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Abstract

The benefits of the continued progress in integrated circuit manufacturing have been numer-

ous, most notably in the explosion of computing power in devices ranging from cell phones

to cars. Key to this success has been strategies to identify, manage, and mitigate yield loss.

One such strategy is the use of test structures to identify sources of yield loss early in the

development of a new manufacturing process. However, the aggressive scaling of feature

dimensions, the integration of new materials, and the increase in structural complexity in

modern technologies has challenged the capabilities of conventional test structures.

To help address these challenges, a new logic test chip, called the Carnegie Mellon Logic

Characterization Vehicle (CM-LCV), has been developed. The CM-LCV utilizes a two-

dimensional array of functional unit blocks (FUBs) that each implement an innovative func-

tionality. Properties including fault coverage, logical and physical design features, and fault

distinguishability are shown to be composable within the FUB array; that is, they exist

regardless of the size and composition of the FUB array. A synthesis flow that leverages this

composability to adapt the FUB array to a wide range of test chip design requirements is

presented. The connection between the innovative FUB functionality and orthogonal Latin

squares is identified and used to analyze the universe of possible FUB functions. Two ad-

ditional variants to the FUB array are also developed: heterogenous FUB arrays utilize

multiple FUB functions to improve the synthesis flow performance, while pipelined FUB

arrays incorporate sequential circuit elements (e.g., flip-flops and latches) that are absent

from the original combinational FUB array.
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In addition to the design of the CM-LCV, methods for testing it are presented. Techniques

to create minimal sets of test patterns that exhaustively exercise each FUB within the

FUB array are developed. Additional constraints are described for the heterogenous and

pipelined FUB arrays that allow these techniques to be applied for both variant FUB arrays.

Furthermore, a simple built-in self test (BIST) scheme is described and applied to a reference

design, resulting in a 88.0% reduction in the number of test cycles required without loss in

fault coverage.

A hierarchical FUB array diagnosis methodology (HFAD) is also presented for the CM-

LCV that leverages its unique properties to improve performance for multiple defects. Ex-

periments demonstrate that this HFAD methodology is capable of perfect accuracy in 93.1%

of simulations with two injected faults, an improvement on the state-of-the-art commercial

diagnosis. Additionally, silicon fail data was collected from a CM-LCV manufactured using

a 14nm process by an industry partner. A comparison of the diagnosis results for the 1,375

fail logs examined shows that the HFAD methodology discovers additional defects during

multiple defect diagnosis that the commercial tool misses for 40 of the diagnosed fail logs.

Examination of these cases shows that the additional defects found by the HFAD methodol-

ogy can result in improved diagnosis confidence and more precise descriptions of the defect

behavior(s).

The contributions of this dissertation can thus be summarized as the description of the

design, test, and diagnosis of a new logic test chip for use in yield learning during process

development. This CM-LCV can be adapted to meet a wide range of test chip requirements,

can be efficiently and rigorously tested, and exhibits properties that can be used to improve

diagnosis outcomes. All of these claims are validated through both simulated experiments

and silicon data.
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Chapter 1

Introduction

The objective of any manufacturing process is to produce a physical instance, or part, ac-

cording to a design. The semiconductor manufacturing process is no different in this respect:

the design in this case is a complete plan for an integrated circuit. Encompassed in this de-

sign are the design specifications, which can be either functional (e.g., constraints on the

input/output mapping) or performance-based (e.g., the timing of signals, power usage, etc.).

Additional distinctions are made in this dissertation between the physical design, comprising

the layout and the physical patterns to be manufactured, and the logical design, comprising

the gate-level representation (e.g., the netlist).

Unfortunately no manufacturing process is perfect, resulting in parts that fail to meet

the design specifications. The fraction of good parts produced is defined as the yield of the

manufacturing process, and test is the filtering process by which good and bad parts are

differentiated. Integral to the success of the semiconductor industry has been the capability

to detect, characterize, and mitigate sources of yield loss [1,2]. These sources of yield loss in

integrated circuit manufacturing are numerous, including:

• Poor design - The design, when manufactured, may not produce parts that meet the

design specifications. For example, poorly characterized device models may lead to a

design that cannot meet timing specifications, or a logic error in the design may make
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it unable to meet functional specifications.

• Poor test - A bad test may improperly classify good parts as bad. For example,

testing a false path in a part (i.e., a circuit path that is never used in the functional

application of the design) may cause an otherwise good part to be judged as failing to

meet the timing specification [3].

• Damage during test - The testing process itself may cause damage to a part, causing

it to fail to meet the design specifications. An example of this is damage to otherwise

good parts that can occur during burn-in test performed at elevated temperatures and

voltages [4, 5].

• Defects - A defect is a localized anomaly that causes a part to fail to meet the design

specifications. Defects can be either random or systematic. Random defects arise

from processes that are randomly distributed across a manufactured part; the classic

example of a random defect is a contaminant particle. Systematic defects, in contrast,

are defects that are correlated to some feature of the design. Defects are further

classified as either soft (only produce failures in at specific operating conditions) or

hard (produce failures in all operating conditions) in nature.

Minimizing yield loss due to defects has been challenging as manufacturing processes

have continued to increase in complexity [6, 7]. The objective of this thesis is to contribute

to this undertaking by presenting a new logic test chip design with optimal test and diagnosis

characteristics for yield learning in new manufacturing technologies. The remainder of this

chapter provides context for this objective. Section 1.1 reviews the use of test chips in

the development of new manufacturing technologies. Section 1.2 provides background on

existing test chips. Sections 1.2.1 and 1.2.2 review the role of digital test and diagnosis in

the detection and characterization of defects. Finally, Section 1.3 presents the organization

of the remainder of this dissertation.
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1.1 Semiconductor Technology Development Cycle

A significant application for test chips is in the development of new technology nodes. This

section will present a generic technology development flow for a modern semiconductor pro-

cess with particular focus on the types and roles of the test chips used at each stage [8].

A new technology node begins with a set of objectives. These objectives can be related to

the performance of the process (e.g., processing time, cost, complexity, etc.), the performance

of the devices manufactured (e.g., power, performance, area, etc.), or the inclusion of specific

features. Figure 1.1 describes the subsequent development process for a generic technology

that has been divided into six separate stages, along with the types of test chips manufactured

at each stage.

Figure 1.1: Outline of a generic semiconductor technology development process.

Stage I in the generic technology development process of Figure 1.1 is technology explo-

ration, namely the identification of the techniques required to meet the objectives. These

techniques may include the use of processing technologies (e.g., double patterning [9]), the

creation of structures (e.g., FinFETs [10]), and/or the inclusion of specific materials (e.g.,

high-K gate dielectrics [11]). At this stage, test chips consist of simple proof-of-concept

structures used to evaluate each technique independently.

Once a set of techniques has been identified, Stage II is module definition, which consists
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of grouping sequences of processing steps into discrete modules. Electrical measurements and

microscopy are used to examine simple test structures created using the individual modules.

Measurements collected during this stage include the number of working devices per unit

area and physical parameters such as the thickness and roughness of different materials. The

first SRAM test structures are also manufactured, as their high transistor density, regular

structure, and simple test and diagnosis make them well-suited for estimating overall process

defectivity.

After module definition is complete, Stage III is process validation. The processing

modules are integrated and used to create single-layer test structures and larger SRAMs.

The initial process design kit (PDK) is defined at the beginning of this stage and rapidly

refined using the data collected from the test structures. Development of the standard-cell

library also begins, and various standard-cell test structures, including individually-probed

standard-cell structures and ring oscillators, are manufactured. Defectivity is extremely

high at this stage and is driven by systematic process sensitivities as well as random defects.

Information from the test structures and SRAMs is used to reduce this defectivity through

adjustment of the various design and process parameters.

After process validation is Stage IV, technology validation. Test structure complexity

increases, with the deployment of short-flow test chips, which are manufactured using only

a subset of the process layers, as well as medium-sized SRAMs (32-64Mb). These short-

flow test chips are targeted towards either the front end of the line (FEOL) (i.e., transistor

and contact layers) or back end of the line (BEOL) (i.e., metal interconnect). Additionally,

small full-flow standard automated place-and-route (SAPR) logic test chips are manufactured

using the developing PDK and are used to further refine it as the process begins to stabilize.

Defectivity remains high at this stage, and significant effort is put into driving it down using

the results derived from the test structures.

After process validation, Stage V is process yield learning. In addition to short-flow test

chips and larger SRAMs, full-flow product-representative test structures are manufactured,

4



including large SAPR logic test chips. These product-representative test chips are used not

only for continued yield learning, but also to demonstrate the capabilities of the new process.

The final refinements are made to the PDK and the standard-cell library before release to the

product designers. Leveraging test structure results to reduce process defectivity is crucial

at this stage, as it can become significantly more difficult to make PDK-relevant process

changes after the PDK has been released.

The final Stage VI in the technology development process is product yield learning. The

PDK is released and used to develop product designs, and product manufacturing begins at

reduced volumes. Initial product yield is expected to be low even with all of the previous

emphasis on identifying and reducing process defectivity; it is crucial for the commercial

viability of the technology that product yield losses be identified and corrected at this stage

before concluding the technology development process and beginning full volume product

manufacturing [2].

Two examples from industry underscore the importance of the full-flow logic test chips

manufactured during process validation and process yield learning. First, in one instance a

specific standard cell was never incorporated into a larger logic structure in any test silicon

during the technology development process. When product designs utilizing this standard

cell were manufactured, the cell failed at a high rate, resulting in significant yield loss [12].

Second, an industry member has indicated that, in modern technology nodes, the short-flow

test structures have been observed to fail to detect some defects that they would otherwise

be expected to detect (e.g., shorts in a short-flow test structure designed to detect shorts),

indicating an increasing need for high-quality full-flow test chips [13].

1.2 Test Structures

A test chip (or test structure) is a design (or component of a design) that is manufactured

for purposes other than use or sale. Common test chip applications include characterization
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of process parameters, yield loss exploration, and estimation of process reliability. This

dissertation focuses on test chips targeted towards yield loss. There exist many types of

such test structures, ranging from passive structures (e.g., via arrays, comb drives, etc.) to

large, complex circuits (e.g., ring oscillators, SRAM, etc.) [14]. The dissertation work here

focuses on the SAPR logic test chips that are developed in the mid to late stages of the

technology development process, and which are intended to catch sources of yield loss that

impact the random logic used in product designs.

It is necessary to examine the types of yield loss mechanisms that are targeted by SAPR

logic test chips. While random defects can cause yield losses in digital logic, random defec-

tivity is largely under control in an ideal process development cycle by the time SAPR logic

test chips are introduced, and other test structures (e.g., SRAMs, comb drives, serpentine

paths, etc.) are often better suited to characterizing random defects. Instead, relevant yield

losses in digital logic are largely systematic in nature, and are driven by the abundance of

new physical patterns created during the automated place-and-route process (e.g., standard

cell abutments, routing paths in metal interconnect, etc.). Each of these new physical pat-

terns can potentially interact with one or more steps of the manufacturing process, resulting

in systematic phenomena including:

• Parametric effects - neighboring physical patterns can impact the electrical perfor-

mance of both devices and metal interconnect [15,16]. If these effects are not modeled

and accounted for in designs, they can cause significant parametric yield losses.

• Systematic defects - interactions between physical patterns and the manufacturing

process can cause manufacturing defects (e.g., shorts, opens, partial voids in vias,

etc.), which in turn can result in either hard or soft failures.

Another important aspect of these systematic phenomena is their potential multiplicity:

if some physical pattern in a design is susceptible, every occurrence of that physical pattern

can be impacted if the appropriate conditions arise. Thus, multiple defect test and diagnosis
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has increased value for SAPR logic test chips, particularly in the earlier stages of the process

development cycle when these systematic phenomena are expected to be more prevalent and

severe.

Because of the constraints of digital logic test and diagnosis (discussed in Sections 1.2.1-

1.2.2), the SAPR logic test chip is best suited for detection of hard systematic defects, though

it may still be possible able to detect soft systematic defects and parametric failures in some

cases. Despite these limitations, effective SAPR logic test chips are necessary not only for

identifying systematic sources of yield loss, but also for evaluating the effects of different

digital logic styles, including different place-and-route tool configurations and design for

manufacturability (DFM) guidelines.

The most straightforward means of implementing a logic test chip is to use a product

design, either in whole or in part. This ensures that the defects observed in the logic test

chip are product-relevant (at least to the parts of the product included). However, this

approach is not without its disadvantages. High quality testing of product designs incurs

significant test cost [17] and is frustrated by the existence of redundancies [18,19]. Another

challenge is the difficulty in diagnosing defects in product designs, which can lead to poor

diagnostic resolution and accuracy [20]. Missed or improperly characterized defects resulting

from these issues can result in significant costs, including the need for more silicon dedicated

to logic test chips and other test structures, more time and effort spent on yield learning,

and ultimately the possibility of lower product yield.

Two additional works merit discussion in this section. In [21], the authors describe a

test structure that consists of a combinational logic circuit and a scan-based “jig”, which is

surrounding circuitry that enables scan and performance-based testing of the combinational

logic circuit. Performance testing is accomplished through a configurable ring oscillator

mode. Specifically, a ring oscillator is established under the control of the jig by making

either an inverting or non-inverting connection from a circuit output back to one of the

inputs. While this jig approach is highly configurable, the ability of this test structure to
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detect defects is dominated by the characteristics of the logic circuit used. Because this logic

circuit is often a subcircuit drawn from product designs it suffers from the same test and

diagnosis drawbacks of product designs mentioned previously.

In [22], the authors describe a test structure consisting of an array of flip-flops with

SRAM-like connections (bit lines, word lines, etc.). By utilizing a memory-like I/O scheme,

the authors apply memory test techniques to their design. Additionally, they argue that the

flip-flop array can be made to reflect a product layout through synthesis with a standard-cell

library, and the use of conventional place-and-route flows. Finally, product-like routing is

mimicked by having multiple paths for the bit- and word-lines that are individually selected

using multiplexers. While this approach is innovative in leveraging memory test techniques

in a logic test chip, there are two primary drawbacks. First, it is difficult to use all of

the cells in a standard-cell library in a flip-flop array without large numbers of untestable

faults. Second, it remains an open question as to whether the proposed physical similarities

between this test chip and product design layouts are sufficient to ensure that the same

defect mechanisms will be observed in both.

1.2.1 Digital Integrated Circuit Test

Digital integrated circuit test consists of the application of input vectors to a manufactured

part and the observation of its response. One of the fundamental problems in test is the

selection of test patterns; perfect test would require that every valid input pattern be ap-

plied to each manufactured part. However, the number of patterns required to do this for

even small designs quickly renders this approach impractical. Instead, sources of yield loss,

including defects, are typically modeled at the structural level as faults. These fault models

are then used to generate and grade test patterns.

However, the relationship between defects and fault models is not always straightforward.

Because test is primarily concerned with detection, a fault model does not need to closely

match the behavior of defects in a design in order for it to be effective. So long as the tests
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produced using a fault model exercise the design in a manner that detects all of the relevant

defects, any differences between the fault model and the defect behavior is irrelevant.

Despite this disconnect, fault models have historically matched fairly well with the defects

observed in the semiconductor manufacturing process; in particular, the single stuck line

(SSL) fault model [1], which assumes that any logic signal in the logic circuit representation

can be shorted to either power or ground, has been used with great success. However, as

the semiconductor manufacturing process has evolved, the defects observed have behaved

less and less like SSL faults. In 1990, a paper examining a test chip fabricated using a

1.5µm process found that 79.2% of the detected defects exhibit behavior that matches an

SSL fault [23]. A similar paper in 2008, working with results from a 90nm process, found

that only 20% of the detected defects exhibit behavior that matches a SSL fault [24], and

this trend towards increased defect complexity has continued in advanced manufacturing

processes [25].

The evolving nature of defects has led to the development of a myriad of new fault models.

A few examples include the stuck-open [26], path delay [27], transition [28], input pattern

[29], and cell-aware [30] fault models. These fault models better reflect the evolving defect

behavior, resulting in higher quality test sets with improved defect detection. However, they

also impose additional costs. More complicated fault models impose additional constraints

during automatic test pattern generation (ATPG), leading to increased difficulty and run-

time. They also may require additional analysis of the design (e.g., identification of relevant

circuit paths, enumeration of realistic bridges, etc.). They also result in larger test sets and

may increase the complexity of the test application process, resulting in higher test execution

costs.

In addition to new fault models, test metrics have also been proposed to help cope with

the increased defect complexity. Test metrics are not meant to model defect behavior, but

instead are a measure of the completeness of a test set, with a more complete test set

resulting in better detection of defects (and other sources of yield loss). Test metrics can

9



be used much like fault models to grade and generate test sets. Examples of test metrics

include N -detect [31], the gate exhaustive metric [32,33], and K longest paths per gate [34].

The logic test chips used for yield learning in process development present a unique

test challenge. While they are typically small and simple (compared to typical product

designs), the prevalence of multiple defects and complex defect behaviors, along with the

importance of diagnosis accuracy during yield learning, result in a need for rigorous test.

In this context, efficient test techniques allow for more complex fault models (resulting in

improved probability of detecting complex defects) and more test data for diagnosis (resulting

in improved diagnosis accuracy).

1.2.2 Digital Integrated Circuit Diagnosis

Diagnosis of digital integrated circuits involves the use of failing responses to identify the

location and behavior of any defects present. Traditional fault diagnosis operates at the

logic level, and attempts to match the observed defect behavior to one or more fault model

instances (i.e., faults), where each fault and its corresponding location is typically referred

to as a candidate. Diagnosis performance is typically considered in terms of two orthogonal

metrics: accuracy, a measure of how well the reported candidate(s) correspond to the actual

defect, and resolution, the number of candidates reported. There are two general approaches

to fault diagnosis:

• Effect-cause approaches analyze the design and the observed failing response to narrow

down the possible candidate faults, which are then simulated to derive the diagnosis

candidates [35–37].

• Cause-effect approaches pre-compute the fault responses for a given test set and collec-

tion of faults, resulting in a fault dictionary. The failing response is then compared to

each of the simulated fault responses, and the faults corresponding to the best matches

are reported as the diagnosis candidates [38–40].
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In general, cause-effect approaches (i.e., fault dictionaries) are expensive to compute

and store, but can be optimized for quick run-time on a per-diagnosis basis. Effect-cause

approaches, in contrast, have no up-front costs but require the design to be analyzed in each

diagnosis run. Additionally, cause-effect approaches are more flexible, better able to handle

changes in the test set (for which fault dictionaries must be recomputed), and typically

produce candidates with increased accuracy and better resolution when defect behavior is

more complex (e.g., multiple defects, fault models poorly capture defect behavior, etc.).

Candidates obtained from fault diagnosis represent a valuable source of information for

defects. This information can be combined with the physical design and correlated across

many failing parts (i.e., volume diagnosis) [41–43] and/or used to guide physical failure

analysis (PFA), during which the defective parts are physically inspected using a variety

of techniques to confirm the presence and physical properties of any defects. Issues with

diagnostic accuracy and resolution both adversely affect PFA: if the diagnosis is not accurate,

PFA may not find any physical defects in the implicated regions of the defective part. If the

diagnostic resolution is poor, there may be too large of an area/volume in the defective part

to inspect using PFA techniques, which can be destructive in nature.

For logic test chips used during process development the volumes of test chips manu-

factured may not allow for the application of volume diagnosis techniques, particularly if

multiple process recipes are being explored. This means that yield learning during process

development is heavily reliant on PFA results. Additionally, the potential for multiple de-

fects and new defect behaviors make cause-effect diagnosis approaches less useful. Instead,

effect-cause diagnosis techniques are used to obtain the best diagnosis result possible based

on the observed tester response, and improvements in diagnostic accuracy and resolution,

particularly for multiple defects and complex defect behaviors, are highly desirable.
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1.3 Summary

The ability to detect, isolate, and characterize defects in the semiconductor manufacturing

process has been crucial to its historical success. Test chips represent a key tool in achieving

this capability. However, this capability is becoming more difficult to ensure as the process

complexity has continued to increase with the development of new technology nodes. This

dissertation presents a new SAPR test chip, the Carnegie Mellon Logic Characterization

Vehicle (CM-LCV), as one means of securing this capability.

The remainder of this dissertation is organized as follows. The design of the CM-LCV is

described in Chapter 2. Chapter 3 discusses the test properties of the CM-LCV, including

an efficient built-in self test (BIST) architecture. Chapter 4 presents a custom diagnosis

methodology for the CM-LCV that enables accurate, multiple-defect diagnosis. Finally,

Chapter 5 summarizes the contributions of this dissertation and discusses promising direc-

tions for future work.
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Chapter 2

CM-LCV Design

This chapter describes the Carnegie Mellon Logic Characterization Vehicle (CM-LCV). Sec-

tion 2.1 describes the design architecture of the CM-LCV. The composability of various

properties within the FUB array used in the CM-LCV is demonstrated in Section 2.2. A

general synthesis flow for the CM-LCV that leverages this composability is presented in

Section 2.3. Further discussion on the mathematical nature of the functions used in the

CM-LCV is included in Section 2.4. Additional FUB array variants are developed in Section

2.5 to address several shortcomings of the original CM-LCV design. Finally, Section 2.6

summarizes the work presented in this chapter.

2.1 Design Architecture

At an abstract level, the physical design of an IC (i.e., the layout) can be viewed as a collection

of sites for potential manufacturing defects. Different defect mechanisms stemming from the

manufacturing process can potentially affect different subsets of these sites; for example,

random conducting particles with radius r have the potential to cause shorts in locations

with weighted critical areas of radius r. At each site within the physical design, a defect

can be in one of three observability categories: undetected, testable but not diagnosable, or

both testable and diagnosable.
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(a) (b)

Figure 2.1: Distribution of potential defect sites within the physical designs for (a) a test chip and
(b) a product. Each defect site is labeled according to the defect mechanism that affects it, and colored
according to the degree of observability, with no shading representing untestable sites, light shading for
testable but not diagnosable sites, and dark shading for sites that are both testable and diagnosable.

Figure 2.1 shows this abstract view for the physical designs of a test chip (Figure 2.1a)

and a product (Figure 2.1b). Potential defect sites are represented as circles and are labeled

according to the defect mechanisms that can affect them. The observability of each defect site

is indicated by its shading, with no shading indicating untestable, light shading indicating

testable but not diagnosable, and dark shading indicating both testable and diagnosable.

First, suppose some defect mechanism affects the sites labeled “A” in Figure 2.1. In

this case, the test chip (Figure 2.1a) has some sites that are both testable and diagnosable,

and some that are not. If this defect mechanism affects a random site in the test chip,

there is a chance that it will not be tested (untestable sites), or be tested but impossible to

localize to the appropriate site (undiagnosable sites). Both of these cases represent a missed

opportunity to characterize this defect mechanism.

Next suppose some defect mechanism affects the sites labeled “B” in Figure 2.1. In

this case the test chip of Figure 2.1a has some such sites, but none are testable, let alone

diagnosable. The result is that the lack of testability and diagnosability has created a defect

gap between the two designs; the test chip of Figure 2.1a can never be used to observe this

defect mechanism which has the potential to impact the product design of Figure 2.1b.

Third, suppose some defect mechanism affects the sites labeled “C” in Figure 2.1. In

this case the test chip of Figure 2.1a has no such sites, while the product design of Figure
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2.1b includes several. The result is another defect gap, though the cause in this case is a

lack of physical relevance between the two designs; that is, the physical design of the test

chip contains no sites that are susceptible to a defect mechanism that can affect sites in the

physical design of the product.

The hypothetical designs of Figure 2.1 are instructive on the relationship between test

structures and product designs. Recall that the one of the objectives for test structures is

to identify and characterize defects before they cause product yield loss. In the first case

discussed (sites labeled “A”), a test chip design with the properties of Figure 2.1a is adequate

but not ideal for a corresponding product design Figure 2.1b; a significant volume of parts

may need to be manufactured before the defect mechanism affects one of the sites in the test

chip design that can be properly tested, diagnosed, and PFA’ed for yield learning (depending

on the rarity of the defect mechanism and the ratio of testable and detectable sites). The

defect gap present in the other two cases (sites “B” and “C”), on the other hand, represent a

fundamental inadequacy: the test chip design can never be used to observe the corresponding

defect mechanisms, which will result in product yield loss. This defect gap can be caused by

either a lack in observability at the affected sites (sites “B”) or a lack of physical relevance

between the two designs (sites “C”). Note that a defect gap can also exist in the other

direction, where a test chip design is susceptible to a defect mechanism that cannot impact

the product design. This is also problematic, in that it may lead to wasted engineering

effort spent to correct a defect mechanism that would not result in product yield loss. In

the worst case, the corrections to the manufacturing process may even introduce new defect

mechanisms that could potentially affect the product design (essentially an optimization of

the manufacturing process for the test chip design at the detriment of the product design).

Based on this analysis, the principles of physical relevance, testability, and diagnosability

are key to a successful test chip design. Perfect physical relevance between the test chip

design and the product design(s) to be manufactured implies that the defect mechanisms

observed in the test chip design would cause product yield loss, and that all such defect
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mechanisms affect the test chip design. Perfect testability and diagnosability ensures that

all defect mechanisms that affect the test chip design will be testable and diagnosable, and

potentially reduces the volume of test chips required for yield learning.

Given this context and with the goal of developing an improved logic test chip, this work

assumes that defect mechanisms in the integrated circuit manufacturing process are sensitive

to physical features that are only loosely correlated with the logical functionality of a design.

This assumption is supported by the language used in the literature to describe systematic

manufacturing defects; for example, patterns in metal interconnect [44] or specific standard

cells [45]. In no case is the higher-level functionality suggested to be vital to the nature of

the defect; at best, the design functionality is included to give some context to the work.

Indeed, this separation is fundamental to the concept of a single foundry manufacturing a

variety of different product designs.

Thus, given the negligible impact the logical functionality has on the susceptibility of a

design to defect mechanisms, the following logical design decisions are made to maximize

testability and diagnosability:

• Regularity - A set of functional unit blocks (FUBs) with regular connections can be

designed to be C-testable [46], a property which ensures optimal test set size and fault

coverage over the entire array, regardless of its size.

• Two-dimensions - Arranging a collection of FUBs in a two-dimensional unilateral

array with vertical and horizontal connections enables error propagation in two direc-

tions, allowing for better localization of defects.

• VH-bijectivity - The FUB function is required to be bijective (e.g., a one-to-one

mapping) and constrained such that any value change on exactly one of the sets of

inputs (vertical or horizontal) must result in a change in the value on both sets of out-

puts. Requiring that the FUB function exhibit this property guarantees both vertical

and horizontal propagation of errors through the defect-free FUBs.
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(a) (b)

Figure 2.2: Notation for (a) the FUB and (b) the two-dimensional FUB array.

The result of these decisions is the FUB array : a collection of functional unit blocks,

each of which implement a VH-bijective function, arranged in a two-dimensional array with

unilateral connections along both the horizontal and vertical directions. Figure 2.2 shows

the notation for the FUB (Figure 2.2a) and FUB array (Figure 2.2b) that will be used

throughout this dissertation. The FUB function F (x, y) → (x̂, ŷ) implements a mapping

between two input ports x, y and two output ports x̂, ŷ, with each port having bit width b.

Using this notation, VH-bijectivity can be formally stated as follows:

Definition 2.1. Let F (x, y)→ (x̂, ŷ) be a bijective function with x, y, x̂, ŷ ∈ {0, 1, . . . , 2b −

1}, and furthermore let F (xi, yi) = (x̂i, ŷi) and F (xj, yj) = (x̂j, ŷj). Function F is VH-

bijective if and only if, for all xi = xj and yi 6= yj: x̂i 6= x̂j and ŷi 6= ŷj; and for all xi 6= xj

and yi = yj: x̂i 6= x̂j and ŷi 6= ŷj.

VH-bijective FUBs are connected to form a FUB array with R rows and C columns,

as shown in Figure 2.2b. A (row, column) indexing notation is used to indicate specific

locations within the FUB array, with (1, 1) in the upper left corner and (R,C) in the

lower right corner of the array. The FUB input and output ports are connected such

that x̂(r,c) = x(r,c+1) and ŷ(r,c) = y(r+1,c). The array inputs are collectively represented as

X = (x(1,1), x(2,1), . . . , x(R,1)) and Y = (y(1,1), y(1,2), . . . , y(1,C)). Similarly the array outputs
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Figure 2.3: VH-bijectivity demonstrated in the presence of a defective FUB in a two-dimensional array.
Signal propagation moves left to right, top to bottom. Guaranteed error propagation is represented by
the connections with thick red highlighting, while unknown error propagation is represented by the
connections with thin red highlighting.

are represented as X̂ = (x̂(1,C), x̂(2,C), . . . , x̂(R,C)) and Ŷ = (ŷ(R,1), ŷ(R,2), . . . , ŷ(R,C)). Addi-

tionally, the FUB array is by convention assumed to be homogenous (all FUBs implement

the same VH-bijective function) and entirely combinational (no sequential circuit elements);

variants on the FUB array that are not homogenous or combinational will always be indicated

as such when discussed in this dissertation.

The FUB array and its error propagation behavior for a single defective FUB is shown

in Figure 2.3. Inputs to the array are applied on the top and left boundaries, and values

propagate downstream (i.e., down and to the right) through each of the FUBs to the array

outputs on the right and bottom boundaries. Assume the FUB instance in the array of

Figure 2.3 marked with an “×” is defective, and produces an erroneous value (represented

by the dark shading) for some test pattern at its horizontal output. All FUBs in the same

row as the defective FUB (marked with an “H”) fall under the VH-Bijective constraint:

a difference in value present only at a horizontal input will propagate to both outputs.

Furthermore, all FUBs in the first downstream column to the right of the defective FUB
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(marked with a “V”) also fall under the VH-bijective constraint: a difference in value that

appears only at a vertical input will propagate to both outputs. The remaining downstream

FUBs (marked with a “?”) may experience errors on both inputs; because they implement a

bijective function the error will propagate to at least one of the outputs, but this case is not

covered by VH-bijectivity and thus the error propagation cannot be predicted (represented

by the light shading) without exact knowledge of the test pattern and error values.

The CM-LCV is thus formally defined as a collection of one or more FUB arrays, along

with the necessary mechanisms for testing (i.e., BIST, scan, etc.). It can be manufactured as

a stand-alone test chip or as a macro within a larger design. Regardless of its architecture, it

is the FUB array that determines the majority of the properties of interest in this dissertation.

2.2 Composability

A key benefit of the FUB array used in the CM-LCV is its composability : many properties

exhibited by an individual FUB continue to exist when it is integrated into a FUB array.

This means that FUBs can be independently selected for a given property, and the FUB

array composed of these FUBs will also exhibit this property. The remainder of this section

will describe various properties that are composable within the FUB array.

2.2.1 Design Features

First is the composability of logical design features. It is obvious that logical characteristics

of a given FUB implementation, for example the number and type of standard cells, the gate

fanin and fanout1, and even the logical paths through the FUB, are independent of the array

size and the inclusion of other, different FUB implementations in the FUB array.

Additionally, many physical design features are composable in the FUB array, depending

on the techniques used to create the physical design. For example, in a case where a FUB

1Except for the fanin and fanout characteristics of the gates at the FUB primary inputs and outputs,
which are indeed influenced by neighboring FUB designs.
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array is assembled as a gate-level netlist and the physical design is created using a commercial

place-and-route flow, the physical features within the standard cells used in a single FUB

(e.g., the arrangement of transistors, contacts, and intra-cell interconnect) are independent of

the array size and inclusion of other FUB implementations. More restrictive techniques can

ensure additional physical design features are composable; for example, FUBs can be custom

designed to fit a specific physical footprint (e.g., specified layout area with standardized

connections) and then assembled to create the physical design. In this case any physical

features defined to exist with the bounds of an individual FUB are independent of the

composition of the remainder of the array. Intermediate techniques also exist; an example,

described in [47], is to define small layout snippets of interconnect and standard cells as

macro cells within the FUBs, which are then used as-is within a commercial place-and-route

flow.

2.2.2 Fault Coverage

Fault coverage is also a property composable in the FUB array for certain types of fault

models. In a typical logic design this would be extraordinary; it would imply that the fault

coverage for a given sub-module is entirely independent of the rest of the design. This

property can be proven for the FUB array for all faults detectable by a single test pattern,

as shown in Theorem 2.1.

Theorem 2.1. All faults within a FUB that are detectable by a single test pattern are

detectable when it is incorporated into a VH-bijective FUB array, regardless of its location

(i, j) with the array and the size parameters (R,C) of the array.

Proof. The sufficiency of Theorem 2.1 can be demonstrated as follows. Recall that detection

of a fault is contingent on both activation of the fault and propagation of at least one

resulting error. Detection of faults in a FUB will be preserved in the FUB array if (a) all

of the required test patterns can be applied to the FUB, and (b) at least one resulting error

produced at the FUB outputs is propagated to the array outputs.
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Figure 2.4: Representation of a segment of FUB array. The location of the FUB of interest (marked
“×”) defines three regions within the array: the FUBs in the same row (marked “rk”), the FUBs in the
same column (marked “cm”), and the remaining upstream FUBs (marked “un”).

Figure 2.4 is instructive in establishing the first proposition, namely that the inputs

of the target module (shown marked with a “×”) can be controlled to any arbitrary input

pattern. First consider the vertical input to the target FUB that is controlled by the outputs

of c1: bijectivity guarantees that there is at least one input value that can be applied to the

vertical neighbor c1 to produce the desired value. Any one of these input values can be

selected arbitrarily, and this process can be repeated for every FUB in the column (c2, c3,

etc. in Figure 2.4), leading eventually to the vertical array inputs. The same holds true for

the horizontal input value along the FUBs in the same row (i.e., r1, r2, etc. in Figure 2.4).

At this point all of the input and output values for the FUBs along the row and column

(marked rk and cm, respectively, in Figure 2.4) have been specified. Because all of the FUB

functions used in this array are bijective, for every possible FUB output value, there must

exist exactly one FUB input value that will produce that output value. Consider the first

upstream FUB u1: both its vertical and horizontal output values have been specified (by

FUBs r1 and c1, respectively), and thus by the bijectivity of the u1 FUB function there is

exactly one FUB input value that must be applied to the inputs of u1. This process can

be repeated for each FUB un in the upstream region (u2, u3, u4, etc.) all the way to the

array inputs. The result is an array input pattern that will produce the desired values at
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the inputs of the FUB of interest.

Sufficient error propagation is also easily demonstrable. A detected fault must produce

an error on at least one output of the target FUB. Any FUB that receives an error must

propagate it to at least one of its outputs due to bijectivity, and the path of these errors

must eventually arrive at one or more of the array outputs.

Therefore both fault activation and error propagation can be achieved for any fault

detectable by a single input pattern within a given FUB in the FUB array. Thus the fault

coverage for this class of faults is preserved within the array.

While this result is powerful, it is still limited to faults detectable with a single test

pattern (e.g., SSL, bridge faults, input pattern, etc.). Any fault model that requires multiple

test patterns or imposes timing requirements for detection (e.g., transition, path delay, etc.)

is not covered by this proof. Furthermore, the efficiency of the array test patterns is not

addressed; preserving fault coverage for every FUB in the array using the methods presented

may require an increasing number of array test patterns as the number of FUBs in the array

increases. These considerations are addressed in Section 3.1; at this point it is sufficient to

prove that fault coverage in a standalone FUB is maintained given these limitations.

2.2.3 Fault Distinguishability

Finally, fault distinguishability is partially composable within the FUB array. Two faults

are distinguishable if they produce distinct responses for an applied test set. Composability

in this case implies that a fault that produces a unique response in a standalone FUB will

continue to produce a unique response when incorporated into a FUB array. First, however,

a definition of adjacency in the FUB array is required:

Definition 2.2. Two FUBs Fa, Fb at array locations (ra, ca), (rb, cb), respectively, are defined

to be adjacent in the FUB array if they share either a horizontal port connection or a vertical
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port connection; that is, either ra = rb and |ca − cb| = 1 or |ra − rb| = 1 and ca = cb.

Given this definition of adjacency, fault distinguishability can be readily proven for faults

in non-adjacent FUBs.

Theorem 2.2. Any pair of detected faults fa, fb in corresponding non-adjacent FUBs Fa, Fb

in a VH-bijective FUB array will produce distinguishable array responses.

Proof. The sufficiency of Theorem 2.2 can be demonstrated as follows. Recalling the error

propagation paths observed in Figure 2.3, there exist three possible propagation cases within

the FUB array for a given fault:

1. If the fault produces errors on both horizontal and vertical outputs of the FUB, the

errors are guaranteed to propagate and be observed at the array outputs corresponding

to both the row and column of the faulty FUB: (r, c).

2. If the fault produces errors at only the horizontal outputs of the FUB, the errors are

guaranteed to propagate and be observed at the array outputs corresponding to the

row and the downstream adjacent column of the faulty FUB: (r, c+ 1).

3. If the fault produces errors at only the vertical outputs of the FUB, the errors are

guaranteed to propagate and be observed at the array outputs corresponding to the

column and the downstream adjacent row of the faulty FUB: (r + 1, c).

Let FUB Fa exist at array location (ra, ca). Detected fault fa in FUB Fa will therefore

always produce errors for some test pattern at the array outputs corresponding to the rows

and columns: (ra, ca), (ra + 1, ca), (ra, ca + 1). Similarly, if FUB Fb exists at array location

(rb, cb), detected fault fb will always produce errors for some test pattern at the array outputs

for the rows and columns: (rb, cb), (rb + 1, cb), (rb, cb + 1).

Now, assume that faults fa, fb cannot be distinguished. The guaranteed error propagation

detailed above implies that, for fa and fb to consistently produce errors at the same array

outputs, one of the following must be true:
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1. (ra, ca) = (rb, cb)

2. (ra, ca) = (rb + 1, cb)

3. (ra, ca) = (rb, cb + 1)

4. (ra + 1, ca) = (rb, cb)

5. (ra + 1, ca) = (rb + 1, cb)

6. (ra + 1, ca) = (rb, cb + 1)

7. (ra, ca + 1) = (rb, cb)

8. (ra, ca + 1) = (rb + 1, cb)

9. (ra, ca + 1) = (rb, cb + 1)

Seven of these nine cases violate the assumption that Fa and Fb are non-adjacent in the

array; only (ra, ca + 1) = (rb + 1, cb) and (ra + 1, ca) = (rb, cb + 1) result in non-adjacent

locations for Fa, Fb. In both of these cases FUBs Fa, Fb are adjacent to and in an upstream

position relative to the same FUB Fc, and faults fa, fb must emit errors only along the

outputs that connect to FUB Fc. Because fa is detected, it must emit an error for some test

t that is applied to one of the input ports of Fc, and results in Fc outputting some values

(x̂a, ŷa). For that same test t, it is not possible for fault fb to emit any value such that Fc

produces the same values (x̂a, ŷa). This is due to the fact that the bijectivity of Fc implies

that fault fb would have to apply exactly the same value to Fc; however, fault fb in FUB

Fb cannot produce the same values at the inputs of Fc as FUBs Fa and Fb do not control

the same input ports of Fc. The result is that Fc will produce different values in the FUB

array for test t, and those differences are guaranteed to propagate through the remainder

of the FUB array to the array outputs. Thus, fa and fb will produce distinguishable array

outputs even in these last two cases, contradicting the original assumption and completing

the proof.
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Note that there will always be some indistinguishable faults between neighboring FUBs;

in the trivial case, any single stuck line fault at the output of one FUB is equivalent to

(and thus indistinguishable from) the corresponding single stuck line fault on the input of its

immediate neighbor. The existence of additional indistinguishable faults is not guaranteed; in

[48], analysis found that only 2.6% of approximately eight thousand 6-bit FUBs had any gate-

level input-output faults that met the necessary conditions for indistinguishability. Even in

these cases, however, indistinguishable faults only exist if both neighboring FUBs have faults

that meet the necessary conditions, and the responses of these faults are indistinguishable

for the applied array test set. Based on this observation, also included in [48] are techniques

to minimize the number of indistinguishable faults by filtering and controlling the placement

of FUBs in the FUB array.

2.3 Synthesis

This section describes the synthesis of the CM-LCV, that is, the process by which the general

CM-LCV design architecture (as described in Section 2.1) is translated into a logical and

physical design. This synthesis flow for the CM-LCV leverages the composability properties

of the FUB array, and is depicted in Figure 2.5. First, a large number of FUB imple-

mentations (e.g., gate-level netlists) are created for a VH-bijective FUB function. These

implementations can be created using a number of techniques, ranging from manual design

to commercial EDA tools. These FUB netlists are then graded according to the target crite-

ria (e.g., standard cell composition, fault coverage, fault diagnosability, etc.) and compiled

to create what is termed the FUB library. These same target criteria are then used to ex-

press a set of constraints for the FUB array; an example would be to include every standard

cell at least twice while maximizing the fault coverage. The creation of the FUB array is

formulated as an optimization problem, namely the selection of the set of FUB implementa-

tions from the FUB library that best satisfies these constraints. This optimization problem
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is then solved using an appropriate optimization software tool. The FUB implementations

selected, referred to as the FUB template, are connected to form a netlist for the FUB array.

This netlist can then be translated to the physical layout using a variety of methods, most

commonly commercial place-and-route tools (see the discussion on physical design features

in Section 2.2).

Figure 2.5: Synthesis flow used to create the FUB array.

Variations on the details of this implementation flow have been explored in previous work.

In [49], the focus is on the standard cell composition of the FUB array, with particular em-

phasis on generating FUBs that utilize all of the standard cells and creating FUB templates

that match a desired standard-cell distribution. Both [48, 50] extend the design constraints

to include cell-aware fault coverage [30] and diagnostic coverage [51]. A different approach is

explored in [52]: the metal interconnect is removed from an existing physical design, result-

ing in a collection of placed standard cells. A FUB template is then synthesized to utilize

these placed standard cells, which are then routed together to create the final FUB array.

While these implementation details are vital to the overall performance of the CM-LCV and

continue to be the subject of future work, they remain orthogonal to the topics central to

this dissertation, namely the test and diagnosis of the FUB array.
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Input Output
(x, y) (x̂, ŷ)
00 00 00 00
00 01 01 11
00 10 10 10
00 11 11 01
01 00 01 10
01 01 00 01
01 10 11 00
01 11 10 11
10 00 10 01
10 01 11 10
10 10 00 11
10 11 01 00
11 00 11 11
11 01 10 00
11 10 01 01
11 11 00 10

(a) (b)

Figure 2.6: (a) Truth table and (b) netlist implementation for the first VH-bijective function used in
this work.

2.4 VH-bijective Functions

One of the defining characteristics of this thesis is the conception and development VH-

bijectivity. This section examines VH-bijectivity in greater depth, specifically the mathe-

matics involved in Section 2.4.1, and the enumeration of possible VH-bijective functions in

Section 2.4.2.

2.4.1 VH-bijectivity and Orthogonal Latin Squares

The initial explorations that led to the identification of VH-bijectivity were entirely prac-

tical in nature (i.e., search for the characteristics of the FUB function that led to the best

error propagation in a two-dimensional array). The development of the initial VH-bijective

functions relied upon creating small circuits utilizing the XOR function (which is balanced

(equal numbers of zeros and ones) and possesses the necessary error propagation properties)

and subsequently checking for VH-bijectivity. Figure 2.6 shows both the truth table and

XOR netlist implementation of the first VH-bijective function discovered in the course of

this thesis work.

However, even a cursory examination suggests significant mathematical underpinnings to
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1 2 0

2 0 1
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(c)

Figure 2.7: Latin squares of order n = 3.

this property. Euler was the first to extensively describe these mathematical underpinnings

with his work on Latin squares [53]. A Latin square is defined as an n×n matrix filled with

symbols drawn from a set of size n such that, for each row and each column, each of the n

symbols appears exactly once (for convenience this work will use the integers Zn instead of

arbitrary symbols). Figure 2.7 shows several such Latin squares for n = 3.

Note that a Latin square can be interpreted as defining a function on two inputs. The

first input selects the row x ∈ Zn; the second input selects the column y ∈ Zn; and the output

is the symbol found at that location in the Latin square, also an element of Zn. Because of

the unique row and column properties of the Latin square, a change in either row or column

(but not both) will result in a change in the output value. This closely mirrors some of the

desired functional properties in the definition of VH-bijectivity; the key difference is that a

single Latin square L cannot define a bijective function as its domain is larger than its range:

L : Z2
n → Zn.

A simple way to overcome this shortcoming is to examine a pair of Latin squares. Two

Latin squares L1, L2 together define a function L1L2 : Z2
n → Z2

n with its domain equivalent to

its range. Two Latin squares of order n are said to be orthogonal if all of the n2 ordered pairs

produced by their combination are distinct. Only pairs of orthogonal Latin squares

define a bijective function.

A VH-bijective function is thus equivalent to a pair of orthogonal Latin squares (POLS)

when n is a power of two (allowing for full binary encoding of the n symbols). This work

is thus focused on a very small subset of orthogonal Latin squares. Mathematicians have

historically been drawn to other aspects of these topics; for example, orthogonality is not lim-
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ited to just pairs of Latin squares, but can be extended to sets of mutually orthogonal Latin

squares (MOLS). Significant effort has been spent searching for and enumerating the largest

MOLS for a given order [54, 55]. Another problem of interest has been the non-existence

of orthogonal Latin squares of certain orders. Euler originally hypothesized that orthogonal

Latin squares do not exist for any order n = 2 + 4k, k ≥ 1 after encountering difficulty in

finding any of order n = 6 [53]. Later works confirmed the non-existence orthogonal Latin

squares of order n = 6 [56] but disproved the remainder of Euler’s conjecture, first with

counter-examples of order n = 22 in [57] and later of order n = 10 in [58]. A relevant survey

on this history of this conjecture can be found in [59]. Other applications for Latin squares

include the statistical design of experiments [60, 61] and error correcting codes [62–66]. An

excellent overview of Latin squares and orthogonality, along with other related concepts, can

be found in [67,68].

2.4.2 Enumerating VH-bijective Functions

Given the importance of these functions for the CM-LCV, questions remain as to how many

such functions exist and which ones are best for the purposes of this work. The mathematical

theory discussed in the previous section is helpful in addressing these questions. Creating

new POLS is straightforward once one such pair has been constructed; some operations that

preserve both “Latin”-ness and orthogonality [69] are:

• Permutation of the symbols of either square (i.e., mapping each symbol in a given

square to a new symbol using a permutation).

• Permutation of the rows of both squares (i.e., swapping the order of the rows in the

same manner for both squares).

• Permutation of the columns of both squares (i.e., swapping the order of the columns

in the same manner for both squares).
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n Isotopism
2 1
3 1
4 1
5 3
6 0
7 34
8 45,927
9 2,203,310,919

Table 2.1: Number of reduced lists of 2-MOLS(n).

Given these operations, each of which is a permutation of order n, a loose upper bound

on the number of possible POLS is thus (n!)4. The actual number of unique POLS will be

reduced by symmetries among the operations (i.e. combinations of permutations creating

the same result). A loose lower bound of (n!)2 can be derived by observing that the first

operation, permutation of symbols of either square, defines two independent permutations

that can never produce the same result. Even this loose lower bound is extremely large for

the orders that are relevant in this work (most notably n = 8).

However, these operations are not sufficient to discover all possible POLS of a given order.

Instead, these operations define a single symmetry class of POLS, and multiple such classes

may exist for a given order. J. Egan and I. Wanless quantify how many such classes exist for

orders n ≤ 9 in [69]. In their terminology, the operations listed above define an isotopism,

and POLS of order n are equivalent to lists of 2-tuples of mutually orthogonal Latin squares

of order n (abbreviated 2-MOLS(n)). Reproduced in Table 2.1 is the number of isotopisms

of lists of 2-MOLS(n) for various orders. While only one such isotopic class exists for order

n = 4, 45,927 exist for order n = 8; considering the permutations possible within each

isotopism, the number of possible VH-bijective functions quickly challenges computational

limits even for relatively small orders.

The question remains, however, if the choice of function has an impact on the overall

performance of the CM-LCV. Figure 2.8 is a histogram showing the estimated logic cost for

ten thousand different POLS of order n = 8. The estimated logic cost was calculated using
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Figure 2.8: Histogram of the logic cost as estimated using the Espresso-MV logic minimizer tool for
ten thousand POLS of order n = 8.
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10 11 00 01

11 00 01 10

Figure 2.9: Latin square corresponding to the sum output of a 2-bit binary adder function.

the Espresso-MV logic minimization tool [70] and is equivalent to the total number of gate

inputs necessary for a two-level logic implementation.

While it is evident that there is significant variance in the logical complexity required

to implement different VH-bijective functions, this result at best only suggests that some

variance in performance is expected for FUB arrays consisting of different VH-bijective func-

tions. A more concrete example of the possible improvement in performance can be found by

examining the adder circuit. The sum output bits of a binary adder function are equivalent

to a Latin square, as shown in Figure 2.9 for 2-bits.
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Thus, if this adder Latin square could be paired with another orthogonal Latin square,

the resulting VH-bijective function could be implemented very efficiently using the a 2-bit

adder. Unfortunately no orthogonal mate exists for this square, or for any other adder Latin

square of even order, a result that was proven by Euler [53]. Nevertheless, this example

illustrates one of the possible advantages that different VH-bijective functions have to offer,

namely efficient usage of more complicated logic circuits that can be difficult to incorporate

using current methods.

2.5 Design Variants

The FUB arrays discussed up to this point are subject to several limitations, the most

significant of which are the use of a single FUB function throughout the array and the lack

of sequential cells (e.g., flip-flops and latches). This section describes two specific variants

that have been developed to address these shortcomings.

2.5.1 Heterogenous Arrays

Homogeneous arrays, that is, arrays composed of a single FUB function, are limited by

the performance of the synthesized implementations of that FUB function. This has been

a fundamental constraint on the performance of the FUB array, and has driven extensive

effort in synthesizing and constructing additional variants of the FUB that address specific

shortfalls. The use of multiple FUB functions within a single array provides another degree

of freedom in the optimization problem, and thus is expected to result in better-performing

designs overall.

A heterogenous FUB array consists of FUBs implementing any number of different VH-

bijective functions. Note that the error propagation behavior (discussed in Section 2.1) and

the composability of various properties (discussed in Section 2.2) do not rely on the particular

VH-bijective FUB function being the same throughout the array, and thus are still applicable
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Figure 2.10: A 4×4 FUB array with sequential cells (represented as “◦”) inserted along random signal
lines.

to heterogenous arrays. The construction of an array test set, however, is complicated by

different FUB functions, and is discussed in detail in Section 3.1.3.

2.5.2 Sequential Arrays

The absence of sequential cells (i.e., flip-flops and latches) in the FUB array is problematic

for several reasons. First, the defect relevance of the FUB array is decreased, that is, any

defects that only affect sequential cells cannot by definition be detected if those cells are not

present. Additionally, many defects cause changes in timing behavior, which can be difficult

to detect when testing a purely combinational FUB array due to the limited observation

capabilities of the test environment (i.e., the tester only observes the array outputs at certain

designated time intervals). Sequential cells can assist in detecting defective timing behavior

by transforming timing irregularities into irregularities in state, which is much simpler to

propagate and observe from a test perspective. For example, a D-type flip-flop (DFF) is

sensitive to changes in signal timing around the capture edge of the clock; if a transition

to the data input arrives late, the improper value is captured by the DFF. Thus there is

significant incentive to incorporate these sequential cells in the FUB array.

In a first approach, shown in Figure 2.10, sequential cells are inserted along random

signal lines within the FUBs themselves. Regardless of the size of the array and number of

sequential cells inserted, after a sufficient number of clock cycles, the state of the sequential

33



Figure 2.11: A 4×4 FUB array with sequential cells (represented as “◦”) inserted along two boundaries
(represented by the shading) in the array. Any path from the array inputs to the array outputs must
now traverse exactly two sequential cells.

cells will stabilize, and the array state will be identical to that of the original combinational

FUB array (i.e., without inclusion of any sequential cells) with the same test pattern applied.

Thus, any test or diagnosis scheme that is applicable to the combinational FUB array is also

applicable to this sequential design. However, a significant downside to this approach is

the complete lack of constraints on timing. In a conventional design, the clock speed is

determined by the longest observed path delay, and changes in delay along a given path

must exceed the slack (i.e., the difference between the clock period and the path delay) in

order to be detected. Because the lengths of the paths between sequential cells in the FUB

array of Figure 2.10 are determined by the random insertion process, it is impossible to

design for a specific clock speed or delay sensitivity using this approach.

In a second approach, shown in Figure 2.11, sequential cells are inserted at every FUB

port along a boundary in the array. If this boundary is chosen so as to properly bisect the

flow of signals in the array (as is the case for both boundaries inserted into the array of

Figure 2.11), all paths through the array will cross the same number of boundaries, and thus

require the same number of clock cycles to propagate a transition through the entire array.

However, the timing between the inserted sequential cells remains unconstrained as in the

previous approach.

In a final approach, shown in Figure 2.12, sequential cells are inserted at every FUB
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Figure 2.12: A 4× 4 pipelined FUB array with sequential cells (represented as “◦”) inserted at every
inter-FUB port. Every path from sequential cell to sequential cell in the array now traverses exactly
one FUB.

boundary, resulting in a pipelined FUB array. This is effectively the second approach with

the maximum number of boundaries inserted, and results in a significant benefit: timing

in the FUB array is now composable. Because every path from one sequential element to

another in the array traverses exactly one FUB, if the paths through each FUB are designed

to meet a timing constraint, all paths in the pipelined FUB array will also meet that timing

constraint. Furthermore, the composability of fault coverage can be extended to include

faults detectable by two-pattern tests (e.g., transition, path delay, etc.): propagation remains

guaranteed (due to the bijectivity of the FUB array), and controllability for two-pattern tests

is demonstrated in Section 3.1.

It must be noted that there are practical limitations for at-speed test of the pipelined

FUB array. The FUBs used in the CM-LCV are typically small (ranging from tens to a few

hundred standard cells) with relatively few logic levels; at-speed test for such a low logic

depth in modern technology nodes requires an extremely fast clock, which would be nearly

impossible to achieve in a test environment. Nevertheless, this approach remains valuable.

Below-speed two-pattern tests can still detect gross timing or sequential behavior that might

escape a single-pattern test scheme. Additionally, techniques such as increasing the logical

depth of the FUBs (for example, by increasing the size (number of input bits) of the FUB

function used and adding buffer cells to the FUB implementations) or slowing signals by
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reducing the supply voltage may allow for a slower clock to be sufficient.

Given the numerous advantages of the pipelined FUB array approach, the incorporation

of sequential cells in the remainder of this work will exclusively utilize it. Additionally, the

only sequential cells considered outside of this section will be D-type flip-flops (DFFs) in

order to simplify discussion.

2.6 Summary

This chapter has described a new logic test chip design, called the Carnegie Mellon Logic

Characterization Vehicle. Unlike conventional logic test chips, the CM-LCV begins with

an innovative logic design and implements it using a physical design adapted to meet the

test chip requirements. This innovative logic design is a two-dimensional array of functional

unit blocks (FUBs). A new property, VH-bijectivity, is defined and applied to the FUB

functions, allowing for C-testability and the maximal propagation of errors within the FUB

array. Additionally, composability is demonstrated within the FUB array for logic and

physical design features, fault coverage, and fault distinguishability (with some limitations).

This composability is leveraged to create a synthesis flow for the CM-LCV. Additionally,

the connections between orthogonal Latin squares and VH-bijectivity are defined and used

to demonstrate the large number of possible VH-bijective functions. Finally, two variants

on the FUB array used in the CM-LCV are proposed: the heterogenous FUB array (with

different FUB functions at different array locations) and the pipelined FUB array (with

DFFs added to the FUB array connections).
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Chapter 3

CM-LCV Test

The testability of the Carnegie Mellon Logic Characterization Vehicle (CM-LCV) is described

in this chapter. Techniques for the construction of high-quality test patterns for the FUB

array and its variants are presented in Section 3.1. A built-in self test (BIST) architecture

that leverages the unique properties of the FUB array is described in Section 3.2. Finally,

Section 3.3 summarizes the contributions described in this chapter.

3.1 Test Construction

While fault coverage within the FUB array is composable (Section 2.2), the construction of

efficient test patterns for the FUB array is addressed here. The remainder of this section

describes methods for test pattern construction for the FUB array and its heterogenous and

pipelined variants.

3.1.1 Tessellation Patterns

Testing a FUB array contained within a CM-LCV is accomplished by exploiting the bijective

nature of the FUB functions. A test detects a fault if it satisfies the activation conditions

for the fault and it propagates any resulting error to the circuit output(s). FUB bijectivity
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guarantees not only propagation of errors to the array outputs, but also perfect controllability

for any location in the array. Recall that a FUB function implements a mapping F (x, y)→

(x̂, ŷ); let p = (x, y) denote the input pattern to the FUB, and p̂ = (x̂, ŷ) denote the FUB

response, and similarly let P = (X, Y ) and P̂ = (X̂, Ŷ ) denote the input pattern and output

response of the FUB array. A cycle of function F is defined as a sequence of input patterns

K = {p(0), p(1), . . . , p(|K|−1)} such that F (p(i)) = p̂(i) = p((i+1)mod |K|) and p(i) 6= p(j) for all

p(i), p(j) ∈ K. Given these definitions, Theorem 3.1 describes a method for constructing a

test set for a FUB array from a cycle K of the FUB function F .

Theorem 3.1. Given an R×C homogeneous array of FUBs which each implement bijective

function F with cycle K of length k, there exists an array test set T of size k such that all

input patterns in K are applied to all FUBs in the array when the tests of T are applied,

regardless of the values of R and C.

Proof. Assume a cycle K within F of length k, that is, K = {p(1), p(2), . . . , p(k)}, where

p(i) = (x(i), y(i)). Let T be composed of k array input patterns, that is, T = {P1, P2, . . . , Pk},

and let each Ps ∈ T be constructed according to the following:

Xs = (x(s), x(s+1)mod k, . . . , x(s+R−1)mod k)

Ys = (y(s), y(s+1)mod k, . . . , y(s+C−1)mod k)

Now consider all of the FUBs along a given diagonal of the array, that is, all F(i,j) where

i+ j = λ, as illustrated in Figure 3.1.

• For λ = 2, only FUB F(1,1) meets the constraint. Observe that for test Ps, x(1,1) = x(s)

(determined by Xs) and y(1,1) = y(s) (determined by Ys); thus p̂(1,1) = F (p(s)) =

p(s+1)mod k.

• For λ = 3, FUBs F(2,1) and F(1,2) meet the constraint. Observe that for test Ps,
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Figure 3.1: Visualization of the FUB input patterns applied to the FUBs along the diagonals of the
array by a test derived from a cycle in the FUB function F . Note that there is a mod k (not shown due
to space constraints) on all horizontal and vertical superscripts.

p(2,1) = p(s+1)mod k (determined by Xs and ŷ(1,1)); thus p̂(2,1) = p(s+2)mod k. Similarly,

for test Ps, p(1,2) = p(s+1)mod k (determined by Xs and x̂(1,1)); thus p̂(1,2) = p(s+2)mod k.

• For λ > 3, x(i,j) will be determined by either Xs or a FUB on diagonal λ− 1; in both

cases x(i,j) = x(s+λ−2)mod k. Similarly y(i,j) will be determined by either Ys or a FUB

on diagonal λ− 1; in both cases y(i,j) = y(s+λ−2)mod k. Thus p(i,j) = p(s+λ−2)mod k, and

therefore p̂(i,j) = F (p(s+λ−2)mod k) = p(s+λ−1)mod k.

Thus for any test Ps, all FUBs along the diagonal defined by λ have input pattern

p(s+λ−2)mod k applied. Given that s ranges from 1 to k over the k tests in T , p(s+λ−2)mod k

will cover all p ∈ K irrespective of λ; thus, all FUBs along all diagonals will experience all

input patterns in K over the application of the k tests in T .

Figure 3.2 demonstrates how Theorem 3.1 can be used to construct a minimal test set

that exhaustively applies all input patterns to each FUB in an array of arbitrary size. A

2-bit bijective FUB function F (x, y) (Figure 3.2a) can be represented by a directed graph

with a node for each input pattern (x, y), with transitions between the nodes determined

by the function: (x, y) → F (x, y) (Figure 3.2b). Because the FUB function is bijective, all

nodes in this graph are guaranteed to belong to a cycle. Test vectors for a FUB array of

arbitrary size can be created using Theorem 3.1 for each cycle/input pattern combination.
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In the example shown in Figure 3.2, the input pattern (11) is selected and applied to the

FUB at array position (1, 1). The resulting test vector applies the 3-cycle (11, 10, 01) along

the 45◦ diagonals of the array. Different test vectors are created by starting with different

input patterns from the cycle (11, 10, 01) for the FUB at array position (1, 1), applying all

three input patterns to every array FUBs with the minimal number of test vectors (equal to

the length of the cycle). Repeating this process for all input patterns and cycles results in a

set of N test vectors that apply all input patterns to all FUBs in the array, where N is the

total number of FUB-level input patterns (in the example shown in Figure 3.2, N = 4 for

the 2-bit function). These tests are collectively referred to as tessellation test patterns due

to the repeating patterns that they induce in the array, and have been previously examined

in the context of testing iterative logic arrays [71].

(x, y) F (x, y)
00 00
01 11
10 01
11 10

(a) (b) (c)

Figure 3.2: Method for creating test patterns for the FUB array. (a) The FUB function can be
represented as (b) a directed cyclic graph on the possible input/output values for the FUB. (c) Cycles
in the directed cyclic graph can be used to create test patterns for the FUB array.

3.1.2 Super-exhaustive Test

The construction methods for the tessellation test patterns in Section 3.1.1 are not limited

to cycles from the function of a single FUB. In addition, sub-arrays of FUBs can be used to

generate tessellation test patterns for a FUB array. Theorem 3.2 first establishes that any

array (or sub-array) of bijective FUBs implements a bijective array function.
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Theorem 3.2. An R×C array of FUBs implementing bijective functions F1, F2, . . . , FR×C is

equivalent to a single bijective function G(X, Y )→ (X̂, Ŷ ) on the array inputs and outputs.

Proof. Suppose two array inputs Pi 6= Pj both evaluate to the same array output P̂ij. The

difference between Pi and Pj can be represented by a set of errors on the array inputs.

Because every FUB function in the array is bijective, these errors are guaranteed to propagate

through the array to some array output. Thus G(Pi) 6= G(Pj) for all Pi 6= Pj, that is, G is

one-to-one. Furthermore, because the array input space (X, Y ) is the same size as the array

output space (X̂, Ŷ ), G must be onto. Therefore G is bijective.

In this way, any sub-array can be used to generate additional tessellation test patterns

for the FUB array. The total number of such tessellation test patterns for a given sub-array

scales up exponentially with the sub-array size; for example, given a 2-bit FUB function, a

1× 2 sub-array implements a 3-bit bijective function, which will result in N = 8 tessellation

test patterns. Figure 3.3 demonstrates this approach using a 1×2 sub-array for a 4×4 FUB

array with the FUB function F of Figure 3.2. The 1 × 2 function G(x, y) is presented in

Figure 3.3a; note that the y input for G(x, y) now consists of two bits (due to the two column

inputs to the sub-array). This sub-array function has two cycles, of lengths one and seven,

which are shown in Figure 3.3b. The cycle of length seven is used to create a tessellation

pattern for the original 4 × 4 FUB array; Figure 3.3c shows the input patterns applied to

each sub-array, while Figure 3.3d shows the input patterns applied to each FUB. The result

is a tessellation pattern as before, but the repeating pattern now occurs on a different array

diagonal (26.5◦ instead of 45◦ as illustrated in Figure 3.2).

The complete set of tessellation test patterns created in this way, from sub-arrays within

the FUB array, are collectively referred to as a super-exhaustive test set. This is due to

the fact that they apply every input pattern to each FUB in the array multiple times; and,

furthermore, the neighboring values in the FUB array are different for each application of

the same input pattern. This effect is demonstrated in Figure 3.4, which shows the input

patterns applied to the FUBs in the 1× 2 sub-array used in Figure 3.3 for all eight possible

41



(x, y) G(x, y)
000 000
001 101
010 011
011 110
100 010
101 111
110 001
111 100

(a)
(b) (c) (d)

Figure 3.3: Method for creating super-exhaustive test patterns for a 4 × 4 FUB array with FUB
function F (x, y) from Figure 3.2. (a) The 1× 2 sub-array function G(x, y) can be represented as (b) a
directed cyclic graph on the possible input/output values for the sub-array. Cycles in the directed cyclic
graph can be used to create a test pattern for the FUB array. (c) The input patterns applied to each
sub-array are constant along the diagonals as before. (d) The same is no longer true for input patterns
applied to each FUB in the original FUB array for the same test pattern.

sub-array input patterns. Both FUBs in the 1×2 sub-array experience each FUB-level input

pattern (00, 01, 10, 11) twice, and the input pattern applied to the neighbor FUB is different

between the two; for example, the left FUB experiences the (00) input pattern in Figures

3.4a and 3.4b while the right FUB experiences input patterns (00, 01).

The result is that the super-exhaustive test set offers several advantages over the smaller

test set derived from the single FUB function. The super-exhaustive test set is closely related

to the concept ofN -detect test [31] and physically-awareN -detect test [72,73], where test sets

are constructed such that they detect faults multiple times. N -detect tests have improved

defect detection rates compared to single-detect test sets [31, 74, 75], a property that the

super-exhaustive test sets are expected to share. Additionally, the super-exhaustive test set

provides more data for diagnosis; this effect is examined in greater detail in Section 4.3.

3.1.3 Heterogenous Array Test

A requirement for the construction of tessellation test patterns is that the FUB array is

homogenous, that is, that every FUB implements the same function. Figure 3.5 shows how

the tessellation test patterns break down for a heterogenous array. A 4 × 4 heterogenous
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.4: Demonstration of the eight (a-h) 1 × 2 sub-array input patterns applied to a 1 × 2 FUB
array with FUB function F (x, y) from Figure 3.2. Each FUB in the array experiences the four FUB-level
input patterns twice.

FUB array is shown in Figure 3.5c, with FUBs implementing the function F (x, y) (from

Figure 3.2a) and a new 2-bit bijective function H(x, y) (Figure 3.5a) indicated by the square

and diamond symbols in the array, respectively. The cycles of H(x, y) are represented as a

directed cyclic graph in Figure 3.5b. Figure 3.5c shows the application of one tessellation

test pattern constructed using the FUB function F (x, y). The repeating pattern along the

45◦ diagonal of the array is disrupted by the presence of the second FUB function H(x, y) at

array position (2, 3). As a result, all FUBs downstream (i.e. array position (i, j), i ≥ 2 and

j ≥ 3) of the FUB implementing H(x, y) are no longer guaranteed to have all of the FUB-

level input patterns applied from the cycles used to generate the tessellation test patterns.

Note that any missing input patterns can still be applied (due to the controllability implicit

in an array of bijective FUBs); the difference is that more than N test patterns may now be

required.

It is, however, possible to construct tessellation test patterns for a heterogenous FUB

array if the placement of the different FUB functions is carefully controlled. More specif-

ically, if every FUB along the diagonals created by the tessellation test patterns (e.g., the

45◦ diagonal in the Figures 3.2-3.5) implements the same bijective function, then all input

patterns can be applied to every FUB in the array using N tessellation test patterns. The

technique for constructing these patterns is identical to that outlined in Section 3.1.1 except

that the FUB function appropriate for each diagonal (e.g., F (x, y), H(x, y)) is used in the

second step. Figure 3.6 shows the N = 4 tests constructed for a 4 × 4 heterogenous array
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(x, y) H(x, y)
00 11
01 10
10 01
11 00

(a) (b) (c)

Figure 3.5: Breakdown of tessellation test patterns in a heterogenous FUB array. (a) A second FUB
function H(x, y) can be represented as (b) a directed cyclic graph on the possible input/output values
for the FUB. Differences in the cycles defined by the two FUB functions F (x, y), H(x, y) result in (c) a
breakdown of the tessellation test patterns for the heterogenous FUB array (with the FUB implementing
H(x, y) indicated by the diamond symbol in the array).

(a) (b)

(c) (d)

Figure 3.6: The four tessellation test patterns (a-d) constructed for a heterogenous array with consis-
tent functions along the tessellation diagonals. The two FUB functions F (x, y), H(x, y) are defined in
Figures 3.2 and 3.5, respectively, with FUBs implementing H(x, y) represented by the diamond symbol
in the array.

constructed with consistent diagonal functions and using the same F (x, y), H(x, y) functions

described in Figures 3.2 and 3.5, respectively.
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3.1.4 Sequential Array Test

Any tessellation test patterns created for a FUB array using the techniques of Section 3.1.1

can be applied to a pipelined version of the same array. Recall that a pipelined FUB array

includes a D-type flip-flop (DFF) at every inter-FUB connection, with all DFFs in the FUB

array driven by a single clock signal. Clocking this design while applying a tessellation test

pattern to the array inputs will allow that tessellation test pattern to propagate through the

array. Given enough clock cycles, the state of the pipelined FUB array will eventually match

the state of an equivalent combinational FUB array with the same tessellation test pattern

applied. Any static (i.e., timing independent) faults that are detected in the combinational

FUB array by this tessellation test pattern will also be detected and propagated to the array

outputs in the pipelined FUB array. The total number of clock cycles required to completely

apply a tessellation test pattern (or any other test pattern) to the pipelined FUB array is

determined by the array size; more specifically, R + C clock cycles are necessary for test

pattern application in a R× C pipelined FUB array.

The pipelined FUB array can also be used to detect delay faults with two-pattern tests.

For simplicity, it is assumed in this section that every input (output) of the FUB array can be

controlled (observed) at each clock cycle. First a parallel test scheme is considered, as shown

in Figure 3.7 for a 4×4 pipelined FUB array with FUB function F (x, y) as defined in Figure

3.2a. The FUBs and DFFs are represented by squares and circles, respectively. The values

depicted correspond to the FUB inputs before a new clock edge arrives, with differences

from the previous FUB inputs highlighted in red. The array begins with one tessellation test

pattern applied, while a second tessellation test pattern is applied in parallel to all of the

array inputs (Figure 3.7a). The succeeding clock cycles propagate this second tessellation

test pattern through the array, until the final output is captured at the array outputs after

a total of eight clock cycles (Figure 3.7i). The result of this test sequence is that every FUB

in the array begins with one input pattern applied, in this case (00) for all FUBs, and ends

with a different input pattern applied, in this case one of (01, 10, 11) depending on the FUB
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.7: Parallel application of a tessellation test pattern to a pipelined 4 × 4 FUB array, with
DFFs represented as circle symbols on all of the FUB ports and the values applied to the inputs of each
FUB represented within the FUBs. Each clock cycle (a-i) represents the state of the FUB array, with
differences from the previous clock cycle highlighted in red.

location within the array.

However, control over the exact input transitions applied to each FUB in the array is

limited in this parallel test scheme: only the initial and final input patterns can be guaranteed

for each FUB in the array. Consider the FUB at the top right corner (array position (1, 4))

of Figure 3.7: it begins with input pattern (00) and ends with input pattern (11) applied,

however the actual sequence of input patterns applied over the eight cycles is (00 → 01 →
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11 → 11 → 11 → 11 → 11 → 11). It would be ideal if the sequence of input patterns

applied to each FUB in the array could be controlled such that every pair of input patterns

is applied to each FUB in the pipelined FUB array (equivalent to an exhaustive two-pattern

test of all of the FUBs).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Serial application of a tessellation test pattern to a pipelined 4× 4 FUB array, with DFFs
represented as circle symbols on all of the FUB ports and the values applied to the inputs of each
FUB represented within the FUBs. Each clock cycle (a-i) represents the state of the FUB array, with
differences from the previous clock cycle highlighted in red.

This control problem can be resolved if a serial test scheme is used. Figure 3.8 demon-

strates this serial test scheme for the same pipelined FUB array and test patterns of Figure
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3.7. Again the array begins with one tessellation test pattern having been successfully ap-

plied (Figure 3.8a), but now the application (and observation) of the second tessellation

test pattern proceeds at a rate of one array row and column per clock cycle. The process

begins at the top left corner (Figure 3.8a) and ends at the bottom right array corner (Figure

3.8i) after eight clock cycles. The result is that the transitions applied to the FUBs are

synchronized along the 45◦ array diagonals, every FUB in the array undergoes exactly one

transition, and the array outputs are captured and observed without delay. In this way the

uncontrolled FUB input transitions observed in the parallel test scheme of Figure 3.7 are

resolved. Furthermore, a simple pairing of non-identical tessellation test patterns yields a

two-pattern test set of size N(N − 1) with the property that it exhaustively applies every

N(N − 1) pair of input patterns to each FUB in the pipelined FUB array.

3.2 Built-in Self Test

Built-in self test (BIST) is a design methodology that seeks to reduce the cost of test by

implementing some or all of the test application and response collection in design itself. This

section describes an efficient BIST scheme developed for the FUB array. The key property

used in this section is that the output of the FUB array when a tessellation test pattern

is applied is equivalent to another tessellation test pattern, given some constraints on the

construction and composition of the FUB array. A simple BIST scheme, termed the circular

FUB array BIST (CFA-BIST), is thus proposed, consisting of a feedback path for the FUB

array that allows for the application of the tessellation test patterns, which have ideal fault

detection properties (as established in Section 3.1). Section 3.2.1 describes in greater detail

the constraints on the FUB array required. The design changes required for the CFA-BIST

scheme is presented in Section 3.2.2. Finally, the CFA-BIST scheme is evaluated in Section

3.2.3.
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3.2.1 Tessellation Test Theory

The key property exploited for the CFA-BIST is that the output of the FUB array when

a tessellation test pattern is applied is equivalent to another tessellation test pattern given

some constraints on the size of the FUB array. First, it is proved in Theorem 3.3 that this

holds true for the tessellation test patterns of a square FUB array (i.e., the number of rows

R is equivalent to the number of columns C).

Theorem 3.3. Given an R × C (where R = C) array of FUBs implementing bijective

function F (x, y) with cycle K of length k and the test set T constructed from K according

to Theorem 3.1, the array output P̂s ∈ T for all test patterns Ps ∈ T .

Proof. Consider test Ps ∈ T derived from cycle K. The proof for Theorem 3.1 demonstrated

that, for a fixed λ = i + j, p(i,j) = p(s+λ−2)mod k. Thus by definition p̂(i,j) = p(s+λ−1)mod k.

However, recall that P̂s = (X̂s, Ŷs) where in this case:

X̂s = (x̂(1,C), x̂(2,C), . . . , x̂(R,C))

Ŷs = (ŷ(R,1), ŷ(R,2), . . . , ŷ(R,C))

Substituting according to λ these become:

X̂s = (x(s+C)mod k, x(s+C+1)mod k, . . . , x(s+2C−1)mod k)

Ŷs = (y(s+R)mod k, y(s+R+1)mod k, . . . , y(s+2R−1)mod k)

This P̂s is identical to Ps′ ∈ T where Ps′ is constructed from cycle K starting at

p(s+Q)mod k; thus P̂s ∈ T .

Thus a set of tessellation test patterns constructed from a single cycle K according to

Theorem 3.1 can be applied in its entirety to a square FUB array by iteratively feeding
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the array output values back into the array inputs. Applying all of the tessellation test

patterns in this manner requires loading a new starting pattern for each different cycle used

to generate the tessellation patterns of interest. If there are many cycles in the tessellation

patterns of interest, utilizing this test pattern feedback property offers little advantage over

applying each tessellation test pattern individually.

To circumvent this limitation, Theorem 3.2 is again utilized. According to Theorem 3.2,

any r × c sub-array within a FUB array can be represented as a single bijective function.

Furthermore, if the dimensions of a FUB array are a scalar multiple of r×c, the overall array

can be considered a square array of FUBs implementing this sub-array bijective function.

Thus a test set for this array can be derived using Theorem 3.1 and the cycles of the sub-

array bijective function (effectively a super-exhaustive test set, as described in Section 3.1.2).

Assuming some limited design freedom for the FUB array dimensions, it is expected that this

process can be used to derive optimal test sets for the FUB array by examining the cycles

of various sub-array sizes. Exploiting Theorem 3.2 for this purpose is further examined in

Section 3.2.3.

3.2.2 BIST Architecture

The unique properties of the FUB array established in Section 3.2.1 lend themselves well

to a feedback architecture. Previous BIST architectures with circular feedback include the

Circular Self-Test Path (CTSP) [76] and the Circular Celluar BIST (C2BIST) [77]. However,

both of these methods require additional circuitry along the feedback path, which is not

necessary for the FUB array in this case. Instead, implementation of the CFA-BIST is

accomplished by a single scan chain around the FUB array periphery. Circular feedback is

added to connect the array outputs to the normal-mode inputs of the scan chains that drive

the array input. Thus, for normal-mode operation (i.e., when the scan enable signal is not

asserted), the scan chains feeding the array are updated with the array output values.

Two variants of this CFA-BIST architecture based on the length of the scan chain are ex-
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(a) (b)

Figure 3.9: Diagrams for (a) the short-chain variant and (b) the long-chain variant of the CFA-BIST
design. The feedback paths required are represented by the dashed lines.

plored: Figure 3.9a uses the minimum scan chain length required, while Figure 3.9b extends

the scan chain to capture the outputs in a second set of flip-flops. While the short-chain

variant requires less hardware overhead and has a shorter scan chain length, the long-chain

variant has several advantages:

• Diagnosability - the additional flip-flops in the long-chain implementation allow the

feedback connections to be tested independent of the logic array. This results in en-

hanced resolution because the short-chain implementation cannot distinguish between

a failure in the FUBs located on the output edge of the array and a failure due to the

feedback connections.

• Test independence - the long-chain implementation allows for two independent test pat-

terns to be applied during BIST mode. Specifically, one pattern can be applied to the

logic array by the input scan chain while a second pattern is simultaneously transferred

from the output scan chain to the input scan chain via the feedback connections.

Execution of the CFA-BIST test cycle is achieved through three steps, as shown in the

timing diagrams of Figure 3.10. First, a seed pattern is loaded into the scan chain (shown as

“Load/Unload” in Figure 3.10). Second, a series of BIST-mode clocks are applied to execute

the BIST cycle (“Run BIST” in Figure 3.10). Finally, the resulting values are unloaded from

the scan chain and compared to the expected, fault-free signature, and a new seed pattern
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(a) (b)

Figure 3.10: Timing diagrams for (a) the short-chain and (b) the long-chain CFA-BIST architectures.

is simultaneously loaded into the scan chain if applicable. The only difference between the

timing for the short-chain (Figure 3.10a) and long-chain (Figure 3.10b) variants is that the

long-chain architecture processes two tessellation patterns during the load/unload step, and

requires more BIST-mode clock cycles to fully proceed through the cycles of the two loaded

tessellation patterns.

3.2.3 BIST Evaluation

In this section a FUB array constructed from the 4-input VH-bijective FUB function de-

scribed in Figure 2.6 is used to evaluate the CFA-BIST architecture. First, a high-quality test

set is derived according to Theorem 3.1. Section 3.2.1 stated that an array can be considered

a square array of FUBs implementing the sub-array function (assuming the array dimensions

are a multiple of the sub-array dimensions). Thus, given freedom over the size of the FUB

array, the cycles within the tessellation test sets derived from various sub-array sizes are all

of interest as potential sources for a CFA-BIST test set. Table 3.1 lists these cycle lengths

for various sub-array sizes; each entry under the column labeled “Cycle lengths” denotes a

specific cycle length present as well as the number of such cycles (shown in parentheses if

more than one). Note that the cycle length is equivalent to the number of BIST-mode clock

cycles that can be applied using a tessellation pattern derived from that cycle before the

tests begin to repeat (and a new seed pattern would need to be loaded).

The data shown in Table 3.1 support the previous assertion that BIST cycles of varying

length can be found by considering various sub-array sizes. Of note are the single cycle of
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Sub-array dimensions Cycle lengths
1×1 1, 15
1×2 1, 7(×9)
2×1 1, 21(×3)
2×2 1, 15(×17)
2×3 1, 7, 127, 889
3×2 1, 31(×33)
3×3 1, 5(×3), 85(×48)
3×4 1, 127(×129)
4×3 1, 5461(×3)
4×4 1, 15(×4369)

Table 3.1: Cycle lengths for functions corresponding to sub-arrays of FUBs of various dimen-
sions.

length 889 present in the 2×3 sub-array bijective function, and the three cycles of length

5,461 present in the 4×3 sub-array bijective function. Recalling Theorem 3.1, the existence

of these cycles indicates that it is possible to create, for example, a design with a CFA-BIST

test cycle of length 5,461 if the FUB array dimensions are a multiple of 4×3. The remainder

of this section focuses on test sets derived from the 889 test cycle derived from the 2×3

sub-array bijective function for a 6×9 array.

Quantifying fault coverage for the proposed circular BIST architecture using fault simula-

tion is computationally expensive since the errors produced may be masked when repeatedly

fed back through the faulty array. To mitigate this issue, fault coverage can instead be

equated to the combination of (a) fault activation, and (b) the probability of error masking.

First the fault activation achieved by a test set is examined. A single-pattern input

pattern (IP) fault model [29] is assumed for each FUB in the array. Thus, in order to

achieve 100% fault activation, the test set must apply all 24 = 16 possible input patterns

to each FUB in the array. Figure 3.11 shows how fault activation evolves as more tests are

applied from the 889 tests derived from the 889-length cycle, and it indicates that the test

set achieves 100% fault activation for all locations in the array by the 89th test pattern.

However, the fault activation results of Figure 3.11 is not indicative of all the capabilities

of this test set. Activation for each 2×2 sub-array within the overall array translates to all
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Figure 3.11: Evolution of IP fault activation over test pattern count for a 6×9 array using a test set
derived from the 2×3 sub-array cycle of length 889. Each trace represents the IP fault activation for
each FUB in the 6×9 array (note that there is significant overlap among the traces).

Figure 3.12: Evolution of IP fault activation for 2×2 sub-arrays over test pattern count for a 6×9
array using a test set derived from the 2×3 sub-array cycle of length 889. Each trace represents the IP
fault activation for each unique 2×2 sub-array in the 6×9 array (note that there is significant overlap
among the traces).

28 possible input patterns applied to the 8-input sub-array. From another perspective, fault

activation for each 2×2 sub-array is equivalent to a 16-detect (or, rather, 16-activate) test

set for each individual FUB. Figure 3.12 shows how fault activation evolves for all 2×2 sub-

arrays for the same test set and 6×9 array. The test set achieves 100% IP fault activation
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Metric Scan test Circular BIST
Scan chain length 30 30

Clock cycles 7,971 953
SSL fault coverage 100% 100%

Gate-level IP fault coverage 100% 100%
Simulation time (min.) 12.9 261.3

Table 3.2: Summary of simulation results for both a scan test set and CFA-BIST applied to
a 6×9 FUB array.

for all 2×2 sub-arrays by the 835th test pattern.

Activation of all faults is necessary but not sufficient for 100% fault detection; one way to

check sufficiency is to consider the probability of error masking within the BIST architecture.

Recalling the definition of VH-bijectivity, it is guaranteed that an error will propagate to

both the vertical and horizontal array outputs for some test that activates the fault. These

erroneous signals will continue to be propagated by the non-faulty FUBs in the array during

subsequent BIST cycles; the only way for an activated fault to escape detection is for these

erroneous signals to converge on the faulty FUB and be masked before the final signature

is observed. The probability of this form of masking is expected to be extremely low, and,

moreover, it is expected to decrease exponentially as the size of the FUB array increases1.

Thus the true fault coverage is expected to be equivalent to the level of fault activation

achieved by the applied test set in the case of a single faulty FUB.

Empirical justification of the low likelihood for masking is investigated by simulating an

implementation of a 6×9 FUB array using a commercial tool for both single-stuck line (SSL)

and gate-level IP faults. The results are summarized in Table 3.2 for both the short-chain

BIST architecture based on the 2×3 sub-array and a scan test set that achieves a similar

level of fault detection. Note that 100% SSL and IP fault coverage is achieved by both the

CFA-BIST and scan test for the given design.

1In a larger FUB array, a single defective FUB has less impact on the overall functionality of the array
(which, being composed of bijective FUBs, will continue to propagate errors indefinitely). Furthermore,
the state space for the FUB array increases exponentially with the number of array inputs/outputs; if it is
assumed that an injected fault causes the FUB array to output random states, the probability of masking
decreases exponentially with the size of the array state space. However, at this point the only means of
verifying the probability of masking remains fault simulation of the design.
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Furthermore, the CFA-BIST achieves this perfect fault coverage with reduced test time

compared to the scan test. The number of test cycles for the scan test is determined by (a)

the length of the scan chain, and (b) the number of test patterns that need to be applied to

achieve the desired fault coverage on all FUB blocks in the array. The number of test cycles

for scan test can be expressed as:

TC SCAN = (num patterns+ 1)× (sc length+ 1) + k

where num patterns is the number of test patterns (in this case num patterns = 256

for a super-exhaustive test set with activation properties equivalent to the CFA-BIST test

cycle), sc length is the length of the scan chain (sc length = 30), and k is a small constant

number of test cycles added during scan-in of the first test pattern to ensure the scan chain

is functioning properly (k = 4). However, the number of test cycles for CFA-BIST can be

expressed as:

TC BIST = (seed patterns+ 1)× sc length+BIST cycles+ k

where seed patterns is the number of seed tessellation patterns that must be loaded/unloaded

into the scan chain (in this case seed patterns = 1), sc length is the length of the scan chain

(sc length = 30), BIST cycles is the number of BIST-mode clock cycles required to apply

the test cycle (in this case BIST cycles = 889 to apply the complete test cycle), and k is a

small constant number of test cycles added during the first BIST load/unload to ensure the

scan chain is functioning properly (k = 4). Using these values, scan test requires a total of

7,971 test clock cycles while the CFA-BIST requires only 953 test clock cycles, representing

a 88.0% reduction in the number of test clock cycles. Furthermore, this reduction is achieved

without loss in test coverage for the SSL and gate-level IP fault models.
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3.3 Summary

This chapter has presented strategies for testing the CM-LCV. Methods for the creation of

tessellation test patterns have been described for the FUB array. These tessellation patterns

exhaustively test every FUB in the FUB array (i.e., apply all FUB input patterns) with

the minimum number of tests required, and can be constructed for FUB arrays of arbitrary

size. These tessellation pattern creation methods can be extended using sub-arrays of FUBs

to create super-exhaustive test sets of minimal size which exhaustively N -detect test every

FUB in the FUB array. These methods are shown to be applicable to the heterogeneous

FUB array if the FUB functions used are constrained to be the same along the tessellation

diagonals of the array. Techniques for the application of exhaustive two-pattern tests to the

pipelined FUB array are also demonstrated under both parallel and serial test application

schemes. Finally, a BIST architecture that leverages the unique properties of the FUB array,

namely the relationship between the inputs and outputs of the tessellation test patterns, is

presented. Experiment results show a 88.0% reduction in the number of test cycles required

with BIST for a reference design without loss in fault coverage.
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Chapter 4

CM-LCV Diagnosis

This chapter describes a custom diagnosis methodology for the FUB array used in the

Carnegie Mellon Logic Characterization Vehicle (CM-LCV). Various properties of the two-

dimensional FUB array are exploited to improve diagnosis, particularly when multiple FUBs

are defective. Section 4.1 examines in detail the phenomenon of error propagation in the

FUB array. The proposed custom diagnosis methodology can be found in Section 4.2, while

Section 4.3 reports the results from a series of experiments performed to evaluate its perfor-

mance. Finally, Section 4.4 summarizes the work presented in this chapter.

4.1 Error Analysis

This section further describes the FUB array behavior relevant to diagnosis. Specifically,

Section 4.1.1 elaborates on how VH-bijectivity can be used to localize a single defective

FUB in a FUB array. Section 4.1.2 examines how the inverse of a VH-bijective function

can be used to improve defective FUB localization. Section 4.1.3 extends these concepts to

arrays with multiple defective FUBs, while Section 4.1.4 explores some of the complications

that arise due to error masking. Finally, Section 4.1.5 examines the implications that the

error bounds have on the accuracy of simulations of the FUB array.
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4.1.1 Forward Bound

As noted at the end of Section 2.1, the location of the intersection of the errors observed on

the array outputs for a failing pattern is closely related to the location(s) of defective FUBs

in the array. Assuming there is only one defective FUB, Fig. 4.1 describes the three cases

that can occur:

1. The defective FUB is horizontally adjacent to the error intersection (Fig. 4.1a).

2. The defective FUB is vertically adjacent to the error intersection (Fig. 4.1b).

3. The defective FUB is at the error intersection (Fig. 4.1c).

(a) (b) (c)

Figure 4.1: The three cases that exist for the relationship between the location of a single defective
FUB (represented by the “×”) and the location of the intersection of the errors observed on the array
outputs (represented by the “◦”).

The array location derived from the errors observed at the array outputs is referred to

as the forward error intersection. If only one defective FUB is present in the array, it must

fall into one of the three cases described in Fig. 4.1; these three implicated FUB locations

are referred to as the forward bound. Calculation of the forward bound is thus a very simple

method that can be applied to any failing pattern to localize a single defect down to three

candidate FUBs in a FUB array of arbitrary size.
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4.1.2 Backward Bound

One property of bijective functions is that they are “reversible”, that is, an inverse function is

guaranteed to exist that maps the outputs of the bijective function to its inputs. The inverse

of a VH-bijective function is also guaranteed to be VH-bijective, as proven in Theorem 4.1.

Theorem 4.1. The inverse function F−1(x̂, ŷ)→ (x, y) of a VH-bijective function F (x, y)→

(x̂, ŷ) is itself VH-bijective.

Proof. The property of bijectivity guarantees that the inverse function F−1 of bijective func-

tion F will be bijective. However, assume that the inverse function not VH-bijective, and

let F−1(x̂i, ŷi) = (xi, yi) and F−1(x̂j, ŷj) = (xj, yj). This implies that the change in value on

one of the inputs of F−1 does not result in a change in both of its output ports; thus, one of

the following two cases must be true:

• There exists x̂i = x̂j and ŷi 6= ŷj such that either xi = xj or yi = yj.

• There exists x̂i 6= x̂j and ŷi = ŷj such that either xi = xj or yi = yj.

However, both of these cases violate the VH-bijectivity of the original function F . Con-

sider the first case: if xi = xj, then yi 6= yj (because F−1 is bijective), and thus by the

VH-bijectivity of F both x̂i 6= x̂j and ŷi 6= ŷj must be true, resulting in a contradiction.

Similar reasoning applies for the yi = yj possibility in the first case, and all of the possibili-

ties in the second case. Thus, the inverse function F−1 must be VH-bijective.

This property allows for a failing test pattern and its response to be simulated backwards

through the FUB array. This reverse simulation of a test pattern uses the observed response

as the array input and uses the inverse FUB function to calculate the internal (fault-free)

FUB array values and the array output. The internal FUB array values produced by this

reverse simulation will be accurate until a defective FUB is reached, at which point differences

will emerge between the reverse simulation and the actual FUB array values. Because the

inverse FUB function is VH-bijective, these differences will propagate maximally along both
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the columns and the rows, all the way to the FUB array inputs. Thus, the differences

between the FUB array input values obtained from the reverse simulation and the applied

test pattern can be used to generate a backward bound with the same properties as the

forward bound.

This point is both subtle and powerful. Every failing test pattern and its observed

response can be simulated both forwards and reverse, resulting in two bounds on the location

of defective FUBs in the array. Fig. 4.2 is an example of how these bounds can be compared

to localize a single defective FUB with even greater accuracy. In this example, the original

test pattern and observed response can be used to construct the forward error intersection

as shown in Fig. 4.2a. At this point the forward bound consists of three FUBs: the FUB

at the forward error intersection (marked with the larger “◦”) and its upstream horizontal

and vertical neighbors (marked with the smaller “◦”). Performing the reverse simulation

results in the backward error intersection as shown in Fig. 4.2b. The backward bound also

consists of three FUBs: the FUB at the backward error intersection (marked with the larger

“�”) and its downstream horizontal and vertical neighbors (marked with the smaller “�”).

Intersecting these two bounds results in only two possible locations for the defective FUB.

In this way, the backward bound improves the resolution from three to two candidate FUBs.

4.1.3 Error Bounds and Multiple Defects

These error bounds are particularly useful in the case of multiple defects in the FUB array.

There are two cases to consider: (i) multiple defects in a single FUB, and (ii) multiple defects

in multiple FUBs. In the first case, the previous discussion on the forward and backward

bounds remain valid as only a single FUB in the array is affected. For the second case,

however, the bounds can be used to detect the presence of multiple defects. For a failing test

pattern for an array with N defective FUBs, 1 to N FUBs may be active, where each active

defective FUB produces an error. For these cases, the bounds can be used to differentiate

between one active defective FUB and multiple active defective FUBs. Fig. 4.3 is an example
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(a) (b)

Figure 4.2: Forward (a) and backward (b) bounds can be used together to localize a single defective
FUB in a FUB array with greater accuracy. The forward and backward error intersections (marked with
the larger “�” and “◦”, respectively) and the appropriate adjacent FUBs (marked with the smaller “�”
and “◦”, respectively) comprise the forward and backward bounds. In this example only two FUBs (the
defecitve FUB marked with the “×” and its horizontal downstream neighbor) are implicated by both
the forward and backward bounds.

of two different failing patterns for an array with two defective FUBs, each marked “×”. In

Fig. 4.3a, only one defective FUB is active, resulting in error intersections that are adjacent

in the array. In contrast, Fig. 4.3b illustrates a test pattern with both defective FUBs

active, resulting in bounds that implicate two non-overlapping regions of the array. A failing

pattern caused by a single defective FUB can never result in an empty bounds intersection

for simulations of the fault-free FUB array, as proven in Theorem 4.2.

(a) (b)

Figure 4.3: Demonstration of the forward and backward error intersections (marked “◦” and “�”,
respectively) of two different failing test patterns for an array with two defective FUBs (marked “×”).
The two examples shown represent (a) a test pattern with only one defective FUB active, and (b) a test
pattern with both defective FUBs active.
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Theorem 4.2. A failing pattern caused by a single active defective FUB can never result in

an empty error bounds intersection when compared to the simulation of the fault-free FUB

array.

Proof. Let a failing pattern be caused by a single active defective FUB at location (r, c) in

the FUB array. This means that the defective FUB must produce an error on either x̂(r,c),

ŷ(r,c), or both for the applied test pattern, which will propagate through the remainder of

the FUB array. The forward error intersection derived from the errors observed at the array

outputs will thus be at one of the following locations: (r, c), (r+ 1, c), (r, c+ 1) (see Theorem

2.2). In all three cases, the defective FUB location (r, c) will be included in the forward error

bound (calculated as the forward error intersection and the two upstream adjacent FUB

locations).

Next examine the backward error bound. During reverse simulation of the fault-free FUB

array, the defective FUB at location (r, c) will result in a discrepancy at either x(r,c), y(r,c),

or both. This discrepancy will propagate during reverse simulation through the remainder

of the FUB array. The backward error intersection derived from the discrepancies observed

at the array inputs will thus be at one of the following locations: (r, c), (r − 1, c), (r, c− 1).

In all three cases, the defective FUB location (r, c) will be included in the backward error

bound (calculated as the backward error intersection and the two downstream adjacent FUB

locations).

Thus, array location (r, c) will always be included in both the forward and error bound

intersections derived from a failing pattern with a single active defective FUB and the sim-

ulation of the fault-free FUB array.

4.1.4 Error Bounds and Error Masking

Uncertainties can be introduced into the error bounds if there is error masking, that is,

when the effects of multiple defects interact in order to cancel out or otherwise obfuscate the

propagation of errors through a design. There is a possibility of error masking in the FUB
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array, though it is to some extent mitigated by the maximal propagation guaranteed by the

VH-bijective FUBs. Figure 4.4 shows two examples of multiple defect interaction resulting

in incorrect error bounds.

In Figure 4.4a, the errors from a single defective FUB are entirely masked by the presence

of multiple defects downstream in the FUB array. The result is that the applied test pattern

is incorrectly classified as a passing pattern. Because of the error propagation properties of

the FUB array, the number of simultaneous defective FUBs required increases as the distance

between the initial defective FUB and the masking defective FUBs increases.

In Figure 4.4b, the interaction between errors from three separate defective FUBs leads to

partial error masking. The result is an incorrect error bound: the forward error intersection

is displaced multiple rows and columns from the actual defective FUB locations.

(a) (b)

Figure 4.4: Examples of full (a) and partial (b) error masking due to the interaction of multiple
defective FUBs (marked with “×”) resulting in incorrect forward error intersection (marked with “◦”) in
the FUB array. Error propagation within the FUB array is represented by the shaded FUB connections.

Note that these error masking cases are unavoidable in the FUB array, and indeed in

any logic design. They can be mitigated to some extent in the FUB array by the use of

additional test vectors. The probability that the masking behaviors exhibited in Figure

4.4 are consistent across a set of test vectors decreases as additional new test vectors are

added. Of particular utility in this case are the super-exhaustive test sets generated using
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sub-arrays, as discussed in Section 3.1.2, which apply the same input pattern to a given FUB

multiple times with different neighborhood values, making it much less likely that a set of

downstream defects can consistently mask the errors produced.

4.1.5 Error Bounds and Simulation Accuracy

A final aspect of the error bounds presented in this section regards their relationship with

the accuracy of the FUB array state (i.e., the values at each FUB input and output port)

obtained during simulation of the fault-free FUB array. Figure 4.5 shows the leading error

propagation paths for the forward and reverse simulations with a single defective FUB.

The crucial insight, originally stated in Section 4.1.2, is that the internal FUB array values

produced by simulation of the fault-free FUB array will be accurate until a defective FUB is

reached, at which point differences will emerge between the simulation and the actual values

in the defective FUB array. This means that the input and output values for a targeted

region in the array, in this case the single center FUB, can be extracted from the forward

(input, Figure 4.5a) and reverse (output, Figure 4.5b) simulations. Furthermore, the error

bounds can be used to determine which locations in the array can be accurately probed for

a given simulation.

For multiple detect test patterns, the forward and reverse simulations no longer accu-

rately provide these input and output values in all cases. Figure 4.6 shows two different

arrangements of two defective FUBs for a multiple detect test pattern. For the first arrange-

ment, with defective FUBs in an upstream/downstream relationship, the forward (Figure

4.6a) and reverse (Figure 4.6b) simulations can only provide the input values for the up-

stream defect and the output values of the downstream defect. In the second arrangement,

with defective FUBs in a cross-stream relationship, the forward (Figure 4.6c) and reverse

(Figure 4.6d) simulations can provide accurate input and output values for both defective

FUB locations.

The key insight is that when defective FUBs are in an upstream/downstream relation-
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(a) (b)

Figure 4.5: Demonstration of the forward (a) and reverse (b) simulation for a single defective FUB
(marked with “×”). Only the leading error propagation paths are shown for each simulation direction
(represented by the shaded FUB connections).

(a) (b) (c) (d)

Figure 4.6: Demonstration of the forward (a, c) and reverse (b, d) simulation for a multiple detect
test pattern caused by different arrangements of two defective FUBs (marked with “×”). Only the
leading error propagation paths are shown for each simulation direction (represented by the shaded
FUB connections).

ship with regards to the direction of simulation, the errors they produce compromise the

accuracy of the simulation values at the locations of both defective FUBs. This issue could

be circumvented if the FUB array could be simulated along the opposite diagonal directions.

Adopting a cardinal direction notation (e.g., north, south, east, west), the forward and re-

verse simulation discussed up to this point represent the SE and NW simulation directions,

and simulation in the SW and NE directions are being proposed as a solution for handling

the troublesome defect interactions shown in Figures 4.6a and 4.6b. Not only is it possible to

simulate the FUB array in these new directions, but also the corresponding FUB functions

are VH-bijective for all of these directions. VH-bijectivity of the SE (original FUB function)
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and NW (inverse FUB function) have already been established; Theorem 4.3 provides for

the VH-bijectivity for the NE FUB function.

Theorem 4.3. Given a VH-bijective function FSE(x, y)→ (x̂, ŷ), there exists a correspond-

ing function FNE(x, ŷ)→ (x̂, y) which is also VH-bijective.

Proof. Let FNE(xi, ŷi) = (x̂i, yi) and FNE(xj, ŷj) = (x̂j, yj). First suppose that FNE(x, ŷ)→

(x̂, y) is not bijective. Given that the domain and range of FNE are identical (FNE : Z2
n →

Z2
n), this must imply that two different input values for FNE result in the same output value:

there exists xi 6= xj or ŷi 6= ŷj such that x̂i = x̂j and yi = yj. Three relevant cases thus exist:

• If xi 6= xj, the VH-bijectivity of FSE implies that both x̂i 6= x̂j and ŷi 6= ŷj (as yi = yj).

However this violates the assumption that x̂i = x̂j.

• If ŷi 6= ŷj, the VH-bijectivity of FNW = F−1SE (which must exist and be VH-bijective

by Theorem 4.1) implies that both xi 6= xj and yi 6= yj. However this violates the

assumption that xi = xj.

• If xi 6= xj and ŷi 6= ŷj, both of the previous cases apply.

Thus, the VH-bijectivity of FSE and FNW require that FNE be bijective.

Next suppose that FNE is not VH-bijective. This implies that the change in value on one

of the inputs of FNE does not result in a change in both of its output ports; thus one of the

following two cases must be true:

• There exists xi = xj and ŷi 6= ŷj such that either x̂i = x̂j or yi = yj.

• There exists xi 6= xj and ŷi = ŷj such that either x̂i = x̂j or yi = yj.

However, all of these options contradict the either the bijectivity or VH-bijectivity of FSE

or FNW :

• If xi = xj, ŷi 6= ŷj and yi = yj, FSE cannot be bijective.
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• If xi = xj, ŷi 6= ŷj and x̂i = x̂j, FNW cannot be VH-bijective.

• If xi 6= xj, ŷi = ŷj and x̂i = x̂j, FNW cannot be bijective.

• If xi 6= xj, ŷi = ŷj and yi = yj, FSE cannot be VH-bijective.

Thus the function FNE is also VH-bijective.

Taken together, Theorems 4.1 and 4.3 guarantee that the FUB function is VH-bijective

for all of the primary intercardinal directions (SE,NE, SW,NW ). Thus, the FUB array can

be simulated in any of these directions, and error bounds with all of the properties discussed

in Section 4.1 can be obtained for each direction. However, the original SE direction remains

unique: it alone reflects the reality of signal propagation in any physical implementation of

the FUB array.

4.2 Hierarchical FUB Array Diagnosis

The FUB array properties discussed in Section 4.1 can be exploited to implement a hierar-

chical FUB array diagnosis (HFAD). Figure 4.7 shows the two hierarchical levels: In the first

(Figure 4.7a), the FUB array is modeled at a purely logical level (i.e., no gate-level netlist

or physical design; each FUB is a black box implementing the corresponding VH-bijective

function), and the observed test response is mapped to a set of defective regions in the FUB

array. In the second level (Figure 4.7b), the netlist for each defective region is extracted

and diagnosed using conventional logic diagnosis techniques. Both levels of the proposed

hierarchical FUB array diagnosis procedure are described in greater detail in the remainder

of this section.
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(a) (b)

Figure 4.7: Hierarchical FUB array diagnosis consists of (a) an array level where the array behavior
is mapped to smaller defective array regions, followed by (b) a netlist level where each defective array
region behavior is analyzed with the corresponding netlist to derive the defect candidates.

4.2.1 Array Diagnosis

The array-level diagnosis begins with a fault-free logical model of the FUB array, with each

FUB represented by a black box that implements the corresponding VH-bijective function.

The observed test response is used to iteratively modify the functions used in this black-box

representation, with the goal of creating a logical model of the array (termed the candidate

array model) that perfectly matches the observed test response. This iterative modification

of the candidate array model is guided by the forward and backward error bounds described

in Section 4.1. The relationship between the two bounds is used to classify each test pattern

into one of five categories:

1. Match - There is no difference between the simulation and the observed array response.

2. Strong Single Detect - The intersection of the forward and backward bounds results

in exactly one FUB location in the array.

3. Weak Single Detect - The intersection of the forward and backward bounds results

in exactly two FUBs.

4. Multiple Detect - The intersection of the forward and backward bounds is empty,

and the forward error intersection is upstream of the backward error intersection.
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5. Inconsistent - Any other relationship between the forward and backward bounds is

classified as inconsistent. An example of this would be an empty bounds intersection

with the forward error intersection downstream of the backward error intersection.

The test patterns that exhibit simpler defect behavior (i.e., the “strong single detect”

and “weak single detect”) are then preferentially used to determine the modifications to the

candidate array model. The reason for this is that they are likely caused by a single defective

FUB in the array, and can be effectively localized using the error bounds.

Once a change has been made to the candidate array model, the test set is re-simulated (in

both forward and reverse directions), and the error bounds are re-calculated by comparing the

observed test response to the candidate array model simulation. This represents a significant

paradigm shift from the discussion of Section 4.1, which defined the error bounds as based

on the comparison between the observed test response and the fault-free FUB array. These

new error bounds no longer represent errors caused solely by defective FUBs; instead, they

represent discrepancies between the candidate array model and the observed test response,

whose source may be defective FUBs in the array or inaccurate changes to the candidate

array model. In fact, it is no longer guaranteed that every FUB in the candidate array

model is VH-bijective after any modifications have been made, which violates the conditions

on Theorem 4.2, and may lead to inaccurate error bounds.

Despite these concerns, this approach is powerful in that it allows the iterative diagnosis

to tease apart complex defect interactions. Figure 4.8 shows a simple example of how this

can work with a test pattern that has three active defective FUBs (marked with “×”) in a

small 5×5 FUB array. Initially (Figure 4.8a), the fault-free candidate array model differs at

all three defective FUB locations, resulting in discrepancies during both forward (represented

by the red shaded connections, only leading row/column shown) and reverse (represented

by the purple shaded connections, only leading row/column shown) simulations. These

discrepancies result in the forward (marked with “◦”) and backward (marked with “�”)

error intersection. In this case the error intersections shown lead this test pattern to be
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classified as a “multiple detect”.

Now, suppose some other test is used to update the candidate array model in such a way

that the errors produced by the lower left defective FUB (array location (4, 2)) are accurately

modeled (represented by the additional red box), as shown in Figure 4.8b. The forward and

reverse simulations of the candidate array model now result in different discrepancies (again

indicated with the red and purple shading, respectively, with only the leading row/column

shown) and a change in the error intersections. In this case the test pattern is again classified

as a “multiple detect”.

Next, again suppose some other test is used to update the candidate array model, this

time in such a way that the errors produced by the top center defective FUB (array location

(2, 3)) are accurately modeled (represented by the additional red box), as shown in Figure

4.8c. The forward and reverse simulations of the candidate array model again result in

different discrepancies and a change in the error intersections. Now the test pattern is

classified as a “strong single detect”; in fact, it can now be used to update the candidate

array model for the final defective FUB (at array location (3, 4)). The end result, shown in

Figure 4.8d, is a candidate array model with three modified FUBs that now matches exactly

the observed test response for this test pattern.

(a) (b) (c) (d)

Figure 4.8: Demonstration of iterative updates (a-d) to the candidate array model for a test pattern
with three active defective FUBs (marked with “×”). Modified FUBs in the candidate array model
are indicated by the bold red outline. Additionally indicated are the forward and backward error
intersections (marked “◦” and “�”, respectively) and the discrepancy propagation paths (shaded FUB
connections, red and purple for forward and reverse, respectively) that determine the error intersections.

Several caveats should be noted at this point. First, there are cases where location

ambiguity is unavoidable; for example, a “weak single detect” test pattern implicates two
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FUB locations within the array. In these cases Theorem 3.2 can be leveraged to model

multiple FUB locations with a single, larger black-box function in the candidate array model.

Second, even “multiple detect” and “inconsistent” test patterns can be used to update the

candidate array model, as will be discussed later in this section. Third, a new terminology of

defect region is adopted for each black-box function that has been changed in the candidate

array model.

An additional benefit of this iterative approach to diagnosis is that the progress of the

diagnosis can be monitored in the changes in the test pattern classifications as the candidate

array model is updated. Figure 4.9 depicts the expected changes in test pattern classification

during a successful diagnosis process. In the ideal case, the candidate array model should

move towards greater agreement with the observed array response; for example, “multiple

detect” test patterns should progress to “single detect” or “match”, and “single detect”

test patterns should progress to “match”. These ideal transitions are represented by the

solid lines in Figure 4.9. However, in addition to these ideal transitions there are several

other valid transitions in classification that can occur during a successful diagnosis process,

represented by the dashed lines in Figure 4.9. Any other change is indicative of an error in

diagnosis; an example of such a change would be a “match” pattern classified as a “multiple

detect” after a change to the candidate array model.

Figure 4.9: Representation of the ideal (solid) and valid (dashed) changes in test pattern classification
during a successful diagnosis process.
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Figure 4.10 presents the pseudocode for the iterative array diagnosis flow. Test patterns

are classified according to their error bounds and then used to update a the candidate

array model, with preference given to less complicated behaviors (e.g., “single detect” test

patterns before “multiple detect” test patterns). The updated candidate array model is

then simulated, and changes in test pattern classification are used to determine whether

the changes should be accepted or rejected. Additionally, an ignore list of problematic test

patterns is maintained and updated with any test patterns that lead to rejected changes to

the candidate array model. Diagnosis ends when every test pattern is either classified as a

“match” or has been added to the ignore list.

1 array_diagnosis(P, M)
2 // P = List of patterns
3 // M = Defect-free array model
4 begin
5
6 final_candidates = NULL // list of final diagnosis candidates
7 CM = copy of defect-free array model M
8 ignore_list = NULL // list of ignored patterns
9 current_candidates = list((CM, ignore_list))

10
11 // diagnosis loop
12 while(current_candidates is not empty)
13
14 CM, ignore_list = pop(current_candidates) // get current candidate model
15
16 // classify all non-ignored patterns
17 for each p in P - ignore_list
18 current_class(p) = classify_pattern(p, CM)
19
20 // select pattern to use for updating candidate model
21 if("Strong Single Detect" in current_class)
22 select p where current_class(p) == "Strong Single Detect"
23 else if("Weak Single Detect" in current_class)
24 select p where current_class(p) == "Weak Single Detect"
25 else if("Multiple Detect" in current_class)
26 select p where current_class(p) == "Multiple Detect"
27 else if ("Inconsistent" in current_class)
28 select p where current_class(p) == "Inconsistent"
29 endif
30
31 // update model based on selected pattern
32 update_model(CM, p)
33
34 // reclassify all non-ignored patterns
35 for each p in P - ignore_list
36 updated_class(p) = classify_pattern(p, CM)
37
38 // check for changes in classification
39 if(updated_class is all "Match")
40 add (CM, ignore_list) to final_candidates
41 else if(check_transitions(current_class, updated_class) indicates error)
42 undo changes to CM
43 add p used to update model to ignore_list
44 add (CM, ignore_list) to current_candidates
45 else
46 add (CM, ignore_list) to current_candidates
47 endif
48
49 end while
50
51 return final_candidates
52 end

Figure 4.10: Pseudocode for array-level diagnosis.
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The key components of this diagnosis flow are the procedures used to update the candi-

date FUB array model based on the selected test pattern, which are explored in the remainder

of this section.

Strong Single Detect

Test patterns in this category are the most straightforward, and thus are prioritized the

highest in the array diagnosis flow. The input and output values for the implicated array

location can be obtained using the forward and reverse simulations of the candidate array

model. The FUB function at that array location is then updated to reflect the observed

input and output values.

Weak Single Detect

Test patterns in this category strongly implicate two adjacent FUBs in the array. While it

is possible to immediately group both of these implicated FUBs into a single defect region

in the candidate array model, this may adversely impact the diagnostic resolution (defined

as the number of FUBs included in all of the defect regions in the candidate array model).

Instead, if the implicated FUBs intersect with any existing defect regions, it is assumed that

those existing defect regions are responsible for the observed behavior. This is essentially a

conservative heuristic that minimizes the number (and size) of defect regions in the candidate

array model, resulting in improved diagnostic resolution. Based on this heuristic three

straightforward cases now exist:

1. If only one of the implicated array locations belongs to a defect region, isolate the ob-

served behavior from the forward and reverse simulations and update the functionality

of that defect region.

2. If both of the implicated array locations belong to a single defect region, isolate the ob-

served behavior from the forward and reverse simulations and update the functionality

of that defect region.
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3. If neither of the implicated array locations belongs to a defect region, treat both to-

gether a new defect region in the candidate array model. Isolate the observed behavior

from the forward and reverse simulations and update the functionality for the new

defect region.

A fourth case exists when both implicated array locations belong to different defect

regions. In this case it is impossible to determine which defect region is responsible for the

observed behavior. One appropriate course of action in this case would be to branch the

array diagnosis process and create two new candidate array models, with each one updating

a different defect region based on the current pattern. There are several downsides to this

approach; it slows down array diagnosis considerably (as each new candidate array model

must be simulated and diagnosed separately), and it creates ambiguity if multiple different

candidate array models match the observed response. These issues can be avoided without

loss of accuracy if adjacent defect regions in the candidate array model are always combined

to create a single, larger defect region.

Multiple Detect

To begin there are two separate multiple detect cases: when the bounds share a row or

column (termed a “1D” multiple detect) and when the bounds are in different rows and

columns (termed a “2D” multiple detect). The 2D multiple detect will be examined first.

Figure 4.11 shows examples of how two defects (Figure 4.11a-4.11b), three defects (Figure

4.11c-4.11f), and four defects (Figure 4.11g) can produce a 2D multiple detect signature.

Taken together, all of these options define eight separate regions in the FUB array, of

which various combinations can produce the 2D multiple detect signature. Figure 4.12

depicts these eight regions for the 5×5 FUB array example used in Figure 4.11. The regions

have been labeled with the cardinal directions (north, south, east, west); any combination

of regions that, together, includes all four cardinal directions is capable of producing the 2D

multiple detect signature observed in Figure 4.11.
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.11: Demonstration of the ways in which two (a-b), three (c-f), and four (g) defective FUBs
can result in a 2D multiple detect signature. The defective FUBs are marked with “×”; forward and
backward error intersections are marked “◦” and “�”, respectively; and the discrepancy propagation
paths that determine the bounds are shaded in the array.

Figure 4.12: The eight distinct regions defined in the FUB array by a 2D multiple detect.

Exhaustively handling all of these possible cases in the array diagnosis would significantly

add to its complexity without necessarily improving diagnosis performance. Instead, several
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simplifying assumptions are made. The first involves a simple observation: only the corner

regions of Figure 4.12 (i.e., NW,NE, SE, SW ) can be accurately probed using the appro-

priate array simulations as discussed in Section 4.1.5. Particularly illustrative of this point is

Figure 4.11g; the location and interaction of the four defective FUBs shown guarantees that

the simulated array state will not accurately reflect the values in the very center of the FUB

array regardless of the direction of simulation; furthermore, knowledge of this center array

state is required in order to appropriately model the behavior of the four defect locations.

In addition to this insight, the previously-described conservative heuristic is again em-

ployed to filter down the number of options. However, there are now three separate cases

that must be examined:

1. The first and most preferable case is if an existing defect region intersects with any

one of the corner regions; in this case each such intersection can be used to update the

candidate array model and diagnosis can proceed as usual.

2. If none of the first case exist, a second case is if an existing defect region intersects with

one of the complementary regions of the array; for example, a known faulty region in the

W region of Figure 4.12 provides indirect support for a defect in the complementary SE

and NE corner regions. This results in two new candidate array models, corresponding

to each corner region, which must be separately diagnosed moving forward.

3. If none of the previous two cases exist, the fallback case is to attempt to diagnose the

current pattern to each of the four corner regions, resulting in four new candidate array

models that must be separately diagnosed moving forward.

The combination of these three cases are sufficient to handle all 2D multiple detect test

patterns. However, the 1D multiple detect still remains problematic. Figure 4.13 is an

example of how two defective FUBs can result in a 1D multiple detect, in this case with a

shared row in the FUB array. This figure hints at a key property of the 1D multiple detect:

barring cases of error masking, there must be defective FUBs in the regions adjacent to each
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of the two ends of the 1D multiple detect region. However, properly modeling these two end

regions requires knowledge of the array state in the center of the 1D multiple detect region,

which again cannot be determined using simulations in the four diagonal directions.

Figure 4.13: Demonstration of how two defective FUBs can result in a 1D multiple detect signature.
The defective FUBs are marked with “×”; forward and backward bounds are marked “◦” and “�”,
respectively; and the error propagation paths that determine the error bounds are shaded in the array.

This issue can be overcome by again leveraging the properties of the VH-bijective FUB

function. In this case, it is possible to evaluate the FUB function in as NS or EW direction,

that is, to input only the horizontal (vertical) values and determine the vertical (horizontal)

values. Not only do these NS and EW functions exist for the VH-bijective FUB function,

they are themselves VH-bijective1. In this way the forward (SE) and reverse (NW ) simula-

tions can be used to determine the array state up to the edges of the center of the 1D multiple

detect region, and then the appropriate NS or EW function can be used to “squeeze” this

region to determine the values needed to update the defect regions at the two ends of the

1D multiple detect region.

The only case where this approach is not viable is when the two ends of the 1D multiple

detect region are adjacent. However, it has been previously established in the discussion on

“weak single detect” test patterns that an appropriate course of action for adjacent defect

regions is to combine them; this approach can also be applied here. In this way all 1D

multiple detect test patterns can be handled by the array diagnosis.

1This property can be easily proven by adapting Theorem 4.3 with the desired input and output port
pairs.
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Inconsistent

The final classification that requires analysis is the “inconsistent” test patterns. This pattern

classification can be caused by error masking (as noted in Section 4.1.4) or by simulation

ambiguity caused by defect regions in the candidate array model. In the latter case, a

change in the functionality of any defect region in the candidate array model can result

in the loss of bijectivity. This means that the defect region function may no longer be

reversible; in some cases, it may not have an input value that corresponds to the output

value obtained from reverse simulation. In other cases, there may be multiple possible input

values may correspond to the output value obtained from reverse simulation. The latter

case is potentially problematic, as multiple choices at some defect region during reverse

simulation can result in different discrepancies at the array inputs. Figure 4.14 shows the

possible cases for a defect region consisting of a single defective FUB (marked “×”) in a FUB

array. Different options during reverse simulation can result in discrepancies at either both

input ports (Figure 4.14a), only the horizontal input port (Figure 4.14b), only the vertical

input port (Figure 4.14c), or neither input port (e.g., both values correct) (Figure 4.14d).

Note that the backward error intersection (marked “�”) is accurate in the first three cases;

it remains on or adjacent to the site of the defective FUB. In the fourth case the backward

error intersection is non-existent because the defective FUB behavior has been accurately

captured by the FUB array model. Based on this analysis, the actual choice of input value

during reverse simulation does not affect the accuracy of the backward bounds, though the

existence of a choice that results in no errors at the array inputs indicates that the defect

has been successfully modeled by the defect region.

Regardless of the cause for the “inconsistent” classification, the forward and backward

error bounds are still often in close proximity in the array to the locations that are causing

the error masking or simulation ambiguity. Thus, a simple heuristic is proposed: for any

“inconsistent” test pattern, find a nearby defect region in the array model and attempt to

update it with the behavior observed for that pattern. While this is an inexact heuristic, in
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many cases it allows the array diagnosis to converge to a good solution despite the presence

of these “inconsistent” test patterns.

(a) (b) (c) (d)

Figure 4.14: Demonstration of the four possible backward error intersections (marked with “�”)
during reverse simulation of a 5 × 5 candidate array model with a single defect region (represented
by the additional red box) corresponding to a single defective FUB (marked “×”). During reverse
simulation the defect region can emit discrepancies (represented by the shaded FUB connections) on
both (a), only one (b-c), or neither (d) of its input ports.

4.2.2 Netlist Diagnosis

The candidate model produced by the array-level diagnosis described in Section 4.2.1 is

effectively a black-box model of the FUB array with one or more regions (termed defect

regions) that do not match the functionality of the original FUB array. For each of these

defect regions, a netlist is formed by identifying the corresponding subcircuit from the original

FUB array netlist. The truth table for each defect region (i.e., the black box functionality

from the candidate model) is then used with the extracted netlist to perform conventional

logic diagnosis. This logic diagnosis can be either one of the following:

• Cause-Effect - The first approach for netlist-level diagnosis is to use fault dictionaries

for each for each FUB in the array. These fault dictionaries are constructed by simulat-

ing faults for each FUB netlist and recording the observed fault signatures. The fault

signatures for the appropriate FUB can then be compared to the defect region truth

table from the array-level diagnosis to derive the diagnosis candidates. Fault dictionar-

ies are fast and simple to use, but typically incur a large memory overhead and have

difficulties when multiple defects are present. The memory overhead is mitigated in
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this case, due to the small size of the individual FUBs and the minimal number of tests

for each FUB. An additional complication, however, is that the defect regions produced

by array-level diagnosis may be larger than a single FUB, requiring the construction

of additional multi-FUB dictionaries.

• Effect-Cause - The second approach is to use an effect-cause analysis on each impli-

cated FUB. The faulty behaviors produced by array-level diagnosis can be interpreted

as input and output values for each defect region netlist, which can then be processed

by a diagnosis procedure to determine the final defect candidates. Because these defect

regions are smaller than the overall array (typically encompassing on the order of one

to four FUBs), and because the individual FUBs themselves are relatively small, this

method allows for the employment of more sophisticated approaches without significant

runtime overhead, resulting in improved diagnosis outcomes.

4.3 Experiment

This section presents the results of several experiments conducted to determine the efficacy of

the proposed hierarchical FUB array diagnosis (HFAD). The array-level diagnosis described

in Section 4.2.1 was implemented using the Python programming language [78]. Section

4.3.1 describes a simulation experiment where virtual failures in the FUB array are used to

evaluate the performance of array-level diagnosis on its own. The Python implementation

of the array-level diagnosis is paired with a commercial diagnosis tool to handle the netlist-

level diagnosis, comprising a complete HFAD flow. Section 4.3.2 describes a simulated fault

injection experiment used to compare the performance of the HFAD flow to the commercial

tool alone. Finally, Section 4.3.3 presents the diagnosis results for data collected from FUB

arrays manufactured in a 7nm technology.
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4.3.1 Array-Level

The first results presented in this section are derived from a simulated array fault experiment

designed to evaluate the diagnosis of the array-level only. A purely logical model of a 10×10

FUB array composed of 6-bit FUBs is created (i.e., no gate-level netlist or physical design;

each FUB is a black box implementing the VH-bijective FUB function). Faults are injected

into this FUB array model by introducing random changes to the FUB functions used at

randomly selected array locations. Different combinations of the number of faulted FUB(s)

(up to four) and the number of FUB function input patterns faulted (up to 32 out of the 64

input patterns for the 6-bit FUB functions) are simulated to create virtual fail logs, with 50

runs performed for each combination, and the virtual fail logs produced are analyzed using

the array-level diagnosis implementation.

The results from the array-level diagnosis are evaluated in this context according to two

metrics: perfect accuracy and FUB resolution. Perfect accuracy is achieved if the array-level

diagnosis returns a candidate model that both matches the virtual fail log for every test

pattern and encloses all of the FUBs with changed functionality in the defect regions. The

FUB resolution is simply the number of FUBs included in all of the defect regions of the

candidate model. Note that array-level diagnosis may return multiple candidate models; in

such cases only the candidate model that matches the largest number of test patterns in the

virtual fail log is examined.

Figure 4.15 shows the results of the array-level diagnosis when a tessellation test set

(consisting of 64 test patterns) is applied. Figure 4.15a presents the percentage of simulations

for which the diagnosis is perfectly accurate. The array-level diagnosis returns perfectly

accurate results 100% of the time when only a single faulted FUB is present in the array.

For two or more faulted FUBs, increasing the complexity, either through additional faulted

FUBs or increased fault severity (i.e., number of input patterns affected), results in a loss

of diagnosis accuracy. The one exception is that additional changed input patterns can

actually result in improved accuracy when the number of affected input patterns is very
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low, as observed in Figure 4.15a in the range of one to four faulty input patterns. This can

be attributed to the fact that additional faulty input patterns give the array-level diagnosis

more opportunities to precisely pin down the location of the faulty FUBs. To give an

example, a known issue with the current array diagnosis implementation is in handling

adjacent faulty FUBs. If only one adjacent FUB is precisely observed (i.e., a “strong single

detect” pattern exists for only one of the injected faulty FUBs), the array-level diagnosis

will create a defect region containing that FUB and, because of the conservative heuristic

of attributing defective behavior to known defect regions whenever possible, will attempt to

attribute all of the observed behavior to that single defect region. Depending on the type of

interaction between the adjacent faulted FUB functions, this can cause the array diagnosis

routine to fail to converge on a solution. This specific issue is expected to be addressed by

continued improvements to the array-level diagnosis implementation.

Figure 4.15b presents the average FUB resolution for all of the perfectly accurate diagno-

sis results. The average FUB resolution is closer to the actual number of faulted FUBs when

fewer faulted FUBs are injected into the array. An interesting effect is again observed when

there are less than four faulted input patterns. In this case the average FUB resolution is

higher (worse) when there are relatively few faulted input patterns. This is attributed to the

higher likelihood that a faulted FUB is only detected by “weak single detect” test patterns

when only a few input patterns in the FUB function have been faulted. If the location of

the faulted FUB is never precisely pinned down by a “strong single detect” test pattern,

the array-level diagnosis resorts to creating a larger defect region (in this case two adjacent

FUBs), resulting in an increase in the FUB resolution. As the number of faulted input pat-

terns increases, the likelihood that all of the randomly-selected faulted input patterns result

in only “weak single detect” test patterns in the FUB array decreases, leading to improved

FUB resolution.

Figure 4.16 shows the effect that a larger test set, in this case a super-exhaustive test

set consisting of 512 test patterns, has on the array-level diagnosis performance. The same
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Figure 4.15: (a) Percentage of perfectly accurate diagnoses and (b) the average FUB resolution for
perfectly accurate diagnoses for a simulated 10× 10 FUB array. Faulted FUBs were injected in varying
numbers and fault severity, expressed as the number of faulted input patterns per faulted FUB. A total
of 50 simulations were performed at each data point, and the FUB arrays were tested with a 64 pattern
tessellation test set.

10×10 FUB array and faulted FUBs used for Figure 4.15 are simulated and diagnosed using

this expanded test set. The percentage of perfectly accurate diagnosis runs, shown in Figure

4.16a, shows significant improvement with the expanded test set for all of the multiple faulty

FUB injections. The average FUB resolution, shown in Figure 4.16b, shows less of a change;

the main exception is the improvement in resolution for four faulted FUBs, though it is

worth noting that number of perfect diagnoses using the smaller test set for these cases is

very small in the original test set data.

Taken together, these experiments strongly support the assertion that the array-level

diagnosis is capable of handling multiple defects in the FUB array. This is particularly true

when the larger test set is applied, with perfect diagnostic accuracy in over 76% of the runs

with up to four faulted FUBs. Furthermore, perfect diagnostic accuracy is a very conservative

metric; even in cases where the diagnosis output is not perfect, it may still accurately capture

the behavior of several (but not all) of the faulted FUBs. It is conjectured that it is possible

to diagnose up to two faulted FUBs in the array with perfect accuracy every time; the slight

losses for two faulty FUBs demonstrated in Figures 4.15 and 4.16 are thus attributed to

issues in implementation, and are a target for improvement in future work.
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Figure 4.16: (a) Percentage of perfectly accurate diagnoses and (b) the average FUB resolution for
perfectly accurate diagnoses for a simulated 10× 10 FUB array. Faulted FUBs were injected in varying
numbers and fault severity, expressed as the number of faulted input patterns per faulted FUB. A total
of 50 simulations were performed at each data point, and the FUB arrays were tested with a 512 pattern
super-exhaustive test set.

4.3.2 Netlist Level

The second experiment is a simulated fault-injection experiment using a FUB array created

for verifying a commercial standard-cell library. The design contains a total of 8,308 standard

cells, organized into 144 individual FUBs that are arranged into a 12 × 12 FUB array,

where each FUB implements the same 6-bit VH-bijective function. A super-exhaustive

test set consisting of 512 test patterns is constructed for this FUB array. Two faults are

simultaneously injected into this array and simulated to create a virtual fail log for diagnosis.

The injected faults are randomly-selected input pattern faults [29] on two different standard

cells in the design. A total of 2,999 virtual fail logs are generated and analyzed using both

the HFAD flow (i.e., the Python implementation of the array-level diagnosis combined with

the commercial tool for the netlist-level diagnosis) and the standalone commercial diagnosis

tool. For both the HFAD flow and commercial diagnosis, only the diagnosis candidates with

the top score (as reported by the commercial diagnosis tool) are kept for each suspected

defect.

Before presenting the results of the simulated fault-injection experiment, it is helpful to

examine what an ideal diagnosis result would be in this context. Diagnosis is again evaluated
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based on two criteria: resolution, which is defined here as the number of defect candidates

reported, and accuracy, which is defined here as whether those defect candidates subsume

the actual injected fault(s). Because two faults are injected into the array for each virtual

fail log, an ideal diagnosis result should have exactly two defect candidates, with each defect

candidate corresponding to one of the injected faults. A resolution lower than two cannot

be perfectly accurate for both injected faults; a resolution greater than two indicates a loss

of precision.
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Figure 4.17: Diagnostic resolution for both the HFAD flow and custom diagnosis tool (vertical axis is
logarithmic).

Fig. 4.17 is a histogram of the diagnostic resolution for the HFAD flow and commercial

diagnosis. Note that the vertical axis is logarithmic to better represent the range of the two

distributions. Commercial diagnosis has a minimum diagnostic resolution of 1, a maximum

of 42, and an average of 3.48. The HFAD flow has a minimum diagnostic resolution of 0, a

maximum of 44, and an average of 3.82. While on average the diagnostic resolution of the

commercial tool is better, the HFAD flow does produce more outcomes with the expected

ideal diagnostic resolution of 2.

However, viewing the distribution of diagnostic resolutions in this way may be misleading
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HFAD Commercial
Count

HFAD resolution Commercial resolution
accuracy accuracy minimum mean maximum minimum mean maximum

100% 100% 2,058 2 3.93 36 2 4.01 37
100% 50% 530 2 3.65 44 1 2.21 42
100% 0% 204 2 4.92 28 1 2.16 25
50% 100% 84 1 2.48 10 2 3.46 25
50% 50% 66 1 2.44 28 1 1.79 28
50% 0% 13 1 2.00 5 1 1.46 4
0% 100% 8 0 0.50 2 2 3.50 7
0% 50% 13 0 0.31 1 1 3.08 10
0% 0% 23 0 1.30 4 1 1.65 4

Table 4.1: Diagnostic outcome comparison for HFAD and commercial diagnosis.

without taking accuracy into account. Table 4.1 presents a comparison of the diagnosis

outcomes broken down by the accuracy of the results. Given that the faults are injected into

individual standard cells in the array, a diagnosis candidate is defined to be accurate if it

includes (a) the standard cell or (b) a net that is connected to the standard cell used for fault

injection. Diagnostic accuracy can thus be either 100% (candidates include the two injected

sites), 50% (candidates include one of the two injected sites), or 0% (candidates include

neither injected site) for each fault-injection simulation. The first two columns of Table

4.1 report this accuracy for the HFAD and commercial diagnosis, with the third column

showing the number of simulated fail logs for each accuracy combination. Columns four

through six report the minimum, mean, and maximum number of diagnosis candidates (i.e.,

the diagnosis resolution) for the HFAD flow, while the remaining columns report the same

for the commercial diagnosis tool.

Table 4.1 indicates that the HFAD flow achieves ideal accuracy for 93.1% of the simulated

fail logs (2,792 out of 2,999). Commercial diagnosis, on the other hand, achieves perfect

accuracy for only 71.7% of the simulated fail logs (2,150 out of 2,999). Furthermore, for

the 2,058 simulated fail logs where both tools are perfectly accurate, the HFAD produces an

improved average diagnostic resolution (3.93 compared to 4.01). However, the HFAD does

not offer a strict accuracy improvement over the commercial tool; there remain a total of 105

virtual fail logs where the commercial tool improves upon the HFAD accuracy, with perfect

commercial accuracy for 92 of those virtual fail logs. Examination of these 105 virtual fail

logs reveals that at least one of the following three conditions are present in each one:
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• Faults are injected into FUBs in the same row or column of the array in 46 simulated

fail logs (43.8%).

• One or more faults are injected into FUBs on the boundary of the array in 69 simulated

fail logs (65.7%).

• Excluding the previous two cases, faults are injected into FUBs in adjacent rows or

columns of the array in the remaining 10 simulated fail logs (9.1%).

All of these conditions represent edge cases for the array-level diagnosis implementation.

Faults injected into FUBs in the same/adjacent row or column in the FUB array can lead

to error masking along the error propagation paths used to calculate the error bounds (as

described in Section 4.1). This potential for incorrect error bounds and the increased com-

plexity of handling ’1D’ multiple detects (Section 4.2.1) are likely contributors to the poor

performance of the HFAD flow. The remaining cases with faults injected into FUBs on the

boundary of the array require special handling in the array-level diagnosis implementation;

the poor accuracy of the HFAD flow in this case may be attributable to programming er-

rors. Overall, while these cases remain a target for improvement, the significant increase in

diagnosed fail logs with perfect accuracy (from 71.7% to 93.1%) demonstrates the value of

the HFAD flow.

4.3.3 Silicon

In addition to the simulated experiments presented in Sections 4.3.1 and 4.3.2, real silicon

test data is obtained for a test chip manufactured in a 14nm process under development

by an industry partner. This test chip included 64 different 5 × 5 FUB arrays with 6-bit

FUBs, which were implemented as macro blocks in a larger test chip architecture. The CMU

team supplied the logical descriptions of the 64 arrays as well as a 64-pattern exhaustive test

set. The industry partner then integrated these arrays into the larger test chip architecture,
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Diagnosis Total runtime (sec) Average runtime (sec)
HFAD array-level 19,910 14.48
HFAD netlist-level 19.15 0.1

HFAD overall 19,929.15 14.49
Commercial 1,535.15 1.12

Table 4.2: Runtime for HFAD and commercial diagnosis.

created the physical design, and manufactured the test chip. A total of 1,503 logs of failing

FUB arrays are provided to the CMU team for diagnosis.

Of these 1,503 fail logs, 128 exhibit a defect that impacted the test architecture used

to access the FUB arrays. The remaining 1,375 are diagnosed using both the HFAD flow

and a standard commercial diagnosis tool. The results of both are filtered to include only

the top diagnosis candidates for each suspected defect. Figure 4.18 presents a histogram of

the diagnostic resolutions, defined as the number of diagnosis candidates, obtained for each

fail log. Overall the diagnostic resolution distributions are very similar; differences include

a number of fail logs for which the HFAD flow failed to produce any candidates, and more

outliers with high diagnostic resolution for the commercial tool.
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Figure 4.18: Diagnostic resolution for both HFAD flow and the commercial diagnosis (vertical axis is
logarithmic).
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The runtimes for the HFAD and commercial diagnosis are presented in Table 4.2. Both

the HFAD and commercial diagnosis were performed on a machine with 64 CPU cores

running at 2.2GHz with 1TB of RAM, and a timeout of five minutes was applied to each

diagnosis run. The HFAD array-level diagnosis alone is an order of magnitude slower than

the commercial tool, but the HFAD netlist-level diagnosis is very fast (less than a second

per fail log), resulting in an overall average runtime of 14.48 seconds per fail log compared

to 1.12 seconds per fail log for the commercial tool. This difference is unsurprising given

the complexity of the array-level diagnosis (with repeated simulations of the FUB array in

multiple directions). While an effective slowdown of 12.9x is manageable for this data set

(total runtime remains under six hours), improvements to the runtime of the HFAD flow

represents a high-priority target for future optimization.

Unlike in the previous two experiments, the ground truth is not known for this data set

(i.e., the nature and location of the defect(s) present for each fail log), making it impossible

to directly evaluate the diagnosis accuracy. Instead, two techniques are utilized: first, the

forward and backward error bounds (as described in Section 4.1) can be calculated for each

test pattern and compared to the array location of the diagnosis candidates. If diagnosis

candidates exist in FUBs at array locations that are never implicated by the error bounds

they are likely to be incorrect. Alternatively, if the error bounds implicate an array location

that has no diagnosis candidates, it is likely that the diagnosis missed a defect. A second

approach is to compare the defect candidates produced by the HFAD flow and the commercial

tool. Consensus between the two tools indicates higher confidence in the diagnosis accuracy,

while disagreements in the number of suspected defects or their locations are indicative of

inaccuracy by one (or both) of the tools. The latter approach is utilized in Table 4.3, which

shows the diagnosis outcomes for the two tools by the number of suspected defects reported

by each. The first two columns report the number of defects reported for each HFAD and

commercial diagnosis, with the third column showing the number of fail logs with each

combination of reported defects. Columns four through six report the minimum, mean, and
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No. HFAD No. commercial
Count

HFAD resolution Commercial resolution
defects defects minimum mean maximum minimum mean maximum

0 2 3 0 0.00 0 7 7.67 9
0 3 6 0 0.00 0 10 17.8 36
0 4 7 0 0.00 0 9 20.2 35
0 5 5 0 0.00 0 19 27.5 33
0 6 2 0 0.00 0 17 25.5 34
0 7 3 0 0.00 0 24 42.7 73
1 1 1,113 1 2.98 31 1 2.97 31
1 3 1 1 1.00 1 7 7.00 7
2 1 44 2 5.09 17 1 2.91 13
2 2 126 2 5.02 24 2 5.14 24
2 3 7 2 4.57 15 3 6.86 15
3 1 2 3 3.00 3 1 1.00 1
3 2 5 3 6.60 16 2 6.20 15
3 3 25 3 6.32 23 3 6.20 23
3 4 4 3 5.00 7 7 7.75 9
3 7 1 3 3.00 3 11 11.0 11
4 1 1 12 12.0 12 9 9.00 9
4 3 5 5 9.20 16 4 7.60 12
4 4 5 4 10.8 28 4 11.8 28
5 2 1 9 9.00 9 13 13.0 13
5 3 2 13 14.0 15 9 17.5 26
5 4 2 5 6.00 7 4 11.5 19
6 2 2 13 13.0 13 3 6.00 9
6 4 1 9 9.00 9 6 6.00 6
7 3 1 16 16.0 16 9 9.00 9
9 4 1 21 21.0 21 14 14.0 14

Table 4.3: Diagnostic outcome comparison for HFAD and commercial diagnosis.

maximum number of diagnosis candidates (i.e., the diagnosis resolution) for the HFAD flow,

while the remaining columns report the same for the commercial diagnosis tool.

Both the HFAD flow and the commercial diagnosis report similar results for a majority of

the fail logs: a total of 1,269 fail logs result in agreement in the number of suspected defects,

with minimal differences in the mean diagnostic resolution. The remaining 106 fail logs have

been divided into three categories for further analysis: cases where HFAD flow produces no

candidates, cases where commercial diagnosis produces more suspected defects, and cases

where the HFAD flow produces more suspected defects. The remainder of this section will

discuss each of these categories individually.

HFAD Zero Candidates

The HFAD flow failed to produce any diagnosis candidates for 26 fail logs (represented in

the first section of Table 4.3). In each of these cases the lack of diagnosis results is due to a

lack of candidates produced during the array-level of the HFAD flow. Closer examination of
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these 26 fail logs reveals that 18 (69.2%) have one or more inconsistent test pattern on first

classification, indicating the presence of multiple defects with error masking. In contrast, only

75 of the 1,375 fail logs diagnosed (5.5%) have one or more inconsistent test pattern. This

suggests that error masking remains problematic for the proposed array-level diagnosis. Of

the remaining eight fail logs with no inconsistent patterns, commercial diagnosis indicates

between three and seven suspected defects for each, with relatively poor resolution (nine

diagnosis candidates or more for each). Overall, these 26 fail logs support the conclusion

that the HFAD flow fails only when the diagnosis problem is complex (multiple defects

and/or error masking), and represent a target for improvements to the implementation of

the array-level diagnosis used in the HFAD flow.

HFAD Fewer Suspected Defects

The HFAD flow produces fewer suspected defects than the commercial tool for 13 fail logs.

The diagnosis problems posed by these fail logs are again relatively difficult: both tools agree

on the existence two or more suspected defects for 12 of the 13 fail logs, and four fail logs

include one or more inconsistent patterns (indicative of error masking). Nevertheless, both

tools are fairly consistent in the diagnosis candidates produced, with 11 fail logs having at

least one common diagnosis candidate.

As discussed earlier in this section, the array locations implicated by error bounds can

be compared to the locations of the diagnosis candidates produced. Mismatches between

these implicated locations and the diagnosis candidates can indicate either false diagnosis

candidates (which cannot be present due to the FUB array error propagation properties) or

defects that have been missed by diagnosis. Performing this analysis on the seven fail logs

without error masking finds that, for one fail log, the commercial tool includes a suspected

defect at a location that is never implicated by the error bounds. This strongly suggests

that the commercial tool produced a false candidate in this case. Analysis of the remaining

six fail logs is inconclusive; the error bounds do not exclude the additional suspected defects
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that the commercial tool found relative to the HFAD flow. While the twelve fail logs with

error masking or inconclusive error bounds represent potentially inaccurate diagnosis (missed

defects) for the HFAD flow, they comprise a small fraction (0.9%) of the total population of

fail logs.

HFAD More Suspected Defects

The HFAD flow produces more suspected defects than the commercial tool for 67 fail logs.

However, it is unclear if these additional suspected defects represent are true defects that

commercial tool missed, or false diagnosis candidates created by the HFAD flow. The error

bound analysis is again performed to help answer this question. Of the 67 fail logs, 16 include

one or more inconsistent pattern (indicative of error masking), and are thus excluded. Of

the remaining 41 fail logs, for 40 fail logs the error bounds implicate array locations that are

unaccounted for by the commercial diagnosis result. The HFAD flow, on the other hand,

includes additional suspected defects that fully explain all implicated regions for all fail logs.

This analysis suggests that the commercial tool failed to produce any diagnosis candidates

for an existing defect in 40 of the 1,375 diagnosed fail logs (2.9%), and that in each of these

cases the HFAD flow did produce one or more diagnosis candidates for this missing defect.

Several cases from the latter category have been examined and will be described in greater

detail.

Case Study I. This first case study is a fail log where the commercial and custom diagnosis

tools disagree on the number of suspected defects, with the commercial tool returning only

one while HFAD indicated the presence of two. Tables 4.4 and 4.5 describe the abridged

diagnosis results for the commercial diagnosis and HFAD, respectively. Each row in the table

corresponds to a single diagnosis candidate. The first and second columns provide the defect

and candidate identifier; multiple diagnosis candidates can correspond to the same defect, as

indicated by a shared defect ID. The third column indicates the candidate’s score as provided
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by the commercial diagnosis tool, with a higher score representing a better match between the

candidate and the fail log behavior. The fourth column indicates the type of the candidate,

which may match a fault model (e.g., stuck-at, bridge, etc.) or some other behavior specified

by the diagnosis tool. The sixth column provides additional information on the behavior of

the candidate (for example, a “STUCK” candidate with value “0” corresponds to a stuck-at-

0 fault). Finally, the seventh column provides the netlist location, expressed as a pin path,

for each candidate.

Defect Candidate Diagnosis score Type Value Pin
1 1 100 INDETERMINATE 0 U 0 0 U218:o1
1 2 100 EQUIVALENT 1 U 0 0 U218:c
1 3 100 EQUIVALENT 1 U 0 0 U165:o1
1 4 100 EQUIVALENT 1 U 0 0 U218:a
1 5 100 EQUIVALENT 1 U 0 0 U218:b
1 6 100 EQUIVALENT 1 U 0 0 U211:o1
1 7 100 EQUIVALENT 0 U 0 0 U211:b
1 8 100 EQUIVALENT 0 U 0 0 U211:a
1 9 100 EQUIVALENT 0 U 0 0 U210:o1
1 10 100 EQUIVALENT 0 U 0 0 U207:o1

Table 4.4: Abridged commercial diagnosis result for Case Study I.

Suspected defect Candidate Diagnosis score Type Value Pin
1 1 100 STUCK 1 U 0 0 U207:a
1 2 100 EQUIVALENT 1 U 0 0 U164:o1
1 3 100 STUCK 1 U 0 0 U207:b
1 4 100 EQUIVALENT 1 U 0 0 U206:o1
1 5 100 STUCK 0 U 0 0 U218:o1
1 6 100 EQUIVALENT 1 U 0 0 U218:c
1 7 100 EQUIVALENT 1 U 0 0 U165:o1
1 8 100 EQUIVALENT 1 U 0 0 U218:a
1 9 100 EQUIVALENT 1 U 0 0 U218:b
1 10 100 EQUIVALENT 1 U 0 0 U211:o1
1 11 100 EQUIVALENT 0 U 0 0 U211:b
1 12 100 EQUIVALENT 0 U 0 0 U211:a
1 13 100 EQUIVALENT 0 U 0 0 U210:o1
1 14 100 EQUIVALENT 0 U 0 0 U207:o1
2 1 100 CELL 0 U 2 2 U90:out0

Table 4.5: Abridged HFAD result for Case Study I.

The commercial diagnosis callout consists of a single defect candidate of type “INDE-

TERMINATE”, along with nine equivalent candidates. All of these candidates have a score

of 100, indicating a high degree of confidence in the result. Additionally, all of these candi-

dates are in the top left FUB in the FUB array (indicated by the “U 0 0” prefix on the pin

pathnames). By itself, this would be an acceptable diagnosis outcome: high confidence in a

single defect with moderate resolution.
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The HFAD callout contradicts the commercial result. While it too includes a defect in

the top left FUB, a second defect is found in the center FUB in the FUB array (indicated

by the “U 2 2” prefix on the pin pathname for the second suspected defect candidate).

Again the diagnostic scores are all 100, indicating a high degree of confidence in all of

these results. Comparison of the candidates in the top left FUB shows that the custom

result includes all of the same locations (“U 0 0 U218:c” and its nine equivalents), however

the type of the candidate is changed from “INDETERMINATE” to stuck-at-0, and two

additional stuck-at candidates (along with their equivalents) are added. This change in

candidate type is significant; whereas stuck-at candidates have a simple and well-defined

behavior, indeterminate candidates are much more flexible, making them more likely to

match the observed fails but less helpful in characterizing the defect.

Most significant, however, is the fact that the commercial diagnosis missed the defect in

the center of the FUB array. Analysis of the fail log using the array-level diagnosis shows

that ten test patterns are classified as “Multiple detect”, and a further two test patterns

(classified as “Weak single detect”) only detected the defect in the center FUB. These last

two tests are especially troubling; given the error propagation properties of the FUB array,

it is impossible for a defect in the top left FUB to match the errors produced by a defect

in the center of the FUB array. This means that, not only did commercial diagnosis miss a

high-confidence and meaningful defect candidate that HFAD found, it overstates confidence

in the defect candidate that it did find.

Case Study II. This second case study is another fail log where the commercial and

custom diagnosis tools disagree on the number of suspected defects, with the commercial

tool returning two while custom indicated the presence of three. Tables 4.6 and 4.7 present

the abridged diagnosis results for the commercial and custom tools, respectively. The column

format remains the same as in Tables 4.4 and 4.5.

The commercial diagnosis callout consists of two suspected defects: one of type stuck-
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Suspected defect Candidate Diagnosis score Type Value Pin
1 1 98 STUCK 1 Yout[6]
1 2 98 EQUIVALENT 1 U 4 2 U89:o
2 1 96 STUCK 1 U 0 0 U109:o1
2 2 96 EQUIVALENT 0 U 0 0 U109:d
2 3 96 EQUIVALENT 0 U 0 0 U109:c
2 4 96 EQUIVALENT 0 U 0 0 U108:o1
2 5 96 EQUIVALENT 0 U 0 0 U109:a
2 6 96 EQUIVALENT 0 U 0 0 U109:b
2 7 96 EQUIVALENT 0 U 0 0 U105:o1
2 8 96 EQUIVALENT 0 U 0 0 U97:o1
2 9 96 EQUIVALENT 0 U 0 0 U99:o1
2 10 96 EQUIVALENT 1 U 0 0 U105:a
2 11 96 EQUIVALENT 1 U 0 0 U105:b
2 12 96 EQUIVALENT 1 U 0 0 U101:o1
2 13 96 EQUIVALENT 1 U 0 0 U104:o1

Table 4.6: Abridged commercial diagnosis result for Case Study II.

Suspected defect Candidate Diagnosis score Type Value Pin
1 1 100 CELL 1 U 2 4 U71:out0
2 1 100 STUCK 1 U 0 0 U109:o1
2 2 100 EQUIVALENT 0 U 0 0 U109:d
2 3 100 EQUIVALENT 0 U 0 0 U109:c
2 4 100 EQUIVALENT 0 U 0 0 U108:o1
2 5 100 EQUIVALENT 0 U 0 0 U109:a
2 6 100 EQUIVALENT 0 U 0 0 U109:b
2 7 100 EQUIVALENT 0 U 0 0 U105:o1
2 8 100 EQUIVALENT 0 U 0 0 U97:o1
2 9 100 EQUIVALENT 0 U 0 0 U99:o1
2 10 100 EQUIVALENT 1 U 0 0 U105:a
2 11 100 EQUIVALENT 1 U 0 0 U105:b
2 12 100 EQUIVALENT 1 U 0 0 U101:o1
2 13 100 EQUIVALENT 1 U 0 0 U104:o1
3 1 100 STUCK 1 Yout[6]
3 2 100 EQUIVALENT 1 U 4 2 U89:o

Table 4.7: Abridged HFAD result for Case Study II.

at-1 (along with a single equivalent candidate) at the center of the vertical output edge of

the FUB array (the “U 2 4” prefix indicates the center bottom FUB), and a second of type

stuck-at-1 (along with its 12 equivalent candidates) in the top left corner of the FUB array

(again indicated by the “U 0 0” prefix). While the scores for these candidates are high, at

98 and 96 respectively, they are not perfect. Overall this is again an acceptable diagnosis

outcome, with two isolated suspected defects with good confidence and moderate resolution.

The custom diagnosis callout improves upon the commercial result by including an ad-

ditional suspected defect at the horizontal output of the FUB array (the “U 2 4” prefix

corresponds to the center far-right FUB). Including this third suspected defect raises the

score of all of the candidates to 100, including the score for the defect candidates that the
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commercial tool discovered. The result is a significantly better diagnosis outcome, with three

isolated suspected defects with very high confidence, of which two have resolution of two or

less.

4.4 Summary

This chapter has discussed the diagnosis properties of the CM-LCV. The unique error prop-

agation properties achieved by using VH-bijective functions in the FUB array are leveraged

to define bounds on the locations of defects. A hierarchical FUB array diagnosis (HFAD)

flow, consisting of array-level and netlist-level diagnosis stages, is designed to take advantage

of these error bounds. An implementation of this HFAD flow was developed and several ex-

periments were performed to evaluate its performance. Fault simulations of a 10× 10 FUB

array indicate that the array-level HFAD diagnosis is well-suited for multiple defect diagno-

sis, with perfect diagnostic accuracy achieved in up to 76% of the runs when four FUBs were

simultaneously faulted. The full HFAD flow implementation achieves perfect accuracy for

93.1% of the simulations of two injected faults performed on a 12×12 FUB array design, rep-

resenting a significant improvement over state-of-the-art commercial diagnosis. This value

of the custom diagnosis is further demonstrated in the analysis of fail logs from a series of

5 × 5 FUB arrays fabricated in a 14nm process, where the custom diagnosis flow was able

to detect and characterize defects that the commercial tool missed for 40 out of the 1,375

diagnosed fail logs.
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Chapter 5

Conclusions

Achieving acceptable yield as the semiconductor manufacturing process continues to increase

in complexity presents a significant technical challenge. This dissertation has presented a

new logic test chip, the Carnegie Mellon Logic Characterization Vehicle, to help meet this

challenge. The CM-LCV is intended for use in the later stages of the technology development,

and is designed to aid in the detection and mitigation of product-relevant defects before

they can adversely impact product yield. The CM-LCV can be tested with high efficiency;

methods for constructing minimal test sets with 100% fault coverage for a variety of fault

models have been demonstrated, as well as a BIST architecture that reduces the number of

test cycles by a factor of 88.0% in a reference design. The CM-LCV also offers improved

diagnosis properties: included in this dissertation is a hierarchical FUB array diagnosis

(HFAD) methodology capable of accurately diagnosing 93.1% of simulations of two injected

defects, an improvement on the 71.7% accurate diagnosis rate achieved by a commercial

state-of-the-art diagnosis tool. Furthermore, a CM-LCV design has been incorporated into

a larger test chip and fabricated by an industry partner in a 14nm process. Diagnosis of the

failing test chip data provided by the industry partner demonstrates the value of the HFAD

methodology, with multiple cases of HFAD detecting defects that the commercial diagnosis

tool missed. The remainder of this chapter describes the contributions of this dissertation
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and the directions for future work.

5.1 Contributions

This dissertation has presented advancements to the state-of-the-art in the fields of logic

test chip design, test, and diagnosis. The main contributions for each of these aspects are

summarized below:

Logic Test Chip Design

• The definition of a new logic test chip based on two-dimensional arrays of VH-bijective

FUB modules. Two variant FUB arrays are also proposed: a heterogenous FUB array

with multiple different FUB functions, and a pipelined FUB array with sequential

elements inserted at every array connection.

• The definition of VH-bijectivity, a special property of four-port functions, and an

examination of its relationship to the extant concept of orthogonal Latin squares.

Proofs were supplied concerning the VH-bijectivity of various derivatives of a VH-

bijective function, including its inverse.

• The description of the composability of various properties within the FUB array. Com-

posability is shown for varying degrees of fault coverage, logical design features, physical

design features, and fault distinguishability.

• The description of a synthesis flow to translate the logical design of a two-dimensional

FUB array into a physical design that leverages the composability of the FUB array

to meet various design requirements (fault coverage, standard cell composition, etc.).
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Test

• Methods for constructing tessellation test sets for the FUB array. The tessellation test

patterns apply every input pattern to each FUB within the FUB array, in a constant

number of test patterns regardless of the size of the array.

• Methods for constructing super exhaustive test sets for the FUB array. These test sets

are shown to apply every input pattern multiple times to each FUB within the FUB

array.

• A built-in self-test (BIST) scheme for the FUB array that utilizes the properties of

the tessellation patterns to achieve high fault coverage with a simple circular feedback

architecture. Conditions on the size of the FUB array for proper implementation of

this BIST scheme are presented.

5.1.1 Diagnosis

• A description of the special properties of the forward and reverse error bounds obtained

from the FUB array. A proof is provided regarding the necessity for more than one

defective FUB to be present in order for the error bounds intersection to be empty.

• A hierarchical FUB array diagnosis flow tailored for the FUB array, with improved

performance for multiple defects.

5.2 Future Work

This dissertation has presented a new logic test chip, the Carnegie Mellon Logic Character-

ization Vehicle, along with methodologies for its test and diagnosis. Listed below are some

possible avenues for future work.

• Refinements to the HFAD diagnosis flow: It is posited that two defects in the FUB

array can always be accurately diagnosed. The current implementation of the HFAD
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flow achieves less than 100% accuracy for simulations of two injected faults, repre-

senting a significant target for future work. Performance improvements would also be

beneficial in allowing for more extensive simulation experiments to better characterize

the tool’s capabilities.

• Exploration of additional FUB functions: The large number of viable FUB functions

presents a significant opportunity. Both a simple search strategy across possible FUB

functions and developing techniques to create application-specific FUB functions are

promising avenues for improving the performance of the CM-LCV.

• Higher dimensional FUB arrays: The current restriction to two-dimensional FUB ar-

rays is arbitrary; the concept of VH-bijectivity (or, equivalently, pairs of orthogonal

latin squares) can easily be extended to higher dimensions [79]. All of the test and diag-

nosis concepts discussed in this work should also be adaptable to higher dimensions as

well. Furthermore, it is posited that up to n defects can always be accurately diagnosed

in an n-dimensional extension of the FUB array presented in this dissertation.

• On-Chip diagnosis: the error bound behavior observed in the FUB array can be lever-

aged for on-chip diagnosis. If coupled with the BIST architecture included in this

dissertation it should be possible to implement a fully self-contained logic test chip

that can test and diagnose itself.
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