 -7.8
AV System

(112)
4.8 4.9 1.1

Average Error 5.9

Refrigerator
(111)

24.3 25.7 5.4

Washer (183) 0.2 0.2 15.6
BLUED-2 TV (129) 0.5 0.6 15.9

Computer (120) 6.8 5.3 -29.2
Average Error 16.5

Oven (3) 3.9 3.4 -16.7
Refrigerator (5) 29.2 24.0 -21.4
Dishwasher (6) 12.6 11.1 -12.8

REDD-1 Lighting (9) 21.4 18.6 -15.2
Washer (10) 2.5 1.7 -42.3

Microwave (11) 6.4 9.7 33.9
Dryer (20) 16.1 14.0 -14.6

Average Error 22.4

75

3.10. Chapter Conclusion

Table 3.4: Models for generating simulated data for analysis. 100, week-long, power traces
were generated for each appliance

Appliances Mean States
(Watt)

Variance
(Watt2) Transition probabilities

Refrigerator {2 160 180} {5 100 100}

 0.99 0.005 0.005
0 0 1

0.005 0 0.995


Microwave {4 1700} {100 1000}

[
0.9995 0.0005

0.4 0.6

]

Washer {0 5000} {100 5000}
[

0.99999 0.00001
0.0099 0.9901

]

Dishwasher {0 1400} {100 1300}
[

0.99999 0.00001
0.0006 0.9994

]

AC {4 2300} {100 2300}
[

0.99 0.01
0.0001 0.9999

]

Table 3.5: Average error in energy estimation for simulated data for a 100 houses.

Appliances Average # of
events per week

Average energy
consumption per

week (kWh)

Average error in
energy estimation

(%)

Refrigerator 501 20.3 3.8
Microwave 13 0.7 15.2
Washer 12 9.2 0.2

Dishwasher 12 4.3 0.4
AC 122 382.2 2.2

76

Chapter 4

An Error Correction Framework

As discussed in earlier chapters, the energy estimates can be affected by errors result-

ing from different algorithmic steps in NILM or in the energy estimation framework.

A robust framework for energy estimation should use the labels from classifcation to

(1) model the different state transitions that can occur in an appliance (2) account

for any misclassifications by correcting event labels that violate the extracted model,

and (3) accurately estimate the energy consumed by that appliance over a period

of time. In this chapter, we extend the error-corrrection step in the framework pre-

sented in Chapter 3 by introducing an improved algorithm which looks at sequences

generated by FSMs and corrects for errors in the sequence. Here, errors are defined

as state transitions that violate the FSM.

Continuing with the communication model analogy in Figure 1.5, this step of

error correction is analogous to creating a channel inverter for corrupt data that has

passed through a noisy channel. The inverter is designed using certain assumptions

This chapter is based on the manuscript in [63]

77

4.1. Introduction to the framework

about how the channel likely corrupts the data1. Notationally, this is the step where

we learn the function h : (Υ × Ψ) → Υ′ defined in Section 2.1.2. The input to the

function h is a tuple (υ, ψ) consisting of a time-series data υ for an appliance, and

its model ψ. υ is a series of state transition assignments for all the events associ-

ated with the appliance, and ψ is the model learnt from the event time-series of the

appliance (ξ) using function g. The output of this step is a time-series (υ′ ∈ Υ′)

for the appliance which follows the state transitions dictated by the transition prob-

ability matrix (Aψ) as given by its model ψ. This process is illustrated in Figure 4.1.

(Corrupted time series,
Appliance models)

(υ, ψ); υ	
 ∈	
 Υ	
 ; ψ ∈	
 Ψ

Channel Inverter
h: (Υ x Ψ) à Υ’	

Corrected time series
υ’	
 ∈	
 Υ’	

Figure 4.1: The input and output associated with the framework proposed in this Chapter.

4.1 Introduction to the framework
Our framework for error correction is based on the concept of minimizing the

global cost of correction for errors in a sequence. Ultimately, this reduces to solving

the shortest path problem in a directed acyclic graph. Following are the notations

that will be used:

For rest of the chapter, the notations will refer to events occuring for a particular

appliance yi. As summarized in Figure 3.2, once all the features (X) are extraced

from events occuring at timestamps T , they are clustered using affinity propagation

algorithm. C = {c1 . . . cn} denotes the set of labels for the n clusters that result

(with n ∈ N). Let Cseq = {c1, c2 . . . cm} represent the ordered sequence of cluster
1As will be discussed later, the assumptions about the channel are that it imparts single bit

insertion, deletion, or substitution errors on the data stream

78

4.1. Introduction to the framework

assignments for all the events such that ck denotes the cluster label associated with

the state transition that occurs at event timestamp tk. Let A denote the transition

probability matrix learnt from the FSM, where aij ∈ R denotes the probability of

transition from state ci to state cj. If ck−1 = ci; ck = cj;∀ ci, cj ∈ C, an error occurs

whenever aij = 0.

The first step is to model the cost functions. Costs can be of different types based

on the kind of error correction being done. For error correction using substitution,

where a faulty state is replaced by another state which has a valid transition, we

define errors as the negative logarithm of transition probabilities, i.e.

χSi,j = log(−γ (aij)) (4.1)

Here the superscript S denotes the cost for substitution between states ck−1 =

ci; ck = cj; ∀ ci, cj ∈ C, and γ is a constant that alters the probability of substitu-

tion based corrections. This ensures that transitions with low probabilities will have

a higher associated cost when replacing an erroneous term, and vice versa. Transi-

tions that are not possible, will have infinite associated cost. Costs for insertion of

a new state, and deletion are also calculated.

For insertion, we calculate the joint probability of the new state being inserted,

again, ck, coming after its preceeding state, ck−1 and before the succeeding state,

ck+1. As before, assume ck−1 = ch; ck = ci, and ck+1 = cj;∀ ch, ci, cj ∈ C. The

probability is ahi aij. Depending on the prior knowledge we have about the process,

i.e. belief on the kinds of errors that can occur, the cost function for inserting a

79

4.1. Introduction to the framework

state ci before erronoeus transition from ch to cj is calculated as

χIi,j = log(−µ (ahi aij)) (4.2)

where µ is a constant (typically a small number) that alters the probability making

insertions less likely based on prior belief. The superscript I denotes that the cost

is for insertion.

Similarly, for deletion, we calculate the cost using the transition probability from the

state before the one being deleted to the state after it. Extra cost is added to make

deletions more or less likely depending on prior knowledge. Using the same notation

as before, if ck is to be deleted, mathematically, this amounts to calculating,

χDi,j = log(−ν (ahj)) (4.3)

The variable ν is again a constant similar to µ, and the superscript D denotes the

cost for deletion, with ci being the state that is deleted for correcting the error.

The goal is to correct errors, as defined above, by making changes that minimize the

cost of correction. For instance, a local greedy algorithm, as proposed in Chapter 3

can result in error propagation. An ideal algorithm will be able to correct for local

errors while ensuring that the effect of the correction does not result in propagation

of error. In the example presented in Section 1.3, the error occuring at the second

event in Cseq = (1, 2, 2, 2, 1, 2), could be solved by checking the transition probabil-

ity for the most likely state as done in Chapter 3. This would involve replacing the

erroneous state (2) in the third event with the state with the highest probability (3),

80

4.2. Introduction to the framework

resulting in Cseq = (1, 2, 3, 2, 1, 2). This would, however, introduce another error,

as the transition from 3 to 2 is not possible. So, the algorithm would iterate again

resulting in Cseq = (1, 2, 3, 1, 1, 2). After several iterations, the final sequence will

converge to Cseq = (1, 2, 3, 1, 2, 3), with energy consumption of 60 kWh. So, even

though the resulting sequence does not have "errors", the error correction at a single

point has resulted in a propagation of errors which has affected the energy estimate.

An ideal error correction algorithm will be able to account for such propagation of

errors resulting from correction steps in the sequence, and choose the optimal cor-

rection step (which, in this case, would be to replace 2 with a 1 in the third event

in Cseq.)

To tackle this problem, we represent Cseq as a fully connected network diagram as

shown in Figure 4.2. For an error point ci in Cseq there are multiple error correcting

steps possible, each with specific costs denoted by the matrix χ of dimension m ×

(2n + 1). Throughout this chapter, we use χij to denote the cost element in row i

and column j of χ. The goal will be to find a feasible path from c1 to cm with the

least cost possible. We acheive this by modeling the problem as a special case of the

min-cost flow problem in Network theory, known as the shortest path problem [64].

The basic idea behind the problem is to find the shortest path between two nodes

in a directed graph, when the distance between all connected nodes (also known

as weights or cost) is known. Several algorithms have been proposed to solve the

problem, with Dijkstra’s algorithm being perhaps the most well known and simplest

in terms of implementation [65]. In the next section, we formalize this optimization

problem.

81

4.2. Shortest-path formulation

c1 c2 c3 cm-1 cm

c1

cn

c1

cn

c1

cn

+c1

+cn

+c1

+cn

+c1

+cn

-c2 -c3 -cm-1

Substitution

Insertion

Deletion

Figure 4.2: Network flow diagram for the sequence Cseq = {c1 . . . cm}. Three different
kinds of error corrections are possible: Substitution, Insertion and Deletion.

4.2 Shortest-path formulation
Notationally, we have the following optimization framework for the shortest-path

formulation of the error correcting algorithm. As depicted in Figure 4.2, Cseq is the

errorneous sequence. The source node is c1 and the destination node is cm. The

goal is to find the shortest path from the source to the destination. Say duv is a

variable that denotes whether an edge lies in the shortest path or not. So, duv = 1

if the edge between node u, denoted by cu and node v denoted by cv lies in the

shortest path. The way the network flow is arranged in this particular formulation,

v = u + 1. The source node is denoted by c1 and the destination node denoted by

cm. As mentioned before, cu, cv ∈ C. The shortest path algorithm optimizes:

min
∑
u,v

(duv χuv) (4.4)

82

4.2. Shortest-path formulation

subject to: d > 0∀u, v

∑
u

duv −
∑
v

duv =


1 ifu = 1

-1 ifu = m

0 otherwise

The unimodularity of the constraint co-efficient matrix allows the relaxation of

the inherent integer constraints in the setup, while still ensuring that all solutions are

either 0 or 1. Proof and futher details can be found in [66]. There are several algo-

rithmic approaches to solving this optimization problem. We use, what is perhaps,

the most popular option, known as the Dijkstra’s algorithm. The computational

complexity of Dijkstra’s algorithm is O(V 2), where V is the total number of vertices

in the graph. For sequence Cseq, V = m (2n + 1), and hence the computational

complexity in using Dijkstra’s algorithm is (m (2n+ 1))2, where n = |C| is the total

number of possible states. The number of vertices can be pruned using some prior

knowledge about state transitions, and by removing certain nodes in the sequence

that are clearly not possible (for instance, edges with χuv = ∞). Worth noting is

that there are variations of Dijsktra’s methods (d-way heap, Fibonacci heap, etc.),

that can solve the shortest path problem faster, depending on the setup of the net-

work and the kinds of data structures used [66, 67]. Since computational complexity

of the algorithm is not a major limiting factor for the length of sequences typically

encountered in NILM, we only explore the standard version of the algorithm.

The shortest path calculated using Dijkstra’s algorithm incorporates information

about state transitions, but does not yet utilize the constraints resulting from the

possible states in the FSM. So, for instance, the net energy consumption at any

given point for an appliance can still be more than the maximum allowed state for

83

4.3. Evaluation

that appliance. To incorporate this information, we employ an iterative algorithm

that changes the cost function at specific points in the shortest path. The idea, as

depicted in Algorithm 1, is to iteratively identify nodes that allow the aggregate net

power consumption to be in violation of the maximum or minimum possible state,

and locally set the cost for the immediate edge that leads to such node to infinity.

Then the shortest path is recalculated, and the violation of states is checked for

again. The algorithm terminates after a shortest path with no violation is found.

Algorithm 1 Iterative correction of violations in FSM states.
EndFlag = 0
while EndFlag 6= m do ¯

for i in 1 to m do ¯¯
Csum
seq [i] =

∑i
1 (∆P s mapped by Cseq) ¯¯

if Csum
seq [i] > max (FSMstates) OR Csum

seq [i] < 0 then ¯¯¯
χ(i−1, i) = Inf ¯¯¯
EndFlag = i ¯¯¯
Break ¯¯

end if¯
end for¯
Cseq = CalcShortestPath (χ)

end while

4.3 Evaluation
In this section, we evaluate the effect of using this error correcting formulation

on Cseq-like sequences originating in supervised NILM. Given that the ultimate

goal of the corrected sequence is to perform energy estimation (i.e. calculate Ei for

appliance yi), we evaluate the capacity of the framework to both recreate a sequence

that is as close as possible to the original sequence, and to estimate energy as closely

as possible.

84

4.3. Evaluation

4.3.1 Evaluation metrics

We denote the erroneous sequence as CE
seq

2, the corrected sequence as CC
seq and

the uncorrupted (original) sequence as CO
seq. To evaluate how well the error correc-

tion framework works, we need some metric to compute the similarity between CC
seq

and CO
seq. Traditional metrics to evaluate the proximity of time series sequences like

Euclidean distance, or RMS error fail in this case because insertions and deletions

may lead to CC
seq and CO

seq which have different lengths. To get around this lim-

itation, we leverage the Dynamic Time Warping (DTW) distance measure, which

is basically a metric to compute the similarity between two temporal sequences of

different lengths. DTW has been used to compute the similarity of sequences that

might be warped non-linearly in time in applications ranging from shape matching

to speaker recognition [68, 69].

Say X = (x1, . . . , xA) and Y = (y1, . . . , yB) are two time-series sequences of

length A and B respectively where A,B ∈ N. Further, assume that the two se-

quences are from some vector space V such that x, y ∈ V . A cost metric is then

defined as a function f that performs the following mapping: f : V ×V → R+. Upon

calculating the cost metric for all possible pairs of items in sequences X and Y , a

cost matrix F ∈ RA×B results. The DTW algorithm attempts to find an alignment

between sequences X and Y that minimizes the overall cost. The optimal cost of

alignment becomes the DTW distance. For the obvious case where X and Y are

the same sequence, the DTW distance will be zero. Figure 4.3 shows an example of

two time series sequences with corresponding cost matrix, and Figure 4.4 shows the

shortest path of alignment in the cost matrix.
2so far, we have denoted it as simply Cseq

85

4.3. Evaluation

¯¯

10 20 30 40 50 60

10

20

30

40

50

60
0

1

2

3

4

5

6
x 104

Original sequence

C
or

ru
pt

ed
 se

qu
en

ce

Figure 4.3: DTW cost matrix for two sequences (original and corrupted) for a washer
(label: 3) in dataset REDD-1. The appliance only has two states, and hence the sequence
fluctuates between two values.

¯

10 20 30 40 50 60

10

20

30

40

50

60

Figure 4.4: Path (shown in white) with minimal cost of alignment for the original sequence
and corrupted sequence as shown in Figure 4.3. The DTW distance was 5808.

In addition, the error correction farmework imparts certain appliance specific

constraints to CE
seq to facilitate energy estimation. To evaluate the efficacy of those

86

4.3. Evaluation

constraints we compute the energy consumed by the appliance as given by CC
seq

(denoted by Ê) and compare it with the actual energy consumed by the appliance

(denoted by E). The evaluation metric here is simply a percentage error as given

by

e =
E − Ê
E

× 100% (4.5)

4.3.2 Evaluation on Simulated Data

We evaluated the framework on both real and simulated data based on the

metrics discussed. For simulation, we created an appliance model which, in turn,

generated the sequence of state transitions while preserving appliance like properties

(e.g., ZLSC 3). The idea behind the simulations was to study how different parameter

values for cost constants affect the corrected sequence. In addition, for testing on real

data, we evaluated our model on 43 different appliances collected from 19 different

houses.

Appliance model

The following are the major components of the simulated appliance model; these

are also summarized in Table 4.1.:

• Number of states (n1): A random number of states of operation (between 2

and 9). n1 ∼ U {2 , 9}

• Power consumption (Pi): Random values between 50 and 3000 assigned to

each state. Pi ∼ U (50 , 3000)

• Transition probability (A1): A doubly stochastic hollow matrix of dimension

n1 × n1 with random values between 0 and 1.
3ZLSC: The Zero Loop Sum Constraint, first coined by Hart, stipulates that the sum of all

possible power transitions in a cycle should equal zero. A cycle occurs when an appliance in one
state, undergoes some state transitions, and returns to the same state.

87

4.3. Evaluation

• Sequence length (m): A variable set to 500 to represent the number of events

registered for the appliance. This is typically adequate to capture appliance

behavior.

• State Sequence (Cst
seq): A sequence of dimension m × 1 generated using hm-

mgenerate function in MATLAB given A1.

• Original State transition sequence (CO
seq): CO

seq = Z×Cst
seq, where Z is anm×m

matrix (sometimes also called a difference matrix) of the following form:



1 −1 0 0 0 . . . 0

0 1 −1 0 0 . . . 0

0 0 1 −1 0 . . . 0

...
...

...
...

...
...

...

0 0 0 0 . . . 1 −1


• Number of state transitions (n): Number of unique values in the state transi-

tions sequence.

• Transition probability (A): A matrix of dimension n×n, calculated using the

the frequency of transition from each state to another in CO
seq. This can also

be computed using hmmestimate in MATLAB.

• Emission probability (B): A randomly generated doubly stochastic matrix of

dimension (n×n) with diagonal elements set to random values close to 1.The

rest of the matrix has random values less than 0.1. This ensures that most of

observed sequence come out as the original sequence with potential for a few

errors.

88

4.3. Evaluation

Table 4.1: Summary of the parameters used in the simulation model

Parameter Value Parameter Value

of states n1 ∼ U {2 , 9}
Power con-
sumption

Pi ∼
U (50 , 3000)

Transition
probability

A1 ∼ random
doubly
stochastic
hollow matrix of
size n1

Sequence
length m = 500

State
Sequence

Cst
seq ∼

hmmgenerate
given A1

Original
state
transition
sequence

CO
seq = Z×Cst

seq

of state
transitions

n = # of unique
values in CO

seq

Transition
probability

A ∼ n× n
matrix
computed using
CO
seq

Emission
probability

B ∼ Randomly
generated
doubly
stochastic
matrix of size n

Observed
state
transition
sequence

CE
seq ∼

Sequence
sampled using
B and CE

seq

Duration τ ∼ {1, 7200}

• Observed State Transition Sequences (CE
seq): A sequence with elements sam-

pled from the probability distribution of corresponding elements in CO
seq given

B. When state 1 (out of n states) is observed in CO
seq but not in its correspond-

ing position in CE
seq, it is an insertion error. Alternatively, if state 1 appears

in CO
seq but not in its corresponding position in CO

seq, it is a deletion error. All

state 1 values are subsequently removed from both sequences.

• Duration (τ): A sequence of lengthm with values between 1 and 7200 seconds,

assigned to each state transition. τ ∼ {1, 7200}.

89

4.3. Evaluation

Results

We ran the simulation on different combinations of Insertion, Deletion and Sub-

stitution cost constants (µ, ν, and γ). For each combination of cost constants (rang-

ing from 1 to 50 each), we performed 100 simulations each, resulting in a total of

1.25 × 107 trials. The overall goal was to compare post error correcting frame-

work sequence to a case without error correction, according to the metrics defined

previously- namely DTW distance, RMS error, and final energy estimation results.

Figures 4.5 and 4.6 show a color map of the effect of different µ and ν parameters

on the energy estimation accuracy results for a specific instance of γ (γ = 16). The

figure indicates that the energy estimation error improves consistently after the dele-

tion cost crosses a certain a threshold (roughly 15). This is most likely the point at

which deletion corrections become costlier than substitution corrections, and hence

more substitutions are made where possible. Given substitution errors are more

likely to exist in the simulation, this improvement makes sense. Higher cost values,

however, seem to be produce more unstable results as depicted by the standard

deviation color map in Figure 4.6. Again, this makes intuitive sense, as once the

cost values for a certain kind of correction cross a certain threshold, that type of

correction is avoided, which results in a certain kind of error not being accounted

for throughout the sequence.

Figure 4.7 shows how the three metrics vary before and after the framework

is used for a specific instance of the three costs values (µ = 16, ν = 16, γ =

12). The lines in the middle of the box plots in Figure 4.7 indicate the median

values of the logarithmic of the metrics of interest after 1000 trials each, with the

box-margins denoting the limiting values for 75th and 25th percentile each. The

90

4.3. Evaluation

5 10 15 20 25 30 35 40 45

10

20

30

40

Insertion Cost

D
e
le

ti
o
n
 C

o
s
t

10

20

30

40

50

Figure 4.5: Median error in energy estimation (e) for varying values of µ and ν, with
γ = 16. The medians were calculated after 100 simulations of each cost combination.

whiskers represent the minimum and maximum values in each of the simulation.

Although, no statistically significant change is observed as the number of states are

varied, it is obvious that using the error error correction improves results significantly

as measured by all three metrics. The fact that the DTW metric is consistently

less after the framework is applied means that the corrected sequence is closer to

the original sequence than the corrupted sequence. In addition, we compared the

power traces of the power signals created using the corrupted sequence and the

the corrected sequence, and computed the RMS error. As expected, the corrected

sequence had much lower RMS error values. All energy estimation errors were found

to be less than 40% for corrected sequences, which highlights the utility of the

method. Although these plots show the effect of the framework for one combination

of the costs, the results from Figure 4.5 confirms that a wide range of parameter

selection would still result in better energy estimates. The major takeaway from

the simulation results is that error correction results in corrected sequences that

are much closer to the original sequence than the corrupted sequence, and in much

better energy estimates. Moreover, this performance is not limited to a significant

value of the cost parameters, but is tolerant over a wide range.

91

4.3. Evaluation

10 20 30 40

10

20

30

40

Insertion Cost

D
e
le

ti
o
n
 C

o
s
t

500

1000

1500

2000

2500

Figure 4.6: Standard Deviations for the median errors as reported in Figure 4.5 for 100
iterations of different cost combinations.

4.3.3 Evaluation on real data

We evaluated the error correction framework on 43 appliances from 2 different

datasets comprising of 19 houses. To our knowledge, only one publicly available

dataset (BLUED-1) has event-level ground truth data [2]. We have added two more

datasets to the BLUED series, namely BLUED-2 and BLUED-3 which was col-

lected by authors in [70]. All three datasets are collected in the same format (60 Hz

real and reactive power). In addition, we took another publicly available dataset-

REDD- and labelled all the events for appliances of interest in House 1 [37]. This

dataset was collected at a frequency of 1 Hz real power. Since appliance-level ground

truth was not available in this dataset, we had to label events at sub-circuit level.

As a consequence, only appliances that had a dedicated sub-circuit were chosen for

analysis. The appliance events observed at the aggregate power level were labelled

manually using ground truth data collected at circuit-level. Inevitably, some errors

get introduced in this process. Finally, we took 15 other houses from the REDD

92

4.3. Evaluation

3 4 5 6 7 8

4

8

 # of states

lo

g
(e

)

After EC Before EC

3 4 5 6 7 8

10

12

14

 # of states

 l
o
g
 (

D
T

W
)

3 4 5 6 7 8
6

8

10

 # of states

 l
o
g
 (

R
M

S
)

Figure 4.7: Box plots of logarithmic values of the energy estimation error: e (top), DTW
distance of corrected sequences (middle), and RMS error of reconstructed power traces
(bottom), with box margins representing the 25th and 75th percentile values, and median
was calculated after 1000 simulation trials. EC stands for Error Correction.

series- a dataset that is not yet public- and labelled the events in the same way as

House 1 in REDD. The data collection process in this dataset was the same as the

one in the earlier REDD series. Two of the houses in the REDD series (23 and 24)

had high frequency mains data (60Hz), and hence we utilized that instead of the

low frequency data. Again, only appliances with dedicated sub-circuits were chosen

which meant that only large appliances like the dishwasher, dryer, furnace, pool

pumps, etc. were available for testing. Table 5.1 summarizes the datasets used in

the analysis.

The framework described in [24] was used to generate the sequence of state

transitions Cseq from the sequence of labelled events available for these appliances.

This process also has the potential to introduce additional errors in the sequence.

This could be because of miscalculation of state transition values due to simultaneous

93

4.3. Evaluation

events, or other factors like erroneous clustering, etc. Since no "ground truth" was

available for Cseq, we only evaluated the framework for its ability to estimate energy,

and compared it to the case when no error correction was done. The same methods

described in [24] were used to compute energy values from resulting sequences.

The error metric described in Equation 4.5 was used to compute error (e) after

correction. In addition, we also computed the error in energy estimation without

the error correction algorithm (denoted by e′) using energy estimates done through

the erroneous sequence CE
seq. The energy estimate computed using CE

seq is denoted

by Ê ′.

e′ =
E − Ê ′
E

× 100% (4.6)

To understand the effect of using the error correction framework, and its impact

on the energy estimation errors, we created a metric which we call the improvement

ratio (denoted by ∆e), defined as follows:

∆e =

∣∣∣∣e− e′

e′

∣∣∣∣ (4.7)

The improvement ratio denotes the fraction of the erroneous energy estimates that

is corrected for by the use of the error correction algorithm. Values close to 1 are

good because they indicate the error correction algorithm accounted for most of the

errors, and values above 1 denote cases where the error correction algorithm wors-

ened the energy estimates. Values of zero denote cases where the error correction

algorithm does not affect the energy estimates. It is also to be noted that e′ will

rarely equal zero, as it is extremely unlikely that the energy estimates are precisely

the same as the ground truth. Figure 4.8 summarizes the inputs and output of this

evaluation process.

94

4.3. Evaluation

 S [t]
T

Energy
Estimation
Framework

Error
Correction
Framework

Figure 4.8: The inputs and outputs involved in the evaluation process when the error
correction is applied on BLUED and REDD datasets. Energy estimation framework refers
to the framework from Chapter 3, and Error correction framework is the one proposed in
this chapter.

Results

The error correction framework was evaluated on the aforementioned datasets.

Table 4.3 depicts the actual values after the framework was applied on 43 appli-

ances. Again, the framework for energy estimation was the same as the one used by

authors in [24]. As summarized in Figure 4.8, once the energy estimation framework

generated Cseq, the values of energy were computed using Cseq only, and compared

to the case when Cseq was corrected using the error correction framework. The error

in energy estimation (e) was found to fluctuate between ±70 for all appliances once

error correction was applied. Without error correction, as showcased by Table 4.3,

the error values e′ can fluctuate drastically. On average, using the framework im-

proved the energy estimates for 11 houses, did not have any impact on 6 houses, and

impacted 2 houses negatively. The average negative impact e−e′ was -8.2%, which is

a trivial trade-off compared to the the positive improvements in energy estimation.

Figure 4.9 illustrates these results in a log-log plot of the energy estimation error

95

4.3. Evaluation

Table 4.2: Summary of the datasets used for evaluation in the chapter. Dataset index
B stands for BLUED and R stands for REDD. Appliances are indexed as follows: A-
Refrigerator; B-Lights; C-TV; D-Computer; E-Laptop; F-AV System; G-Washer; H-Oven;
I-Dishwasher; J-Microwave; K-Dryer; L-Furnace; M-PoolPump; N-HairDryer.

Data-set
Sampling
Freq.
(Hz)

Duration
(days) Appliances used # of events

B-1 60 7 [A; B; C; D; E; F] [616; 26; 54; 45; 14; 8]

B-2 60 7 [A; E; C; G] [287; 53; 289; 1897]

B-3 60 7 [A; E; C; G] [287; 53; 289; 1897]

R-1 1 26 [A; E; C; B; I; N] [600; 47; 29; 46; 52;
22]

R-13 0.25 7 [I] [109]

R-17 0.25 7 [I] [69]

R-19 0.25 7 [K; J] [435; 35]

R-20 0.25 7 [M] [17]

R-21 0.25 7 [L] [22]

R-23 60 7 [I] [54]

R-24 60 7 [J; K] [12; 227]

R-26 0.25 7 [I; F; K] [242; 39; 251]

R-34 0.25 7 [H] [80]

R-37 0.25 7 [A] [306]

R-40 0.25 7 [J] [92]

R-46 0.25 7 [H] [72]

R-52 0.25 7 [L] [292]

R-53 0.25 7 [M] [25]

R-57 0.25 7 [J; K] [36; 140]

without error correction (e′) and the change in energy estimation because of the

error correction framework (|e− e′|). The line (y = x) denotes the ideal case, where

96

4.3. Evaluation

all the errors in energy estimation process is accounted for by the error correction

step. The shaded area: x > y denotes regions where use of the error correction

framework positively impacts the energy estimation process, by accounting for a

portion of the errors. The zero values denote cases where there was no change in

energy estimation error upon using the error correction framework. Points in the

region: x < y show cases where using error correction adversely affects the energy

estimation results. Again, it can be seen that, on average, the framework has a

positive effect on energy estimation for appliances.

¯

lo
g

 (
|e

 −
 e

’|
)

log (|e’|)

1 10

0

1

10 deterioration

no change

no room for change

improvement

 ideal case

 improvement area

Figure 4.9: A log-log plot of the change in energy estimation error upon using the frame-
work (y-axis) and the energy estimation error without the framework (x-axis) for 43 ap-
pliances.

In addition to error correction, we were also interested in understanding the ef-

fect of the appliance model (topology) learnt by our framework on the final energy

estimation results. To study this, we first studied how cluster quality affected en-

97

4.3. Evaluation

ergy estimation results. For each appliance, we calculated a measure of intracluster

dispersion weighted by intercluster distance, known as the Dunn Index. The higher

the value of Dunn Index, the better the cluster quality. Figure 4.10 shows a plot

of how error values changed as the cluster quality changed. Although one would

expect the error to decrease as the cluster quality increases, no discernible impact of

dispersion on energy estimation was observed. This could be due to limitations im-

parted by the sample size. One hypothesis is that errorenous events in the sequence

affect the final error values more than the quality of clusters. Next, we wanted to

understand the effect of the topology of the appliance on energy estimation errors.

To do this, for each appliance, we used a variant of the affinity propagation algo-

rithm (apclusterk) that allows the number of clusters to be specified using the same

similarity measure. So, for each appliance, we varied the number of clusters and

used the framework on the dataset. Figure 4.11 shows some of the error values for a

sample set of appliances. The red circle denotes the number of clusters the algorithm

converges to if it is not forced to assume a certain number of clusters. This analysis

points towards there being certain tolerance to the number of clusters (and hence

appliance model), but the error increases as you drift away from the true topology.

98

4.4. Evaluation

¯

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

Log
10

 (Dunn Index)

L
o

g
1
0
 (

E
n

e
rg

y
 E

rr
o

r)
With Error Correction

−3 −2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5
0

2

4

6

Log
10

 (Dunn Index)

L
o

g
1
0
 (

E
n

e
rg

y
 E

rr
o

r)

Without Error Correction

Figure 4.10: A log-log plot of the energy estimation error versus cluster quality as measured
by Dunn Index. Each dot represents appliances in the same order as they appear in Table
4.3.

¯

2 4 6 8
0.5

1

1.5

2

clusters

lo
g

 e
 (

%
)

Fridge1

2 4 6 8
0.5

1

1.5

clusters

lo
g

 e
 (

%
)

Fridge2

2 4 6 8
−0.5

0

0.5

1

clusters

lo
g

 e
 (

%
)

Computer

2 4 6 8
0.5

1

1.5

2

clusters

lo
g

 e
 (

%
)

Laptop

2 4 6 8
0.5

1

1.5

clusters

lo
g

 e
 (

%
)

Oven

2 4 6 8
0

1

2

clusters

lo
g

 e
 (

%
)

Fridge3

2 4 6 8
0

2

4

clusters

lo
g

 e
 (

%
)

Diswasher

2 4 6 8
1.4

1.6

1.8

2

clusters

lo
g

 e
 (

%
)

AV closet

Figure 4.11: Change in energy estimation error (logarithmic) as the number of clusters
were varied for a sample set of appliances from the dataset. The red circle denotes the
number of clusters and error value the algorithm converges to if it is not forced to assume
a certain number of clusters.

99

4.4. Evaluation

Table 4.3: Results of energy estimation on 43 appliances from 19 houses with and without
the error correction framework. The sequence for error correction, and subsequent energy
estimation was done using the framework discussed in Chapter 3. Dataset index B stands
for BLUED and R stands for REDD.

Data-set S.N. Appliances
(label)

E
(kWh)

e (%) e′ (%) ∆ e

B-1

1 Refrigerator (111) 6.5 -18.5 -13.8 0.3
2 Lamp (101) 1.1 9.1 18.2 0.5
3 TV (129) 6.4 -3.1 -3.1 0.0
4 Computer (118) 2.0 5.0 5.0 0.0
5 Laptop (120) 0.8 12.5 12.5 0.0
6 AV System (112) 4.9 -2.0 -2.0 0.0

Average % Improvement 0.1

7 Refrigerator (111) 25.7 -38.6 10.6 2.6
8 Washer (183) 0.1 -25.0 -50.0 0.5

B-2 9 TV (129) 0.6 9.8 -52.5 0.4
10 Computer (120) 5.3 29.8 -52.0 0.8

Average % Improvement 1.1

11 Refrigerator (111) 7.4 -5.4 -8.1 0.3
12 Laptop (120) 0.9 -44.4 -55.6 0.2
13 TV (129) 1.7 11.8 70.6 0.8

B-3 14 Lamp (146) 3.0 20.0 -23.3 0.1
15 Dishwasher (167) 1.9 -73.7 -73.7 0.0
16 Hair Dryer (181) 0.1 0.0 85300.0 1.0

Average % Improvement 0.4

17 Oven (3) 3.4 14.7 14.7 0.0
18 Refrigerator (5) 18.7 47.1 -16.0 1.9
19 Dishwasher (6) 11.1 -2.7 -2.7 0.0

R-1 20 Lighting (9) 18.6 33.3 76.3 0.6
21 Washer (10) 1.7 41.2 14452.9 1.0
22 Microwave (11) 9.7 18.6 -34.0 0.5
23 Dryer (20) 14.0 3.6 14.3 0.8

Average % Improvement 0.7

R-13 30 Dishwasher (9) 18.6 -15.1 -15.1 0.0

100

4.4. Evaluation

Data-set S.N Appliances
(label)

E
(kWh)

e (%) e′ (%) ∆ e

R-17 31 Dishwasher (11) 6.6 -18.2 -16.7 0.1

32 Dryer (12) 34.5 -6.7 -13.0 0.5
R-19 33 Microwave (15) 0.1 -64.5 -64.5 0.0

Average % Improvement 0.3

R-20 34 PoolPump (0) 42.0 16.2 -1.9 7.5

R-21 35 Furnace (0) 2.9 58.6 72.4 0.2

R-23 24 Dishwasher (0) 1.9 -15.8 -21.1 0.3

25 Microwave (1) 1.2 0.0 0.0 0.0
R-24 26 Dryer (12) 14.3 -16.8 -12.6 0.3

Average % Improvement 0.2

27 Dishwasher (1) 1.1 -9.1 -9.1 0.0
R-26 28 AV Closet (17) 8.8 -35.2 -84.1 0.6

29 Dryer (18) 8.2 -28.0 -28.0 0.0
Average % Improvement 0.2

R-34 36 Oven(17) 2.7 3.7 3.7 0.0

R-37 37 Refrigerator(3) 0.6 -16.7 -50.0 0.7

R-40 38 Microwave (4) 2.0 -50.0 -50.0 0.0

R-46 39 Oven (4) 2.7 0.0 0.0 0.0

R-52 40 Furnace (2) 2.0 -65.0 -70.0 0.1

R-53 41 Pool Pump (0) 31.9 1.6 1.6 0.0

42 Microwave (1) 0.7 -28.6 -28.6 0.0
R-57 43 Dryer (12) 17.6 1.7 1.7 0.0

Average % Improvement 0.0

101

4.4. Discussion

4.4 Discussion
The analysis on simulated and real data show that there is significant improve-

ment in the process of energy estimation upon using an error correction framework.

Figure 4.7, for instance, shows that the DTW distance of corrected sequence is con-

sistently lower than that of corrupted sequence over varying number of states. This

was found to be true for other parameters in the simulation, including sequence

length, and probability threshold. Similarly, and perhaps, as expected, the same

was found of energy estimation results and RMS distance. As can be seen in Fig-

ure 4.9, there are certain instances where using the framework negatively affects

the energy estimation. Typically, these are instances where the event labels (and,

consequently, sequence CE
seq) were almost perfect, which is not reflective of a real

world scenario. In addition, in some of these cases, the errors that are present are

valid under the FSM model, and are hence not detected as errors by the algorithm.

Overall, however, the positive gain in energy estimation instances (mean: 5266.8%,

median 15.5 %), far outweighs the negative impacts (mean: 13.9 %, median: 9.5

%). For 17 appliances, using the framework does not change the energy estimation

results. This is mostly because the labels are accurate enough to begin with and

error correction is not required.

The major parameters that affect the energy estimation results are the cost con-

stants for substitution, insertion and deletion. It was found that lower values of

insertion and deletion costs mean that the variance is low in energy estimation er-

rors as shown in Figure 4.6. The median error was low for most combinations of

these two costs. The only information the error correction framework has about the

noise in the channel is about state transitions that are not possible. Due to this

102

4.4. Discussion

inherent difficulty of the problem, sometimes, there are erroneous sequences that

satisfy the FSM under which the sequence is operating, and hence do not show up

as errors. As a result, there is potential for errors to be accumulated and the energy

estimates to be significantly off from ground truth. Hence, we used median of 100

trials as the representative of each cost combination, as means are swayed heavily

by outliers. Figuring out sequences (or sequence segments) that are highly unlikely

but still probable under operating FSM model of the appliance, and treating those

are errors is an interesting extension to the problem. One way to acheive this is to

create a likelihood metric for an observed sequence, and assume it to be erroneous

if it lies under a certain threshold. Then, based on certain beliefs, assign specific

points in the sequence as error points, and mold the problem into the framework

described above. We leave such implementations as future work.

Another underlying but understated assumption that has been prevalent through-

out the framework is that the sequences are long enough to reflect all possible ap-

pliance states and transitions enough times for a model to be created. Typically,

this means at least a few days worth of data has to be collected from the appliance

for energy to be estimated. Given the main goal of NILM is to give disaggregated

feedback at the end of the a certain set time-frames (typically ranging from week to

month) , assuming the availability of such data is not impractical. But there can be

scenarios where a real time model generation with the available data and subsequent

energy estimation might be required. Our models have not been tested for such im-

plementations, and we leave such extension as future work as well. The model has

also implicitly assumed that the initial and the final nodes of the sequence (c1 and

cm) are fixed not erroneous. Obviously, this is not guaranteed. A more robust way

103

4.4. Discussion

to find the starting and ending nodes for correction might be to utilize the the ag-

gregate power information, and track it for baselines (also known as background

power). Once a reasonable baseline has been established, everytime the aggregate

power consumption reaches the baseline, it is guaranteed that the last event from

the appliance is an off from its previous state, and the next event will be from off

to a state of positive power consumption. Same information about baselines can

also be utilized to constrian the energy estimates in the shortest path algorithm.

Since finding appropriate baselines automatically in aggregate power consumption

data is a complex problem in its own right, and an active field of research, we have

steered away from utilizing that such information in our models at this point.

The way in which we have incorporated the FSM model into the error correction

process was by iteratively and locally modifying the costs at each instance where

the FSM states were violated. Although this method worked fairly well, a more ef-

ficient method is to modify the shortest path search in such a way that this check is

performed at each node, and hence nodes that violate the maximum and minimum

states level are not selected in the shortest path in the first iteration itself. The

trade-offs of complexity of such an approach versus potential gains is an interesting

study in itself, and we hope to explore it in the future.

As mentioned in Chapter 3, the problem of energy estimation can be modelled as

an HMM, with the error correction being analogous to the inference step in HMMs.

Algorithms like the Viterbi algorithm [40] could be then used to infer the true hidden

sequence that follow the transitions dictated by the transition probability matrix.

Both Viterbi inference and our algorithm work on transition probabilities between

104

4.5. Chapter Conclusion

consecutive states as the chief metric being optimized. We believe our formulation,

in addition to removing the reliance on emission probabilities, allows for a more

intuitive way to incorporate insertion and deletion errors. In addition, our formu-

lation makes it easier to enforce appliance behavior specific constraints (e.g., net

sum of power changes at a certain point cannot be more than the highest state

in FSM), which would be very complex to integrate in a Viterbi formulation. We

leave comparison of the performance of these two methods on sequences for energy

estimation as future work.

One of the issues that has hindered comparison of different proposed NILM

solutions and frameworks is the lack of standard datasets. In this thesis, we have

used publicly available datasets where possible. Additionally, we have extended

the repository of publicly available datasets for supervised NILM by labeling events

manually when labels were not available. We will be making all the datasets, labels,

and code utilized in this thesis publicly available as well. Energy estimation is an

integral part of supervised NILM, and clearly a robust error correction framework

can improve the results of the whole disaggregation process. Although our focus

has been mostly on energy estimation, this method of using domain specific beliefs

to correct for errors in sequences generated by processes whose models are known

could be extended to other fields like DNA sequencing, etc.

4.5 Chapter Conclusion
In this chapter, we presented a framework for correcting errors in sequences gen-

erated for energy estimation in supervised NILM. Although we focus our analysis on

the sequence generated by one particular framework, the method is actually agnostic

105

4.5. Chapter Conclusion

to how the sequences are generated. The method utilizes prior beliefs about how

appliances behave in general and incorporates that to a network flow to minimize

the cost of correcting errors in the sequence. We tested our framework on simulated

data to study how different cost parameters affect the performance and found that

over a wide range of values, using the framework yields better results. We further

tested the framework on real data from 43 different appliances collected from 19

houses, and found that energy estimation results improve on average upon using the

error correction framework. In addition to energy estimation in supervised NILM,

this error correction framework can be utilized in energy auditing using external

sensors, validating appliance labels generated by other processes, etc.

In the next chapter, we extend the use-case of our proposed frameworks beyond

NILM energy estimation by using the combination of the energy estimation frame-

work presented in Chapter 3 and the error correction framework from this chapter

to perform virtual metering of electrical appliances.

106

Chapter 5

Virtual metering of electrical

appliances

The frameworks presented so far for energy estimation follow two basic principles:

(1) Using observed data to estimate the models of the underlying process that gener-

ates the data, (2) Using the estimated model to correct for any errors in the observed

data. It incorporates expert (domain) knowledge about the process (appliance be-

havior, in this case) to constrain the problem. This is a generalizable approach to

solving similar problems, and is not confined to energy estimation in supervised

NILM. As an extension, in this chapter, we utilize the framework to virtually meter

appliances using external sensors. The process is different in that while, before, it

was the NILM steps of event detection and classification that were generating the

event labels, now it will be the external sensors that will provide them.

This chapter is based on the manuscript in [71]

107

5.1. Literature Survey

5.1 Literature Survey
In this section we review the state of the art in metering appliances using several

direct and indirect techniques. Direct techniques refer to the use of active plug-

meters to monitor the energy consumed by an appliance. Indirect techniques include

the use of contactless sensors (e.g., sound, light, vibration, magnetic field, etc.) in

order to infer the energy consumed by an appliance. NILM techniques for load-level

disaggregation also fall under indirect techniques.

5.1.1 Direct metering techniques

At the time of writing this thesis, energy meters like The Energy Detective (TED)

[72] and Episensor [73] are commercially available for measuring whole home elec-

tricity data with second to minute-level granularity. With electric utilities adopting

smart meters aggressively, several software platforms are also currently available to

access granular aggregate data at 15-60 minutes granularity. For sub-circuit level

monitoring, devices like eMonitor [74], eGauge [75], FIDO [76], etc. are available in

the market. Energy Hub [77], Watts-Up Pro [78], Kill-a-Watt [79], etc. are some

commercially available plug meters that facilitate appliance level metering. These

meters monitor power typically at a rate of 1 Hz or less. Several research projects

have come up with their own version of plug-meters: ACme sensor mote [80], Fire-

Fly Plug-meter [81], Synergy Energy meter [82], MIT Plug [83], REAM [84], etc.,

to name a few. As discussed before, the problem with the plug-meters available

for energy audits currently is that they are cost-prohibitive, and typically cannot

measure appliances that do not have a traditional plug, for instance, light fixtures,

HVAC, dryers, water-heaters, dishwashers, etc. Use of other sensors along with

the aggregate power consumption data as measured by energy meters provides a

108

5.1. Literature Survey

convenient alternative to plug-meters for the purpose of electricity metering.

5.1.2 Indirect metering techniques

Clark et al. have proposed a framework called Deltaflow for submetering ap-

pliances using inexpensive and easily deployable sensors which emit radio pulses

that correlate with an appliance’s power draw [85]. The model assumes a quadratic

relationship between the generated number of pulses and an appliance’s power con-

sumption, and auto-calibrates the sensors using a regression model. It is a promising

approach in terms of ease of implementation. The regression model is, however, not

good at handling simultaneous events resulting from multiple appliances, which

could lead to major errors in energy estimation. It also has not been evaluated on

complex and multi-state appliances, and scenarios where multiple such appliances

are operating simultaneously, which would test some of the more simplistic assump-

tions in the model. Finally, the fact that the framework only works with specially

designed pulse sensors limits its generalizability, at least in the short term. It is

worth noting that the framework we utilize in this chapter is not a direct alterna-

tive to the Deltaflow framework. In fact, once a relationship between the change

in number of pulse readings and state change of an appliance is established (this

process calibrates the sensor to detect events), our method can also be utilized in

order to meter the appliance.

In [86], authors present an algorithm for metering appliances using aggregate

electricity measurements and perfect knowledge about ON-OFF states, the kind

most contactless sensors would be able to provide. Their method relies on de-

composing the aggregate power by solving a linear optimization problem involving

knowledge about the states of appliances. In addition to the posibility of the opti-

109

5.1. Literature Survey

mization problem failing to converge (especially as the number of loads increases).

Their setup also requires perfect knowledge about all states of all appliances at all

times. Although in their experiment, the authors acquire this using clean data from

plug-meters, deployment of an actual sensor would inevitably result in several false

signals. This would seem to severly undermine ther performance of the optimization

framework to converge to the right solution. The method also appears incapable of

processing appliances with states beyond simple ON-OFF.

Authors in [35] present a method based on a regression model to self-calibrate

easily deployable sensors (sound, light, magnetic-field) for the purpose of energy

metering. Each kind of sensor is assigned a different calibration equation and the

power is estimated by solving for parameters. Their architecture allows for several

sensors to combine in order to estimate power consumption of appliances with mul-

tiple states. The energy estimation part, as noted in [86] as well, is treated as a

black box, and the focus of the paper is on calibration of sensors. The ability of the

framework to handle complex appliances and to allow for unmonitored appliances

make it appealing. However sensitivity to ambient noise and sensor placement are

major issues if electricity is to be metered using direct sensor readings. An ideal

solution would have the ability to detect the occurance of unlikely events based on

some prior knowledge about the appliance’s behavior, and utilize that to counter

ambient noise. It would also be independent of sensor placement parameters like

oreintation and distance, as that limits the practicality of the solution.

Authors in [36] have also used magnetic field sensors to indirectly meter appli-

ances. But again, the focus is on the sensor and not the energy estimation process.

110

5.2. Framework for analyzing sensor data

Other authors, e.g., [20, 21, 87] have proposed the use of similar sensors to faciliate

virtual energy metering through the use NILM techniques. Authors in [88] have

devised a cheap plug-level sensor that only provides on-off labels for a similar pur-

pose. Such solutions typically involve learning of appliance operation patterns using

labels provided by sensors, and using that to estimate energy. As we reviewed in

Chapter 1, NILM is still an active area of research, and has not yet reached a stage

where it can be used in for real world applications [19, 22]. Earlier in this thesis, we

explored part of the NILM problem in providing a framework for energy estimation,

but other parts like event detection, classification are still active areas of research.

The currently available literature in the field leads us to conclude that the avail-

able or proposed solutions for appliance metering have one or more of the following

drawbacks: (1) cost-prohibitive (2) specific to a sensor-network architecture which

limits scalability (3) unable to handle complex devices with multiple states (4) do

not address the issue of energy estimation from annotated labels. In this chapter,

we address this knowledge gap by utilizing a framework for energy metering that is

sensor-agnostic and only requires basic state change labels of appliances to estimate

energy.

5.2 Framework for analyzing sensor data
We utilize the framework proposed in Chapter 3, and supplement it with the

error correction algorithm Chapter 4 to perform metering from sensor data1. The

different steps involved are summarized in Figure 3.2 [24]. Basically, the idea is to

collect event labels corresponding to state changes in appliances using a contactless
1a combination that will be referred to as the virtual metering framework throughout the

chapter

111

5.2. Framework for analyzing sensor data

sensor. Labels refer to the identity of the sensor/appliance that logged an event at

a certain timestsamp, and are represented as tuples of the form (yi, tj) where yi is

the appliance ID for the appliance that caused the event, and tj is the timestamp at

which the event occured. As an example, if a fan goes from off to low, low to high

and high to off at timestamps t1, t2, and t3, respectively, and a vibration sensor is

placed next to it, the sensor, based on changes in vibration that it receives, logs

these three times as event times, and conveys that information to some computa-

tional platform. Meanwhile, power consumption at the aggregate level is also being

monitored by an energy-meter that relays the information to the same platform.

The event labels and the aggregate power consumption, are inputs to the frame-

work. Figure 5.1 outlines the general idea of the setup for appliances that need to

be monitored.

Electric	
 Panel	

Energy	
 Meter	

Sensor	

Figure 5.1: The vision for a contactless appliance-level energy metering setup. The sensors
log state changes in appliances, and send that info to a central computational platform.
The platform also receives aggregate electricity data sampled using some energy meter.
Combining the two, it calculates energy for each appliance.

The framework reads an aggregate power trace, as measured by the energy

112

5.3. Experiment and Results

meter, denoted as P [t], and event timestamps for a particular appliance (yj), de-

noted by the set T = {t1, . . . , tm}. Based on the timestamps, it extracts features

X = { ~x1, . . . , ~xm} from the aggregate data; these features are usually step changes

in real power as observed in the mains during events. Once enough events are

logged, and respective features extracted, the features are clustered using a cluster-

ing algorithm in order to find the representative power values observed during state

transitions for the appliance. This gives a sequence (Cseq), which is then passed

as input to the error correction framework. In this chapter, we take the appliance

model and error correction algorithm from these two frameworks, and utilize it for

energy metering through sensors. In the next section, we share our results from a

case study on 6 appliances.

5.3 Experiment and Results
To test the efficacy of the framework in accurately metering electricity through

contactless sensors, we monitor 6 appliances inside a commercial building. The ap-

pliances are operated periodically during the week to ensure enough events were

accrued. A HOBO UX90-005 Motor On/Off Logger is used to sense the magnetic

fields around these appliances [89]. The sensor logs binary values every time it senses

a significant change in an appliance’s power consumption. Values of 1 correspond

to a state with the appliance’s motor on, while 0 corresponds to a case where it

is off. The sensors are placed close to the appliances so that they can sense the

elerctromagnetic field arising as a result of current flow in the appliance. This is the

same operating principle as the one used by our custom-designed sensor in the case

study in Chapter 2. But compared to this commercial product, our EMF sensor

113

5.3. Experiment and Results

Figure 5.2: HOBO motor on/off loggers (sensors) placed next to 6 appliances for virtual
metering. The red rectangle shows the location in the appliance where the sensors were
placed.

is more prone to noise and false events, and has less memory, and as a result, it

needs a wireless communication network to relay state change information in real

time. However, with further improvements and iterations of the device, it has the

potential to be a cheap and effective option for virtual metering. Figure 5.2 shows

the appliances along with the sensors used for virtual metering in the experiment.

Table 5.1 summarizes the kinds of appliances and number of events observed for

each in the experiment. A FireFly Plugmeter [81] is used to collect ground truth

data for these appliances; in cases where plugs were not available, the sub-circuit

panel was monitored using an NI-9215 Data Acquisition card, and TED Current

Transducers (CT) [72]. The aggregate data are monitored through the electrical

panel using a TED-1000 device [72]. The Measurement and Transmittance Unit

(MTU) in the device receives signals from the CTs attached to each panel, and

communicates power readings to the Display Unit which is then connected to a

computer. At the end of the collection period, the sensors are connected to a

114

5.4. Discussion

computer as well, and all the logged values are downloaded. A Windows PC with

4 GB RAM, and 2.6 GHz Intel processor was used for computation. The events

associated with each appliance are then extracted using a simple threshold-based

event detector. This results in the two required inputs for the model- event labels,

and aggregate power. To evaluate the framework, we compute the energy consumed

by the appliances as given by their sequence CC
seq (denoted by Ê) and compare it

with the actual energy consumed by the appliance as collected by the ground truth

plug-meters (denoted by E). The evaluation metric here is simply a percentage

error as given by e = |E−Ê|
E
× 100%.

Table 5.1: A summary of the appliances used in the experiment and the events associ-
ated with each appliance along with the results from energy estimation using the virtual
metering framework.

Appliance # of
events

Ê
(kWh)

E
(kWh) e (%)

Refrigerator 63 2.23 2.24 0.44

Washer 408 1.03 0.91 13.2

Dryer 18 2.00 1.94 3.09

Air Conditioner 45 2.06 2.59 20.4

Vacuum Cleaner 54 1.33 1.06 25.4

Fan 32 1.24 1.21 2.50

Average Error 12.5

5.4 Discussion
The results of using the virtual metering framework on the data collected by the

sensors are summarized in Table 5.1. The framework is able to meter power con-

sumption for the refrigerator and the fan fairly precisely (e < 3%). Appliances like

115

5.4. Discussion

the washer and dryer that have more complex states of operation exhibit slightly

higher error ranges. Figure 5.3 displays a portion of the ground truth signal for

these two appliances. The energy estimation framework (Figure 3.2) estimates the

states for the washer as {0, 530, 800} Watts. This approximation is a result of steps

(A,D and E) as displayed in Figure 3.2. As the ground truth data reveals, this is

a good approximation of the actual states of power consumption for the washer. It

appears that during the final cycle of the washer (the rinse cycle), there is a spike

before the power consumption stabilizes. The spike is around 800 Watts, but the

stabilized power value2 is slightly below 800 Watts. Because the features extracted

for the purpose of energy estimation (X) were change in power consumption (∆P),

the algorithm uses the 800 Watts value. This results in the energy estimation being

slightly higher than actual values. This problem could be remedied by the selection

of a larger window size during feature extraction (step A in Figure 3.2), but that

comes at the cost of the possibility of multiple events within the selected window

coming from appliances other than the one for which energy is being estimated.

This adversely affects the energy estimation.

Authors in [47] present a data-driven algorithm to separate the spikes (known

as transient phase) from the steady-states using adaptive window sizes. They note

that these two states of power consumption would cluster separately if the features

are mapped on 2-D plane using a density-based clustering algorithm. Once this

is achieved, the ∆P values can trivially estimated using the steady-state clusters,

which would be ideal for the energy estimation framework. Figure 5.4, illustrates

this process. A 900 samples long event window of real power (P) and reactive power
2also known as steady-state of power consumption

116

5.4. Discussion

 7:45 PM 7:50 PM 7:55 PM 8:00 PM
0

500

1000

Time
P

o
w

e
r

(W
a

tt
s
)

Washer

 9:30 PM 9:40 PM 9:50 PM 10:00 PM 10:10 PM 10:20 PM
0

1000

2000

Time

P
o

w
e

r
(W

a
tt

s
)

Dryer

 6:00 PM 7:00 PM 8:00 PM 9:00 PM 10:00 PM 11:00 PM
0

200

400

600

Time

P
o

w
e

r
(W

a
tt

s
)

AC

Figure 5.3: Ground truth power traces for two cycles each of washer (top), dryer (middle),
and AC (bottom) as measured by Firefly plug meters on a specific day (24th February
2015)

(Q) for a refrigerator are taken from a publicly available dataset of residential power

consumption called BLUED [2]. We then map it to the PQ plane, where it is ob-

served that the two steady states separate as clusters, and the transient appears as

noise. We used a density based clustering algorithm called DBSCAN to detect the

appropriate clusters [52]. The difference between the means (or exemplars) of the P

values of the two clusters gives the required ∆P value, which is not affected by tran-

sient spikes. The computational complexity of their method, as is, has dissuaded

us from incorporating their framework into the virtual metering framework. The

method was also designed for high frequency data (∼ 60 Hz), and requires reactive

power values as well. We leave the modification of this particular method to suit

lower frequency data (∼ 1 Hz) and its incorporation into the virtual metering frame-

work as future work. It is also worth noting that the energy estimation framework

assumes power values to be piece-wise constants between events. Clearly, Figure 5.3

shows that the power values exhibit considerable fluctuation between events. This

most likely explains part of the observed error. The errors observed for fan and

117

5.4. Discussion

refrigerator can also most likely be attributed to this limitation. As a quick test, we

passed the ground truth signal through a one-dimensional median filter of window

size 100 to simulate a case where the fluctuations were minimized. As a result, the

error rates for the refrigerator decreased, while the error for the ran remained the

same. As the authors note in [24], there has been some work done on modeling

power consumption behavior between events for different kinds of appliances [59].

Incorporation of such models would likely reduce some of this error.

100 200 300
0

500

1000

1500

2000

of samples

P
 (

W
a
tt
s
)

100 200 300
−800

−600

−400

−200

0

200

of samples

Q
 (

W
a
tt
s
)

0 200 400 600 800 1000

−400

−200

0

P (Watts)

Q
 (

W
a
tt
s
)

0 2 4 6 8 10 12
1000

1500

2000

2500

3000

3500

of samples

P
o
w

e
r

(W
a
tt
s
)

0 2 4 6 8 10 12
1500

2000

2500

3000

3500

4000

of samples

P
o
w

e
r

(W
a
tt
s
)

Figure 5.4: Left (a): P and Q power trace of a refrigerator mapped in the PQ plane to
extract steady states. Right(b): Simultaneous events occuring within a window (above)
and transient spikes that can affect ∆P computation (below) for two event instances of a
dryer.

The error in the dryer appears to result from similar limitations imparted by

transient spikes in the framework. The perturbation step (Step B) estimates one

of the power transitions at 2270 Watts, which is higher than the observed values

in Figure 5.3. This is also captured in Figure 5.4, where clearly the spike (that

influences the ∆P calculation) is at a higher level of power consumption than the

steady state. In addition, the error observed in the dryer highlights another limi-

tation of the framework: its handling of simultaneous events. Typically, when an

event occurs, ∆P is calculated over a certain window size. But there is a possibility

118

5.4. Discussion

that some other appliance might have caused an event within that window, as shown

in Figure 5.4. This affects the estimation of ∆P , which in turn affects the results.

Although the energy estimation framework has the ability to discard noisy events

during estimation of ∆P values, if the number of events are small to begin with (like

it is in the case of the dryer), it can be affected by such results. This issue, however,

will resolve itself as the system continues to collect more data, and consequently,

more events. In the de-noising step in the energy estimation framework (Chapter

3.3), any cluster with less than a certain number of elements (ν) is classified as

noise. Here, we refer to state transitions corrupted by simultaneous events, slow

loading transients, or spikes resulting in an inaccurate ∆P value computation as

noisy transitions, and the rest as true state transitions. So, if the total number of

true state transitions is comparable to or less than the number of noisy values, the

clustering algorithm will find clusters that includes noise as well. However, once the

number of true events is greater than ν, the noisy transitions will not be included in

the cluster. One of the benefits of the energy estimation framework is that it builds

FSM models for the appliance being metered. Once built, this gives the system a

good idea of what kinds of power transitions to expect. So, in cases where there are

multiple events within the window, as in Figure 5.4, it can choose the event that

the appliance of interest most likely caused. Use of adaptive windows as opposed

to fixed ones, as mentioned in the method we talked about previously, would also

most likely resolve this issue.

The error in AC appear to come from the inability of the sensors to detect events

that correspond to the state where the compressor automatically switches off but

the fan is still working. As can be seen in Figure 5.3, when only the fan is operating,

119

5.4. Discussion

the AC has a consistent power draw of ∼ 105 Watts. But because the fan is inside

the AC box and its magnetic field signal is not strong enough, the HOBO sensor

is unable to detect it most of the times. This shortcoming could be addressed in

multiple ways, either by using a more powerful magnetic field sensor (for e.g., [21]),

or by using other sensors (for e.g., sound) to detect events. This issue underscores

the importance of the choice of sensors being used in virtual metering; the sensor

(or a combination of them) has to be powerful enough to detect all possible state

changes within the appliance being metered. The error in energy computation for

the vacuum can again be attributed to improper ∆P computations resulting from

simultaneous events. In this particular case, these results are made worse by a

drift in the internal clock of the sensor which resulted in the events being recorded

sometimes at slightly different timestamps than the one logged by the main meter.

Proper clock synchronization is another important issue that needs to be considered

when appliances are virtually metered.

The experiment did not involve electric appliances that have variable power

draws. The virtual metering framework is event-based, in that it extracts features

everytime an event of interest occurs. Variable loads (like a variable speed drive)

will not have distinct events but different levels of power consumption that con-

tinuously vary through its operation. The proposed method is not able to handle

such cases. Similarly, certain electronic devices (for e.g., a Router) might not have

distinct events but continuously varying states of power draw. The framework is not

able to meter such appliances either. In addition, the error correction framework

that has been utilized has a specific definition for errors- namely state transitions

that violate a given FSM. Sometimes, errors can occur that do not necessarily vi-

120

5.4. Discussion

olate a FSM, but still result in a highly unlikely sequence of events. Ideally, the

framework should be able to detect these and correct for them. This requires the

framework to have seen enough data to correctly identify which sequences are less

likely, as defined by some probabilistic likelihood criteria. As it stands right now,

the framework is unable to account for such errors. Similarly, an understated but

implicit assumption has been that the framework receives enough events to build a

realistic FSM model of appliances. If the framework has not received enough data

prior to building an FSM model, then each time it sees an unobserved event (state

change), it is likely to be classified as an error, which can adversely impact the en-

ergy estimates . Automatically learning when enough new events are observed and

adapting the model to accomodate them is another significant extension that the

framework could use.

Despite the error values, the results from the experiment indicate that virtual

metering using the utilized framework holds promise as a practical and accurate

alternative to plugs. The validation scenario was made as realistic as possible, with

multiple appliances being turned on and off inside the room while the appliances

of interest were operating. Enough events were observed to extract all states of

operations for such appliances. Although the sensors used in the case study were

chosen because of ease of access and deployment, cheaper alternatives exist which

makes the proposition of virtual metering more enticing. The sensors were priced

at $92 a piece which is comparable to the prices of plug-meters. But similar sen-

sors, like the ones we proposed in Chapter 2, are estimated at roughly $2 a piece,

and can be used identically with the framework used in this chapter. Similarly, al-

though only magnetic field sensors were used as binary indicators of state changes,

121

5.4. Discussion

other sensors like light, sound, etc. could have been used, and we expect similar

results. In addition to ease of deployment and cost effectiveness, the proposed form

of virtual metering is also practical because it requires minimal calibration3, and

it facilitates both real time and offline computations. It does not necessarily re-

quire a networking interface to send events as they get sensed, and a logger, much

like the one used in the experiments proposed, works just as well. The framework

also does not require the sensor nodes to have any advanced computational capa-

bilities other than the ability to log binary values in memory. These features add

to the practicality of the solution. The setup does, however, need to know which

sensors are placed to monitor what kinds of appliances. So, even though no work

is required for calibration, there is initial work involved on the part of the user in

labeling the sensors nodes appropriately. A user-friendly interface that can receive

data from a wide range of sensors and easily associate it with appliances would be a

good solution to counteract some of the inertia associated with manual intervention.

Another feature of the framework that is particulary useful is its ability to create

a model for the appliance and correct for errors in the data sent by the contactless

sensors. The models contain information about the kinds of state transitions that

are possible and use that to correct any violations of said model in the sequence of

events that get received. This helps counteract the effect of errors due to ambient

noise, data corruption during communication, false events, etc. The same model can

also be used for possible fault detection and diagnosis purposes, or to alert users for

performance degradation issues and pre-emptive maintenance. We believe that until

appliances become smart enough to report their own power consumption, or plug-
3it requires basic thresholding of the virtual sensors, and calibration of the electric meter at the

mains

122

5.5. Chapter Conclusion

meters become cost-effective, virtual metering is a good alternative with multiple

benefits. It can integrate seamlessly into existing infrastructure and provide tangible

benefits.

5.5 Chapter Conclusion
In this chapter, we present a case for virtual metering of appliances using data

provided by external sensors, also referred to as contactless sensors (for e.g., sound,

light, magnetic field, vibration, etc.). We utilize the frameworks in Chapters 3 and

4 and propose its use as the computational platform for processing binary state

change data as reported by contactless sensors in order to meter appliances. In

a case study involving 6 appliances, we show that the framework, using appliance

state change data from magnetic field sensors and aggregate data from the main

electrical panel, can perform accurate metering. This setup for energy metering

requires minimal calibration and is easy to deploy and is cost-effective. Hence, it

holds promise as a practical solution for energy metering of electrical appliances.

Future work needs to look at making user-friendly interfaces for seamless labeling

of sensors, and integration of sensor data with aggregate data.

123

Chapter 6

Summary

6.1 Summary and Broader Impact
In summary, this thesis explored the problem of energy estimation in supervised

NILM in considerable detail and proposed an algorithmic framework for estimating

energy that overcomes some of the challenges traditionally associated with event-

based NILM. The model is agnostic to how the event labels are generated, which

allows it to be used with any NILM event detection and classification algorithms.

One of the major highlights of the framework is its ability to learn the FSM models

for appliances through a completely data driven approach. This knowledge can then

allow the framework to (1) identify certain kinds of errors caused during preceed-

ing steps (2) constrain the resulting energy values to lie between a certain range.

The error correction algorithm stands as an independent entity, which can be used

for correcting errors in sequences generated by processes other than appliance state

changes as well. Our ultimate contribution, if summarized in one line, is a frame-

work for using a time-series data that has been coded to assume a finite number of

states and defined transitions, and has passed through a channel which introduces

124

6.2. Future Work

certain types of errors (insertion, deletion or substitution), to (1) decode the un-

derlying model of states, state transitions, and transition probabilities using prior

beliefs about the process (2) correct for errors imparted by the channel on the ob-

served sequence based, again, on prior beliefs. As mentioned previously, we believe,

parts of this approach (notably decoding FSMs and error correction using prior be-

liefs) can be translated to parallel fields like DNA sequencing, speech recognition,

etc., where the system assumes distinct states, the channel imparts known kinds of

errors on the observed sequence, and the coding scheme is not always known. We

have extended the use-case of the framework to the field of virtual metering and

shown that it provides a practical and accurate way to meter appliances of inter-

est. In addition to utilizing publicly available datasets where available, we have also

collected our own data when needed, and labelled existing datasets when applica-

ble, thereby increasing the repository of available datasets in the field considerably.

Because we are introducing the first formalized framework dedicated for energy es-

timation, comparison with other methods or even benchmarking against a standard

is not meaningful. But we hope we have opened up the avenue for more interesting

contributions and extenstions in this particular field.

6.2 Future Work
Future improvements and extensions to our proposed methods are collorallies to

their existing limitations. Most of them have been discussed in appropriate chapters

throughout this thesis. In this section, we summarize them for easy reference.

1. We believe the most important extension to the framework is the incorporation

of a data-driven way to calculate the ∆P values, as discussed in Chapter 5. We

have used a fixed window size in this thesis, and it is one of the more sensitive

125

6.2. Future Work

parameters in the framework. We have discussed some promising alternatives

in Section 5.4. Related area of extension is the framework’s handling of simul-

taneous events, particularly when dealing with low-frequency (∼ 1 Hz level)

data. Again, as discussed in Chapter 5, we believe the learnt FSM model,

and a correlation technique can be used to pick out the most likely event if

multiple events occur during an event window.

2. We have not utilized the time duration of states in the framework. This

is a very significant piece of information that has the potential to improve

error correction results, and increase the types of errors the framework can

detect. In addition, this also allows the framework to provide more accurate

points to insert missing states during the error correction step. Time duration

modeling also allows the extension of the use-case of the framework to areas

of anomalous appliance behavior detection. Along the same theme, the FSM

models have the potential to be utilized for fault detection of appliances (for

e.g., constant transition to impossible states). It can also be used to track

deviation of FSM over time, which can given users some idea of how the

appliance is deteriorating. These topics are not well studied in literature and

provide rich content for research. Similarly, the learnt FSM model can also

be used as a check to validate user generated appliance labels in certain use

cases.

3. The error correction framework has a very particular definition of error that

is Markovian in nature. Allowing for other kinds of errors (perhaps unlikely

but possible state transitions over multiple lengths) is an interesting research

problem that can generalize well beyond NILM problems. It has also implic-

itly assumed that the initial and the final nodes of the sequence (c1 and cm)

126

are fixed and not erroneous. Obviously, this is not guaranteed. A more robust

way to find the starting and ending nodes for correction might be to utilize

the the aggregate power information, and track it for baselines (/background

power). Once a reasonable baseline has been established, everytime the ag-

gregate power consumption reaches the baseline, it is guaranteed that the last

event from the appliance is an off from its previous state, and the next event

will be from off to a state of positive power consumption. Tracking baselines is

an ongoing area of research, and error correction promises to be an interesting

use case.

4. As discussed in Chapter 3, we have assumed power levels to be piece-wise

constants between consecutive events throughout the framework. We believe

(as discussed in Chapter 5), part of the observed errors in energy estimation

are probably due to this assumption. Incorporation of appliance specific power

consumption patterns between events promises to be an interesting addition

as well. The framework is also completely event based, and is unable to handle

cases where loads exhibit variable power consumption patterns (e.g., variable

speed drives). Incorporation of such appliance types into this (or a similar)

framework promises to be a challenging, albeit interesting research task.

5. When utilized for virtual metering, the framework can be augmented by an

interface that makes it easy to label virtual sensors. Although not a particu-

larly difficult problem, this can have significant impact in lowering the barrier

of adoption to this solution. Future work in this area needs to consider this

extension.

127

Bibliography

[1] K. Ehrhardt-Martinez, K. Donnelly, J. A. S. Laitner, D. York, J. Talbot, and

K. Friedrich, “Advanced Metering Initiatives and Residential Feedback Pro-

grams: A Meta-Review for Economy-wide Electricity Savings.” American Coun-

cil for an Energy-Efficient Economy, Washington, D.C., Tech. Rep. E105, Jun.

2010.

[2] K. Anderson, A. Ocneanu, D. Benitez, D. Carlson, A. Rowe, and M. Berges,

“Blued: A fully labeled public dataset for {Event-Based} {Non-Intrusive} load

monitoring research,” 2012.

[3] O. Parson, S. Ghosh, M. Weal, and A. Rogers, “Non-intrusive load

monitoring using prior models of general appliance types,” in Twenty-Sixth

AAAI Conference on Artificial Intelligence, Dec. 2012. [Online]. Available:

http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4809

[4] United States, Department of Energy, and Office of Energy Efficiency and

Renewable Energy, “Buildings energy databook,” Buildings energy databook,

2011.

[5] W. B. Seaver and A. H. Patterson, “Decreasing fuel-oil consumption

through feedback and social commendation,” Journal of Applied Behavior

128

http://www.aaai.org/ocs/index.php/AAAI/AAAI12/paper/view/4809

Analysis, vol. 9, no. 2, pp. 147–152, 1976. [Online]. Available: http:

//www.ncbi.nlm.nih.gov/pmc/articles/PMC1311919/

[6] S. Darby, “The effectiveness of Feedback on energy Consumption,” A Review

for DEFRA of the Literature on Metering, Billing and direct Displays, April,

2006.

[7] M. L. Dennis, E. Jonathan, W. S. Koncinski, and B. Cavanaugh, “Effective

dissemination of energy-related information: Applying social psychology and

evaluation research,” American Psychologist, vol. 45, no. 10, pp. 1109–1117,

1990.

[8] J. Dobson and J. Griffin, “Conservation Effect of Immediate Electricity

Cost Feedback on Residential Consumption Behaviour,” in Proceedings of the

ACEEE 1992 Summer Study on Energy Efficiency in Buildings, vol. 10, Wash-

ington, D.C., 1992, pp. 33–35.

[9] T. Ueno, R. Inada, O. Saeki, and K. Tsuji, “Effectiveness of an

energy-consumption information system for residential buildings,” Applied

Energy, vol. 83, no. 8, pp. 868–883, Aug. 2006. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S030626190500125X

[10] T. Ueno, K. Tsuji, and Y. Nakano, “Effectiveness of Displaying Energy Con-

sumption Data in Residential Buildings: To Know is to Change,” in Proceedings

of the ACEEE 2006 Summer Study on Energy Efficiency in Buildings, vol. 7,

Washington, D.C., Aug. 2006, pp. 264–277.

[11] G. Wood and M. Newborough, “Influencing user behaviour with energy

information display systems for intelligent homes,” International Journal

129

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1311919/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1311919/
http://www.sciencedirect.com/science/article/pii/S030626190500125X

of Energy Research, vol. 31, no. 1, pp. 56–78, 2007. [Online]. Available:

http://onlinelibrary.wiley.com/doi/10.1002/er.1228/abstract

[12] P. Karbo and T. Larsen, “Use of online measurement data for electricity

savings in Denmark,” in Proceedings of the ECEEE 2005 Summer Study

on Energy Efficiency, vol. 1, France, 2005, p. 1804. [Online]. Avail-

able: http://www.eceee.org/library/conference_proceedings/eceee_Summer_

Studies/2005c/Panel_1/1180karbo

[13] M. E. Berges, E. Goldman, H. S. Matthews, and L. Soibelman,

“Enhancing Electricity Audits in Residential Buildings with Nonintrusive

Load Monitoring,” Journal of Industrial Ecology, vol. 14, no. 5, pp. 844–858,

Oct. 2010. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1111/j.

1530-9290.2010.00280.x/abstract

[14] G. Hart, “Nonintrusive appliance load monitoring,” Proceedings of the IEEE,

vol. 80, no. 12, pp. 1870–1891, 1992.

[15] L. K. Norford and S. B. Leeb, “Non-intrusive electrical load monitoring in

commercial buildings based on steady-state and transient load-detection algo-

rithms,” Energy and Buildings, vol. 24, no. 1, pp. 51–64, 1996. [Online]. Avail-

able: http://www.sciencedirect.com/science/article/pii/0378778895009582

[16] S. Patel, T. Robertson, J. Kientz, M. Reynolds, and G. Abowd, “At the flick of

a switch: Detecting and classifying unique electrical events on the residential

power line,” in UbiComp 2007: Ubiquitous Computing, 2007, pp. 271–288.

[Online]. Available: http://dx.doi.org/10.1007/978-3-540-74853-3_16

130

http://onlinelibrary.wiley.com/doi/10.1002/er.1228/abstract
http://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies/2005c/Panel_1/1180karbo
http://www.eceee.org/library/conference_proceedings/eceee_Summer_Studies/2005c/Panel_1/1180karbo
http://onlinelibrary.wiley.com/doi/10.1111/j.1530-9290.2010.00280.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1530-9290.2010.00280.x/abstract
http://www.sciencedirect.com/science/article/pii/0378778895009582
http://dx.doi.org/10.1007/978-3-540-74853-3_16

[17] S. Gupta, M. S. Reynolds, and S. N. Patel, “Electrisense: single-point

sensing using EMI for electrical event detection and classification in the

home,” in Proceedings of the 12th ACM international conference on Ubiquitous

computing, ser. Ubicomp ’10. New York, NY, USA: ACM, 2010, pp. 139–148.

[Online]. Available: http://doi.acm.org/10.1145/1864349.1864375

[18] J. Liang, S. Ng, G. Kendall, and J. Cheng, “Load signature study part I: Basic

concept, structure and methodology,” in 2010 IEEE Power and Energy Society

General Meeting, Jul. 2010, p. 1.

[19] M. Zeifman and K. Roth, “Nonintrusive appliance load monitoring: Review

and outlook,” in 2011 IEEE International Conference on Consumer Electronics

(ICCE), Jan. 2011, pp. 239 –240.

[20] A. Schoofs, A. Guerrieri, D. Delaney, G. O’Hare, and A. Ruzzelli, “ANNOT:

Automated Electricity Data Annotation Using Wireless Sensor Networks,” in

2010 7th Annual IEEE Communications Society Conference on Sensor Mesh

and Ad Hoc Communications and Networks (SECON), Jun. 2010, pp. 1 –9.

[21] A. Rowe, M. Berges, and R. Rajkumar, “Contactless sensing of appliance state

transitions through variations in electromagnetic fields,” in Proceedings of the

2nd ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in

Building, ser. BuildSys ’10. New York, NY, USA: ACM, 2010, pp. 19–24.

[Online]. Available: http://doi.acm.org/10.1145/1878431.1878437

[22] A. Zoha, A. Gluhak, M. Imran, and S. Rajasegarar, “Non-intrusive

load monitoring approaches for disaggregated energy sensing: A survey,”

Sensors, vol. 12, no. 12, pp. 16 838–16 866, Dec. 2012. [Online]. Available:

http://www.mdpi.com/1424-8220/12/12/16838

131

http://doi.acm.org/10.1145/1864349.1864375
http://doi.acm.org/10.1145/1878431.1878437
http://www.mdpi.com/1424-8220/12/12/16838

[23] K. Carrie Armel, A. Gupta, G. Shrimali, and A. Albert, “Is disaggregation

the holy grail of energy efficiency? the case of electricity,” Energy

Policy, vol. 52, pp. 213–234, Jan. 2013. [Online]. Available: http:

//www.sciencedirect.com/science/article/pii/S0301421512007446

[24] S. Giri and M. Berges, “An energy estimation framework for event-

based methods in Non-Intrusive Load Monitoring,” Energy Conversion

and Management, vol. 90, pp. 488–498, Jan. 2015. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S0196890414010164

[25] K. Anderson, J. Moura, and M. BergÃľs, “Unsupervised approximate power

trace decomposition algorithm,” in Non-Intrusive Load Monitoring Workshop

2014, Austin, Texas, USA, Jun. 2014.

[26] M. J. Johnson and A. S. Willsky, “Bayesian nonparametric hidden semi-

markov models,” arXiv e-print 1203.1365, Mar. 2012. [Online]. Available:

http://arxiv.org/abs/1203.1365

[27] H. Kim, M. Marwah, M. Arlitt, G. Lyon, and J. Han, “Unsupervised disaggrega-

tion of low frequency power measurements,” in SIAM International Conference

on Data Mining (SDM 11), Mesa, Arizona, Apr. 2011.

[28] J. Z. Kolter and T. Jaakkola, “Approximate inference in additive

factorial HMMs with application to energy disaggregation,” in International

Conference on Artificial Intelligence and Statistics, 2012, pp. 1472–

1482. [Online]. Available: http://machinelearning.wustl.edu/mlpapers/papers/

AISTATS2012_KolterJ12

132

http://www.sciencedirect.com/science/article/pii/S0301421512007446
http://www.sciencedirect.com/science/article/pii/S0301421512007446
http://www.sciencedirect.com/science/article/pii/S0196890414010164
http://arxiv.org/abs/1203.1365
http://machinelearning.wustl.edu/mlpapers/papers/AISTATS2012_KolterJ12
http://machinelearning.wustl.edu/mlpapers/papers/AISTATS2012_KolterJ12

[29] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error Correcting Codes.

Elsevier, Jan. 1977.

[30] X. Yang, S. P. Chockalingam, and S. Aluru, “A survey of error-correction meth-

ods for next-generation sequencing,” Briefings in Bioinformatics, vol. 14, no. 1,

pp. 56–66, Jan. 2013.

[31] G. Hart and A. Bouloutas, “Correcting dependent errors in sequences generated

by finite-state processes,” IEEE Transactions on Information Theory, vol. 39,

no. 4, pp. 1249–1260, 1993.

[32] G. W. Hart, “Minimum information estimation of structure,” Thesis,

Massachusetts Institute of Technology, 1987, thesis (Ph. D.)–Massachusetts

Institute of Technology, Dept. of Electrical Engineering and Computer Science,

1987. [Online]. Available: http://dspace.mit.edu/handle/1721.1/14792

[33] S. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-analysis attack on

an ASIC AES implementation,” in International Conference on Information

Technology: Coding and Computing, 2004. Proceedings. ITCC 2004, vol. 2,

Apr. 2004, pp. 546–552 Vol.2.

[34] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards Sound Approaches

to Counteract Power-Analysis Attacks,” in Advances in Cryptology âĂŤ

CRYPTOâĂŹ 99, ser. Lecture Notes in Computer Science, M. Wiener, Ed.

Springer Berlin Heidelberg, 1999, no. 1666, pp. 398–412. [Online]. Available:

http://link.springer.com/chapter/10.1007/3-540-48405-1_26

[35] Y. Kim, T. Schmid, Z. Charbiwala, and M. Srivastava, “ViridiScope:

design and implementation of a fine grained power monitoring system

133

http://dspace.mit.edu/handle/1721.1/14792
http://link.springer.com/chapter/10.1007/3-540-48405-1_26

for homes.” ACM, 2009, pp. 245–254. [Online]. Available: http:

//dx.doi.org/10.1145/1620545.1620582

[36] N. Rajagopal, S. Giri, A. Rowe, and M. Berges, “A Magnetic Field-based Appli-

ance Metering System,” in Third International Conference on Cyber-Physical

Systems (ICCPS), Philadelphia, PA, 2013.

[37] Z. Kolter and M. Johnson, “Redd: A public data set for energy disaggrega-

tion research,” in In proceedings of the SustKDD workshop on Data Mining

Applications in Sustainability, 2011.

[38] M. Ostendorf and H. Singer, “Hmm topology design using maximum likelihood

successive state splitting,” Computer Speech & Language, vol. 11, no. 1, pp.

17–41, 1997.

[39] C. Li and G. Biswas, “Temporal pattern generation using hidden markov model

based unsupervised classification,” in Advances in Intelligent data analysis.

Springer, 1999, pp. 245–256.

[40] L. R. Rabiner, “Readings in speech recognition,” A. Waibel and K.-

F. Lee, Eds. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 1990, ch. A Tutorial on Hidden Markov Models and Selected

Applications in Speech Recognition, pp. 267–296. [Online]. Available:

http://dl.acm.org/citation.cfm?id=108235.108253

[41] Buevich, M., Rowe, A., Rajkumar, R., “Tracking and visualization of building

energ,” 1st International Workshop on Cyber-Physical Systems, Networks, and

Applications (CPSNA 11), 2011.

134

http://dx.doi.org/10.1145/1620545.1620582
http://dx.doi.org/10.1145/1620545.1620582
http://dl.acm.org/citation.cfm?id=108235.108253

[42] Rowe A., Berges M., Bhatia G., Goldman E., Rajkumar R., Soibelman L.,

Garrett J., Moura J. , “Demonstrating Sensor Andrew: Large-Scale Campus-

Wide Sensing and Actuation,” Demo Abstract, IPSN, 2009.

[43] M. Baranski and J. Voss, “Genetic algorithm for pattern detection in NIALM

systems,” in Systems, Man and Cybernetics, 2004 IEEE, vol. 4. The Hague,

The Netherlands: IEEE, 2004, pp. 3462–3468 vol.4. [Online]. Available:

http://ieeexplore.ieee.org/iel5/9622/30424/01400878.pdf

[44] ——, “Detecting patterns of appliances from total load data using

a dynamic programming approach,” in Fourth IEEE International

Conference on Data Mining (ICDM’04), Brighton, UK, 2004, pp. 327–330.

[Online]. Available: http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%

3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9681%2F30565%2F01410302.pdf%

3Farnumber%3D1410302&authDecision=-203

[45] R. Streubel and B. Yang, “Identification of electrical appliances via analysis of

power consumption,” in Universities Power Engineering Conference (UPEC),

2012 47th International, Sep. 2012, pp. 1–6.

[46] K. Barsim, R. Streubel, and B. Yang, “An approach for unsupervised

non-intrusive load monitoring of residential appliances,” in In proceedings of

the 2nd Workshop for Non-Intrusive Load Monitoring, Austin, Texas, USA,

Jun. 2014. [Online]. Available: http://nilmworkshop14.files.wordpress.com/

2014/05/barsim_approach.pdf

[47] ——, “Unsupervised adaptive event detection for building-level energy

disaggregation,” in In proceedings of Power and Energy Student Summt

135

http://ieeexplore.ieee.org/iel5/9622/30424/01400878.pdf
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9681%2F30565%2F01410302.pdf%3Farnumber%3D1410302&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9681%2F30565%2F01410302.pdf%3Farnumber%3D1410302&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F9681%2F30565%2F01410302.pdf%3Farnumber%3D1410302&authDecision=-203
http://nilmworkshop14.files.wordpress.com/2014/05/barsim_approach.pdf
http://nilmworkshop14.files.wordpress.com/2014/05/barsim_approach.pdf

(PESS), Stuttgart, Germany, Jan. 2014. [Online]. Available: http://www.iss.

uni-stuttgart.de/forschung/veroeffentlichungen/barsim_pess2014.pdf

[48] R. Xu and I. Wunsch, D., “Survey of clustering algorithms,” IEEE Transactions

on Neural Networks, vol. 16, no. 3, pp. 645–678, May 2005.

[49] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of

clusters in a data set via the gap statistic,” Journal of the Royal Statistical

Society: Series B (Statistical Methodology), vol. 63, no. 2, pp. 411–423,

Jan. 2001. [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1111/

1467-9868.00293/abstract

[50] D. Arthur and S. Vassilvitskii, “K-means++: the advantages of careful seed-

ing,” in In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete

Algorithms, 2007.

[51] K. Kerdprasop, N. Kerdprasop, and P. Sattayatham, “Weighted k-means for

density-biased clustering,” in In DaWaK, 2005, p. 488âĂŞ497.

[52] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for

discovering clusters in large spatial databases with noise.” in KDD, vol. 96,

1996, pp. 226–231.

[53] M. Ankerst, M. M. Breunig, H.-p. Kriegel, and J. Sander, “OPTICS: ordering

points to identify the clustering structure.” ACM Press, 1999, p. 49âĂŞ60.

[54] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and

an algorithm,” in ADVANCES IN NEURAL INFORMATION PROCESSING

SYSTEMS. MIT Press, 2001, p. 849âĂŞ856.

136

http://www.iss.uni-stuttgart.de/forschung/veroeffentlichungen/barsim_pess2014.pdf
http://www.iss.uni-stuttgart.de/forschung/veroeffentlichungen/barsim_pess2014.pdf
http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00293/abstract
http://onlinelibrary.wiley.com/doi/10.1111/1467-9868.00293/abstract

[55] B. J. Frey and D. Dueck, “Clustering by passing messages between data

points,” Science, vol. 315, no. 5814, pp. 972–976, Feb. 2007, PMID: 17218491.

[Online]. Available: http://www.sciencemag.org/content/315/5814/972

[56] L. Zelnik-manor and P. Perona, “Self-tuning spectral clustering,” in Advances in

Neural Information Processing Systems 17. MIT Press, 2004, p. 1601âĂŞ1608.

[57] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On spectral clustering: Analysis and

an algorithm,” in ADVANCES IN NEURAL INFORMATION PROCESSING

SYSTEMS. MIT Press, 2001, p. 849âĂŞ856.

[58] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal

on Computing, vol. 1, no. 2, pp. 146–160, Jun. 1972. [Online]. Available:

http://epubs.siam.org/doi/abs/10.1137/0201010

[59] S. Barker, S. Kalra, D. Irwin, and P. Shenoy, “Empirical characterization and

modeling of electrical loads in smart homes,” in Green Computing Conference

(IGCC), 2013 International, Jun. 2013, pp. 1–10.

[60] S. Siddiqi, G. Gordon, and A. Moore, “Fast state discovery for hmm model

selection and learning,” in Proceedings of the International Conference on Ar-

tificial Intelligence and Statistics (AISTATS), 2007.

[61] J. Ramos, S. Siddiqi, A. Dubrawski, G. Gordon, and A. Sharma, “Automatic

state discovery for unstructured audio scene classification,” in Acoustics Speech

and Signal Processing (ICASSP), 2010 IEEE International Conference on.

IEEE, 2010, pp. 2154–2157.

[62] M. Marceau and R. Zmeureanu, “Nonintrusive load disaggregation computer

program to estimate the energy consumption of major end uses in residential

137

http://www.sciencemag.org/content/315/5814/972
http://epubs.siam.org/doi/abs/10.1137/0201010

buildings,” Energy Conversion and Management, vol. 41, no. 13, pp. 1389 –

1403, 2000. [Online]. Available: http://www.sciencedirect.com/science/article/

pii/S0196890499001739

[63] S. Giri and M. Berges, “An error correction framework for sequences resulting

from known state-transition models in non-intrusive load monitoring (under

review),” Advanced Engineering Informatics, vol. NA, no. 1, p. NA, Mar. 2015.

[64] M. S. Bazaraa, J. J. Jarvis, and H. D. Sherali, Linear Programming and Network

Flows. John Wiley & Sons, Sep. 2011.

[65] E. W. Dijkstra, “A note on two problems in connexion with graphs,”

Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959. [Online].

Available: http://link.springer.com/article/10.1007/BF01386390

[66] R. K. Ahuja, K. Mehlhorn, J. B. Orlin, and R. E. Tarjan, “Faster

algorithms for the shortest path problem,” Journal of the Association for

Computing Machinery, vol. 37, no. 2, pp. 213–223, 1990. [Online]. Available:

http://cat.inist.fr/?aModele=afficheN&cpsidt=19245968

[67] M. L. Fredman and R. E. Tarjan, “Fibonacci heaps and their uses in improved

network optimization algorithms,” J. ACM, vol. 34, no. 3, pp. 596–615, Jul.

1987. [Online]. Available: http://doi.acm.org/10.1145/28869.28874

[68] H. Sakoe and S. Chiba, “Dynamic programming algorithm optimization for

spoken word recognition,” IEEE Transactions on Acoustics, Speech and Signal

Processing, vol. 26, no. 1, pp. 43–49, Feb. 1978.

138

http://www.sciencedirect.com/science/article/pii/S0196890499001739
http://www.sciencedirect.com/science/article/pii/S0196890499001739
http://link.springer.com/article/10.1007/BF01386390
http://cat.inist.fr/?aModele=afficheN&cpsidt=19245968
http://doi.acm.org/10.1145/28869.28874

[69] D. J. Burr, “Designing a handwriting reader,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 5, no. 5, pp. 554–559, May 1983. [Online]. Available:

http://dx.doi.org/10.1109/TPAMI.1983.4767435

[70] F. Jazizadeh, B. Becerik-Gerber, M. Berges, and L. Soibelman, “An unsuper-

vised hierarchical clustering based heuristic algorithm for facilitated training

of electricity consumption disaggregation systems,” Advanced Engineering

Informatics, vol. 28, no. 4, pp. 311–326, Oct. 2014. [Online]. Available:

http://www.sciencedirect.com/science/article/pii/S1474034614000913

[71] S. Giri and M. Berges, “Virtual metering of electrical appliances through anal-

ysis of data from contactless sensing (under review),” Energy and Buildings,

vol. NA, no. 1, p. NA, Mar. 2015.

[72] TED Inc., “The energy detective.” [Online]. Available: http://www.

theenergydetective.com/

[73] “Wireless 3-Phase Electricity Monitor.” [Online]. Available: http://episensor.

com/products/zem-61-three-phase-electricity-monitor/

[74] “Emonitor.” [Online]. Available: http://powerhousedynamics.com/

[75] “eGauge EG 3000.” [Online]. Available: https://www.egauge.net/products/

[76] “FIDO.” [Online]. Available: https://www.egauge.net/products/

[77] “Energy hub.” [Online]. Available: http://www.energyhub.com/

[78] “Watts up.” [Online]. Available: https://www.wattsupmeters.com/secure

[79] “Kill A Watt.” [Online]. Available: http://www.p3international.com/products

139

http://dx.doi.org/10.1109/TPAMI.1983.4767435
http://www.sciencedirect.com/science/article/pii/S1474034614000913
http://www.theenergydetective.com/
http://www.theenergydetective.com/
http://episensor.com/products/zem-61-three-phase-electricity-monitor/
http://episensor.com/products/zem-61-three-phase-electricity-monitor/
http://powerhousedynamics.com/
https://www.egauge.net/products/
https://www.egauge.net/products/
http://www.energyhub.com/
https://www.wattsupmeters.com/secure
http://www.p3international.com/products

[80] X. Jiang, S. Dawson-Haggerty, P. Dutta, and D. Culler, “Design and implemen-

tation of a high-fidelity AC metering network,” in International Conference on

Information Processing in Sensor Networks, 2009. IPSN 2009, Apr. 2009, pp.

253–264.

[81] R. Mangharam, A. Rowe, and R. Rajkumar, “FireFly: a cross-

layer platform for real-time embedded wireless networks,” Real-Time

Systems, vol. 37, no. 3, pp. 183–231, Dec. 2007. [Online]. Available:

http://dx.doi.org/10.1007/s11241-007-9028-z

[82] Y. Agarwal and T. Weng, “From Buildings to Smart Buildings- Sensing and

Actuation to Improve Energy Efficiency,” IEEE Design & Test of Computers,

vol. 29, no. 4, pp. 36–44, 2012.

[83] J. Lifton, M. Feldmeier, Y. Ono, C. Lewis, and J. Paradiso, “A Platform for

Ubiquitous Sensor Deployment in Occupational and Domestic Environments,”

in 6th International Symposium on Information Processing in Sensor Networks,

2007. IPSN 2007, Apr. 2007, pp. 119–127.

[84] S. O’Connell, J. Barton, E. O’Connell, B. O’Flynn, E. Popovici, S. O’Mathuna,

A. Schoofs, A. Ruzzelli, and G. O’Hare, “Remote Electricity Actuation and

Monitoring mote,” in 2011 International Conference on Distributed Computing

in Sensor Systems and Workshops (DCOSS), Jun. 2011, pp. 1–6.

[85] M. Clark, B. Campbell, and P. Dutta, “Deltaflow: Submetering by

Synthesizing Uncalibrated Pulse Sensor Streams,” in Proceedings of the

5th International Conference on Future Energy Systems, ser. e-Energy

’14. New York, NY, USA: ACM, 2014, pp. 301–311. [Online]. Available:

http://doi.acm.org/10.1145/2602044.2602070

140

http://dx.doi.org/10.1007/s11241-007-9028-z
http://doi.acm.org/10.1145/2602044.2602070

[86] D. Jung and A. Savvides, “Estimating Building Consumption Breakdowns

Using ON/OFF State Sensing and Incremental Sub-meter Deployment,” in

Proceedings of the 8th ACM Conference on Embedded Networked Sensor

Systems, ser. SenSys ’10. New York, NY, USA: ACM, 2010, pp. 225–238.

[Online]. Available: http://doi.acm.org/10.1145/1869983.1870006

[87] S. Giri, M. Berges, and A. Rowe, “Towards automated appliance recognition

using an EMF sensor in NILM platforms,” Advanced Engineering Informatics,

2013. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1474034613000268

[88] T. Wu, “Low-cost Appliance State Sensing for Energy Disaggregation,”

eScholarship, Jan. 2012. [Online]. Available: http://escholarship.org/uc/item/

8352r9g5

[89] “HOBO Data Logger.” [Online]. Available: http://www.onsetcomp.com/

products/data-loggers/ux90-004

141

http://doi.acm.org/10.1145/1869983.1870006
http://www.sciencedirect.com/science/article/pii/S1474034613000268
http://www.sciencedirect.com/science/article/pii/S1474034613000268
http://escholarship.org/uc/item/8352r9g5
http://escholarship.org/uc/item/8352r9g5
http://www.onsetcomp.com/products/data-loggers/ux90-004
http://www.onsetcomp.com/products/data-loggers/ux90-004

	Introduction
	Non-Intrusive Load Monitoring
	The need for appliance models in NILM
	The need for error correction
	The case for virtual metering

	Motivating case studies
	Case studies on appliance models
	Formalizing the energy estimation process
	A more general view of the problem
	Energy estimation in supervised settings without appliance models
	Energy estimation in unsupervised settings without accurate appliance models
	Energy estimation with basic appliance models

	Case studies on Virtual Metering
	System Hardware
	System Software
	System Evaluation

	An Energy Estimation Framework
	State of the art in appliance behavior modeling
	Finite State Machine formulations
	Probabilistic prior models for appliances
	Other ways of modeling appliances

	Introduction to the framework
	Classifying distinct state transitions
	Perturbance
	Creating transition probability matrices
	Finding feasible cycles

	Creating state transition models
	Correcting errors
	Computing energy
	Further evaluation with simulated data

	Discussion
	Discussion of results
	Discussion of framework
	Evaluation criteria

	Chapter Conclusion

	An Error Correction Framework
	Introduction to the framework
	Shortest-path formulation
	Evaluation
	Evaluation metrics
	Evaluation on Simulated Data
	Evaluation on real data

	Discussion
	Chapter Conclusion

	Virtual metering of electrical appliances
	Literature Survey
	Direct metering techniques
	Indirect metering techniques

	Framework for analyzing sensor data
	Experiment and Results
	Discussion
	Chapter Conclusion

	Summary
	Summary and Broader Impact
	Future Work

