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Abstract

Energy efficiency has become the critical factor of computing performance in platforms

from embedded devices, portable electronics to servers in datacenters. Power density and

peak power demands increase in each generation of microprocessors, which directly lead

to a higher operating temperature that exceeds the cooling capability available on cur-

rent multi-core systems. These physical constraints seriously hinder the development of

the next-generation computing platform. In this thesis, we propose Gray-Box comput-

ing, the methodology of a learning-based framework that incorporates the prior domain

knowledge to quantitatively model every aspect of a multi-core system, including perfor-

mance, power consumption and operating temperature. Experimental results show that

the learned model achieves more than 96% accuracy, compared to actual industrial mea-

surements or full-system simulations. By exploiting the learned model, the proposed Gray-

Box computing has enabled a wide variety of applications − from simulation speedup to

multi-constrained optimization with respect to performance, energy efficiency and relia-

bility for a multi-core system. Gray-Box computing has also been extended to model the

performance−specifically, the job inter-arrivals−of a datacenter, which is in the scale of

tens of thousands of cores. Experimental results are poised to demonstrate the strength of

Gray-Box computing. Future work will focus on applying Gray-Box computing to model

the usage dynamics of datacenters.
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Chapter 1

Introduction

For the last few decades, the advances in the technology of IC design and manufactur-

ing have led to an explosion in the amount of transistors being integrated. Modeling the

performance of computing systems with this ever-growing complexity in a timely manner

has become a challenging and critical issue. In this thesis, we propose a learning-based

framework to accurately and efficiently model every aspect−performance, power, and op-

erating temperature−of a computing system. The learned models usually possess desired

properties, such as convexity and conjugacy1, for further multi-constrained optimization.

1.1 Performance and energy efficiency

As Moore’s Law continues to shrink the feature size of transistors, ever more transistors

can now be integrated into a single chip. For the last four decades, this technology scal-

ing has been the fundamental driving force in improving the performance of a computing

system. However, in the technology node of 22 nanometer and below, the supply volt-

age (Vdd) and threshold voltage (Vth) of a transistor cannot be scaled down proportionally

with its feature size [1], resulting in the increase of power density in each process genera-

tion of technology scaling. In addition to power density, peak power demands, which are

1Conjugacy here refers to the prior and posterior distributions of the same mathematical form. More
details can be found in Chapter 2
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proportional to the simultaneous switching activities of transistors, also exceed the cool-

ing capability (the ability to dissipate heat) available on current computing systems. Due

to these trends, energy efficiency has become a limiting factor in computing performance

for all types of platforms, from hand-held devices to mainframe computers deployed in

datacenters.

Power density directly translates into heat, and consequently the operating temperature

of a processor is getting higher. Excessively high operating temperature is the root of many

reliability issues, and can cause temporary timing errors as well as permanent physical

damages [2]. The rates of several failure mechanisms, such as aging effects and electro-

migration, increase exponentially when the operating temperature increases. Furthermore,

high operating temperature is known for increasing a processor’s power consumption, es-

pecially leakage power [2, 3]. The increase of leakage power contributes to the increase of

total power consumption, which in turn increases the operating temperature. This thermal-

leakage positive feedback loop may lead to thermal runaway phenomenon, and in the worst

case may burn the chip.

To scale out from tens of processors (multi-core) to tens of thousands of processors, i.e.,

the scale of a datacenter, energy efficiency has become an even more severe issue. In ad-

dition to the reliability problems mentioned above, energy efficiency directly affects the

operation cost (e.g., the cost for operating the cooling system) of a datacenter by approxi-

mately 40% [4]. Other performance metric, such as the response latency of a request, also

needs to be modeled and considered in order to provide the required Quality of Service

(QoS).

1.2 Challenges

To address the issues of energy efficiency, reliability and performance for a multi-core

system, a holistic model that can accurately describe the joint impacts of performance,

power consumption and thermal hotspots is urgently required. Conventionally, system de-

4



signers or computer architects rely on full-system (or circuit) simulations [5, 6, 7, 8], to

estimate the performance metric of interest2 for a certain processor design. Although these

simulation-based methods usually guarantee a good accuracy in performance modeling,

they can be very expensive in terms of execution time (hours to days, per simulation). Since

several different models are operated simultaneously inside a simulator and users only have

direct control over the inputs, these simulators are often used as “black boxes” by users.

In the context of optimization, e.g., architectural design space exploration, designers need

to perform exhaustive search over all possible configurations to find the optimal solution,

which is almost intractable because of the long simulation time.

The presence of manufacturing process variations, also known as process variations,

makes the accurate performance modeling even more challenging. Process variations in-

troduce uncertainties into the performance of each identically-designed processor, such as

a magnitude increase in leakage power dissipation [9] and significant performance loss.

Therefore, system designers can no longer be isolated from the inherent variability in pro-

cessor’s physical behaviors, such power dissipation and thermal hotspot, and only pursue

processor performance. Instead, they need to perform joint optimization for both perfor-

mance and other crucial physical parameters, for which an analytical model that can enable

multi-constrained optimization is urgently required.

1.3 Thesis contributions

In this thesis, we propose Gray-Box computing3, the methodology of a learning-based

framework that provides a systematic approach to “learn” an analytical function for quan-

titatively modeling the performance of a multi-core system. As opposed to conventional

simulation-based or physics-based models, Gray-Box computing is a data-driven approach

2“Performance of interest” refers to any metric that one is interested in, such as throughput, power con-
sumption or operating temperature.

3Gray-Box computing is an extension of the “gray-box model” that is widely-used in machine learning
and data mining community. More details are provided in Chapter 2.
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that constructs approximation functions, based on the domain knowledge4 and the under-

lying patterns discovered from a given dataset. The key idea is to construct the skeleton by

using domain knowledge, and specify mathematical details by exploiting the patterns (or

regularities) discovered from the data.

1.3.1 Gray-Box overview

Data‐
centers
Data‐
centersVaria‐

tions
Varia‐
tions

Multi‐
cores
Multi‐
cores

Target system Approaches
 Simulations
 Measurements

Performance metric

 Throughput
 Power consumption
 Operating temperature
 Job requests

Gray‐Box Computing

 Data‐driven
 Domain knowledge:

• Functional forms (Gray‐Box model)
• Parameters (Bayesian inference)

Dataset:
 Features
 Responses

Goals:
 Prediction
 Optimization
 Interpretation

Drawbacks of conventional approaches:
 Time‐consuming for estimation
 Lack of systematic framework for optimization
 Lack of quantitative interpretation

Figure 1.1. Overview of Gray-Box Computing. Gray-Box computing is a data-driven ap-
proach that constructs approximation functions based on the domain knowledge and
the underlying patterns discovered from a given dataset. Unlike conventional physics-
based or simulation-based models that are fixed and used as black-boxes, the flexibil-
ity of Gray-Box computing is retained− we can customize the learning procedure from
which the functions are trained aiming at a specified goal, such as accurate prediction,
multi-constrained optimization, or quantitative interpretation.

4In this thesis, the terms prior domain knowledge, prior knowledge and domain knowledge are used
interchangeably.
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Figure 1.1 presents the overview of Gray-Box computing. Gray-Box computing consists

of two components, gray-box model and Bayesian inference, both of which serve as math-

ematical tools to systematically include one’s prior knowledge into model (or function)

construction. Since Gray-Box computing is a data-driven approach, it morphs dynamically

according to the patterns discovered from the data, resulting in the learned model that can

best represent the combination of domain knowledge and data regularities.

Furthermore, the functions learned from Gray-Box computing can be applied to enable a

wide range of applications − from accurate prediction, multi-constrained optimization, to

quantitative interpretation. Unlike conventional physics-based or simulation-based models

that are fixed and used as black-boxes, the flexibility of Gray-Box computing is retained −

we can customize the learning procedure from which the functions are trained aiming at a

specified goal.

1.3.2 Detailed contributions

In this thesis, we have demonstrated that the proposed Gray-Box computing can be

adapted to model and optimize the performance, power consumption and the thermal dy-

namics of a multi-core systems from a data-driven perspective:

• Finding the optimal operating point. We learn a constrained-posynomial model

to describe the frequency-power relationship. The accuracy of the learned model is

approximately 96%; by leveraging the convexity provided by the learned model, (1)

an additional 13.28% of the energy consumption is reduced under iso-performance

conditions, and (2) the throughput is increased by additional 7.54% under iso-power

conditions.

• Learning core/uncore cooperative control. We demonstrate the performance of

multi-core systems equipped with on-chip communication fabric can be improved

by 10.9% by using reinforcement learning with the parameters learned via Bayesian

inference [10].
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• Auto-regression on thermal dynamics. We show that the learned thermal model,

an linear regression with L1 norm regularizer, achieves 98% of accuracy and 113X

of speedup compared to conventional architectural simulators [11].

• Inter-arrival analysis for a datacenter. We model the job inter-arrivals for a data-

center. The proposed model is able (1) to mimic and interpret multiple components,

and (2) to simulate job requests with the same statistical properties as in the real data

collected from a large-scale, industrial datacenter.

1.4 Thesis organization

The remainder of this thesis is organized as follows. Chapter 2 details the mathematical

formulation of Gray-Box computing. Chapter 3 presents a framework leveraging convex-

ity to find the best operating point for the maximum performance of a multi-core system.

Chapter 4 provides a case study of joint optimization of power and performance, and Chap-

ter 5 provides another case study of thermal dynamics modeling, both targeting at also

multi-core systems. Scaling out from tens of processors to tens of thousands of processors,

Chapter 6 adapts Gray-Box computing for modeling the request inter-arrivals for a data-

center. Chapter 7 provides the related work. Finally, Chapter 8 concludes this thesis and

points to possible directions for future research.
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Chapter 2

Gray-Box computing

Gray-Box computing is a data-driven, learning-based framework that incorporates prior do-

main knowledge; the goal is to learn, based on the data, a function f̂ that can be used as an

approximation of the true function f , when f is unknown, overly-complicated (no closed-

form), or difficult to estimate under uncertainties1. Furthermore, compared to purely-data-

driven approaches such as artificial neural network, Gray-Box computing incorporates prior

domain knowledge to learn a function f̂ that can be customized to enable certain applica-

tion(s) of interest, e.g., performing constrained optimization or making inferences by using

f̂ . The domain knowledge is fused into Gray-Box computing via two components: (1)

gray-box models and (2) Bayesian inference. In general, gray-box models estimate the

functional form of f , and Bayesian inference learns distributions to model underlying un-

certainties. These two components are described in Section 2.1 and Section 2.2, respec-

tively.

2.1 Gray-box models

A gray-box model refers to the situation in which, based on the domain knowledge, we

know the functional form of f (e.g., a linear function) but the corresponding coefficients are

1As a convention in statistics and machine learning community, a symbol with a ĥat represents an estimate
instead of the true value or true function.
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unknown. Therefore, we need to estimate these coefficients by optimizing a certain objec-

tive function. The name gray-box is opposed to white-box such as physics-based models

or finite-element methods, and opposed to black-box such as simulation-based methods

or purely-data-driven methods (e.g., artificial neural network). Gray-Box computing is an

extension of gray-box models, since compared to gray-box models, we further include

Bayesian inference (described in Section 2.2) as another approach to incorporate prior

knowledge to facilitate the parameter learning. In the following section (Section 2.1.1), we

describe the procedure of estimating function coefficients, and in Section 2.1.2 we elabo-

rate on cross validation (CV), an unbiased error estimator, for calculating errors introduced

by the learned model.

2.1.1 Model selection and function estimation

Model selection is a general technique that estimates a function or a set of parameters

that best explain the relationship between input features and output responses. Let us as-

sume that a dataset D is given, where D contains n samples and each sample consists of a

response y and an input vector2 x:

D = {(y,x)`}, ` = 1 · · ·n. (2.1)

where y ∈ R, x = (x1, · · · , xn)T ∈ Rd, and ` represents the `th sample. Here, y and x

are generic representation for the responses and inputs of one’s interest. For example, in

Chapter 5, y stands for the operating temperature and x is the power consumption (and

other features) of a chip-multiprocessor (CMP). Let f be the true function that maps x to

y:

y = f(x) + ε (2.2)

2Bold fonts represent vectors or matrices instead of scalars. Also in this thesis, vectors refer to column
vectors.
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ε is a random variable (usually treated as a random error or noise) that follows a certain dis-

tribution P , denoted as ε ∼ P . In many cases, true f is either unknown, difficult to derive

(no analytical form), or not suitable for further optimization due to its complexity. There-

fore, we adapt the model selection technique to learn f̂ , as the estimate of f , directly from

the dataset of interest. The procedure of learning f̂ is called training phase, as opposed to

validation (or testing) phase in which the accuracy of the learned f̂ is examined.

In the context of gray-box models, we know the approximate (or exact) functional form

of f , based on the domain knowledge, and the coefficients remain unknown. Without losing

generality, here we use a linear function as an example:

f(x;α) = αTx =
d∑
i=1

αixi (2.3)

f(x;α) denotes that α are parameters of f . Now, the problem of learning f is converted

into searching for the best estimate of α = (α1, . . . , αd)
T , denoted as α̂. In general, α̂ can

be obtained by minimizing a loss function, L(α;x):

α̂ = argmin
α
L(α;x) (2.4)

Note that L(α;x) is a function of α (the parameters used in f ), not x (samples). One

widely-used loss function is squared error, which can be plugged into Eq(2.4):

α̂ = argmin
α

n∑
`=1

(
y` − f(x`;α)

)2

= argmin
α

n∑
`=1

(
y` −αTx`

)2

(2.5)

The objective function in Eq(2.5) is a quadratic function, and therefore it is a convex pro-

gram where the optimal values of α̂ can be found efficiently [12]. Here, no constraint is
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specified in Eq(2.5). After α̂ is calculated, f̂ can be constructed by plugging α̂ back into

the original f . This is the well-known linear regression with least-square-fit [13].

By examining the procedure of learning a linear function, we raise an intriguing ques-

tion: can this procedure be customized to learn a function f̂ that possesses certain desired

properties? One example of such properties can be sparsity, i.e., most entities in α̂ are zero,

and another property can be the convexity embedded in a non-linear f̂ . As we will show

in Chapter 3 and 5, f̂ with desired properties can be learned by customizing the functional

form, loss function, or constraints specified to optimization programs such as Eq(2.5).

2.1.2 Cross validation

In the validation phase, the accuracy of the learned model f̂ is examined. Cross valida-

tion (CV) is an unbiased error estimator and widely-used in machine learning and statistics

to avoid over-fitting [14]. Over-fitting refers to the situation that the learned model f̂ fits

the training samples by using an overly-complex model, and has poor predictive accuracy

on the “clean” samples, i.e., the data not used to learn f̂ . The purpose of the validation

phase is twofold. First, we want to examine if f̂ is consistent3 with f . In other words, f̂

should have “very similar behaviors” as f , both qualitatively and quantitatively, over the

domain of f . Second, CV facilitates the process of model selection and avoids the pitfall

of over-fitting. In Section 2.1, we select functional forms for learning f̂ based on prior

knowledge. However, this may not be sufficient in certain cases. For example, we want

to include new features into f̂ , i.e., increasing the dimensionality of x ∈ Rd to Rd′ where

d ≤ d′. In this context, the error reported by CV can be used as an indicator to determine

the best d′ − the d′ that leads to the smallest error reported by CV is selected.

Here, we introduce leave-one-out cross validation (LOOCV) to estimate the error of

the learned model f̂ . LOOCV involves using a single sample from the original dataset as

the validation (clean) data, and the remaining samples as the training data used to learn f̂

3According to [13, 14], the consistency is defined as P(|f(x) − f̂(x)| ≥ δ) → 0 when the sample size
n→∞. δ is a sufficiently-small positive number.
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during the training phase. The process is repeated such that each sample in the dataset is

used exactly once as the validation data. The root-mean-squared-error (RMSE) reported by

LOOCV can be expressed as:

RMSE =

[
1

n

n∑
`=1

(
y` − f̂\`(x`)

)2] 1
2

(2.6)

where f̂\` represents the model learned without the `th sample during the training phase.

The procedure of LOOCV can also be applied for calculating other error metrics, such

as mean-square-error (MSE) or root-mean-square-percentage-error (RMSPE) in Chapter

3. An alternative to perform LOOCV is “k-fold cross validation”, in which the original

sample is randomly partitioned into k equal-size subsets. A single subset, out of the k

subsets, is retained as the validation data for testing the model, and the remaining (k − 1)

subsets are used as training data. The procedure of k-fold cross validation is highly similar

with LOOCV and hence not described here.

2.2 Bayesian inference

Bayesian inference, also known as Bayesian statistics or Bayesian learning, is a statistical

approach that incorporates one’s domain knowledge to estimate a probabilistic distribution

that describe uncertainties. Bayesian inference views each parameter as a random variable,

and applies Bayes’ rule to update the probability (or called belief) of a learned parameter

as additional evidences are observed.
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2.2.1 Bayes rule and prior distribution

Formally, Bayesian inference computes the posterior probability as a consequence of a

prior probability and a “likelihood function” according to Bayes’ rule:

P(θ|D) =
P(D|θ)× P(θ)

P(D)

∝ P(D|θ)× P(θ) (2.7)

whereD is the data observed and θ is a set of parameters that describe the probability distri-

bution of observed data. P(θ|D) is known as the posterior probability, P(D|θ) represents

the data likelihood and P(θ) is the prior probability. The normalization term 1/P(D) is a

constant to force P(θ|D) ∈ [0, 1] and in general does not affect parameter estimates.

2.2.2 Conjugate prior and posterior

The update of the posterior probability is usually an iterative process as shown in Figure

2.1. First we determine the prior probability P(θ) based on our domain knowledge, and

the posterior probability P(θ|D) can be calculated by Eq(2.7), i.e., the multiplication of

data likelihood P(D|θ) and prior P(θ). In the second iteration, the updated posterior is fed

back as a new prior while the data likelihood is also updated since more data are observed.

Therefore, the new posterior can be calculated accordingly.

Figure 2.1. The iterative update of prior, data likelihood and posterior.

After the posterior P(θ|D) is obtained, we select θ̂ that maximizes P(θ|D) as the es-

timate of true θ. θ̂ is called Maximum A Posteriori (MAP) estimate. Like we mentioned

earlier, the prior distribution is determined based on the domain knowledge. A good se-

lection of prior expedites the convergence of θ̂ → θ. Even if the prior is not selected
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properly, MAP always guarantees the convergence of θ̂ → θ with sufficient amount of

data observed. As a comparison to maximum likelihood estimate (MLE) that selects θ̂ to

maximize the data likelihood P(D|θ), MAP employs an augmented optimization by using

a prior distribution over the parameters of interests, θ in this case. Generally, MAP leads

to a more accurate and robust estimate than MLE [14].
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Chapter 3

Learning the optimal operating point for

multi-core systems

Dynamic voltage and frequency scaling (DVFS) is one of the widely-used methods to in-

crease the energy efficiency of a multi-core system. The selection of voltage and frequency

is referred to the “operating point.” To maximize the energy efficiency, we manage to find

the optimal operating point for (1) the maximum performance under the power constraint

and (2) the minimum energy consumption under the performance constraint. In this chap-

ter, we apply Gray-Box computing along with model selection techniques to learn a model

that leverages convexity for multi-constrained optimization.

3.1 Operating points from near-threshold regime to turbo boost

Near-threshold computing (NTC) is a promising design methodology to achieve high en-

ergy efficiency in scaled CMOS technology nodes. In the NTC regime, the supply voltage

(Vdd) of processors is reduced to a value near the threshold voltage (Vth) in order to reduce

energy consumption at the cost of frequency degradation [15]. It has been shown that NTC

can bring an order of improvement in energy efficiency over conventional designs operated

at the nominal supply voltage [16]. However, the significant performance degradation due
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to this aggressive voltage down-scaling may be undesirable for performance-constrained

applications, since the overall performance may drop significantly.

On the other hand, upscaling of voltage/frequency of a processor above nominal settings

has been explored recently by processor manufacturers, i.e., Turbo Boost1 (TB) [17], for

improving the performance [18]. This technique is also referred to as Reverse Dynamic

Voltage Frequency Scaling (RDVFS) by others [10]. The goal of RDFVS is to maximize

performance within a predefined power budget, as opposed to the traditional DVFS goal of

maximizing the performance per unit of power consumption.

3.1.1 Maximum energy efficiency

We conjecture that, to maximize energy efficiency while meeting user specified demands

or constraints, modern processors and multi-core systems have to be equipped with a wide

range of voltage and frequency values that include TB, nominal and NTC modes of oper-

ation. A processor prototype with these capabilities has been recently demonstrated [19].

However, given the variations within/across multi-threaded workloads, the benefits of the

extended range DVFS for multi-core systems have not been quantified. In this context, an

important question to address is to determine the maximum benefit that can be achieved by

performing DVFS over a wide-operating range that includes TB, nominal and NTC modes,

while satisfying predefined constraints.

To answer this question, system designers and computer architects need a systematic

framework that fulfills the following two requirements: (1) the capability to accurately

model the power versus performance curve over a wide operating range in an efficient,

analytic framework, and (2) efficient optimization techniques that leverage the analytical

model to determine the optimal operating voltage and frequency pair for each core un-

der user-specified constraints. However, the performance and power characteristics in TB,

nominal and NTC regimes are distinct, so it is difficult to analytically derive a one-size-fits-

1Turbo Boost technology has been implemented as a standard operation of Intel R© Itanium R© platforms.
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all model. Furthermore, the optimization techniques also need to be carefully designed to

work seamlessly with the model. This interdependency adds extra challenges to the prob-

lem of selecting the best voltage-frequency pair that leads to the maximum performance

(or energy) benefit under predefined constraints.

3.1.2 Contributions and chapter organization

To the best of our knowledge, the following novel contributions are described and sup-

ported in this thesis:

• We propose a constrained-posynomial2 model to learn the frequency-power relation-

ship, based on which leave-one-out cross validation (LOOCV) [20] is applied to

select the best parameters. Experimental results demonstrate that the proposed learn-

ing framework achieves a nearly-consistent [21] model with a root-mean-squared-

percentage-error (RMSPE) of only 4.37%.

• By leveraging the convexity of the learned model, we convert the problem of the

energy minimization under performance requirements into a constrained convex op-

timization problem that can be solved efficiently. The optimal operating frequency

can then be obtained via well-established algorithms for solving convex optimization

problems. We further perform a sensitivity test over various performance require-

ments to examine the best energy efficiency that can be achieved by NTC and TB.

• As opposed to energy minimization, we also determine the maximum possible per-

formance under a given power budget, i.e., the optimality of RDVFS over a wide-

operating range. This optimization is also enabled by the convexity of the learned

model.

• We evaluate the proposed learning-based optimization framework with a wide spec-

trum of parallel, multi-threaded applications [22][23] as well as synthetic bench-
2The mathematical definition of constrained-posynomial is provided in Eq(3.10), Section 3.3.2.
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marks executed on a full-system simulator [24]. The experimental results confirm

the effectiveness of simultaneously using NTC and TB: (1) on average additional

13.28% of the energy consumption is reduced under iso-performance conditions,

and (2) on average throughput is increased by additional 7.54% under iso-power

conditions, both compared with DVFS in the conventional operating range.

The organization of this chapter is as follows. Section 3.2 introduces the necessary

background on near-threshold operations. Section 3.3 details the proposed model learning

process. Section 3.4 presents the constrained optimization framework by using the learned

power-performance model. Section 3.5 provides the overall implementation flow. Section

3.6 demonstrates the experimental results, while Section 3.7 provides the discussion.

3.2 Near-threshold operation & performance metric

In this section, we provide (1) the necessary background of NTC, including both delay

and power calculations, and (2) the performance metric used in this chapter.

3.2.1 Delay model

When transistors are operated in the near-threshold region, the Enz-Krummenacher-

Vittoz model [25] is shown to be very accurate for modeling the electrical current [26].

At the onset of inversion, the current flowing through the drain and source of a transistor

Ids can be expressed as :

Ids =
(
2 · n · µ · Cox ·

W

L
· φ2

t

)
· IC
kfit

(3.1)

where n is the sub-threshold slope, µ is the mobility, Cox is the oxide thickness, W and

L are the gate width and channel length, φ2
t is the thermal voltage, IC is the inversion

coefficient and kfit is a fitting coefficient [26]. Let Vgs represent the potential difference

between the gate and source of a transistor; typically IC > 10 when Vgs � Vth, 0.1 <
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IC < 10 when Vgs is close to Vth (near-threshold), and IC ≤ 0.1 when Vgs < Vth (sub-

threshold).

With Ids, the critical path delay (Dcrit) can be expressed as:

Dcrit = ktech · kstr ·NL ·
(kg · CL · Vdd)

Ids
(3.2)

where NL represents the number of logic levels of the critical path, and ktech, kstr are

technology- and circuit structure-dependent constants. kg is the fitting coefficient for gate

delay and CL is the output load. The maximum operating frequency can be calculated as

1/Dcrit.
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Figure 3.1. Operating frequency under a wide range of Vdd

Fig.3.1 shows the maximum operating frequencies under a wide range of Vdd. The fre-

quency is measured by using a seven-stage fan-out-of-four (FO4) ring oscillator (RO) with

16nm predictive technology model (PTM) [27]. The frequency of an RO has been used as

an accurate proxy for the operating frequency of a processing core in prior work [28]. From

Fig.3.1, we can observe that the curve is approximately linear around nominal and turbo

regions, but sub-exponential in the near-threshold region. A similar trend was also reported

by [19]. Due to the distinct characteristics of these three regions, it is difficult to derive

a one-size-fits-all analytical model that can accurately describe the operating frequencies

over a wide range of Vdd.
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3.2.2 Energy model

The total energy (Eg) consumption per gate in every clock period can be separated into

dynamic energy (Edyn) and leakage energy (Eleak):

Eg = Edyn + Eleak = CL · V 2
dd · αs + Ileak · Vdd ·Dcrit (3.3)

where αs is the average per gate switching activity, i.e., Dcrit as expressed by Eq(3.2). Ileak

is the leakage current per gate, which equals Ids·kfit
IC

. All Ids, kfit and IC are described in

Eq(3.1). Total energy of a logic module can be expressed as:

Etot = kdynstr ·
(
CL · V 2

dd · αs
)

+ kleakstr ·
(
Ileak · Vdd ·Dcrit

)
(3.4)

where kdynstr is proportional to the number of switching gates of a module, and kleakstr is a

function of the total number of devices per module, the fraction of OFF devices and the

stacking effect.

3.2.3 Performance metric

A key metric to measure the performance of a chip-multiprocessor (CMP) is the total

throughput (T ), i.e., the number of instructions executed per unit of time over all cores

in the CMP. Given the instructions executed per cycle (I) of each processing core, the

throughput can be calculated as:

T =
n∑
i=1

Ii · Fi (3.5)

where Fi and Ii are the operating frequency and IPC of core i, respectively. n is the

number of cores in the CMP. According to [29], the instructions executed per cycle (I) can

be expressed as:

I =
[
Ccomp + ρ · τ

]−1 (3.6)
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where Ccomp is the number of clock cycles required for executing an instruction with an

ideal last-level cache (LLC), ρ is the average number of LLC misses per instruction, and

τ is the cache miss penalty, which can be calculated by the average cycles spent per LLC

miss. Eq(3.6) can further be extended to model other performance overheads, such as L1

cache misses and on-chip communication latency, by including additional parameters. In

this chapter, we focus on the effects of LLC and the extension of Eq(3.6) is left as a future

work. Note that τ is measured by using the uncore3 frequency (Fuc). When the frequency of

a core is scaled and differs from the uncore frequency (Fuc), τ needs to be correspondingly

adjusted by multiplying the ratio of the core and the uncore frequency. Therefore, Eq(3.6)

can be further modified as:

I =
[
Ccomp + (ρ · τ) · F

Fuc

]−1 (3.7)

In this chapter, we assume the frequency of each core can be scaled, whereas the frequency

of uncore is fixed to its nominal value. As Fig.3.1 shows, the frequency is defined as

the maximum possible frequency under a given supply voltage. For conciseness, in the

remainder of this chapter, when we mention the change of frequency, we actually refer to

the change of both frequency and voltage, i.e., the frequency-voltage pairs.

3.3 Model learning process

The proposed power model has two components: (1) the frequency function f , and (2)

the utilization function u. To learn f̂ and û, we adapt constrained-posynomial functions to

map both operating frequency and utilization to the corresponding power consumption by

using leave-one-out cross validation (LOOCV). The accuracy and overall validation of the

learned model are also provided.

3In this chapter we refer to uncore as representing the last-level cache and on-chip communication fabric.
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3.3.1 Proposed power model

To study the best possible benefit of applying DVFS over a wide-operating range un-

der workload variations, we first learn a model that accurately characterizes the power

consumption as a function of the operating frequency under different workload behaviors.

Changing the voltage and frequency of a core impacts its power consumption in two ways.

First, as observed in Eq(3.3) and Eq(3.4), the dynamic and static power consumption of

each transistor depend on the operating voltage and frequency. Second, the instructions

executed per second depend on the operating frequency (as seen in Eq(3.7)) and therefore

the utilization of a core changes with the frequency. Thus, the power consumption of a

processing core as a function of operating frequency, P(F), can be written as:

P(F) = P peak
dyn · fd(F) · uI(F) + P peak

sta · fs(F) (3.8)

The equation above consists of three components: (1) P peak
dyn and P peak

sta are the peak dynamic

and static power consumption of each core from the design specifications; (2) fd(F) and

fs(F) encapsulate the impact of voltage and frequency scaling on the peak dynamic and

static power consumption, assuming the the processor utilization remains constant; (3)

uI(F) encapsulates the change in processor utilization as a result of frequency scaling.

Implicitly, I is a function of F as Eq(3.7) shows, and therefore we denote uI(F) with a

subscript of I to express that the utilization is a function of F through I.

From Eq(3.8), except P peak
dyn and P peak

sta which can be obtained from the design specifica-

tion, all three other components need to be learned from empirical data: fd(F), fs(F) and

uI(F). In general, fd(F) and fs(F) model the respective changes of dynamic and static

power consumption due to voltage/frequency scaling from turbo to near-threshold regimes

(workload-independent), whereas uI(F) models the dynamic power changes due to work-

load characteristics.
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3.3.2 Learning frequency-power relationship

In this section, we focus on learning fd(F) and fs(F). Since we adapt the same method-

ology to learn both fd(F) and fs(F), we focus on only fd(F) here and denote it as f for

conciseness. Let p = f(F), where p is the power consumption and F is the operating fre-

quency. The physical interpretation of f is that p represents the amount of power consumed

when a processor (or a processing core) is operating at the frequency of F (assuming con-

stant utilization). All values of p are normalized to the power consumed at the nominal

frequency, Fnom. f can be a complicated function that depends on the technology node,

design details, and other factors including the terms in Eq(3.1)−(3.4).

One approach for determining the relationship between frequency and power consump-

tion is to use physics-based models, such as those used in circuit simulators (e.g., HSPICE R©).

However, to achieve high accuracy, different models must be used in different modes of op-

eration. This makes it difficult to determine a unified, convex analytical function that spans

the wide range of frequency/voltage values ranging from the TB to NTC modes of opera-

tion, which is required to efficiently determine the optimal operating point and is the goal

of this chapter. Therefore, as an alternative to a physics-based model, we propose to learn

a less complex function f̂ that behaves like f .

The model-learning procedure can be separated into two phases: training phase and

validation phase. The goal of the training phase is to learn the model f̂ , while in the vali-

dation phase the accuracy of the learned model is examined. Both phases require a dataset

with samples that contain the power consumption under a certain frequency, denoted as

(p`,F`) for ` = 1, . . . , s, where s is the total number of samples. This dataset can be ob-

tained from simulations or measurements, such as using simulations or measurements from

chip prototypes. As we will show later in Section 3.3.2, the proposed learning framework

achieves high accuracy in the datasets obtained from simulations and from the industrial

measurements provided by [19].
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Training phase

In general, the power consumption p is a monotonically-increasing function of F − oper-

ating a processor at a higher frequency consumes more power when the other conditions

are fixed. We approximate this monotonically-increasing function by using a constrained-

posynomial function. By selecting a proper posynomial degree, a posynomial is convex,

based on which no local minimum exists, or any local minimum equals the global mini-

mum.

The algebraic expression of a general posynomial can be expressed as:

f(F) =
d∑
i=0

αiF
βi = α0F

β0 + α1F
β1 + · · ·+ αdF

βd (3.9)

where αi ≥ 0, βi ∈ R, d ∈ N, F > 0, and Fβi represents the βthi power of F. Unlike

general posynomials that allow βi ∈ R, here we enforce βi ∈ Z+ (non-negative integers)

and define such posynomials as constrained-posynomials:

f(F) =
d∑
i=0

αiF
i = α0F

0 + α1F
1 + · · ·+ αdF

d (3.10)

where all symbols are defined as in Eq(3.9). Since f ′′(F) ≥ 0, constrained-posynomials

are always convex (and strongly convex in our case). Now the problem of learning f is

converted into searching for the optimalα = (α0, . . . αd)
T and d. Bold fonts here represent

vectors or matrices instead of scalars. Under any given d ∈ N, α̂ can be obtain via solving

the following equations:

α̂ = argmin
α

{ s∑
`=1

(
p` −

d∑
i=0

αi(F
`)i
)2}

(3.11)

s.t. αi ≥ 0 , for i = 0 . . . d (3.12)
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where p` and F` are the power consumption and frequency of the `th sample, and s is the

total number of samples. Eq(3.11) is a squared loss function which is commonly used as

the objective to be minimized for curve fitting [30][31][11]. For each αi, the objective

function in Eq(3.11) is quadratic, and all d constraints in Eq(3.12) are linear. Therefore,

Eq(3.11)(3.12) together forms a convex program, whose optimal solution α̂ can be calcu-

lated efficiently by using gradient methods or other algorithms [31].

Validation phase

In the validation phase, the accuracy of the learned model f̂ is examined, which in turn

helps in determining the best d in Eq(3.10). We apply LOOCV to estimate the error of

the learned model f̂ . LOOCV is an unbiased error estimator and widely-used in machine

learning and statistics to avoid over-fitting [20]. Over-fitting refers to the situation in which

the learned model f̂ fits the training samples by using an overly-complex model, such as a

high-order constrained-posynomial, and has poor predictive accuracy on the “clean” data,

i.e., the data not used to learn f̂ . Therefore, the best d in Eq(3.10) can be obtained by

selecting the value that leads to the smallest error reported by LOOCV. LOOCV involves
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Figure 3.2. Cross validation error vs. order of constrained posynomial

using a single sample from the original dataset as the validation (clean) data, and the re-

maining samples as the training data used to learn f̂ during the training phase. The process

is repeated such that each sample in the dataset is used exactly once as the validation data.
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The root-mean-squared-percentage-error (RMSPE) reported by LOOCV can be expressed

as:

RMSPE =

[
1

s

s∑
`=1

(
p` − f̂\`(F`)

p`

)2] 1
2

(3.13)

where f̂\` represents the model learned without the `th sample during the training phase.

Fig.3.2 shows the RMSPE of f̂ with d = 1 . . . 5. The f̂ with d = 4 achieves the smallest

RMSPE of 1.66%, and other values of d yield larger RMSPEs, since either underfitting

or overfitting may occur when an overly-small or overly-large d is selected. The trend

persists when d > 5 (the maximum d considered in this chapter is 10). With LOOCV and

Eq(3.11)(3.12), we have demonstrated a systematic framework to learn the best f̂ for a

given dataset.

Dataset for learning f̂d(F) and f̂s(F)

To learn f̂d, a dataset of dynamic power consumption with a fixed utilization at differ-

ent frequencies, denoted as (p`,F`), is required as the input for the model-learning pro-

cedure (with LOOCV) described in Section 3.3.2 and 3.3.2. Since the utilization of an

odd-stage ring oscillator is always fixed, we measure (p`,F`) by using a seven-stage fan-

out-of-four (FO4) ring oscillator with 16nm predictive technology model (PTM) [27]. The

Vdd is ranging from 0.25V to 1V with the nominal Vdd = 0.7V and the Vth = 0.47V as de-

picted in Fig.3.1. According to [19][16], the operation modes are defined as follows: (1)

Turbo mode: Vdd = [0.7, 1.0] and F = [1, 1.86], (2) nominal mode: Vdd = [0.55, 0.7] and

F = [0.48, 1], (3) near-threshold mode: Vdd = [0.37, 0.55] and F = [0.059, 0.48]. Note that

all F input to our framework are normalized w.r.t. the nominal case. The resulting (p`,F`)

are shown in Fig.3.3, and all the measurements are normalized to the frequency and power

of Vdd = 0.7 to show the relative trend. Similarly, we collect the static power consumption

from an inverter-loop with the same technology setting described above for learning f̂s.
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Accuracy of the learned f̂d(F) and f̂s(F)
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Figure 3.3. Accuracy of learned frequency-power function

We illustrate the accuracy of f̂ in Fig.3.3. The actual frequency-power curve obtained

from the simulations, f , is delineated in red, whereas the one predicted from f̂ is delineated

in blue. The implementation details are described in Section 3.5. As Fig.3.3 shows, the

learned f̂ behaves almost exactly like the actual curve, and achieves a very high accuracy of

98.34% (a RMSPE of 1.66%). Therefore, f̂ is described as nearly-consistent with f , since

its RMSPE is close to zero and its behavior is consistent with the actual model [30]. Finally,

we repeat the complete procedure described in Section 3.3.2 and 3.3.2 to learn fs(F) and

obtain highly simiar results: the RMSPE is 1.21% and the d is 6. To further evaluate

the proposed model-learning framework, we learn the f̂ from the actual frequency-power

measurements provided by [19]. The result is qualitatively and quantitatively similar: the

learned f̂ achieves a RMSPE of only 1.32%. Both results demonstrate the robustness and

generality of the proposed model-learning framework.

3.3.3 Learning utilization-power relationship

After f̂d and f̂s are obtained, we now learn the utilization-power relationship, uI(F). As

prior work (such as [32][33]) has pointed out, the dynamic power can be approximated as a

linear function of IPC, since IPC approximately represents the activity rate of a processing
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core. Therefore, uI(F) can be expressed as:

uI(F) = c1 · I + c2 (3.14)

where c1 and c2 are fitting coefficients. From the dataset, a positive correlation between IPC

and dynamic power consumption has been observed. In other words, higher IPC contributes

to higher dynamic power dissipation, and vice versa, which leads to a positive slope c1.

Furthermore, c2 is also positive since the power is still consumed even for a very low (or

close to zero) IPC. Therefore, both c1 and c2 are positive and the convexity of model is

maintained. Eq(3.14) is a constrained posynomial with d = 1, and we repeat the learning

procedure described in Section 3.3.2 and 3.3.2 to learn ĉ1, ĉ2 with d set to 1.

Here, we describe the dataset (p`, I`) used learn the ĉ1, ĉ2 of ûI(F). As opposed to the

dataset described in Section 3.3.2, the operating frequency of (p`, I`) is fixed at the nominal

value, and therefore the changes of dynamic power dissipations are only from the workload

characteristics, not voltage/frequency scalings. We use Sniper [24] as the architectural

simulator to collect IPCs (I`) and other required workload characteristics (Ccomp, ρ, τ ). The

target architecture is described in Table 3.1. Default settings are used for the parameters

not mentioned here. For benchmarks, we use both PARSEC [22] and SPLASH-2 [23] that

contain a wide spectrum of multi-threaded parallel applications. For calculating power,

we use McPAT [34] to collect dynamic power traces (p`). Finally, the average error of the

learned is ûI(F) 5.60%. Similar results are also reported by others [32][33]. After f̂d(F),

f̂s(F) and ûI(F) are obtained, we are in position to examine the overall learned model

P̂ (F).

3.3.4 Model validation

Previously, the accuracies of f̂d(F), f̂s(F) and ûI(F) are validated separately, and there-

fore the accuracy of the overall learned P̂(F) remains unknown. In this section, P̂(F) is

validated with the power consumption of a whole processor at different frequencies under
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Table 3.1. Target architecture
Parameters Values
Number of cores 16
Nominal frequency 2660 MHz
Core model Intel R©-X86 Gainestown R©

L2 caches Private 256KB, 4-way SA, LRU
L3 caches Shared 32MB, 16-way SA, LRU
DRAM 4GB
Technology 16nm node with nominal Vdd = 0.7V

various workload characteristics. By plugging f̂d(F), f̂s(F) and ûI(F) into Eq(3.8), the

overall power function P̂(F) can be expressed as:

P̂(F) = P peak
dyn · f̂d(F) · ûI(F) + P peak

sta · f̂s(F) (3.15)

= P peak
dyn

( 4∑
i=0

α̂iF
i

)(
ĉ1 · I + ĉ2

)
+ P peak

sta

( 6∑
j=0

α̂′jF
j

)

We collect the power traces, both dynamic and static power, from McPAT with the settings

described in Section 3.3.3. In addition to the nominal frequency (2.66GHz), the frequencies

are also set to the range (from 4.95GHz to 1.28GHz) at which McPAT has been extensively

validated. Please note that NTC is not included here, since McPat has not been validated for

NTC voltage values. Furthermore, only the power values at the nominal frequency are used

to train ûI(F) as described in Section 3.3.3. In other words, the power values calculated

not at the nominal frequencies are not involved in any part of the training process of ûI(F)

(and thus P̂(F)) − they are “clean” to test the accuracy of P̂(F).

Table3.2 shows the overall accuracy of the learned P̂(F). On average, the error is 4.37%,

which confirms that the learned model can accurately describe the power-performance re-

lationship under different voltage/frequency levels and work variations.
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Table 3.2. Error of the learned P̂ . The average error is 4.37% (among all frequencies, all
benchmarks).

PARSEC Bench. blckschls. bdytrck. canneal dedup fluidanim.
F = 4.95GHz 2.57% 3.81% 1.86% 1.26% 2.69%
F = 2.66GHz 5.31% 7.39% 4.25% 7.44% 5.35%
F = 1.28GHz 3.77% 7.72% 1.38% 3.37% 3.87%

PARSEC Bench. raytrc. strmclstr. swaptis. vips
F = 4.95GHz 4.90% 2.04% 2.30% 6.18%
F = 2.66GHz 5.76% 5.55% 5.58% 8.45%
F = 1.28GHz 4.02% 4.17% 4.00% 10.43%

SPLASH-2 Bench. barnes fft fmm lu ocean
F = 4.95GHz 1.48% 2.80% 5.63% 1.57% 1.26%
F = 2.66GHz 4.48% 6.14% 6.69% 4.78% 4.85%
F = 1.28GHz 3.79% 4.26% 6.41% 3.34% 4.21%

SPLASH-2 Bench. radiosity radix water Avg.
F = 4.95GHz 1.79% 2.56% 2.44% 2.77%
F = 2.66GHz 4.54% 7.23% 5.02% 5.81%
F = 1.28GHz 3.11% 4.79% 4.51% 4.54%

3.4 Constrained optimization framework

By leveraging the convexity of the learned model P̂(F), we convert the following two

related problems into convex programs and find the corresponding optimal solutions: (1)

minimizing energy consumption under a predefined throughput requirement, and (2) max-

imizing throughput while satisfying the power constraint.

3.4.1 Energy minimization under throughput constraint

Since the learned P̂ provides an analytical expression that relates the operating frequency

and the corresponding power consumption of a processing core under different workload

characteristics, we are now in position to answer the following question: for a multi-core

system in which each processor is equipped with a wide-operating range, what is the min-

imum energy required for a predefined throughput constraint? We would like to point out
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that, since the purpose of this chapter is to provide a limit study, we do not discretize the

continuous function P̂ into certain frequency-voltage pairs, although we do relax this as-

sumption later4. In addition, we assume the workload characteristic (e.g., IPC) of each core

in every control interval can be obtained via performance counters.

The constrained energy minimization problem of an n-core CMP can be formulated as:

Inputs : IPC for each core, I = (I1, . . . , In)T

Outputs : Frequency for each core, F = (F1, . . . ,Fn)T

Objective : argmin
Fi

n∑
i=1

P̂(Fi)× ϑ

Subject to : T =
n∑
i=1

Ii · Fi ≥ Perfconst (3.16)

n∑
i=1

P̂(Fi) ≤ Powerconst (3.17)

Fmin ≤ Fi ≤ Fmax , ∀i (3.18)

The inputs are the IPC of each core (Ii), and the output are the best operating frequency

(Fi). The objective function is to minimize the energy of the CMP, which equals
∑n

i=1 pi×

ϑ ≈
∑n

i=1 P̂(Fi) × ϑ. ϑ is a design-dependent value that represents the duration of each

DVFS control epoch. Any positive ϑ can be plugged into the proposed optimization frame-

work, and without losing generality ϑ is set to 1 millisecond (ms) in this chapter. Finally,

the selected Fi must satisfy the following constraints: (1) the total throughput (T ) is higher

than or equal to the predefined performance constraint, (2) the total power is less than or

equal to the predefined power constraint, and (3) each Fi must stay within a proper range

defined by Fmin and Fmax. The values of Fmin and Fmax depend on the operating modes

as depicted by Fig.3.1. One possible extension is to accelerate (solving) this optimization

4The experimental results of using DVFS with discretized voltage/frequency levels in wide-operating
range are provided in Section 3.4.3
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program by (1) forcing Eq(3.16) and Eq(3.17) into equality constraints, and (2) reducing

the degree in P̂(Fi) into 3 or lower (with losing some accuracy).

To demonstrate this constrained energy minimization is a convex program, we need to

show that the objective function and all the constraints are convex.

Lemma 3.4.1.1. Let E(F) represent the objective function, E(F) =
∑n

i=1 P̂(Fi) × ϑ. E

is a convex function over F.

Proof. E is a function mapping Rn to R, denoted as E : Rn → R. We prove that E is

convex by showing its Hessian matrix is positive semi-definite [31]. The Hessian matrix of

E can be derived as:

H =
∂2E

∂Fi∂Fj
=


h11 . . . 0

... . . . ...

0 . . . hnn

 (3.19)

where H ∈ Rn×n is the Hessian matrix, and hii is the ith diagonal entity of H (design-

specified constants P peak
dyn , P peak

sta and ϑ are dropped for conciseness):

hii =
∂2E

∂F2
i

=
∂2

∂F2
i

n∑
k=1

P̂(Fk)

=
∂2

∂F2
i

n∑
k=1

{
f̂d(Fk)ûI(Fk) + f̂s(Fk)

}
=

∂2

∂F2
i

{
f̂d(Fi)ûI(Fi) + f̂s(Fi)

}
= f̂ ′′d ûI + f̂dû

′′
I + 2f̂ ′dû

′
I + f̂ ′′s (3.20)

After some algebraic derivations, f̂ ′′d , û′′I , f̂
′′
s , and f̂ ′d are all positive, by plugging in non-

negative learned parameters α̂, d̂ and ĉ described in Eq(3.11)(3.10)(3.14). However, û′I

is negative, and therefore we cannot algebraically show Eq(3.20) is always non-negative.

In this chapter, we plug in all possible values of F and I, and hii ≥ 0 for all i in all
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cases, which means all the eigenvalues of H are non-negative5. Therefore, H is positive

semi-definite (denoted asH � 0), and thereby E is a convex function. �

Lemma 3.4.1.2. Let T (F) represent the function of throughput T over F in Eq(3.16).

Since T (F) =
∑n

i=1 Ii · Fi, T (F) is a concave function over F, and can be converted into

a convex function by negating its sign, −T (F).

Proof. We prove T (F) is concave by showing the Hessian matrix of −T (F) is positive

definite. Note that T (F) is not linear in F; when Fi is scaled, Ii changes correspondingly

as Eq(3.7) suggests. By plugging in Eq(3.7) into T (F), we have:

T (F) =
n∑
i=1

Ii · Fi =
n∑
i=1

Fi

Ci + (ρi · τi) · Fi
Fuc

(3.21)

where Ci, ρi and τi are defined as Eq(3.7), and the subscript i means they are the character-

istics specifically for core i. By negating T (F), we have:

T ′(F) = −T (F) = −
n∑
i=1

Ii · Fi =
n∑
i=1

−Fi
Ci + (ρi · τi) · Fi

Fuc

(3.22)

all symbols are defined as Eq(3.21). LetHT ′ be the Hessian matrix of T ′(F):

HT ′ =
∂2T ′

∂Fi∂Fj
=


h11 . . . 0

... . . . ...

0 . . . hnn

 (3.23)

whereHT ′ ∈ Rn×n, and hii is the ith diagonal entity ofHT ′ . hii can be expressed as:

hii =
∂2T ′

∂F2
i

=
∂2

∂F2
i

n∑
k=1

−Fk
Ck + (ρk · τk) · Fk

Fuc

= 2Ci ·
[
ρi · τi
Fuc

]
·
[
Ci +

Fi · (ρi · τi)
Fuc

]−3
> 0 (3.24)

5For a diagonal matrix, the entities on the main diagonal are its eigenvalues.
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the inequality hii > 0 holds since Ci, ρi, τi,Fuc,Fi are all positive numbers. Therefore, we

have hii > 0 for all i, which means all the eigenvalues of HT ′ are positive and thus HT ′

is positive definite (denoted as HT ′ � 0). We have proved that T ′(F) is a convex function

over F and thereby T (F) is a concave function over F. �

Lemma 3.4.1.3. The inequality constraints in Eq(3.18), Fmin ≤ Fi ≤ Fmax ∀i, are convex.

Proof. Linear functions are both convex and concave [31] and therefore these two inequal-

ities are convex, which directly shows Eq(3.18) is convex. Consequently, Lemma 3.4.1.3

holds. �

We have shown that the constrained energy minimization of a chip-multiprocessor (CMP)

can be converted into a convex program, which can be solved efficiently by Interior Point

method and Dual methods [31]. In this chapter, we implement the Interior Point method by

using Matlab R© to obtain the optimal F that minimizes the energy consumption of a CMP

while satisfying the throughput and other physical constraints. The Interior Point method

is extremely fast, taking only 5ms (in Matlab) to select the best F each control epoch and

opening the possibility of its applicability in an online setting.

3.4.2 Throughput optimization under power constraint

To best understand the advantages of the wide-range DVFS that includes both NTC and

Turbo mode, we also need to explore the optimality from the performance perspective

− the maximum throughput under the peak power and other physical constraints. This
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constrained throughput optimization problem can be formulated as follows:

Inputs : IPC for each core, I = (I1, . . . , In)T

Outputs : Frequency for each core, F = (F1, . . . ,Fn)T

Objective : argmax
Fi
T (F) , T (F) =

n∑
i=1

Ii · Fi

Subject to :
n∑
i=1

P̂(Fi) ≤ Powerconst

Fmin ≤ Fi ≤ Fmax , ∀i

The inputs, outputs and constraints rely on the same metrics as those used in the formulation

of energy minimization in Section 3.4.1. The objection function here is to maximize T (F),

which has been shown to be a concave function in Lemma 3.4.1.2. Furthermore, maximiz-

ing a concave function is equivalent to minimizing the corresponding negated function:

argmax
Fi
T (F) ≡ argmin

Fi
− T (F) (3.25)

By replacing the original objective function with Eq(3.25), the constrained throughput op-

timization is converted into a convex program, and the best F that leads to the maximum

throughput can be calculated efficiently via the methods described in Section 3.4.1.

3.4.3 Impact of discrete V/F levels

So far, to explore the maximum benefit of deploying DVFS within the extended operat-

ing range, we assumed the V/F levels to be continuous. An interesting question arises: how

much optimality, in terms of energy reduction or throughput improvement, is lost due to

the discretization of V/F levels? In other words, we aim to quantify the difference between

the theoretically optimal solution assuming continuous V/F levels with the case where only

few discrete levels are available. By discretizing the V/F levels, the constrained optimiza-

tion problems, including both energy minimization and throughput maximization, can be
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formulated as an integer linear program (ILP) [31]. In this chapter, the normalized frequen-

cies are discretized into four levels: [1.85, 1, 0.77, 0.059] that represent TB, nominal, low

and NTC, respectively. To assess the impact of discrete V/F levels on resulting power sav-

ings or performance improvement, Section 3.6 includes for comparison what the theoretical

(yet, inefficient, given its NP-hardness) ILP formulation would provide when compared to

the approach proposed in this chapter. From a runtime complexity perspective, the ILP for-

mulation can be relatively inefficient, taking several minutes when implemented in Matlab.

3.5 Implementation flow

Figure 3.4. Implementation flow

The flowchart is provided in Fig.3.4. To begin with, we collect the dataset (p`,F`) for

learning f̂d(F) and f̂s(F) that captures the changes of power consumptions at wide-range

operating frequencies (from TB to NTC) as described in Section 3.3.2. Next, we learn

ûI(F) that models the dynamic power changes according to the workload variations as de-

scribed in Section 3.3.3. The design-specific P peak
dyn is set to 70% of thermal design power
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(TDP)6, and P peak
sta is set to 30% TDP. By plugging f̂d(F), f̂s(F) and ûI(F) into Eq(3.8),

P̂ is obtained. We then validate the learned P̂ with the performance and power values

provided by Sniper and McPAT executing PARSEC and SPLASH-2 benchmarks at differ-

ent operating frequencies, as described in Section 3.3.4. The average error is 4.37%, i.e.,

95.63% accuracy is achieved. Furthermore, the overhead of voltage transitions for DVFS

is less than 9ns [35] and therefore is neglectable during each control epoch (1ms). We em-

phasize that the proposed learning framework is generic and is not restricted to a certain

simulator or application.

To perform the limit study of the maximum benefits of deploying wide-range operations

from TB to NTC, the workload characteristics (I, Ccomp, ρ and τ in Eq(3.7)) of each pro-

cessing core along with user-specified constraints are fed into the optimization framework

described in Section 3.4.1 and 3.4.2 to select the best F for each control epoch. Note that

workload characteristics from other sources, such as on-chip performance counters, can

also be plugged into the proposed framework for calculating the best F. Finally, the perfor-

mance constraint in Eq(3.16) and the power constraint in Eq(3.17) are set to the throughput

achieved and power consumed, respectively, under the nominal Vdd and F for each bench-

mark.

3.6 Experimental Results

The experimental results of (1) energy minimization under throughput requirements,

and (2) throughput maximization under power constraints are provided in the next three

subsections, respectively.

3.6.1 Energy analysis

Here, we evaluate the energy minimization under throughput and other physical con-

straints, as described in Section 3.4.1, by using DVFS over a wide range of operations.
6To enable fair comparisons, the new TDP is set to 95/4W for a processing core, since Gainestown R© is a

quad-core CMP and its TDP is 95W.
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Figure 3.5. Energy minimization under throughput requirements. Top: minimum energy
achieved under the 100% throughput constraint. Bottom: minimum energy achieved
under the 90% throughput constraint.

Fig.3.5 shows the energy consumption of each PARSEC and SPLASH-2 benchmark and

workload mixture. Each workload mixture is created by randomly mixing different PAR-

SEC and SPLASH2 benchmarks to form a heterogeneous multi-threaded application. For

example, mixture c50p represents a mixture in which 50% of threads are core-bound (computationally-

intensive)7 and the rest of them are memory-bound (memory-access-intensive) [22].

Fig.3.5(top) shows the minimum energy achieved under the 100% throughput (TP) con-

straint (or iso-performance), and Fig.3.5(bottom) shows the minimum energy achieved un-

der the 90% TP constraint, which means at most 10% of TP is sacrificed in order to re-

duce energy consumption. Note that all results are optimal and all constraints listed in

Eq(3.16)(3.17)(3.18) are met. “*DVFS” stands for applying DVFS within the extended op-

erating range that includes TB, nominal and NTC, “R-DVFS” corresponds to DVFS with

TB capabilities, “NT-DVFS” corresponds to DVFS with NTC capabilities, “DVFS” in-

7A core-bound thread usually requires a smaller working set of caches, and therefore most operations can
be done without intensive DRAM accesses [22].
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cludes regular (nominal) DVFS only, and “Dis-*DVFS” represents *DVFS with discretized

V/F levels based on an ILP formulation as described in Section 3.4.3. All results are nor-

malized to the energy consumption at the operating frequency at nominal Vdd = 0.7V

(denoted as Fnom) without DVFS.

From Fig.3.5(top), we have the three important observations. (1) *DVFS achieves a

significant energy reduction of 22.33% without compromising any throughput, of which

13.28% comes from using extended range DVFS with TB and NTC whereas 9.02% is from

using DVFS with conventional operating range. This directly demonstrates the importance

and the advantage of applying DVFS over a wide-operating range. We also extend the

operating range to include sub-threshold, and the energy reduction is only 0.8% (23.2%

overall reduction) better. (2) NT-DVFS, R-DVFS, DVFS and Dis-*DVFS reduce energy

consumption by 17.29%, 12.52%, 9.02% and 16.55%, respectively. Compared to DVFS,

adding Turbo mode (R-DVFS) helps energy reduction, which has also been pointed out in

previous literature [36]. Also, discretizing V/F levels leads to 5.78% (22.33%−16.55%)

loss in optimality on average, even if only four discrete levels are available. (3) Heteroge-

neous workloads (workloads with different thread-level characteristics) receive more bene-

fits from *DVFS. For example, compared to blackscholes in which each thread has similar

characteristics, the energy reduction of ferret is more significant. ferret is implemented us-

ing the “pipeline programming model” [22] that has distinct characteristics for each thread

and frequent thread migration. These two facts make its behavior similar with hetero-

geneous workloads; the heterogeneity among threads provides more room for leveraging

performance and energy consumption of the whole CMP via the proposed framework, and

therefore a more significant energy reduction can be achieved without compromising the

overall throughput. A similar phenomenon can be observed for dedup and mixture c25p.

Fig.3.5(bottom) shows even more significant energy reduction: on average 45.29% of en-

ergy is reduced by using *DVFS with at most 10% throughout reduction, of which 11.85%

can be attributed to extended range DVFS only. Also from Fig.3.5(bottom), we can ob-
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serve that NT-DVFS performs almost as well as *DVFS, whereas R-DVFS behaves simi-

larly with DVFS. Dis-*DVFS reduces the average energy by 43%. In this case, only 2.29%

(45.29%−43%) energy saving is lost compared to optimal results due to V/F discretiza-

tion. All the above evaluations are enabled exclusively by our proposed learning-based

optimization framework.

3.6.2 Performance analysis

In this section, we evaluate the throughput improvement under power constraints as de-

scribed in Section 3.4.2. Fig.3.6 shows the throughput of each PARSEC and SPLASH-2

benchmark and workload mixture. The labels are as defined in Section 3.6.1. All results

are normalized to the throughput at the Fnom without DVFS.

Figure 3.6. Throughput improvement under power constraints. Top: Throughput im-
provement under 100% power constraint. Bottom: Throughput improvement under
110% power constraint.

From Fig.3.6(top), under the iso-power condition, *DVFS, R-DVFS and Dis-*DVFS

achieve 7.54%, 5.11% and 3.48% average throughput improvement, respectively. This fact
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again necessitates the use of DVFS over a wide-operating range that includes TB, nominal

and NTC, since doing so helps improve the performance. Note that NT-DVFS and DVFS

are not allowed to select the frequency higher than Fnom, and therefore their throughput is

the same as the baseline. Furthermore, benchmarks with more thread-level heterogeneity

receive higher improvement. For example, dedup and ferret have 17.35% and 23.83%

higher throughput, respectively, whereas blackscholes only improves by 0.23%.

Fig.3.6(bottom) shows the throughput improvement under 110% of power constraint.

The improvement for each benchmark is similar with the results in Fig.3.6(top). On aver-

age, *DVFS achieves 9.86% throughput improvement under the 110% power constraint. In

this case, Dis-*DVFS improves throughput by 4.68% on average, which is approximately

5% away from optimal performance improvement. If more discrete levels are available,

the loss in optimality will be lower. Again, all the results are theoretically-optimal, which

directly demonstrates the strength of the proposed learning-based optimization framework.

3.6.3 Frequency selection analysis
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Figure 3.7. The Histogram of the optimal F usage. (a)-(d) Continuous frequency se-
lected by *DVFS. (e)-(h) Discretized frequency selected by Dis-*DVFS. X-axis represents
the normalized value of F and Y-axis stands for the counts.

Finally, we examine the optimal F usage for energy minimization and throughput im-

provement, i.e., the proportion of a certain value of F is selected by *DVFS and Dis-*DVFS
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to minimize the energy or improve the throughput during each control epoch. The normal-

ized frequency ranging from [1.85, 0.059] (the maximum F in TB and the minimum F in

NTC) is equally discretized into 10 bins. Let us first focus on the frequency selected for

energy minimization. Fig.3.7(a)(e) demonstrates the respective F selected by *DVFS and

Dis-*DVFS under 100% throughput requirement, and Fig.3.7(b)(f) shows the results under

90% throughput requirement. As Fig.3.7(a)(e) shows, both *DVFS and Dis-*DVFS are

forced to select a F (close to Fnom) to satisfy the 100% throughput requirement, whereas in

Fig.3.7(b)(f), we can observe that both *DVFS and Dis-*DVFS tend to select a lower F to

reduce energy since the constraint allows at most 10% loss in throughput.

Fig.3.7(c)(g) demonstrates the respective F selected by *DVFS and Dis-*DVFS under

100% power constraint, and Fig.3.7(d)(h) shows the results under 110% power constraint.

As Fig.3.7(c)(d) shows, *DVFS takes advantage of continuous frequency levels and selects

values slightly higher than the nominal frequency (Fnom) to improve throughput while sat-

isfying the power constraint at the same time. On the other hand, most of the F selected

by Dis-*DVFS are one (Fnom); very rarely F = 1.85 (TB) is selected. The results here

suggest an opportunity of re-discretizing V/F levels without losing much optimality, which

we leave as a future work.

3.7 Discussion

In this chapter, we adapt the model-selecting technique and LOOCV from machine

learning to learn the best constrained-posynomial P̂ for modeling the workload-dependent

power-frequency relationship over an extended range. Based on the convexity provided

by the learned P̂ , two optimization frameworks are proposed: energy minimization under

throughput constraints and throughput maximization under power constraints. The exper-

imental results confirm the benefits of the wide-operating range: on average, additional

13.28% of energy is reduced under the iso-performance condition and the average through-

put is increased by additional 7.5% under the iso-power condition, compared with DVFS
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in the nominal operating range. One straightforward direction of future work is to extend

these evaluations to include process variations which are known to become increasingly

important in NTC.
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Chapter 4

Joint optimization of power and

performance for multi-core systems

Moving from a multi-core system that contains only processing cores (the focus of Chapter

3) to a system that incorporates both processing cores and on-chip communication fabrics,

a new control paradigm is needed to further improve the performance as well as the energy

efficiency. In this chapter, we apply reinforcement learning (RL) to determine the operat-

ing points for both processing cores and on-chip communication fabrics. Specifically, the

parameters used during the reinforcement learning are learned via the Bayesian inference.

4.1 Network-on-chip for multi-core systems

Over the last decade, microprocessor design trends have shifted to chip-multicores from

the classic monolithic, single core systems. In a multi-core system, processing elements or

cores must communicate with each other under parallel, multi-threaded workloads, thereby

potentially creating performance bottlenecks in the communication fabric [37]. To re-

duce this overhead, the network-on-chip (NoC)1 paradigm [37, 38] has been proposed as a

promising solution for on-chip communication for massively-integrated CMPs. However,

1Network-on-chip (NoC) and on-chip networks will be used interchangeably throughout this chapter.
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the enhanced performance and capabilities of such platforms are usually constrained by

the on-chip power consumption. While dynamic power management has been extensively

studied for multi-core systems in the context of core-only or uncore (on-chip communica-

tion fabric) only, the cooperative power management of core and uncore2 has remained a

critical issue not sufficiently explored.

In the context of using dynamic voltage and frequency scaling (DVFS) for minimum

power consumption under performance constraints, a possible cooperative power man-

agement for both core and uncore resources introduces additional challenges that require

maintaining appropriate performance levels for parallel applications executing on the sys-

tem. For example, in multi-threaded applications, spin locks and other synchronization

mechanism may amplify small timing differences into very different program execution

paths [39], thereby impacting the memory system behaviors substantially. In addition,

a significant mismatch between core and uncore frequency may cause unexpected traffic

contentions and therefore, may result in significant performance penalty [40]. As a result,

how to reliably control cores and uncores in synergy via DVFS while maintaining power

constraints remains an open question that needs to be addressed in the context of advanced

multi-core systems.

4.1.1 Contributions and chapter organization

To the best of our knowledge, our learning model brings the following novel contribu-

tions:

• We present, for the first time, the evaluation of and comparison among core-only,

uncore-only and cooperative core/uncore DVFS control for performance boosting.

The experimental results confirm that performing DVFS for cores or uncores sepa-

rately may not be effective for NoC-based CMPs as they are characterized by smaller

performance per unit of energy gains.
2In this chapter we refer to uncore resource as representing the communication fabric only, such as routers

and links.
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• Compared to conventional DVFS schemes that address power reduction under per-

formance constraints, we propose a “reverse” DVFS: maximize performance while

ensuring that power stays within prescribed power constraints.

• We evaluate the proposed RL-based, cooperative DVFS control for both cores and

uncores with a wide spectrum of parallel, multi-threaded applications. The experi-

mental results confirm the effectiveness − on average 10.9% of program execution

time is reduced while satisfying given power constraints.

This chapter is organized as follows. Section 4.2 provides the target architecture and

detailed formulation. Section 4.3 elaborates on reverse DVFS (RDVFS) by using rein-

forcement learning. Section 4.6 explains the implementation flow, Section 4.7 and Section

4.8 provide the experimental results and discussions, respectively.

4.2 Problem formulation

We introduce the architecture and the problem formulation used herein. The architectural

configuration described is to facilitate the explanation of the proposed methodology, and

the results are generalizable for any multi-core system other than the one described in this

session.

4.2.1 Target Architecture

The architecture used throughout this chapter is a symmetric, NoC-based CMP that con-

sists of 16 tiles, and each tile contains a Pentium4r core, a private L1 cache, a shared

L2 cache and an on-chip router. Table 4.1 provides the detailed architectural parameters.

These 16 tiles are placed in a 4×4 mesh manner. A flit-based mechanism is used for the

NoC architecture. The router design follows the standard 5-stage pipeline [41]. Further-

more, each processing core and its corresponding on-chip router are assumed equipped

with Intel’s Turbo Boostr technology [42]. Therefore, the voltage and frequency pairs,
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Table 4.1. Architectural parameters.
Core Parameters Values Uncore Parameters Values
Number of cores 16 Number of routers 16
Core model Pentium 4r Nominal frequency 3.0 GHz
Nominal frequency 3.0 GHz Router pipeline stages 5 stages
L1-I/D caches Private 64KB, 8-way SA, LRU Flit size 16 Bytes
L2 caches Shared 4MB, 32-way SA, LRU Number of virtual channels 4 per port
Cache coherence MOESI protocol [43] Buffer size 4 Bytes
DRAM 2 GB Network topology 4×4 mesh
Technology 45nm node with Vdd =1.0V Routing algorithm X-Y routing

Table 4.2. Voltage and frequency pairs.
DVFS V/F Pairs Values DVFS V/F Pairs Values
Turbo Vdd 1.3V Baseline Vdd 1.0V

Freq 3.75GHz (Nominal) Freq 3.0GHz
Low Vdd 0.8V Very Low Vdd 0.65V

Freq 2.35GHz Freq 2.0GHz

denoted as V/F pairs, can be set to (1) turbo: 1.3V, 3.75GHz, (2) baseline (nominal): 1.0V,

3GHz, (3) low: 0.8V, 2.35GHz and (4) very low: 0.65V, 2.0GHz. These V/F pairs are

listed in Table 4.2. For conciseness, in the remainder of this chapter, when we mention the

change of frequency, we actually refer to the change of both voltage and frequency, i.e., V/F

pairs. In order to compare with conventional core-only or uncore-only DVFS, we assume

that each core and router can be set to different frequencies to best explore the advantages

of the cooperative DVFS control.

4.2.2 Detailed formulation

The formulation of the cooperative core/uncore DVFS is described as follows. First, the

following two inputs are given: (1) a NoC-based CMP, and (2) a parallel, multi-threaded

workload that can be executed on the target CMP. The decision variables here are the fre-

quency of each core and router. Under initial conditions, all frequencies are set to the

baseline value (3GHz). The objective function to be maximized is overall performance.

In this chapter, the throughput of the CMP is used as the performance metric. Generally,
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performance can be expressed as a function of the frequency and the machine states St (the

state at the tth control epoch). Finally, the power consumption of the whole CMP, including

both cores and uncores, must be less than or equal to the power constraint (Powconst) at all

times.

4.3 Reverse dynamic voltage and frequency scaling (RDVFS) via re-

inforcement learning

This section elaborates on two main components of the proposed reinforcement learn-

ing (RL) framework: Markov decision process (MDP) and maximum a posteriori (MAP)

estimate.

4.4 Markov decision process (MDP)

The concept of RL can be described via the interactions between an agent and the en-

vironment with uncertainties. The agent attempts to find the best action on the fly for

interacting with the various states of the environment, in order to receive the highest re-

ward. Therefore, a MDP-based learning model, such as V learning or Q learning [14],

consists of: (1) an agent; (2) a finite state space S ∈ {s1 . . . sn}; (3) a set of available

actions A ∈ {a1 . . . am}; and (4) a reward function rt = r(St, At) where t represents the

time. As a convention in statistics, capital variables such as S represent random variables

and lowercase variables such as s1 stand for the values observed. The goal of the agent is

to maximize its expected long-term reward. This can be achieved by learning a policy π

which can be viewed as a mapping between the states and the actions. Table 4.3 lists the

parallel between MDP and dynamic power management concepts.

Figure 4.1 presents a MDP model. At each time point, the agent chooses an action a ∈ A

based on the state St to receive the long-term highest reward. Based on the current state St
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Table 4.3. MDP and dynamic power management.
MDP Dynamic power management
Agent Controller

Select an action Select a Voltage/Frequency
Environment states Machine states

Rewards High performance

Figure 4.1. A Markov decision process.

and the action At , the state transition probability of St+1 can be calculated as:

P(St+1 = si|St = sj, A
t = ak) = θi (4.1)

where si, sj ∈ S and ak ∈ A. Here, we define this transition probability as θi. More pre-

cisely, θi represents the probability that state si will be reached given that sj, ak was reached

during the previous time point. Given sj, ak, let θ = {θ1, · · · , θ|S|} represent the probability

for each value taken by St+1, i.e., {s1, · · · , s|S|}. For simplicity of explanation, we assume

that the states of MDP in Figure 4.1 are observable instead of hidden. In other words, on-

chip performance or power counters are readily available for all resources; if the states are

hidden, expectation maximization (EM) [14] or other algorithms can be used to predict the

state. Furthermore, the first-order Markov assumption is used here: the probability of St+1

depends on only St and At, and therefore P(St+1|St, At, St−1, . . . ) = P(St+1|St, At). No

information before time t is required to calculate the conditional probability.

The new state St+1 provides a reward to the agent, and the agent learns the control

policy π : S → A to maximize the long-term expected reward
∑∞

t=0 γ
tE[rt], where γ
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is the discount factor between (0,1). γ is used to discount the future reward so that the

long-term reward will converge to a certain value after a sufficiently long time. Since the

state transition is not deterministic, the expected value is calculated as the expected reward:

Eθ[rt] =
∑

si∈S r
t × θi. Given π : S → A, we can define V π(s) as

∑t=∞
t=0 γtEθ[rt],

where V π(s) represents the long-term expected reward an agent can receive if the agent

follows the action sequence chosen according to π, starting at state s. Then, the best policy

is π∗ = arg maxπ V
π(s),∀s. Assuming that the state transition probability θ is known,

we can calculate the best π∗ and the V π(s) in a recursive way to obtain the best control

policy V π∗(s). If θ remains unknown, the learning problem relies on the estimates of the

state transition probability. In this chapter, we will demonstrate that, by using maximum a

posteriori (MAP) estimate with a proper prior distribution, learning θ can be much faster.

4.5 MAP estimate for state-transition probability

The key step in MDP is to learn the unknown state transition probability, θi = P(St+1 =

si|St = sj, A
t = ak), as mentioned in Section 4.4. θ heavily depends on the characteristics

of the application workload and the underlying processor design. In other words, θ is both

machine- and application-dependent. Therefore, θ has to be learned on the fly during the

program execution, which is known as the main strength of RL − adaptivity.

Here, we applied MAP to estimate the values of θ. Like mentioned in Section 2.2.2,

MAP is closely related to maximum likelihood estimate (MLE), but it employs an aug-

mented optimization which incorporates a prior distribution over θ. First, we define d as

the observed data of St+1 = st+1 given (St = sj, A
t = ak), and we want to estimate θ,

denoted by θ̂ which equals the maximum value of P(θ|d) (or called mode in statistics).

P(θ|d) can be interpreted as: after d happened, how should the probability of θ be updated?

Recall the Bayes rule in Eq(2.7), P(θ|d) can be rewritten as:

P(θ|d) ∝ P(d|θ)× P(θ) (4.2)

53



where P(θ|d) is the posterior distribution, P(d|θ) represents the data likelihood and P(θ) is

the prior distribution. The normalization term 1/P(d) is not shown here since it is a constant

and does not affect estimates. Once we determine the prior distribution P(θ), the posterior

distribution P(θ|d) can be updated by Eq(4.2) as the data likelihood P(d|θ) changes since

more state transitions are observed by the agent (or the controller). The likelihood function

P(d|θ) follows the multinomial distribution:

P(d|θ) =
N !∏i=|S|
i=1 xi!

|S|∏
i=1

θxii (4.3)

where xi ∈ {0, · · · , N} and
∑
xi = N . xi represents the occurrences of St+1 = si, given

St = sj, A
t = ak. N represents the total number of occurrences of St = sj, A

t = ak. The

numerical intuition behind this multinomial likelihood is that, given N , we could calculate

how likely St+1 will take on the value of si by using its corresponding occurrence xi.

With Eq(4.3), the data likelihood can be calculated, but we still need to determine the prior

distribution to calculate the posterior distribution.

The prior distribution is usually selected based on one’s domain knowledge. By selecting

a good prior, the posterior distribution can converge faster, and thus the estimate of state

transition probability, θ̂, can be obtained earlier during the program execution. In this

chapter, we propose to use a Dirichlet distribution as the prior distribution:

P(θ) =

∏i=|S|
i=1 Γ(αi)

Γ(
∑i=|S|

i=1 αi)

|S|∏
i=1

θαi−1i (4.4)

where αi represents the “hallucinated3 counts of si, and Γ(αi) is the Gamma function that

equals the factorials of (αi − 1). αi is similar to xi in Eq(4.3) except that xi represents

the actual counts of si , whereas αi stands for our “belief” or “domain knowledge” of how

3These hallucinated counts αi can be any positive integer or 0. If the learning process is sufficiently long,
θ will be learned correctly and αi is irrelevant. This is known as “the prior is forgotten [14]”
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many times si should happen before any data are given. Empirically, the range of αi is set

to 101 − 102.

Next, we multiply Eq(4.3) by Eq(4.4) to obtain the posterior distribution:

P(θ|d = {x1 · · · x|S|}) =

∏i=|S|
i=1 Γ(αi + xi)

Γ(N +
∑i=|S|

i=1 αi)

|S|∏
i=1

θαi+xi−1i

=

∏i=|S|
i=1 Γ(βi)

Γ(
∑i=|S|

i=1 βi)

|S|∏
i=1

θβi−1i (4.5)

where βi = αi + xi. The numerical intuition of βi is that, besides the actual observations

(xi), we add the hallucinated counts (αi) to adjust P(θ|d). In other words, intuitively the

domain knowledge is used to aid the estimate of the state transition probabilities. Further-

more, it can be seen that Eq(4.5) and Eq(4.4) are in the same general form of Dirichlet

distributions (only the parameters α, β are different), which is known as “conjugate” prior

and posterior pairs. Each time a new state transition d is observed, the posterior distribution

can be updated by the multiplication of new data likelihood and the prior by using Eq(4.2),

and thus, the updated posterior can be fed back into Eq(4.2) as an updated prior ready to

estimate the new posterior since they are in the same form.

4.6 Implementation flow

In this section, we describe the experimental setup and the simulation infrastructure in

detail.

4.6.1 Performance modeling infrastructure

For the simulation infrastructure, we use Simics [44] and GEMS [5] as a full-system,

many-core simulator to evaluate the proposed RL control. The operating system is con-

figured as Linux in Simics. Furthermore, RUBY [5] and GARNET [41] are embedded in

GEMS to enable the functional and timing simulations of the cache system and the on-chip
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communication fabrics, respectively. Detailed parameters are mentioned in Section 4.2.1.

Default values are used as system parameters if not specifically mentioned. For the work-

loads considered, we use PARSEC [45] as multi-threaded, parallel applications to evaluate

the benefits of the proposed control strategy. PARSEC covers a wide spectrum of data shar-

ing and synchronization, which creates both on-chip and off-chip communication close to

realistic workloads.

4.6.2 Power modeling for on-chip resources

We use the power model proposed by [46] to calculate the power consumptions of pro-

cessing cores. This power model is calibrated by Intelr Xeonr X7350, and the difference

between the actual power consumption and the fitted one from [46] is less than 10%. There-

fore, it can accurately calculate the power consumption of NoC-based CMPs emulated by

our simulation infrastructure.

For the power model of NoC, we use Orion [47] built in GARNET to provide the power

consumption of the on-chip communication fabrics, including routers and links. We further

modify and shrink the technology node in Orion to 45nm by using the parameters provided

by Orion 2.0 [48]. Finally, CACTI [49] is integrated into RUBY to calculate the power

dissipated by L1 and L2 caches in different states (e.g., Read, Write and Standby).

4.6.3 Controller design

The proposed RL-based controller can be implemented as a kernel thread executing on

each processing core. Also, the proposed MAP can be implemented very efficiently with

a table-lookup technique. We implemented and optimized the controller in C++ and eval-

uated it on our full-system simulator. The timing overhead is around 0.03 ms, while each

control epoch (or period) is 1.2ms (therefore, controller overhead is around 2%). The power
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overhead of the proposed control is less than 0.32 Watts per tile, which is less than 1% of

the thermal design power (TDP)4.

For the overhead in memory usage, extra memory space is needed to record all state

transition probability. Conventionally, the machine states are defined by three performance

counters− instruction per cycle (IPC), misses per kilo instruction (MPKI) and router buffer

utilization (BU). These three metrics represent the respective metric of performance from

cores, caches and on-chip networks, and thus are sufficiently representative as the machine

states of the whole CMP. The number of states per tile is |S| = |IPC|× |MPKI|× |BU |.

Here, we use four states to represent |IPC|, three states for |MPKI| and two states for

|BU |, all based on the utilization rates from [50, 51]. Hence, the total number of states per

tile is 24 and thus the overhead in memory space is very low.

As a comparison, we re-implement the DVFS controls proposed by [50] and [51]. We se-

lect “Threshold-based” control of [50] and aggressively upscale the frequency settings for

improving the performance. The original baseline frequency in [50] is raised to the Turbo

mode (3.75GHz), and the rest of settings are changed in a similar fashion. For uncore-

DVFS, the “freqboost” of [51] is used to maximize the performance − the frequency is

set to 3.75GHz (Turbo) by default. The frequency of a router will be reduced if the oc-

cupancy of its downstream routers’ buffers is greater than 60% [51], which is considered

as potential network congestion. Finally, the power constraint is set to the larger value of

the peak power consumption from core-only DVFS or uncore-only DVFS, which is around

350Watts to 470 Watts.

4.7 Experimental results

This section presents the experimental results, including the overall analysis, energy-

delay product and network latency.

4Since the power model [46] is originally for quad-core (Xeonr X7350, TDP=130Watts) and we apply it
on the 16-core CMP, the new TDP will be 130× 4 = 512 Watts.
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4.7.1 Execution time analysis

(a) Normalized execution time
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(b) Normalized energy-delay product

Figure 4.2. Overall analysis.

Figure 4.2(a) illustrates the analysis of the program execution time for each PARSEC

benchmark. “C-D” stands for the Core-only DVFS based on [50], whereas “U-D” is the

Uncore-only DVFS based on [51]. All results are normalized to the “Baseline”, i.e., the

case without any DVFS. On average, the proposed RL control achieves 10.9% reduction

of the execution time, and outperforms C-D and U-D almost in all cases except Dedup.

Dedup is implemented using a “pipeline programming model” [45] that has two properties:

(1) distinct characteristics for each thread, and (2) frequent thread migration: every few

thousand cycles. These two facts make the state transition probabilities hard to estimate.

However, the proposed control still reduces the execution time by around 7.5%. In most

core-bound applications, such as blackscholes, both C-D and the proposed control approach

outperform U-D. On the other hand, in memory-bound applications, such as X264, both U-

D and the proposed control have better reduction than C-D. It is also worth mentioning that

C-D has longer execution time in StreamCluster and X264, which will be explained later

in Section 4.7.2. These results clearly demonstrate the effectiveness and robustness of the

proposed control, compared to C-D and U-D.

Figure 4.2(b) provides the comparisons of energy-delay products. It can be seen that

the proposed control achieves the lowest energy-delay product on average − 6% reduction

compared to the baseline, whereas C-D and U-D achieve only 2% and 4.7% reduction,

respectively. This means the energy efficiency of the proposed control policy is higher
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than both C-D and U-D. Note that the power constraint is met at all times and for each

benchmark. Furthermore, the peak temperatures (calculated by the thermal model proposed

by [46]) of all three control policies stay within 60◦ C for each benchmark, and thus no

thermal emergency occurs due to the “reverse” DVFS.

4.7.2 Network latency analysis
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Figure 4.3. Normalized end-to-end network latency.

Here, we examine the network latency under four different control schemes. Figure 4.3

presents the average end-to-end network latency for each benchmark. As it can be seen, U-

D effectively reduces the network latency by around 19.1%. Considering the reduction of

execution time shown in Figure 4.2(a), it can be seen that the shorter network latency cannot

be directly reflected on the shorter execution time in most cases. This fact reveals that U-D,

i.e., uncore-only DVFS can be very effective, but only in certain cases. On the other hand,

even if the router frequency is fixed at the nominal value, we can see that C-D has longer

network latency in StreamCluster, Vips and X264. This is because the uncore-agnostic

DVFS may change the packet injection rate in the network, which results in unexpected

congestion and thus longer latency. This also explains why we observe that C-D has longer

execution time in StreamCluster and X264 in the previous section. In most cases, the

network latency of the proposed control is longer than the latency of U-D (sometimes it is a

tie) and shorter than the latency of C-D. This is because the proposed control needs to strike
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a balance to distribute the power budget to cores or routers for boosting up the frequency,

in order to achieve the best performance increase. For example, compared to C-D, the

proposed control boosts up the router frequencies (and hence achieves a shorter latency) in

X264, which in turn reduces the program execution time. All the above results demonstrate

that, instead of core-only or uncore-only DVFS, a cooperative control of both cores and

uncores is more effective and robust for NoC-based CMPs, which also demonstrates the

strength of the proposed RL control.

4.8 Discussion

In this chapter, we evaluate and present the advantages of controlling cores and un-

cores in synergy for NoC-based CMPs. As pointed out by [40, 10], performing core-solely

DVFS without being aware of on-chip traffic may reduce the system performance due to

unexpected network congestion. Therefore, we propose a control mechanism based on

semi-supervised RL that is highly adaptive and scalable for advanced CMPs. The proposed

control mechanism learns the state transition probability on the fly, and selects the best

V/F pair to improve the performance. Experimental results show that the proposed control

achieves 11% reduction on the program execution time. One possible extension to reduce

the design overhead is to adapt the proposed semi-supervised RL on the CMP equipped

with a unified V/F island for the whole on-chip communication fabric.
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Chapter 5

Thermal modeling for multi-core

systems

The demand of high performance inevitably increases the power consumption, which in

turn generates heat and elevates the operating temperature of a multi-core system. Exces-

sively high operating temperature damages the reliability of a system, both temporarily

(e.g., soft errors) or permanently (e.g., thermal runaway). In this chapter, we elaborate on

the thermal modeling via Gray-Box computing: a linear regression with an L1 norm reg-

ularizer. Based on the learned model, further thermal optimization (hotspot mitigation) is

also performed and demonstrated.

5.1 Thermal issues and reliability

In recent years, thermal issues have severely hindered the development of highly ad-

vanced and reliable chip-multiprocessors (CMPs). Excessively high operating temperature

is the root of many reliability issues, since the rates of many failure mechanisms will in-

crease exponentially with operating temperature [2]. Also, high operating temperature is

known for increasing CMP’s power consumption, especially leakage power [2]. The in-

crease of leakage power contributes to the increase of total power consumption, which in
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turn increases the operating temperature. This thermal-leakage positive feedback loop may

lead to thermal runaway, which in the worst case may burn the chip [9].

Although thermal RC simulation or finite-difference method (FDM) [52] used by prior

arts usually guarantee a good accuracy in thermal modeling, these methods are very ex-

pensive in terms of execution time, especially when the required accuracy of transient tem-

perature is high. Furthermore, accurately modeling the temperature-leakage feedback loop

will incur extra invocations of costly thermal simulations. Generally, several days may be

needed when a large amount of power configurations need to be examined for evaluating

the thermal behavior of software applications or to explore the architectural design space

in the early design stage. Such a long simulation time can become prohibitively expensive

for computer architects or system designers.

5.1.1 Contributions and chapter organization

To the best of our knowledge, the proposed methodology brings the following novel

contributions:

• We develop a learning-based autoregressive (AR) framework to enable fast and accurate

transient thermal prediction, specially targeting CMPs. Compared to existing simulation-

based models like [7], the proposed framework achieves approximately 113X speed-up,

while introducing a root-mean-square-error (RMSE) of only 0.8◦C. The proposed frame-

work can be applied to enable a wide spectrum of thermal optimizations or evaluation

schemes, such as thermal characterization of software applications and proactive DTM.

• The proposed framework provides concrete, quantitative statistical inferences for the

thermal behaviors of a CMP. Somewhat counter-intuitively, the inferences show that the

single most important factor to influence the transient temperature is the temperature tem-

poral correlation, rather than its spatial correlation, dynamic power, leakage power or other

factors. The temporal correlation can account for approximately 66% of transient temper-

ature changes.
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• To demonstrate the effectiveness of our framework, we perform thermal optimization of

a CMP by mapping workloads in a thermal-aware fashion. The experimental results show

that, compared to the results from a popular thermal-aware mapping similar to [53], the

proposed approach can further reduce the peak temperature by 2.9◦C on average.

This chapter is organized as follows. Section 5.2 introduces the background thermal

knowledge. Section 5.3 provides thermal correlations observed for constructing the pro-

posed AR model. Section 5.4 provides the configurations used in this chapter. Section 5.5

details the proposed AR framework for the transient thermal analyses of CMPs. Section

5.6 demonstrates the experimental results. Section 5.7 provides the discussion and points

to the possible future directions.

5.2 Conventional thermal modeling

From a physical perspective, the temperature T is a function of time t and three spatial

directions x, y and z. We use T tx,y,z to denote the temperature T of location (x, y, z) at a

certain time point t. T tx,y,z can be expressed by the heat equation that describes the heat

flow in a given homogeneous region over time:

∂T tx,y,z
∂t

= ϑ

(
∂2T tx,y,z
∂x2

+
∂2T tx,y,z
∂y2

+
∂2T tx,y,z
∂z2

)
+ qtx,y,z (5.1)

where ϑ is the material-dependent thermal diffusivity and q is the internally-generated heat

[52]. Generally, finite-difference methods (FDM) are used to approximate the partially

differentiated terms; for example, the central difference approximation is a popular method

to approximate ∂2T/∂x2:

∂2T tx,y,z
∂x2

=
T tx+1,y,z − T tx,y,z

h2
−
T tx,y,z − T tx−1,y,z

h2
+O(h2)

=
T tx+1,y,z

h2
−

2T tx,y,z
h2

+
T tx−1,y,z
h2

+O(h2)

(5.2)
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where h is a sufficiently-small step size used to discretize the continuous variable x. O is

the big-O notation [54] used to represent the bound of accuracy loss due to the approxi-

mation. To consider the boundary condition, we assume that the environment temperature

(or ambient temperature) is set to a given constant value and does not vary over time [7].

∂2T/∂t2, ∂2T/∂y2 and ∂2T/∂z2 can be derived in a similar manner as Eq(5.2).

Figure 5.1. Thermal RC model.

There is a well-known analogy between the solid heat conduction and the electrical cur-

rent flow. The heat conduction can be modeled as a heat current flowing through thermal

resistance and capacitance network [52], resulting in temperature differences. The values

of thermal RCs depend on the material used to fabricate CMPs. For the purpose of ther-

mal analysis, heat conduction is converted into electrical conduction; CMPs are divided

into several cuboidal thermal grids as shown in Figure 5.1(a), and each thermal grid can be

converted into an equivalent RC network as shown in Figure 5.1(b), with the temperature

modeled as voltage and heat flow modeled as electrical current. Therefore, T tx,y,z of Eq(5.1)

is modeled as the voltage of grid (x, y, z) at the time frame t and q is modeled as the power

consumption of a grid. In Figure 5.1(b), we can see that each node connects to six of its

immediate neighboring nodes. This is because in many prior arts, such as [7], FDM similar

to Eq(5.2), i.e., the central difference, is used to approximate the 2nd-order partial deriva-

tives. The physical meaning behind Eq(5.2) is that “first-level” neighboring grids are used

to capture the spatial correlation of temperature changes.
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5.3 Thermal correlations

Heat conduction is a continuous process happening within a certain region and over a

period of time. This continuous phenomenon determines both spatial and temporal corre-

lations in the temperature differences. More specifically, let us focus on x-y directions and

rewrite Eq(5.1) as:
∂T tx,y
∂t

= ϑ

(
∂2T tx,y
∂x2

+
∂2T tx,y
∂y2

)
+ qtx,y (5.3)

By using the approximation described in Eq(5.2) on ∂2T/∂x2, ∂2T/∂y2 and ∂T/∂t, we

will obtain:

T t+1
x,y =

ϑu

h2
(T tx±1,y + T tx,y±1) +

h2 − 4ϑu

h2
(T tx,y)+

u(qtx,y) +O(h2)

(5.4)

where u is the step size for time. Here we assume h2 > u, so the accuracy loss is bounded

by O(h2).

5.3.1 Spatial correlations

The first term of Eq(5.4) represents the spatial correlation of temperature changes, and

shows that the first-level neighboring grids are used to approximate T t+1
x,y . If we further

include the second-level neighboring grids, ∂T/∂t can be expressed as Eq(5.5) by using

Taylor’s series:

T t+1
x,y =

2∑
`=1

a`(T
t
x±`,y±`) + b · (T tx,y) + c · (qtx,y) +O(h4) (5.5)

where a`, b and c are constants derived from ϑ, h and u. Since h � 1, O(h4) is smaller

than O(h2) in Eq(5.4), which means the accuracy loss decreases when higher-level neigh-

boring grids are included in the model. Theoretically, when `th-level neighboring grids are

included, the accuracy loss should be reduced and bounded by O(h2`). In practice, a large
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` will lead to an extremely-high complexity thermal model. In this thesis, ` is empirically

set to three to balance the accuracy and the model complexity.

5.3.2 Temporal correlations

The second term of Eq(5.4) or Eq(5.5) shows the temporal correlation between T t+1
x,y and

T tx,y. In Eq(5.4), the step size u needs to be smaller than the thermal RC constant, τ , to

guarantee the convergence of the numerical integration. According to [55][7], τ is usually

in the range of 0.1 to 0.5ms. In addition, the authors of [7] pointed out that it takes at least

0.1ms to raise the transient temperature of CMPs by 0.1◦C. Hence, in this chapter we set

the step size u to 0.1ms.

5.4 Configurations and dataset

Before elaborating on the proposed AR framework, we first introduce the architecture

and dataset used herein. We introduce the micro-architecture and CMP architecture in

Section 5.4.1, followed by the dataset used to train and test the proposed model in Section

5.4.2.

5.4.1 Target architecture

Parameters Values
Number of cores 16
Frequency 3.0 GHz
Technology 45nm node with Vdd =1.0V
L1-I/D caches 64KB, 64B blocks, 2-way SA, LRU
L2 caches 1MB, 64B blocks, 16-way SA, LRU
Pipeline 7 stage deeps, 4 instructions wide

Table 5.1. Processor parameters.

The architecture used throughout this chapter is a symmetric CMP, consisting of 16 out-

of-order Alpha 21264 cores [56]. The corresponding micro-architecture parameters are
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Figure 5.2. An Alpha-core-based CMP and the corresponding floorplan.

listed in Table 5.1. Figure 5.2(a) illustrates the floorplan of Alpha 21264 processing core

[56]. This floorplan along with the L2 cache is replicated 16 times in a 4×4 mesh to create

a planar 2D CMP. As shown in Figure 5.2(b), processing cores and caches are placed in

a fine-grained, interwoven manner. For simplicity and without losing much accuracy, the

target CMP is homogeneously partitioned into 32 × 32 = 1, 024 thermal grids [7]. This

resolution (32×32) of thermal grids can be changed according to the different requirements

of accuracy. Note that thermal grids are distributed in x-y direction, instead of x-y-z as

mentioned in Section 5.2. This is because in the model proposed by Hotspot [7], each grid

implicitly includes all vertical components that generate heat, such as metal, active Si and

substrates layers.

We use modified SimpleScalar [57], Wattch [6], and Hotspot [7] for the performance,

power, and thermal simulations, respectively. We modified the leakage power model in

Wattch based on [58][59][60] for more accurate leakage values. Leakage currents are char-

acterized by using HSPICE simulation with the 45nm high performance Predictive Tech-

nology Model [61]. For the Hotspot configuration, the chip size and spreader size are set to

0.03m×0.03m; sampling rate is set to 3× 105 clock cycles; the parameters not mentioned

here are assumed to be the default values. SPECcpu2000 benchmarks [62] are randomly

selected to form 100 different multi-program workloads for a 16-core CMP. With the above

settings, we perform a full-system simulation for 500 million instructions, and then collect

the power profiles for the temperature simulation.
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5.4.2 Dataset

In this chapter, we use SPECcpu2000 [62] as workloads and the Hotspot [7] as the ther-

mal simulator to characterize the thermal behavior of a CMP. The detailed implementation

will be elaborated in Section 5.4.1. The generated thermal responses are used as inputs

to train and test the proposed AR model. The dataset contains 100 different power con-

figurations and 513 × 1024 thermal responses for each power configuration, while 513 is

the number of time frames and 1,024 is the number of grids. Each time frame is set to

0.1ms [63]. In this chapter, we treat each grid (x, y) at a time frame t as a sample, so a

total of N = 100 × 513 × 1024 ≈ 107 samples are used to train and test the proposed

AR framework. The features of the dataset is described in Table 5.2. Each sample has P

features, including five physical features plus ξAR autoregressive (AR) features. The five

physical features of each sample include: its x location (X), y location (Y ), radius (R),

total power consumption (Ptot), and leakage power consumption (Pleak). R is calculated

by
√

(X −mid)2 + (Y −mid)2 in which mid is set to (32+1)/2 (since the resolution of

thermal grids is 32× 32). Also, Pleak is included in Ptot; we separate this term out because

Pleak is more sensitive to temperature changes [2] and may potentially be a good thermal

predictive feature.

Thermal responses Samples(Features)
100× 513× 1024 100× 513× 1024× (P = 5 + ξAR)

conf.× time× grids conf.× time× grids× (features)

Table 5.2. Features of the dataset.

As mentioned in Section 5.3.2, T tx±`,y , T tx,y±` and T tx,y are highly correlated to T t+1
x,y ,

and therefore these features should be included in the dataset to improve the prediction

accuracy. These features are called AR features. Unlike the physical features above, AR

features will be evaluated at each time frame. Therefore, for each sample, its AR features

need to be updated on the fly. ξAR represents the number of AR features. In this chapter,

ξAR is 13 because ` = 3, such that T tx±`,y, T
t
x,y±`, ` = 1 to 3 and T tx,y are included.
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To better explain the proposed methodology, we denote T tx,y as the thermal response

of the ith sample Ti, and both physical and AR features as mi = (mi1, · · · ,miP ). The

bold font represents a vector instead of a scalar. Here we focus only on the features of the

dataset, which will be used to explain the proposed framework.

5.5 Learning-based AR framework

The learning-based AR framework uses Lasso regression [64] to predict Ti. Lasso re-

gression consists of a linear regression with L1 regularization. It shrinks the fitting co-

efficients and sets some of them to exact zero, and hence tends to retain only the highly

relevant features to predict Ti. According to Eq(5.4) and Eq(5.5), Ti can be approximated

by a linear function of predictive featuresmi:

Ti =
P∑
j=1

αjmij + β (5.6)

where (α, β) are fitting coefficients. As in the usual regression setup,
∑

imij/N are stan-

dardized so that
∑

imij/N = 0 and
∑

im
2
ij/N = 1, and Ti are assumed to be conditionally

independent givenmij since the potential correlations among Ti are already modeled by AR

features in mij . N is the total number of samples. The physical insight behind Eq(5.6) is

that, in addition to the AR features and Ptot, the rest of the features are used to linearly

converge to O(h2`).

As we mentioned in Section 2.1, the learning process can be separated into two phases:

the training phase and validation phase. The goal of the training phase is to learn the

estimate of fitting coefficients (α, β), denoted as (α̂, β̂) and α̂ = (α̂1, · · · , α̂P ). The
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(α̂, β̂) can be learned by:

(α̂, β̂) = arg min
(α,β)

{ N∑
i=1

(
Ti − β −

P∑
j=1

αjmij

)2}
,

s.t.
P∑
j=1

|αj| ≤ λ.

(5.7)

where λ is the parameter to control the amount of shrinkage that is applied to the estimates.

In this chapter, the solver provided by [65] is used to optimize Eq(5.7) and learn (α̂, β̂).

Here, we use 10-fold cross validation (CV) to select λ which results in the smallest root-

mean-square-error (RMSE): the best value of λ is 1, selected from the range of 10−5 to

105.

Next we plug learned (α̂, β̂) into Eq(5.6) and to calculate T̂i as an estimate of Ti:

T̂i =
P∑
j=1

α̂jmij + β̂ (5.8)

By using Eq(5.8), Ti can be calculated instantly ifmi is given. No time-consuming thermal

simulation is required. Please note that Eq(5.8) is different from Eq(5.6) because (α̂, β̂)

and T̂i are estimates, while (α, β) and Ti of Eq(5.6) are actual values.

5.5.1 Prediction accuracy

To evaluate the accuracy of the proposed learning model, we again use 10-fold cross

validation to calculate the prediction error: Figure 5.3 shows the cross-validated predic-

tion results; the X axis stands for the actual simulated results obtained with Hotspot [7],

whereas the Y axis represents the predicted temperatures by using the learning-based AR

model. Each color represents one instance of cross validation. As it can be seen in the

figure, our thermal prediction is very accurate. The RMSE is 0.43◦C and the correlation

coefficient (CC) is 0.99. Therefore, just relying on the fitting coefficients (α̂, β̂) learned
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from the proposed framework, one can accurately predict the transient temperature for a

CMP, without actually performing time-consuming thermal simulations.

Figure 5.3. Prediction accuracy.

5.5.2 Coefficient analysis

We also show the distribution of fitting coefficients for each feature, namely α̂. The

physical meaning of α̂ is the sensitivity of temperature changes to each predictive feature.

Figure 5.4 shows the relative percentage of in a pie chart. All notations here are the same

as described in Section 5.5. T tx±`,y±` in Figure 5.4 represents the sum of α̂ of T tx±`,y±`.

We can see that T tx,y dominates the prediction of T t+1
x,y by 66%. This is counter-intuitive

because Ptot is generally considered as the most important factor to affect temperature. It

is also worth mentioning that the α̂ of R and Pleak are negative values. This is interesting

because a grid with a large R actually means that it is located on or close to the rim of a

CMP, which has better heat dissipation. Also, a grid with a large Pleak means that this grid

idles often. Both these two phenomena lead to a lower temperature profile, and hence the

corresponding coefficients of R and Pleak are negative.

5.6 Forward prediction

So far, we have demonstrated how to predict Ti withmi. Recall that withinmi, there are

several AR features, such as T tx,y, which cannot be known in advance before the time frame
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Figure 5.4. Coefficient distribution.

evolves to t. Hence, we need to wait for these AR features to be known, in order to predict

T t+1
x,y . In other words, if we are interested in the transient temperature at the time frame

t + 1, we need to wait until the thermal estimation or measurement, such as the reading

from a thermal sensor, at the time frame t is available. This restriction greatly reduces the

capability of the proposed AR framework.

To handle the aforementioned problem, we develop a technique called forward predic-

tion. The concept is simple: if T tx,y is not available yet, but we need it to predict T t+1
x,y − we

predict T tx,y first and then use T̂ tx,y, namely, the estimate of T tx,y, to predict T t+1
x,y . The con-

cept can be recursively applied until the time frame equals zero, i.e., all temperature values

are the ambient temperature. The computational complexity of this forward prediction is

linear with the number of time frame Nt, denoted as O(NT ) , and hence can be efficiently

computed. With this forward prediction technique, the proposed AR model could be used

to predict the transient temperature at any time frame, without be restricted by AR features.

Figure 5.5 shows the RMSE (in Z axis) of each grid (in X axis) over each time frame

(in Y axis). For better visualization, we pick 20 of the hottest grids as grids of interest.

These grids of interest are often the location of thermal hotspots, so our prediction needs

to be accurate there. Note that the RMSE is calculated by using 10-fold cross validation.

Generally, the RMSE of each grid stays around 0.7◦C, and the highest error in Figure 5.5

is less than 1.1◦C. The overall RMSE of every single grid over each time frame is 0.8◦C.

72



Figure 5.5. Accuracy of forward prediction.

Figure 5.6. Peak temperature prediction.

Also, we are interested in the peak temperature prediction. Figure 5.6 illustrates the

peak temperature (in Y axis) of a whole CMP at each time frame t (in X axis) under a

“completely clean” power configuration (not involved in the training process of the model).

The blue line is the actual temperature obtained via thermal simulation, whereas the red line

is the predicted temperature. Although the prediction indeed introduces some errors up to

1.2◦C, it is clear that the general trend of peak temperature changes is captured very well by

the proposed framework. For execution time, Hotspot [7] needs approximately 291 seconds

of CPU time to finish the transient analysis for one power configuration with other settings

described in Section 5.4.1. Once the AR model is trained, only 2.57 seconds are needed by
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using the forward prediction, and therefore a 113X speed-up is achieved. All these results

demonstrate that the proposed forward prediction is accurate and stable.

5.7 Discussion

In this chapter, we present a systematic learning framework that accurately predicts the

transient temperature of a CMP by using an AR Lasso model. The proposed model achieves

113X speed-up while introducing a RMSE of only 0.8◦C. In [66], the authors applied our

proposed model to predict the maximum steady-state temperature of a three-dimensional

(3D) CMP, and received a similar prediction error (around 1◦C). All these results have

demonstrated the high accuracy and robustness of the proposed model. An interesting

straight-line future work is to further extend this framework to predict the transient (instead

of a steady-state) temperature of a 3D CMP.
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Chapter 6

Modeling job inter-arrivals in a

datacenter

A modern datacenter contains tens of thousands of servers, and the computing resources

(e.g., processing power and disk storage) are massively-integrated and virtually-shared

among these cloud-based services. In this context, the cloud-based scheduling and dy-

namic resource management directly affect the utilization, energy consumption, and qual-

ity of service (QoS) of a datacenter [67]. To design an efficient and effective scheduling

algorithm, understanding the patterns of job requests submitted to a datacenter is key. In

this chapter, we demonstrate a data-driven approach to characterize and model the distinct

patterns of the job submissions.

6.1 Inter-arrival time of job submissions

What are the major characteristics of job inter-arrival process in a datacenter? Could

we develop a tool to create synthetic inter-arrivals that match the properties of the em-

pirical data? Understanding the characteristics of job inter-arrivals is the key to design

effective scheduling policies to manage massively-integrated and virtually-shared comput-

ing resources in a datacenter. Conventionally, during the development of a cloud-based
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Figure 6.1. Deviation from Poisson Process: (a) Histogram of job IAT (≈ 668, 000 jobs)
in linear-scale. (b) Same histogram in log-scale. (c) Synthetic IATs from HIBM. In (a),
the histogram has limited number of bins to demonstrate IATs of such a fine-resolution,
and the marginal distribution may be misidentified as an (negative) exponential distri-
bution. In (b), four distinct clusters can be seen: A: 1µs, B: 10-103µs, C: 103-105µs,
and D: 106-109µs. All four clusters are captured by HIBM as shown in (c).

scheduler, job requests are assumed (1) to be submitted independently and (2) to follow

a constant rate λ, which results in a simple and elegant model, Poisson process (PP). PP

generates independent and identically distributed (i.i.d.) inter-arrival time (IAT) that fol-

lows an (negative) exponential distribution [68]. However, in reality, how much does this

inter-arrival process deviate from PP?

To demonstrate how the real inter-arrival process deviates from PP, we use Fig. 6.1 to

present the histogram of the IAT for 668,000 jobs submitted and collected in an indus-

trial, large-scale datacenter. The resolution of IAT is 1 microsecond (µs, 10−6 sec). As

Fig. 6.1(a) shows, the IATs “seem” to follow an (negative) exponential distribution. How-

ever, in logarithmic scale as Fig. 6.1(b) shows, surprisingly, four distinct clusters (denoted

as A, B, C and D) with either center-or left-skewed shapes can be seen. This distribution

(or a mixture of distributions) clearly does not follow an (negative) exponential distribu-

tion, which is always right-skewed in logarithmic scale and therefore cannot create such

shapes. This phenomenon has confirmed that the i.i.d. assumption of PP barely holds since

certain job requests may depend on one another. For example, a request of disk-backup

may immediately be submitted after a request of Gmail service; this dependency violates
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the i.i.d assumption and thus invalidates conventional statistical analysis. In this chapter

we aim at solving the following two problems:

• P1: Find patterns. How to characterize this marginal distribution?

• P2: Pattern-generating mechanism. What is a possible mechanism that can gener-

ate such job inter-arrivals?

6.1.1 Contributions and chapter organization

In this chapter, we bring the following two contributions:

• Pattern discovery. Two key patterns of job inter-arrivals are provided: (1) mul-

tiple periodicities and (2) bundling effects. We show the majority (approximately

78%) of job requests show a regular periodicity with a log-logistic noise, a skewed,

power-law-like distribution. Furthermore, the submission of a job may depend on

the occurrence of its previous job, and we refer to this dependency as the bundling

effect, since these two associated jobs are considered to belong to the same bundle.

• Generative model. We propose HIBM, a “HIerarchical Bundling Model,” that is

succinct and interpretative. HIBM’s mathematical expression is succinct that re-

quires only a handful of parameters to create synthetic job inter-arrivals matching the

characteristics of empirical data, as shown in Fig. 6.1(c). Furthermore, HIBM has

the capability to explain the attribution of the four clusters (A, B, C and D) and the

“spikes” (A, C1, C2, D1, and D2) in Fig. 6.1(b).

The remainder of this chapter is organized as follows. Section 6.2 provides the problem

definition, Section 6.3 details the proposed HIBM, Section 6.4 presents the experimental

results, and Section 6.5 provides the discussion.
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6.2 Problem Definition

In this chapter, we use the trace from Google’s cluster [67], which is the first publicly

available dataset that presents the diversity and dynamic behaviors of real-world service

requests, from a large-scale, multi-purpose datacenter. The trace contains the scheduler

requests and actions recorded from 29 days (starting at 19:00 EST, on Sunday May 1st,

2011) of activity in a 12,500-machine cluster. Each request submitted by a user forms a job

and the trace records approximately 668,000 job submissions.

6.2.1 Terminology and problem formulation

First, we define the terminology used throughout this chapter.

Definition 1 (Job type and job instance). “Job type” represents a certain type of job that

can occur once or multiple times, and “job instance” is the actual occurrence of a job

request.

For example, “disk-backup” is a job type that can instantiate several requests; each re-

quest (such as “disk-backup at 1:00P.M. on May 2nd”) is a job instance.

Definition 2 (Job bundle). “Job bundle” represents the association of two job types − if

two job types are in the same job bundle, the IATs of their job instances will be correlated.

Like the example used in Section 6.1, two job types “disk-backup” and “Gmail” are

functionally-associated, and thus they are considered belonging to the same job bundle. In

this case, the inter-arrival of each disk-backup instance will depend on the occurrence of

each Gmail instance.

Definition 3 (Job class). “Job class” represents the priority (or latency sensitiveness) of a

job type. In the trace, job class is enumerated as {0, 1, 2, 3} with a job type of class 3 being

the highest priority.

As mentioned in the Introduction, we have two goals:
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Figure 6.2. A burst and periodicities: (a) Job instances per hour. A burst (indicated by
the red circle) at May 19th can be observed. (b) Discrete Fourier Transform (DFT) on the
job-instance series. The high-amplitude signals correspond to the periods of 1 week,
etc. (c) Class-0 (the lowest priority) and class-2 instance series. Notice their similarity
(correlation coefficient is 0.94).

• P1: Find patterns. Given (1) the job type j, (2) the time stamp of its ith instance

(denoted as tj,i), and (3) the job class, find the most distinct patterns that are sufficient

to characterize the IATs of all job instances in a datacenter.

• P2: Pattern-generating mechanism. Given the patterns found in P1, design a model

that can generate IATs that match these characteristics of the empirical data and re-

port the model parameters.

6.2.2 Dataset exploration

We begin this section by illustrating the number of job instances over time in Fig. 6.2(a).

We collect the time stamp of each job instance when it is first submitted to the datacenter,

and then aggregate the total number of job instances within each hour to construct a dataset

of one-dimensional time-series. On average, 959.8 job instances are submitted per hour,

and in general, less instances are submitted on the weekends whereas more are submitted

during weekdays. Interestingly, around 2:00 A.M. on May 19th (Thursday), a burst of 3,152

job instances can be observed, and its amount is approximately three times higher than the

amount on typical Thursday midnights.
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Discrete Fourier Transform (DFT) is also performed on the job-instance series. Fig.

6.2(b) provides the amplitude of each discrete frequency, on which we denote four frequen-

cies of high power-spectrum amplitudes: 1-week, 5-min, 4-min and 2.5-min. The reason

that the 1-week signal has a high amplitude can be explained by the periodic behavior be-

tween weekends and weekdays. Later in Section 6.3.1, we characterize the periodicity and

show that both 5-min and 4-min periods can be found during the job inter-arrivals.

6.2.3 Class interdependency

Not all jobs are submitted equal: certain job types have higher priority to be sched-

uled and executed (class-3, e.g., website services), whereas other jobs do not (class-0, e.g.

MapReduce workloads) [67].

Observation 1. The spike A (1µs) in Fig. 6.1(b) is attributed to the 1µs IAT between a

class-0 and a class-2 instance.

As shown in Fig. 6.2(c), the pattern of class-0 job instances (low priority) is highly

similar with the pattern of class-2 instances (high priority), in terms of both trend and

quantity. As it can be seen that these instances of class-0 and class-2 contribute to the burst

on May 19th observed in Fig. 6.2(a). Furthermore, the correlation coefficient between class-

0 and class-2 instances is 0.94, which makes us think: what is the IAT between a class-0

and a class-2 instance? Surprisingly, this IAT is exactly 1µs, which forms the first cluster

in Fig. 6.1(b). This phenomenon immediately piques our interest: how to characterize and

attribute the rest of three clusters (B, C, and D) and the corresponding spikes? The answer

lies in the “bundling effect” as we will elaborate in Section 6.3.

6.3 HIBM: HIerarchical Bundling Model

In this section, we introduce two major components of HIBM: cross-bundle effects (Sec-

tion 6.3.1) and within-bundle effects (Section 6.3.2). The complete HIBM framework is

presented in Section 6.3.4.
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Figure 6.3. Multiple periodicities: (a) IAT of job type j and fitted PDF by HIBM. (b) IAT
of all job types. (c) Illustration of the cross-bundle noise (εc,i) and the within-bundle
noise (εw,i) under the period τj .

6.3.1 First component: cross-bundle effect

Multiple periodicities To characterize the periodicity of each job type, we first calculate

the IAT between every two consecutive job instances of that job type as follows:

δj,i = tj,i − tj,i-1, for i = 1 . . . nj (6.1)

where δj,i is the ith IAT, tj,i represents the occurrence time of the ith instance of job type j,

and nj is the total number of instances of job type j. Fig. 6.3(a) shows the histogram of

such IATs, δj,i. The histogram is symmetric and has a spike at 600 seconds (10 minutes),

which means each instance of job type j arrives approximately every 10 minutes with some

noise. Therefore, tj,i can be expressed as:

tj,i = i · τj + εc,i (6.2)

where τj stands for the period (e.g., 10 minutes in this case) and εc,i is a random variable

representing the “cross-bundle noise.” As illustrated in Fig. 6.3(c), the cross-bundle noise

(εc,i) represents the delay of a job bundle from its scheduled time (i ·τj) and in this example
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two job types j and j′ are in the same bundle. Here, we focus on only the job type j (the

red arrows); the within-bundle noise will be elaborated in Section 6.3.2. In this chapter,

τj is estimated by using the median of IATs of job type j; however, what distribution εc,i

follows remains unclear for now.

Observation 2. Multiple periodicities are observed: 4-min, 5-min, 10-min, 15-min, 20-

min, 30-min, and 1-hr.

One question may arise: is this periodic job type a special case, or do IATs of many job

types behave like this? To find the answer, we further collect the IATs from all job types

and illustrate them by using Fig. 6.3(b). For better visualization, only periods smaller than

one hour are demonstrated. In Fig. 6.3(b), multiple periodicities are observed, and the

two highest peaks are 4-min and 5-min, which matches the DFT results in Fig. 6.2(b): the

frequencies with high amplitudes are 4-min and 5-min. 4-min is also the smallest period

that exists in the trace. We would like to point out that the “10-min peak” in Fig. 6.3(b)

seems sharper than the peak in Fig. 6.3(a); this is because Fig. 6.3(b) contains several job

types that have the same period (10-min), whereas Fig. 6.3(a) contains only one such job

type.

Now the question is: what random noise εc,i will create such IAT distribution shown in

Fig. 6.3(a)? Could we use famous “named” distributions, say (negative) exponential or

Pareto (power-law), to model this noise?

Modeling cross-bundle noise Among many statistical distributions, we propose to model

the cross-bundle noise εc,i by using Log-logistic distribution (LL), since it is able to model

both the cross-bundle noise and the within-bundle noise (Section 6.3.2), leading to the

unified expression in HIBM. Also, it provides intuitive explanations for sporadic, large

delays. The Log-logistic distribution has a power-law tail and its definition is as follows.

Definition 4 (Log-logistic distribution). Let T be a non-negative continuous random vari-

able and T ∼ LL(α, β); the cumulative density function (CDF) of a Log-logistic dis-
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Figure 6.4. Modeling cross-bundle noise: (a) PDF, (b) CDF (c) Odds Ratio are demon-
strated by using Log-logistic, negative-exponential and Pareto distribution, respec-
tively.

tributed variable T is , CDF (T = t) = FT (t) = 1
1+(t/α)−β

, where α > 0 is the scale

parameter, and β > 0 is the shape parameter. The support t ∈ [0,∞).

Fig. 6.4(a) presents the cross-bundle noise εc,i and three fitted distributions by using

Maximum Likelihood Estimate (MLE) [69]. The distribution shows a left-skewed behavior

and sporadically, a few job instances suffer from large delays. This phenomenon is diffi-

cult to be captured by distributions with tails decaying exponentially fast (e.g., negative-

exponential). On the other hand, the Pareto distribution (a power-law probability distribu-

tion), which is also a heavy-tail distribution, lacks the flexibility to model a “hill-shaped”

distribution. The goodness-of-fit is tested by using Kolmogorov-Smirnov test [70] with

the null hypothesis that the cross-bundle noise is from the fitted Log-logistic distribution.

The resulting P-value is 0.2441, and therefore we retain the null hypothesis under the 95%

confidence level and conclude that the cross-bundle noise follows Log-logistic distribution.

To better examine the distribution behavior both in the head and tail, we propose to use

the Odds Ratio (OR) function.
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Lemma 6.3.1.1 (Odds Ratio). In logarithmic scale, OR(t) has a linear behavior, with a

slope β and an intercept (− lnα), if T follows Log-logistic distribution:

OddsRatio(t) = OR(t) =
FT (t)

1− FT (t)
=

(
t

α

)β
(6.3)

⇒ lnOR(t) = β ln(t)− lnα �

As Fig. 6.4(c) shows, the OR of the cross-bundle noise seems to entirely follow the linear

line, which serves as another evidence that its marginal distribution follows a Log-logistic

distribution. The Log-logistic distribution presents a modified version of the well known

phenomenon − “rich gets richer.” We conjecture that this phenomenon can be adapted to

explain the cross-bundle noise of periodic job instances − “those delayed long get delayed

longer.” If the submission schedule of a job instance is delayed (or preempted) by other

jobs with a higher priority, it is likely that this job instance is going to suffer from being

further delayed.

6.3.2 Second component: within-bundle effect

Bundling effect and within-bundle noise The bundling effect represents the temporal

dependency between two job types j and j′. If the instances of two job types (e.g., Gmail

and disk-backup, denoted as job type j and j′, respectively) are independent from each

other, the correlation coefficient of their IATs should be close to zero. However, as Fig.

6.5(a) shows, IATs of two job types can be highly correlated; the correlation coefficient

(CC) is 0.9894. In this context, each tj,i and tj′,i must share the same εc,i due the high

correlation. More interestingly, the instances of job type j′ always occur after the corre-

sponding instance of j, i.e., tj,i < tj′,i as illustrated in Fig. 6.3(c).

We further examine the IAT between job type j and j′, namely, tj′,i − tj,i, referred as

“within-bundle noise” (εw,i). The concept of the within-bundle noise also is illustrated by

Fig. 6.3(c); furthermore, Fig. 6.5(b) presents a bi-modal distribution of εw,i: one peak
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Figure 6.5. HIBM fits real within-bundle noises: (a) IATs of job type j and j′ are highly
correlated; the correlation coefficient (CC) is 0.9894. Here, both job type j and j′ have
the period of 1 hour. (b) Within-bundle noise (εw,i) that creates the spikes D1 and
D2 can be modeled as a mixture of two Log-logistic distributions. (c) Q-Q plot be-
tween the empirical εw,i and the samples drawn from the fitted Log-logistic mixture.
(d)(e)(f) demonstrate another εw,i in millisecond-scale, and have similar explanations.
We would like to point out the spikes C1 and C2 can be attributed to the within-bundle
noise shown in (e).

at 1.5-sec observed from 2:00P.M. to 6:00A.M. and the other at 16-sec observed from

6:00A.M. to 2:00P.M.

Observation 3. The spikes D1 (1.5sec) and D2 (16sec) in Fig. 6.1(b) are attributed to

HiBM’s within-bundle noise in the scale of seconds.

A possible explanation is that the submissions of job type j′ (class 1, latency-insensitive)

are delayed or preempted by other high priority job types during the working hours from

6:00A.M. to 2:00P.M., which creates the second mode (the 16-sec peak). Therefore, we

model this bi-modal distribution by using a mixture of two Log-logistic distributions. Fig.
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6.5(c) shows the Q-Q plot between the empirical εw,i and samples drawn from the fitted

Log-logistic mixture. As it can be seen, each quantile of simulated samples matches the

empirical εw,i very well.

A highly similar situation can be observed from another job bundle, shown in Fig.

6.5(d)(e)(f). Instead of seconds, as Fig. 6.5(e) shows, εw,i is bi-modal and in the scale

of millisecond.

Observation 4. The spikes C1 (3ms) and C2 (5.5ms) in Fig. 6.1(b) are attributed to HiBM’s

within-bundle noise in the scale of milliseconds.

In this case, εw,i can also be modeled by a mixture of two Log-logistic distributions as

Fig. 6.5(e)(f) show. For both cases (within-bundle noises in both second-and millisecond-

scale), Kolmogorov-Smirnov test is performed; the null hypothesis that εw,i and the fitted

Log-logistic mixture follow the same distribution, is retained under the 95% confidence

level. In addition, within-bundle noises are also observed in µs scale, which forms the

cluster (and the spike) B in Fig. 6.1(b) and can also be modeled by the Log-logistic dis-

tribution. This is not shown here due to the space limit. Now we are able to explain and

model all the clusters and spikes (B, C1, C2, D1 and D2) with the Log-logistic distribution,

leading to the succinctness of HIBM.

Interestingly, even if εw,i exists, the IATs of job type j and of j′ are still highly correlated.

The key to create such a phenomenon lies in the hierarchy that cross-bundle noise is always

larger than within-bundle noise, εc,i > εw,i. In the trace, the scale of εc,i is approximately

in the magnitude of minutes, whereas εw,i is in the magnitude of seconds, milliseconds or

even microseconds. Based on this observation, we propose a unified model to describe the

IATs of two job types in the same bundle, which serves as the backbone of the proposed

HIBM: 
tj,i = i · τj + εc,i

tj′,i = tj,i + εw,i = i · τj + εc,i + εw,i

(6.4)
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where εc,i ∼ LL(αc,κ, βc,κ), εw,i ∼ a mixture of two LL distributions, expressed as:

εw,i ∼ pw,κ · LL(αw,κ, βw,κ) + (1− pw,κ) · LL(αw′,κ, βw′,κ) (6.5)

pw,κ ∈ [0, 1], κ ∈ {B, C,D}. Given the empirical data, αc,κ, βc,κ can be estimated by MLE

and pw,κ, αw,κ, βw,κ, αw′,κ, βw′,κ can be estimated by Expectation Maximization (EM) [69].

Bundle detection algorithm After explaining the bundling effect, the next question is

how to determine if two certain job types belong to the same job bundle. We ask: given

each pair of tj,i and tj′,i, how do we know these IATs, namely, |tj,i − tj′,i|, are caused by

within-bundle noises (εw,i), or just coincidentally by a job instance occurring closely to

another instance? What if two job types have different periods? To answer these questions,

we propose a metric “expected occurrence ratio” (EOR) that compares the empirical counts

and the expected counts of within-bundle noises. EOR ∈ [0, 1] and a high EOR value

indicates that job type j and j′ are likely to be in the same job bundle. The details of

the proposed EOR are in Section 6.3.3. The intuition is similar to hypothesis testing. We

examine the EOR between each pair of job types and illustrate it by using Fig 6.6; the

majority of pairs have EOR less than 0.3, whereas other few pairs have EOR very close to

0.8. In this chapter, we select an EOR of 0.3 as threshold and therefore two job types are

considered unbundled if their EOR is less than 0.3.

6.3.3 Expected occurrence ratio

Here, we elaborate on using the expected occurrence ratio (EOR) to determine if two

job types are bundled. The expected occurrence ratio (EOR) of job type j and j′ can be

calculated as:

EOR(j, j′) = Nκ ·
(

T
LCM(τj, τj′)

· ρj · ρj′
)−1

(6.6)
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Figure 6.6. Expected occurrence ratio (EOR): the EOR between each pair of job types is
examined. The majority of pairs have EOR less than 0.3, whereas other few pairs have
EOR very close to 0.8.

where Nκ represents the number of the IATs occurred in the range of the cluster κ ∈

{B, C,D} in Fig. 6.1(b), T is the total duration, LCM(τj, τj′) is the Least Common Mul-

tiple (LCM) between two periods τj and τj′ , finally ρj and ρj′ are the missing rates of job

type j and j′, respectively. The intuition of EOR is similar to hypothesis testing: to com-

pare the empirical count of IATs in the range of a certain cluster with its expected count.

The expected count, T
LCM(τj ,τj′ )

· ρj · ρj′ , is calculated under the assumption that job type

j and j′ are bundled. Therefore, if j and j′ are actually bundled, the value of Nκ will be

very close to the expected count, resulting in an EOR ≈ 1. On the other hand, if EOR is

very close to 0, j and j′ are considered unbundled, since the observed Nκ just occurred by

coincidence.

6.3.4 Complete HIBM framework

By assembling the cross-bundle effect (Section 6.3.1) and the within-bundle effect (Sec-

tion 6.3.2) together, we describe here the complete HIBM framework by using Algorithm

1. The inputs to HIBM are user-defined periods, the total duration T , and the parameters of
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Algorithm 1: HIBM Generation
Result: Inter-arrival process of job instances, tj,i for all j and i, given periods τj for

each job type j, total duration T , αc,κ, βc,κ, pw,κ, αw,κ, βw,κ, αw′,κ, and βw′,κ.
initialization: JS = [];
for each j do

for i = 1 to
⌊
T
τj

⌋
do

if job type j is bundled with job type j′ then
tj,i = tj′,i + εw,i,
εw,i ∼ pw,κ · LL(αw,κ, βw,κ) + (1− pw,κ) · LL(αw′,κ, βw′,κ);

else
tj,i = i · τj + εc,i, εc,i ∼ LL(αc,κ, βc,κ);

end
JS = JS appending tj,i;

end
end
Sort JS in ascending order;
return JS;

Log-logistic distributions as described in Eq (6.4). In our case, the periods are set accord-

ing to the empirical data as shown in Fig. 6.3(b), the T is set to one month as mentioned

in Section 6.2.2, and the parameters described in Eq (6.4) are estimated by MLE and EM.

For each job type j, HIBM calculates its total number of instances by
⌊
T
τj

⌋
. Next, for the

ith instance of job type j, there will be two possible cases: (1) tj,i is bundled with tj′,i or

(2) tj,i is in its own job bundle (not bundled with any other job type). In the first case, tj,i

is estimated according to Eq (6.2), whereas in the second case, tj,i is estimated according

to Eq (6.4). The estimated tj,i is recorded in JS for all j and i. Finally, JS is sorted in

ascending order and then HIBM outputs JS as job inter-arrivals.

6.4 Experimental Results

We validate HIBM by using the empirical data. The comparisons between the synthetic

IATs generated by HIBM and empirical IATs are illustrated by Fig. 6.7. Fig. 6.7(a)(b)

present the histogram of the empirical IATs and the synthetic IATs side by side. As it can

be seen, the synthetic IATs match the distinct characteristics of the empirical IATs: the
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Figure 6.7. Comparisons between Synthetic IATs and the empirical IATs: (a) Histogram
of empirical IATs in log scale. (b) Histogram of synthetic IATs in log scale. (c) Q-Q plot.
The synthetic IATs generated by HIBM match the characteristics of the empirical IATs:
the job-instance counts (only 0.3% difference), the four clusters, and all the spikes (A,
B, C1, C2 D1, and D2). In addition, each quantile of the synthetic IATs matches the
corresponding quantile from the empirical data very well.

job-instance counts (only 0.3% difference), the four clusters, and all the spikes (A, B, C1,

C2 D1, and D2). Fig. 6.7(c) presents the Q-Q plot, from which we can also observe that

each quantile of the synthetic IATs matches the corresponding quantile from the empirical

data very well.

We begin the discussion with HIBM’s succinctness. HIBM requires only a handful

of parameters as described in Algorithm 1 to generate job inter-arrivals that match the

characteristics from the empirical data, even when the i.i.d. assumption is violated − the

submissions of certain instances depend on one another. Therefore, HIBM can be used

as a tool to create more realistic job inter-arrivals to design, evaluate, and optimize the

cloud-based scheduler of a datacenter.

Also thanks to HIBM’s interpretability, we now understand the four distinct clusters

observed from the empirical data can be attributed to both class interdependency (A: 1µs)

and within-bundle noises (B: 10-103µs, C:103-105µs, and D:106-109µs). In addition, the

3ms and 5ms spikes (C1 and C2) can be attributed to the within-bundle noise shown in Fig.

6.5(e), and similarly 1.5sec and 16sec spikes (D1 and D2) can be attributed to the within-

bundle noise shown in Fig. 6.5(b). Furthermore, the cross-bundle noises in HIBM provides
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intuitive explanation − “those delayed long get delayed longer” − for the delays occurred

on periodic job instances.

6.5 Discussion

In this chapter, we investigate and analyze the inter-arrivals of job requests in an indus-

trial, large-scale datacenter. Two main contributions are summarized below:

• Pattern discovery. We discover two key patterns of job inter-arrivals: (a) multiple

periodicities and (b) bundling effects. In addition, we propose to use Log-logistic

distributions to model both cross-bundle and within-bundle noises.

• Generative model. We propose HIBM, a succinct and interpretative model. HIBM

requires only a handful of parameters to generate job inter-arrivals mimicking the

empirical data. In addition, HIBM also attributes the four distinct clusters and the

corresponding spikes to both within-bundle noises and class interdependency, and

provides intuitive explanation “those delayed long get delayed longer” to the cross-

bundle noises of periodic job types.

We further point out that the periodicity and bundling effects described in this chapter

violate the i.i.d. assumption used by Poisson process. Therefore, instead of the Poisson

process, the proposed HIBM should be used to evaluate the effectiveness of a cloud-based

scheduler. One interesting and useful extension of HIBM is to associate job inter-arrivals

with the usage of computing resources (such as CPU time and disk I/O). Such model pro-

vides a more comprehensive view of job properties, which may facilitate the development

of scheduling algorithm for further improving QoS or energy efficiency.
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Chapter 7

Related work

Learning-based or data-driven methods are not the only set of approaches for modeling

performance or energy efficiency. In this chapter, we discuss about the prior arts that have

addressed the related issues from more diverse viewpoints. We also provide the literature

that applies learning-based frameworks for modeling process variations and other metric

(or design) of interests.

7.1 Performance and power modeling

There is a large body of work that has been proposed to apply conventional DVFS to

reduce power consumption for multi-core processors. Herbert et al. [71] have proposed and

evaluated DVFS policies for chip multi-processors (CMPs) to address both workload and

process variations. Li et al. [72] used both DVFS and a variable number of cores to achieve

the most power efficient operating point. Going beyond DVFS for processing cores, Mishra

et al. [73] proposed a DVFS strategy specifically targeting the communication fabric of

CMPs. From an implementation perspective, Park et al. [74] introduced a framework to

accurately estimate the overhead of DVFS including voltage regulator and inductive losses.

Mazumdar et al.[75] proposed a novel voltage-stacking technique to reduce the supply

current of CMPs.
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Recently, reinforcement learning (RL) and machine learning (ML) have emerged as pop-

ular and robust power management schemes due to their adaptive properties [76, 77, 78,

79, 80]. However, none of the above work has addressed and evaluated the effectiveness of

using RL on the power management for NoC-based CMPs, while also including uncore re-

sources. The power management of uncore only or multi-processor systems-on-chip (MP-

SoC) has also drawn lots of attention from both industry and academia [81, 51, 82, 83]. Al-

though the power management for cores, uncores or MPSoCs has been extensively studied

and discussed, none of the previous work has considered synergistic DVFS for NoC-based

CMPs to maximize the performance under iso-power conditions.

7.2 Wide-operating range: from NTC to TB

In the context of NTC, Torrellas [84] has evaluated using near-threshold operations on

extreme-scale computing. Kaul et al. [15] and Jain et al. [19] demonstrated novel processor

designs that can be operated under a wide range of voltage and frequency. Jain et al. [19]

further showed that the best energy efficiency (without any constraint) can be obtained in

the near-threshold region. Dreslinski et al. [16] provided a complete analysis of NTC on

multi-core processors.

Regarding the TB mode of operation, Isci et al. [18] analyzed the benefit of maximizing

performance under a predefined power budget. Cochran et al. [85] developed an algorithm

to maximize per-thread performance. Very recently, Juan et al. [10] adapted reinforcement

learning to perform adaptive RDVFS on CMPs. However, none of the above works have

addressed the optimization framework for DVFS over a wide-operating range that includes

both NTC and TB.

7.3 Thermal dynamics

Thermal modeling for CMPs has received a lot of attention recently. Huang et al. [7]

proposed Hotspot−an accurate, simulation-based thermal model for planar ICs−and the
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corresponding thermal-aware floorplanning. Li et al. [86] developed an efficient numerical

method to solve large thermal grids for ICs. Bosch [87] demonstrated a thermal model with

special focus on the heat flux distribution over the sides of a component. Wang et al. [88]

proposed a transient thermal simulator based on an alternating direction implicit method.

All these work share a common point: the thermal models constructed are physics-based

instead of data-driven.

7.4 Learning process variations and Network-on-Chip (NoC)

In addition to performance, power, and thermal dynamics of a multi-core systems, learning-

based (or data-driven) concepts have also been applied to model other aspect of interests.

Juan et al. [9, 89] have demonstrated a statistical framework to model the effects of man-

ufacturing process variations, with a special focus on leakage and thermal variability. The

corresponding mitigation techniques have also been presented in [9, 89]. Qian et al. [90]

has proposed SVR-NoC, using support vector regression (SVR) for evaluating Network-

on-Chip (NoC) latency performance.
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Chapter 8

Conclusion

In this thesis, we have demonstrated that the performance, power and thermal character-

istics of a multi-core system can be well-modeled by Gray-box computing: the concept

of data-driven approaches incorporating domain knowledge. Mathematically, the domain

knowledge is included by using (1) Gray-box model or (2) Bayesian inference. This chapter

concludes by summarizing the key results of this thesis and presenting avenues for further

research.

8.1 Learning the performance and power of a multi-core system

For a multi-core system, the performance and power relationship can be learned by a

constrained-posynomial function, with the average accuracy 96%. The learned function

provides convexity for further multi-constrained optimization: (1) an additional 13.28% of

the energy consumption is reduced under iso-performance conditions, and (2) the through-

put is increased by additional 7.54% under iso-power conditions.

Regarding to the multi-core system equipped with network-on-chip as the communica-

tion backbone, reinforcement learning (RL) is an effective mechanism for synergic DVFS

of cores and uncore. The parameters used in the Markov Decision Process for the RL are
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learned via Dirichlet Prior and Posterior. The experimental results show that the average

performance is increased by 10.9%.

8.2 Learning the thermal dynamics of a multi-core system

The thermal dynamics of a multi-core system are directly reflected on the operating tem-

perature. We have proposed to model the operating temperature via Lasso regression−an

linear regression with L1 norm regularizer. The proposed model achieves more than 98%

accuracy and serves as a fast alternative (113X speedup) of the conventional thermal simu-

lation.

8.3 Learning the job inter-arrivals of a datacenter

Characterizing the inter-arrival pattern of jobs submitted to a datacenter is the key to

design a cloud-based scheduling algorithm for improving the utilization and quality of

services (QoS). The proposed HIBM is a succinct and interpretative model. HIBM requires

only a handful of parameters to generate job inter-arrivals mimicking the empirical data.

In addition, HIBM also attributes the four distinct clusters and the corresponding spikes

to both within-bundle noises and class interdependency, and provides intuitive explanation

“those delayed long get delayed longer” to the cross-bundle noises of periodic job types.

8.4 Future work: learning the usage dynamics of a datacenter

One straight-line future work is to adapt Gray-Box computing to learn a function that

associates a job submission with the computing resource consumed (CPU time, memory

access, disk I/O). Such a function can be used in synergy with HIBM to provide system

architects a better view of how to design an efficient and effective scheduling algorithm for

a datacenter.
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