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Abstract

Crystallographic directions normal to the fracture surface and orientation distri-
butions are important statistics that give valuable insights into the phenomenon of
crack initiation and propagation in metallic polycrystalline materials. In this the-
sis, we present a new method to extract crystallographic direction information at and
around fracture surfaces. This method combines near field High Energy X-ray Diffrac-
tion Microscopy (HEDM) and high energy X-ray tomography. This new method gives
much better accuracy than the current state-of-the-art techniques based on scanning
electron microscopy because it is inherently three-dimensional.

In this thesis, not only the new method is presented, but it is also applied to the
study of two halves of a sample of Rene88DT that was tested in fatigue to complete
fracture. A pin suitable for HEDM was cut from each half so as to surround the
initiation point. Volumetric data is collected at beamline 1-ID at the Advanced
Photon Source (APS). A volumetric registration scheme is developed to align the
data from the two pins so as to reconstruct the crystallography across the fracture.
The fracture surface is characterized and the distribution of crystallographic directions
normal to the fracture surface is studied in detail. Finally, the initiation site of the
fracture is located and compared with a prediction from a simulation based on a
viscoplastic deformation model, and qualitative agreement is found.
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Chapter 1

Introduction

1.1 Motivation

From the engineering perspective, the resistance to fracture and fatigue is one of
the most important properties for materials, especially for those industrial materials
working under extreme environments. For example, a jet’s turbine blades are typically
working under elevated temperature over 1000◦C and enduring high stress levels. In
such an environment, materials are susceptible to cracking which imposes potential
danger to the safety of the flight. Thus for the purpose of upgrading current industrial
materials or developing new materials, designers are constantly looking for substitutes
with equivalent functionalities but better fracture resistance behaviors to elongate
service life. Two groups of factors heavily influence the service life. One is the
external environmental conditions, like gas atmosphere, temperature, stress loading
pattern and stressing frequency, which are typically not adjustable, however, the
other is the material’s intrinsic fracture mechanism, depending on various factors
like orientation distribution, grain boundary distribution, grain size distribution and
secondary particle property, which can be typically controlled and manipulated by
the designers. Thus, in order to develop a robust material with elongated service life,
the understanding of the fracture mechanism is a prerequisite.

To understand the fracture mechanism, previous practices based on theoretical
modelling and statistical inference on single crystal samples are known to be in-
sufficient to uncover all the mysteries. Theories have been established by various
authors[1, 2, 3, 4, 5, 6, 7, 8, 9] but validating experimental data is limited.

Recent advances in experimental technologies give birth to a set of new techniques
to extract important microstructure statistics. Among all the important statistics,
the crystallographic direction normal to the fracture surface1, which is defined as the
normal direction of the crystal lattice plane on the fracture surface, opens up a new
horizon for the fracture mechanism study. Considerable efforts[5, 6, 7, 8, 9, 10, 11]

1Some literature refers this as crystallographic orientation, but we reserve this term for a voxel’s
orientation.
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have been made to study the crystallographic directions normal to the fracture sur-
face on different samples for characterizing fracture surfaces as well as understanding
various aspects of the fracture mechanism. For example, Gangloff[12] studied the hy-
drogen assisted cracking of high strength alloys. Liu et al.[13] discovered that fracture
facets produced by stress corrosion cracking are large and flat and the distribution
is close to [100]. Park[14] reveals that the distributions of crystallographic normals
strongly influences the tensile properties of the weld of Magnesium alloy AZ61. [15]
studied the orientation dependent anisotropy in toughness which is primarily origi-
nated from crack bridging. Bowen[16] relates fracture toughness values for six test
orientations in a strongly textured Ti-6A1-4V bar to their crystallographic directions
normal to the fracture surface. Other areas include, though are not limited to, fatigue
crack growth[17], crack initiation site[18, 19] and tensile testing[20].

1.2 Literature Review

With such a wide range of studies relying on knowledge of the crystallographic nor-
mals, accurate experimental measurements to extract such information from fracture
surfaces is needed. In this section, we review literatures regarding current state-of-
the-art techniques to extract the crystallographic directions normal to the fracture
surface.

To obtain the crystallographic normals, two independent pieces of information are
is typically required, as Randle et al. suggested in [21],

“There are two primary and separate requirements for the experimental
measurements of facet crystallography on the fracture surface of polycrys-
talline materials

• the positional coordinate of a fracture facet in space

• the crystallographic orientation of the facet”

To obtain the above knowledge, the current state-of-the-art techniques are mainly
based on the combination of the electron backscatter diffraction (EBSD) and the
photogrammetry both using the scanning electron microscope (SEM). It is well known
that EBSD is surface technique that is designed to examine crystal orientations at
surfaces of polycrystalline materials, thus in theory the orientation information of the
fracture can be retrieved. For determination of the positional coordinate of the facets,
typically an elegant method known as the photogrammetry is widely used[22, 23, 24].
Essentially, photogrammetry takes 2D high resolution photographs from different
camera views and reconstructs accurate 3D volumetric information of the fracture
surface from those 2D images[25].

These state-of-the-art techniques are generally referred to as the SEM-based tech-
nique, because they rely heavily on SEM. Depending on the way EBSD measurement
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is performed, they can be further categorized into two sub-groups, one is known as
the direct approach and the other is known as the indirect approach. These two
variants differ from each other in terms of the measurement of orientations on the
fracture surface. However, the invention of one was originally intended to overcome
the drawbacks of the other but both face to challenges, as we describe in the following
paragraphs.

Direct Approach

The direct approach performs normal EBSD measurements directly on top of the
fracture surface. Though it sounds straightforward, it suffers from serious errors in
terms of the determination of the orientation, as stated by[26]

“The exact crystallographic orientation of each cleavage facet deviates
within a finite azimuthal range from the sample normal direction, which
was not restricted to 5◦ as in the case of the investigation by Field (1997)[27]”

The error bar, as large as 5◦ in one component of the Euler angle as mentioned above,
is inherent with the way EBSD is performed in this approach, while comparing with
the typical EBSD measurement, where the orientation information is indexed from the
electron backscatter diffraction pattern (EBSP), the typical error is around 1◦. The
five-fold error increase in the direct approach comes from the experimental scheme
developed by Field[27] based on the following observation. The direct measurement of
EBSD at the optimal angle provides a good EBSP, with a apparent intensity gradient
between the background image and the correct image. However, at 1◦, 2◦ and 3◦ and
4◦ deviations of the SEM header from the optimal position, this intensity gradient
deteriorates but is still observable but at a 5◦ difference, the gradient overwhelms any
diffraction patterns, and this is where the 5◦ error bar comes from experimentally.
The deterioration of EBSP at off-optimal angle probably results from uneven surfaces
while a typical EBSD measurement requires a polished sample surface to work on
while this direct approach does not have such luxury, otherwise it needs to destroy
the sample. So with unknown topology of the fracture surface, it is quite possible
that the EBSPs can be distorted within that 5◦ range.

Besides the 5◦ error bar approach, the direct problem also suffers another problem
which requires intensive experimentation. As mentioned above, the SEM head must
be placed at the optimal angle, typically around 70◦, to create good EBSP features.
However, considering the range of local normal orientations, it is not straightforward
to do the correct placing quickly, which leads to a possible exhaustive search that is
usually not doable. A typical workaround is proposed and implemented in Davies’
paper[26], where an electron beam with a fixed angle is chosen and scans over the
whole surface. Local regions not in the right angle are ignored while EBSPs in the
right angle are recorded and analyzed. Using this approach, Davies collects the data
for only 95 facets, which is possibly not a statistically significant data set for one to
draw any conclusion.
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A further problem with this approach is that it requires the region of interest
to be larger than the size of the electron beam, otherwise this approach would give
some averaged orientation across different grains under electron beam or producing
contradicting EBSPs which confuses the indexing software during the reconstruction
process.

Indirect Approach

In observing the drawbacks of the direct approach, especially the problem of the
orientation error bar being as large as 5◦, an indirect approach has been developed[28].
Unlike the direct measurement of the orientation on top of the fracture surface, the
indirect approach measures the orientations on two polished surfaces perpendicular
to each other. These two surfaces are usually vertical to the fracture surface under
investigation and are polished by focused ion milling (FIB). Since the two surfaces
are polished, the EBSPs are apparent and the normal EBSD measurement can be
applied with high accuracy. The design of two surfaces instead of one is to remove
the ambiguity because one surface would lead to ambiguous orientations which differ
by a rotation around the normal of the polished surface. Nonetheless, with the extra
surface, this degree of freedom is removed so the orientation on the fracture surface
can be uniquely determined. Though this indirect approach solves the problem of
inaccurate determination of the orientations of the direct approach, two new problems
emerge. First, it is a destructive technique, because creating the two polished surface
requires the destructively removing the materials using FIB, which means after the
measurement, the sample is gone, and no further characterization is possible. The
second and more serious problem is that this approach assumes the orientation on
the fracture surface shares the same orientation as the two polished surfaces, which
actually may or may not be true. The worst scenario is that the grain on the fracture
surface is small compared to the spatial resolution available with EBSD and the
measurements on the two polished surfaces actually measure the orientations of two
totally different grains. Therefore, the indirect approach is usually applied to large
grained materials.[26].

Conclusion Drawn from the SEM-based techniques

As mentioned earlier, the study of the distribution of the crystallographic directions
normal to the fracture surface provides insights in understanding the fracture mech-
anism. Considerable efforts[19, 25, 26, 27] have been made to study the cause of the
deformation by using the SEM-based techniques. Among all materials, Nickel-base
superalloys have gained much interest[29, 30, 31, 32, 33, 34] due to it exceptional
mechanical and chemical properties. Particularly, Miao[35] studies the fatigue crack
initiation and propagation of Rene88DT at 593◦C by a combination of serial section-
ing orientation imaging and quantitative fractographic analysis and the statistics of
20 large facets show that the crystal planes are of {111} type. And it is generally
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believed that the deformation mode for Nickel-based superalloys is mostly associated
with dislocations resulted from the {111} slip plane, however, a few exceptions like
crack propagation along {001} are also observed[32, 33, 34].

Furthermore, due to the considerable experimental effort required by these SEM-
based techniques, researchers are limited to study only crystallographic normals of
facets (a microscopically large area for a fracture surface) while ignoring other poten-
tially important areas. Typically, a study of tens of facets is quite common but not
statistically significant in a strict sense.

Summary of Literature Review

Up to this point, we have seen the advantages and disadvantages of both approaches
of SEM-based techniques. The disadvantages, especially, reveal the two distinctive as-
pects of the EBSD measurement. One is being a non-destructive technique while the
other needs a polished surface. These two aspects are in conflict with each other and
a single EBSD measurement cannot provide both simultaneously. This is reflected in
the extreme choices of the two approaches’ EBSD measurements. The direct approach
keeps being a non-destructive method but ignores the requirement of a polished sur-
face while the indirect surface keeps the requirement of a polished surface but has to
be destructive. However, reconciling and unifying these two approaches is intrinsically
impossible, thus we need a new technique to replace EBSD.

1.3 Objective

Now we know that the current state-of-the-art techniques fail to provide accurate
measurements or impose restrictive requirements on the samples. Thus, a new tech-
nique with the capability of precisely measuring the crystallographic normals and the
surface orientation is demanded.

With the advent of the third generation of synchrotron x-ray sources, a unique x-
ray diffraction technique known as High Energy X-ray Diffraction Microscopy (HEDM)
developed by Prof. Robert Suter’s group in collaboration with Ulrich Lienert at the
APS [36] and has been improved progressively with combined efforts [37, 38, 39, 40,
41, 42, 43] ever since. Designed to supersede EBSD, HEDM bears strengths in var-
ious aspects, like the high orientation resolution and more importantly the ability
of interrogating orientations in a non-destructive fashion, which provides unprece-
dented perspectives to the new physical world. For example the observations of time
evolution during grain growth [40] and stress process [42].

Furthermore, HEDM is an ideal candidate to extract crystallographic directions
normal to the fracture surface because its greatest strength is being a non-destructive
technique. Besides, it does not require a polished surface as EBSD does. Thus the
two conflicting aspects of EBSD measurements dissolves are immediately removed.
Additionally, HEDM has an orientation resolution of around 0.1◦ which is a big
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advantage compared with the normal EBSD measurement, let alone the 5◦ error bar
of the direct approach.

The main objective of this research is to develop a new technique to extract crys-
tallographic characterization at the fracture surface. This new technique combines
HEDM which performs orientation measurements non-destructively on a fracture sur-
face, with high energy x-ray tomography to extract the 3D geometry of the fracture
surface. The combination of these two experimental methods, together with further
data analysis techniques, like volumetric registration and local normal estimation,
allows us to create a new technique with much better accuracy than the SEM-based
techniques, as will be illustrated in later chapters.

The second objective is to apply our new technique to investigate a particular frac-
ture surface of interest. Not only the explanation of our new technique is furnished by
the concrete experimental data, but also the crystallographic directions normal to the
fracture surface is obtained as an output, and the distribution of the crystallographic
normals is further analyzed to enrich our understanding of the fracture mechanism.

1.4 Outline

The rest of this thesis is organized as follows. Chapter 2 discusses the general pro-
cesses of HEDM measurement regarding the experiment setup and the reconstruc-
tion procedure. Chapter 3 presents the specific experimental measurements of our
new technique, where the general procedure is illustrated together with a measure-
ment of a nickel superalloy sample and a quick data analysis is performed on the
reconstructed volumes with some immediate results. Chapter 4 develops a robust
registration framework for our technique, the main object of which is to align and
merge HEDM and tomography volumes for later investigation and the goodness of
registration is characterized and quantified. Chapter 5 presents the distinctive way
that crystallographic normals to the fracture surface is extracted by using Principle
Component Analysis (PCA) to estimate the local normal field and the distribution
of the crystallographic directions normal to the fracture surface is studied to infer
interesting results with respect to the fracture mechanism of the particular fracture
surface of interest. Chapter 6 studies the fracture mechanism regarding the crack
initiation by performing a deformation simulation on the aligned volume to predict
the initiation site and compare the prediction with the experimentally determined
location of the initiation site. Chapter 7 summarizes current research and proposes
future directions, where the proposal using far field HEDM is emphasized.
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Chapter 2

High Energy X-ray Diffraction
Microscopy

HEDM is a unique synchrotron based technique, implemented at the beamline 1-ID at
the APS in Argonne National Lab. The advent of the third generation of synchrotron
x-ray sources, which facilitates the generation of high energy, high brilliance and
monochromatic x-ray radiation, opens a bright door to the development of HEDM,
as well as other synchrotron based techniques, like 3D X-Ray Diffraction Microscopy
(3DXRD)[44, 45, 46] and Diffraction Contrast Tomography (DCT)[47, 48]. Among
all these synchrotron based techniques, one unique feature of HEDM is the ability to
probe defected polycrystalline materials so that direct measurements can be made on
fatigued states. This unique technique provides unprecedented views in the studies of
grain growth[40] evolution and plastic deformation processes[42], as well as bringing
up the new technique to study the crystallographic directions normal to the fracture
surface as we present in this thesis.

This chapter is going to cover the theoretical, experimental and reconstruction
aspects of HEDM. We first present the motivation to develop such technique. Then
we review some key theoretical results from the scattering physics, where we start
with the scattering model in quantum mechanics under Born approximation and then
discuss the scattering in the particular lattice context for both well-ordered samples
and deformed samples. Equipped with theoretical knowledge of x-ray diffraction from
a lattice, we then discuss the detailed implementation of the experimental setup at the
APS. Afterwards, the general reconstruction procedure, how the diffraction images
are reconstructed into the orientation maps using the forward modeling method, is
explained.

2.1 Motivation

Throughout human history, people have been looking for new materials with new
functionalities to make tools, such as a flint axe in the Stone Age, a sword in the
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Bronze Age, a porcelain bowl in the Middle Ages, an aluminum bottle in the early
modern period and an airplane in the last century. Although all these tools are
essentially building blocks of our civilization, the discovery of such materials with
new properties in the old days is typically a trial-and-error process. Not until the
advent of solid state physics, did people start to gain new insights in making new
materials guided by the knowledge of the material properties from the atomic level.
But the theoretical study of solid state physics often assumes a perfect material, i.e.
a single crystal. However, in reality, most materials in nature are polycrystalline, i.e.
contain many single crystal grains. And people soon realized that the overall material
properties for one sample is not just a simple summation of material property of each
grain, but depends on the distributions of microstructures, like grain size, orientation
and grain boundary. Thus for better understanding of the material properties and to
make more sophisticated material, a 3D technique to map microstructures is badly
needed.

Electron Backscatter Diffraction (EBSD) is a predecessor microstructure charac-
terization technique which was invented around fifty years ago and was developed into
an automated tool at Carnegie Mellon University (CMU). A typical measurement in-
volves using a Scanning Electron Microscope (SEM) to generate Electron Backscatter
Diffraction Patterns (EBSPs) and using an EBSD detector to record such diffraction
pattern. Then crystallographic orientations are extracted by indexing and matching.
One limitation of EBSD is because of the electron’s small penetration depth on the
order of 10 ∼ 100nm, which makes EBSD essentially a surface technique. Thus, in
order to obtain the 3D microstructure information, ion milling must be performed to
remove the surface that has been measured, to expose the underlying surface to be
measured. So EBSD is forced to be a destructive technique which forbids the studies
of time evolution mechanisms, like grain growth and strain response. And another
drawback is that the sample must be polished to make the surface flat enough for
observation, thus it causes some problems for studying the crystallographic directions
normal to the fracture surface, as we will discuss later.

With the advent of the third generation of synchrotron radiation sources, HEDM
was invented and implemented to overcome almost all EBSD’s drawbacks. The in-
troduction of high energy x-rays, which can easily penetrate samples of millimeters
size for nearly all materials across the periodic table , makes HEDM a unique non-
destructive technique, as well as other features like high orientation which will be
discussed later. However, typical EBSD has spatial resolution in the submicron scale,
which is better than the one of current HEDM. The spatial resolution of HEDM is
limited mainly by the pixel size of the detector, which can be improved with the
advancement of the semiconductor technology in building the detector.

8



2.2 Review of Scattering Physics

Scattering physics is the theoretical cornerstone of HEDM technique, and it explains
some interesting phenomena during the HEDM experiment. So in this section we
review the scattering physics, starting with the simple scattering model in quantum
mechanics, followed by Born approximation and application to the diffraction from
crystals model, which mimics the experiment for HEDM.

2.2.1 Scattering model in quantum mechanics

Let us consider an incoming X-ray wave function |φ〉, interacts with scatters at posi-
tion x′ of potential V , and then the scattered wave function is denoted as |ψ〉. It can
be shown that the relation between incoming wave function |φ〉 and scattered wave
function |ψ〉 is (similar to Equation 7.1.19 in J.J. Sakurai[49])

〈x |ψ〉 = 〈x |φ〉 − 1

~

∫
e±ik|x−x

′|

4π|x− x′|
〈x′ |V |ψ〉 d3x′ (2.1)

where x denotes the location of observation, x′ denotes the location of scatterer, k is
the amplitude of the wave vector of the incoming wave function. Equation 2.1 says
the scattered wave function 〈x |ψ〉 is related to the incoming wave function 〈x |φ〉
with a correction term which accounts for the interaction of the between scattered
wave function with the scatterer.

2.2.2 Born approximation

Note Equation 2.1 is hard to solve because scattered wave function |ψ〉 appears on
both ends of the equation and further complicated by the interaction term with V .
Here we introduce a simplification known as the Born approximation, which assumes
the effect of the scatterer is weak. That is there is not much difference between
incoming wave function |φ〉 and |ψ〉, so it is plausible to replace 〈x′ |ψ〉 by 〈x′ |φ〉

〈x′ |ψ〉 ≈ 〈x′ |φ〉 =
eik·x

′

(2π)3/2
(2.2)

where k denotes the wave vector for the incoming wave function. And further assume
the observation point is very far, i.e. r is large, then Equation 2.1 can be rewritten
as

〈x |ψ〉 =
1

(2π)3/2

[
eik·x − eikr

r

1

4π

1

~

∫
ei(k−k

′)·x′
V (x′)d3x′

]
(2.3)

The first term in the square bracket is the incoming wave function, as expected in
the weak interaction, while the second term is the scattered wave function, where
the exponent term (k − k′) · x′ can be recognized as the phase difference between
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the scatter at x′ and the origin O. Besides the constants and the eikr/r term in the
second term, the most interesting term is the scattering amplitude, which is defined
as follows

A(∆k) ≡
∫
ei∆k·x′

V (x′)d3x′ (2.4)

where ∆k = k− k′ and it says that the scattering amplitude is just a Fourier trans-
formation of the potential distribution of the scatterers.

2.2.3 Diffraction condition for a lattice

For a perfect lattice, translational invariance is preserved for an arbitrary linear combi-
nation of translations along the crystal axes, a1, a2 and a3 for any discrete increments
u1, u2 and u3

V (x′ + T ) = V (x′)

where T = u1a1 +u2a2 +u3a3. It is well known that V (x′) can be Fourier transformed
into reciprocal lattice space as

V (x′) =
1

(2π)3

∫
e−iG·x

′
V (G)d3G (2.5)

where G is the reciprocal lattice vector. Now within the context of a perfect lattice,
Equation 2.4 can be rewritten as

A(∆k) =

∫
ei(∆k−G)·x′V (G)d3x′d3G

If we assume all atoms in this lattice is identical, V (G) is a constant and the scattering
amplitude is nonzero when the diffraction condition satisfies the following criterion

∆k = G (2.6)

This result can easily be extended to obtain the Bragg Law and Laue Equation.

2.2.4 Form factor and structure factor

A perfect lattice can be divided into basis cells and each basis cell shares the same
atom configuration. Thus any atom at location x′ can be represented as the n-th
atom in the m-th basis cell

x′ = Rm + rn (2.7)

where Rm denotes the location of m-th basis cell as the center of mass position, and
rn denotes the location of the n-th atom in a basis cell. We assume each atom in the

10



lattice as a delta function in potential, so the integration becomes two summations
with respect to m and n in Equation 2.4, which can be rewritten as

A(∆k) =
∑
m

ei∆kRm
∑
n

ei∆k·rnfj(G)

≡ S(∆k)F (∆k)

(2.8)

where the first term S(∆k) is known as the structure factor which is the summation
of exp(i∆k ·Rm) over all lattice basis cells, while the second term F (∆k) is known
as the form factor which is the summation over all atoms inside basis cell. fj is the
coefficient of form factor for j-th atom, which is essentially the Fourier transformation
of electron density over j-th atom.

2.2.5 Diffraction on deformed material

This section is expanded on Prof. Robert Suter’s note [50] and the interested reader
is referred to [51, 52] for further information. Let us start with revisiting Equation
2.4. An interesting observation is that the exponent term ∆k · x′ is only determined
by the component parallel to ∆k. Thus, if we separate the variable x′ into x′⊥ and
x′‖, Equation 2.4 can be rewritten as

A(∆k) ∝ a⊥

∫
L‖

dx′‖ρ̄(x′‖)e
ikx′‖ (2.9)

where ρ̄ is the laterally averaged density over planes perpendicular to ∆k while L‖
and a⊥ are dimensions of the coherence volume. As Prof. Robert Suter mentioned
in the note[50], the function ρ̄ will contain periodic delta functions only in a perfect
crystal at absolute zero temperature, while from thermal vibrations in crystals, one

gets the Deby-Waller factor ∼ e−
1
3〈u2〉k2 , where 〈u2〉 is the mean square deviation from

the lattice position and this Deby-Waller factor directly influences the intensities of
the peaks. In the case of deformation, the intensity of the diffraction is further
attenuated by the worsening of the atomic displacements farther from the periodic
delta functions, which acts like an increased Deby-Waller factor and the smoother ρ̄
yields diffuse scattering as well as reducing the high order Fourier components.

Besides intensity drop, other observations, like peak shift and peak broadening,
often occur in x-ray diffraction experiments. Peak shift is typically caused by the
lattice spacing (d-spacing) variations due to sample deformation. Due to the Bragg
law 2d sin θ = nλ, any change in d would lead to a variation in θ which is usually
observed as the diffraction peak being shifted. Another possible reason for peak
shifts is stacking faults, which describes the probability of faulted slip planes that are
introduced during the deformation process. This effect was first report by Warren
[53, 54], and later has been studied in various works[55, 56, 57, 58].
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As for peak broadening, it can be attributed to many different reasons, like ex-
istence of lattice defects[59], dislocations[60, 61], stacking faults[54] and twinning[62,
63]. Due to this wide range of possibilities, the modelling of x-ray diffraction peaks un-
der deformation is generally difficult to account for all effects, however, on the bright
side, the experimental broadening peaks due to deformation, do contain valuable in-
formation regarding crystallite size distribution[59, 60], dislocation structure[60, 61,
64, 65], local strain state[66, 67] and lattice defects[68], which are otherwise hard
to extract. The field, known as the x-ray peak profile analysis, has been an active
researching field[59, 69, 70, 71, 72] in studying such peak broadening to extract useful
information.

2.3 Experiment Setup

With the understanding of physics of the x-ray diffraction on a single crystal, we
are now ready to present the experiment setup of HEDM. The essence is to apply
x-ray diffraction on multiple grains simultaneously to infer the orientation, so the
experiment setup bears resemblance to other x-ray diffraction based techniques, like
Small-angle X-ray scattering (SAXS) and Wide-angle X-ray scattering (WAXS), but
a distinctive difference in that HEDM uses a near field detector while both SAXS and
WAXS use a far field detector.

Nonetheless, the idea of using far field detectors for HEDM has been formulated
and effort has been made to build a dedicated experimental setup in Hutch C and E of
the beamline 1-ID at the APS. In this sense, HEDM is further categorized as ff-HEDM
for far field HEDM and nf-HEDM for near field HEDM. However, the experiments
performed in this thesis are completely in the near field context. So every occurrence
of HEDM in this thesis refers to near field HEDM unless otherwise specified.

The structure of this section is designed as follows. First an overview is discussed
briefly to describe the big picture of the experimental setup, and then detailed infor-
mation on each small component is presented. The order of each component is based
on its position on the beamline, starting from upstream and progressing downstream.

2.3.1 Overview of Experiment Setup

Fig. 2.1 shows the schematic plot of the experimental setup for the HEDM mea-
surement. A incident x-ray beam, typically plane focused to 1.3mm wide and a few
microns high, illuminates a polycrystalline sample. Any grain, which satisfies the
Bragg condition, diffracts the incident beam with certain 2θ angle. A charge-coupled
device (CCD) camera is placed downstream, recording the locations and shapes of
diffracted beams on the camera for all diffracting grains (schematically only one peak
is shown here). This measurement is performed two or three times with the camera
moving downstream to different xd positions, namely L1, L2 and L3. This potentially
allows for the determination of the scatter vectors and back-tracking the origins of
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Figure 2.1: Schematic plot of experimental setup for HEDM measurement. A incident
beam (in red), typically plane focused and illuminates the sample (in green). A grain
(in black), which satisfies the Bragg condition, diffracts the incident beam with certain
2θ angle. A CCD camera is placed downstream to record the diffraction image. This
image recording is repeated for different sample rotation ω and different xd positions,
namely L1, L2 and L3.
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the diffracting grains. For reconstruction algorithm, this places constraints on the
possible simulated x-rays and provide the spatially resolved orientations. Also the
sample is rotated to allow more grains being able to diffract x-ray beam so that its
orientation information can be extracted from the diffraction images.

2.3.2 X-ray Beam

The reason that HEDM is performed at the APS is that HEDM has very special
needs for the x-ray beam with the following characteristics

• High energy

• High brilliance

• Monochromatic

High energy is needed to allow the incident x-ray beam to penetrate the sample.
Otherwise small penetration depth would not allow grains from locations inside the
sample to be able to diffract the x-ray beam and be observed on the detector.

Brilliance is defined as the number of photons per second passing through a radial
cross-sectional area for a certain energy. High brilliance is preferred since the x-
ray diffraction is usually a small effect, because roughly on the order of 0.1% of the
incident photons finally participates in the diffraction process, leaving the majority of
the photons passing through the sample. If high brilliance is not guaranteed, counting
time must be extended accordingly to ensure sufficient photons to be recorded for good
signal to noise ratio.

Monochromatic x-ray beam is required to ensure the perfect x-ray diffraction
since the above theoretical result on x-ray diffraction is based on the assumption of
a monochromatic x-ray beam. If the x-ray beam is not monochromatic, i.e. it has
a finite width ∆k in k space. This would result in a finite width in the θ angle, as
calculated in Dr. Daniel Hennessy[73]’s and Dr. Christopher Hefferan[74]’s theses.
Typically, the energy spread of the x-ray beam at the beamline 1-ID is about 10−3

(∆E/E = 10−3), which causes some problem studying the strain mechanism inside
the sample, because the strain effect is roughly on the order of 10−4. With the use of a
second high energy resolution monochromator, we are expecting to have 10−5 energy
dispersion, which should make a huge difference in strain/stress investigations.

2.3.3 Saw-tooth Lenses and Slits

After the x-rays are generated and pass through Hutch A for alignment and pre-
focusing, two saw-tooth lenses and the monochromator are used to further focus the
incoming x-ray beam in the vertical direction while leaving the size in the horizontal
direction intact, i.e. to make the beam planar. The vertical size of the incoming x-ray
beam for the measurements described here was ≈ 4µm but recent development by
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beamline staff has brought down this size below 2µm. After the saw-tooth lenses, a
set of slits made of Tungsten carbide, known as JJ slits, are further used to define
mainly the horizontal size of the focused beam. Four blades JJtop, JJbot, JJleft
and JJright can be moved by motors controlled by the computer. Usually JJleft

and JJright are adjusted to control the horizontal size while JJbot and JJtop are
closed to reduce x-ray background.

2.3.4 Sample Stage

The sample stage is the stage where the sample is located. At its bottom, three
motors control the location of its foundation, which are known as StageX, StageY
and StageZ, with ability of translation in x, y and z directions. Then an air-bearing
rotation stage preciH with ultrahigh precision rotation axis is mounted, and on top
of the rotation stage, there are three stages controlled by three motors, SampX, SampY
and SampZ. And finally on top of everything is the mounting position for the sample
holder.

Since the sample is rotated during the HEDM measurement, it is imperative to
ensure that the rotation axis is perpendicular to the beam and the rotation axis should
be fixed during the rotation, i.e. any procession is not allowed. A precise centering
scheme is developed using a ∼ 30µm gold wire as a calibration sample. First the
gold wire is positioned on the sample holder with only its tip visible in the beam.
Secondly, SamX is adjusted to the middle point of the locations of the tip at ω = 0
and ω = 180◦. Similarly SamZ is adjusted at ω = 90◦. Finally, StageX is adjusted to
bring the rotation axis to the center of the line-focused x-ray beam.

2.3.5 Beam Block

As mentioned earlier, the majority of the x-ray photons penetrate the sample without
interacting because of the large penetration length of the high energy x-ray beam.
Thus in the direction of the incoming x-ray beam, the intense transmitted beam
will quickly saturate a large region of the detector and will obscure the much weaker
diffraction signal of interest, as well as reduces the lifetime of the detector. To protect
the CCD camera from direct exposure to the x-ray beam, a tungsten beam block is
usually placed between the sample and the CCD camera to absorb. Sometimes, the
beam on the tungsten beam block results in some diffraction patterns on the detector.
Though the diffraction patterns usually are faint, they typically cover a lot of area
on the CCD camera, which leads to some problems in the image reduction process,
especially for those high q peaks which are relatively weak. Thus, typically, the beam
block is rotated to minimize the effect of diffraction on the CCD camera.

15



2.3.6 Imaging System

The imaging system of the HEDM measurement is composed of three components:
(a) a CCD camera with a 5X objective lens, (b) a 45◦ mirror, and (c) a scintillator
screen. The scintillation screen converts the x-ray photons to visible light photons,
so that they can be captured by the normal CCD camera. The CCD camera has an
effective pixel size of 1.47µm, after magnification by the objective lens, covers a pixel
matrix of size 2048 by 2048, and with a depth of 12-bits for each pixel, i.e. with a
dynamic range from 0 to 4095.

The CCD camera has a field of view of 3× 3 millimeters and is usually placed in
the near field region, a few millimeters from the sample. This near field configuration
of the CCD camera ensures the high order scattering of photons being captured
inside the camera’s field of view, otherwise in the far field, only low order scattering
is capture given the camera’s field of view is fixed. The high order scattering is
important in HEDM because it provides much more accurate information regarding
to the shape of the grain in diffraction, compared with the low order scattering,
where the peak shape of the grain is compressed in the vertical direction due to the
projection geometry.

Before each HEDM measurement, the camera is calibrated to be placed into an
optimal position to minimize the non-linear optical aberrations. A calibration proce-
dure, known as the raster scan[75], has been developed. A small beam spot, which
is defined by the JJslits just upstream of the sample, is imaged while the camera is
translated horizontally and vertically perpendicular to the incident beam in a raster
configuration (usually 3× 3 or 5× 5). The intensity distribution of each direct beam
spot is fitted to a pseudo-Voigt function and the average full width half maximum
(FWHM) is optimized by trying with different imaging system configuration. This
procedure can reach pretty high resolution in that the horizontal translation stage
has sub-micron precision while the vertical translation distances are measured using
a displacement gauge head. Furthermore, the effective pixel pitch of the imaging
system can be calibrated at the optimal configuration from the apparent motions of
the imaged spots..

During the HEDM measurement, the same diffraction patterns are recorded for
different sample-to-detector distances, L. Typically, the scintillator screen is placed
roughly at the 5mm position from the sample first and then moved back 2mm, i.e.
at 7mm position with the diffraction images being taken at the two positions. The
essence is to provide clues for the reconstruction algorithm to backtrack where the
originating grain is located. Otherwise with single position diffraction images, there
are infinite numbers of possible grain configurations which can produce such diffrac-
tion images.

Sometimes, a third camera position is used to take extra images as shown in Fig.
2.1. This is done solely for calibration purposes, as explained in the next section,
for example when taking calibration measurement of a well-annealed gold sample,
we usually take measurements at 5, 7 and 9mm positions to have the experimen-
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tal parameters being more accurately pin-pointed. Another scenario of taking extra
camera position is for a large volumetric scan. For a typical volumetric scan, e.g.
with 50 layers, usually two or three layers are taken in 3L-distances, with such layers
interspersed evenly in the volume, to track the experimental parameters throughout
the volumetric scan. That is because the experiment parameters may drift during a
lengthy volumetric measurement, e.g. more than 12 hours, due to some environmen-
tal variations, like temperature. Then later in the data analysis stage, the parameter
Monte Carlo procedure is performed, c.f. Section 2.4.4 on those 3L-distance layers to
re-optimize the experiment parameters, and those parameters can be interpolated to
find the right approximate experimental parameters for those layers whose measure-
ments are taken with only 2L-distances.

2.4 Reconstruction Procedure

The goal of HEDM is to reconstruct crystallographic orientations for each small vol-
ume element, known as a voxel, and to produce orientation maps similar to EBSD.
To obtain such orientation maps, after collecting the near field diffraction images in
APS, the reconstruction process is undertaken in CMU, which usually is comprised
of the following steps

1. Image reduction

2. Parameter determination

3. Orientation reconstruction

These three steps set the workflow for a typical HEDM reconstruction so we will
discuss the normal operation for each step as follows and the structure of this section
follows the order of the above three steps. Before discussing the steps, we introduce
orientation notation and its relation with sample frame and crystal frame, because it
is a key output of the reconstruction algorithm.

2.4.1 Orientation, sample frame and crystal frame

Before giving a formal definition of orientation in this section, we start off with the
brief definitions of sample and crystal reference frames

• Crystal frame is defined as the coordinate system describing the microscopic
atomic arrangement locally inside a crystalline grain of some material. The x, y
and z-axes are typically the conventional basis vectors of the crystal structure, as
defined in standard undergraduate solid state physics textbooks, like Kittel[51].

• Sample frame is defined as a coordinate system fixed to the macroscopic sample.
The x, y and z-axes are typically the direction of the sample’s length, width

17



and height. Our convention of the sample frame coincides with the lab frame
(define later) at ω = 0◦. That is at ω = 0◦, the x-axis follows the direction
of the incident beam, y-axis points to the left of the incident beam while the
z-axis points upward, as illustrated in Fig. 2.1.

The key distinction here is that the crystal frame is totally different from the sample
frame and our goal of the HEDM measurement is to relate local crystal orientations
in the voxels to the sample reference frame since our samples are polycrystalline.

Knowing the fact that the crystal frame of one grain is different from the crystal
frame of another grain, it is interesting to find a quantity to characterize the local
crystal frame. Since all grains inside the same sample share the same sample frame,
we can build each crystal frame by transforming the sample frame and essentially this
is how the orientation motivated. It serves as the transformation which bridges the
sample frame to the crystal frame

Rzxz(α, β, γ)vs = vc (2.10)

The above equation says that for any vector v, which can be represented as vs in sam-
ple frame and as vc in crystal frame, are connected by the orientation transformation
Rzxz(α, β, γ), which is represented in the Euler angle representation.

Euler angle is one particular representation of the rotation transformation. Besides
Euler angle, other forms include axis/angle, rotation matrix and quaternion. And
throughout this thesis, the Euler angle uses the x-z-x convention as illustrated in the
subscript of the rotation transformation R in Equation 2.10. This means to coincide
the sample frame to the crystal frame, a first rotation around z-axis is followed by a
rotation around x-axis followed by another rotation z-axis.

2.4.2 Image Reduction

To reconstruct the orientation in each voxel, we will perform the forward modelling
method[36] to simulate peaks and compare them with experimental peaks. Thus
properly identifying peaks is a prerequisite for the success of the orientation recon-
struction.

Previous image reduction algorithm[73] uses the following steps

1. Hot pixels, which result from stray x-rays possibly diffracted from some exper-
imental instruments, are removed by a median filter, because they are usually
composed of a couple of pixels with very high intensity.

2. A background image for the 180◦ scan is computed by averaging over all images
in this scan, and each image subtracts this average images to remove the back-
ground which is static across all the diffraction images, e.g. diffraction pattern
from the beam block, some defects on the CCD camera or on the scintillator
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3. An intensity threshold, specified by the user, is further subtracted from each
pixel. Essentially, the intensity below that threshold is considered as back-
ground while intensity above that threshold is considered as valid pixel for an
experimental peak.

4. For all the valid pixels considered as components of experimental peaks, a graph
algorithm to find the connected components is performed to group all valid
pixels which are neighboring to each other, into experimental peaks.

5. For each identified peak, thresholding is performed by removing low intensity
pixels within the peak. The low intensity is defined from the maximal intensity
of the peak by a thresholding factor defined by the user. This post-processing
is designed to alleviate the bias from the above steps, because the above back-
ground subtraction step uses a threshold value, which keeps more pixels in a
high intensity peak instead of a low intensity peak.

This approach works perfectly with well-ordered samples. However, for deformed
samples, Dr. Jonathan Lind[76] found that weak peaks neighboring high intensity
peaks are frequently removed in the peak thresholding step thus fails to be considered
as a candidate peak before the connected component step. This exclusion causes a
big problem for forward modeling method because forward modelling suffers greatly
if a true peak fails to be considered as a peak but it tolerates the error if a region
of background is considered as a peak[43]. With this observation, Dr. Jonathan
Lind improved the above reduction algorithm with a introduction of the Laplacian
of Gaussian edge detection to replace the simple thresholding described above. This
new reduction algorithm is studied in great detail[76] and it is shown that it provides
a considerably more robust and accurate reconstructions result.

2.4.3 Forward Modelling Simulation

The kernel of the orientation reconstruction is the forward modelling method, which
simulates the peaks given the experimental parameters and any candidate orientation
and then the forward modelling simulation computes the locations of all simulated
x-rays on the detectors as well as the ω intervals for all the peaks. Given the finite
size of the detector, not all peaks need to be simulated – only scatterings up to a
user-defined threshold Qmax are simulated

√
h2 + k2 + l2 ≤ Qmax

where h, k, l ∈ N. As the list of all the candidate (h, k, l) tuples can be generated,
we can simulate peaks from each (h, k, l) based on the diffraction condition as shown
in Equation 2.6, which says the momentum transfer ∆k equals a reciprocal lattice
vector G. And in the following two paragraphs we will show how these two quantities
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can be parametrized by unknowns like ω interval of the simulate peak, which will be
eventually determined after equating these two quantities.

For ∆k, since (h, k, l) is known, the angle θ between the incident beam direction
ki and the diffraction beam direction kf can be determined easily by the Bragg’s law.
Furthermore ki = (1, 0, 0) by definition, all possible values of kf form a cone with an
angle of 2θ from ki, thus we can introduce a value η to parametrize the location of kf ,
where η is defined as the angle tilted from the z-axis as illustrated in Fig 2.1. Under
this parametrization of kf , the momentum transfer ∆k = kf −ki can be retrieved in
terms of the η.

For G, since we know the vector representation in the crystal frame, which is
Ghkl, it is easy to compute the vector representation in the sample frame by the
given orientation. A further step is needed to rotate the vector in the sample frame
by an angle of ω, where ω is to be determined. Essentially G is parametrized in terms
of ω.

Finally, the two vectors ∆k and G are equated and the parameters η and ω are
solved. I am summarizing the key steps of the calculation as follows, where the step
2 is for the computation of ∆k while step 3 is for the computation of G

1. Compute all the scatterings up to a threshold Qmax which are denoted as Ghkl

2. Compute θ angle for each (h, k, l) by Bragg’s law, parametrize kf with η and
represent momentum transfer ∆k by kf

3. Transform Ghkl from the crystal frame to the sample frame using the orientation
Rzxz(α, β, γ) by Equation 2.10, then rotated by ω to the lab frame, where ω to
be determined.

4. Equate ∆k and G to solve for ω and η.

Pictorially, all the possible values of G for different ω form a right circular cone with
the axis in the positive z-axis, while all the possible values of ∆k form another right
circular cone with axis in the x-axis. Thus there are two solutions for ω and η if the
cones intersect but no solution at all if the two cones do not intersect.

2.4.4 Experimental Geometry Determination

Experimental parameter determination is another prerequisite for any method. The
forward modeling method needs such parameters to simulate the whole experimental
setup and generate the diffraction peaks. The parameters to be determined are the
following

• Beam center (j0, k0), which is the projection of the intersection of the rotation
axis and the incident x-ray beam onto the detector, along the beam propagation
direction at each L-distance
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Figure 2.2: Schematic plot of forward modeling method at certain L-distance of xd =
L. The sample space is subdivided into triangular grid and two voxels (in blue) with
candidate orientation generates two scattering with wave vectors (in green) denoted
as v1 and v2 respectively and illuminates the CCD camera with two distinctive peaks
(in red).

• The rotation axis-to-detector distances, Lis

• Camera orientation, for the camera may be tilted or rotated a little bit relative
to the ideal, perpendicular orientation

For each L-distance, the detector has six parameters to be determined (two for beam
center, one for camera location, three for camera orientation), and for a typical 2L-
distance HEDM measurement, the total number of parameters is 12 and 18 for 3L-
distance HEDM measurement. Even for the 12-dimensional parameter space, the
curse of high dimensionality prevails. To solves this problem, a Monte Carlo scheme
was developed by Prof. Robert Suter[36], which fits a small number of voxels while
perturbing experimental parameters using a Monte Carlo scheme based on a particular
measure of goodness-of-fit, which will be presented in the next section. The original
Monte Carlo method has been substantially improved by S.F. Li[43, 77].

2.4.5 Orientation Reconstruction

After all the peaks are identified and accurate experimental parameters are obtained,
the forward modeling algorithm can be performed to reconstruct the orientation field.
Fig. 2.2 shows the schematic of the forward modeling method.

First the sample space is subdivided into equilateral small triangles (voxels). Fig.
2.2 illustrates a typical sample space in a black sample grid of a hexagonal shape,
however, the sample space could be any shape as the user desires.
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Our goal here is to find the orientation for each voxel, which is one particular
orientation of the whole orientation space SO(3). This whole SO(3) space has re-
dundant regions due to the crystal symmetry, e.g. cubic symmetry and hexagonal
symmetry, so it can further be reduced to a unique subspace, known as the fundamen-
tal zone. To find the right orientation within the fundamental zone, we must design
a measure of “goodness-of-fit” for any orientation. Ideally this measure compares
the experimental diffraction images with the simulated diffraction image of the given
orientation based on the retrieved experimental parameters. One particular measure
is called confidence, which is defined as the ratio of the number of overlapping peaks
to the number of qualified peaks, where an overlapping peak is a simulated peak that
overlaps with an experimental peak while a qualified peak is a peak that intersects
multiple detectors.

Given the definition of confidence, in theory, we could identify the right orien-
tation in the fundamental zone which has the best confidence score. However, the
fundamental zone is a continuous orientation space, thus for scientific computation,
an algorithm is developed to uniformly grid the fundamental zone space to generate a
list of candidate orientation at any given resolution. Nonetheless, it is still impractical
to perform an exhaustive search at the measurement resolution since the candidate
list is too long to work with. To solve this problem, S.F. Li[43, 77] devised the Strat-
ified Monte Carlo Pruning, where only the lower order scatterings are compared at
early stages using the coarse gridding of the fundamental zone to identify the possi-
ble subregions where the right orientation may reside, and then at later stages such
candidate subregions are further refined and higher order peaks are compared until
a convergence criterion is reached, finally a local Monte Carlo optimization on the
orientation is performed to alleviate the effect of orientation griding.
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Chapter 3

Experimental Methods

The goal of this chapter is to present the detailed experimental methods for a new
technique, which extracts the crystallographic information at the surface. This new
technique is supposed to replace the current state-of-the-art techniques using EBSD
and photogrammetry, which will be discussed in detail in Chapter 5. In this chapter,
we focus on the experimental methods which is a combination of HEDM and x-ray
tomography. Though the general approach of HEDM measurement is explained in the
preceding chapter, we discuss the specific experimental settings for our measurement
and the x-ray tomography measurement will be elucidated as well.

The structure of this chapter is following. First the material of the sample and
the sample preparation procedures are presented. Then the experimental setups for
HEDM and x-ray tomography measurements are presented, followed by the discussion
about the data acquisition processes. Finally, the reconstruction of both measure-
ments are discussed, and some analysis results will be presented.

3.1 Sample Preparation

3.1.1 Material

The material of the sample in our experiment is Rene88DT[78], which is one member
of the family of nickel-based superalloys. The nickel-based superalloys are widely used
in aerospace industry to fabricate the hottest components, for example the turbine
blades inside a jet engine, because of their exceptional mechanical and chemical prop-
erties at high temperature[79]. Due to its wide application in the aerospace industry
as well as other industries, enormous effort has been made to study its microstructure
for further improvement of material properties for such applications.

The sample was prepared in GE Global Research, where a bulk of Rene88DT sample
of a cylindrical shape with a diameter around 6mm was used as a starting point of a
series of sample preparation procedures, as illustrated in Fig. 3.1(a).
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3.1.2 Cyclic Loading

Cyclic loading is the process of applying repeated or fluctuating stress to a sample
to fatigue or fracture the sample in a similar way as the sample would have been
fractured in its working environment. Cyclic loading has been widely used to study
the fatigue analysis to study sample’s material properties under stress.

In our example, the bulk sample as mentioned above was fatigued at 399◦C be-
tween 0 and 0.65% strain using a triangular waveform at 30 cycles per minute. Failure
occurred after 96, 101 cycles. During the cyclic loading, an experimental procedure,
known as the plastic replica method, is performed to identify the location where the
crack initiates, which will be discussed in Chapter 6.

3.1.3 Mechanical Cutting

As mentioned in previous chapter, the experimental setup of HEDM requires that
the whole layer of the sample is always inside the x-ray beam throughout the mea-
surement, which puts a hard constraint on the size of the sample by the size of the
beam and the penetration depth of the x-rays. In the Hutch B at the 1-ID beamline
at the APS where these measurements were performed, the line focused x-ray beam
width is around 1.3mm. The two fracture pieces after the cyclic loading, being of
dimension 6mm, are too large to be put into the beam. Thus an electrical discharge
machining (EDM) procedure is performed to extract a cylindrical pin of diameter
around 1mm for each fractured piece to be allowed in the beam, as illustrated in Fig.
3.1(b). The locations of the pins are specifically chosen to include the initiation site
found previously via the plastic replica method. The two extracted pins are denoted
as S1 and S2, respectively, for later references.

3.2 Tomography and HEDM Measurement at the

APS

After the sample preparation, the two pins S1 and S2 were measured in two sepa-
rate beam runs at the beamline 1-ID at the APS. As is usual in HEDM work, data
collection for these samples was a group effort. The first beam run, which took place
in February, 2011, included Dr. Christopher Hefferan, Dr. Jonathan Lind and Dr.
S.F. Li. The second beam run, which took place in November, 2013, included Dr.
Christopher Hefferan, Dr. Jonathan Lind, Dr. Reeju Pokharel and me. Since the
experimental setup for both beam runs are identical, in this section, we will describe
this experimental setup.
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(a) The Starting Bulk Rene88DT (b) Pins Extracted by EDM

(c) Pins Separation (d) HEDM Measurement for One Pin

Figure 3.1: Schematic diagram showing the workflow of the sample preparation and
measure procedures.(a) The starting material is a bulk Rene88DT sample of diameter
∼ 6mm. Cyclic loading is applied and the sample is fractured in the middle, as
illustrated in black line.(b) Mechanical cutting is performed to extract two pins from
the resulting two samples covering the initiation site. These two pins are of cylindrical
shape with 1mm in diameter, and are later referred as S0 and S1. (c) The two pins
S0 and S1 are separately measured, with one inverted as shown. Note both fracture
surfaces are on top and this is the way that they will be put in the beam, which
results in the need for a coordinate transformation in later analysis. (d) Two pins are
put in the x-ray beam to do the HEDM measurements.
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3.2.1 HEDM measurement

Orientation maps were obtained by the HEDM measurements at the beamline 1-
ID at the APS with the following experimental setup and settings. Monochromatic
high energy x-ray beams were operated at 65.351keV and 64.351keV for S1 and
S2 respectively and planar beams with a size ∼ 1.3mm in width and ≤ 4µm in
height illuminated the two pieces. A total of 58 and 53 layers for pins S1 and S2
respectively were measured and the diffraction images were collected. For most layers,
two L-distance configuration was used, in which diffraction images were taken at two
detector locations. A couple of layers were measured interspersed in the whole volume
under the three L-distance configuration (4.764mm, 6.764mm and 8.764mm for S1
and 5.799mm, 7.799mm and 9.797mm for S2), which served the purpose to calibrate
and interpolate the experimental parameters for the parameter Monte Carlo. Layers
#7 and #18 in the pin S1 and layers #19 and #39 in the pin S2 were measured in the
three L-distance configuration. For each L-distance, a scan was performed covering a
sample rotation range of 180◦ with images being integrated over δω = 1◦ intervals to
allow diffractions of various grains to be spotted and the diffraction patterns being
captured by the CCD camera. The imaging system is composed of a 12-bit 2048×2048
CCD camera, a scintillator screen and a 5X focusing lens. The effective pixel sizes
are 1.48µm and 1.46µm for S1 and S2 respectively, determined from the raster scan.
The counting time for each image was 5 seconds and 2.2 seconds respectively, and
the deadtime between images was 1.7 seconds for mechanical motion.

3.2.2 High Energy X-ray Tomography Measurement

X-ray tomography or x-ray micro-computed tomography (µCT) is a standard mea-
surement used in medical imaging and the method of reconstructing three dimensional
images of material density or more precisely absorption length contrast is well estab-
lished.

In our experiment, the saw-tooth lenses were removed and upstream slits were
positioned so as to obtain a 1.5mm× 0.8mm beam to illuminate the sample at once.
This volumetric based scan drastically increased the efficiency of data collection,
compared with the layer-based scan of HEDM. The same imaging system was used,
where transmission images were recorded rather than diffraction images. The rotation
scheme again covers a range of 180◦ but with finer increment of 0.2◦.

The sample stage was carefully aligned to ensure the perpendicularity of the sam-
ple during rotation in the beam and the detector was calibrated to yield pixels rows
perpendicular to the rotation axis, which facilitates the later reconstruction. That
stationary features on the detector typically cause circular features in the reconstruc-
tion.
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3.3 Tomography and Orientation Reconstruction

The reconstruction of the x-ray tomography volumes and HEDM volumes are per-
formed at CMU after the data collection is done. For the reconstruction proce-
dures, the methods to reconstruct tomography volumes have been well established
and documented[80, 81] and the reconstruction procedure of HEDM information was
fully presented in 2.4. So in this section, the reconstruction procedures will be briefly
mentioned and we will focus more on characterizations of the reconstructed volumes.

3.3.1 Reconstruction of X-ray tomography volume

The procedure of the tomography reconstruction can be summarized briefly as follows.
Hot pixels are first removed using a 3× 3 median filter. The detector pixel rows with
the same height for different ω rotation are stitched together to form sinograms and
the MatlabTM routine iradon based on inverse radon transformation is utilized to
reconstruct each layer. The final material density is scaled to a 8-bit integer ranging
from 0 to 255.

Fig. 3.2 shows reconstructed material density images of several representative
layers from the top of the fracture surface to the bulk for both S1 (left column) and
S2 (right column), respectively. The color scheme is white for full material density,
i.e. 255 and black for void material density, i.e. 0. For both tomography volumes,
the material density is sparse for layers on the top of the fracture, as illustrated by
the few white regions in Fig. 3.2(a) and Fig. 3.2(b). On the other hand, Fig. 3.2(e)
and Fig. 3.2(f) shows the layers close to the bulk region where most of the region is
covered by the full material density.

One interesting feature is an almost flat edge, which is apparent in the left lower
corner of Fig. 3.2(e), and a little bit less evident in the left upper corner of Fig. 3.2(f).
This is actually the edge of the much bigger bulk sample that the mechanical cutting
has been performed and now it serves as a fiducial marker for the later registration
and alignment of the two pieces. The two different directions of the two fiducial edges
indicates the two samples are not mounted to the sample holder at precisely the same
angle. In fact, since the measurements were performed during two different beam
runs, no attempt was made to perform such an alignment during the measurement.
So further registration is required to align these two data sets so that the two sides
of the fracture surface can be digitally aligned.

The other interesting feature is the similar features between the center black void
space in Fig. 3.2(e) and Fig. 3.2(f). The latter image can be rotated and matched
to the former image like solving a puzzle. This is expected since the two pins come
from the same sample. More formal and detailed analysis will be discussed later.
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(a) Layer #1030 in S1 (b) Layer #1100 in S2

(c) Layer #1045 in S1 (d) Layer #1115 in S2

(e) Layer #1060 in S1 (f) Layer #1130 in S2

Figure 3.2: Selected reconstructed images for two pins S1 and S2, where white rep-
resents the high material intensity and black represents zero material intensity, i.e.
vacuum. The left column shows the reconstructed layers from the top (a) of the frac-
ture surface in S1 to layer close to the bulk (e). Similarly, the right column shows
layers from the top (b) to the bulk (f).
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Table 3.1: Optimal parameters for pins S1 and S2 from parameter Monte Carlo.
(ji, ki, Li) forms a tuple of parameters for the ith detector, i = 1, 2, 3, where (ji, ki) is
the projecting location on the detector of the intersection between the rotation axis
and the incident x-ray beam and Li is the rotation axis-to-detector distance. Both ji
and ki are in pixels, while Li is in millimeters.

Pin j1 k1 L1 j2 k2 L2 j3 k3 L3

S1 1019.97 2032.81 4.764 1019.90 2032.78 6.764 1019.90 2032.79 8.764
S2 1025.83 2010.96 5.799 1025.49 2009.89 7.799 1023.43 2008.41 9.797

3.3.2 Reconstruction of HEDM volume

The reconstruction of the orientation maps are performed according to the proce-
dure described in 2.4. The new image reduction routine developed by Dr. Jonathan
Lind[76] was used. Parameters were determined by parameter Monte Carlo. The
parameter Monte Carlo procedure was performed first on the 30µm gold wire and
the resulting parameters were further optimized by the calibration layers with three
L-distances where the maximum scattering vector Qmax was set to be 9Å−1. The
optimized parameters are listed in Table 3.1. Total 58 layers for S1 and 53 layers for
S2 are reconstructed using the optimized parameters using IceNine software. Sample
space is subdivided into equilateral triangles of size 1.56µm and orientations are re-
constructed using a speed-up method, known as the mask trick. This trick is inspired
by the observation that the layer above always has less area to be fitted than the
current layer. So one can always use all the voxels being fitted in the layer below,
possibly with filtering of low confidence voxels, as a mask to define the voxels to be
reconstructed for the current layer and start the fitting from the bottom layer and
work the way up in the reverse order of layer indices. This trick is estimated to reduce
1/3 of total CPU time that would be otherwise wasted, because some voxels fitted
in the current layer are possibly ignored in all layers above, which leads to a huge
speed-up because a voxel for which no orientation is found requires the maximum
CPU time since other searches can converge without testing all possible orientations.

Fig. 3.3(a) and 3.3(c) show the orientation maps for two particular layers from
S1 and S2. In the orientation maps, a patch of the same color usually represents
a grain, however, note that the voxels’ orientations are reconstructed independently,
the orientation of neighboring voxels are not necessarily the same but may differ in
small amount. But due to the relatively coarse gridding in the RGB color space, this
small difference may be smoothed out or cannot be resolved by human eyes.

Fig. 3.3(b) and 3.3(d) show the corresponding confidence maps for the above two
layers. The confidence is a particular measure of the certainty of the reconstructed
orientation and it is one of the outputs from the reconstruction software. The confi-
dence C is scaled into the [0, 1] range, with C = 1 indicating every simulated Bragg
peak matches observed scattering while C = 0 indicating no simulated scattering
matches observation. As shown in Fig. 3.3(b) and 3.3(d), the majority area is cov-
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(a) Orientation Map of S1 Layer 20 (b) Confidence Map of S1 Layer 20

(c) Orientation Map of S2 Layer 2 (d) Confidence Map of S2 Layer 2

Figure 3.3: Representative reconstructed layers for two pins S1 and S2. The left
column shows the orientation maps, where the orientations are converted to Rodrigues
vector representation and these vector components are scaled to RGB colors[82].
The right column shows the confidence maps, which describes how confident the
orientation reconstruction is for each voxel. The confidence C is scaled to [0, 1], where
C = 1 means perfect confidence which is indicated by the red color while C = 0 means
zero confidence which is indicated by blue color. Layer 20 for S1 and Layer 2 for
S2 are chosen to represent other layers in the volume to illustrate the similarities in
grain size and reconstruction quality.
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(a) Well-ordered Nickel (b) Fracture surface

Figure 3.4: Detector images of diffraction patterns of (a) a well-ordered Nickel sample
and (b) layer 40 of pin S2. The well-ordered nickel sample results in shiny and well-
shaped Bragg diffraction peaks, while the fractured pin S2 leads to weak and faint
Bragg diffraction peaks. The difference in terms of the peak intensity distribution
causes difference intensity scaling for aesthetic reasons. Two faint streaking areas on
the top of (b) are from the artifacts of the beam block which is removed by reduction
algorithm before reconstruction.

ered by red color, indicating high confidence on the reconstructed orientations and
the blue color, indicating low confidence, is usually located at the edge, which will be
revealed to be the boundary of the fracture surface later. Besides the edges, there are
blue areas which are the grain boundaries. The drop of the confidence corresponds
to the drop of the intensity of Bragg peaks in the detect image as approaching to the
sides of a grain.

During the measurement of pin S2, we did not collect data from the very top
because the x-ray scattering was scarce and, at the time, it was thought not be
reconstructible.

3.3.3 Observation of missing peaks due to deformation

As we discussed in Section 2.2.5, the assumptions of perfect x-ray diffraction does not
hold for deformed samples where peak shifts and peak broadening can occur. Thus
the purpose of this section is to demonstrate such occurrences and to reconcile the
experiment with the reconstruction.

For well ordered samples with > 20µm grains, x-ray diffraction results in well-
shaped Bragg peaks. The peaks are characterized as high intensities, sharp edges
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and homogeneous intensity distribution within a peak as illustrated in Fig. 3.4(a) for
an annealed Nickel sample. However, for a deformed sample like the fracture surface
sample in our experiment, the Bragg peaks are usually weaker, heterogeneous and
the edges are hard to identify because of the wide transitions from the high intensity
to background intensity. To illustrate this, we show a representative detector image
from the layer 40 of pin S2, in 3.4(b). Note this is a raw detector image before any
image processing or reduction algorithm. One observation is that the peaks from our
sample are not as large as the ones in the annealed nickel sample. This is because
our sample is generally filled with small size grains. The averaged grain cross-section
radius study can be found in Section 3.4.2 and it shows the average grain cross-
section radius is around 25µm which approaches the small end of the spectrum of
the nf-HEDM measurements, and the sample itself is fractured. These two factors
strongly contribute to the weak and broad peaks. The other observation is that the
peaks from our sample are weak and inhomogeneous compared with the ones from
the nickel sample. Recall that the detector used in our experiment is 12-bit which
has a dynamic range up to 4095, and for visibility, we threshold the gray scale of
Fig. 3.4(b) to [90, 149] to show most of the peaks. This clearly indicates most of the
peaks are weak, on the order of one hundred counts. This possibly results from the
deformation when our sample was fractured.

Another interesting feature in Fig. 3.4(b) is the arc-like diffraction pattern, which
is quite common in far-field diffraction measurements due to the large sample to
detector distance, but not in near-field measurements, as confirmed by the diffraction
image of the nickel sample in Fig. 3.4(a). This indicates the orientations inside a
grain are not necessarily uniform. Instead the possible orientation gradient inside a
grain due to deformation, leads to this arc-like pattern. Also, deformation generates
defects inside grains, which reduces intensity and broadens peaks into arcs in both ω
and η (η is the angle describes the location in the 2θ ring, c.f. Section 2.4.3).

More raw detector images and reduced images for representative layers throughout
the volume are shown in Fig. 3.5. The left column shows a series of raw images from
layer 0 (the topmost layer in pin S2) to layer 30 (in the bulk of S2). Note all
these raw images are scaled to the same intensity range of [90, 149] as in Fig. 3.4.
Fig. 3.5(a) shows very few Bragg peaks since the top layer has considerably less
material than other layers. One interesting observation is that the arc-like pattern
and the peak spread persist even in the bulk layer, for example in Fig. 3.5(c). It
is widely believed[3, 4] the deformation is most predominant in the fracture region
and becomes less pronounced deep in the bulk. However, our detector images provide
direct evidence that the layers rather deep in the bulk are also deformed.

It is also interesting to check the goodness of reconstruction from this deformed
sample by simulating the Bragg peaks from reconstructed orientation map and com-
pare these to the experimental peaks. If the sample is reconstructed perfectly, i.e.
ideally the reconstructed orientation map is the same as the sample, the diffraction
from the reconstructed orientation map should produce all peaks in the detector im-
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(a) Raw image for Layer 0 (b) Overlap image for Layer 0

(c) Raw image for Layer 10 (d) Overlap image for Layer 10

Figure 3.5: Detector images of diffraction patterns and overlap images for represen-
tative layers for pin S2. The layers are from 0 (the top of the fracture) to 10 (inside
to the bulk). The left column shows the raw diffraction images, i.e. before being
reduced to identify the peaks, which clearly shows arc-like peak pattern and peak
spread, even in the layer which is inside bulk. This indicates the deformation in the
bulk of the sample. The right column shows the overlap image, which essentially is
a overlapping between the simulated peaks (from the reconstructed orientation map)
and the experimental peaks (after reduction). The color scheme is that red repre-
sents peaks only from experimental, black represents peaks from simulation, while
green means the current pixel is overlapped by both the simulated peaks and the
experimental peaks.

ages with perfect overlap. This comparison is generally quite good for well-ordered
samples with over 90% of the experimental peaks being overlapped by the simulated
peaks.

The right column of Fig. 3.5 shows the overlapped images for S2 layers from 0 to
30. For all the overlapped images, only a small portion of apparent peaks are green,
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representing overlap between simulated and experimental scattered intensity, while
many scattering remain red, representing those experimental Bragg peaks which are
not overlapped by any simulated intensity. On the other hand, there are only rare
instances in which simulated intensities do not overlap with experimental intensi-
ties. We refer these experimentally observed intensity that are not overlapped by the
simulation as missing.

The first impression in looking at the right column of Fig. 3.5 is that there is a
lot of scattering in the measurement that is not reproduced by the reconstructions.
One might conclude that the signals shown in the raw detector images are simply
too complex for reliable reconstruction. We therefore undertook a search, although
somewhat anecdotal, to determine the origin and nature of the missed peaks. To
account for the origins of the missing experimental intensities that are not overlapped
by the simulation, a manual procedure was followed. The first question to ask is
whether these intensities are physical and if they are, are they consistent with x-
ray diffraction from the nickel crystal structure. To answer this question, a back-
projection is performed. For a missing peaks on the detector image at position L1
and a particular ω interval ωi, we manually determine a corresponding spot at L2 and
the same ωi based on the shape of the peak. This allows calculation of the diffracted
beam direction yielding 2θ and η (c.f. Section 2.4.3 for definitions of 2θ and η). For
valid diffraction , 2θ should correspond to a specific family of Bragg peaks {hkl}.
For valid diffraction, the diffraction is back-projected to the sample space to find
which location of the grain which would have generated the missing intensities. We
then ask if the observed diffraction is consistent with the crystal orientation found
at the back-projected location. The missed scattering intensities are generally weak
compared to scattering that is overlapped by the simulation, as illustrated in the
images on the left column of Fig. 3.5. We found that most of the missed scattering
is from the tails of stronger scattering that occurs in neighboring ω images and/or in
neighboring neighboring layers and that is overlapped by the simulation where it is
strong.

To illustrate, we explain the origins of two particular peaks, circled in purple and
blue in 3.6(a), which has been verified as valid Bragg scattering. For the purple peak,
we simulate the diffraction of reconstructed orientation map at the neighboring ω
bin ω = 1◦, as illustrated in 3.6(b). At the exactly same position, which is circled in
purple, in the neighboring ω bin shown in Fig. 3.6(b). This indicates the experimental
peak is spread across ω = 0◦ and ω = 1◦ because of deformation. However, in
the HEDM reconstruction of orientation of each voxel, forward modelling algorithm
assumes perfect x-ray diffraction on a perfectly ordered sample without considering a
modelling of deformation. That is why the reconstruction picks up the spot at ω = 1◦

but not ω = 0◦.

The blue peak as illustrated in 3.6(c), however, is not in the neighboring ω bin.
Instead it is originated from the grain from the layer below, as shown in Fig. 3.6(d).
By comparing the overlapping peak generated from layer 1, another peak, which is
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(a) Layer 0, ω = 0◦ (b) Layer 0, ω = 1◦

(c) Layer 0, ω = 0◦ (d) Layer 1, ω = 0◦

Figure 3.6: Illustrations of the origins of two missing peaks, circled by blue and purple
color. (a) and (b) explains the origin of the missing peak circled in purple is from
the peak shift at ω = 1◦. (c) and (d) explains the origin of the missing peak circled
in blue is due to the finite hight of the incident x-ray beam.
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circled in blue color in Fig. 3.6(d) with almost the same shape, shows up at the
same detector position for layer 0 and more importantly this peak is overlapped by
simulation. This reveals another assumption we made in our reconstruction algorithm
that the incoming x-ray beam has zero height, while in experiment our beam has a
finite height. So our reconstruction algorithm reconstructs an orientation map for a
layer of zero height, at the nominal in the center of the finite experimental beam. The
experimental illumination can provide other x-ray diffraction peaks from other parts
of the physical beam. This explains why we can have physically existent Bragg peaks
from experiment, but the forward modelling does not pick up this signal. However,
this effect is significantly reduced for well-ordered samples with relatively large grains.

Here we only demonstrate the origins of two particular peaks, however, due to the
enormous number of peaks, it is impractical to account for the origins for all the miss-
ing scattering. Currently, the reconstruction algorithm is striving for incorporation
of local strain effect and intensity fitting. This issue can be perfectly solved with the
updated implementation of reconstruction algorithms in the near future. A smaller
focal size has also been achieved in the new Hutch E end station where current and
future work will be conducted.

3.4 Characterization of the Bulk Superalloy Sam-

ple

After reconstruction of the tomography and HEDM data sets, it is interesting to
characterize some important statistics for our sample, which serve as cornerstones
for later investigation. In this section, we study four quantities. Edge width for
tomography data, the grain cross-section radius distribution, volumetric texture of
the orientations and grain orientation variation.

3.4.1 The Edge Width for Tomography Data

The edge width is defined as the width of the measured transition between high mate-
rial density in the bulk and low material density which is considered as a background
or vacuum. The reason to characterize the edge width here is because it is is an im-
portant measure of the error bar of the reconstructed tomography features. For later
investigations, it characterizes the goodness of the volumetric registration as well as
indicates the missing materials during the fracture process.

To characterize this width, an error function of the following form is applied to
selected density transitions

f(x;x0, d, A,B) ≡ B +
A

2
·
[
1 + erf

(
x− x0

d

)]
(3.1)

where x0, d, A,B are all the parameters to be determined, x0 is the position of the
center, d is a measure of the width as we will discuss soon, A is the amplitude of the
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Figure 3.7: Plot of material density profile across the boundary. The blue data points
are the tomographically measured density at different coordinate points, which clearly
shows two plateaus (the left being air or background, while the right being the bulk
material). The red line is the error function parameterization of the transition.

transition and B is the background material density. And erf(x) is the standard error
function which is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt,

for −∞ < x < ∞ which implies that the function range is −1 < erf < 1. Fig. 3.7
shows a material density profile for a particular edge across the fracture boundary in
blue data points. A non-linear fitting routine of the function form in Equation 3.1 is
applied to the data and the fitted values are computed and plotted as the red line.
The comparison shows quite satisfactory agreement.

To characterize the width of the edge, we define the width to be the Full Width
Half Maximum (FWHM) of the error function, i.e. the range in x axis corresponds to
f(x;x0, d, A,B) being between B + A/4 and B + 3A/4, or equivalently the FWHM
of the underlying Gaussian function. According to the numerical table for the error
function, erf(0.477) ≈ 0.5, thus f(x;x0, d, A,B) = B + A/4 corresponds to x =
x0−0.477·d and similarly f(x;x0, d, A,B) = B+3A/4 corresponds to x = x0+0.477·d,
so the FWHM is equal to 0.477× 2× d̂, where d̂ is the fitted value of d in Equation
3.1. The fit of f(x) to the raw data is applied using gnuplot, which determines the
FWHM to be 3.6µm which is 2.4 pixels. This is confirmed by the reading on the
data points in Fig. 3.7. Comparing the fact that the resolution of the tomography
reconstruction is roughly 1 pixel, the FWHM of the edge is as small as 2.4 pixels,
which indicates the precision of the determination of boundary points.
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(a) Grain Cross-section Radius Distribution of
S1 Layer 20

(b) Grain Cross-section Radius Distribution of
S2 Layer 2
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(c) Average Grain Cross-section Radius of S1
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(d) Average Grain Cross-section Radius of S2

Figure 3.8: Plots of the grain cross-section radius distributions. (a) and (b) show the
histograms of the grain cross-section radius distribution for the two layers shown in
Fig. 3.3, where the grain size is computed as the effective radius in micrometres. (c)
and (d) show the computed average grain sizes as a function of the layer index for
pins S1 and S2 respectively.

3.4.2 Grain Cross-Section Radius Distribution

The grain cross-section radius distribution is an important statistics for grains inside
a sample, where a grain is defined as a crystallite with a single lattice orientation.
In our grain cross-section radius computation, a grain is defined by the maximal 2◦

misorientation convention. That is a misorientation between two neighboring voxels
larger than 2◦ considers these two voxels to belong to different grains. The effective
grain size is computed from its cross sectional area and further converted to effective
radius assuming the grain is of circular shape. Fig. 3.8(a) and 3.8(b) show the grain
cross-section radius distribution for the two layers shown in Fig. 3.3. We can observe
a similar pattern that the occurrences decay as a function of the grain cross-section
radius. There is a great number of grains of small size (< 5µm in radius) and large
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grains (> 30µm in radius) are scarce.
Fig. 3.8(c) and 3.8(d) show the computed average grain size for all layers of pins

S1 and S2, where the average grain size of a particular layer takes the average over
all grains of that layer weighted by the area of each grain cross-section. Both pins
show similar average grain cross-section size. The average grain cross-section size is
roughly around 12.5µm in radius and this 12.5µm average grain size corresponds to
the small end of the spectrum of nf-HEDM measurements so far.

3.4.3 Volumetric Texture

Texture is the distribution of the orientation of a polycrystalline sample and a sample
is said to have texture if it has a preferred orientation. Texture is an important statis-
tics because preferred orientation usually influence of the properties of the material.

To quantify the distribution of the crystallographic orientations, people generally
resort to pole figure and inverse pole figure. Due to the abstract nature of orientation
in plotting, both the pole figure and inverse pole figure convert the distribution of
orientations to the distribution of vectors and adopt a stereographic projection to
collapse the distribution of 3D vectors to a 2D map. However, they differ in terms of
the context of plotting. The pole figure displays the distribution of orientations of a
particular crystallographic direction in the sample frame. For example for the {111}
pole figure, all grains’ {111} directions in the sample frame are collected and their
distribution is projected stereographically in 2D. On the other hand, an inverse pole
figure displays the distribution of a selected sample frame direction distributed in the
crystal frame. A typical application of inverse pole figures is to study which direction
in the crystal frame that is most likely parallel to the sample frame direction.

A popular and powerful software for texture analysis is called mtex1 and all the
pole figures and inverse pole figures are plotted in mtex. Fig. 3.9(a) and 3.9(b)
show inverse pole figures of all grain orientations in the two pins from the perspective
along the (001) sample direction, i.e. z-axis. Though a little bit differences maximal
intensities, both of them show maximum at the {111} crystal directions. Thus this
sample is textured. A double check is performed by plotting the {111} pole figures,
as shown in Fig. 3.9(c) and 3.9(d). The strong intensities at the centers of both
pole figures indicate texture. However, the peak at two times a random distribution
indicates only weak texture compared to, say a drawn wire or extruded material.

3.4.4 Grain Orientation Variation

Ideally, a grain is a perfect crystallite with a single orientation. In reality due to
the existence of deformation, the orientations inside a grain may vary. Thus the
orientation variation is a great indication of the deformation level. Since our sample
is deformed, it is interesting to quantify such deviations.

1https://code.google.com/p/mtex/
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(a) Inverse Pole Figure for S1 Volume (b) Inverse Pole Figure for S2 Volume

(c) Pole Figure for S1 Volume (d) Pole Figure for S2 Volume

Figure 3.9: Volumetric texture plots for the pins S1 and S2. Fig. (a) and (b) show
the inverse pole figures along the sample z-axis, i.e. (001). In both subfigures, the
left corner represents {001}, the right corner represents {110} while the upper corner
represents {111}. And the color scheme for both subfigures is scaled between 1.82
(red) and 0.47 (white). Fig. (c) and 3.9(d) show the pole figures for the {111} poles
and the color schemes are rescaled between 2.28 (red) and 0.36 (white).
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Figure 3.10: Orientation variation plot as a function of layer index for (a) the pin S1
(a) the pin S2.

During the computation of the grain orientation variation, we adopt the same 2◦

misorientation convention to define a grain, as in Section 3.4.2. Then average grain
orientation is computed by averaging corresponding quaternions of each orientation
and special care is taken to track all 24 symmetry equivalent orientations and as-
sign them to the right subgroup to account for the shape of the fundamental zone.
Once the average orientation for each grain is computed, the misorientation of each
voxel from the grain average orientation is computed, also known as intra-granular
misorientation (IGM)

∆Ri ≡ R−1
i Ravg

where Ravg represents the average grain orientation, Ri represents the orientation of
the ith voxel inside the grain and ∆Ri is the ith voxel’s misorientation matrix. In
our orientation variation computation, we are interested in the misorientation angle,
i.e. the angle needed to rotate to coincide Ri with Ravg and we define orientation
variation for a grain as the average of the all misorientation angles of all voxels inside
the grain. We are also interested in the orientation variation for a HEDM layer,
which is defined as the average over all grains’ orientation variations for a HEDM
layer

〈∆R〉 ≡ 1

n

n∑
j=1

〈∆Rj〉

where 〈∆R〉 represents the layer’s orientation variation, n represents the number of
grains in that layer and 〈∆Rj〉 represents jth grain’s orientation variation. We also
define the standard deviation of the orientation variation as the standard deviation
of all grains’ misorientations 〈∆Rj〉.

Fig. 3.10 shows the plots of the orientation variation for all layers of the pins S1
and S2. Both subfigures show similar trends that the layer’s orientation variation
drops as the layer index increases, i.e., as going into the deep of the bulk material.
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Even the deepest layers inside the bulk display finite orientation variations, which are
not too different from the highest value of orientation variations from the top layers.
This indicates that even deep inside the bulk, the deformation still has an influence.
This is confirmed with the diffraction images where peak broadening and shift are
still observed (c.f. Section 3.3.3). The most striking feature of Fig. 3.10 is that the
standard deviation (error bars) is large compared to the weak trend toward lower
orientation variations as one moves away from the fracture surface. Thus, different
grains experience significantly different spreads in orientation and this characteristic
does not correlate with position relative to the fracture surface.

Since orientation variations of all layers are more or less the same, we deem 0.7◦

as the average orientation variation for the whole sample.
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Chapter 4

Registration and Merging of
Tomography and HEDM Data

The HEDM and x-ray tomography measurements for two distinct pins S1 and S2
lead to four volumetric data sets, and in order to extract meaningful results in the
later chapters, it is necessary to combine all these four data sets together as a whole
sample like it was before being fractured by cyclic loading. Thus the purpose of
this chapter is to develop a robust registration and merging framework for our new
technique combining HEDM and x-ray tomography.

In this chapter, the detailed registration and merging techniques will be discussed
as follows. We will start with primitive tomography layer alignment based on im-
age registration in Section 4.1, then we present a novel registration technique using
volumetric data rather than layered data in Section 4.2 and finally we evaluate the
robustness of the volumetric registration in Section 4.3.

4.1 Primitive Tomography Layer Alignment

Image registration is a set of standard processes that transform images to bring them
into a unified coordinate system and it has various applications in photography, med-
ical imaging, computer vision, etc.. As mentioned briefly in the preceding chapter,
Fig. 3.2(e) and Fig. 3.2(f) bear similarity, indicating a good candidate for image
registration and the quality of registration is supposed to be high since the two pins
are originally from the same sample. This image registration technique is primitive
in the sense that it works only on layers of the sample but not on the whole volume.
Though more advanced volumetric registration will be presented later, this image
registration serves as a building block for later volumetric data set.

43



4.1.1 Image Registration on a Sample Layer

In this work, the image registration is performed by Insight Segmentation and Reg-
istration Toolkit (ITK), which is a open-source, cross platform image segmentation
and registration library written in C++, which is composed of a collection of image
registration algorithms, e.g. pattern intensity algorithm, mutual information algo-
rithm, etc.. A general image registration algorithm usually contains three important
components: cost function, transformation scheme and optimization method. Essen-
tially, an image registration problem can be viewed as a specific optimization problem,
which minimizes the difference, defined by a cost function, between two images. A
transformation is applied to one of the images, defined by a transformation scheme
and parameters are optimized by some algorithm.

For our problem, efforts have been made to try out different image registration
algorithms provided by ITK. Among them, a simple algorithm called mean square
bears the best results, considering efficiency and quality. In the mean square algo-
rithm, the cost function is the mean square of the intensity difference for each pixels of
the two images. The transformation scheme is a 2D rotation and translation and the
optimization method is gradient descent which is based on the fact that the gradient
can be evaluated efficiently.

Before registration, several image preprocessing steps are needed, i.e. justifying
a unified coordinate system, choosing the corresponding transformation and image
inversion to produce the right inputs for image registration algorithms.

Fig. 4.1(c) and 4.1(d) demonstrate the quality of image registration by compar-
ing the difference image between the two images before and after the registration,
respectively. The difference image is the intensity subtraction of the two images on
a pixel-by-pixel basis and then rescaling the intensity to [0, 255]. Fig. 4.1(d) shows
the matching after registration. Clearly almost all the features are perfectly matched
except a white corner.

The investigation of the white corner leads to an interesting discovery of the image
registration, which reveals the fact that during the sample preparation, the pins S1
and S2 were extracted off-axially, as illustrated in Fig. 4.2. This leads to the necessity
of trimming away non-overlapping portions for the quantitative registration described
below. This is referred to as the mechanical cutting problem.

4.2 Volumetric Boundary Point Registration

Image registration is a typical 2D technique which works on single layer of either
tomography or HEDM data. Though it detects the mechanical cutting problem, the
3D nature of the volumetric data in our experiment calls for a volumetric registration
scheme. The purpose of this section is to develop a general 3D volumetric registration
scheme to align tomography volumes as well as aligning tomography volumes with
HEDM volumes. In this section, we start off with a discussion of the general approach,
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(a) Layer 1066 from S1 (b) Layer 1132 from S2

(c) Difference image before
registration

(d) Difference image after
registration

Figure 4.1: Registration of two tomography layers from the pin S1 and S2 that bears
similar features. (a) shows the reconstructed tomography layer 1066 from pin S1. (b)
shows the reconstructed tomography layer 1132 from pin S2. (c) shows the difference
image between the two images before registration. (d) shows the difference image
after registration, which shows almost perfect registration. Note the difference image
is the image of intensity subtraction between two images and rescaled intensities to
[0, 255].
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(a) Before Registration (b) After Registration

Figure 4.2: Aligned matching the same layers as in Fig. 4.1 from S1 (dark) and S2
(light). The white line shows the sample edge from a bulk layer superimposed to
show that the two samples were not cut on the same axis.
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like the motivation, pre-processing and procedures. Then we will apply this general
approach to specific problems, i.e. 3D registration between tomography volumes
and between tomography and HEDM volumes. The discussion which quantifies the
goodness of registration is left to the next section.

4.2.1 General Approach

The use of boundary points in our volumetric registration scheme is motivated from
the observation of the image registration process, for example from Fig. 4.1, that
the most important information for registration is the feature information, i.e. the
boundary of the samples, not the points in the bulk region. That is if we manage to
extract the boundary of the samples by taking the gradient of the image, and repeat
the image registration process, we should be able to retrieve the same registration
result. One advantage of this process is that it heavily reduces both the memory
and CPU computation because the bulk pixels, which are previously majority of all
data points, are now ignored. More importantly, this idea to use only the boundary
points can easily be extended to 3D space, because the 3D boundary points of both
tomography and HEDM volumes can be extracted easily as the input data points and
we can apply the same spirit of the image registration to develop new 3D registration
scheme by building a unique cost function and a new optimization technique.

With this motivation of the boundary point scheme, we can re-formulate the
registration problem in 3D. Given two volumes V1 and V2 specified by boundary
point coordinates, we develop a cost function χ and an optimization scheme to find
the optimal transformation parameter p∗ such that the cost between V1 and V2 is
minimized as follows

arg min
p

χ(V1,pV2) (4.1)

Now the 3D transformation p is a combination of a 3D translation and a rotation
around z axis. The cost function χ is redefined as sum of squared distances over all
points in V1 to V2

χ(V1, V2) ≡
∑
x∈V1

d2(x, V2)

where the distance between a single point x and the volume V2 is defined as the
Euclidean distance of x to its nearest neighbor in V2, mathematically it is given by

d2(x, V2) ≡ (x−N (x;V2))2

where N (x;V2) denotes a function which finds the nearest neighbor point of x in V2.
Thus, we can rewrite the cost function between V1 and V2 as follows

χ(V1, V2) ≡
∑
x∈V1

(x−N (x;V2))2 (4.2)
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Given the above construction of the cost function, it is easy to picture that the
landscape of its cost function is asymptotically parabolic because of the squared of
Euclidean distance in the cost function. However, the landscape of its cost function
close to the global minimum is generally unknown because this depends on the input
data. In the worst case scenario, there might be local minima close to the global
minimum, which complicates our parameter search process.

Since the landscape of the cost function is generally parabolic in the large scale
while with possible local minima in small scale, we adopt an optimization scheme
known as the Hybrid Monte Carlo[83] method. The reason to choose hybrid Monte
Carlo is motivated from the observation of one drawback of the normal Monte Carlo
scheme. The random sampling of points in the parameter space causes the rate of
convergence to be proportional to 1/

√
n where n is the number of sampled points.

However, due to the parabolic shape of the cost function in the general sense, we have
some rough estimation on the local gradient, so a guided sampling is preferred for a
much faster convergence speed. And the hybrid Monte Carlo has a stochastic sampling
scheme which simulates the evolution of a dynamical system governed by Hamiltonian
dynamics, and allows the sampling to vary in a systematic way so as to avoid random
walk behavior. More importantly, the hybrid Monte Carlo preserves the ergodicity
of the sampling. The time invariance of Hamiltonian system and Liouville’s theorem
ensure the distribution in phase space is invariant with respect to time; however, to
ensure ergodic sampling scheme, a special scheme similar to Gibbs sampling, known
as the leapfrog discretization, must be performed.

As for the detailed implementation of hybrid Monte Carlo scheme, the cost func-
tion χ(V1,pV2) is treated as a potential energy term, and the kinetic energy term is
given by

K(r) ≡=
1

2
||r||2

where r ≡ dp/dt (p serves as the coordinate in Hamiltonian system, while r serves
as the momentum in Hamiltonian system1. The leapfrog scheme is adopted from [83]
and modified as follows

ri(τ + ε/2) = ri(τ)− ε

2

∂E

∂pi
(p(τ))

pi(τ + ε) = pi(τ) + εri(τ + ε/2)

ri(τ + ε) = ri(τ + ε/2)− ε

2

∂E

∂pi
(p(τ + ε)) (4.3)

where E(r,p) = K(r) + χ(V1,pV2) which is the total energy. It is easy to see that
the sampling scheme is guided by the landscape of the cost function because we take
the gradient ∂E/∂pi for each component of p. Computationally, this gradient is
estimated for each step by taking the difference between E(p + ∆p) and E(p) and

1The notations of r and p are reversed as in the classic physics textbooks but we have to adopt
that because the notation p has been used to represent transformation parameters.
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then divided by ∆p. And ε is the step size for leapfrog which controls the length of
system evolution. For a desired time of τ , one needs of order τ/ε steps for convergence.

The randomness of this process comes from the random sampling of momentum r
before each time period and a typical Hybrid Monte Carlo consists of s time periods,
and each time period is composed of t leapfrog steps, where s and t are specified
beforehand. The necessity of sampling r is because Hybrid Monte Carlo essentially
samples the joint distribution of coordinates and momentum. The sufficiency of
sampling of momentum independently is because of the independent distributions of
r and p by our construction of the total energy E(r,p) = K(r) + χ(V1,pV2) where
r and p are separable. r is usually sampled as a multivariate normal distribution
because of the availability.

4.2.2 Volumetric Registration between Tomography Volumes

Before applying the general approach of the volumetric registration scheme to the
tomography volumes, we must first extract the boundary points for each volume.
Generally speaking, these boundary points are retrieved based on the result from
Section 3.4.1, where the intensity profile is fitted to an error function, and the value
of the transition point, which is the center point of the sigmoid shape, is estimated.
Thus this transition point serves as a threshold to segment the whole data set into
two groups as well as determining the boundary points.

Two more processes are needed to filter out extra points, for the sake of ensuring
a common region, on which the cost function is to be evaluated. The first set of
extra points are generated due to the mechanical cutting problem, as we discussed in
Section 4.1. The off-axial nature of the cutting makes the two volumes cover different
regions of the original sample, so a common region must be first determined and those
points which are outside of such common region are filtered out. The second process
is to remove the sample boundary in the pin S1. Comparing Fig. 4.1(a) and Fig.
4.1(b), the tomography layer of pin S1 differs from the one in S2 by the extra sample
boundary, which should also be removed. Note for the first process, a common region
is determined by the parameters from the image registration, which is actually a little
bit off, on the order of a couple pixels, from the one retrieved from the volumetric
registration.

The elements of the volumetric registration for the tomography volumes is summa-
rized as follows. The transformation is a 3D transformation of the pin S2, represented
by a tuple containing six parameters (three for 3D translation, two for specifying ro-
tation axis in x-y plane and one for rotation angle) , the cost function χ(V1, V2) as
defined as Equation 4.2, and the optimization method is the hybrid Monte Carlo to
have guided convergence but we add a final Monte Carlo locally. A hybrid Monte
Carlo run stops at a maximal 2000 steps or exits early if satisfying the convergence
criterion in which all six parameters change by less than 10−3 pixels. Several runs are
performed after the 2000 step limit to ensure convergence.
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(a) Layer 20 before registration (b) Layer 20 after registration

(c) Layer 40 before registration (d) Layer 40 after registration

(e) Layer 60 before registration (f) Layer 60 after registration

Figure 4.3: Volumetric registration between tomography volumes of the pins S1 and
S2. The red dots show the boundary points in the pin S1 while the blue dots show the
boundary points in the pin S2. The left column shows overlapping before volumetric
registration, while the right column shows the overlapping after the registration, which
clearly shows improvements.
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Fig. 4.3 shows the comparison between before registration (left column) and after
registration (right column) for four representative layers in a particular volumetric
registration of 2000 steps. In each subfigure, the red dots shows the boundary points
in the pin S1 while the blue dots show the boundary points in the pin S2. Judging
from the before registration subfigures, it is easy to notice the systematic offset by a
counter-clockwise rotation and a little bit of shape difference might require a shift in
the z-axis. After the volumetric registration, the right column shows much improved
overlapping with many features being satisfactorily matched. Some minor features
are not explained, for example in Fig. 4.3(f), which may require further adjustment
in z axis or might be the artifacts due to the boundary extraction procedure. Of
course the optimization of the cost function is a compromise of summation of cost
over the whole volume not just the layers shown here.

After the volumetric registration between the two tomography volumes, the two
tomography volumes are combined together, where a simple scheme is used. Cubic
voxels of one piece take up empty spaces belong to the other piece and if the space is
occupied by both pieces, the cubic voxel with higher material density wins that spot.
After the combination, it is interesting to quantify the errors. Since the distance to
the nearest neighbor is used to measure the cost during the volumetric registration,
it is preferred to use an independent indicator to further characterize the error. For
this purpose, we decide to study the error of the volumetric registration by z-height,
which measures heights in z-axis for each boundary points of the volumetric data.

Fig. 4.4(a), 4.4(b) and 4.4(c) show the z-height maps for S1, S2 and the merged
volume, respectively. The z-height map of the merged volume is computed by looking
for the location in z-axis where the transition between S1 and S2 occurs. All the
subfigures closely resemble each other, which indicates good agreement. It is also
interesting to further characterize the error in the z-height maps, so we plot the
difference of each z-height of S1 or S2 from the deduced fracture surface, determined
as the z-height of the merged volume, as shown in Fig. 4.5. The zero difference of the
z-heights, colored in green, occupies the majority region for S1 which indicates pretty
good agreement from the nominal fracture surface while a couple of red pixels indicate
discrepancy as large as 10 pixels, corresponding to the high hill in Fig. 4.4(a). One
possibility is that this discrepancy results from a loss of the material during the sample
fracturing step. For the pin S2, the large difference in z-height occurs frequently on
the two opposing sides, which indicates a possible tilting of the rotation axis for S2.
Considering the z-height differences are around eight pixels and the sample is about
500µm in radius, this tilting is estimated to be arctan(8 × 1.47/500) ≈ 1.35◦. Since
the average grain cross-section diameter is ≈ 25µm, it is expected that this tilt will
have only a minor impact on the characterizations given below. Nevertheless, in a
next generation volumetric registration, the tilting will be incorporated and corrected
to produce better alignment.
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(a) Tomography z-Heights for S1

(b) Tomography z-Heights for S2

(c) Tomography z-Heights for Merged

Figure 4.4: z-height maps from tomography volumes for (a) S1, (b) S2 and (c) merged
volume. All three height maps are colored based on the z-heights, measured in units
of millimeters. Axis labels are in pixels which are 1.47µm on each side.
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(a) Error of z-Heights for S1 (b) Error of z-Heights for S2

Figure 4.5: Differences of z-height maps from the nominal fracture surface. (a) for
S1 and (b) for S2. The difference in z-height is in units of pixels (one pixel equals
1.47µm).
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4.2.3 Volumetric Registration between Tomography and HEDM
Volumes

For the registration of tomography with HEDM volumetric data, in theory, we can
adopt the same general approach. However, as we will show, this problem is com-
plicated by the extraction of the boundary points from HEDM volumes, as will be
discussed next. Each tomography and HEDM volume is measured and reconstructed
in the same x-y coordinate system. Registration then requires only optimizing the
z-coordinate of one of the data sets. This is a simple enought problem that we use
an exhaustive linear search which guarantees a global minimum.

The second modification is based on the observation that the extraction for HEDM
boundary points is not as straightforward as the extraction in the tomography case.
To extract the boundary points of HEDM volumes, the confidence maps are a much
better candidate than the orientation maps because the confidence on the boundary
drops due to few simulated peaks being overlapping with experimental peaks, which
gives us some clue on the locations of the boundary. Thus it is tempting to extract the
boundary points by enforcing a fixed thresholding, like we did in the tomography case.
However, the setting of the threshold can be challenging and is not as straightforward
as fitting an error function across the sample edge in the case of tomography data.
Thus it is possible to use a threshold to extract the boundary points for the HEDM
volumes, but the determination of an appropriate threshold requires further analysis.

To set the confidence threshold, we resort to the general approach of volumetric
registration, and we modify the algorithm by incorporating the confidence threshold
as a new parameter to be optimized. Thus the optimization problem can be rewritten
as follows

arg min
p,χ

∑
x∈V1

[x−N (x; pV2(χ))]2 (4.4)

where V1 represents the set of the boundary points of the tomography volume, V2(χ)
represents the boundary points of the HEDM volume under the threshold by the con-
fidence level χ and p is the transform parameter, which is now just a one dimensional
shift in z axis. More importantly, the parameter space becomes two dimensional. The
optimal parameters can be found by a 2D grid search over a predefined parameter
region. The z-axis shift is bounded by the total height of the tomography volume
while the confidence level is bounded between [0.1, 0.7).

After performing the 2D parameter search, we can map out the cost landscapes
for both pins as a function of z-axis shift and confidence threshold χ, as shown in Fig.
4.6. For both pins, the parameter space covers a 2D grid with z-axis shift ranging
from −50 to +50 pixels, with the increment of one pixel, and the confidence threshold
χ ranging from χ = 0.1 to χ = 0.7 with increment of 0.01. Generally speaking, both
landscapes show parabolic shapes and the variation in the z-shift direction is much
larger than the confidence threshold level, within the parameter space we choose.
This lack of sensitivity allows us flexibility in the choice of confidence level, as long
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(a) Cost Landscape for S1 (b) Cost Landscape for S2

Figure 4.6: Cost function landscape of the 2D grid scan for volumetric registration
of (a) the pin S1 and (b) the pin S2. For both subfigures, z-shift axes represents
the shift in the z-axis and the unit is in pixels. The confidence axis represents the
confidence threshold χ, which ranges from 10% to 70%.
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(a) Cost Profile for S1 (b) Cost Profile for S2

Figure 4.7: Profile plots of cost functions in volumetric registration of the two pins
as a function of z-shift. (a) the pin S1 and (b) the pin S2. For both subfigures, the
y axis represents the cost while the x axis represents the z-shift, which is in pixels.

as we can pinpoint the optimal z-shift.

This can be further illustrated in Fig. 4.7, where we plot the confidence measure
as a function of z-shift for different confidence thresholds by different colors. All the
cost profiles are of parabolic shapes as a function of z-shift, partly because the cost is
the sum of squared distances, which has the inherently quadratic form. Furthermore,
the position of the minimal cost does not vary as much, typically because confidence
is a small factor. Consider a 30µm grain for example, a 10% confidence threshold
drop usually results in a less than 3µm surface shrink. For both pins, the profile
with lower confidence threshold corresponds to larger z-shift, while the profile with
higher confidence threshold corresponds to small z-shift. It can be understood that
with lower confidence threshold, more material is trimmed away, which forces the
matching to translate the HEDM image in z-direction to coincide.

It is again interesting to quantify the error of this volumetric registration by using
the z-height as we did for the registration between the tomography volumes, except
in this case the difference is taken between the z-height maps of the tomography
volume and the HEDM volume. Fig. 4.8(a) and 4.8(b) show the z-height maps
for HEDM volumes of S1 and S2. The z-height maps from the HEDM volumes
qualitatively resemble the ones from the tomography volumes (c.f. Fig 4.4). This
is mainly because HEDM volumes have larger z-spacing (4µm) compared with the
spacing in the tomography volume (1.47µm), thus z-height map in the tomography
volume has higher resolution. As a side note, S2 has a plateau, shown as the dark
red region in Fig. 4.8(b). This is because we did not collect data from the very top
of S2, c.f. Section 3.3.2.

Fig. 4.8(c) and 4.8(d) show the z-height difference map for S1 and S2 computed
from their own tomography z-height maps. Note, in S2, tomography layers above
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(a) HEDM z-Height Map for S1 (b) HEDM z-Height Map for S2

(c) HEDM z-Height Difference Map for S1 (d) HEDM z-Height Difference Map for S2

Figure 4.8: z-height and z-height difference maps for S1 and S2. (a) and (b) are the
z-height maps for HEDM volumes of S1 and S2 colored by the z-height in millimeters.
(c) and (d) are the z-height difference maps from the corresponding tomography z-
height maps, which are colored by the difference of z-height in pixels (one pixel equals
to 1.47µm).

the top of the first HEDM layers are not considered during the z-height difference
calculation, to account for the missing data of the top HEDM layers. Considering the
average grain size is around 30µm, the orientation probably changes drastically into
another grain’s orientation if the z-height is off by more than 30µm, which corresponds
to 20 pixels. So in both subfigures, the color scheme has been set to span ±20 pixels
and it indicates pretty large area is in the good agreement, where the offset is less
than 10 pixels.
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4.2.4 A Final Merge Scheme

The previous two sections discuss the ways to perform (a) volumetric registration
between tomography volumes and (b) volumetric registration between tomography
and HEDM volumes. Now we can combine all the four volumes to a full data set.
This final step, known as merging, is to integrate the two pins, as if it were before
the fracture.

Mapping Triangular Mesh Data onto a Square Grid

Before performing the merge, a technical issue here is that HEDM data is recon-
structed in a triangular grid while tomography data is generated on square grid, so
the merging between them is inconsistent and a unified grid is needed here. Due to
the relatively easy manipulation of the square grid, especially for nearest neighbor
analysis in later investigation, we convert the triangular grid to the square grid. How-
ever, this conversion is not straightforward. For a square area covered by just one
triangle, a simple copy of HEDM information is sufficient. However, for a square area
covered by several triangles, there is ambiguity. Especially, in our data set, the sizes
of the square grid and the triangular grid are comparable, being 1.47µm and 1.56µm
respectively. Thus it is quite common to have a square grid occupied by multiple
equilateral triangles.

The first consideration is whether some smoothing between orientations is needed,
i.e. if the square region is covered by several triangles, whether the orientation of the
square grid should be the average over all orientations of those triangles. A typical
orientation average scheme, which averages in terms of the quaternions of all the
orientations, results in an output orientation that is at the center of mass of all the
orientations in the quaternion space. This average could be good if all the orientations
are very close to each other, since the averaged orientation does not differ too much
from each of the orientation cloud of points. However, for cases with totally different
orientations, especially at the grain boundaries, this averaging scheme leads to a new
orientation that is not even in the original data set. Due to this consideration, we
use majority vote scheme. That is the orientation with the largest weight will be the
orientation of the square region. Under this scheme, the problem of losing original
orientation information is alleviated, however, the only drawback is that the grain
boundaries may move, but probably within sub-microns. Since the pixel sizes of the
square grid and triangular grid are comparable, the upper limit of this boundary
motion is half a pixel because the worst case scenario happens when half of the
triangle overlaps with the square pixel due to the majority vote rule. This boundary
move can be ignored considering the HEDM’s spatial resolution.

The second consideration is how to measure the weight of each original orientation,
which is used in the majority vote scheme. An area based weighting scheme, i.e. based
on area of each orientation occupied in the new square grid, is theoretically reasonable,
however, practically difficult, because coding such algorithm to compute the area
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occupied by different triangles is not computationally practical since it requires to
consider different scenarios for overlap of the two elements which can be a triangle,
quadrangle or pentagonal shape. A more intelligent way is to sample the square
region uniformly, say sampling an n× n grid, where n is the number of points to be
sampled in one direction. It is easy to see that if n → ∞, it converges to the area
based approach. This algorithm is simpler to write and is probably faster due to the
simplified algebra. The only concern is the efficiency to find the right triangle given
the coordinates in x and y. In order to solve this, I create a new data structure of
the .mic file to reduce the access time to guaranteed constant time (c.f. Section A).

Merging Process

With the uniform sampling and the majority vote scheme, the conversion from the
triangular grid to the square grid can be easily done and the merging can proceed.
Note during merging, we use the tomography data as a mask while the HEDM in-
formation is considered auxiliary. The reason to use tomography material density as
a mask is because tomography material density provides much more precise spatial
resolution of the material than HEDM.

The actual merging are performed in the following steps. First the tomography
volumes are aligned to each other and then merged. Each cubic voxel is assigned
to either volume based on the reconstructed material density. Secondly, the HEDM
voxels are translated in z direction to the new positions and the orientation and
confidence are stored in the merged data structure.

The outcome of the merging process is presented in Chapter 5, together with the
characterization of the fracture surface.

4.3 Robustness of Volumetric Registration

The kernel of the volumetric registration scheme is the hybrid Monte Carlo method
and it is natural to investigate how robust it is. Recall Section 3.4.1, the material
density profile across the sample edge is fitted into an error function. Though the
boundary point is picked as the center of fitted error function, the true boundary
point is distributed with a FWHM of 2.4 pixels. Thus this uncertainty leads to many
other possibilities of the boundary points’ locations, each of which deviates from the
original position. Thus we are interested in the effect of different deviation of the
input data on the output optimal transformation parameters, i.e. characterizing the
robustness of the hybrid Monte Carlo, by studying the error bars of all the transfor-
mation parameters as well as the sensitivity to input data.

To fully characterize the error bars for each parameter, we introduce a scheme to
measure the effect of deviated positions. For each run, we perturb each point (x, y, z)
in V1 and V2 as follows

(x, y, z)→ (x+ ∆x, y + ∆y, z + ∆z)
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where ∆x, ∆y and ∆z are distributed normally as N (0, σ2) where σ = 2.4 in pixels.
In this sense, V1 and V2 are randomized point clouds based on the original data with
a small deviation. The same hybrid Monte Carlo scheme is performed to compute the
optimal transformation parameters for each randomized set of points. This process
is repeated for 2000 times and all the optimal parameters are summarized and the
sample standard deviation for each parameter are estimated.

Fig. 4.9 shows the distribution of the transformation parameters for the repeated
2000 perturbations. Each of the subfigures shows a normal-like distribution and the
standard errors are summarized in Table 4.1 (note 1 pixel equal to 1.47µm)

Table 4.1: Error bars for transformation parameters in hybrid Monte carlo method.

Parameter Standard Error
Translation X 0.0340mm
Translation Y 0.0335mm
Translation Z 0.0378mm

Rotation Center X 0.0612mm
Rotation Center Y 0.0602mm

Rotation Angle 0.0035◦

The translation parameter error bars are less than 0.0735mm which is 0.05 pixels.
The rotation error bar is also negligible in that the motion of a point at the outer
radius of the sample would be 500µm× tan(0.0035◦) = 0.0305µm, which is less than
the pixel size. Thus it is sufficient to say the hybrid Monte Carlo is robust within the
error bars of the input data.
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(a) Translation X (b) Translation Y

(c) Translation Z (d) Rotation Center X

(e) Rotation Center Y (f) Rotation Angle

Figure 4.9: Histograms for each of the transformation parameters deviated from the
optimal solution after repeated 2000 randomized perturbations
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Chapter 5

Characterization of the Fracture
Surface

Up to this point, our discussion has been focusing on the presentation of our new
method which combines HEDM and x-ray tomography and the registration of the
four volumetric data sets. We now turn our attention to analyse the aligned data set
as a whole. Specifically, we are interested in the preferred crystallographic direction
normal to the fracture surface, which is an important statistics which gives valuable
insight to the crack initiation and propagation mechanisms and it serves as one of the
vital outputs for our new method.

The structure of this chapter is following. First we measure the quality of volu-
metric registration by studying the correlation across the fracture surface. Secondly,
we study the local normal estimation by the Principle Component Analysis. Thirdly,
the crystallographic directions normal to the fracture surface are extracted based on
the local normal estimation and plotted in terms of the modified inverse pole fig-
ure. Finally, we discuss the implications of the distribution of the crystallographic
normals.

5.1 Correlation across the Fracture Surface

5.1.1 Boundary Correlation Test

The first measure of the quality of registration between the two data sets is to overlap
on HEDM confidence maps the fracture surface contour that intersects nominally the
same plane. This is motivated from the observation that the reconstructed material
density and confidence are expected to drop across the same sample boundary.

Fig. 5.1 shows the confidence maps for four representative layers in the registered
and merged volume. The fracture surface contours obtained from tomography are
plotted in white in each of the subfigures. The left column of Fig. 5.1 shows the
confidence maps of the pin S1 overlapped by the fracture surface boundary, while the
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middle column shows the confidence maps of the pin S2 and the right column shows
the merged confidence maps after registration. The usual confidence color scheme
is used (red means χ = 1 while blue means χ = 0). It is easy to see that in all
subfigures in the left and middle column, the white lines (where the fracture surface
lies) are very close to the regions where confidence drops quickly. This indicates high
correlation between the tomography boundaries and the HEDM boundaries.

Note that when plotting the left column and middle column, the samples have
not been cut to a common region to account for the mechanical cutting problem,
because the mechanical cutting problem does not influence the registration within in
the same pin. This gives us more area to study the correlation. However, for the
right column, the two samples are cut into the same common region because of the
mechanical cutting problem, so the shape in the right column is not the addition of
the left column and the middle column.

This test is a qualitative approach to quantify the goodness of registration between
tomography and HEDM volumes, which serves as a sanity check for the volumetric
registration. Not all features are closely matched because the cost function is built to
consider all layers instead of only the above four layers and some compromise must
be made between all layers.

5.1.2 Intra- (Trans-) versus Inter-granular Fracture

The second measure of the quality of the registration is to study the intra-granularity
versus the inter-granularity for grains along the fracture surface. Intra-granularity,
also known as trans-granularity, describes one particular fracture that breaks through
grains of a material, while the other term, known as the inter-granularity, describes
fracture that follows the edges of grains. Fig. 5.2 shows a schematic diagram illus-
trating the two concepts, where the white gap represents the fracture passing through
the sample.

The rule of thumb to distinguish the intra-granularity and inter-granularity is the
color between the grains across the boundary. For the intra-granular fracture, the
colors of the grains across the fracture surface are the same because by definition the
two grains separated by the fracture are originally from the same grain so the colors
should be the same. On the other hand, for the inter-granular fracture, the colors
are usually different because the inter-granular grains follows grain boundaries so the
two grains across the fracture are originally different. This provides us with a quick
method to distinguish intra-granularity from inter-granularity.

Fig. 5.3 shows the orientation map of one representative layer after the volumetric
registration. Following the fracture surface (denoted by the black line), it is easy to
identify several spots where the same color exists across the fracture surface, i.e.
intra-granular grains and we present six such spots in insets. However, grains with
different colors across the fracture surface, i.e. inter-granular fractures, also exist,
and occur quite often.
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(a) Layer 5 for S1 (b) Layer 5 for S2 (c) Layer 5 Merged

(d) Layer 9 for S1 (e) Layer 9 for S2 (f) Layer 9 Merged

(g) Layer 13 for S1 (h) Layer 13 for S2 (i) Layer 13 Merged

Figure 5.1: Confidence maps for representative layers overlapped with fracture surface
lines (in white). The fracture surface lines are determined based on tomography
material density information. Each row represents the same layer in the registered
volume with first column representing the confidence map for the pin S1, middle
column representing the confidence map for the pin S2 and right column representing
the merged confidence map. All confidence in each subfigure ranges from 0 to 1.
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(a) Intra-granularity (b) Inter-granularity

Figure 5.2: Schematic diagram showing intra- and inter-granular fracture surface in
(a) and (b) respectively. Schematically, the orientation maps are shown here with
each grain represented as a colored patch and the fracture path denoted by the white
gap.
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Figure 5.3: Orientation map of a particular microstructure layer with 6 zoom-in
local regions which show evidences of intra-granularity within the sample. By the
definition of intra-granularity, fracture travels through grains thus orientations across
the fracture surface is close, which is reflected by the similar colors across the fracture
surface (black line). Note color scheme here is based on the same color scheme used
in the orientation map, i.e. using Rodrigues vector mapped to RGB color.
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Figure 5.4: Plots of intragranularity ratio as a function of misorientation thresholds
(in degree) which defines a grain. Intra-granularity statistics based on grain and voxel
are plotted in red and blue respectively. Note this statistics does not incorporate
weighting scheme on the misalignment.

The existence of the intra-granular fractures, which is previously reported, strongly
indicates the accuracy of the volumetric registration. Furthermore, the shapes of
many grains on the fracture surface can be naturally extended to the other side of the
fracture surface, which indirectly indicates the accuracy of the registration. However,
not all grains across the fracture surface are intra-granular in Fig. 5.3. This may
result from the local misalignment of the volumetric registration. As illustrated in
Sections 4.2.2 and 4.2.3, the volumetric registration may not be perfect in some local
regions. Considering the small grain size in our sample, the misalignment in local
region would typically use the orientation in another grain by mistake.

Due to the coexistence of inter- and intra-granular grains, it is interesting to
quantify the intra-granularity ratio. We calculate with respect to the whole registered
volume, the statistics of the ratio based on two counting schemes. First, we count
the total number of intra-granular grains and divide by the total number of grains
along the fracture surface. In the second approach, we calculate the fraction of voxels
at the fracture surface that have nearest neighbors across the surface with similar
orientations.

Fig. 5.4 shows the plots of the two intra-granularity ratios as a function of the
misorientation threshold used to define a “grain”. The setting of the misorientation
threshold determines the definition of the grain, by specifying the maximally allowed
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misorientation within the grain and further affects the definition of intra-granularity.
The reason to study the two statistics over misorientation threshold is because it
gives us a perspective of the misorientation angle distribution for those intra-granular
grains. In Fig. 5.4, the two statistics show similar trends with a sharp increase in the
region where the threshold ranges from 0◦ to 4◦ and shows a plateau region between
4◦ to 13◦ misorientation and then further increases after 13◦. For all misorientation
threshold settings, the voxel-based statistics show higher intra-granularity ratio than
the grain-based statistics. Especially, at the plateau region [4◦ 13◦], the Intragranual-
rity ratios are approximately 4% and 13% for grain-based and voxel-based statistics
respectively. Thus the gap is as large as 10%, which is more than 2 times of the
grain-based intra-granularity, thus we expect a great portion of intra-granular grains
are large.

The transition to the plateau region is around 4◦ for the misorientation threshold.
However, as we illustrated in Section 3.4.4, the average orientation deviation within
a grain for layers is roughly 0.7◦. The discrepancy between 0.7◦ and 4◦ may be
attributed to a couple of reasons. First, deformation is predominant at the fracture
surface, so it is possible that the intra-granular grains get rotated during the fracture
process. Secondly, since our volumetric registration scheme has not incorporated the
tilting and we expect a tilt of about 1◦ (c.f. Section 4.2.2), it is possible that this 4◦

threshold may mainly come from the tilting. In this case, this should go away after
a next generation volumetric registration.

As mentioned earlier, the small intra-granular ratio may be limited by the local
misalignment of the volumetric registration. So we correct this effect by introducing
a weighting scheme. Recall we quantified the quality of the volumetric registration in
terms of the difference in z-height (c.f. Fig. 4.2.3), from which we know the position
that the registration may be wrong. So we introduce an exponential weighting scheme
as follows

ω(i, j) = exp

(
−∆(i, j)

d

)
(5.1)

where ω(m,n) denotes the weighting factor of the pixel at ith row and jth column,
∆(i, j) is the corresponding z-height difference in millimeters, and d is an average
grain radius (12.5µm in our case). Under this weighting scheme, the intra-granularity
ratio is defined as

R ≡
∑

i,j I(i, j)ω(i, j)∑
i,j I(i, j)

where I(i, j) is the indicator function, which is 1 if the voxel on the fracture is intra-
granular and is 0 if not.

Fig. 5.5 shows the computed intra-granularity ratio compared with the voxel-
based ratio. The weighted intra-granularity ratio displays similar trend as voxel- and
grain-based ratios, with a quick growing region in [0◦, 4◦] and a plateau in [4◦, 13◦].
More importantly, weighted scheme improves the ratio by 5% roughly, which qual-
itatively indicates intra-granular grains generally follow the fracture where the z-
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Figure 5.5: Plots of intragranularity ratio as a function of misorientation thresholds
(in degree) weighted by the z-height (red, c.f Equation 5.1 for the weighting scheme)
compared with unweighted ratio (blue). The unweighted ratio is essentially the intra-
granularity ratio based on voxels.
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differences are small. Though the intra-granular ratio is still low, it qualitatively
represents the ratio we saw in Fig. 5.3.

5.2 Local Normal Estimation

To extract the crystallographic directions normal to the fracture surface, we first
need to estimate the plane normal locally on the fracture surface, so that later we can
convert it into the crystal frame. In this section we discuss the procedure to estimate
the local normals. First we will discuss the general scheme we use which is called
the principal component analysis. Then we will tailor this method to our problem.
Finally we will discuss the distribution of the local normals in the sample frame.

5.2.1 Principle Component Analysis

Principle component analysis (PCA) is a statistical technique to reduce dimension.
The general problem PCA solves is to project a set of d-dimensional observations of
possibly correlated variables into a new subspace, with lower dimension m (m < d),
spanned by a set of linearly independent variables (a.k.a principle components)[83].
In our problem, we are given a set of boundary points in 3D coordinate, and we want
to approximate a 2D plane. In the PCA’s syntax, m = 3 while d = 2.

To implement PCA, let us consider the general question where we want to ap-
proximate a set of d-dimensional data points by a m-dimensional hyperplane, where
m < d. To best approximate the original data, PCA maximizes the variance of the
projected points (or equivalently minimizing the projected distances between the data
points and their projections) and it turns out that we only need to approximate the
sample covariance matrix which characterizes the correlation between the input data
points[83]

S =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)T (5.2)

where x̄ is the average of the all data points xn of dimension d and S is the data
set covariance matrix. Our objective is to find a new set of independent principle
components, whose covariance matrix is as close to S as possible. Note S is symmetric
and real, thus it can be diagonalized and spectrally decomposed into,

S =
d∑
i=1

λiuiu
T
i

where λi is the i-th eigenvalue and ui are the corresponding unit eigenvector. Assume
eigenvalues are sorted, i.e. λ1 ≥ λ2 ≥ λ3 ≥ · · · , the contribution of each term is
decreasing from λ1 to λd. For example, consider a eigenvalue as small as 10−6, which
is typical for a 100 × 100 matrix. If we are only allowed to choose one principle
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component to approximate S, choosing the smallest eigenvector would be a bad idea
since the resulting new matrix is probably close to the zero matrix. Instead, we
should choose the first eigenvector since it has the largest eigenvalue which preserves
the most as we can. Similarly, if we are entitled to choose some principle components,
we probably want to choose the first few terms and we keep some structure of S but
not all. If we can choose all principle components, essentially we recover all the
structure of S, however, the last few terms would introduce negligible contributions
at all and practically, around first 10% of eigenvalues are important (c.f. Fig. 12.4 in
[83]).

5.2.2 Tailored Method

In our particular problem, we are given a set of boundary points (denoted as P), and
for any given boundary point p ∈ P we are interested in estimating its local normal,
defined as the normal of the plane that is tangential to P at the point p. The input
is the set of x-y-z coordinates and the output is the estimated normals also in x-y-z
coordinates.

To estimate the local normal, we use a modified PCA approach. That is, for a
particular boundary point, all its neighbors are first identified, then the corresponding
covariance matrix is computed as Equation 5.2 and diagonalized to find the eigenval-
ues and corresponding eigenvectors. However, one twist here is to pick the eigenvector
with the smallest eigenvalue, unlike PCA picks the eigenvectors with large eigenval-
ues. That is because PCA projects to the plane with two large eigenvectors in plane,
while we want the normal of that plane which corresponds to the eigenvector with
the smallest eigenvalue.

In our modified local normal estimation scheme, it is critical to pick the right
neighbors. Specifically, it is natural to ask (a) how many neighbors are to be chosen
and (b) what is the criterion to consider one point to be a neighbor.

The first question is generally easy to answer. For our data set, the general rule
is to prefer a small number of neighbors rather than large number of them because
the latter usually covers a relatively large region and therefore can smooth out small
features with a local change in elevation. This can lead to bias towards a plateau
plane. The actual choice of number of neighbors will be revealed after we answer the
second question.

The answer to the second question is subjective. For example, a typical implemen-
tation of cgal1 uses the nearest-neighbor scheme in 3D coordinates. However, in our
input data the boundary points are extracted on the uniform x-y grid, thus it makes
sense to choose neighbors based on x-y coordinates instead of 3D nearest-neighbor
scheme, because the latter turns out to be biased towards a plateau. To illustrate, we
demonstrate with a typical example, usually found in our debug process, in Fig. 5.6.

1Computational Geometry Algorithms Library, http://www.cgal.org
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(a) 3D Nearest-Neighbor Scheme

(b) 2D x-y Nearest-Neighbor Scheme

Figure 5.6: Schematic diagram of local estimations using (a) 3D nearest-neighbor
scheme and (b) 2D x-y nearest-neighbor scheme. Dotted lines represent the 2D uni-
form griding of the data points in x and y and several boundary points are shown in
circles with their heights noted inside. Circles outlined by green indicate the points
being chosen possibly as the neighbors by either algorithm. Circles outlined by gred
indicate the points not being chosen.
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In this particular example as shown in Fig. 5.6, we estimate the local normal
for the data point at the center and more importantly to compare the effects of 3D
nearest neighbor and 2D nearest neighbor in x-y axes. Note the number of points
to choose is five. Due to the existence of the point at the top with a large height
difference of three pixels, there exists a sharp rise locally, so we should at least expect
a tilted plane which is not in the x-y plane. However, the nearest neighbor approach
(c.f. 5.6(a)) would ignore this large uprise point and choose either one of the two
circles in the third row, because either of them is physically closer in 3D to the center
circle, which leads to a bias to the plateau estimation and distort the local estimation.
On the other hand, the local estimation using the nearest neighbors in x-y plane takes
advantages of uniform griding of our boundary points and chooses the uprise data
point no matter what the jump is. Clearly, the latter choice yields an improved
normal estimation.

After we choose to use the 2D nearest-neighbor scheme, it is natural to choose
five neighbors. That is we choose all the nearest neighbors in the x-y plane and the
point itself. Including four points in the corners of the 3× 3 grid may also be good,
however, we choose five since we want to preserve the normal estimation as locally
as possible. Larger neighbor numbers lead to additional smoothing but we prefer a
level of noise to missing sharp steps in the topology.

5.2.3 Distribution of Local Normals

We now apply the tailored local normal estimation method to our boundary points,
computing the local estimation for all boundary points on the fracture surface. Results
are visualized in Fig. 5.7.

Fig. 5.7(a) plots the 3D geometry of the fracture in paraview2 colored by height
in terms of the pixels. The red color shows the top of the fracture surface and the blue
shows the lowest part of the fracture surface. Fig. 5.7(b) shows the x component of
the local normal estimations on the fracture surface, with red representing estimated
normals facing in the positive x direction and blue representing the estimated local
normals facing in the negative x direction. Cross referencing with Fig. 5.7(a), we
can see the orange regions in Fig. 5.7(b) indeed correspond to the region facing in
x direction in Fig. 5.7(a). A similar result can be found in Fig. 5.7(c). Fig. 5.7(d)
shows the z component of the local normal estimation, with a range from 0 to 1
because there are no overhangs that would have the normal pointing down. The
z component local normal field is overwhelmingly red indicating that most of the
surface has normals along the z-axis.

Though Fig. 5.7 shows only one camera view of the fracture surface, the domi-
nance of the local estimations close to positive z axis is true for all perspectives. To
illustrate this point as well as studying the distribution of the each component of the

2http://www.paraview.org/

73

http://www.paraview.org/


(a) Height (b) Normal X

(c) Normal Y (d) Normal Z

Figure 5.7: 3D visualization of fracture surface in paraview. (a) plots the 3D surface
as obtained from the merged tomography data set. The color scheme is based on the
height above the bottom of the fracture surface in pixels. (b), (c) and (d) plot the x,
y and z components of the local normal unit vectors, respectively.
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(a) Projection of Normal X (b) Histogram of Normal X

(c) Projection of Normal Y (d) Histogram of Normal y

(e) Projection of Normal Z (f) Histogram of Normal Z

Figure 5.8: Plots for components of local normal estimations. Left column shows the
projection of each component of the local normal estimations in 2D. Right column
shows the histogram of each component of the local normal estimation.

local normal estimation, we project each component to the x − y plane as shown in
Fig. 5.8.

Fig. 5.8(e) shows the dominance of large z components, which is also indicated
by the histogram in Fig. 5.8(f). Almost 75% of the voxels have a local normal z
component larger than 0.6. This dominance is partially suggested by the distribution
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(a) Heights variation in S1 (b) Heights variation in S2

(c) Height gradient in x direction (d) Height gradient in y direction

Figure 5.9: Plots of height variations of the fracture surface. (a) and (b) show the
height variations in the pin S1 and S2 respectively. Coloring is done by the estimated
height of the fracture surface where red represents the top while blue represents the
bottom. (c) and (d) plot the gradient components in x and y directions respectively,
where the gradient is defined as difference in height from the nearest neighbor in
either x or y, and the color saturates at 5 and −5.

of the other two components. As shown in Fig. 5.8(a) and 5.8(c), the estimated
local x and y components of the normals are mostly close to zero as indicated by
the green color and high peaks at zero in the histograms. This dominance in z
components suggests most of the normals are facing towards the vertical direction,
i.e. the fracture surface is not extremely rough. To illustrate this, we go back to the
reconstructed tomography volumes for S1 and S2 and we focus on the height variation
of the fracture surface, because the local normal estimations is actually based on the
height field locally.

Fig. 5.9(a) and 5.9(b) show the height variations of the pins S1 and S2 respec-
tively, and the color scheme is based on the height of the fracture surface above the
bottom of the fracture surface. The two figures show almost identical morphologies
with very few differences. This indicates accurate reconstructions of the independent
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tomography volumes. Though the color scheme indicates large height variations,
the local variation is not drastic and some large color patches reflect uniform height
plateaus.

A closer look at this issue is gained by plotting the gradient image, which takes
the height difference of neighboring pixels. The reason to study local height difference
is because such height differences decisively control the local normal estimation. If
the drastic local height difference is rare, we would expect such dominance in z com-
ponent, even the normal estimation algorithm favors local changes. Fig. 5.9(c) and
5.9(d) plots such gradient images with difference in the x and y directions respectively
and colored by the height difference in the range from −5 to 5. In both plots, the
height differences are mostly zero, as indicated by the majority area of green color.
This justifies that the local normals are mostly close to the z axis.

5.3 Distribution of Crystallographic Directions Nor-

mal to the Fracture Surface

We are now ready to calculate the crystallographic directions normal to the fracture
surface for each element or voxel since we have computed the local normal field. The
local normals, vs, are determined in the sample reference frame. To determine the
crystallographic directions that point along these normals, we simply transform to
the local crystal frame

vc = Rvs

where vc represents the local normal vector in the crystal frame. Though it is gen-
erally difficult to quantify and visualize a 3D vector like vc, we can borrow the idea
from materials science which uses the pole figure or inverse pole figure to character-
ize distribution of a 3D vector. However, while the distribution of vc is close to an
inverse pole figure plot, it is not exactly the same. Thus, in this section we will first
discuss the definition of inverse pole figure and the modification so that we can plot
the distribution of the crystallographic directions normal to the fracture surface in a
similar fashion. We then present the distribution of the crystallographic normals and
discuss the implications.

5.3.1 Modified Inverse Pole Figure

As in Section 3.4.3, we used inverse pole figure to quantify the orientation distribution
along a particular sample direction. However, for our problem here, we are not
interested the distribution in a particular direction in sample frame. Instead, we are
interested in the local normal direction in the sample frame for each voxel on the
fracture surface. We compute the distribution of such directions in the crystal frame.
This close similarity to the inverse pole figure allows us to utilize the inverse pole
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figure to generate the plots for our purpose, but we need to modify the procedure for
computing the input data for such plots.

For a typical inverse pole figure, the direction of interest in the sample frame
is given first and converted to the directions in the crystal frame. In theory, one
could project stereographically all those unit directions in the crystal frame, which
are on a hemisphere, to a plane on the north pole with a projection origin at the
south pole. However, due to computational considerations, it is wise to compute the
orientation distribution first by smoothing and then do the stereographic projection.
For a cubic sample, the symmetry operators leads to 24 equivalent regions on the
projection plane, so the usual practice is to pick a particular quasi-triangular slice
which contains three corners, with {001} being on the left, {110} being on the right
and {111} being on the top.

A typical implementation of inverse pole figure can be found in mtex. Nevertheless,
as mentioned previously, the sample directions of interest are not limited to one
particular direction for our problem, so such implementation in mtex is modified for
our need. This is because when mtex makes the inverse pole figure plot for a particular
pole, it requires a list of orientations in the Euler angle representation as the input.
For our problem, since the crystallographic directions normal to the fracture surface
vc are calculated, we need to convert them to corresponding orientations to fit the
mtex’s input format.

To compute the corresponding orientation R, given vc and vs, it is important to
note that there are infinite number of orientations that transform vs to vc. That is
because, from the axis-angle representation, we can choose infinite number of axes,
which forms a plane bisects vs and vc. Since we only need one orientation here, we
pick the axis to be the cross product of vs and vc and the angle to be the angle
between them.

Particularly, we choose the (001) direction for the crystallographic normals to
convert to and make the inverse pole figure along the (001) direction. So the later
plots indicate the inverse pole figure plots along (001) direction. They are actually
along the local normals on fracture surface.

5.3.2 Preferred Crystallographic Directions Normal to the
Fracture Surface

With mtex, the distribution of the crystallographic normals for the voxels on the
fracture surface can be plotted in terms of the modified inverse pole figures. And the
plotting of the modified inverse pole figure adopts the same convention as the ordinary
inverse pole figure. The color scheme is scaled with respect to the distribution of
multiples of a random distribution (MRD). By definition, MRD is the distribution of
a totally randomly oriented sample. And when plotting the inverse pole figure, the
actual intensity of the sample of interest is scaled by dividing by the intensity of the
MRD distribution. So the region with high intensity indicates a distribution density
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much different from random distribution, i.e. a preferred crystallographic direction
normal to the fracture surface.

In this section, we will discuss the distributions of the crystallographic normals
for three categories: all voxels, the intra-granular voxels and the inter-granular voxels
on the fracture surface.

Distribution for All Voxels

First we plot the distributions of the normals to the fracture surface for all voxels on
the fracture surface as shown in Fig. 5.10(a) and 5.10(b). The distributions differ
mainly in the {111} population where S1 displays an intensity of 1 while S2 displays
an intensity of 1.16. However, the intensities of {001} do not differ too much, with
S1 being 1.16 while S2 with 1.1, though the latter is not immediately apparent in
the figure due to the broadened color scale.

Distribution for Intra-granular Voxels

Second we take a look at the distribution of the crystallographic normals for the intra-
granular voxels. Fig. 5.10(c) and 5.10(d) plots the distributions for the pin S1 and S2
respectively. These figures are almost the same in that they share the same minimal
intensity 0.79 as shown in the left corner and their maximal intensities, shown on
the top of the slice, are almost the same, being 1.29, 1.33 respectively. There is a
preferred normal in the {111} direction. This agreement of the distributions of the
crystallographic normal directions for intra-granular voxels is expected because, for
the intra-granular voxels across the fracture surface, the misorientation angle is by
definition less than 2◦, and the normal estimations are the same.

Distribution for Inter-granular Voxels

It is also interesting to study the distribution of the crystallographic directions nor-
mal to the fracture surface for inter-granular voxels. Fig. 5.10(e) and 5.10(f) shows
the distributions for the pin S1 and S2 respectively. Both of them show a drastic
difference from the intra-granular case since they reflect a dominant peak on {001}.
However, the inter-granular voxels in S2 do display another peak in {111} with inten-
sity 1.1 while for the other pin S1, the intensity is 1.0. This discrepancy may come
from the statistical fluctuation and these two distributions are similar, qualitatively
speaking .

5.3.3 Discussion

In this section, we discuss the implications of the distribution of the preferred crys-
tallographic directions normal to the fracture surface seen in Fig. 5.10.
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(a) Modified inverse pole figure for all vox-
els in S1

(b) Modified inverse pole figure for all
voxels in S2

(c) Modified inverse pole figure for intra-
granular voxels in S1

(d) Modified inverse pole figure for intra-
granular voxels in S2

(e) Modified inverse pole figure for inter-
granular voxels in S1

(f) Modified inverse pole figure for inter-
granular voxels in S2

Figure 5.10: Modified inverse pole figures for the distribution of the crystallographic
directions normal to the fracture surface from S1 and S2 respectively in (a) and (b)
all voxels. (c) and (d) intra-granular voxels. (e) and (f) inter-granular voxels. The
color schemes for all subfigures are scaled between the maximal intensity 1.33 in red
and the minimal intensity 0.79 in white. In each subfigure, the three corners represent
different crystallographic directions. The upper corner represents the {111}, the left
corner represents the {001} and the right corner represents the {110}.
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Volumetric Texture

Based on Fig. 5.10, it may be tempting to draw the conclusion that the {111}
crystallographic directions normal to the fracture surface is more likely to lead to
intra-granular fracture for our sample, while {001} grain boundary tends to result
in inter-granular fracture. However, more needs to be considered to rule out any
potential influencing factors. For example, as we discussed in Section 5.2.3, the
majority of the estimated local normals are close to the positive z axis. It is necessary
to consider the influence of the volumetric texture from the sample.

As mentioned in Section 3.4.3, our sample displays texture, that is a preferred
{111} crystal direction near the sample z-direction. Given the fact that local normal
estimation on the fracture surface is dominated by the (001) sample direction, it is
easy to see that the distribution of the normals of the intra-granular voxels is biased
towards {111}. In fact, the maximal intensity of the volumetric normals at {111} is
1.74 while it is only 1.31 for the intra-granular voxels. So it is possible that the actual
intensity of the {111} normals for the intra-granular voxels is less than 1, but it gets
increased due to the dominance of the {111} texture along the same z-direction in
the volume.

On the other hand, the distribution for the inter-granualar voxels is not influenced
by the volumetric texture at all because the peak dominates at {001} instead of {111}.
So it is safe to claim that the inter-granular fracture tends to follow the {001}.

Deformation Mode

As mentioned in Section 1.2, the Rene88DT is susceptible to {111} slip. The physics
behind this is that Rene88DT is a face-center-cubic (FCC) structure and slips often
occur along the most closely packed plane. In FCC, the most closely packed plane
is the {111}. So it is understandable that under cyclic loading, deformation usually
occurs inside a particular grain that the closely packed crystal planes, due to their
strong bonding within the plane, slips like a deck of cards. Such plastic deformation
is irreversible leading to permanent dislocation accumulate and finally results in crack
initiation.

As for the inter-granular voxels, the story is a little bit different, since by definition
inter-granular fracture follows along grain boundaries. As mentioned by Luo et al.[34]
and Li et al.[31], the actual choice of crack propagating along 111 or 100 depends on
various factors like crack-tip intensity factor range[34, 84] as well as temperature and
crack propagation rate[34]. This possibly explains the double peaks in Fig. 5.10(f).
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5.4 Distribution of Crystallographic Directions Nor-

mal to the Fracture Surface on Facets

In the previous section, we study the distribution of the crystallographic directions
normal to the fracture surface on the whole fracture surface. However, since our
technique is quite recent, no comparable experimental results are found to compare
directly with our results. As mentioned in Section 1.2, the current state-of-the-art
techniques only allow for measurements of relatively large areas, known as the facets
on the fracture surface, which contains a partial information of the whole picture.
For example, Miao[35] studies crystallographic normals of 20 facets of a fractured
Rene88DT sample by using the standard SEM-based techniques. Though his paper
definitely indicates all crystallographic directions normal to the fracture surface of
the 20 facets are close to the {111} crystal directions, this relatively small data set
incurs suspicion regarding statistical significance.

Since our data set contains a full distribution of crystal orientations, it also in-
cludes the distribution regarding facets. So in this section, we will present the way
to extract the distribution of the crystallographic directions normal to the fracture
surface on facets and compare our result with the result from the independent SEM-
based techniques. Specifically, we will directly compare with Miao[35]’s result.

5.4.1 Procedure

To extract the distribution of the normals of facets, we need to find a way to determine
the facet. A facet on the fracture surface corresponds to a planar surface region so
ideally the local normal on that facet is the same at every location. Practically, the
local normals of a facet may vary due to the error in the tomography reconstruction
(c.f Section 3.4.1). So we define a facet by setting a subjective angle threshold of
2◦ on the local normals. That is neighboring voxels whose local normals differ by a
larger than 2◦ angle are considered as in different facets. Under this definition, voxels
are grouped into different facets.

Assuming Miao[35] collects information for 20 big facets, we sort the facets by
the number of voxels each facet contains and pick the biggest 20 facets. Miao[35]
also constrained the angle between the facet normal and the loading direction within
[35◦, 65◦]. Though no explanation is given on this point, it is quite possibly because
he used EBSD, which introduces constraints on the measurement, as Prof. Anthony
Rollett pointed out.

Finally, all voxels’ crystallographic directions normal to the fracture surface on
the 20 largest facets are computed by transforming the local normal estimation with
the orientation information.
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(a) Facets Orientation Distribution for S1 (b) Facets Orientation Distribution for S2

Figure 5.11: Distribution of crystallographic directions normal to the fracture surface
on the 20 largest facets for (a) S1 (b) S2. Both subfigures are plotted in terms of
the modified inverse pole figure. The left corner represents {001}, the right corner
represents {110} while the upper corner represents {111}. And color is scaled between
1.41 (red) and 0.66 (white).

5.4.2 Results

After applying the [35◦, 65◦] angle constraint, we further filter out small facets (facets
less than 10 voxels are ignored) and a total of 208 facets are left as our candidates,
which contains 4212 voxels in total. The largest 20 facets are chosen, which has 1106
voxels and the crystallographic directions normal to the fracture surface for these
orientations are computed for the pins S1 and S2.

Fig. 5.11 shows the distributions of the crystallographic directions normal to the
fracture surface on the facets for the pins S1 and S2 respectively. Both of them clearly
show a peak around {111} which coincides with Miao[35]’s report. This is a reassuring
result and it strongly demonstrates the powerfulness of our new method. Besides
this, our technique provides much more detailed and more statistically significant
information.
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Chapter 6

Initiation Site Prediction and
Verification by FFT Plasticity
Model

In Chapter 5 we discussed the preferred crystallographic directions normal to the
fracture surface, which investigates the distribution of crystallographic properties on
the fracture surface mainly in the fracture growth and propagation stages in the
fracture surface’s lifetime. In this chapter, we turn our attention to study of another
important stage of the fracture’s lifetime, which is the fracture initiation. Particularly,
we are interested to study the location of the initiation site of our fracture surface
and compare it with the predicted initiation site by a fracture simulation model.

This chapter is structured as follows. We start with brief introduction to the
study of initiation sites of fracture surfaces in Section 6.1. We review literature on
the fracture initialization mechanisms and motivate our interest in a computational
model. In Section 6.2, we present a particular plasticity deformation model known as
the Fast Fourier Transform based Viscoplastic (VPFFT) model, which can simulate
plastic strain and stress fields under the cyclic loading condition. Then in Section 6.3
we utilize the VPFFT model for strain rate simulation on our fracture surface data set
and correlate the predicted high strain location with the experimentally determined
initiation site. The purpose of this exercise is to 1) see if the model can correctly
locate an initiation site and 2) to demonstrate the direct comparisons that can be
made between HEDM data sets and computational models of materials evolution.

6.1 Introduction

6.1.1 Fracture Mechanisms

The study of the fracture mechanisms is an interesting and important field because
it uncovers the principles of fracture initiation, growth and propagation under ex-
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ternally applied loads under a variety of environmental conditions. It provides more
detailed understanding about material’s mechanical properties and gives invaluable
insights into increasing resistance to reversible and irreversible deformation. Such
understanding has the potential to help make materials that are more robust that
elongated service life. On the other hand, the study of fracture mechanisms is also
challenging, because of its difficult nature. The understanding requires not only the-
oretical models but also abundant related experimental data as well as other factors,
like material’s mechanical nature, loading history and experimental ambient condi-
tions.

From an engineering perspective, the lifetime under fatigue and fracture condi-
tions can roughly be categorized into three stages[85]: crack initiation, stable crack
propagation and unstable crack propagation. In this chapter we focus on the first
stage by locating the presumed crack initiation site and testing the ability of a com-
putational model to reproduce high strain behavior at that site. There are three
candidate mechanisms for explaining crack initiation

• Void nucleation

• Second phase particles

• Plastic deformation

Note that these mechanisms do not have clear boundaries between one another. In
reality, some material undergoing crack initiation may experience a sequence of com-
plicated processes which may be attributed to multiple mechanisms. For example, a
void may form from second phase particles or plastic deformation or the existence of
the voids or second phase particles may result in plastic deformation or other ways
around. However, we will try to clarify each of the above mechanisms as individually
as possible. We will also briefly discuss mechanisms of the crack propagation.

Firstly, void nucleation is the first stage of a process that is followed by void
growth and coalescence in ductile fracture of metals[86]. As mentioned earlier, voids
may possibly come from hard second phase particles[87] or non-metallic inclusions,
as well as from plastic deformation[88]. In the case of particle induced voiding, voids
usually initiate at the interface between the particle and matrix[89, 90]. Besides
the second phase particles and plastic deformation, cavities may nucleate at grain
boundaries[91]. For example, Hull and Rimmer report an inter-granular fracture
resulting from the growth of voids along grain boundaries for a polycrystalline copper
wire at the temperature range 400◦ to 500◦ and a theory based on diffusion controlled
void growth is suggested.[92]

Secondly, as for the second phase particles, it influences the fracture initiation
through the deformation[93]. Because a hard second phase particle does not deform
much as compared with the matrix material, then the matrix material close to the
second phase particle deforms more than the other material. This leads to a higher
strain state which initiates the fracture. Furthermore, the size of the second phase
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particles plays a vital role in the fracture initiation. If the size of the particle is
comparable to the size of the dislocation or the slip band spacing, the dislocation
effect is much pronounced in the fracture initiation[88], while if the size of the particle
is much larger than the size of dislocation of the slip band spacing, the plastic strain
and stress effect takes over. However, Flom and Arsenault[94] investigate the role of
particle size on the fracture process by studying SiC particles in the SiC/Al composites
and find the particle size does not influence the crack initiation toughness (material’s
ability to resist fracture) while it influence crack growth fracture toughness. On the
other hand, a second phase particle can also play a role in forming the voids, as long
as it satisfies certain conditions, as Argon and Safoglu suggested[95].

Thirdly, for plastic deformation, different modes can lead to the initiation of the
fracture, especially, local slip and twinning. For example, Mughrabi et al.[96] model
the crack initiation in a high-cycle fatigue under a dislocation mechanism to study the
cyclic slip mode. They find that fracture initiates at the regions of the cyclic strain
localization in persistent slip bands. Usually, the fracture initiation sites correspond
to regions with high strain rate and stress. Ritchie et al.[97, 98] propose a critical
fracture stress and fracture strain models which sets a threshold of the fracture strain
for fracture initiation. Norris et al.[99] propose a computer simulation model for
fracture initiation and propagation based on a plastic strain model where fracture
initiates when the mean stress exceeds a critical value over a critical length (this
simulation model serves as a predecessor of the VPFFT model as we will present as
follows).

6.1.2 Motivation

In the previous section, we reviewed some literature with respect to the current state-
of-art fracture mechanisms especially for those on fracture initiation. Our aligned and
merged data set serves as a unique observation that can be used to test the hypotheses
of previous theories and proposed mechanisms. Our fracture surface data set not
only contains precise location of the fracture surface but also the orientation field
information and local normal estimation on the fracture surface. However, considering
that some of the above hypotheses are built for different materials with different
material properties from our sample, we limit our focus to several small topics. In
this chapter, we test against a general hypothesis, which correlates the initiation site
with high stress/strain locations, i.e. the high stress/strain location under plastic
deformation induces the initiation site (for Rene88DT sample).

The choice of such hypothesis is motivated by two fundamental reasons. First,
many simulation schemes have been invented to model plastic deformation, based on
models built on theoretical hypotheses and experimental observations, so it is cru-
cial to validate such models with independent, concrete and informative experimental
results, like our fracture surface data set. Secondly, this approach allows compari-
son between plastic deformation models which predict the location of initiation and
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the experimentally determined initiation site location. Such a comparison provides
another indirect measure o the reliability of our registration scheme.

6.2 Deformation Simulation in VPFFT Model

The modeling of crystal plasticity has been developing and improving over decades.
Current commercially available packages combine crystal plasticity with the finite ele-
ment method (FEM). Though FEM is widely applicable to general problems, it suffers
the problem of high dimensionality in case of samples with complex microstructures,
which makes it computationally expensive[100]. A recently developed VPFFT algo-
rithm solves this problem by utilizing a well-optimized and inexpensive fast Fourier
transformation (FFT), while preserving the accuracy and resolution of the FEM ap-
proach. In this section, we will briefly describe the VPFFT model and computational
steps. For more detail information, please refer to [75, 101].

6.2.1 Brief Introduction to VPFFT Model

The VPFFT modeling was pioneered by Lebensohn[101]. This simulation calculates
the local viscoplastic anisotropic response on each point on a 3D Fourier grid, where
the microstructure information is recorded. The system of differential equations on
the local viscoplasticity is solved by the Green’s function approach and computed in
the Fourier space by using the FFT. The well-optimized and computationally efficient
FFT allows fast computation of local information as well as updating texture and
microstructure. The numerical performance of VPFFT is better than finite element
method of the same problem size.

6.2.2 Simulation settings

In this chapter, the same simulation parameters are used for all the simulations on
our fracture surface data set. A volumetric Fourier grid of size 512×512×24 is used,
with the dimension in x and y holding the measured HEDM orientation data from
each of the 24 layers. The in-plane data are placed on a square grid as described in
Section 4.2.4 of Chapter 4. In the input volume, a two-phase set is supplied due to
the VPFFT’s requirements. The first phase is the real data of Rene88DT from the
aligned data set while the second phase is a buffer phase which fills the empty space
left by the real data. A stress is applied in the vertical direction and a total two
loading cycles are simulated because we are interested in locating stress hot sports
associated with crack initiation in the low-cycle fatigue limit instead of the high-cycle
fatigue which induces crack growth and propagation.

87



6.3 Initiation Site Predictions and Comparison

In this section, we present the two distinctive ways to determine the location of the
initiation site for our fracture surface. One is experimental (Section 6.3.1) while the
other is based on the prediction of the VPFFT model (Section 6.3.2). These results
are followed by a comparison and discussion.

6.3.1 Experimental Determination of Initiation Site

The location of the initiation site determined experimentally serves as an independent
evidence for later comparison with initiation site predicted by simulation as well as
for the validation of the VPFFT model. In this section, we present a method to
experimentally determine the location of the initiation site as follows.

The method is known as the plastic replica method and it was performed by
scientists at GE Global Research. The basic idea is to record the crack pattern as the
crack develops and pinpoint the initiation site by backtracking recorded crack patterns
as a function of time. This method assumes that the critical crack starts on the
surface of the sample. Experimentally, this recording step is applied by interrupting
the course of cyclic loading. The cyclic loading is usually scheduled to stop after fixed
number of cycles, cellulose acetate dissolved in acetone is applied on to the surface
of the sample and then a plastic film is cured and recovered. The trace of the crack
detains more acetate than the other regions, which clearly records the pattern of the
crack. Fig. 6.1 schematically demonstrates this method at four different scheduled
cyclic loading stops. In each figure, the fracture (in black) develops with respect to
the previous stage in the bulk sample (in pink) and a film of the plastic replica (in
green) is extracted with the trace of the crack (in black) recorded. The beauty of this
method is that it not only can track the propagation of the crack but also allows us
to backtrack the origin of the crack. In this case, the fracture that dominates in the
final stage (c.f. Fig. 6.1(d)) is indisputably originated from the initiation site at the
initiation stage (c.f. Fig 6.1(a)).

However, the plastic replica method has its own limitations. It can only work for
a small sample, because it can only track the fracture on the surface of the sample.
Imaging a much larger sample is used for the plastic replica method, and it is quite
possible that the initiation site is located at the center region of the sample not
necessarily on the side of the sample, thus this method does not provide any useful
information until the fracture propagates to the surface of the sample. Thus it is
too early to conclude the fracture surface initiates at a point on the surface of the
sample. In fact, this method provides information only on the approximate region of
the initiation site.

To complement the plastic replica method to pinpoint the location of the initiation
site, SEM studies of the fracture surface can be carried out. Fig. 6.2(a) shows
the original SEM for the fracture surface. The river-like vein patterns, which are
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(a) Stage 1 (b) Stage 2

(c) Stage 3 (d) Stage 4

Figure 6.1: Schematic diagram of the plastic replica method to determine the initi-
ation site experimentally. Fig. (a) - (d), the crack pattern (represented in the black
line) develops on the side of the bulk material (represented as the pink rectangle
cuboid), and a plastic replica is recovered (represented by the green rectangle. The
idea is to backtrack the recorded crack traces on the plastic replica.

(a) Original SEM (b) River-like Pattern

Figure 6.2: SEM image of the fracture surface: (a) original SEM, (b) SEM image
with the river-like patterns marked in red lines and convergence of such pattern to a
location (marked by blue arrow), which is probably the initiation site.
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(a) Simulation from VPFFT (b) SEM Image

Figure 6.3: Figures for the simulation of a data set restricted to a cylindrical shape.
(a) shows the simulated strain rate field from VPFFT model, where high strain rates
are localized in several regions which are generally near the boundary. (b) indicates
the particular region with high simulated strain rate on the SEM image shown pre-
viously. In both figures, the experimentally determined fracture initiation site is
indicated by the red arrow, while the candidate region from the VPFFT simulation
is indicated by the green arrow.

delineated in Fig 6.2(b), indicate the traces of the fracture propagation directions
locally. Clearly, these river-patterns follow the fan-type flow lines and backtracking
these patterns reveals that they converges to a location close to the surface which is
probably the initiation site, indicated by the blue arrow in Fig. 6.2(b).

6.3.2 VPFFT Model Predicted Initiation Site and Compar-
ison

As mentioned in 6.1.2, we want to correlate localized high strain/stress locations
in the VPFFT model with the experimentally determined initiation site. In this
section we simulate the stress and strain rate under the VPFFT model. The virtual
sample is trimmed to form a cylindrical subvolume so that the strain calculation is
not influenced by corners, notches or overhangs.

Fig. 6.3(a) shows the simulated strain rate for the cylindrical subvolume. The
simulation reveals several high strain rate regions most of which are localized. They
are candidate locations for the initiation site according to our hypotheses that ini-
tiation should occur at a high stress/strain region. Among the “hot spots” seen,
one region, indicated by the green arrow, is close to the location of experimentally
determined initiation site, which is indicated by the red arrow, in both subfigures
of Fig. 6.3. The direct distance between the experimentally and simulation deter-
mined initiation sites is roughly 64µm. This discrepancy of 64µm can be attributed
to several possibilities. The first possibility is that it is simply a result of the rough
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extrapolation of the “river-like” lines in the SEM image. The second possibility is
that VPFFT model makes some simplifying assumptions or neglects some unknown
mechanisms so that the candidate initiation site is a little bit off from the experimen-
tally determined position, which is quite understandable due to the difficult nature
of the deformation simulation since it depends on many factors. This comparison is
motivated to validate the VPFFT model, and from this comparison we would claim
that qualitative agreement but not quantitative agreement is achieved. Further mod-
ification and fine tuning of the model using this and additional data sets may achieve
improved agreement. However, this further step is out of the scope of this thesis.

As a side note, we consider the other high strain rate regions in the VPFFT
simulation as shown in Fig. 6.3(a) and explain why they are not considered as the
initiation site or at least major initiation site. One reason is that these regions,
though shown as high strain rate in the simulation, may be just the artifacts due
to the boundary effect because they tend to be located close to the boundary of the
trimmed simulation cell. Note for the real sample, more material exists beyond the
boundary here, and the boundary is artificially set for the purpose of removing the
notches. The other possibility is that they could be initiation sites in reality but ones
that never become the dominate one. Observations of so-called multiple initiation
are made both for Rene88DT[102, 103] and other Nickel-based superalloy[31, 104].
For multiple initiation, it is possible to nucleate multiple initiation sites around the
same time under cyclic loading and to develop a small crack for each of them. The
important question is which one dominates and emerges over all the other small cracks
to form the final fracture surface. Thus the VPFFT model may be correct in the sense
that it predicts a multiple initiations site scenario which can happen in real materials.
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Chapter 7

Summary and Recommendations
for Future Work

7.1 Summary

The key objective of this thesis is to present a new technique to characterize the
crystallographic directions normal to the fracture surface. In contrast to the cur-
rent state-of-the-art SEM-based techniques, this technique is demonstrated to be an
improvement in spatial and orientation resolution as well as requiring reduced exper-
imental efforts.

As a part of this work, we have shown that it is possible to reconstruct near-
field HEDM data sets of samples in heavily fatigued states and we have developed
registration algorithms for merging both independent tomography data sets and cou-
pling this merge with matched HEDM data sets. New automated analysis algorithms
have been developed to characterize the fracture surface and the geometry of crystal
orientations relative to the surface.

In this thesis, a Rene88DT sample was received from GE Global Research in the
form of 1mm diameter pieces extracted from the two sides of a fractured sample
was measured with high energy x-ray tomography and near-field HEDM. Volumet-
ric data of tomography and HEDM were obtained by reconstruction using inverse
Radon transformation and forward modelling simulation, respectively, to obtain spa-
tial resolutions on the order of micrometers. A novel 3D boundary points volumetric
registration scheme was developed and performed to align on separate volumes and
to merge all reconstructed information into a single volume. Several qualitative and
quantitative methods to check the goodness of registration were applied to the regis-
tered volume and they indicated good matching of the two samples.

To extract the distribution of the crystallographic normals to the fracture surface,
the local normals were estimated based on Principle Component Analysis and this
field information was transformed from the sample frame to the crystal frame by the
orientation matrix. The distribution of such crystallographic normals was further
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studied in plots similar to the inverse pole figure plot. This analysis indicated that
the intra-granular fracture (fracture path passing inside the grain) tends to follow
the {111} crystal plane, while the inter-granular fracture (fracture path follows a
grain boundary) tends to follow {001} grain boundaries. The dominance of the intra-
granular fracture at {111} crystal plane could be attributed to the normal slip plane
for the face-center-cubic structure, which was {111} due to the close packing of atoms
in that plane. However, the tendency of {001} boundary, though the preference was
not strong, might be attributed to many possible factors.

In addition to the crystallographic directions normal to the fracture surface, efforts
were made to study the fracture initiation mechanism by correlating the experimen-
tally determined location to the simulation determined location of the initiation site.
The actual initiation site was estimated experimentally from the SEM images and
matched against the river-like vein patterns. A deformation simulation was performed
on the aligned volume. A high strain rate region in the simulation was pin-pointed,
which qualitatively matched the experimentally determined location of the initiation
site. This indicated good agreement of deformation model to reality and this data
set might be used to fine tuning existing deformation model in the future.

The completeness of surface characterization here dwarfs that of typical recent
work. EBSD studies have been limited to small fractions of the fracture surface area
due to geometric and other experimental limitations. The most comparable study is
that by Ludwig et al[105] using synchrotron x-ray based Diffraction Contrast Tomog-
raphy. Even in that work, a smaller number of crystal orientations were measured
only in a pristine sample state, rather than in the as-fatigued state studied here.

7.2 Recommendations for Future Work

In spite of all the achievements listed above, some issues exist in this current method-
ology. We will present here some recommendations for future work by first presenting
three known issues and we also present an update on the experimental setup, which
can potentially solve all these issues.

7.2.1 Unresolved Issues

Three important issues that should be clarified in future work are i) the ratio of
inter- to intra-granular fracture, ii) the determination of the location of the initiation
site, and iii) the distribution of crystallographic directions involved in inter-granular
fracture. Uncertainties involved in each of these issues in the current data set could be
reduced significantly by performing in-situ loading measurements as we will discuss
each of these in detail as follows.
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Ratio of Inter- to Intra-Granualar Fracture

In Section 5.1.2, we showed that inter-granular fracture dominates the distribution of
fracture types. The concern with this statement is that any mis-registration of the
data sets will lead to a higher incidence of apparent inter-granular fractures. Our
expectation going into this work was that most of the fracture surface would involve
intra-granular events. Our analysis indicates ∼ 20% intra-granularity. Thus it is
natural to question the origination of such dominance of the inter-granularity and
whether it is physical or an artifact. We expect to make a minor improvement in
the registration by including a relative tilt between the two pieces, but this should
produce displacements of less than a grain size, so we do not expect a dramatic change
in this characterization. It would be more reliable if we could obtain the orientation
information before fracture and it would be much better to track the crack growth as it
happens in order to correlate inter-granular fracture with some factor and understand
its origination.

Determination of Location of Initiation Site

In Section 6.3.1, the location of the initiation site is experimentally estimated, how-
ever, this is a rough estimation. This causes uncertainty when correlate strain hot
spots in the simulation with the estimated location. Thus, again, it would be a better
test of the VPFFT model if one could detect the initiation site experimentally.

Crystallographic normals for Inter-Granular Fracture

In Section 5.3.2, the distribution of crystallographic normals to the fracture surface
with respect to inter- and intra-granular fractures are presented and it was found
that the distribution of intra-granular crystallographic planes could be attributed to
the {111} slip plane in the FCC material. However, the understanding of the inter-
granular fractures is lack because it may depend on very local properties as the crack
develops. Thus we need a new method to keep track of the time evolution of the
whole fracture process.

7.2.2 Combined Near Field and Far Field HEDM to the Res-
cue

The above three known issues call for a new technique to track important aspects
of the whole life of the fracture process. With the ability to map the starting point
of the sample to solve the ratio of inter- and intra-granular fracture problem, with
the ability to track the initiation process to solve the determination of the location
of the initiation site problem and with the ability to track the crack propagation to
resolve the crystal orientations for inter-granular fracture problem. Fortunately, all
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Figure 7.1: Schematic plot of experimental setup for far field HEDM measurement.
The setup is very similar to near field HEDM (c.f. Figure 2.1), however, the only
difference is the extra far field detect which is placed around 10m downstream.

these requirements to track the crack process can be achieved by combing near field
HEDM with far field HEDM as an in-situ loading apparatus.

The far field HEDM is the variant of the near field HEDM, which can be used to
track the crack process. Figure 7.1 shows the schematic diagram for the combination
of the far field and near field HEDM. In addition to the near field detector millimeters
away from the rotation axis, a far field detector (in yellow) is placed way downstream,
which is around meters away. This far field detector is much larger in size than the
near field detector to cover comparable field of view and affords large pixel size.
Essentially, due to the large distance between the far field detector and the rotation
axis, the diffraction patterns reduce to 2θ rings since the location difference of the
grains are negligible in the sample region.

With the incorporation of far field HEDM, the crack process can be easily tracked.
The deformations induced by cyclic loading introduce the peak shift and peak broad-
ening on the far field detector and this event is easily picked by human eyes or some
artificial intelligent algorithm. Then a volumetric measurement of near field HEDM
measurement, together with far field HEDM as well as x-ray tomography measure-
ment can be performed. In this sense, the far field HEDM serves as a notification of
the critical events in the crack process.

Furthermore, the far field HEDM allows the local strain tensor to be incorporated
in the forward modelling simulation, thus be reconstructed as well. Such valuable
information is crucial for correlating local strain and stress to the overall fracture
process thus enriches our understanding of the fracture mechanism in the micro-scale.

Thus, the updated experimental procedure is to first perform the near field HEDM
and x-ray tomography measurements on the un-fractured sample, and then in-situ
cyclic loading is performed and monitored by the far field HEDM until some criti-
cal event happens, then the near field HEDM and x-ray tomography measurements
followed by new round of cyclic loading until new critical event.
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Developing the capability to perform these measurements is the subject of a large
effort by our group in collaboration with scientists at the Air Force Research Labora-
tory, Lawrence Livermore National Laboratory, and the APS. A loading device that
is consistent both HEDM data collection modes has been built, integrated analysis
software is being developed, and early tests have been performed[106]. The work in
this thesis is a proof-of-principle that such measurements will be able to track fatigue
all the way from pristine initial states through to failure and that such measurements
should provide an opportunity for greatly improved understanding through the de-
velopment of tested computational models.

96



Appendix A

A New Data Structure for .mic File

A.1 Motivation

The previous implementation for .mic file is based on a tree structure, which is de-
signed for adaptive griding. The drawback for this implementation is that the access
time is logarithmic. This problem deteriorates when a great number of points must
be sampled, for example when we try to convert a triangular grid to a square grid
(c.f. Section 4.2.4). Thus we develop a new data structure to record the triangular
grid and we want the access time of orientation query given (x, y) to be constant.

A.2 Implementation

To facilitate constant access time, we must provide some mechanism for random
accessing. However, the triangular grid in our problem directly prevents us from
random accessing as the square grid does. My way to go around this problem is to
introduce a new coordinate system.

The new coordinate system used is essentially a triangular coordinate system,
where the i-axis coincides with the original x-axis while the j-axis is 60◦ up from the
x-axis. For the normal hexagonal sample space, we define the center to be center
of the new coordinate system, i.e., i = 0 and j = 0. Then each grid point in this
hexagonal system is uniquely determined by a pair of i and j coordinates in terms
of integers. Obviously, this conversion between the original x-y coordinates and the
new i-j coordinates is unique and computed in constant time.

After the new coordinate system is set up, we need to design a data structure to
allow for random accessing. In this problem, we are forced to use an array to support
random accessing and the position in this data structure of any (i, j) coordinate must
be computable. The ordering in our problem is to scan the all the voxels of the
hexagonal sample space layer by layer, from left to right within a layer and from top
layer to bottom layer. Then given any coordinate (i, j), its location in the array is
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essentially the number of voxels above that point plus the number of voxels to its left
in the same layer. Care must be taken to consider whether the triangle is pointing
up or down.

A.3 Mathematical Derivation

In this section, we derive the index in the array, given triangle which is specified as
(i, j, b) in the hexagonal sample space of generation n where b represents whether the
triangle points up (b = 0) or down (b = 1). Let us first consider the case j ≥ 0 for
simplicity; later we will cover the j < 0 case by symmetry.

We first consider the number of grid points in each row (denoted as f(m) for the
m-th row). For the m-th row (m ≥ 0), possible i values in this rows range from −2n

to 2n− 1−m, so there are 2n+1−m grid points in total. Thus f(m) = 2n+1−m, for
m ≥ 0.

Now consider the number of voxels above the j-th row, which we denote as g(j). By
definition, there is no row above 2n-th row, so g(j) = 0 for j = 2n. For 0 ≤ j ≤ 2n−1,
note there are only one row of voxels in 2n-th row, while all other rows have two rows
of voxels pointing up and down, thus

g(j) = f(2n) + 2 ·
2n−1∑
k=j+1

f(j) = · · · = 2n + (3 · 2n − j)(2n − 1− j)

One last part is to consider the index of the element within the j-th row (denoted
as h(i, j, b)). In this case we need to distinguish the triangle’s pointing direction. If
the triangle is pointing up (b = 0), since we know i of this row ranges from −2n to
2n − 1− j, so the index is i + 2n. If the triangle is pointing down b = 1, we need to
add extra number of triangles pointing up which is 2n+1 − j. So we have:

h(i, j, b) = i+ 2n + b(2n+1 − j)

Depending whether b = 0 or b = 1, h(i, j, b) equals i+ 2n or 3 · 2n + i− j.
Put everything together, the index of a voxel specified by (i, j, b) is the addition

of g(j) and h(i, j, b), which is given by

x(i, j, b) =

{
i+ 2n + b(2n+1 − j) if j = 2n

2n + (3 · 2n − j)(2n − 1− j) + i+ 2n + b(2n+1 − j) if 0 ≤ j ≤ 2n − 1

For j < 0, we consider a mirror image of a voxel (i, j, b) about the origin (0, 0),
which is now in the upper half (j > 0) and we can compute the index using the above
equation and then subtract it from the total number of voxels 6 · 4n. However, one
thing to be careful here is that the mirror image of (i, j, b) is (−i − 1,−j, !b). Even
the mirror grid point of (i, j) is (−i,−j), we need to compensate a shift, because the
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mirror triangle changes its pointing direction which is reflected in ! sign representing
the logic not operator for boolean.

Finally, we have the index for any voxel specified by (i, j, b) as follows

x(i, j, b) =


i+ 2n + b(2n+1 − j) if j = 2n

2n + (3 · 2n − j)(2n − 1− j) + i+ 2n + b(2n+1 − j) if 0 ≤ j ≤ 2n − 1

6 · 4n − x(−i− 1,−j, !b) if j < 0

(A.1)
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