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Abstract
Image segmentation is important with applications to several problems in biol-

ogy and medicine. While extensively researched, generally, current segmentation
methods perform adequately in the applications for which they were designed, but
often require extensive modifications or calibrations before used in a different appli-
cation. We describe a system that, with few modifications, can be used in a variety
of image segmentation problems. The system is based on a supervised learning s-
trategy that utilizes intensity neighborhoods to assign each pixel in a test image its
correct class based on training data. In summary, we have several innovations: (1)
A general framework for such a system is proposed, where rotations and variations
of intensity neighborhoods in scales are modeled, and a multi-scale classification
framework is utilized to segment unknown images; (2) A fast algorithm for training
data selection and pixel classification is presented, where a majority voting based
criterion is proposed for selecting a small subset from raw training set. When com-
bined with 1-nearest neighbor (1-NN) classifier, such an algorithm is able to provide
descent classification accuracy within reasonable computational complexity. (3) A
general deformable model for optimization of segmented regions is proposed, which
takes the decision values from previous pixel classification process as input, and
optimize the segmented regions in a partial differential equation (PDE) framework.
We show that the performance of this system in several different biomedical appli-
cations, such as tissue segmentation tasks in magnetic resonance and histopathology
microscopy images, as well as nuclei segmentation from fluorescence microscopy
images, is similar or better than several algorithms specifically designed for each of
these applications.

In addition, we describe another general segmentation system for biomedical ap-
plications where a strong prior on shape is available (e.g. cells, nuclei). The idea
is based on template matching and supervised learning, and we show the examples
of segmenting cells and nuclei from microscopy images. The method uses exam-
ples selected by a user for building a statistical model which captures the texture
and shape variations of the nuclear structures from a given data set to be segment-
ed. Segmentation of subsequent, unlabeled, images is then performed by finding the
model instance that best matches (in the normalized cross correlation sense) local
neighborhood in the input image. We demonstrate the application of our method
to segmenting cells and nuclei from a variety of imaging modalities, and quantita-
tively compare our results to several other methods. Quantitative results using both
simulated and real image data show that, while certain methods may work well for
certain imaging modalities, our software is able to obtain high accuracy across sev-
eral imaging modalities studied. Results also demonstrate that, relative to several
existing methods, the template based method we propose presents increased robust-
ness in the sense of better handling variations in illumination, variations in texture
from different imaging modalities, providing more smooth and accurate segmenta-
tion borders, as well as handling better cluttered cells and nuclei.
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Chapter 1

Introduction

Image segmentation is a classical research problem that has been investigated for many years in
the area of digital image processing. Generally, image segmentation is to subdivide an image
into several constituent regions (named as segments), and each segment contains a set of pixels,
where pixels in the same segment share certain visual characteristics such as color, intensity, or
texture. The goal is to simplify the representation of image into something that is more meaning-
ful and easier to analyze. When the regions of interest (e.g. objects/boundaries) in an application
have been isolated, the segmentation process stops. To be more precise, in order to recognize
the isolated objects/boundaries, each segment will be assigned a label, and in general, adjacent
segments are assigned with different labels, as they are significantly different with respect to the
same characteristic(s).

1.1 Review of current image segmentation techniques

Segmentation is one of the most studied problems in image processing. Early in 1975, Otsu [1]
has proposed a simple and automated segmentation method based on the shape of histogram,
which separates a gray level image into foreground and background via a threshold value. Till
now, while Otsu’s algorithm is still being used widely in many applications, several thousand
papers are being published each year at the same time. Here we give a brief overview which is
not meant to be exhaustive or complete. Rather our intent is to highlight the main ideas used
so far in the field. We start by summarizing the current segmentation techniques into two big
categorites based on the level of image information they use for segmentation. The first category
include those image segmentation techniques that exploit low level image information, such as
image intensity and image gradient information. There are several typical classes of methods,
which will be described and commented as follows:

Thresholding methods are usually regarded as the simplest segmentation methods, which
uses one threshold value or multiple threshold values to turn a gray level images into a binary
image or a segmented image with multiple classes. One famous example is Otsu’s method [1]
mentioned above, which assumes that the optimal threshold value makes the intra-class variance
of the two classes (e.g. foreground and background) to be minimal. Such a method can be
extended to multi-level thresholding [2, 3]. In summary, we mention that there are many variants
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of thresholding based algorithms, such as: (1) histogram shape based algorithms, such as Otsu’s
method [1], balanced histogram thresholding [4], etc. (2) maximum entropy based algorithms
[5]: instead of maximizing the intra-class variance, the method aims to find an optimal threshold
value that maximizes the inter-class entropy. Considering that images may be screened under
uneven illumination, adaptive thresholding algorithms [6, 7] are proposed, which selects the
local threshold values at different regions of the image intelligiently.

Edge detection methods are usually designed for detecting the boundaries of regions. Com-
mon edge detection algorithms design various of spatial filters [8, 9] to compute the first-order
or second-order gradient information of the image. For example, Sobel or directional derivative
masks [9] are used to calculate gradient information, while Laplacian filters [9] are used to cal-
culate the second-order gradient information. It is worth noting that edge detection itself cannot
be called segmentation, while in most segmentation cases, people are more interested in isolating
the regions of interests rather than finding the boundries of these regions. Thus, these detected
regions must be linked by the edge-linking procedures in order to form closed regions. However,
due to the noise, artifacts, or geometrical occulsions inside the images, it becomes a quite diffi-
cult job to link edges very well. Some bounary tracking methods have been proposed. One way
using graph based search [10, 11] is to find paths between the start and end pixels that minimizes
a cost function based on the distance and transition probabilities. Among several graph based
search algorithms, the A∗ algorithm [10, 11] is widely used. In addition, Hough transform [12]
is widely used to detect straight lines and other parametric curves such as circles, ellipses, and
so forth.

Region based methods include region growing [13, 14], region merging methods [14, 15]
and reigon splitting methods [15]. Region growing method usually find the regions of interest by
examining pixels in the neighborhood from the starting places based on a pre-defined similarity
criterion. The neighboring pixels that satisfy the similarity criterion will be merged into the
current regions for segmentation. Such an idea is also extended to merge not only pixels but also
larger meaningful regions of similar properties. Region merging is often used as a post processing
step after segmentation so that these tiny segmented regions can be merged to the neighboring
larger regions for better recognition and interpretation. Comparatively, region splitting methods
start from the whole image or larger regions, and split them into two or more regions based on a
dissimilarity criterion. Many criteria have been proposed, for example, if a region has a bimodal
distribution of gray value histogram, it can be split into two regions of connected pixels with
gray values falling in their respective distributions. In summary, region based methods are often
combined with other segmentation techniques and used as a post processing step for improving
the segmentation performance.

Specifically, watershed algorithms [9, 16, 17] are usually regarded as one of the most fa-
mous and frequently used morphological based/region growing methods for image segmentation.
The basic concept is to view a gray level image, for example, as a topographic relief, where the
gray level of a pixel is interpreted as its altitude in the relief. A drop of water falling on a topo-
logical relief flows along a path to finally reach a local minimum. The set of pixels at which
water would be equally likely to fall to more than one such minimum form crest lines on the
topographic surface are called watershed lines which separate regions. There are many different
ways for building the topological relief besides using gray levels directly [18]. For example, one
intuition is to regard the area with high gradient values as the edges, thus, the topographic relief
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can be built by using the gradient image. Another common way is based on shape information,
where a distance transformation map (Euclidean distance is often chosen) can be calculated from
a binary image after the initial segmentation and utilized as the topographical relief. It is worth
mentioning that the direct use of watershed algorithms is very easy to produce over-segmentation
results. Thus, marker controlled watershed (or called seeded watershed) algorithm [9, 16, 17] is
more often used for practical segmentation. A marker is defined as a connected component be-
longing to an image, where internal markers are associated with objects of interest, while external
markers are associated with background. Usually, markers can be manually labeled, or selected
automatically based on some pre-defined criteria. Finally, the topographical relief is modified
as minimum only exist at the foreground and background marker locations in order to prevent
over-segmentation.

Although there are still many other existing algorithms that can be categorized into the first
category, we omit them for brevity and conclude that these methods that explore low level image
information for segmentation share the characteristics that they are easy to implement, however,
most of them are not easy to achieve satisfactory results. Thus, we will turn to the second
category of segmentation methods that exploit constraints derived from the image data together
with high level a priori knowledge of the objects. Since higher level knowledge is incorporated
into these methods, a more robust segmentation can be obtained. In the following, we will discuss
several typical methods:

Multi-scale methods [19, 20, 21] segment images at multiple scales in scale space. The
general idea is to propagate from coarse to fine scales for image segmentation. Lindeberg [22, 23]
studied the problem of linking local extrema and saddle points over scales, and thus, represented
the image in the way called ”the scale-space primal sketch”, which makes explicit the relations
between structures at different scales and the stable image features over scales. Based on the
theory, a couple of methods have been proposed. For examples, edges can be first detected
at coarse scales in scale-space and then, traced back to finer scales. Watershed can also be
implemented in multi-scales [21]. And these ideas have been incorporated into automated system
[24] and extensively tested on some databases (e.g. brain) [25].

Deformable model based methods [26, 27, 28] is a group of computer algorithms sharing
the common characteristics that they model the variablity of a certain class of objects. If defined
within image domain, deformable models are usually regarded as curves or surfaces that can
move under the influence of internal forces, which are defined within the curve or surface itself,
while the external forces can be calculated from the image data. The use of internal force is to
keep the model smooth during deformation, while the use of external force is to move the model
toward an object boundary or other desired features within an image. Deformable models have
been extensively studied and widely used in biomedical image segmentation [26] with promis-
ing results, since they are able to offer robustness to both image noise and boundary gap by
constraining extracted boundaries to be smooth and incorporating other prior information such
as the object shape. To summarize, current deformable model based methods for image segmen-
tation can be divided into two big categories: parametric/explicit based methods [29, 30, 31] and
non-parametric/implicit based methods [28, 32, 33]. In parametric deformable models, curves
and surfaces are represented explicitly in their parametric forms during deformation. One clas-
sical example is active contour model, or called ”snakes” [34, 35], which delineates the outline
of an object by minimizing the energy function as the sum of external and internal energy, where
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external energy utilizes the image gradient information directly, while internal energy is based
on curvature of contours. Parametric deformable models allow direct interaction with the model
and can be implemented quite fast. However, it has the disadvantage of topology constrain-
t, which cannot deal with splitting or merging cases during the process of deformation. Thus,
non-parametric deformable model is proposed, where curves and surfaces are represented by a
level set of a higher-dimensional scalar function [28, 36, 37]. The advantage of level set is that
numerical computation involving curves and surfaces on a fixed Cartesian grid can be performed
without parameterization. In addition, level set makes it very easy to follow shapes that change
topology. One popular deformable model based on level set is Chan and Vese (C-V) model [38]
. We note that there are a great number of variant deformable models and we will discuss them
in Chapter 4.

Graph partition methods [39, 40, 41, 42] implement image segmentation by modeling the
image as a weighted, undirected graph. Usually, each pixel inside the image is regarded as one
node in the graph, while edges are built by connecting pairwise nodes. Usually, only neighbor-
ing pixels are connected by edges, and edge weights define the similarity/dissimilarity between
the neighboring pixels, such as distance, intensities. Image segmentation is implemented by
partitioning the graph according to different criteria designed to model ”good” clusters. Each
partition of the nodes corresponds to a set of pixels as an isolated region in the image. Popular
methods include: normalized cuts [39], random walker [40], minimum cut [41], etc.

Especially, we would like to mention the graph cuts method [43, 44, 45] for image segmen-
tation. Although this method is still a graph based algorithm, it is different from previous graph
partition methods in that it formulates the image segmentation in terms of energy minimization,
and represents such an energy objective function into a graph. The optimization of the energy
function is realized via finding the minimum cut/maximum flow of the graph. In most cases, the
minimum energy solution corresponds to the maximum a posterior estimate of a solution.

Template based methods (or called atlas based methods) [46, 47] are based on the assump-
tion that the structures of objects to be segmented have a repetitive form of geometry. Such cases
are often seen in biomedical application, for example, segmentation of gray matter and white
matter tissues from human brain MR/CT images [47, 47], where the brain structures between
different people are similar. Therefore, one can manually label a few examples and then, build a
probabilistic model that explains the variation of the shape of the organ. This model can be used
to impose prior constraints when segmenting an image. Usually, such a task consists of several
steps: (1) register the training sample to the same pose, (2) calculate the probabilistic represen-
tation of the variation of the registered samples, and (3) statistical inference between the model
and the image to be segmented. State of the art methods in the literature for knowledge-based
segmentation include active shape [48, 49] and active appearance models [50, 51].

Learning based method [52] are those who utilize machine learning techniques for image
segmentation. Generally, current methods can be divided into two categories: unsupervised
learning based methods [52, 53, 54, 55] and supervised learning based methods [52, 56, 57].
Unsupervised learning tries to find hidden structures in unlabeled data. As far as we know, most
unsupervised learning based segmentation methods use clustering to segment images. Here,
we show a few typical ones: The simplest one is k-means clustering [58, 59], where usually,
pixels’ intensities are clustered into k clusters so that the whole image is segmented into regions
belonging to k different classes. Another clustering method commonly used is called fuzzy c-
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means (fcm) clustering [60]. Unlike k-means clustering, fuzzy c-means algorithm allows one
piece of data to belong to two or more clusters with a weight updated at each iteration, and
fuzzy partitioning is carried out through an iterative optimization of the objective function. In
addition, by assuming that the pixels’ intensities of each class follows a Gaussian distribution (a
common assumption), expectation maximization (EM) algorithm [61] is used for estimating the
parameters of Gaussian distributions and clustering. To summarize, most clustering algorithms
are easy to implement, however, it is quite difficult for them to generate satisfactory results when
dealing with complicated image data. Comparatively, supervised learning infers a classification
function from labeled training data that consists of a set of training examples (typically a vector
and a label value representing which class the example belongs to), and predict the class label
for unknown examples. For image segmentation, supervised learning methods [57, 62] have
the advantage of handling complicated image data by not only using color information but also
using a huge domain knowledge such as texture. One common way is to predict the label of each
pixel in the unknown images so that the pixels with the same label value can be isolated as the
segmented regions. Many existing supervised learning techniques can be utilized, such as neural
networks [63], support vector machines (SVM) [52, 64], etc.

1.2 Image segmentation for practical applications
Various of image segmentation techniques have been developed and widely utilized in many
practical applications in the real world. Here, we illustrate a few common applications including:

Content based image retrieval (CBIR) [65], also known as content-based visual informa-
tion retrieval, aims to search for digital images in large databases. The segmentation process
is one of the first and important steps. In CBIR systems, the segmentation step aims to facili-
tate the interpretation of images and scenes by identifying homogeneous and significant regions,
which can be further analyzed by the system using regions features and possibly their semantic
meaning.

Medical imaging [66] is the technique and process that creates images of the human body
for clinical diagnosis, or medical science such as the study of anatomy and physiology. One
important task in medical imaging field is to analyze the imaging results intelligently, where
segmentation is the first and significant step that isolates the biological structures of interest,
such as organs, tissues, etc. Quality of segmentation determines the following analysis process
directly.

Object detection [67, 68, 69] is a computer technology related to computer vision and image
processing that aims to detect objects of a certain class (such as human, face, cars, etc) from
digital images and videos. Popular research topics on object detection include face detection
and pedestrian detection in video surveillance. Since segmentation is a process that partitions an
image into regions. In the problem of face detection, one way is to segment skins in the image,
which helps to identify the probable regions containing the faces and reduce the search space.
For pedestrian detection, image segmentation can also be useful. One example is to segment
edges in order to recognize the pedestrians in the videos.

We mention here that there are still many fields where image segmentation plays an important
role, and we will not discuss them for brevity. Specific application of image segmentation in
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biomedical imaging will be discussed carefully in the next section.

1.2.1 Application of segmentation in biomedical imaging

To be specific, we focus on discussing the use of image segmentation in biomedical imaging
field in this section. In the past decades, new imaging technologies have been increasingly de-
veloped and applied to different biomedical research and clinical problems. Given the enormous
success with which some of these technologies have been applied to research and clinical tasks,
the trend of image technology development (and their application in novel biomedical problems)
is likely to continue. Thus, image segmentation will be of great importance in the application of
imaging technology to many biomedical problems. Tissues, cells, and organs must often be seg-
mented and isolated from two or three dimensional digital image data for subsequent quantitative
analysis in a variety of experimental biological studies and diagnosis in clinical medicine. Pop-
ular examples include: segmentation of gray and white matter tissues from magnetic resonance
imaging (MRI) brain scans for studying neurological diseases (e.g. Alzheimer’s); segmentation
of cells and tissues from histopathology image data to assist in the diagnosis of different lesion-
s; segmentation of nuclei cells and subcellular structures for characterizing their distributions
relating to cancer diagnosis, etc.

Due to the vast increase in the capability of image acquisition during the past couple of
decades, a huge amount of data (e.g. digital images) is usually produced. Thus, manual seg-
mentation is no longer viable effective for many types of quantitative studies, and computer-
aided segmentation methods become an urgent need. The increase in computational power in
recent decades has spurred the development of a number of image segmentation algorithms
[34, 38, 44, 70, 71, 72, 73] that have been applied to a variety of biomedical and clinical ap-
plications with successful use. Here, we list a few examples in the following:

• MR-images segmentation: Magnetic resonance imaging (MRI) is a significant medical
imaging technique used in radiology to visualize detailed internal structures, which makes
use of the property of nuclear magnetic resonance to image nuclei of atoms inside the body.
Since MRI is able to provide good contrast between the different soft tissues of the body,
it has been widely used in imaging the brain, muscles, the heart, and the cancers, etc. One
popular example is to use MRI to screen human brains for clinical diagnosis. For quantita-
tive diagnosis purpose, different tissues in brain MR data, such as gray matter, white mat-
ter, etc., need to be segmented accurately. In the past decades, a variety of computational
algorithms have been proposed for brain MR-segmentation. For example, Wells et al. [74]
present a method that couples tissue classification with in-homogeneity correction based
on maximum-likelihood parameter estimation, and they use the expectation-maximization
(EM) algorithm to estimate the unknown bias field and the classification. Leemput et al.
[75] extend this approach by using Gaussian mixture density estimation to estimate the
grayscale intensity PDFs for each tissue type. They also apply the EM algorithm to es-
timate these PDFs as well as the bias and, in turn, the classification. In addition, Zhang
et al. [70] extended the EM-classification algorithm to incorporate spatial smoothness via
Markov priors on the label image. In [76], Awate et al. estimate the density distribution
through nonparametric Parzen density window and utilize intensity neighborhood to keep
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the Markov property. In addition, the active contour model [77, 78] has also been used
to impose smoothness constraints for segmentation. These methods typically attempt to
minimize the area of the segmentation boundary simultaneously with proper fidelity to the
data. However, the drawbacks of active contour based methods are their sensitivity to noise
and manual parameter tuning. Another significant application of MRI is for the diagnosis
of cancer, such as prostate cancer, which is a leading cause of cancer death for men in
the United States. MRI has been used as a noninvasive imaging method and has shown
to be useful to visualize and localize the prostate gland. Automated detection/localization
of prostate cancer within prostate MR images is usually required for further quantitative
diagnosis. In [79], conditional random fields (CRF) combined with SVM is used to detect
and localize the area of prostate cancer. In [80], an active appearance model (AAM) utiliz-
ing level set implementation has been proposed to overcome the constraints of landmarks,
and multiple features have been used to help locate the region of interests. Some other
MRI applications include: segmentation of heart from 3D MRI imaages [81, 82], segmen-
tation of blood vessels [83], etc. We note that there are still many, many example for MRI
applications, and the discussions will be omitted here for brevity.

• Histology image segmentation: Histology is the study of the microscopic anatomy of cell-
s and tissues of plants and animals. It is usually performed by staining the tissue slice and
examining it under a light microscope or an electronic microscope. Since accurate diagno-
sis of cancer and other diseases usually requires histopathological examination of samples,
it is important to study the diseased tissues under the microscope. Currently, histological
images are generated by scanning the stained tissue slices using a high resolution scan-
ner. When a large amount of histological images are produced, computational diagnosis
methods become necessary, in which the detection or segmentation of tissue/histological
structures (e.g. cancer nuclei, glands) becomes the first significant step for the further
quantitative analysis such as disease grading, as the presence, extent, size, shape and oth-
er morphological appearance of these structures are important indicators for severity of
disease. Tissue/histological structure detection or segmentation in different types of histo-
logical images is a very challenging task as the tissues inside the histological images are
usually very complicated, and thereby, difficult to model [84, 85, 86]. Many methodolo-
gies have been developed for segmenting specific objects of interest from histology images
in the past years. For example, some methods [36, 87, 88] focus on segmenting various
structures in histology images, such as segmenting nuclei [87, 89], segmenting lumen and
epithelial cytoplasm [36]. Comparatively, identifying and segmenting the whole tissue re-
gions rather than inner structures from histology images is a more challenging task, and we
mention that machine learning based methods are preferred due to the fact of their learn-
ing abilities. For these data whose tissues are relatively simple, the unsupervised learning
methods such as K-means algorithm utilizes color information for clustering works well
as we think the color properties of each tissue class should be similar [90]. When the tis-
sues become complicated, researchers developed supervised learning methods and utilized
different features for segmentation or identification. For example, in [91, 92], a multi-
resolution approach has been used to classify the whole slide histology images in high
resolution. In [93], Bhagavatula et al. used histopathology vocabulary features for tissue
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identification in teratoma histological images. In [57], intensity neighborhood is utilized as
a general feature, which provides decent segmentation performance on histology images.
A more detailed discussion about techniques used for histology image analysis can be seen
in [94].

• Fluorescence microscopic image segmentation: Fluorescence microscopic images are
another type of data commonly seen. Usually, cells, sub-cellular structures, nuclei are
screened by high throughput fluorescence microscopy and a great amount of data can be
produced. Objects of interest, such as cells, nuclei, etc., must be accurately segmented for
further quantitative analysis. Nuclei segmentation is a relatively easy task. Usually, nuclei
are well screened, and even simple intensity based thresholding methods can work well.
Sometimes, when nuclei are screened under uneven illumination environment, intensity
heterogeneity of the data has to be processed before segmentation. When dealing with
the touching or overlapped cases of nuclei/cells, seeded watershed method [17] is usually
utilized for separation. Comparatively, cell segmentation is more difficult, since cells usu-
ally touch each other tightly. A general solution in current literatures is to first stain DNA
channel of the cell in order to get the nuclei images. Nuclei will be segmented to provide
prior information of cells, such as the amount, location, etc. Then, the actin channel of the
cell is stained to show the cytoplasms, which will be segmented and separated using the
prior information of the nuclei. In [95, 96], these methods are discussed and compared.

1.3 Motivation for the research
In the previous sections, we have seen a number of image segmentation techniques and their ap-
plications in biomedical imaging. While extensively researched, generally, current segmentation
methods perform adequately in the applications for which they were designed. However, these
methods still have a couple of drawbacks: a large number of algorithms successfully used in real
applications were specifically designed for the given application. In our previous experience,
before an algorithm that was specifically designed for one application can be used in another, a
significant amount of tuning and calibration is usually required. Even then, in many cases, the
chosen method may not perform satisfactorily. Therefore, a researcher faced with a new problem
or application, must often spend considerable resources to modify (or develop a new) a reliable
segmentation method capable of extracting the structures of interest for the given application.

Thus, we would like to propose a general purpose segmentation system, which can be applied
across different biomedical applications with little tuning or calibration, and achieve compara-
ble or even better results compared with the state-of-the-art methods specifically designed for
each application. For the purpose of general application, the proposed system should be able to
segment a variety of biological objects with different structures (e.g. tissues, nuclei, cells, etc.)
from different imaging modalities (MRI, CT, histology, etc). In addition, the system can be used
with two or three-dimensional data, as well as scalar or vector valued (e.g. color) images. If
the proposed aim can be achieved, such a system can be utilized as a general segmentation tool,
which can be widely used in a variety of biomedical applications.

Unlike many segmentation approaches, which aim to design specific mathematical models
to describe the biological objects which are to be segmented, we choose the supervised learning
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strategy as the basic framework, which makes the system general in the sense that, given suf-
ficient training data, it can be used to segment a variety of biological structures, from different
imaging modalities. In general, a user provides the system with a few hand labeled/segmented
images, and the system proceeds by ”learning” a classification-based function that can be used to
estimate the class of a given pixel (e.g. background vs. object). Once such a function is learned,
it is then coupled with a region optimization algorithm (together with any geometric/shape bias
terms available from the training data) for producing the segmentation of any unseen images. In
Figure 1.1, we show a schematic organization for such a system.

(a)

Figure 1.1: Schematic organization for a general image segmentation system using supervised
learning strategy

1.4 Innovations of the thesis
The need for robust automated image segmentation in modern quantitative imaging pipelines is
clear. While a plethora of methods can be found in the current literature, it is often the case
that these are specifically designed and tuned to a particular application. Before an algorithm
that was specifically designed for one application can be used in another, a significant amount
of tuning and calibration is usually required. Even then, in many cases, the chosen method may
not perform satisfactorily. Thus, our major goal is to propose a system which can be used more
generally, with little or no adaptation.

Our system [57, 62] aims to make use of the fact that often times a few segmented images
(labeled pixel data) are already available or can be easily obtained, together with the ever in-
creasing capabilities of modern computers, to arrive at a general segmentation tool that can be
used in a variety of applications. To design such a general segmentation system, we consider
choosing a supervised learning strategy where the pixels of a few segmented images are used to
train a classifier capable of accurately determining the class (e.g. background vs organs/tissues of
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interest) of each pixel in unlabeled images of the same kind. The idea of using supervised learn-
ing strategy to classify pixels for image segmentation is attractive because, in principle, given
enough training samples, the strategy can be used to construct algorithms capable of performing
accurately across different image modalities (computed tomography (CT), magnetic resonance
(MR), microscopy, for example) and different structures of interest (organs, tissues, or cells).

The idea of pixel level classification for image segmentation is not new, and many existing
algorithms, for example, thresholding methods, or unsupervised clustering methods, etc., can
be regarded as pixel classification methods since the segmentation is implemented via labeling
every pixel into different classes such as foreground versus background. However, to our best
knowledge, no general purpose approach using such an idea for segmenting different structures
(cells or tissue types) in different imaging modalities has been proposed and shown to work well
across different applications, due to the fact that it is not an easy task to construct such a sys-
tem successfully. We propose to address three main difficulties: (1) Building the training set:
In its simplest form, all available pixels should be utilized as the training data (accounting for
normalization), while different variations and scales of the same data (which are simulated as
described below) will also need to be taken into account. This strategy, when applied to its full
extent, would be computationally impractical. Since very often millions of pixels are available
for training, it is clear that a training data selection approach must be taken. (2) Designing a
fast classification algorithm: our current prototype uses existing classification algorithms, such
as the support vector machine (SVM), for a pixel by pixel prediction (with large computational
costs associated). Thus, developing a fast classification algorithm is necessary for the practical
use of the system. (3) Region optimization: Usually, pixel level classification results are not good
enough to be directly used as the final segmentation results, which have jagged borders/surfaces
and holes inside. As a common requirement of segmentation results is to have smoothing bor-
ders/surfaces, the classification results must be refined before outputting.

In this dissertation, we propose a general segmentation system, which is able to solve the
challenges mentioned above, and we have several innovations listed as follows:

A general image segmentation framework [57, 62]: Instead of utilizing parametric features
as usually done, we choose instead to use intensity neighborhoods as a generic non-parametric
feature, with the hope that it can be used more generally than texture features for example. In our
work, we hypothesize that all the necessary information for classification, such as color, texture,
structure, etc, is contained in the local neighborhood window, and thus, the intensity neighbor-
hood feature has the potential capability to distinguish different tissue classes in general. There
are some thoughts for designing such a system: (1) For a method to work well across sever-
al applications, it is important that the information present in the training set be appropriately
utilized for the classifier training. This requires that the data be appropriately normalized and
that all necessary information be taken into account. We note that the feature vectors, if directly
comprised from square or cubic windows of intensity neighborhood, are not rotational invariant.
In most biomedical imaging applications of interest, however, a fixed coordinate frame cannot be
assumed and rotational variations must be accounted for. Therefore, we can virtually augment
the set of training pixels to include rotated versions of each window. This is accomplished by
rotating each example image using linear interpolation. In addition, we include flipped (coordi-
nate reversed) versions of windows to increase useful information. Such an implementation is
easy, however, may cause the problem of augmenting the data. An alternative way is to choose a
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rotational invariant way for representing the intensity neighborhoods. (2) In addition, our proto-
type should also work across multiple scales. While for some types of tissues/cells, information
for distinguishing a given object from others may be present in relatively small (local) neigh-
borhoods, for others, the overall architecture (big picture) of the neighborhood is necessary to
provide crucial information. Arguably this could be achieved by simply considering the size of
the neighborhood (N ) to be large enough and leave it to a classifier to determine the critical in-
formation for each class. However, large neighborhoods have the disadvantage that they amount
to high dimensional spaces, making estimation and pixel classification difficult. In order to uti-
lize small neighborhoods (e.g. N = 3 or 5) for maintaining reasonable computational costs while
being able to capture the useful information for different classes, we utilize multiple windows of
the same size, but each window corresponds to a scale (obtained through different levels of blur-
ring and sub-sampling). More specifically, given scales s ∈ 0, 1, 2, ..., S, neighborhood patches
are assembled by sub-sampling at every 2s pixels (after smoothing). Therefore we can associate
each pixel in the training set (as well as during actual classification of a test pixel) several sets
of neighborhoods with the same size N but under different resolutions, comprising the multiple
scales associated with that pixel. Details of designing such a framework will be discussed in
Chapter 2.

An efficient data selection method for fast classification: As mentioned above, one big
challenge in developing a practical segmentation system is how to deal with big amount of train-
ing data, which will cause a high computational cost for training classifiers. Thus, data selection
is a necessary step here, which aims to extract a small subset that contains useful classification
information from the initial large sized training set. Although a large number of data selection al-
gorithms have been developed in data mining field, these existing ones cannot be applied directly
to image data due to their high data reduction rates (defined as the ratio between the subset size
and the whole set size), which still, generates a large sized subset and thus, makes computational
cost for both training and testing processes large. In order to achieve a reasonable computational
cost, the ideal case should be to extract a small sized subset, and train a simple classifier based
on the given subset. We proposed a new majority voting based data selection criterion, based
on which a fast segmentation scheme is utilized to segment images. Such a criterion is designed
based on the theorem that once given a group of weak classifiers (defined to be a classifier which
is only slightly correlated with the true classification, meaning that it can label examples better
than random guessing), the classification accuracy by majority voting within the group increases
monotonically with the size of the group as long as all weak classifiers’ accuracies are higher
than 50%. To be specific in image data, by utilizing the characteristics of spatial connectivity be-
tween neighboring pixels, it is reasonable for us to make an assumption that generally, all pixels
within a local window in the images belong to the same class. Thus, we can hypothesize that it
is very possible to increase and thus, achieve a high classification accuracy via majority voting
spatially within local windows, even using a weak classifier derived from a small sized training
set. In chapter 3, we will show that the proposed algorithm is able to achieve comparable or
even better segmentation performance with a much lower computational cost compared to many
state-of-the-art algorithms, which makes it practical to use.

A general region optimization model: A common requirement for the segmented region-
s is to have smooth borders/surfaces, however, the segmented regions, if obtained by directly
grouping the pixels with the same predicted label into objects, are not always satisfactory, as
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they usually have jagged borders with holes inside. Thus, it is necessary to optimize the classi-
fication result before the final output. Our goal is to develop a robust method for automatically
delineating regions that encompass each single object in the image, and thus, we propose to use
a more flexible approach based on deformable model. More precisely, in order to deal with the
result from a pixel level classification procedure, our model takes the decision information from
previous pixel classification process as input, and takes both region information and edge infor-
mation into consideration for optimization. We note that the proposed model is general, which
can be utilized after pixel classification processes in different types of experiments to optimize
the segmented regions. In chapter 4, we will discuss the proposed model in details and show that
it is able to provide much better segmented regions.

A general system for segmenting objects with a strong prior shape information [46, 97]:
Specifically, we propose another general segmentation system for biomedical applications with
a strong prior shape information available. Here we explain that a strong prior shape information
means that the shapes/structures of objects to be segmented can be estimated statistically from
the given samples, e.g. cell nuclei, human brain, bones, etc., while some examples of weak or no
prior shape information include: tissue regions in histopathological images, where shape of tissue
regions can not be estimated from the given samples. In this work, we focus on segmentation of
cell nuclei. This task is very necessary and important for many scientific and clinical applications
due to the fundamentally important role of nuclei in cellular processes and diseases. Thus, we
describe a generic nuclear segmentation system based on the combination of template matching
and supervised learning ideas. We propose a segmentation system that can be used effectively
for segmenting nuclei for many different types of cells imaged under a variety of staining or
fluorescence techniques. We aim to guarantee robust performance by allowing the method to
calibrate itself automatically using training data, so that it will adapt itself to segmenting nuclei
with different appearances (due to the staining techniques for example) and shapes. The method
is also constrained to produce smooth borders. Finally, given that the objective function used in
the segmentation process is the normalized cross correlation (NCC), the method is also able to
better handle variations in illumination within the same image, as well as across images. We will
describe this system in details in Chapter 5.

1.5 Overview of the thesis
The rest of the dissertation will be organized as follows:

Chapter 2 first investigates the idea of a general segmentation framework, where we use in-
tensity neighborhood directly as a general feature, and use a pixel level classification process
based on supervised learning to segment biomedical images. We validate such an idea by apply-
ing to different types of data, e.g. fluorescence images, histopathology images, MRI images, etc.,
and comparing with the state-of-the-art methods specially designed for these data. The qualita-
tive and quantitative evaluations show that the proposed approach is able to provide comparable
or even better performance across different types of datasets.

Chapter 3 continues the research in Chapter 2, which aims to solve the drawback of high
computational cost mentioned in Chapter 2. In this chapter, we will discuss the data selection
techniques, which extract a small subset that contains useful classification information from
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the initial large sized training set. We proposed a new majority voting based data selection
criterion, based on which a fast segmentation scheme is utilized to segment images. We test
such an algorithm on the same data used in the previous chapter, and show that the proposed
algorithm is able to achieve comparable or even better segmentation performance with a much
lower computational cost, which makes it practical to use.

Chapter 4 aims to solve another drawback of unsmoothed segmented regions in Chapter 2,
and describes an optimization step that follows the classification step, which is used to optimize
the segmented region (each segmented region refers to a set of connected pixels with the same
predicted label), such as smoothing the borders of segmented regions, filling the holes inside the
regions, and removing noise, etc. In this chapter, we will discuss the existing various algorithms
for optimizing the segmented regions, such as deformable models, graph cuts, etc., and then,
propose a deformable model based on level set, which utilizes the information from classification
step to help improving the quality of segmentation results. We show that the proposed deformable
model can be utilized as a general approach for improving the segmentation performance.

Chapter 5 investigates some specific biomedical applications when strong priori shape infor-
mation exists. Different from the research in previous chapters, which segments the regions of
interests via predicting every single pixel, we focus on segmenting biomedical objects with a
strong prior shape information available, such as nuclei, cells, etc. In this chapter, we propose a
general system based on template matching, where templates are generated via statistical learning
from a group of pre-selected samples, and objects are detected and segmented via maximizing
the normalized cross correlation value between the target object and corresponding template. We
show experimentally that our proposed approach is able to achieve comparable or even better
results. We also mention that such a framework can be applied to higher dimensional data and
structures.

Chapter 6 summarizes and concludes the whole research work in this dissertation. In addi-
tion, the future research work will be discussed.
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Chapter 2

Pixel Level Classification: A General
Framework For Biomedical Image
Segmentation

2.1 Review of biomedical image segmentation methods

In the past few decades, we have witnessed a great increase in the development of new imaging
modalities, and their applications to different biomedical research and clinical problems. Given
the enormous success with which some of these technologies have been applied to research and
clinical tasks, the trend of image technology development (and their application in novel biomed-
ical problems) is likely to continue. Segmentation is of great importance in the application of
imaging technology to many biomedical problems. Tissues, cells, and organs must often be seg-
mented and isolated from two or three dimensional digital image data for subsequent quantitative
analysis in a variety of experimental biological studies and diagnosis in clinical medicine. Pop-
ular examples include quantification of gray and white matter tissues from magnetic resonance
imaging (MRI) brain scans for studying neurological diseases (e.g. Alzheimer’s), segmentation
of cells and tissues from histopathology image data to assist in the diagnosis of different lesions,
segmentation of cells and subcellular structures for characterizing their distribution, to name a
few.

Due to the vast increase in the capability of image acquisition during the past couple of
decades, manual segmentation is no longer effective for many types of quantitative studies. The
increase in computational power in recent decades has spurred the development of several image
segmentation algorithms (see [34, 43, 70, 98, 99, 100, 101] for reviews on this topic) that have
had a significant impact in several clinical and research applications. It is worth noting, however,
that many algorithms successfully used in real applications were specifically designed for the
given application. In our previous experience, before an algorithm that was specifically designed
for one application can be used in another, a significant amount of tuning and calibration is
usually required [34, 43, 99]. Even then, in many cases, the chosen method may not perform
satisfactorily. Therefore a researcher faced with a new problem or application, must often spend
considerable resources to modify (or develop anew) a reliable segmentation method capable of
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extracting the structures of interest for the given application.

Among the several currently available alternatives for image segmentation, methods based
on pixel classification utilizing learning based classification strategies are attractive because, in
principle and given enough training samples, the strategy can be used to construct algorithms
capable of performing accurately across different image modalities (computed tomography (C-
T), MRI, microscopy, for example) and different structures of interest (organs, tissues, or cells).
Several algorithms based on this strategy have been described. We mention a few recent ones,
focused on biomedical image segmentation applications for different modalities of data: Debeir
et al. [102] used statistical features from color channels, together with a pixel classification by
decision tree method, to segment pigmented skin lesions in epiluminescence microscopy (ELM)
images. Madabhushi et al. [103] described a pixel level classification system that utilized 3D tex-
ture features to segment the malignant regions in MR prostatic images for diagnosis of prostatic
adenocarcinoma. In [93], Bhagavatula et al. used histopathology vocabulary (HV) features and
pixel classification strategy to identify germ-layer components in hematoxylin and eosin (H&E)
stained histological images of teratomas. Considering that segmentation methods based on pix-
el classification are often computationally inefficient, Dam and Loog [104] proposed a general
sparse pixel classification method. While reasonably high accuracies can be obtained with the
methods mentioned above, to our best knowledge, no general purpose approach for segmenting
different structures (cells or tissue types) in different imaging modalities has been proposed and
shown to work well across different applications. We believe that, in part, this is due to the
fact that different applications, structures, and imaging modalities require careful selection of
relevant parametric features to work well.

Here we describe a system for biomedical image segmentation based on pixel classification
using intensity neighborhoods [57, 62]. While intensity neighborhoods have been used to clas-
sify texture patches before (several works are discussed in the following section), we show here
that such an approach (with adaptations) can be used as a general segmentation tool for biomed-
ical images. The system is general in the sense that, given sufficient training data, it can be used
to segment a variety of biological structures, from different imaging modalities. In addition, the
algorithm can be used with two or three-dimensional data, as well as scalar or vector valued
(e.g. color) images. Our algorithm requires as input a few already segmented images/structures
(often obtained manually) with which a classifier is trained. In order to arrive at a generic seg-
mentation/classification method, with each pixel in the training set we associate a nonparametric
feature vector consisting of the neighborhood intensities for building the classification-based
segmentation system. The system aims to maximize the available training data by exploring
several orientations as well as scales for each labeled pixel. We compare the performance of
our general image segmentation method to several state-of-the-art methods for segmenting brain
MR images, histopathological images, and fluorescence images of nuclei. We show that, using
the methodology we describe in detail below, such a generic segmentation system can achieve
accurate segmentation results in a variety of applications.
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2.2 Methodology
Our algorithm aims to make use of the fact that often times a few segmented images (labeled
pixel data) are already available or can be easily obtained, together with the ever increasing
capabilities of modern computers, to arrive at a general segmentation tool that can be used in
a variety of applications. This can be achieved within a supervised learning strategy where the
pixels of a few segmented images are used to train a classifier capable of accurately determining
the class (e.g. background vs organs/tissues of interest) of each pixel in unlabeled images of
the same kind. For the method to work well across several applications, it is important that
the information present in the training set be appropriately used during training of the classifier.
By imposing a pre-defined size window centered at the given pixel, in which pixels inside the
window are regarded as neighbors, the intensity neighborhood vectors are thus constructed by
reordering the pixels’ intensities inside the window into a vector and used instead of parametric
feature vectors in order to allow the method to be general. This, however, requires that the data
be appropriately normalized and that different variations such as scales, rotations, etc. be taken
into account. In its simplest form, such a classifier would need to be trained utilizing all available
pixels as training data (accounting for normalization), while different variations and scales of the
same data (which are simulated as described below) will also need to be taken into account. This
strategy, when applied to its full extent, would be computationally impractical. For example,
the support vector machine classifier we select to use in our implementation has a computational
cost of order P 3 (upper bound) [52], with P the number of pixels. Since very often millions of
pixels are available for training, it is clear a different approach must be taken.

In this chapter, we propose an empirical approach for reducing the amount of training data,
while retaining important information that allows one to differentiate between pixel classes, thus
allowing for execution in reasonable computation time. The strategy is conceptually simple (it
is summarized in Figure. 2.1), and we show it works well in several practical applications. In
our algorithm, the training stage occurs by first normalizing the input data, extracting important
pixels from the input data, modeling rotation and scalings of the data via filtering and resampling,
and training the actual classifiers at different scales (Figure. 2.1(a)). In the testing stage, the final
result is given through a voting procedure for combining the predictions under different scales
(shown in Figure. 2.1(b)). We also note that several of the sub-steps in our procedure (e.g.
multiscale filters, classification method, etc.) may be replaced by other options, in the presence
of more detailed application specific information.

2.2.1 Intensity normalization
Given an application (e.g. segmentation of tissues in histopathological images), it is important
to account for variations in intensity (e.g. due to images being taken with different microscopes
under different illumination environments, etc.) that may be present from image to image. In
MRI, for example, intensity normalization for correction of different bias fields is an extensively
studied subject [75, 105]. The calibration for intensity in histopathological images, or fluores-
cent images can also be performed [95], in limited controlled settings, however. Since our aim
is to design a system for general purposes, we do not rely on intensity corrections specifically
designed for any single imaging modality (or application) but rather take the general approach of
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(a) (b)

Figure 2.1: System schematic organization for neighborhood-based image segmentation using
supervised learning (a) training stage (b) testing stage

normalizing all image data to fit the intensity range of [0, 1] by scaling the minimum and maxi-
mum of each image (discounting outliers set at 1% in our implementation). We note, however,
that given more detailed imaging/application specific information, this method can be replaced
by other alternatives.

2.2.2 Intensity neighborhood statistics: what information should be con-
sidered?

Instead of parametric features (e.g. Haralick texture features, Gabor filters, etc.), we select each
pixel’s neighborhood intensities as a general non-parametric feature set for classification. When
a large enough window is chosen, the advantage of such an approach is that all information
relevant for differentiating different classes (tissues, cells, etc.) will be preserved. The dis-
advantages are that, especially if large neighborhoods are necessary, the method will involve
classification in high dimensional spaces, often making accurate estimations difficult. The idea
of utilizing window neighborhoods is not novel, and has been used in numerous applications
in image processing. For example, Varma et al.[106] describe a classification method based on
pixels’ neighborhood intensities. They showed the method compared favorably to the more tra-
ditional parametric filter-bank method on an application related to texture segmentation. Awate
et al. also present the neighborhood based method for texture segmentation[107] and brain-MR
segmentation [76]. In addition, similar neighborhood ideas have been used in image filtering
and denoising fields recently. Buades et al. introduced the non-local means (NLM) method[108]
for image denoising, in which similarities of image neighborhood are calculated as weights for
averaging pixel intensities. In [76], this neighborhood weighted averaging method is interpret-
ed statistically. In order to reduce the computational cost caused by the high dimensionality of
neighborhood in NLM method, principal component analysis (PCA) of neighborhood is used
in NLM method[109]. We note, however, that although neighborhood-based image segmenta-
tion methods have been described in the past, to our knowledge, no general algorithm has been
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proposed, validated, and compared to state of the art techniques in several different biomedical
image segmentation problems (including different imaging modalities). Here we describe sever-
al adaptations and modifications of the non parametric intensity neighborhood idea to arrive at
a generic image segmentation system capable of performing well across a variety of biomedical
applications.

In our implementation we utilize a N × N square patch for 2D data (and a N × N × N
cube patch for 3D data), to comprise the N2 (or N3) non-parametric feature vector associated
with the pixel at the center of the patch (N is chosen to be an odd number in our application)
(Figure 2.2). Since the image patches are not rotationally invariant, the training set as described
could potentially be sub-optimal since it does not include rotated versions of the feature vector
while for most biomedical applications of interest, a fixed coordinate frame for the tissues/cells
of interest cannot be assumed. To overcome this limitation, we synthetically augment the training
set of images by including image patches that are also rotated (about multiple axes if necessary).
Image rotation is computed using linear interpolation in our case. Consideration of computa-
tional complexity limits us to utilize only a limited number of angles (described in detail below
for each application), however. In addition, we include flipped (coordinate reversed) versions of
windows to increase more useful information. In order to further reduce the number of potential
training pixels, we also make the assumption that it is more important to include variations of
patches from pixels near the boundaries between two or more classes (e.g. tissues) than interi-
or pixels, allowing us to consider only multiple rotated and flipped versions of boundary-type
pixels’ neighborhood patches in our training set, reducing the computational complexity of the
procedure. A general way to decide the target pixel’s type is to see whether a square window
centered at the target pixel includes more than two classes. If so, such pixel will be judged as
boundary type pixel, otherwise, it will be judged as interior type pixel. In Figure 2.3, we il-
lustrate examples of both boundary type pixel and interior type pixel. Figure 2.3(a) shows the
original image, in which the boundary type pixel is represented by a red dot, and interior type
pixel is represented by a blue dot. For better understanding, we also show two square windows
centered at two pixels. In Figure 2.3(b) and (c), we zoom in the window to show clear tissue
appearances around the pixels. Clearly, we can see that the square window patch of boundary
type pixel contains two different tissue textures, while the square window of interior type pixel
just contains one type of tissue.

Finally, it is also important to consider multiscale information. While for some types of tis-
sues/cells, information for distinguishing a given object from others may be present in relatively
small (local) neighborhoods, for others, the overall architecture (big picture) of the neighborhood
is necessary to provide crucial information. More generally, we believe information from multi-
ple scales should be used to characterize each class in each application. Arguably this could be
achieved by simply considering the size of the neighborhood (N ) to be large enough and leave it
to a classifier to determine the critical information for each class. However, large neighborhoods
have the disadvantage that they amount to high dimensional spaces, making estimation and pixel
classification difficult. In order to utilize small neighborhoods (e.g. N = 3 or 5) while being
able to capture the useful information for different classes, we use a standard multi-resolution
sequence[110]. In short, N remains constant for each scale. At each scale, images belonging to
the training set are first convolved with a Gaussian kernel for smoothing, and sampled (according
to the scale chosen) to construct the neighborhood set associated with a particular scale. More
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Figure 2.2: Representing an intensity neighborhood into a feature vector

Figure 2.3: Examples of boundary type pixel and interior type pixel. (a) original image with two
pixels marked. (b) magnified window of boundary type pixel. (c) magnified window of interior
type pixel. Black line indicates boundary between tissue types.
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specifically, given scales s ∈ {0, 1, 2, ..., S}, neighborhood patches are assembled by subsam-
pling at every 2s pixels (after smoothing). Therefore we can associate each pixel in the training
set (as well as during actual classification of a test pixel) several sets of neighborhoods with the
same size N but under different resolutions, comprising the multiple scales associated with that
pixel. In Figure 2.4, we show the case of extracting the intensity neighborhood under scale s = 1.

Figure 2.4: Intensity neighorhood under multi-scale

2.2.3 Algorithm for selecting representative pixel neighborhoods

Our system works by utilizing a set of pixels from pre-segmented images to train a classifier and
then segmenting new unseen images. For many applications however, even relatively few images
(when the variations in rotation and scale are included) can contain several million pixels in the
training samples. Given the computational complexity of pertinent classifiers, which generally
ranges from O(P 2) to O(P 3), with P the number of training samples[52, 98], simply utilizing
all available pixels for training is not a practical strategy. Given the maximum number of training
samples (denoted as Q and pre-selected in order to satisfy computational cost considerations) to
be utilized for training, one alternative for selecting such Q pixels would be to do so at random.
Here, we describe an alternative procedure based on theK-means algorithm for selecting a set of
training pixels that retains the main ”trends” of the information contained in the training pixels.

We note that since the computational complexity of theK-means procedure is also ofO(P 2),
its straight forward application is difficult. We therefore resort to the following simplification.
We first divide the P training samples into different subsets (in this work, the subsets are divided
according to their spatial location in the image). We then apply the K-means method to each
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subset separately and combine all the clustered samples into a pre-defined training set of size Q
samples. The procedure can be summarized as follows:

1. We use the K-means method to cluster the pixels’ spatial coordinates, which divides the
input training images into R non-overlapping spatial regions, with R selected manually
(see Figure 2.5).

2. Each of the pixels in the regions defined by step 1 are categorized as either a boundary-type
pixel or an interior-type pixel. In each region, theK-means procedure is used to select only
certain pixels (and their windows) for training (the amount selected is calculated based on
R and Q). This is done for both boundary (including rotated and flipped windows) and
interior type pixels, and is repeated for each scale s.

3. Finally, for each scale s, all the clustered samples for both boundary-type and interior-type
of all subsets and all classes are combined together as the training set containingQ samples
and thereby, several training sets associating with different scales s ∈ {0, 1, ..., S} can be
built.

(a) (b) (c) (d)

Figure 2.5: Examples of spatial sample separation (a) original image (b) ground truth (c) spatial
sample separation in interested tissue (d) spatial sample separation in background/other tissues

2.2.4 Algorithm for reducing the dimensionality of the training set
In addition to the procedure for reducing the number of training pixels explained above, we also
investigate the reduction of feature dimensions and its related effect. In this work, we utilize a
PCA-based procedure to reduce the size of each feature vector (which in our case is composed of
intensity neighborhoods). Since neighborhood feature vector is typically high dimensional, for
example, for a N ×N ×N neighborhood, the dimensionality becomes N3, which will increase
greatly when the neighborhood size increases. Thus, we consider reducing the dimensionality
of vectors by first converting the intensity neighborhood vector to a feature vector containing
uncorrelated variables via principal component analysis (PCA) [111] and then discard useless
variables for classification. Based on an existing training set containing Q samples of N3 dimen-
sions, PCA method is implemented in a standard procedure in which a covariance matrix is built
from the samples and the eigenvectors of the covariance matrix are calculated and sorted in order
of descending eigenvalues; then, for each sample in the training set, the dot product between each
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eigenvector and that pixel’s neighborhood vector is calculated as the coefficient in this sample’s
PCA based feature vector. Then, stepwise discriminant analysis (SDA) [111] is used for auto-
mated determination of subspace dimensionality and selection of the principal components from
the PCA feature vectors. The SDA method chooses the variables from the feature vector which
maximize the ratio of the variance between the classes to the variance within the classes. Thus,
we are able to produce a new training set with the same samples but associating with a lower di-
mensional PCA based subspace feature vector by selecting the necessary principal components
from the PCA based feature vector using SDA method.

Additionally, we note that the computational complexity of actual classification (testing
phase) using Support Vector Machine (SVM) with a non-linear kernel such as RBF kernel is
O(nd), where n denotes the number of support vectors, and d the feature dimensions [112].
Thus, based on the same training set but with a lower dimension (PCA vector), computational
efficiency can be improved.

2.2.5 Algorithm for classification

We utilize the support vector machine (SVM) classifier [52, 113] as the algorithm for classifying
each pixel. In a two class problem, given a training set containing Q samples (each with d
dimensions), we denote the feature-label pairs as (Xi, Yi), i = 1, . . . , Q, where Xi ∈ Rd, Yi ∈
{−1,+1}. The support vector machine determines parameters w and b such that

arg min
w,b,ξ

{
1

2
wTw + ϕ

Q∑
i=1

ξi

}
(2.1)

subject to : Yi(w
Tφ(Xi) + b) ≥ 1− ξi, ξi ≥ 0 (2.2)

is minimized, yielding a hyperplane (defined by w and b) that linearly separates the data. S-
ince the dataset is not always linearly separable, the ξi represents the distance of each error
point i to its correct plane, and ϕ is a penalty constant for the error term. φ is a fixed non-
linear mapping function (known as basis function) that extends training vectors Xi into higher
dimensional space φ(X) : Rd 7→ Rm. This problem is usually solved in its dual represen-
tation, where the data always occur in pairs, with the aid of the kernel function [113, 114]
K (Xi, Xj) = φ (Xi)

T φ (Xj). Common kernel functions include: the linear kernel, the Gaus-
sian radial basis function (RBF) kernel, polynomial kernel, sigmoid kernel, etc. In our work, the
RBF kernel K (Xi, Xj) = exp(−γ ‖Xi −Xj‖2), γ ≥ 0 was selected for all applications, be-
cause such kernel is able to handle the case when the relation between class labels and attributes
is nonlinear by nonlinearly mapping samples into a higher dimensional space. For problems with
more than two classes, we use the ”one-against-one” classification strategy [115] to reduce the
single multi-class problem into multiple binary problems and use a max-wins voting strategy
to combine these binary results and classify the testing instance. The classification system was
implemented utilizing the LibSVM software [116] package.

The optimal parameters, such as the penalty constant ϕ and the RBF kernel size γ, are select-
ed using a cross validation procedure[116]. We use k-fold cross validation to further separate the
training set into two parts (lower-level), and search for the parameters (ϕ, γ), which have the best
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accuracy in this k-fold cross validation. We set k = 10, and perform an exhaustive search for the
two parameters: firstly, we search (for (ϕ, γ)) broadly using a large step size in the range which
could be considered reasonable (determined empirically). If any optimal parameters are select-
ed on their lower (or upper) bounds of the ranges, we decrease (or increase) the corresponding
bounds by 5 times, and repeat the rough (broad) search. If the optimal parameters are selected
inside the ranges, we then select smaller ranges around the optimal parameters, and choose a
smaller step size to find the final optimal parameters locally. The ranges (or the upper bounds)
are first determined empirically. If any optimal parameters are selected on their lower (or upper)
bounds of the ranges, we decrease (or increase) the corresponding bounds by 5 times, and repeat
the rough search. More details of the descriptions can be seen in [117]. After the optimal pa-
rameters are selected, we use them to build the classifiers and evaluate their performance on the
testing data.

2.2.6 Multi-scale classifier ensemble: how to integrate information from
individual classifiers?

As we stated above, we associate each pixel in the training set of images several neighborhoods
each containing different scale information (scales s ∈ {0, 1, 2, ..., S} defined above). Instead of
combining all scales into a single high dimensional vector (an option we investigated but did not
yield adequate segmentation results presumably due to aforementioned difficulties with dealing
with high dimensional data), we opt instead to train S classifiers and combine them so that the
final overall accuracy is higher than that obtained from any single scale. We note that several
methods for combining multiple classifiers exist [118, 119, 120, 121, 122] some of which have
been applied to the problem of pixel classification using parametric features (see for example
[123, 124]). Amongst the most simple, are voting-based methods. In our system we test two
popular voting strategies: majority voting, and confidence-based voting.

(1) Majority voting: Given C classes of tissues to be segmented, we train S (number of
scales chosen) individual classifiers separately. For a given pixel i, its intensity neighborhood
vector at the scale s, s ∈ {0, 1, 2, ..., S}, is denoted as xsi , and the prediction label at the scale s
is denoted as lsi . In the majority voting algorithm the final label lfinali (class assignment for pixel
i) is given as:

lfinali = arg max
c∈{1,2,...,C}

S∑
s=0

δ(lsi , c) (2.3)

where δ(i, j) is defined as δ(i, j) =

{
1, i = j
0, i 6= j

.

(2) Confidence-based voting: In the confidence voting algorithm, classifiers are also trained
separately for each scale s. After the training procedure, it is often possible to assign a confidence
to the assignment of any pixel, denoted as F (lsi = c). In our case, we utilize the posterior
probability in SVM: P (lsi = c|xi) (xi is the intensity neighborhood vector for the given pixel
i) as the confidence measurement, although other alternative confidence estimates can be used.
For multiple classes, the posterior probability in SVM can be estimated by combining all the
pairwise class probabilities [125]. The confidence-based voting strategy is then implemented as:
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lfinali = arg max
c∈{1,2,...,C}

S∑
s=0

λsF (lsi = c). (2.4)

We test and compare two confidence-based voting strategies: weighted and unweighed confi-
dence voting. In the equation above λs are the weights for each individual classifiers.

When unweighted voting is used, all weights are set to 1. When weighted confidence-based
voting is utilized, the weights are calculated by choosing the ones that maximize overall classifi-
cation accuracy in the training dataset, in a cross validation procedure described in [52]. Math-
ematically, for a given group of weights W = {λ0, λ1, ..., λS}, the labeled (segmented) training
data is denoted as Rtrain(W ), and the ground truth of training data is denoted as Gtrain. Our goal
is to find the optima set of weights Woptimal that maximizes the objective classification accuracy
function M as:

Woptimal = arg max
W∈RS+1

M(Rtrain(W ), Gtrain) (2.5)

where M(·, ·) is a measurement of overall classification accuracy. In this work, the overall clas-
sification accuracy is defined as Acorrect/Aall, where Acorrect is the number of correctly classified
pixels, and Aall is the total number of pixel to be classified, both of which can be calculated
easily when Rtrain(W ) and Gtrain are given.

2.3 Experimental results
In this section, we describe both qualitative and quantitative evaluation of the performance of our
classification system in three different datasets. We first compare the performances of several
voting strategies, as mentioned above. We then test our system on several segmentation tasks
and compare the results to those produced by several algorithms selected (and designed) for each
application.

With the exception of the aforementioned classification training parameters optimized us-
ing cross validation, the parameters pertaining to our algorithm were selected considering the
limitations of the available computing power. With the exception of the training set size, all pa-
rameters are kept constant throughout all computations in this work. We set the neighborhood
size as 3× 3× 3. In addition, for boundary-type pixels, image windows were rotated along the Z
axis both clockwise and counter-clockwise by 45 degrees. Also, these image windows (including
rotated versions) were flipped left and right, up and down in X-Y plane. For the implementation
of multi-scale framework, a total of 5 scales (denoted scale 0 to scale 4) were used.

2.3.1 Voting strategy comparison
In this subsection, we compare the performances of the voting strategies discussed above. For
this experimental evaluation, we chose the IBSR real T1-weighted brain-MR dataset [126], from
which it is possible to obtain already segmented (ground truth) tissues such as cerebrospinal fluid
(CSF), gray matter (GM) and white matter (WM). In the experiments, four 3D brain images were
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2.6: Performances comparison of brain under different cases: (a) original image; (b)
result at scale 0; (c) result at scale 1; (d) result at scale 2; (e) result at scale 3; (f) result at scale
4; (g) result of majority voting; (h) result of unweighted confidence voting; (i) result of weighted
confidence voting; (j) ground truth

randomly selected as the training set and one brain image was randomly selected from the rest
for testing. In this computation, the training set size contains 1.6× 105 pixels.

Figure. 2.6 shows the segmentation result for one brain. In this figure, the dark gray color
represents cerebrospinal fluid (CSF) tissue, light gray represents gray matter (GM) tissue, and
white represents white matter (WM) tissue. Part (a) shows the original image, while parts (b-f)
show the segmentation results by individual classifiers at different scales from 0-4. Parts (g-i)
show the segmentation results by majority voting (MV), unweighted confidence voting (UCV),
and weighted confidence voting (WCV) methods, respectively, while part (j) shows the ground
truth information available. Visual interpretation shows that the classification results produced
by each individual scale are inferior to results produced by the voting strategies. It is, however,
difficult to discern visually which of the voting strategies performs best.

We compare the results quantitatively by using both classification accuracy as well as the
dice metric [127]. The dice metric is defined as:

2|T̂c ∩ T̃c|
/

(|T̂c|+ |T̃c|) (2.6)

where T̂c denotes the segmented region of pixels for tissue c, and T̃c denotes the ground truth set
of pixels for tissue c, and | · | denotes the set size. As with previous works [75, 76, 128, 129], we
focus on segmentation of GM and WM tissues. The overall classification accuracy for each scale
as well as for the various voting strategies is shown in Table 2.1. From this table it is clear that the
weighted confidence voting method is able to achieve higher accuracy than individual classifiers
or any other voting methods (on this dataset). We have also performed the same comparison on
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a histology dataset (described in more detail below) and results were similar. These are omitted
here in the interest of brevity. We have chosen to use the weighted confidence voting scheme in
the overall assessment of our segmentation algorithm below.

Table 2.1: Quantitative Evaluation for Brain MR-data

Case Scale 0 Scale 1 Scale 2 Scale 3 Scale 4 MV UCV WCV
Overall Accuracy 81.99% 84.77% 84.48% 85.05% 84.09% 88.45% 88.83% 89.11%
GM (dice metric) 0.8411 0.8709 0.8681 0.8744 0.8666 0.9033 0.9070 0.9092
WM (dice metric) 0.8055 0.8277 0.8274 0.8338 0.8161 0.8723 0.8712 0.8806

2.3.2 Segmentation of tissues in brain MRI datasets
As mentioned above, segmentation of gray matter tissue (GM) and white matter tissue (WM)
from brain-MR images is a popular procedure in biomedical imaging, and several methods have
been proposed to this end [75, 76, 128, 129]. We test our system on this application. As above,
we use the same brain-MR dataset provided in [126], in which a total of 18 3D MRIs of different
brains exist. Each 3D image contains 128 scanned slices. In our test, we use the same 4 brain
images selected in the previous section for training, and the remaining 14 brain images are used
for testing. The training set contained 1.6 × 105 pixels. To better understand the quality of the
results produced by our method, we compare it to the results produced by the method presented
in [76], which also utilizes the pixels’ intensity neighborhoods as an adaptive nonparametric
model of Markov statistics, and produces an optimal classification by iteratively maximizing a
mutual-information metric that relies on Markov probability density function.

As in [76], we calculate the mean, median and standard deviation of the dice metric for the
WM and GM tissue classes. The results of our method (as well as a summary of the results from
[76]) are provided in Tabel 2.2. In short, the results indicate that, in general, the accuracies on
the target tissues (GM and WM) are similar for both methods.

Table 2.2: Comparison: Mean, Median and Standard Deviation for GM and WM Tissues using
Different Methods

Statistical Measure GM (proposed system/[76] ) WM (proposed system/[76])
Mean 0.9053/0.8074 0.8198/0.8868

Median 0.9092/0.8009 0.8382/0.8913
Standard deviation 0.0304/0.0426 0.0676/0.0179

2.3.3 Segmentation of tissues in histology images
Here we demonstrate the application of our system to the task of segmenting tissues from histol-
ogy (H&E stained) images of teratoma derived from human and nonhuman primate embryonic
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Table 2.3: Quantitative Evaluation for Images of Teratoma Histology

Statistical Measure Bone Cartilage Fat Background/Others
Our Method (Accuracy) 59.70% 73.18% 91.09% 88.93%

Color K-means (Accuracy) 29.79% 51.06% 58.73% 55.20%
Color SVM (Accuracy) 27.87% 29.09% 66.16% 68.12%

stem cells [84]. Generally speaking, tissue segmentation from histology images of this type is a
challenging task due to the complex variation in texture, color, shape, structure, etc. of the tis-
sues of interest. In addition, teratoma-specific challenges include low intra-class similarity (the
same type of tissue often has different visual appearance) and high inter-class similarity (multiple
types of tissues can have similar visual appearance) [85, 86, 130].

To the best of our knowledge, no standard approach for segmenting such images reliably and
accurately is known. Since color is an important information in the segmentation of histological
images, we test the K-means-based color segmentation approach, which has been used in the
past to segment similar images [131, 132, 133]. The approach usually taken is to convert the
color image from R ∗ G ∗ B space to L ∗ a ∗ b space, and then to use the K-means method
to cluster pixels in a ∗ b color space. Here we compare our segmentation results to the method
described in [131, 132, 133]. In order to make the comparison fair, we also utilize the color a ∗ b
vector together with the same SVM method we use in our system, for the purpose of comparing
the performances of different features.

The images used in this portion of our validation study were acquired by using a slide scan-
ner to scan the whole sectioned teratoma slices at a high resolution after H&E staining. The
color images obtained contain R ∗ G ∗ B channels, and the resolutions are 3.527 microns/pixel
(0.2834646 pixels/micron) and approximately 3-5 micron thickness (z-dimension). Since the
number of pixels in raw images is usually large (e.g. size 4824×4014), image patches of smaller
sizes are randomly cropped (e.g. size from 896× 932 to 1438× 1106) for simplification. In this
test, 4 images were selected randomly for training, and the remaining 10 images were used for
testing. The ground truth segmentations (used in both training and validation) were provided by
the pathologist (J.A.O). As before, a 3 × 3 window was chosen for each resolution and the size
of training set was chosen to be 1.2×105 pixels. In these tests, however, each neighborhood also
contained 3 channels corresponding to the R ∗G ∗ B channels of each image. Figure 2.7 shows
the results of automatic segmentation of four tissue classes: Bone (B), Cartilage (C), Fat (F), and
background/other tissues (O). For the approach we proposed, together with the color K-means
approach and color SVM approach, the green color represents B tissue, red color represents C
tissue, yellow color represents F tissue, and blue color represents O tissue regions.

In this application, color represents useful information for classification, although it is clear
that a method relying purely on color information cannot perform well in this application since
most tissues are heterogeneous in terms of color content. The method we propose, on the other
hand, is able to perform reasonably well. To quantify the result, Table 3.2 reports the overall
pixel classification accuracy (a metric also used for quantitative assessment of segmentation of
histology images in [93, 103, 134]).
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(a) (b)

(c) (d)

(e)

Figure 2.7: Segmentation of tissues for images of teratoma histology. (a) original image (b) our
result (c) color K-means’ result (d) color SVM’s result (e) ground truth

2.3.4 Segmentation of cell nuclei from fluorescence microscope images
We test our approach in the task of segmenting nuclei from fluorescence microscope images.
The image dataset chosen in this application is available from Dr. Robert Murphy’s group at
Carnegie Mellon University [135]. The dataset consists of 48 images, out of which 6 images
were randomly selected for training and the remaining images were used for testing. We chose
the neighborhood window size to be 3 × 3 and the training set size as 8.0 × 104 pixels here. In
Figure 2.8 part (a) a sample image is shown. In part (b) the segmentation result produced by
our system and in part (c) the ground truth image (provided by human observers as described
in [135]). Visually the results seem satisfactory, although one may notice small openings in the
interior of some nuclei. Such relatively minor artifacts could be easily removed using simple
morphological operations (e.g. closing and opening). However, we have purposely refrained
from using any post processing methods on our results throughout all examples shown in this
chapter since our main focus is in describing our system and evaluating its performance.
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(a) (b) (c)

Figure 2.8: Segmentation of nuclei (a) original image (b) our result (c) ground truth

Reference [135] reviews and compares several methods that are commonly used for nuclei
segmentation. These methods include: (1) three thresholding based methods: Ridler-Calvard
[136], Otsu [1], and mean pixel value; (2) seeded watershed method [100, 101] operating on a
blurred version of the image and the gradient of the image; (3) active masks [137]; (4) a merging
algorithm [16]. Several metrics are used for quantitative evaluation: (1) The Rand and Jaccard
Indices: the Rand index (RI) measures the fraction of the pixel pairs where the segmented nuclei
and the ground truth agree, which ranges from 0 to 1, which 1 means the perfect agreement. The
Jaccard index (JI) is another metric for measuring the fraction of the pixel pairs agreed between
the segmented ones and the ground truth. There is no upper bound for the Jaccard index. For
both RI and JI metrics, the higher values mean the better segmentation. (2) Spatially-Aware
Evaluation Metrics: both the Hausdorff metric and the normalized sum of distances (NSD) metric
evaluate the segmented results spatially. For each pixel in the segmented image, its distance to
the reference border can be calculated. The Hausdorff metric refers to the largest distance among
the pixels which have a disagreement between the segmented objects and the ground truth, and
NSD metric refers to the normalized sum of distances over these pixels. Note that for NSD
metric, 0 means perfect agreement and 1 means no overlap. (3) Error Counting: Errors in the
segmentation result are counted by comparing each segmented object with the referenced object
in the ground truth with which it shares the most pixels. Four classes of errors are counted. Split:
two segmented nuclei correspond to the same reference nucleus in the ground truth; merged:
two reference nuclei in the ground truth correspond to the same segmented nucleus; added: a
segmented nucleus corresponds to the background in the ground truth; missing: a reference
nucleus correspond to the background in the segmented image. More details on these metrics
can be seen in [135].

For validation, we compare our results of segmenting the nuclei on the dataset mentioned
above to the methods reviewed in [135] using the same metrics, and the quantitative results are
shown in Table 5.2. From the comparison, we can see that although the Hausdorff distance metric
and the added error metric of our method is much larger than those of other methods due to the
noise effect, which can be easily improved by using some simple morphological operations, the
overall results are comparable or better to the results in [135].
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Table 2.4: Quantitative Comparison of Nuclei Segmentation

Algorithm RI JI Hausdorff NSD(×10) Split Merged Added Missing
AS Manual 95% 2.4 9.7 0.5 1.6 1.0 0.8 2.2

RC Threshold 92% 2.2 34.8 1.2 1.1 2.4 0.3 5.5
Otsu Threshold 92% 2.2 34.9 1.2 1.1 2.4 0.3 5.6
Mean Threshold 96% 2.2 26.5 1.0 1.3 3.4 0.9 3.6

Watershed (direct) 91% 1.9 34.9 3.6 13.8 1.2 2.0 3.0
Watershed (gradient) 90% 1.8 34.6 3.0 7.7 2.0 2.0 2.9

Active Masks 87% 2.1 148.3 5.5 10.5 2.1 0.4 10.8
Merging Algorithm 96% 2.2 12.9 0.7 1.8 2.1 1.0 3.3

Our Result 97% 2.5 119.3 0.8 0.8 2.8 3.5 0.3

2.3.5 Results comparison between non-PCA method and with PCA method
Figure 2.9 contains raw unprocessed images (a,e,i), ground truth (d,h,l), and results of using
our segmentation method without dimension reduction (c,g,k) and with dimension reduction
(b,f,j). We note that the results presented here are without any post processing operations. In our
experience, results for each application can be made visually more appealing (and quantitatively
more accurate) by utilizing simple post-processing operations such as morphological closing and
opening. Table 2.5 contains quantitative results on each application as described above (Note that
we applied confidence voting directly with no weights for scales here). In the brain MR image
dataset, on average, our method (both non-PCA and PCA) performs as well or better than the
method described by Awate et al [76]. In the teratoma histology dataset, the overall classification
accuracy of four tissues (both non-PCA and PCA) outperforms the color K-means method. In
the nuclear dataset, although Hausdorff distance metric and added error metric of our results are
much larger than the compared result due to the noise effect, which can be easily improved using
some simple morphological operations, the overall performances are comparable to the results in
[135]. We note that the PCA results are, on average, only slightly less accurate than the non-PCA
results.

2.4 Conclusion and discussion
In this chapter, we described a supervised learning-based system for segmenting different types
of biomedical images. Our focus was to describe a general purpose system that does not require
extensive customization to each segmentation application, so long as enough labeled data is
available for training. Different from current learning based methods, which often aim to design
specific parametric features for different applications [93, 103], we use intensity neighborhoods
as nonparametric feature vectors for pixel classification. Rotations, coordinate inversions and
scales are modeled digitally using standard image processing methods. In addition, a subset
sampling strategy based on the K-means algorithm is also described. The system is able to
handle segmentation of 2D, 3D, as well as scalar and non-scalar (e.g. color) images.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 2.9: Performance of our system in three applications: (a), (e) and (i) are original brain-
MR, histology and nuclei images, respectively. Panels (b), (f) and (j) are results produced by
our system with dimension reduction. Panels (c), (g) and (k) are results using non-PCA vectors.
Panels (d), (h) and (l) are ground truth images.

We compared the application of our method to several other segmentation approaches in
three distinct biomedical image segmentation tasks: segmentation of tissues from 3D brain M-
R images, segmentation of tissues in color histology images, and segmentation of nuclei from
gray-scale fluorescence microscopy images. We have chosen at least one other relatively modern
segmentation method for comparison in each application. Overall, our general purpose segmen-
tation system performed as well as (or at times better than) some of the best available custom
tailored methods in each application. We also note that the system we described could be further
improved by using other post processing operations such as morphological processing. No post
processing operation was used for any of the results presented in this chapter.

We note that our system contains several limitations, which offer numerous tasks for fu-
ture work. An obvious current drawback of our system is that it trades computation time for
generality. Let N be the window neighborhood size, and Qtrain and Qtest be the numbers of
training pixels and testing pixels respectively, for a 2D/3D image segmentation problem, the
training computational complexity is O(Q3

trainN
2) / O(Q3

trainN
3), and the testing computational

complexity is O(QtestN
2) / O(QtestN

3). In our implementation (all computation times reported
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Table 2.5: Quantitative Evaluation for Three Applications

Case Non-PCA PCA Comparison
brain (GM) 0.9028 0.8953 0.8074
brain (WM) 0.8185 0.8024 0.8868

histology (O) 89.39% 86.19% 55.20%
histology (B) 53.01% 29.03% 29.79%
histology (C) 69.11% 70.45% 51.06%
histology (F) 85.76% 85.08% 58.73%
nuclei (RI) 96% 96% 96%
nuclei (JI) 2.5 2.5 2.2

nuclei (Hausdorff) 130.2 132.6 12.9
nuclei (NSD×10) 0.86 1.12 0.7

nuclei (Split) 0.8 0.2 1.1
nuclei (Merged) 2.8 3.0 1.2
nuclei (Added) 6.1 5.8 0.3

nuclei (Missing) 0.1 0.1 2.9

were based on a single 2.0GHz Intel Xeon processor), the computing time for training the SVM
classifier for the brain-MR segmentation task (the training set contained 1.6× 105 samples) was
12.4 hours for one single scale. Segmenting one 3D MR image containing 9.3× 104 pixels (128
slices) took 3.8 hours. In our histology image segmentation tests, the corresponding computation
times were 14.5 hours (1.2 × 105 training samples) for training, and 6.4 hours for segmenting
an image of size 1103 × 1421 pixels. Finally, in the nuclear segmentation application, the cor-
responding computation times were 1.55 hours for training (using 8.0 × 104 samples), while
segmenting one single image (size 1030× 1349) took 0.82 hours.

Another current limitation of our system is related to the selection of the necessary parame-
ters. While some parameters were selected using well-known cross validation strategies, others
(such as the neighborhood window sizeN , the training set sizeQ) were selected based on empir-
ical procedures (related to prior experience) as well as computational complexity considerations.
We note again that, with the exception of the number of training pixels, all other parameters
were kept constant throughout all experiments in this chapter. Given the reasonable accuracies
obtained in all experiments, we do not expect the accuracies to change significantly for small
changes in these parameters. However, we have not exploited to issue of parameter selection
appropriately, and plan to do so in future work.

Yet another limitation is related to the number of training pixels available for each class
(tissue type). We have noticed that when one class contains much fewer pixels than others in
the training procedure, the classifier will tend to give low importance to making an error in such
class in the testing dataset. An example of this can be seen in the classification of CSF tissue
class in brain-MR segmentation (Figure. 2.6), in which the accuracy for classification of CSF
tissue is worse than other tissues. Strategies for minimizing such artifacts are also the subject
of future studies. We also mention that our method depends on accurately labeled/segmented
data. Generally, the labeled data is randomly selected and the amount of training data is selected
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empirically considering the tissue differences in different modalities of data.
In addition, the results showed that when reducing the dimensionality from 27 (non-PCA

vector) to 14 (PCA vector), for example, the average practical computational time for training a
SVM model for brain segmentation reduces from 4.48× 104 seconds to 1.53× 104 seconds (ap-
proximately 66% savings) and the time for segmenting one brain data reduces from 1.14 × 104

seconds to 9.33 × 103 seconds (approximately 18% savings), which proves the computational
efficiency of using PCA vectors. Finally, we note that the comparable methods were often de-
signed for each specific application, while our system is general: the same system, with identical
training procedure, was used for all applications.

We predict that the performance of our system could be further improved by fine tuning
several of the steps involved in training and classifications. In Chapter 3, we will investigate the
approaches for selecting representative training data from the original large scale training data,
and thus, design algorithms for fast pixel classification. In Chapter 4, we will investigate the
approaches for region optimization in order to provide better segmentation results.
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Chapter 3

Data Selection: A Fast Supervised
Segmentation Method

In recent years, with the fast development of computational technologies (e.g. CPU, memory),
the idea of pixel level classification using supervised learning strategy has been increasingly uti-
lized for image segmentation. Generally, after the features have been selected, a set of observed
samples (e.g. one feature vector per pixel) can be constructed, and a predictive model (e.g. a
classifier) can be trained from the observed samples. Then, the segmentation is implemented via
predicting the label of every single pixel in the unknown images. The pros of such an idea is that
it can be applied to the general data and usually performs robustly [57], while the cons is that
it will bring a huge computational cost related to the amount of pixels. For example, utilizing
all pixels in an image (e.g. size: 1000 × 1000) as the training data to train a SVM classifier
will definitely result in a huge computational cost. (note that the computational complexity of
training a support vector machine (SVM) classifier is O(N3) with N the size of training data)

The idea of pixel level classification has already been applied to many image segmenta-
tion problems. Early in 1978, Panda and Rosenfeld [138] have used gray level and edge value
as a two-dimensional feature and a simple classifier to predict pixel by pixel for segmentation
purpose. In [139], a local binary pattern (LBP) operator is used to represent textures, and a log-
likelihood measure is used to assign each pixel in the unknown images to the most similar class.
In [140], intensity neighborhood is directly used as a general feature (e.g. reorder the intensi-
ties inside a square window centered at a given pixel into a vector), and a discriminant model
based on sparse decomposition is built, which assigns each pixel in the unknown images to the
class with the minimum reconstruction error. In [57], by representing intensity neighborhood in
a multi-scale framework and training a svm classifier at each scale, the prediction for each pixel
in unknown images is obtained via voting through all scales. In [141, 142], color features and
gabor filter-based texture features are utilized together, and unknown images are segmented via
training a SVM classifier and making predictions pixel by pixel.

Although successful segmentation performance has been achieved on different types of im-
ages, such as texture images [139, 140], fluorescence images [57], and histopathology images
[57], etc., as far as we know, none of these methods have been able to provide an effective way
to manage the training data. In [138, 139, 140], all pixels are utilized directly for training. This
may work well when the size of training image is small, however, it will become impractical
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when the size of training image becomes large. In [57, 141, 142], several different clustering
based algorithms are utilized, which reduce the size of training data to an arbitrarily selected
amount. However, it is necessary to point out that these data selection algorithms are ad-hoc
with no evidence showing how well the arbitrarily selected training subset keeps the discrimi-
nant information. Therefore, in this chapter, we will investigate and develop an effective data
selection method, which is able to reduce the size of the given large training set, while keeps the
discriminant information of the original set.

3.1 Review of data selection methods
In supervised learning, a training set containing previously known information is provided to
classify new coming data. In this chapter, we call each element in the raw training set (denoted as
T ) as instance. Usually, the raw training set (e.g. the histology images annotated by the expert)
contains useless information for the classification task, such that superfluous instances can be
noisy or redundant. Thus, training a classifier using the raw training set could be great time-
consuming, while the classification accuracy will not be improved. Therefore, it is necessary
to discard the superfluous instance from the raw training set T , and thus get a subset S that
keeps useful instances. Such a process is named as data selection or instance selection. To better
understand such a process, we cite the Figure. 1 in [143] and show it here as Figure 3.1.

Figure 3.1: The process of data selection

Data selection is a classical research topic in data mining [143]. Here, we focus on selection
of training data for supervised learning. Consequently, the runtime in the training process can
be reduced via this instance selection process, especially for instance-based classifiers such as
KNN method. Currently, many instance selection methods have been proposed, which can be
categorized into two types based on the differences of selection criteria: (1) Wrapper methods,
which depend on the classification accuracy of a specific classifier (usually 1-nearest neighbor
(NN) or k-NN classifier) to select instances. (2) Filter methods, which use a selection function
that does not depend on a classifier. A assumption that is commonly used in filter methods is that
instances near the discrimination regions between different classes (e.g. decision boundary) are
able to provide useful discriminant information for classification [144, 145]. For the reason of
brevity, we will only mention a few existing methods in each category. A more detailed review
of these data selection methods can be found in [143, 146].
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Wrapper Methods: Most of the wrapper methods proposed are based on KNN classifier.
Some classical wrapper methods include:

• Condensed Nearest Neighbor (CNN) [147]: It is usually regarded as the simplest wrapper
method, which follows an incremental way to select instances. The initial subset S consists
in randomly one instance belonging to each class. Then, the algorithm increases the subset
by randomly choosing one instance each time and using 1-NN classifier to test whether it
can be correctly classified based on the current subset. For a misclassified instance, it will
be added to the current subset. CNN is easy to implement, however, it has the cons that its
performance is not guaranteed and the selected subset may be different in each selection
process, since the instances are randomly tested at each iteration.

• Generalized Condensed Nearest Neighbor (GCNN) [148]: GCNN method is an variant of
previous CNN method. Unlike CNN, GCNN selects instances into the current subset S
based on an selection criterion related to a threshold. For each instance p to be determined,
its nearest neighbors x and nearest enemies w (nearest instances belonging to a different
class) will be calculated and their distances (e.g. L2 distance) to the current instance will
be compared. If |p− w| − |p− x| > δ where δ is a threshold value, the current instance p
will be ignored, otherwise, it will be added into the current subset S. It is shown in [148]
that the subset selected by GCNN performs better in classification accuracy than CNN,
however, it will cause a higher data reduction rate.

• Edited Nearest Neighbor (ENN) [149]: Wilson proposed the ENN method based on the
idea of removing noise from the raw training set, where an instance is regarded as noise if
its class label is different from the majority class of its k nearest neighbors, which will be
discarded. Such a method is implemented in a decremental way. However, it is shown in
[143] that ENN does not help to improve the classification accuracy too much. It is also
mentioned that ENN can be combined with other data selection methods such as CNN in
order to remove noise and select useful instances simultaneously.

• Decremental Reduction Optimization Procedure (DROP) methods [144]: In these meth-
ods, Associates of an instance p are defined as those instances such that p is one of their
k nearest neighbors. DROP1 discards an instance p from T if the associates of p in S are
correctly classified without p. DROP2 searches the associates of an instance in the whole
training set. DROP 3, 4, and 5 are some variants of previous methods.

• Support Vector Machine (SVM): SVM method can be regarded as another wrapper method
since it find the support vectors as the subset for later classification. In some applications,
SVM method is combined with some other data selection methods. For example, DROP2
algorithm is applied on the support vectors for double selection. Another method is to
apply k-means algorithm to for clustering support vectors. The cons is that SVM method
usually associates with huge computational complexity and thus, is not suitable for select-
ing instances from large scale dataset.

• Fast Condensed Neaerest Neighbor (FCNN) method [150]: It can be regarded as another
variant of CNN method. Considering that a random data selection process will cause
the randomness of classification performance, Angiulli [150] proposed a fast condensed
nearest neighbor (FCNN) method, which is able to select instances from large data sets
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in a deterministic way. In [150], four different data selection criteria are discussed and
comparable performance is provided. We also mention that our proposed algorithm is an
extension of FCNN method with the application on image segmentation.

Filter Methods: Unlike wrapper methods, filter methods do not depend on a classifier to
determine the instances to be discarded from the training set. In this category, a border instance
is defined if it belongs to one class, while it is the nearest neighbor of an instance from other
classes; otherwise, it is called as interior instance. It is assumed that the border instances provide
the information of decision boundary in the feature space, thus, the goal is to select only border
instances into the subset.
• Pattern by Ordered Projections (POP) [151]: POP methods define a weakness(p) concept

as the numbers of times that an instance p is not a border instance in a class, and discards
irrelevant instances such that weakness(p) = m, where m is the total number of features
describing p. One variant of POP is POP-Nearest neighbor (NN) [152], where data is
selected by computing the mean of the instances in each class. To find a border instance in
one, POC-NN method computes the mean of the instances in the opposite class and then
the instance belonging to previous class which is the nearest to the mean of opposite class
is regarded as the border instance and selected. The border instances in the opposite class
are found in a similar way; finally, only the border instances are selected.

• Clustering methods [153]: Clustering is often seen in data selection methods. A typical
idea is to split the the raw training set T into a couple of clusters and choose the centers of
the clusters into the training subset [154]; In GCM (Generalized-Modified Chang Algorith-
m) method [155], the algorithm aims to merge the same-class nearest clusters and selects
the centers from the new merged clusters. The NSB (Nearest Sub-class Classifier) method
[156] allows selecting different number of instances (centers) per class via theMaximum
Variance Cluster algorithm.

Although a large number of data selection algorithms have been developed, these existing
ones cannot be applied directly to image data due to their high data reduction rates (defined
as the ratio between the subset size and the whole set size), which still, produces a large sized
subset and thus, makes computational cost for both training and testing processes large. In order
to achieve a reasonable computational cost, the ideal case should be to extract a small sized
subset, and train a simple classifier based on the given subset. However, one common sense is
that it is contradictory to achieve a high classification accuracy by using a weak classifier (defined
to be a classifier which is only slightly correlated with the true classification, meaning that it can
label examples better than random guessing) trained from a small sized dataset. Fortunately, this
dilemma can be solved by the majority voting strategy. Given a group of weak classifiers, it
has been proved that the classification accuracy by majority voting within the group increases
monotonically with the size of the group as long as all weak classifiers’ accuracies are higher
than 50%. To be specific in image data, by utilizing the characteristics of spatial connectivity
between neighboring pixels, it is reasonable for us to make an assumption that generally, all
pixels within a local window in the images belong to the same class. Thus, we can hypothesize
that it is very possible to increase and thus, achieve a high classification accuracy via majority
voting spatially within local windows, even using a weak classifier derived from a small sized
training set.
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Consequently, our goal in this chapter is to develop a data selection method specifically de-
signed for image data using majority voting strategy. The basic idea of our approach is similar
to FCNN [150], which iteratively absorbs the new instances into the subset based on our pro-
posed data selection criterion in a deterministic and incremental process. With a training subset
selected, segmentation on unknown images can be implemented by classifying every single pixel
using 1-NN classifier and the training subset, followed by majority voting spatially within local
windows. Our approach is expected to have the following properties: (1) low data reduction
rate; (2) comparable and robust performance. Our first contribution is to propose a new voting
based data selection criterion. By showing experimentally, we claim that the subset selected by
our voting based criterion is able to provide better classification performance than several exist-
ing data selection criteria. In addition, our second contribution is to provide a simple, general
and fast approach for segmenting images robustly. We show experimentally that our approach is
able to provide comparable or even better segmentation results over several different image da-
ta compared to the state-of-the-art segmentation methods with much lower computational cost,
and thus, our second claim is that with an effective data reduction algorithm, even very simple
classifiers are able to achieve good results.

3.2 Methodology

3.2.1 The voting based instance selection algorithm

Given a set of training images with features selected, an initial training set TN can be built by
computing a feature vector xi for every pixel i in the training images named as an instance
and taking all instances into this set TN , where TN = {(x1, l1), (x2, l2), ..., (xN , lN)}, N is the
amount of all pixels from the training images, xi is the feature vector for pixel i, and li is the
class label of xi (li ∈ {1, ..., C}, C is the number of classes).

The goal is to extract a subset Un with the size n, which is expected to satisfy two condition-
s: (1) the size of this subset is restricted (e.g. n ≤ nmax where nmax is an arbitrarily defined
maximum size of the subset) in order to reduce the computational cost of testing process. (2)
the segmentation accuracy of the training images is maximized under the constraint of subset
size. In addition, it is important to discuss the criteria for data selection, as it is related to the
classification performance directly. Since it is usually very difficult to validate the selection cri-
teria theoretically, most current literatures design selection criteria based on different intuitions.
For example, one criterion used in FCNN [150] is that for every instance existing in the current
subset, its nearest misclassified instance will be added to the subset. In this work, we have an
intuition that every class is equally important in classification, and thus, we designed our data
selection criterion that at each iteration, a new misclassified instance that belongs to the class
with the lowest classification/segmentation accuracy will be selected and added to the current
subset. Especially, we note that since majority voting spatially within local windows will be
utilized after pixel level classification in the testing stage for improving segmentation accuracy,
we evaluate the classification/segmentation accuracy for the training images at each iteration in
the same way.

Before explaining our algorithm in details, we first cite several definitions from [150]: given
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the initial set TN and a subset Un, let z be an element of the subset Un, a Voronoi cell of z is
defined as V or(z, Un, TN) = {q ∈ TN |z = arg min

r∈Un

d(r, q)} where d is the distance metric (e.g.

L2 metric). In addition, the centroid of a set (e.g. namedR) is defined as Centroid(R) = {q|q =
arg min
r∈R

d(r,mean(R))}. Then, we implement our data selection algorithm in an incremental

and deterministic way with the following steps:

1. Initialization: For each class c (c = 1, ..., C), calculate the centroid of instances xi whose
class label li = c in the initial training set, and add it into the training subset Un as the
initial subset.

2. Classification: Use 1-NN classifier and current subset Un to classify every single pixel in
the training images.

3. Voting: Vote spatially within a square window (size: w × w) centered at every pixel in the
training images, and re-assign the class label that has the maximum number of votes in the
square window to that pixel as the final classification. Calculate the classification accuracy
for each class.

4. Absorption check: choose the class with the lowest classification accuracy named as ”the
worst class”, then, find the instance in the current subset Un whose Voronoi cell contains
the largest number of misclassified instances belonging to ”the worst class”, and calculate
the centroid of these misclassified instances within that Voronoi cell, and add the centroid
instance to the subset Un.

5. Go back to step 2: Classification. Keep iterating to grow the subset Un until the size of
subset n has grown to nmax.

After the process of iterations has been finished, we extract the smallest sized subset whose
overall classification accuracy is higher than a threshold value as the finally selected training sub-
set Un, which can be represented mathematically as Un = arg min

n
{Un|accuracy(Un) ≥ Th},

where the accuracy threshold value Th is set as: Th = max accuracy(Un)−0.01 (accuracy(Un) ∈
[0, 1]).

3.2.2 Image segmentation via classification
After the training subset Un has been appropriately selected, we implement the image segmen-
tation procedure via a two-step process: The first step is to classify every single pixel in the
unknown images using the simplest lazy learning model: 1-NN classifier based on the training
subset Un; followed by the second step, which is to do majority voting spatially within square
windows (w × w) centered at every pixel in the unknown images, and assign the majority class
label to that pixel as the final segmentation result.

3.3 Experimental results
In this section, we will validate the two claims via experiments. Two dataset are chosen: (1)
Brodatz texture dataset [157], in which Randen and Husoy [158] created a set of gray-scale
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images composed of textures from different classes with corresponding training images (size:
256× 256) from each class provided. A total of 12 testing images consisting 2 classes, 5 classes,
10 classes and 16 classes can be seen in [139], and the goal is to segment different texture re-
gions. (12 testing images are shown in Figure 3.3) (2) Histology images (hematoxylin and eosin
(H&E) stained) of teratoma derived from human and nonhuman primate embryonic stem cells
[84], which were acquired by using a slide scanner to scan the whole sectioned teratoma slides
at a high resolution after H&E staining. The color images obtained contain R ∗G ∗B channels,
and the resolutions are 3.527 microns/pixel (0.283 pixels/micron) and approximately 3-5 micron
thickness (z-dimension). Since the number of pixels in raw images is usually large (e.g. size
4824 × 4014), image patches of smaller sizes are randomly cropped (e.g. size from 896 × 932
to 1438 × 1106) for simplification. In this experiment, we utilize the same training and testing
images used in [57], where 4 images were selected randomly for training, and the remaining 10
images were used for testing. The goal is to distinguish and segment the regions of 4 tissue class-
es: bone (B), cartilage (C), fat (F) and background/other tissues (O). In addition, the ground truth
segmentations (used in both training and validation) were provided by the pathologist (J.A.O).

In order to provide a fair validation, we set up the experiments by using a very simple and
general intensity neighborhood feature instead of considering those specifically designed fea-
tures. For each pixel in the image, we set the neighborhood size m = 3 as a 3×3 square window
for 2D gray-scale images and a 3× 3× 3 cube window for RGB channel images centered at the
given pixel, and intensities inside the neighborhood are represented rotationally invariant [159]
by sorting the pixels’ intensities square symmetrically and arranging them into a vector (shown
in Figure 3.2). In this way, we prevent augumenting the data by adding rotational and flipping
versions of the same intensity neighborhoods. Especially, we note that using intensities directly
as the feature can be very sensitive to intensity normalization, which will result in serious per-
formance loss even for the same training/testing data when intensities of data are not normalized
properly. In this work, with no prior information about the image, we normalize the data by
simply dividing the pixels’ intensities by 255 to restrict the intensity range within [0, 1]. This
works well for histology images, since all training/testing images’ intensities are within [0, 255].
However, for Brodatz data [158], each class of texture regions in the testing image and its corre-
sponding training image are extracted from different area in the same source texture image, and
the source texture images were only globally histogram equalized prior to being used [139]. As
a result, the training and testing patches extracted from different area in the large source image
may have different intensity ranges. Furthermore, there are a few notable intensity differences
(e.g. uneven illumination) in some texture classes in the training/testing images. These intensi-
ty heterogeneous problems will cause serious misclassification results when an intensity feature
with a small neighborhood size is used and thereby, leads to a wrong conclusion about the pro-
posed work. Thus, a reasonable remedy is to check and compare the intensity ranges between
training and testing patches for each texture class. When the intensity range of training texture
patch does not cover the intensity range of testing patch from the same texture class (for example,
for one texture class, the intensity range of training patch is [11,244], while the intensity range
of testing patch of the same texture class is [0,255]), we linearly transform the intensity range of
the training patch for that texture class to [0,255]. Finally, all training images and testing images
are divided by 255 as we implemented before to normalize the data.

Besides, we note that the proposed algorithm only contains two parameters, whose values are
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manually selected for the following experiments: the constraint of subset size nmax = 200 × C
(C is the number of classes) and voting window size w for Brodatz data and histology data is set
to be 21 and 51 respectively.

Figure 3.2: Rotational invariant representation of intensity neighborhoods

3.3.1 Comparison between different data selection criteria

Since it is usually very difficult to analyze the performance of data selection criteria theoretical-
ly, an alternative way that most literatures adopt is to compare their performance experimentally
under the same condition. Here, we set up an experiment by randomly picking out one texture
mosaic image (Figure 3.5(d)) consisting of 5 texture classes from Brodatz dataset for testing,
together with 5 training images (one for each texture class), and comparing four different cri-
teria for data selection: (1) our proposed criterion, which depends on the lowest voting based
classification accuracies among classes at each iteration to decide which class of instance to add
(the ”worst” class) and then, the Voronoi cell that contains the largest number of misclassified
instances belonging to the ”worst” class will be chosen, from which the centroid of misclassi-
fied instances from the ”worst” class will be added to the current subset. (2) select without vote
criterion, which is almost the same as the proposed criterion except that pixel based classifica-
tion accuracy is directly used to decide the ”worst” class without majority voting spatially. (3)
FCNN3 [150], which simply chooses the Voronoi cell that contains the largest number of mis-
classified instances, in which the closest misclassified instance (measured in L2 metric) will be
added at each iteration; (4) FCNN4 [150], which is almost the same as FCNN3 except that the
closest centroid of misclassified instances among classes will be added at each iteration instead.

Here, we evaluate the performance of different criteria by comparing their voting based clas-
sification accuracies on the same testing image using 1-NN classifier based on the subsets select-
ed by different criteria. In Figure 3.4, we first start the subset size at 5 instances (each instance
corresponds to the centroid of each texture class) and then, increase the size of subset by every
50 instances from 50 instances to 1200 instances (axis x) and show the corresponding voting
based classification accuracies obtained by different data selection criteria (axis y). Obviously,
we can see from Figure 3.4 that the overall performance of the proposed criterion (criterion 1)
outperforms the rest three criteria, which shows experimentally that our criterion can be regarded
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Figure 3.3: 12 texture images for testing
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Figure 3.4: Comparison of segmentation accuracies between different data selection criteria

as a better one for selecting subset from image data. In addition, we note that such an experiment
has also been applied to several other different images, which achieves the same conclusion.

3.3.2 Compare with current texture segmentation methods
Texture image segmentation is a classical problem in image processing. Here, we evaluate the
proposed approach by applying it to Brodatz texture dataset [157], which is a public dataset
commonly used in many literatures for evaluating texture segmentation performance, and com-
paring the results quantitatively with five state-of-the-art methods: filter-bank methods [158],
local binary pattern descriptor [139], sparse representation [160], classification method using
frequency based features [161] and discriminative learned dictionaries method [140]. Especial-
ly, we mention that discriminative learned dictionaries method [140] applied a smoothing step
using graph cut alpha expansion algorithm after the classification step, which greatly improved
the accuracy. Thus, in order to provide a fair evaluation, we not only simply evaluate the voting
based classification results, but also evaluate the results after smoothing using the same graph cut
technique [140]. Here, the graph cut algorithm is implemented based on a simple Potts model
within 8-connectivity neighborhood, where the cost for associating a pixel i to the class c is set as
1−p(li = c), where p(li = c) =

#(lj=c|j∈w(i))

#(k∈w(i))
(the ratio of pixels whose labels are predicted to be

c within the square window), and w(i) is the square window w×w centered at the given pixel i.
And a constant regularization cost between two neighboring pixels is set to be 0.8. In Figure 3.5,
we show one example of texture mosaic image (left column) consisting of different number of
texture classes at each row, together with the ground truth (middle column) and the segmentation
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Table 3.1: Comparison of Error Rates for Brodatz Texture Data Between Different Methods

# [158] [139] [160] [161] [140] D.S. 1 D.S. 2
1 7.2 6.7 5.5 3.37 1.61 22.65 14.94
2 18.9 14.3 7.3 16.05 16.42 11.11 5.62
3 20.6 10.2 13.2 13.03 4.15 10.86 3.93
4 16.8 9.1 5.6 6.62 3.67 7.09 4.64
5 17.2 8.0 10.5 8.15 4.58 19.76 6.56
6 34.7 15.3 17.1 18.66 9.04 53.35 41.06
7 41.7 20.7 17.2 21.67 8.80 38.79 8.94
8 32.3 18.1 18.9 21.96 2.24 48.85 24.97
9 27.8 21.4 21.4 9.61 2.04 25.40 2.61
10 0.7 0.4 NA 0.36 0.17 1.32 1.20
11 0.2 0.8 NA 1.33 0.60 4.15 0.84
12 2.5 5.3 NA 1.14 0.78 1.56 1.36

results with graph cut smoothing (right column). From Figure 3.5, we can see that the overall
segmentation on texture images is quite precise expect in Figure 3.5(l), where some regions are
misclassified into wrong texture classes. In addition, we report the error rates between different
approaches in Table 3.1, where the column ”D.S. 1” (D.S. is short for data selection) corresponds
to the error rates of standard voting based classification, while the column ”D.S. 2” corresponds
to the error rates with graph cut smoothing (note that the best performance is shown in bold
font). From Table 3.1, we can see that although discriminative learned dictionaries method [140]
(with graph cut smoothing) obtained the most best results, our proposed approach (with graph
cut smoothing) still achieves overall comparable performance except the first, sixth, and eighth
images. The loss of accuracies on these three images can be explained as we choose small inten-
sity neighborhoods (3× 3 window) as the feature, which is very sensitive to the notable intensity
heterogeneous regions in the testing images, and causes misclassification.

3.3.3 Compare with current histology tissue segmentation methods
Segmenting tissues from histology images has been a challenging problem due to its complicated
tissue appearance (e.g. texture, color, structure, etc), which is very difficult to model. For the
histology images of teratoma (H&E stained) [84], the specific challenges [57] include low intra-
class similarity (the same type of tissue often has different visual appearance) and high inter-class
similarity (multiple types of tissues may have similar visual appearance). Although a few ap-
proaches have been developed, for example, [57] proposed a multi-scale pixel level classification
approach using intensity neighborhood information and SVM classifier, which achieved good
segmentation performance on histology images of teratoma, it is worth noting that this method’s
computational cost is quite huge, making it uneasy to use. As far as we know, currently, there
is no practical approach which is able to segment such images reliably and efficiently. Here, we
evaluate our proposed approach using the same histology images of teratoma (both training and
testing) used in [57], and compare to the results reported in [57]. In order to compare fairly, we
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Table 3.2: Quantitative Evaluation for Images of Teratoma Histology

Accuracy B C F O
Intensity neighborhood SVM 59.70% 73.18% 91.09% 88.93%

Color K-means 29.79% 51.06% 58.73% 55.20%
Color SVM 27.87% 29.09% 66.16% 68.12%

Data selection 81.59% 78.69% 94.57% 84.53%

also utilize the same multi-scale framework in [57], in which the neighborhood sizem = 3 keeps
constant, while at each scale s (s = 0, 1, ..., S and S = 4), we first convolve images belonging
to the training set with a Gaussian kernel for smoothing, and assemble the neighborhood patch
centered at each pixel by subsampling at every 2s pixels (after smoothing). Then, we are able
to construct the initial training set and select the training subset at different scales following the
standard steps described above. For segmenting an unknown image, again, we follow the same
weighted confidence based voting framework in [57], where the final prediction lfinali for each
pixel i is obtained via:

lfinali = arg max
c∈{1,2,...,C}

S∑
s=0

λsp(l
s
i = c) (3.1)

where λs are the weights for 1-NN classifiers at different scales. The optimal weights Woptimal

can be calculated by maximizing the objective overall classification accuracy function M as:

Woptimal = arg max
W∈RS+1

M(Rtrain(W ), Gtrain) (3.2)

whereM(·, ·) is a measurement of overall classification accuracy, W is a group of weights (W =
{λ0, λ1, ..., λS})), Rtrain(W ) corresponds to the labeled (segmented) training data, while Gtrain

corresponds to the ground truth.
In Figure 3.6, we randomly choose one histology image of teratoma from the testing data, and

show the segmentation results of several different methods including: our proposed data selection
method, intensity neighborhood SVM method [57], color k-means method, color SVM method,
together with the ground truth. Four classes of tissues are segmented and represented: the green
color represents B tissue, red color represents C tissue, yellow color represents F tissue, and blue
color represents O tissue regions. From Figure 3.6, we can see that our method (Figure 3.6(e))
achieves comparable or even better result when compared to the rest several methods and the
ground truth. We also show another segmentation result in Figure 3.7. In addition, we report
the pixel classification accuracies for each tissue class in Table 3.1, and compare quantitatively
with the results from [57]. We can see that although our proposed method (data selection) gets a
lower classification accuracy for tissue O than the intensity neighborhood SVM method [57], it
achieves the best classification accuracies for the rest three tissue classes.
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Table 3.3: Data Reduction Rates
Data Name n VS. N Reduction Rate

Brodatz (2 classes) 202 VS. 1.31× 105 0.15%
Brodatz (5 classes) 1092 VS. 3.27× 105 0.33%
Brodatz (10 classes) 1819 VS. 6.55× 105 0.28%
Brodatz (16 classes) 2828 VS. 1.05× 106 0.27%
Histology (4 classes) 154 VS. 3.99× 106 0.00385%

3.3.4 Analysis of computational efficiency

Finally, it is important for us to analyze the computational efficiency of the proposed approach,
since it is another goal we aim to achieve in this chapter. We mention that the computational cost
for data selection as the training process isO(NSU) [150], whereN is the amount of all pixels in
the training images, and SU is the maximum size of the subset. In addition, since 1-NN classifier
is utilized for pixel classification, the computational complexity for segmenting an unknown
image is O(nK), where n is the size of subset finally selected, and K is the amount of pixels
in the testing image. Apparently, the value N and K are determined by the size of training and
testing images directly and keep unchanged once fixed. In order to save computational time for
training process, we manually choose a rather small value of nmax (reported above). In addition,
we report the average subset sizes for different data and related data reduction rates in Table 3.3.

In our implementation (all computation time reported were based on a Intel(R) Core(TM) i5
2.30GHz CPU), for Brodatz data consisting of 2 classes, 5 classes, 10 classes, and 16 classes,
given the initial training set, the computing time for standard data selection process is 0.61 min-
utes, 6.32 minutes, 51.30 minutes, and 229.3 minutes respectively, while it takes 1.1 minutes to
segment the testing image of 2 classes (size: 256 × 512), 0.62 minutes for the testing image of
5 classes (size: 256 × 256), 2.0 minutes for the testing image of 10 classes (size: 256 × 640),
and 4.7 minutes for the testing image of 16 classes (size: 512 × 512). For the histology images
of teratoma, it takes 2.11 hours to select a subset from 3.99 × 106 instances, and 0.41 hours to
segment an image of size 1103 × 1421 pixels. Compared to the reported computational timein
[57], where it takes 14.5 hours to train a SVM model from 1.2× 105 instances, and 6.4 hours to
segment the same histology image, although the CPU we use in this work is slightly better than
the one used in [57], we can still conclude that the computational efficiency has been greatly
improved by the proposed approach.

3.4 Conclusion and discussion

In this chapter, we proposed a voting based data selection method, which selects data iteratively
based on the voting based classification accuracy among classes. Instead of trying to seek a
subset that achieves 100% accuracy on the initial training set (named as training-set-consistent-
subset), we focus on improving the computational efficiency by restricting the maximum size of
the subset, and we validate the performance of our proposed method via a couple of experiments,
which show that when the training data is appropriately selected, even by using very simple
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features (intensity neighborhoods feature in this work), and using very simple classifier (1-NN
classifier), we are still able to achieve comparable or even better results across different types
of datasets compared to other state-of-the-art methods specifically designed for these datasets,
together with a relatively small computational cost. Thus, this approach could be very useful
when dealing with very large scale datasets. Finally, we note that although we have shown that
our proposed data selection criterion outperforms others experimentally in Figure 3.4, we do not
provide any theoretical support explaining why it works better than others. Thus, our future work
is to find the theoretical support and also, investigate whether any better data selection criterion
exists.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.5: Segmentation of texture images in Brodatz data. Left column: original images;
middle column: the ground truth; right column: segmentation results with graph cut smoothing.
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: Segmentation of tissues for histology images of teratoma (a) original image; (b)
intensity neighborhood SVM’s result; (c) color K-means’ result; (d) color SVM’s result; (e) data
selection result; (f) ground truth.

(a) (b) (c)

Figure 3.7: Another segmentation of tissues for histology images of teratoma (a) original image;
(b) data selection result; (c) ground truth.
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Chapter 4

Region Optimization: A Post Processing
Step

Image segmentation, according to its definition, is to subdivide an image into several constituent
regions (named as segments), and each segment contains a set of pixels, where pixels in the
same segment share certain visual characteristics such as color, intensity, or texture. Image
segmentation can be regarded as a pixel classification process, once a method for determining
whether a pixel belongs to a particular class (object region or boundary) has been proposed, a
final segmentation result can be obtained by grouping the pixels with the same label into the same
object (or background). However, the segmented regions directly obtained from the pixel level
classification procedure are not always satisfactory, as they have jagged borders with holes inside.
Since a common requirement for the segmented regions is to have smoothed borders/surfaces, it
is necessary to optimize the classification result before the final output.

In this chapter, we will investigate the apporoaches for region optimization. We note that
there are many different types of algorithms to group pixels for region optimization. In the
simplest case, for example, connected components may be obtained by simple morphological
analysis, such as dilation and erosion, however, segmented regions after processing usually con-
tain jagged borders. Spatial voting method, as mentioned in the previous chapter, can be applied
to smooth the borders. However, these methods tend not to be robust enough for quantitative
biomedical applications. Comparatively, modern methods for region optimization usually in-
corporate both the region information and border information into the objective function, and
optimize the objective function simultaneously.

4.1 Review of optimization methods
Based on the optimization techniques used, we would like to divide current region optimization
approaches into two big categories: (1) optimization in continuous field, of which the represen-
tative method is deformable model; (2) optimization in discrete field, of which the representative
method is graph cuts. In the following, we will discuss and compare these two types of methods.
• Deformable model: As discussed aboves in Chapter 1, deformable model simulates curves

or surfaces that can move under the influence of internal forces, which are defined within
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the curve or surface itself, while the external forces can be calculated from the image data.
The use of internal force is to keep the model smooth during deformation, which usually
depends on curvature of contours, while the use of external force is to move the model
toward an object boundary or other desired features within an image based on the pre-
designed models. Deformable models have been extensively studied and widely used in
biomedical image segmentation with promising results, since it is able to offer robustness
to both image noise and boundary gap by constraining extracted boundaries to be smooth
and incorporating other prior information such as the object shape. Two types of methods
can be utilized to represent the deformable model: parametric (explicit) (e.g. snake based
approaches [34, 162]) or nonparametric/geometric (implicit) methods (e.g. level set-based
approaches [71, 99, 163]). Parametric deformable models allow direct interaction with
the model and can be implemented quite fast. However, it has the disadvantage of topol-
ogy constraint, which cannot deal with splitting or merging cases during the process of
deformation. Thus, non-parametric deformable model represented by level set is more
preferred, where curves and surfaces are represented by a level set of a higher-dimensional
scalar function.
Deformable models can be used to optimize the segmented region (the process of grouping
pixels belonging to the same object) in an image by incorporating the criterion of group-
ing pixels into the external force model and then, starting from a ”guess” configuration.
The deformable models can be optimized through gradient descent techniques with a sta-
ble point satisfying the appropriate Euler-Lagrange equation. Many criteria for grouping
pixels have been proposed in the past years, ranging from model-driven criterion to data-
driven criterion. Here, we illustrate a few examples: In [37], pixels where the borders of
the regions have the largest gradient value are grouped, however, since no regional infor-
mation is considered in this model, the moving curves may capture some places inside the
object where high gradient exists rather than the real borders of objects. In [38], a region
based criterion is proposed, which assumes that intensities should be similar for the pixels
belonging to the same class, and thus, the intensity variance for the pixels in the same
class should be minimized. This model is easy and robust to implement, however, it may
fail when dealing with some complicated images, where the pixels in the same class share
some other characteristics such as texture rather than gray level intensity, meaning that in-
tensity variance for the pixels in the same class could be very large in fact. In addition, we
note deformable models have been utilized combining with supervised and unsupervised
learning strategies, as well as with region and edge based methods [164, 165].

• Graph cut model: Graph cut model, as mentioned before, is another effective tool for
optimization. By regarding Image segmentation as a pixel labeling problem, the goal is to
find an optimal labeling configuration for the pixels in the image which minimizes the pre-
defined energy function. Usually, this energy function consists of two terms: region term
and edge term, which is similar to some forms of deformable models. The region term
usually incorporates the criterion of grouping pixels into the same object. For example,
one criterion is to take into consideration the probability of current pixel belonging to
one class. The larger the probability is, the smaller the penalty value will be, and vise
versa. The edge term considers the connections between pairwise pixels belonging to
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different classes. The larger difference (e.g. difference between two pixels’ intensities)
between pairwise pixels means smaller penalty value for the edge term. In most cases,
Markov Random Fields (MRF) [44] is used to model the connections between pairwise
pixels and only pairwise pixels within 4-connectivity and 8-connectivity are considered
as connected. Such an energy function can be minimized by representing such an energy
objective function into a graph and incorporating data term and edge term into the edge
weights. The energy function can be minimized by finding a cut which separates the whole
graph into two dis-connected part and also satisfies that the sum of edge weights whose
edges have been disconnected by this cut (the min cut) is the minimum. Finding the min cut
for a two-class problem (binary segmentation) can be realized via push-relabel algorithm
[166], which is a global optimization. However, finding the min cut for multiple classes
(multi-way cut problem) is NP-Hard and some approximation algorithms that produces a
cut which minimizes the original energy function in a strong sense have been proposed,
such as alpha expansion algorithm, alpha-beta swap algorithm, etc [44].

4.2 Methodology
In this work, our goal is to develop a robust method for automatically delineating regions that
encompass each single object in the image, and thus, we propose to use a more flexible approach
based on deformable model. More precisely, in order to deal with the result from a pixel level
classification procedure, the first part of the region optimization work is related to constructing
a function P (x, y) that assigns the confidence value of a pixel p(x, y) at the coordinates (x, y)
to belong to one class (type of object) versus another. We start from the example of binary seg-
mentation, which is to segment a foreground class/object vs. a background class from an image
I(x, y). In our case, P (x, y) is estimated from the labeled/training input images as described in
detail in [167]. More precisely, the function P (x, y) provides a decision or confidence value for
the pixel p(x, y) as: {

P (x, y) < 0⇒ p(x, y) ∈ RA

P (x, y) > 0⇒ p(x, y) ∈ RB
(4.1)

where RA and RB refer to background region (”bkg”) and foreground/object region (”obj”)
respectively. The functional form for P (x, y) can vary from linear models such as:

P (x, y) =

∫
u

∫
v

WP (u, v)I(x− u, y − v)dudv + bP , (4.2)

where WP and bP are estimated from training procedures such as Fisher LDA, or linear SVM, to
more complicated boundaries such as:

P (x, y) =

Nj∑
j=1

cjVjφj(x, y, I) (4.3)

where φj(·, ·, ·) is a radial basis function of the image and input coordinates, cj are coefficients
obtained during a training procedure, and Vj a class indicator function. The training of such
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classifiers can occur through well know methods [52]. In addition, a similar function PB(x, y)
can also be computed from training data (taking the same functional form as above) to assign the
probability of a pixel p(x, y) belonging to a boundary between RA and RB. For several appli-
cations, given input image I(x, y) we are able to provide the input maps P (x, y) and PB(x, y)
necessary for the subsequent objective function for optimization.

Given an image I(x, y), we seek to find a partition/segmentation of it, denoted R̃, by mini-
mizing the following equation:

E(R̃) = α

∫ 1

0

g(C(s)) · |C ′(s)|ds︸ ︷︷ ︸
Boundary Term

+

β
∫∫
RA

rA(x, y)dxdy +

∫∫
RB

rB(x, y)dxdy

︸ ︷︷ ︸
Region Term

(4.4)

where R̃ is a partition of the image I (R̃ = {RA, RB}, RA ∩ RB = ∅, RA ∪ RB = I). In
the boundary term, C is the border between the regions RA and RB, g(·) is a monotonically
decreasing function (e.g. Gaussian) serving as a penalty function of the pixels on the border. In
the region term, the functions rA(·) and rB(·) are the two penalty functions that assign an error
if the wrong pixel is assigned to regions RA or RB.

Since the goal is to minimize the energy function, for a given class we would like to design
a penalty function that satisfies: when the possibility of a pixel belonging to that class becomes
larger, the output of such a penalty function will be smaller, and vice versa. In addition, the
output of the penalty function should be larger than 0. Thus, the two regional penalty functions
for each class can be designed as follows:

rA(x, y) = FA(P (x, y)), FA(z) =
1

1 + exp(−krz)
, kr > 0 (4.5)

rB(x, y) = FB(P (x, y)), FB(z) = 1− 1

1 + exp(−krz)
, kr > 0 (4.6)

For the edge term, a similar penalty function can be designed:

g(x, y) = 1− 1

1 + exp(−kgPB(x, y))
, kg > 0 (4.7)

It is worth noting that such forms have the advantage of symmetry, which constrain the penal-
ty values within [0, 0.5] for the pixels belonging to the correct class, while constrain the penalty
values within [0.5, 1] for the pixels belonging to the wrong class. The performance of two penalty
functions FA(z) and FB(z) is shown in Figure 4.1.

It is commonly known that there are two ways to represent a deformable model: explicit
(parametric) way and implicit (level set) way. Since implicit representation by level set has
the advantage of no topology constraint and no parameterization, we will employ the level set
method to optimize the objective function E(R̃). In two dimensions images, the level set method
amounts to representing a closed curve C using an auxiliary function φ, called the level set
function. C is represented as the zero level set of φ by C = {(x, y)|φ(x, y) = 0}. In addition,
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Figure 4.1: Performance of two penalty functions
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when we use the level set φ(x, y) to represent the regions of two classes, where all the pixels
whose φ(x, y) > 0 belong to the background and whose φ(x, y) < 0 belong to the foreground.
A clear illustration is shown in Figure 4.2.

Figure 4.2: Representation of level set function

Thus, the boundary term in the energy function E(R̃) can be re-formulated as:

∫ 1

0

g(C(s)) · |C ′(s)|ds =

∫∫
I

g(x, y)|∇H(φ(x, y))|dxdy

=

∫∫
I

g(x, y)δ(φ(x, y))|∇(φ(x, y))|dxdy
(4.8)

where H(·) is the Heaviside function.
For the regional term, assume that the region RA corresponds to the background, while the

region RB corresponds to the foreground, the second term of the energy function can be repre-
sented as:

∫∫
RA

rA(x, y)dxdy +

∫∫
RB

rB(x, y)dxdy

=

∫∫
I

rA(x, y)H(φ(x, y))dxdy +

∫∫
I

rB(x, y)(1−H(φ(x, y)))dxdy

(4.9)

Finally, the energy function E(R̃) can be represented by level set as follows:
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E(φ) = α

∫∫
I

g(x, y) |∇H(φ)| dxdy + β

∫∫
I

rA(x, y)H(φ)dxdy+

∫∫
I

rB(x, y)(1−H(φ))dxdy


(4.10)

The minimization of the energy function E(φ), φ = φ(x, y) can be solved by the standard
level set method, where we denote by ∂ε

∂φ
the Gateaux derivative (or first variation) [168] of the

functional ε(φ) (E(φ(x, y)) =
∫∫
I

ε(φ(x, y))dxdy). In addition,the following evolution equation

can be used to find the optimal φ(x, y) that minimizes the functional ε(φ) via gradient descent
method [168]:

∂φ

∂t
= − ∂ε

∂φ
(4.11)

Thus, the Gateaux derivative (first variation) of the functional ε can be written as:

∂ε

∂φ
= −αδ(φ)div(g

∇φ
|∇φ|

) + βδ(φ)(rA − rB) (4.12)

Finally, the evolution equation can be written as follows:

∂φ

∂t
= αδ(φ)div(g

∇φ
|∇φ|

) + βδ(φ)(rB − rA) (4.13)

In addition, we propose a variant model E2(R̃) by adding a weighted object area constraint
to the previous objective function E(R̃), which helps to reduce the area size of object regions.
This new objective function can be represented as follows:

E2(R̃) = E(R̃) + λ

∫∫
RB

g(x, y)dxdy (4.14)

Then, we follow the standard level set algorithm step by step as shown above, and represent
E2(R̃) in level set form:

E2(φ) = E(φ) + λ

∫∫
I

g(x, y)(1−H(φ(x, y)))dxdy (4.15)

Finally, we can show the evolution equation for the variant model as follows:

∂φ

∂t
= αδ(φ)div(g

∇φ
|∇φ|

) + βδ(φ)(rB − rA) + λgδ(φ) (4.16)
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4.3 Experimental results

In this section, we will evaluation the region optimization performance of the two deformable
models proposed above. We randomly choose a fluorescence image of membrane and the goal is
to provide an accurate segmentation of membrane tissue regions from this image. As discussed
above, before utilizing the proposed deformable models, we first implement a pixel classification
process following the standard algorithm [167] in chapter 2, where with the ground truth from
another image given (in which membrane tissue regions have been manually labeled), we choose
a 5 × 5 window as the neighborhood size, and train a SVM classifier to classify pixels whether
belonging to ”membrane” tissue class or ”non-membrane” tissue class. The output will be a
decision or confidence value P (x, y) for each pixel p(x, y), where P (x, y) > 0 means such a
pixel belongs to ”membrane” class, while P (x, y) means the pixel belongs to ”non-membrane”
class. In addition, a pixel classification process is implemented to distinguish whether the pixel
belongs to the ”borders of membrane” or not. The process is similar to the previous one, where
the borders of membrane is manually labeled, and a 7 × 7 window is used for neighborhood
size. A SVM classifier is trained, which provides each pixel p(x, y) a decision value PB(x, y)
(PB(x, y) > 0 means the pixel p(x, y) belongs to border, while PB(x, y) means it does not.)
After we get the information of both P (x, y) and PB(x, y), we test the proposed two deformable
models, and note that we follow the numerical calculation framework in [37], where a penal-
ty term is added to the energy function so that re-initialization at each update iteration can be
prevented. In Table 4.1, we show the values of parameters concerned in the proposed models.

Table 4.1: Parameters in Our Level Set Models
parameter α β λ kr kg

value 0.7 1.5 0.45 8 8

In Figure 4.3, we will compare the region optimization performance of two deformable mod-
els proposed above. In Figure 4.3(a), we show the original image of cell membrane (obtained
from Dr. Alexandre Cunha’s group), while in Figure 4.3(b), we show the segmented regions
of membrane by grouping the pixels with the same label directly, where red contours delineate
the borders of segmented regions. Obviously, the segmented regions have jagged borders with
many noise regions inside, which makes the final segmentation result unsatisfactory. In Fig-
ure 4.3(c), we show the improved result obtained by our first proposed deformable model (with-
out the weighted area constraint). Apparently, the segmented region result has been much better
improved, in which the borders of segmented regions are smoothing, and most noisy regions
have been removed. However, we observed that some non-membrane tissue regions have been
mis-classified as the membrane tissue regions. Thus, we applied our second proposed model
which added a weighted area constraint term, and the result is shown in Figure 4.3(d). Apparent-
ly, we can see that membrane tissue regions have been shrinked, which better delineates the real
membrane tissue regions.
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(a) (b)

(c) (d)

Figure 4.3: Comparison of region optimization performance between different methods. (a) o-
riginal image; (b) segmented regions by grouping the pixels with the same label directly; (c)
segmented regions by the proposed model 1 (without the weighted area constraint); (d) segment-
ed regions by the proposed model 2 (with the weighted area constraint)
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4.4 Conclusion and discussion
In this chapter, we discuss the algorithms for region optimization, which is regarded as a post-
processing step after pixel classification. This is an important step in the whole segmentation sys-
tem, since a common requirement for the segmented regions is to have smooth borders/surfaces,
it is necessary to optimize the classification result before the final output, however, the segmented
regions, if directly obtained from the pixel level classification procedure, are not always satis-
factory, as they have jagged borders with holes inside, together with many noisy regions. We
consider the deformable model as the tool for region optimization, due to the fact that it has
the advantages of border smoothing and sub-pixel accuracy. Thus, we proposed two deformable
models which utilize the decision value information obtained from previous pixel classifica-
tion step for region optimization, and we validate these two models on fluorescence image of
membrane. We have obtained accurate segmentation result of membrane, which shows that our
proposed models work well. In addition, we will extend our current model to the multiple classes
case and extend our model to 3D case, which will be our future work.
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Chapter 5

Template Matching: A General Nuclei
Segmentation Framework

For biomedical problems where a strong prior on shape is available (e.g. detecting nuclei in
an image), a ”stiff” deformable approach can be used to capture contiguous regions in an input
image. Thus, in this chapter, we will investigate and propose a general segmentation system for
biomedical applications with a strong prior shape information available [46, 97]. Here we explain
that a strong prior shape information means that the shapes/structures of objects to be segmented
can be estimated statistically from the given samples, e.g. cell nuclei, human brain, bones, etc.
In this chapter, we will focus on the segmentation of nuclei. This task is very necessary and
important for many scientific and clinical applications due to the fundamentally important role
of nuclei in cellular processes and diseases.

5.1 Review of nuclei segmentation methods

Segmenting cell nuclei from microscopy images is an important image processing task necessary
for many scientific and clinical applications due to the fundamentally important role of nuclei in
cellular processes and diseases. Given a large variety of imaging modalities, staining procedures,
experimental conditions, etc., many computational methods have been developed and applied
to cell nuclei segmentation in 2D [16, 17, 100, 169, 170, 171, 172, 173, 174] and 3D images
[175, 176, 177, 178, 179]. Thresholding techniques [1, 136], followed by standard morpholog-
ical operations, are amongst the simplest and most computationally efficient strategies. These
techniques, however, are inadequate when the data contains strong intensity variations, noise, or
when nuclei appear crowded in the field of view [172, 180] being imaged. The watershed method
is able to segment touching or overlapping nuclei. Direct use of watershed algorithms, however,
can often lead to over segmentation artifacts [9, 17]. Seeded or marker controlled watershed
methods [16, 17, 100, 171, 172, 181, 182] can be utilized to overcome such limitations. We
note that seed extraction is a decisive factor in the performance of seeded watershed algorithms.
Missing or artificially added seeds can cause under or over segmentation. Different algorithms
for extracting seeds have been proposed. In [182] for example, seeds are extracted using a gra-
dient vector field (GVF) followed by Gaussian filtering. Jung and Kim [173] proposed to find
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optimal seeds by minimizing the residual between the segmented region boundaries and the fitted
model. In addition, various of post-processing algorithms have been applied to improve the seg-
mentation quality. For example, morphological algorithms (e.g. dilation and erosion)[172] can
be used iteratively to overcome inaccuracies in segmentation. In [183] learning-based algorithms
were used for discarding segmented regions deemed to be erroneous. Similar ideas using neural
networks can be seen in [184].

When nuclei do not appear clearly in the images to be segmented (e.g. nuclear borders are
not sharp enough or when a significant amount of noise is present), active contour-based meth-
ods [174, 176, 177, 185, 186, 187, 188, 189], especially those implicitly represented by level set
[176, 177, 189], have been proposed to overcome some of these limitations successfully. As well
known, the level set framework is well suited for accurate delineation of complicated borders
and can be easily extended to higher dimensional datasets. Ortiz De Solorzano et al. [176], for
example, proposed an edge-based deformable model that utilizes gradient information to cap-
ture nuclear surfaces. Considering that strong gradients at object boundaries may be blurred and
the noise and intracellular structures may also show strong gradients, Mukherjee et al. [190]
proposed a level set model that also incorporates a region term using the likelihood information
for segmentation of leukocytes with homogeneous regions. In segmenting cells in culture or in
tissue sections, Dufour et al.[177] proposed a multi-level deformable model incorporating both
a gradient term and a region term, adopted from Chan and Vese model [38], to segment cells
with ill-defined edges. In [96], Yan et al. also proposed a similar multilevel deformable model
to segment RNAi fluorescence cellular images of drosophila. In [189], Cheng and Rajapakse
utilized the Chan and Vese model [38] to obtain the outer contours of clustered nuclei, employ-
ing a watershed-like algorithm to separate clustered nuclei. Similarly, Nielsen et al [174] have
described a method for segmenting Feulgen stained nuclei using a seeded watershed method,
combined with a gradient vector flow-based deformable model method [162]. Considering that
some nuclei may appear to overlap in 2D images, Plissiti and Nikou [191] proposed a deformable
model driven by physical principles, helping to delineate the borders of overlapping nuclei. In
[192], Dzyubachyk et al. proposed a modified region-based level set model, which addresses a
number of shortcomings in [177] as well as speeds up computation. In order to reduce the large
computational costs of variational deformable models, Dufour et al. [193] proposed a novel im-
plementation of the piece-wise constant Mumford-Shah functional using 3D active meshes for
3D cell segmentation.

Besides the methods mentioned above, several other approaches for segmenting nuclei based
on filter design [194, 195], multi-scale analysis [196], dynamic programming [197], Markov
random fields [198], graph based methods [45, 199, 200] and learning based strategies [56, 201,
202, 203, 204] have been described. As new imaging modalities, staining techniques, etc., are
developed, however, many existing methods specifically designed for current imaging modalities
may not work well. Below we show that the application of some such methods can fail to detect
adequate borders, or separate touching or overlapping nuclei, in several staining techniques.
Therefore considerable resources have to be spent to modify existing methods (or developing
entirely new segmentation methods) to better suit the new applications.

Here we describe a generic nuclear segmentation method based on the combination of tem-
plate matching and supervised learning ideas. Our goal is to provide a method that can be used
effectively for segmenting nuclei for many different types of cells imaged under a variety of stain-
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ing or fluorescence techniques. We aim to guarantee robust performance by allowing the method
to ‘calibrate’ itself automatically using training data, so that it will adapt itself to segmenting
nuclei with different appearances (due to the staining techniques for example) and shapes. The
method is also ‘constrained’ to produce smooth borders. Finally, given that the objective func-
tion used in the segmentation process is the normalized cross correlation (NCC), the method is
also able to better handle variations in illumination within the same image, as well as across
images. We note that template matching-based methods for image segmentation have long been
used for segmenting biomedical images. One prominent example is the brain segmentation tool
often used in the analysis of functional images [205]. When segmenting nuclei from microscopy
images, contour templates have also been used [201, 202]. Here we utilize similar ideas with
some adaptations. First, our approach is semi-automated in that it first seeks to learn a template
and statistical model from images delineated by the user. The model is built based on estimating
a ‘mean’ template, as well as the deformations from the template to all other nuclei provided
in the training step. After this step, any image of the same modality can then be segmented via
a template-based approach based on maximization of the normalized cross correlation between
the template estimated from the input images and the image to be segmented. We describe the
method in detail in the next section, and compare it to several other methods applied on different
datasets in section IV. Finally, we note that our method is implemented in MATLAB comput-
er language [206]. The necessary files can be obtained through contact with the corresponding
author (GKR).

5.2 Methodology
Given the large variation in appearance of nuclei in microscopy images, a completely automated
(unsupervised) approach for segmenting nuclei from arbitrary images may be difficult to obtain.
We therefore focus on a semi automated approach, depicted in Figure5.1, where the idea is to
first construct a statistical model for the mean texture and most likely variations of shape to be
found in the dataset to be segmented from hand-delineated images. Segmentation of any image
of similar type is then achieved by maximizing the normalized cross correlation (NCC) between
the model and the local image region. Part A outlines the training procedure whereby the user
utilizes a simple graphical user interface to isolate several nuclei samples, which are then used
to build the statistical model. Part B outlines the actual segmentation procedure, which proceeds
to first find an approximate segmentation (seed detection) of an input image by matching the
statistical model with the given image, and then produces a final segmentation result via non-
rigid registration.

5.2.1 Training
As outlined in part A of Figure5.1, we utilize a simple graphical user interface to enable an op-
erator to manually delineate rectangular sub-windows each containing one nucleus sample from
an image of the modality he or she wishes to segment. It is required by our system that each
sub-window contains only one nucleus, and recommended that the set of sub-windows contain
a variety of shapes and textures (small, large, bent, irregular shaped, hollow, etc.), since more
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Figure 5.1: Overview of nuclear segmentation approach. Part A outlines the training procedure,
which utilizes sample nuclei manually identified by the user to build a statistical model for the
texture and shape variations that could be present in the set of nuclei to be segmented. The model
is then sampled to form a detection filter-bank. Part B outlines the actual segmentation procedure
which utilizes the detection filter-bank to produce a rough segmentation, and then refines it using
non-rigid registration based on the normalized cross correlation.
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variations present in the input images will translate into more variations being captured by the
model. We note that it is not necessary for the user to provide the detailed outline for the nucleus
present in each window. Rather, a rectangular bounding box suffices. In our implementation,
given N such rectangular sub-windows, which can be of different sizes, each sub-window con-
taining one nucleus from the training set, we first pad each sub-window image by replicating the
border elements so as to render each sub-window of the same size (in terms of number of pixels
in each dimension). The amount of padding applied to each sub-window is the amount necessary
for that sub-window to match the size of the largest rectangular sub-window in the set. The set of
sub-windows are then rigidly aligned to one sub-window image from the set (picked at random)
via a procedure described in earlier work [207]. As a result, the major axis of nuclei samples are
aligned to the same orientation. In this case, we choose the normalized cross correlation (NCC)
as the optimization criterion for measuring how well two nuclei align and include coordinate
inversions (image flips) in the optimization procedure.

The set ofN rigidly aligned sub-windows, denoted as I1, · · · , IN from now on, is then used to
estimate a template that will represent an ”average” shape as well as texture for this set. Several
procedures can be used for this purpose. In this work we choose the procedure outlined in Heitz
et al. [208] where the idea is to iteratively deform all nuclear images (sub windows) towards a
template image that is closest (in the sense of least deformation) to all other images in the set.
Figure5.2 contains a diagram depicting the procedure we use. The procedure depends on the
computation of a nonrigid map that aligns two images Ii, and Ij , via Ii(fi(x)) ≈ Ij(x), with
x an input coordinate in the image grid Ω, and a nonrigid mapping function fi(x) : Ω → R2

. In our approach, the nonrigid registration is computed via maximization of the normalized
cross correlation cost function, which is described in detail in the appendix. Given the ability to
non-rigidly align two nuclear images, the template estimation procedure consists of choosing a
sub-window image from the set at random and denoting it Ik0 (x). Then, starting with the iteration
k = 1:

1. Non-rigidly register Ik0 to each sub-window image Ii, i = 1, 2, ..., N such that Ii(fi(x)) ≈
Ik0 (x).

2. Calculate a temporary average shape template Ψk(x) = Ik0 (f̄−1(x)), with f̄ = 1
N

N∑
i=1

fi,

and f−1 the inverse of the transformation function f (which we compute with Matlab’s
’griddata’ function).

3. Compute the average texture on the same average shape template above by first registering
each sub-window image in the set to Ψ(x) (i.e. Ii(f

′
i(x)) ≈ Ψk(x)), and update the

template via Ik+1
0 (x) = 1

N

N∑
i=1

Ii(fi
′(x)).

4. Compute error = ‖Ik+1
0 − Ik0 ‖2 (sum of squared errors). If error < ε stop, otherwise set

k = k + 1 and go to step 1.

The end result is an image I0(x) that represents an average template (both in the sense of
shape and texture), as well as a set of spatial transformations that map each sub-window image
to the final template via Ii(fi(x)) ≈ I0(x), i = 1, · · ·N . We next apply the principal component
analysis (PCA) technique [209] to derive a statistical model for the possible variations in the
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shape of the sample nuclei. We encode each spatial transformation fi(x) as a vector of displace-
ments via vi = [fi(x1), ..., fi(xL)]T , with L the number of pixels in each image. Thus, the mean
and the covariance of the set of spatial displacements v1, · · · ,vN are:

v̄ =
1

N

N∑
i=1

vi (5.1)

C =
1

N

N∑
i=1

(vi − v̄)(vi − v̄)T (5.2)

Using the PCA method, the principal deformation modes are given by the eigenvectors qp, p =
1, 2, 3, ... of the covariance matrix C satisfying Cqp = λpqp. A statistical model for the varia-
tions in shape is obtained by retaining the top eigenvalues and eigenvectors corresponding to 95%
(this percentage chosen arbitrarily) of the variance in the dataset. This means that the number of
eigenvectors used in each segmentation task (imaging modality) will depend on how much vari-
ability is present in the (training) dataset. In cases where variability is large, more eigenvectors
will be necessary. In cases when variability is small, a small number of eigenvectors will be used.
In all cases, the accuracy of the PCA reconstruction procedure is set to 95% (of the variance).
The model can be evaluated by choosing an eigenvector qp and calculating vp,bp = v̄ + bpqp,
where bp is a mode coefficient. The corresponding template is obtained by re-assembling vp,bp
into a corresponding spatial transformation fp,bp , and computing I0(f−1

p,bp
(x)).

In our approach, the statistical model is evaluated for bp ∈ [−2
√
λp, 2

√
λp] in intervals of√

λp. The result of this operation is a set of images obtained by deforming the mean template
and representing nuclear configurations likely to be encountered in data to be segmented. In ad-
dition, this set of images is augmented by including rotations (rotated every 30 degrees, totaling
7 orientations in our implementation) as well as variations in size (2 in our implementation).
Finally, we discard the top 1% and bottom 1% (in the sense of area) of the templates to avoid
potentially segmenting structures that would be too small or too large to be considered as nuclei.
A data-dependent way of choosing this threshold is also described in the discussion section of
this chapter. The reason being that templates that are too small may cause over segmentation,
while templates that are too large may merge nuclei that are close to each other. Figure5.1 (top
right) contains a few examples of template images generated in this way for a sample dataset.
We denote the set of template images generated in this way as the ”detection filterbank” to be
used as a starting point for the segmentation method described in the next subsection.

Segmenting the mean template: our procedure depends the mean template, computed as
estimated above, on being segmented in the sense that pixels in the foreground and background
are known. Though many automated methods can be considered for this step, we choose to
utilize a rough contour manually provided by an user. The contour is then refined utilizing a
level set approach [37]. The advantage is that such a process can be repeated until a satisfactory
segmentation result has been made by the user. Figure5.3 shows the outline of the procedure.
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Figure 5.2: Diagram depicting training procedure.
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Figure 5.3: The mean template image must be segmented before the segmentation algorithm
based on NCC maximization can be utilized. We utilize a semi automated approach wherein an
user draws an initial contour, and a level set-based algorithm refines it to accurately match its
borders.

5.2.2 Segmentation

Our segmentation algorithm is based on the idea of maximizing the NCC between the statistical
model for a given dataset (its construction is described in the previous subsection) and local
regions in an input image to be segmented. The first step in such a procedure is to obtain an
approximate segmentation of an input image, here denoted as J(x), by computing the NCC
of the input image against each filter (template image) in the detection filterbank to obtain an
approximate segmentation. To that end, we compute the NCC between each filter Wp(x), p =
1, · · · , K and the image to be segmented via:

γp(u) =
1

Nc

Nc∑
i=1

∑
x

J i(x)W i
p(x− u)

J̄ i(u)W̄ i
p

. (5.3)

where W̄ i
p =

(∑
x (W i

p(x))
2
) 1

2
, and J̄ i(u) =

(∑
x∈Ωu

(J i(u))
2
) 1

2
, with Ωu denoting the neigh-

borhood around u of the same size as filter Wp. We note that Nc is the number of channels in
each image (e.g. 1 for scalar images and 3 for color images). A detection map denoted M is
computed as M(u) = maxp γp(u). We note that the value of the cross correlation function γ
above is bound to be in the range [−1, 1]. We also note that the index p that maximizes this equa-
tion also specifies the template Wp that best matches the region u and is used later as a starting
point for the deformable model-based optimization.

The detection map M(u) is mined for potential locations of nuclei using the following two
principles: (1) only pixels whose intensities inM are greater than a threshold µ are of interest. (2)
The centers of detected nuclei must be at least a certain distance far away from each other. This
helps to prevent, for example, two potential locations from being detected within one nucleus,
causing over segmentation. These two principles can be implemented by first searching for the
highest response in M . Subsequent detections must be at least a certain distance from the first.
This is done by dilating the already detected nuclei (remember, the filtering step above not only
defines regions where nuclei might be located, but also the rough shape of each). This process
is able to detect nuclei of different shapes due to simulated templates of various shapes and
orientations generated in the previous step, and is repeated until all pixels in the thresholded
detection image M have been investigated. We note again that each detected pixel in M has
its associated best matching template from the detection filterbank. Therefore, this part of the
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algorithm not only provides the location of a nucleus, but also a rough guess for its shape (see
bottom middle of Figure5.1) and texture.

Once an initial estimate for each nucleus in an input image is found via the procedure de-
scribed above, the algorithm produces a spatially accurate segmentation by non-rigidly register-
ing each approximate guess to the input image. The nonrigid registration nonlinearly adapts the
borders of the detected template so as to accurately segment the borders of each nuclei in the in-
put image. In addition, the nonrigid registration approach we use also is constrained to produce
smooth borders. Details related to the nonrigid registration are provided in appendix A. Rather
than optimizing all guesses at once, which could lead to difficulties such as a large number of
iterations in our gradient ascent-type strategy, each nucleus is segmented separately.

Segmenting touching nuclei: An important feature of our template matching approach is
that it is capable of segmenting touching nuclei without difficulties with a small modification of
the procedure described above. In our method, if two (or more) nuclei are detected to be close
to each other (e.g. the closest distance between their best matching templates’ borders is smaller
than 10 pixels), these nuclei are regarded as being potentially in close proximity to each other. If
so, their best matching templates obtained from the filter bank procedure above are taken together
under a sub-window and then non-rigidly registered to the same sub-window in the real image
using the same optimization algorithm in the appendix. An example showing the segmentation
of two nuclei in close proximity to each other is shown in Figure5.1 (bottom row). The left part
of this portion of the figure shows the initial estimates from the filterbank-based estimation of
candidate locations. The result of the nonrigid registration-based estimation of the contours for
each nucleus is shown at the bottom right corner of the same figure. The black contours indicate
the borders of the best matching templates (the initial guesses) and the white lines delineate the
final segmentation result after nonrigid registration.

5.3 Experimental results

5.3.1 Data acquisition

We demonstrate our system applied to several different cell nuclei datasets: (1) a synthetic dataset
BBBC004v1 generated with the SIMCEP simulating platform for fluorescent cell population im-
ages [210, 211]; (2) two real cell datasets (U2OS cells and NIH3T3 cells) acquired with fluores-
cence imaging [135]; (3) and a histopathology dataset obtained using thyroid tissue specimens
with several different staining techniques. The primary goal for the simulated dataset is to obtain
an accurate count for the number of nuclei in each field of view. Each simulated image contains
300 objects with different degrees of overlap probability (ranging from 0.00 to 0.60). The U2OS
(48 images, each containing multiple nuclei) and NIH3T3 (49 images) cells were obtained with
the Hoechst 33342 fluorescence signal, and the ground truth (including accurately delineated
borders) is provided by experts [135]. Of these, the U2OS dataset is more challenging, with nu-
clei tending to be more varied in shape and more clustered together. The intensity of the NIH3T3
images, however, is more nonuniform than the U2OS dataset. In addition we apply our method to
segmenting nuclei from histopathology images taken from tissue sections of thyroid specimens.
Tissue blocks were obtained from the archives of the University of Pittsburgh Medical Center
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(Institutional Review Board approval #PRO09020278). Briefly, tissue sections were cut at 5 µm
thickness from the paraffin-embedded blocks and stained using three techniques. These include
the Feulgen stain which stains deoxyribonucleic acids only. If no counterstaining is performed
then only nuclei are visible demonstrating chromatin patterns as deep magenta hues shown in
Figure 5.6(a). The second is a silver-based technique that stains the intranuclear nucleolar orga-
nizing regions (NORs) (black intranuclear dots) and counterstained with nuclear fast red which
uses kernechtrot that dyes nuclear chromatin red (Figure 5.6(b)). The third is the same silver-
based staining for NORs without counterstaining (Figure 5.6(c)). All images used for analysis
in this study were acquired using an Olympus BX51 microscope equipped with a 100X UIS2
objective (Olympus America, Central Valley, PA) and 2 mega pixel SPOT Insight camera (Diag-
nostic Instruments, Sterling Heights, MI). Image specifications were 24 bit RGB channels and
0.074 microns/pixel, 118× 89µm field of view. More details pertaining to the image acquisition
process for this dataset are available in [212].

5.3.2 Experimental setup

We note that our system is able to work with grayscale (single color) images as well as with
color images. Equation (4), in the Appendix section, allows color images to be used, while the
method can also be used to segment 3D data by defining the inter products and convolutions
utilized in equations (4) and (5) in three dimensions. In addition, we mention that for color
images, each color channel (R, G and B) is equally weighted in the approach we described
above. This allows for segmentation even in the case when the optimal color transformation for
detecting nuclei is not known precisely (as is the case in many of the images shown). In cases
where this information is known precisely, the approach we proposed can be used with only the
color channel that targets nuclei, or with the image after optimal color transformation. In each
experiment, k sample nuclei (k is arbitrarily chosen as 20 in our experiments) were chosen by
the authors for the training process. All but one of the parameters remained constant for all
experiments. The percent of variance retained in PCA analysis was set to (95%), ε = 0.01 for
the calculation of the average template, the step size in the gradient ascent procedure κ was set
as 5× 104, the scale number in the multi-scale strategy s was set as 2. For smoothing parameter
σ in the gradient ascent procedure, a higher σ value helps to smooth the contour, while a lower σ
value helps to better capture the real border of nuclei. In this work, σ was experimentally set as
1.5 (pixels). The only parameter that varied from dataset to dataset was the detection threshold
µ. While a higher value of µ may miss some nuclei (e.g. out of focus), a lower value of µ
may confuse noise and clutter for actual nuclear candidates. There are two ways to determine an
appropriate value for detection threshold µ. When the ground truth (e.g. manual delineation of
nuclei) for the training images is provided, µ value can be selected automatically by maximizing
the dice metric 2 × #(GT∩Detect(µ))

#(GT )+#(Detect(µ))
[127] between the detections and provided ground truth.

Here #(·) counts the number of nuclei in different results, GT corresponds to the ground truth
result, whileDetect(µ) corresponds to the nuclei detection result with respect to µ. When ground
truth is not available, an appropriate µ value has to be empirically selected by the user in order
to detect most nuclei in the training images for each application or dataset. In the experiments
shown below, ground truth was not used for selecting µ. Rather µwas empirically determined for
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each dataset based on empirical experimentation with a given field of view (containing multiple
nuclei) from the corresponding dataset.

For comparison, we choose several different types of algorithms commonly used for cell
nuclei segmentation. These include the level set method (Chan and Vese model [38]), an un-
supervised learning method (color K-means [133]), and the direct seeded watershed method,
which uses a shape based method to separate clumped nuclei (implemented by CellProfiler[18]).
Since the CellProfiler software [18] is only able to process 2D grayscale images, a typical choice
is to convert the color histopathology image to grayscale image by forming a weighted sum of
R, G, and B channels, which keeps the luminance channel (grayscale = 0.2989×R+0.5870×
G+0.1140×B) [8]. In addition, we prefer to take the general approach of normalizing all image
data to fit the intensity range of [0, 1] by scaling the minimum and maximum of each image (dis-
counting outliers set at 1% in our implementation). Since the level set method and the K-means
method may not be able to separate clumped nuclei very well, a common solution is to apply
seeded watershed algorithm on the binary masks segmented from level set method and K-means
methods, in which seeds are defined as the local maxima in the distance transformed images of
binary masks [213]. Note that H-dome maxima [213] are calculated on the distance transformed
images in order to prevent over-segmentation, and for different dataset, the H value is arbitrar-
ily selected for the best performance. These techniques were chosen since they are similar to
several of the methods described in the literature for segmenting nuclei from microscopy images
[177, 192]. In the following sections, we will show both qualitative and quantitative comparisons
of these methods.
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5.3.3 Qualitative evaluation

In Figure 5.4, Figure 5.5, Figure 5.6 and Figure 5.7, we compare the results for different types
of datasets using different methods. In Figure 5.4, the results are obtained by different methods
applied to the segmentation of synthetic nuclei with clustering probability set to 0.3. Note that
we use green (in color), red, and yellow square dots to represent correct detections, missed de-
tections, and spurious detections respectively. In Figure 5.5, the first column shows the sample
segmentations of the U2OS data (under uniform illumination), and the second column shows
the sample segmentations of the NIH3T3 data (under heterogeneous illumination), in which the
white contours delineate the borders of segmented nuclei. The first row of Figure 5.5 corre-
sponds to results computed using the approach we described in this chapter, the second row
corresponds to level set method-based method, the third row corresponds to color K-means-
based method, and the fourth row corresponds to direct seeded watershed method. In addition,
we show the hand-labeled images of U2OS data and NIH3T3 data as the ground truth separate-
ly in Figure 5.5(i) and Figure 5.5(j) in the final row. In Figure 5.6, we show the segmentation
results on sample histology images with different staining techniques, in which each column
corresponds to a distinct staining technique (details have been described in the previous section),
while each row corresponds to a distinct segmentation method (the row order is the same as Fig-
ure 5.5). In addition, in Figure 5.7, we show the result of yeast cells (obtained from Dr. Lages’
group from UT Southwestern Medical Center [46]), which were observed with bright light under
a 40x objective using a Nikon Ti-E2000 microscope. Cells are delimited either by a dark or white
boundary.

From the comparison we can see that when nuclei samples are imaged clearly with distinct e-
nough borders (for example, parts of image in Figure 5.4(a) and Figure 5.5(a)), all methods tested
are able to achieve reasonable results. However, when noise or clutter is present, or when images
are screened under uneven illumination (intensity inhomogeneities can be seen in Figure 5.5(a)
and Figure 5.5(b)), most methods fail to segment nuclei very well (Figure 5.5(d), (f) and (h)).
Comparatively, our template matching approach still performs well on these images. The im-
provements are pointed out by white arrows in Figure 5.5. In addition, our template matching
approach can be naturally applied to higher dimensional data, as can other algorithms, such as
RGB channel images (Figure 5.6(a), (b) and (c)), and achieve what can be visually confirmed
as better segmentation results over the existing methods tested. The improvements are pointed
out by black arrows in Figure 5.6. We note that in several locations (pointed out by arrows) our
method performs better at segmenting cluttered nuclei. We also note that other methods often
detect spurious locations as nuclei. Finally, we also note that our template matching approach
is also much more likely (because it is constrained to do so) to produce contours that are more
smooth and more realistic than the several other methods used for comparison.

5.3.4 Quantitative evaluation

We used the synthetic dataset described above to calculate the average count produced by each
method. We also studied the performance as a function of the clustering probability for this sim-
ulated dataset. The result is shown in Table 5.1, where C.A. refers to ”Count Accuracy”, while
O.P. refers to ”Overlap Probability” of data at each column. For the fluorescence microscopy
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(a) (b)

(c) (d)

Figure 5.4: Nuclei counting in synthetic images. Upper left: results of our template matching
approach. Upper right: result obtained with level set method. Bottom left: results obtained with
color K-means-based method. Bottom right: results obtained with seeded watershed method.
Note that green square dots represent correct detections, red square dots represent missed detec-
tions, and yellow square dots represent spurious detections.
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Figure 5.5: Nuclei detection and segmentation from different fluorescence images. Note that the
improvements are pointed out by white arrows. First row: results obtained with our template
matching approach. Second row: results obtained with level set based method. Third row: re-
sults of color K-means-based method. Fourth row: results of seeded watershed method. Last
row: hand-labeled results as the ground truth. First column: results of U2OS fluorescence im-
age under uniform illumination. Second column: results of NIH3T3 fluorescence image under
heterogeneous illumination.
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Figure 5.6: Nuclei segmentation from histopathology images with different staining. Note that
the improvements are pointed out by black arrows. First row: results of our template matching
approach. Second row: results of level set-based method. Third row: results of color K-means-
based method. Fourth row: results of seeded watershed method.
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Figure 5.7: Segmentation result on cellular microscopy image

data (U2OS and NIH3T3), we follow the same evaluation procedure as documented in [135], in-
cluding: (1) Rand and Jaccard indices (RI and JI), which are used to measure the fraction of the
pairs where the two clusterings agree (higher means better); (2) two spatially-aware evaluation
metrics: Hausdorff metric and normalized sum of distances (NSD) (smaller means better); (3)
counting errors: split, merged, added, and missing (smaller means better).

We also compare the results of the methods discussed above together with two other methods:
active masks [214] and a merging based algorithm [16], as well as a manual delineation result. In
Table 5.2, for both U2OS and NIH3T3 data, we can see that although the Hausdorff metric values
are quite high for our template matching approach, most segmentation metrics are comparable
or better than many of the the existing algorithms. Our segmentation result also performs better
than the manual delineation result (JI, Split for U2OS data, Split and Missing for NIH3T3 data)
explored in [135]. More details pertaining to each method used in this comparison are available in
[135]. The high Hausdorff metric can be explained by two reasons: (1) some bright noise regions
are detected (especially in NIH3T3 dataset) and no morphological post-processing is used in our
template matching approach and (2) we choose a relatively high threshold µ that discards some
incomplete nuclei (small area) attached to the image border in some images. However, these
incomplete nuclei are included in the manual delineated ground truth. The first reason may
explain why the ”Added” error for NIH3T3 dataset is much higher than for U2OS dataset. In
addition, the second reason may also explain why, excluding the active masks method [214],
our algorithm misses more of the U2OS cells (last column of this table). On the other hand, for
the NIH3T3 image data which contains intensity heterogeneities, the method we propose misses
the fewest nuclei. We also note that, for the Rand and Jaccard indices, the normalized sum of
distances (NSD) metric, and splitting errors, for both U2OS and NIH3T3 dataset, our results
are similar to or better than the best results produced by other methods (excluding the manual
delineation result).
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Table 5.1: Nuclei Counting Accuracy
Algorithms C. A.

(O.P.:
0)

C. A.
(O.P.:
0.15)

C. A.
(O.P.:
0.30)

C. A.
(O.P.:
0.45)

C. A.
(O.P.:
0.60)

Template matching 99.8% 86.5% 84.7% 80.6% 76.2%
Level Set [38] 99.4% 86.4% 83.1% 78.6% 71.2%
K-means [133] 100.0% 87.7% 84.3% 80.2% 72.5%

Seeded Watershed [181] 99.9% 91.0% 88.1% 84.7% 78.4%

Table 5.2: Quantitative Comparison of Nuclei Segmentation
Algorithm
(U2OS/NIH3T3)

RI JI Hausdorff NSD(×10) Split Merged Added Missing

Manual 95%/93% 2.4/3.4 9.7/12.0 0.5/0.7 1.6/1.0 1.0/1.2 0.8/0.0 2.2/3.2
Watershed
(direct)
[181]

91%/78% 1.9/1.6 34.9/19.3 3.6/3.7 13.8/2.9 1.2/2.4 2.0/11.6 3.0/5.5

Active
Masks [214]

87%/72% 2.1/2.0 148.3/98.0 5.5/5.0 10.5/1.9 2.1/1.5 0.4/3.9 10.8/31.1

Merging Al-
gorithm [16]

96%/83% 2.2/1.9 12.9/15.9 0.7/2.5 1.8/1.6 2.1/3.0 1.0/6.8 3.3/5.9

Level Set
[38]

91%/81% 2.39/2.30 96.6/122.8 0.85/5.0 1.1/1.4 0.35/1.4 2.75/4.2 0.85/8.2

K-means
[133]

90%/78% 2.36/2.35 94.6/100.6 1.05/6.15 1.56/0.45 0.3/0.9 2.6/2.75 1.6/17.4

Template
matching

95%/91% 2.50/2.72 77.8/131.2 0.64/2.65 0.58/0.51 1.45/2.49 0.9/3.7 3.48/2.8

Finally, we also studied how the number of nuclei used for training affects the performance of
the proposed method. This was done for both U2OS and NIH3T3 dataset, by randomly selecting
nuclei (of different sample sizes), and then implementing the method as described above. We
found that the performance of several different quantitative metrics, such as the Rand index,
NSD, etc., do not vary significantly when different amounts/types of nuclei samples are used
(data omitted for brevity).

5.4 Conclusion and discussion
In this chapter, we described a method for segmenting cell nuclei from several different modali-
ties of images based on supervised learning and template matching. The method is suitable for
a variety of imaging experiments given that it contains a training step that adapts the statistical
model for the given type of data. In its simplest form, the method consists of building a statis-
tical model for the texture and shape variations of the nuclei from the input of a user, and then
segmenting arbitrary images by finding the instance in the model that best matches, in the sense
of the NCC, local regions in the input images. We note that given an experimental setup, once
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the training operation is completed, the method is able to segment automatically any number of
images from the same modality. We have demonstrated the application of the method to several
types of images, and results showed that the method can achieve comparable, and often times
better, performance compared with the existing specifically designed algorithms. Our main mo-
tivation was to design a method for segmenting nuclei from microscopy images of arbitrary types
(scalar, color, fluorescence, different staining, etc.). To our knowledge ours is the first method
to apply a template matching approach which includes texture and shape variations to accurate-
ly delineating nuclei from microscopy images. In addition, to our knowledge ours is the first
method to utilize a supervised learning strategy to build such a statistical model, that includes
texture and shape variations in multiple channels, for detecting nuclei from microscopy images.

In a practical sense, our method provides three main contributions. First, its overall perfor-
mance is robust across different types of data with little tuning of parameters. We have demon-
strated this here by applying the same exact software (with the only difference in each test being
the value for µ) to a total of six different imaging modalities and showing the method perform-
s as well or better than all other methods we were able to compare against. The performance
was compared quantitatively and qualitatively, using both real and simulated data. Compari-
son results with a total of six alternative segmentation methods are shown here. Other, simpler,
segmentation methods were also used for comparison, including several thresholding schemes
followed by morphological operations. The results of these were not comparable to many of
the methods shown here. Therefore, we have omitted them for brevity. Secondly, amongst the
methods we have tested in this manuscript, we show that our method is the only method (besides
manual segmentation) that is capable of handling significant intensity inhomogeneities. This is
due to the fact that we utilize the NCC metric in the registration-based segmentation process.
The NCC metric is independent of the overall intensity of the local region of the image being
segmented. Finally, we also mention that, amongst all methods tried, the template matching
method we described produced noticeably more smooth and accurate borders with fewer spuri-
ous contours. This can be seen, for example, by close observation of Figure 5.6. The smoothness
in the contours obtained by our method is primarily due to the fact that the statistical modeling
we use includes only the main modes of variation in nuclear shape. These tend to be, topically,
size, elongation, as well as bending (in addition to rotation). High order fluctuation in contours
do occur in nuclei at times, but these do not occur as often as the ones already mentioned. We
note that the method is still flexible enough to accurately segment nuclei that do not conform to
these main modes of variation given the elastic matching procedure applied in the last step of the
procedure.

We also note that our algorithm has several parameters including the percent of variance in
PCA analysis, ε in the calculation of ”average” template, σ, s, κ in the non-rigid registration pro-
cedure, and µ in the approximate segmentation procedure. The algorithm is not unduly sensitive
to these, as the same fixed parameters were utilized in all six experiments (datasets) used in
this chapter. The only parameter that was selected differently for each dataset was the detection
threshold µ. When ground truth is available, we described a method to automatically choose the
optimal µ for the given dataset. In addition, in our current implementation, we discard the top
and bottom 1% (in size) of the generated templates, in an effort to reduce outlier detections. This
percentage too could be made dataset dependent through a cross validation procedure, when the
precise ground truth is present.
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Finally, it is important to describe the computational cost of our template matching approach,
which is also important in evaluating the performance of an algorithm. Our approach consists of
a training stage and a testing stage, and is implemented in MATLAB 64 bit mode and tested on
a PC laptop (CPU: Intel core i5 2.30GHz, memory: 8GB). The computational time for training
a statistical model (560 simulated templates) from 20 nuclei samples (window size: 155× 179),
for example, is about 1.6 hours. Detecting and segmenting all cell nuclei (36 nuclei) from a
fluorescence image (1030× 1349) takes about 20 minutes (about half a minute per nucleus). We
note however, that the computational time can often be significantly reduced by implementing
the algorithm in a compiled language such as C, for example. In addition, we note that the
computational time should be considered in context to alternative segmentation methods capable
of producing results (albeit not as accurate) on similar datasets. The level set algorithm by Chan
and Vese, which is used in a variety of other nuclear segmentation methods, takes even longer
to compute on the same image (23 minutes) in our implementation (also in MATLAB). Finally,
we note that the computational time of our algorithm can be decreased by utilizing a multi-
scale framework. That is, instead of performing the filtering-based approach for detection in the
original image space, we have also experimented with first reducing the size of the image (and
templates) by two for the initial detection only (the remaining part of the method utilized the full
resolution image). Thus we were able to reduce the total computation time for the same field of
view to roughly 10.6 minutes. The accuracy of the final segmentation was not severely affected
(data not shown for brevity). Future work will include improving the computational efficiency
of this method by further investigation of multi-scale approaches, as well as faster optimization
methods (e.g. conjugate gradient). Finally, we note again that the approach described above
utilizes all color information contained in the training and test image. In cases where the nuclear
stain color is known precisely, the approach can be easily modified to utilize only that color. In
addition, many existing techniques for optimal color transformation [215] can also be combined
with our proposed approach in the future for better performance.
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Chapter 6

Conclusion and Discussion

The motivation for this Ph.D. research work comes out from the fact that although current seg-
mentation methods have already performed adequately in the applications for which they were
designed, these methods still have a couple of drawbacks: a large number of algorithms suc-
cessfully used in real applications were specifically designed for the given application, thus, a
significant amount of tuning and calibration is usually required before an algorithm that was
specifically designed for one application can be used in another. Even then, in many cases, the
chosen method may not perform satisfactorily. Therefore, a researcher faced with a new problem
or application, must often spend considerable resources to modify (or develop a new) a reliable
segmentation method capable of extracting the structures of interest for the given application.

The big goal is to propose a general purpose segmentation system, which can be applied to d-
ifferent biomedical applications with little tuning or calibration, and achieve comparable or even
better results compared with the state-of-the-art methods specifically designed for each applica-
tion. To be general, the proposed system should be able to segment a variety of biological objects
with different structures (e.g. tissues, nuclei, cells, etc.) from different imaging modalities (MRI,
CT, histology, etc). In addition, the system can be used with two or three-dimensional data, as
well as scalar or vector valued (e.g. color) images. If the proposed aim can be achieved, such a
system can be utilized as a general segmentation tool, which can be widely used in a variety of
biomedical applications.

In this dissertation, we have proposed such a system that satisfies the requirements mentioned
above based on supervised learning strategy. The system is general in the sense that, given
sufficient training data, it can be used to segment a variety of biological structures, from different
imaging modalities. First, a user provides the system with a few hand labeled/segmented images,
which can be easily achieved without extensive customization in most cases, and then, the system
proceeds by ”learning” a classification-based function that can be used to estimate the class of a
given pixel (e.g. background vs. object). Once such a function is learned, it is then coupled with
a region optimization algorithm (together with any geometric/shape bias terms available from
the training data) for producing the segmentation of any unknown images. In summary, we have
several innovations in this research work:

Our first innovation is to propose a general image segmentation framework based on super-
vised learning. We show that the feature vectors comprised from intensity neighborhoods, can be
utilized as a simple and general feature, which provides decent segmentation performance across
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different types of biomedical applications compared to the state-of-the-art methods specifically
designed for these applications. However, we note that the intensity neighborhood features are
quite sensitive to intensity variation, thus, data must be appropriately normalized for both train-
ing and testing data to guarantee the segmentation performance. In addition, the feature derived
from intensity neighborhoods may fail due to the intensity heterogeneity problem (e.g. caused by
uneven illumination condition) existing in the data, as we show some texture examples in Chap-
ter 3. Thus, how to design a more robust feature that is insensitive to intensity heterogeneity
problem is important and necessary, which will be one of our research directions in the future.

In addition, such a segmentation framework is designed to work across multiple scales. In
order to prevent the disadvantage of using large neighborhoods that they amount to high dimen-
sional spaces, making estimation and pixel classification difficult, we utilize small neighborhoods
(e.g. N = 3 or 5) instead for maintaining reasonable computational costs. In order to capture the
useful information of biological structures for different classes, we utilize multiple windows of
the same size, but each window corresponds to a scale (obtained through different levels of blur-
ring and sub-sampling). Therefore we can associate each pixel in the training set (as well as
during actual classification of a test pixel) several sets of neighborhoods with the same size N
but under different resolutions, comprising the multiple scales associated with that pixel. In this
dissertation, weighted confidence voting is utilized to produce the final prediction, and how to
better integrate classification information from each scale for prediction can be our next research
direction in the future.

We compared the application of our system to several other segmentation approaches in three
distinct biomedical image segmentation tasks: segmentation of tissues from 3D brain MR im-
ages, segmentation of tissues in color histology images, and segmentation of nuclei from gray-
scale fluorescence microscopy images. We have chosen at least one other relatively modern
segmentation method for comparison in each application. Overall, our general purpose segmen-
tation system performed as well as (or at times better than) some of the best available custom
tailored methods in each application, which validates the feasibility of this framework. We also
note that the system consists of several modules, some of which can be replaced with advanced
modules (e.g. classification module) later.

Our second innovation is to propose a fast classification algorithm based on data selection
instead of SVM classifier previously used, where the basic idea is to select a small portion of
subset from the original big training set, and use a very simple classifier (1-nearest neighbor
classifier) to predict the label of each pixel. Since an obvious current drawback of our previous
system is that it trades computation time for generality, the big challenge in developing a practi-
cal segmentation system is how to deal with big amount of training data so that both classification
accuracy and computational speed can be guaranteed. We proposed a new majority-voting based
data selection criterion, which works similarly to greedy algorithm in the way that at each iter-
ation, one data point from the class with the lowest classification accuracy will be chosen and
added to the current subset. We show that when the data is appropriately selected, even a weak
classifier using a small portion of training data is able to achieve decent classification perfor-
mance. We also show that the computational efficiency has been greatly improved at the same
time. For example, in our previous implementation (all computation times reported were based
on a single 2.0GHz Intel Xeon processor), the computing time for training the SVM classifier
from 1.2 × 105 training samples for the histology image segmentation tests at one single scale

82



March 15, 2013

was 14.5 hours, and 6.4 hours for segmenting an image of size 1103 × 1421 pixels. In the new
classification algorithm, for the same histology images of teratoma, it takes 2.11 hours to select
a subset from 3.99× 106 instances, and 0.41 hours to segment the same image.

Meanwhile, we should note that this fast classification algorithm still has several limitations:
(1) the proposed data selection criterion has been shown experimentally to outperform several
other data selection criteria, however, we did not provide any theoretical proof to show why
this criterion works, or how it can be improved. Thus, it is necessary to seek the theoretical
support for the proposed data selection criterion, which helps the readers to better understand
the essence of this criterion. (2) it is worth investigating what else information can be utilized
to better select data instances. One hypothesis is to assume that pixels near the spatial border
between different classes may contain more useful discriminant information for classification,
and we provide two experimental examples to show that this hypothesis might be true. In the
first experiment, we would like to show the spatial correspondences of support vector points that
consist the optimal decision boundary. We test the hypothesis on the fluorescence microscopic
images of nuclei and histological images of nuclei. Pixels from the two classes: nuclei and
background, are randomly sampled to construct the training set, and the intensity neighborhood
window feature is used as the feature vector for each pixel. Since the decision boundary with
the maximal margin has been proved to be the optimal decision boundary [52], we will utilize
the support vector machine (SVM) to find the optimal decision boundary by calculating the
support vectors, which are the points near the decision boundary (optimal decision boundary)
that maximize the margin between different classes. For validation, we plot these support vector
points spatially on both fluorescence microscopic image and histological image in Figure 6.1 to
show the relationship between the spatial position and the feature space position. In Figure 6.1,
we use blue and red to represent the support vector points for nuclei class and background class
respectively. Clearly, we can see that most support vector points exist near the spatial boundary
between nuclei and background, which validates our hypothesis in some sense. In the second
experiment, we would like to show that when we only choose the pixels near the spatial border
between different classes for training, we can still achieve similar performance for classification.
We choose the fluorescence nuclei images for testing, and the manually segmented result as the
ground truth. In order to validate the hypothesis from an opposite direction, we only consider
the pixels near the spatial borders between nuclei and background and again, randomly sample
the pixels inside and outside the nuclei as from two classes, and implement the same pixel level
classification procedure using SVM classifier. In Figure 6.2, we can see that although some noise
exists, most nuclei can be segmented accurately. Again, the result proves that our hypothesis can
be feasible. Thus, the correspondence between pixel space and feature space will be investigated
as our future work. (3) Finally, it is necessary to investigate a faster implementation for distance
calculation. Either in SVM or in 1-NN classifier (also the same for many other state-of-the-
art classifiers), distances (e.g. L2 distance) between feature vectors are to be calculated for
classification purpose. In this research work, L2 distance between feature vectors is calculated
directly. However, we note that since each feature vector is constructed from a square window
intensity neighborhood, if the L2 distance between two feature vectors can be represented in the
form of intensity neighborhoods, the L2 distances between every feature vector in the training set
with all feature vectors (all pixels) from the testing image can be implemented by convoluting the
square window of that training feature vector with the whole testing image via fast convolution
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trick, and thereby, the computational time can be significantly reduced.

(a) (b)

Figure 6.1: Support vectors plotted on the different modalities of images (a) fluorescence micro-
scopic nuclei image (b) histological nuclei image

(a) (b) (c)

Figure 6.2: Segmentation result using the pixels near the spatial borders (a) original image (b)
segmentation result only using the pixels near the borders for training (c) the ground truth

Our third innovation is that we proposed a deformable model for region optimization, which
is able to delineate regions that encompass each single object in the image automatically, provid-
ing the segmented regions with smooth borders/surfaces and removing noise at the same time.
Different from some state-of-the-art models [164], which require the probabilities of pixels be-
longing to different classes as the input, our model is more general in the sense that it takes the
classification decision value/confidence directly as the input, and takes both region information
and edge information into consideration for optimization. We note that the proposed model can
be generally utilized as a standard post-processing step after pixel classification processes in d-
ifferent types of experiments to optimize the segmented regions. We also show experimentally
that such a model is able to provide much better result rather than simply grouping the pixels
with the same label as the segmented regions. In this Ph.D. research work, we provide the model
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for the case of binary classes, and we will extend such a model to multiple classes case as our
future work.

Our last innovation is to propose another general system based on supervised learning for
segmenting biomedical objects with a strong shape prior information available, and we focus on
segmentation of cell nuclei in this work. We note that this system is suitable for a variety of
imaging experiments given that it contains a training step that adapts the statistical model for the
given type of data, and a testing step that segments arbitrary images by finding the instance in the
model that best matches, in the sense of the normalized cross correlation (NCC), local regions
in the input images. Given an experimental setup, once the training operation is completed, the
method is able to segment automatically any number of images from the same modality. To
our knowledge, our system is the first method to apply a template matching approach which
includes texture and shape variations to accurately delineating nuclei from microscopy images.
In addition, to our knowledge our system is the first method to utilize a supervised learning
strategy to build such a statistical model, that includes texture and shape variations in multiple
channels, for detecting nuclei from microscopy images.

In a practical sense, the proposed system provides three main contributions. First, its overall
performance is robust across different types of data with little tuning of parameters. We have
demonstrated this here by applying the same exact software (with the only difference in each
test being the value for µ) to a total of six different imaging modalities and showing the method
performs as well or better than all other methods we were able to compare against. Secondly,
amongst the methods we have tested in this manuscript, we show that our method is the only
method (besides manual segmentation) that is capable of handling significant intensity hetero-
geneity. This is due to the fact that we utilize the NCC metric in the registration-based segmenta-
tion process, which is independent of the overall intensity of the local region of the image being
segmented. Finally, we also mention that, amongst all methods tried, the template matching
method we described produced noticeably more smooth and accurate borders with fewer spuri-
ous contours. The smoothness in the contours obtained by our method is primarily due to the fact
that the statistical modeling we use includes only the main modes of variation in nuclear shape.
These tend to be, topically, size, elongation, as well as bending (in addition to rotation). High
order fluctuation in contours do occur in nuclei at times, but these do not occur as often as the
ones already mentioned. We note that the method is still flexible enough to accurately segment
nuclei that do not conform to these main modes of variation given the elastic matching procedure
applied in the last step of the procedure.

Finally, it is necessary to discuss the computational cost of our template matching approach,
which is also important in evaluating the performance of an algorithm. Our current system is
implemented in MATLAB, which may take some time for segmenting nuclei from one image,
for example, it takes about 20 minutes to detect and segment all cell nuclei (36 nuclei) from
a fluorescence image (1030 × 1349), however, we note that the computational time can often
be significantly reduced by implementing the algorithm in a compiled language such as C, for
example. We also note that the computational time of our algorithm can be even decreased by
utilizing a multi-scale framework. That is, instead of performing the filtering-based approach
for detection in the original image space, we have also experimented with first reducing the size
of the image (and templates) by two for the initial detection only (the remaining part of the
method utilized the full resolution image). Thus we were able to reduce the total computation
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time for the same field of view to roughly 10.6 minutes. The accuracy of the final segmentation
was not severely affected (data not shown for brevity). Future work will include improving the
computational efficiency of this method by further investigation of multi-scale approaches, as
well as faster optimization methods (e.g. conjugate gradient). Finally, we note again that the
approach described above utilizes all color information contained in the training and test image.
In cases where the nuclear stain color is known precisely, the approach can be easily modified
to utilize only that color. In addition, many existing techniques for optimal color transformation
[215] can also be combined with our proposed approach in the future for better performance.
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Appendix A

Here we describe the non-rigid registration algorithm used in both the training and segmentation
steps outlined above. Let T (x) represent a target image (usually a raw image to be segmented)
to which a source image (in our case the template) S(x) is to be deformed such that T (x) ≈
Su(x) = S(x− u(x)), with u(x) representing the warping function to be computed. We wish to
maximize the square of the multichannel normalized cross correlation (NCC) between the two
images:

Φ(u) =
1

Nch

Nch∑
j=1

(
〈Sju, T j〉
‖Sju‖‖T j‖

)2

(A.1)

where Nch is the number of channels, and ‖T‖2 = 〈T, T 〉 =
∑

x T (x)T (x), where the sum is
computed over the (fixed) image grid. We note that maximizing the squared NCC is equivalent
to maximizing the NCC. We choose the squared NCC since it provides a more general frame-
work, in which both positive and negative cross correlations can be optimized to the same effect.
Equation (A.1) is maximized via steepest gradient ascent. The gradient of it is given by:

∇uΦ(uk; x) =
2

Nch

Nch∑
j=1

〈Sju, T j〉
‖Sju‖4‖T j‖2

×(〈
Sju, T

j
〉
Sju(x)− ‖Sju‖2T (x)

)
∇Sju(x) (A.2)

In practice we convolve∇uΦ(u,x) with a radially symmetric Gaussian kernel of variance σ2

in order to regularize the problem. Optimization is conducted iteratively starting with u0(x) = 0,
and uk+1(x) = uk + κGσ(x) ∗ ∇uΦ(uk; x), where Gσ is the Gaussian kernel, ∗ represents the
digital convolution operation, and κ is a small step size. Optimization continues until the increase
in the NCC value falls below a chosen threshold.

In addition, we perform the maximization above in a multi scale framework. That is, we
utilize a sequence of images [T (x)]2 , [S(x)]2, [T (x)]1 , [S(x)]1, and [T (x)]0 , [S(x)]0, where
[T (x)]2 denotes the image T donwsampled by four (reduced to 1/8 of its size) after blurring,
[T (x)]1 denotes the image T donwsampled by two (reduced to 1/4 of its size) after blurring, and
[T (x)]0 denotes the original image being matched. The algorithm starts by obtaining an estimate
for u(x) (using the gradient ascent algorithm described above) using images [T (x)]2 , [S(x)]2.
The estimate of the deformation map u is then used to initialized the same gradient ascent algo-
rithm using images [T (x)]2 , [S(x)]2, and so on.
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(a) (b) (c) (d)

Figure A.1: Accurate segmentation process. (a) real image patch; (b) simulated image patch; (c)
the warping mesh; (d) the final accurate segmentation result.

In Figure A.1, we show an example of non-rigid registration between a real nucleus and a
template, in which Figure A.1(a) shows the original image of a nucleus, while Figure A.1(b)
shows a nucleus template that best matches the real nucleus. Non-rigid registration process is
implemented, which deforms the template to the real nucleus in Figure A.1(c), where the wrap-
ping mesh is shown in green, and blue contours represent the border of best-matching template.
After deformation, we shown the segmentation result in Figure A.1(d), in which red contours
represent the border of the template after deformation. Apparently, we can see that the border of
the template after deformation delineates the border of real nucleus very accurately.
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network and active contour model for multispectral brain MRI segmentation,” Biomedical
Engineering, IEEE Transactions on, vol. 51, no. 3, pp. 459–470, 2004. 1.2.1

[79] Y. Artan, D.L. Langer, M.A. Haider, T.H. van der Kwast, A.J. Evans, M.N. Wernick,
and I.S. Yetik, “Prostate cancer segmentation with multispectral mri using cost-sensitive
conditional random fields,” in Biomedical Imaging: From Nano to Macro, 2009. ISBI’09.
IEEE International Symposium on. IEEE, 2009, pp. 278–281. 1.2.1

[80] R. Toth and A. Madabhushi, “Multifeature landmark-free active appearance models: Ap-
plication to prostate mri segmentation,” Medical Imaging, IEEE Transactions on, vol. 31,
no. 8, pp. 1638–1650, 2012. 1.2.1

[81] L. Zhukov, ZS Bao, I. Guskov, J. Wood, and D. Breen, “Dynamic deformable models for
3d mri heart segmentation,” in SPIE Medical Imaging, 2002, vol. 4684, pp. 1398–1405.
1.2.1

[82] D. Metaxas, T. Chen, X. Huang, and L. Axel, “Cardiac segmentation from mri-tagged and
ct images,” in 8th WSEAS International Conf. on Computers, special session on Imaging
and Image Processing of Dynamic Processes in biology and medicine, 2004. 1.2.1

[83] O. Kubassova, “Automatic segmentation of blood vessels from dynamic mri datasets,”
Medical Image Computing and Computer-Assisted Intervention–MICCAI 2007, pp. 593–
600, 2007. 1.2.1

[84] C.A. Castro, A. Ben-Yehudah, J.A. Ozolek, P.H. Mills, C.J. Redinger, J.D. Mich-
Basso, D.A. McFarland, S.L. Oliver, E.T. Ahrens, and G. Schatten, “Semiquantitative

94



March 15, 2013

histopathology and 3d magnetic resonance microscopy as collaborative platforms for tis-
sue identification and comparison within teratomas derived from pedigreed primate em-
bryonic stem cells,” Stem cell research, vol. 5, no. 3, pp. 201–211, 2010. 1.2.1, 2.3.3, 3.3,
3.3.3

[85] C. W. Pouton and J. M Haynes, “Embryonic stem cells as a source of models for drug
discovery,” Nature Reviews Drug Discovery, vol. 6, no. 8, pp. 605–616, 2007. 1.2.1, 2.3.3

[86] H. Thomson, “Bioprocessing of embryonic stem cells for drug discovery,” Trends in
biotechnology, vol. 25, no. 5, pp. 224–230, 2007. 1.2.1, 2.3.3

[87] S. Naik, S. Doyle, M. Feldman, J. Tomaszewski, and A. Madabhushi, “Gland segmen-
tation and computerized gleason grading of prostate histology by integrating low-, high-
level and domain specific information,” in MIAAB Workshop. Citeseer, 2007. 1.2.1

[88] P.S Karvelis, D.I Fotiadis, I. Georgiou, and M. Syrrou, “A watershed based segmentation
method for multispectral chromosome images classification,” in Engineering in Medicine
and Biology Society, 2006. EMBS’06. 28th Annual International Conference of the IEEE.
IEEE, 2006, pp. 3009–3012. 1.2.1

[89] S. Petushi, F.U Garcia, M.M Haber, C. Katsinis, and A. Tozeren, “Large-scale computa-
tions on histology images reveal grade-differentiating parameters for breast cancer,” BMC
Medical Imaging, vol. 6, no. 1, pp. 14, 2006. 1.2.1

[90] O. Sertel, J. Kong, U.V Catalyurek, G. Lozanski, J.H Saltz, and M.N Gurcan, “Histopatho-
logical image analysis using model-based intermediate representations and color texture:
Follicular lymphoma grading,” Journal of Signal Processing Systems, vol. 55, no. 1, pp.
169–183, 2009. 1.2.1

[91] J. Kong, O. Sertel, H. Shimada, KL. Boyer, JH. Saltz, and MN. Gurcan, “Computer-
aided evaluation of neuroblastoma on whole-slide histology images: Classifying grade of
neuroblastic differentiation,” Pattern Recognition, vol. 42, no. 6, pp. 1080–1092, 2009.
1.2.1

[92] O. Sertel, J. Kong, H. Shimada, UV. Catalyurek, J.H Saltz, and M.N Gurcan, “Computer-
aided prognosis of neuroblastoma on whole-slide images: Classification of stromal devel-
opment,” Pattern Recognition, vol. 42, no. 6, pp. 1093–1103, 2009. 1.2.1

[93] R. Bhagavatula, M. Fickus, W. Kelly, C. Guo, J.A. Ozolek, C.A. Castro, and J. Kovačević,
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