

A Novel Design Methodology for Synthesizing

Application-Specific Logic-in-Memory Blocks

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

H. Ekin Sumbul

B.S., Electronics Engineering, Sabanci University

Carnegie Mellon University

Pittsburgh, PA

July, 2015

I

Copyright © 2015 by

Huseyin Ekin Sumbul

All Rights Reserved

II

Acknowledgments

First and foremost, I am grateful to my advisor, Professor Larry Pileggi, for the invaluable

guidance and support he has given me throughout my years at Carnegie Mellon University

(CMU). My doctoral work would not be possible without his mentorship and expertise. I would

also like to thank my dissertation committee for their time and contributions to my work. I am

especially grateful for the enthusiasm and advice of Professor Franz Franchetti (CMU), and

thankful for all the feedback that Dr. Bruce M. Fleischer (IBM) and Dr. Ram K. Krishnamurthy

(Intel) have given me.

I would like to thank my fellow group members Kaushik Vaidyanathan and Qiuling (Jolin) Zhu

for their more than significant contribution to this work; David Bromberg, Renzhi Liu, and Fazle

Sadi for their invaluable help; and Vehbi Calayir, Vanessa Chen, Bishnu Prasad Das, Tom

Jackson, Shaolong Liu, Dan Morris, and Jinglin (Kiki) Xu for their endless support. I feel very

lucky and privileged to have had the opportunity to work with them.

I am extremely grateful for the endless emotional and technical support of my friends at CMU. I

would like to individually thank Berkin Akin, Onur Albayrak, Cagla (Beril) Cakir, Sila Gulgec,

Melis Hazar, Meric Isgenc, Tugce Ozturk, Mert Terzi, Soner Yaldiz, Lale Yaldiz, and Sercan

Yildiz for their close friendship. I really don’t think I could have made it this far without them,

and will always cherish their friendship.

I would also like to express my gratitude to fellow Electrical and Computer Engineering (ECE)

Department members. I’d like to thank Professor Ken Mai for all his technical and practical help,

as well as his group members N. Etkin Can Akkaya, Mudit Bhargava, Burak Erbagci, and Mark

III

McCartney for their support. Special thanks to Da-Cheng Juan, Huan-Kai (Pumbaa) Peng, and

Gillian Tay for all the good memories.

I cannot thank enough ECE administrators Judy Bandola, Michelle Echko, Samantha Goldstein,

Adam Palko, and Shelley Phelps for all their time, help, and for also putting up with all my

questions.

Most importantly, I would like to thank my family and close friends from Turkey for their never-

ending support and love. I would not be able to go through this journey without their constant

support as my anchor in life. I dedicate this work to my mom, my dad, and my sister.

I would like to also mention that this work was supported in part by the Intelligence Advanced

Research Program Agency and Space and Naval Warfare Systems Center Pacific under Contract

No. N66001-12- C-2008. The work was also sponsored by Defense Advanced Research Projects

Agency (DARPA) under agreement No. HR0011-13-2-0007. I am thankful for their generous

funding and support to our work.

IV

Abstract

As the fraction of integrated circuit area dedicated to embedded memory continues to increase,

the energy spent for transporting data on-chip becomes increasingly larger than the energy

needed to perform computation, thereby creating system-level challenges for data-intensive

application-domains. One effective approach for this challenge is to use Logic-in-Memory (LiM)

blocks, whereby custom application-specific logic is embedded within the memory block to

significantly improve the system’s energy, performance, and area efficiency. Recent studies on

technology scaling below the 20nm node demonstrate that extremely restrictive patterning

enables the automated synthesis of LiM systems by the use of compatible logic and memory

patterns. While in-memory processing architectures have been proposed and successfully built

for various applications, this dissertation aims to exploit the extremely restrictive patterning to

create an end-to-end design methodology for automated synthesis of application-specific LiM

blocks.

The LiM synthesis methodology eliminates all the full-custom design effort that is inherently

needed to build a LiM block, thereby enabling the co-design of algorithms and hardware at an

affordable design cost that would be otherwise impractical. Silicon results for two data-intensive

applications demonstrate that systems based on synthesized LiM designs can provide dramatic

improvements of one to two orders of magnitude of energy and performance efficiency. This

methodology further enables rapid design-space exploration for the overall LiM based system by

making customization efficient and robust with no extra design-cost. This dissertation attempts to

formulate, implement, and validate a novel design methodology that provides automated

synthesis of application-specific LiM blocks.

V

Contents

Contents ... V

1 Introduction ... 1

1.1 Motivation .. 1

1.2 Thesis Contribution .. 4

1.3 Outline .. 6

2 Background ... 8

2.1 Application-Specific Smart-Memories .. 8

2.2 Restrictive Patterning Enablement ... 13

2.3 Application-Specific Logic-in-Memory Designs ... 14

3 LiM Synthesis and Memory Bricks .. 17

3.1 Overview of LiM Synthesis Flow .. 17

3.2 Memory Bricks ... 18

3.2.1 Bitcells Used in Memory Bricks ... 19

3.2.2 8T Bitcell Based Memory Brick ... 23

3.2.3 6T Bitcell Based Memory Brick ... 27

3.2.4 Content Addressable Memory (CAM) Based Brick ... 35

3.2.5 Analysis of Bricks ... 39

VI

3.3 Memory Bricks in Synthesis .. 42

3.3.1 Verilog for Synthesized SRAM .. 42

3.3.2 Memory Bricks and Partitioning ... 43

3.3.3 Library of Memory Bricks .. 46

3.3.4 Synthesized SRAM vs. Compiled SRAM .. 49

3.4 Design-cost of Implementing Bricks.. 52

4 Dynamic Brick Library Generation .. 54

4.1 Automated Brick Generation ... 54

4.1.1 Memory Brick Netlist Generator .. 55

4.1.2 Memory Brick Layout Generator.. 59

4.1.3 Performance and Energy Estimation of Memory Bricks .. 62

4.2 Automated Synthesis of LiM designs .. 70

4.2.1 Overview of the Automated Synthesis Flow .. 71

4.2.2 Rapid Design-Space Exploration Example ... 73

4.3 Accuracy of Estimated Library Generation ... 75

4.4 Algorithm and Hardware Co-design .. 77

5 Silicon Validation for Two Data-Intensive Applications .. 79

5.1 Synthetic Aperture Radar Image Reformatting .. 80

5.1.1 LiM Based SAR Architecture and Test-chip ... 81

5.1.2 SAR Test-chip Results .. 83

VII

5.2 Graph Processing Accelerator .. 85

5.2.1 LiM Based SpGEMM Architecture and Test-chip .. 87

5.2.2 SpGEMM Test-chip Results ... 89

5.3 Analysis of the Results ... 92

6 Design-Space Exploration .. 93

6.1 Spares-Matrix – Vector Multiplication (SpMV) .. 94

6.1.1 LiM Based SpMV Architecture .. 95

6.1.2 Design-Space of the LiM Based SpMV Architecture ... 97

6.2 Design-Space Exploration Flow .. 99

6.3 Design-Space Exploration on SpMV Architecture .. 103

6.3.1 Creating a Design-Space ... 103

6.3.2 Design-Space Exploration .. 104

6.3.3 Analysis of the Design-Space ... 107

7 Scaling, Future Work, and Conclusions ... 111

7.1 Technology Scaling and Future Trends ... 111

7.1.1 Technology Scaling Below 14nm Node .. 111

7.1.2 Future SoC Trends ...112

7.2 Future Work for the Synthesis Methodology ..114

7.3 Conclusion ...116

References ..117

VIII

Appendix A: Memory Brick Generator Codes ... 130

IX

List of Figures

Figure 1.1: Embedded memory abstraction in traditional vs. Logic-in-Memory (LiM) design

approaches... 3

Figure 1.2: LiM synthesis flow driven by standard cell and memory brick libraries 4

Figure 2.1. Application-specific smart-memory design example: Parallel-access memory11

Figure 2.2. Conventional methods for implementing a smart-memory .. 12

Figure 2.3. Metal-1 SEMS from a 14nm IBM test-chip showing bitcell printability when random

logic is put next to bitcell arrays. SEM image reprinted with permission from [36]. 14

Figure 2.4 A synthesized application-specific smart-memory. ... 15

Figure 3.1. LiM synthesis flow: Smart-Memory is synthesized from its RTL description. 18

Figure 3.2. Memory brick as a bitcell array with simplified local periphery. 19

Figure 3.3. Bitcell schematics and their corresponding layouts for 6T, 8T, and 12T CAM bitcells.

Scale omitted for non-disclosure. ... 20

Figure 3.4. 8T bitcell based memory brick schematic .. 23

Figure 3.5. 8T bitcell based memory brick layout .. 23

Figure 3.6. Timing diagram for 8T bitcell based memory brick ... 25

Figure 3.7. 6T bitcell based memory brick schematic. BL reset and Reset control circuits are

X

identical to 8T bitcell based memory brick. .. 28

Figure 3.8. 6T bitcell based memory brick layout .. 28

Figure 3.9. Detailed circuit topology of 6T bitcell based memory brick under 2:1 column muxing

configuration. .. 31

Figure 3.10. WordxBit mapped to RowsxCols in 6T based memory brick under column muxing

configuration of 2:1... 34

Figure 3.11. CAM brick schematic. Local read, read-enable control, and reset control are

identical to 8T brick. ... 36

Figure 3.12. CAM brick layout based on the 8T brick architecture at its core (highlighted with

yellow dotted lines). .. 36

Figure 3.13. Simplified Verilog code describing a 32x10bit 1R1W SRAM using two stacked

16x10bit memory bricks. .. 43

Figure 3.14. Partitioning examples for a synthesized SRAM ... 44

Figure 3.15. Synthesized LiM based SRAM comparisons to compiled-type SRAMs. 50

Figure 4.1. Automated brick generation comprised of netlist generator, layout generator, and

performance estimator (synthesis library generator). ... 55

Figure 4.2. Netlist generation for an 8T based 1R1W memory brick based on Logical Effort

calculations and curve fitting .. 59

Figure 4.3. Leaf cell based layout generation for an 8T based 1R1W memory brick. 60

XI

Figure 4.4. SPICE simulation results for delay characterization of a gate are stored in a look-up

table (LUT), in form of input slew vs. fan-out of the gate.. 63

Figure 4.5. LUT based delay and energy estimation for read wordline (RWL) driver stage 67

Figure 4.6. Dynamically generated brick library and synthesis files. Brick array sizes and stack

numbers are chosen arbitrarily to show possible examples. ... 72

Figure 4.7. Overview of automated LiM synthesis flow. ... 72

Figure 4.8. Simplified design-space exploration example for different SRAMs with single

partitions, all synthesized by using different sizes of memory bricks .. 73

Figure 4.9. LiM test chip containing different sizes and configurations of synthesized SRAM

blocks. ... 76

Figure 4.10. Comparison of chip measurements to estimated library based simulations for taped

out SRAM configurations. .. 76

Figure 5.1. Chip layouts for LiM based system demonstrations .. 79

Figure 5.2. Overview of Synthetic Aperture Radar (SAR) polar-to-Cartesian image reformatting.

Flow picture modified with permission from [18]. ... 80

Figure 5.3. SAR test-chip and LiM based architecture for image reformatting 82

Figure 5.4. SAR chip results. (a) Comparison of SM and TM based parallel access memories. (b)

SAR image reformatting energy consumption results for SM based and conventional approaches.

... 84

XII

Figure 5.5. Overview of LiM based graph processing core. ... 85

Figure 5.6. LiM based SpGEMM CAM architecture built with distributed SRAM and CAM

memory bricks .. 87

Figure 5.7. SpGEMM chip results for performance comparison of LiM based and Heap based

(baseline) implementations ... 89

Figure 5.8. Silicon results of latency and energy for LiM based CAM-SpGEMM and standard

non-LiM SpGEMM chips. .. 91

Figure 6.1. Algorithm-hardware co-design of LiM based SpMV system on a 3D IC stack 96

Figure 6.2. Tool flow example for generating a design-space .. 100

Figure 6.3. Design-space for frequency .. 105

Figure 6.4. Design-space for energy ... 105

Figure 6.5. Design-space for area ... 105

Figure 6.6. Design-space for aspect-ratios. ... 106

Figure 6.7. Design-space for energy-delay product. ... 106

Figure 6.8. Design-space for energy-delay under specific target metrics. 108

Figure 6.9. Design-space for area under specific target metrics. .. 108

Figure 6.10. Design-space for aspect-ratio of partitions under specific target metrics. 108

XIII

List of Tables

Table 3.1. Area comparison of the bitcells. Area is normalized with respect to 6T bitcell area.

Height and Length are normalized with respect to 6T bitcell height. X/Y ratio is Length/Height

for aspect ratio... 22

Table 3.2. Critical path and area of 16x10bit bricks ... 39

Table 3.3. Match delay of 16x10bit CAM brick under different loads ... 39

Table 3.4. Energy per operation (opp) of 16x10bit bricks .. 40

Table 4.1. Tool estimation vs SPICE simulation (on RC extracted arrays) for read delay and

energy. ... 69

Table 4.2. Performance and energy breakdown comparison for stages. 70

Table 6.1. Smart-stream buffer configurations meeting the target metrics. 109

1

1 Introduction

1.1 Motivation

Embedded memory occupies more than 50% of the overall chip area in a modern SoC (System

on Chip) design [1] [2], and the area trends indicate that it will continue to occupy more chip

real-estate as technology scales [3] [4] [5] [6]. From a performance stand-point, due to the ever-

growing disparity between the speed of processor and off-chip memory, known as the memory-

wall [7], embedding more memory on chip has a positive impact on the system performance by

alleviating long data accesses latencies [1]. From an energy standpoint, as the IC technology is

getting close to hitting the power limitations of a die [8] [9] (power-wall), accelerating a task by

embedding more memory as opposed to building a higher-performance processor is the preferred

choice for power efficiency since memory has a lower activity factor than logic [2]. From a

modularity stand-point, IC technology already shifted towards multi-core systems to better

exploit localized computation and parallelism [10] [11] [8], whereby simpler and lower

performing but modular processing blocks with higher memory bandwidths can meet the ever

tightening power budgets while still delivering good performance for today’s data-intensive

applications.

2

Large monolithic memories with mostly-square aspect ratios are the most area efficient choice as

the periphery and lithographic area penalties are minimized [12] [13]. However such large

compiled memories cause system-level issues, especially for data-intensive applications, as most

of the performance and energy are spent on transferring on-chip data over long distances rather

than performing useful computation. An effective solution to address this challenge is to co-

optimize the algorithm, architecture, and hardware, wherein finely tailored small memory arrays

integrated with application-level knowledge localize the computation and minimize the bits

traveled per mm of distance. Such application-specific customization, however, incurs high

design cost. Alternatively, compiling granular small arrays of embedded memory blocks

following a conventional ASIC approach is very area inefficient. This suggests the need for a

design methodology that effectively addresses the challenges of memory-intensive applications

while maintaining an affordable design cost.

An enabling technology for creating such a methodology comes from scaling trends of sub-20nm

technology nodes. Restrictive patterning in deeply scaled nodes constrains designers to map

memory and logic to a small set of well-characterized layout patterns [14]. While memory

compilers have been traditionally used to assemble hard IP layout slices of bitcells and periphery,

restrictive patterning makes the patterning the only critical “hard IP”. Therefore, restrictive

patterning, while conventionally an impediment, does provide an opportunity to place memory

cells and random logic cells in very close proximity without lithographic hotspots or area spacing

penalties. Leveraging this technology constraint as a “feature,” the opportunity for a Logic-in-

Memory (LiM) methodology was proposed in [15], wherein specialized computation logic and

embedded memory could be tightly integrated for localized computation and energy savings

(Figure 1.1). Importantly, since the memory and logic cells are lithographically compatible, any

3

application specific customization could be reliably synthesized into the embedded memory

block with this approach.

Figure 1.1: Embedded memory abstraction in traditional vs. Logic-in-Memory (LiM)

design approaches

The energy and performance benefits of localizing computation for data-intensive applications

are well known [10] [11] [16]. There are various examples of “processor-in-memory” designs

wherein processing units are placed in memory abstraction, or more recently, near data

computing in 3D and 2.5D stacks to provide more bandwidth with less energy [17]. Based on

high-level models and RTL level simulations, it has also been shown that various data intensive

applications highly benefit from LiM blocks [18] [19] [20]. However, there remains the need for

a physical synthesis and design flow (rather than compilation) that can create LiM block designs

with cost and robustness comparable to that of traditional compiled memory blocks, and that is

compatible with a full chip physical synthesis.

4

1.2 Thesis Contribution

This dissertation attempts to formulize, implement, and validate a circuit design methodology to

enable robust and affordable physical synthesis of LiM blocks. The efficiency of synthesizing a

LiM block comes from combining the benefits of full-custom and ASIC design approaches,

whereby efficient customization benefits are achieved through fine-grained integration of logic

and memory while an affordable design cost is maintained through synthesis.

Figure 1.2: LiM synthesis flow driven by standard cell and memory brick libraries

At the core of the LiM synthesis flow, the memory arrays are comprised of “memory bricks” that

represent the lowest level of physical abstraction, analogous to a standard cell. The non-storage

cells, namely, the application-specific logic and memory peripherals, are comprised of standard

logic cells that are lithography-pattern compatible with the memory bricks. Standard cell and

memory brick libraries drive the physical synthesis flow together so that there is no requirement

to modify the existing physical synthesis tools (Figure 1.2). Netlist, layout, and synthesis file

generation of memory bricks is automated in a compiler-like fashion with a well-defined circuit

formulation to eliminate any full-custom design cost. The automated brick generation further

5

enables the use of any unconventional bitcell array sizes (non-power of two row and column

sizes).

Both memory bricks and logic cells are at the same physical abstraction level for synthesis,

therefore, the conventional black box memory becomes a “white box” since the barrier between

memory and logic disappears. Such an approach enables memory arrays to be distributed in a

fine-grained manner, thereby reducing signal travel distances and allowing the inside and outside

of any memory block to be optimized across its boundary for performance, energy, and area. At

the system-level, synthesis further enables rapid design-space exploration for the overall system

by making customization efficient and robust. Using such a design methodology opens up

opportunities to co-design algorithm and hardware, which far outweighs any loss of performance

due to using automated synthesis rather than manually customized design.

The efficacy of our LiM synthesis methodology is validated in silicon for two data-intensive

applications: a Synthetic Aperture Radar (SAR) image re-formatting system and a low-power

accelerator for Generalized Sparse Matrix Sparse Matrix Multiplication (SpGEMM). Silicon

measurement results for both designs are compared with baseline design implementations using

the same bitcells that follow a conventional ASIC approach and with comparable areas. Results

show that the LiM based SAR system improves energy efficiency by 37%, whereas LiM based

SpGEMM design provides superior benefits up to 250x speed-up and 310x better energy

efficiency, coming from the co-design of algorithm and hardware. Rapid system-level design-

space exploration enabled by the LiM synthesis flow is also demonstrated on a smart stream

buffer implementation for Sparse-Matrix Vector Multiplication (SpMV) application.

6

1.3 Outline

The remainder of the thesis is organized as follows:

Chapter 2 provides background and related work for the thesis. In-memory processing systems

and their benefits, and their conventional implementation methods are first laid out. Restrictive

layout patterns that enable LiM synthesis, and existing work on LiM based systems are discussed

subsequently.

Chapter 3 highlights the circuit-level details of memory bricks and how to utilize them in the

LiM synthesis flow. Building a memory brick for three different memory types are detailed for

single-port 6-transistor (6T) bitcell, 1-read 1-write (1R1W) 8T bitcell, and content-addressable

memory (CAM) based memory bricks.

Chapter 4 presents the automation tool for memory brick generation in three parts; circuit

compiler, layout generator, and timing and energy estimator. An overview of the finalized LiM

synthesis flow is followed by silicon verification of the methodology on a test-chip comprised of

various LiM based synthesized SRAM blocks.

Chapter 5 provides silicon demonstration of LiM synthesis methodology on two data-intensive

applications, namely SAR image reformatting and low-power SpGEMM accelerator core.

Background, algorithm, implementation details, and silicon results are detailed for both

applications, followed by an analysis of algorithm and hardware co-design.

Chapter 6 further demonstrates the rapid design-space exploration capability enabled by the LiM

synthesis methodology on SpMV application as a case study. Background on SpMV and its LiM

7

based implementation details, tool flow for generating the design-space, and system optimization

by exploring the design-space are highlighted.

Chapter 7 discusses the applicability of the LiM synthesis methodology for future scaling trends

and points out to possible future work directions. In the conclusion of this dissertation, the

overall impact and the contributions of this work are laid out.

8

2 Background

In this chapter, related work on in-memory processing systems, and conventional digital IC

design methods to implement these systems are highlighted first. Then the restrictive patterning

trend that enables this Logic-in-Memory (LiM) synthesis paradigm is discussed. Existing work

on LiM based implementations on several data-intensive application domains are also

highlighted.

2.1 Application-Specific Smart-Memories

Custom smart-memories have been proposed and implemented for a varying set of applications

to achieve the localized computation that leverages in-memory bandwidth for performance and

saves energy by minimizing wasted data traffic [10] [16]. A smart-memory is a specialized

memory block that is customized to perform extra functionalities, such that the output of a smart-

memory is not just stored data, but a function of the input and the stored data. There are

numerous examples of in-memory processing architectures where the computation and memory

are integrated on the same chip. A brief overview of the related work and implementation

methods of smart-memories are given in this section.

9

i) Related Work

Data-intensive architecture (DIVA) [21] [22] is a processing-in-memory (PIM) system where

multiple smart-memory co-processors are put in a traditional processor to accelerate several

instructions by locally executing them within the smart-memory. Intelligent RAM [16] integrates

logic and embedded DRAM on a single chip for low power and high performance processing

based on MIPS instruction sets. VIRAM [23] [24] is a vector processing type architecture that

broadens the MIPS instruction set of IRAM targeted for multimedia applications. It utilizes the

high bandwidth provided by the on-chip DRAM to perform vector processing and exploit the

fine-grained data parallelism. “Active Pages” [25] is a computation model that consists of a page

of data and a function set to operate on the data. By partitioning applications in between a

conventional processor and a reconfigurable PIM based DRAM system, data-intensive

computations are off-loaded to the PIM based DRAM while the processor can still run at its peak

performance.

Computational RAM (CRAM) [26] [27] is another in-memory processing architecture wherein

simple computational logic is pitch-matched and placed under memory columns, such that

memory works either as a traditional memory or configured as a single instruction, multiple data

(SIMD) smart-memory. Using this technique, parallel work is localized and in-memory

bandwidth is used efficiently for various applications such as computer graphics, image

processing, etc. Another processing-in-memory work that targets SIMD architectures is

TERASYS [28], whereby high performance is achieved through an array of multiple PIMs. The

PIM array is integrated with a high-performance computer, or a “host”, which is used as a SIMD

processor or a as a conventional memory based on the needs of the application.

10

Recent developments in 3D and 2.5D IC stacks and platforms, such as the hybrid memory cube

(HMC) [29], provide very high bandwidth by efficient utilization of through silicon vias (TSV).

Near memory computation examples leverage this high bandwidth in between the stacked

memories and the processor as another degree of localization [30]. For instance, “smart-3D” [31]

architecture demonstrates how to maximize the useful data traffic in between stacked DRAM

caches and the processor to minimize overall execution time.

There are also various examples that embed functionality into the SRAM to perform specific

tasks for the application. An SRAM can be implemented by choosing and tailoring its bitcells

and peripheries carefully for the needs of the target application, or the SRAM peripheral circuity

can be further customized to perform extra functionalities. For instance, a parallel access

memory (or a rectangular access memory) is demonstrated in [32] for power efficient motion

estimation in high-definition video processing. Parallel-access memory is customized to access a

window of MxN pixels of the image in a single cycle (both M, N are integers). This functionality

can be achieved by using M.N number of parallel accessible banks in a conventional compiled

memory. This approach, however, does not exploit address pattern commonality and leads to

energy and area issues if the access window or the image size are large. A smart-memory that

exploits the address pattern commonality is implemented in [32]. By using a customized and

shared row decoder that simultaneously activates M rows to access multiple pixels and a column

decoder to choose in between N columns, single cycle rectangular window access is achieved for

less power and area. A simplified architecture of smart parallel-access memory is shown in

Figure 2.1.

11

Figure 2.1. Application-specific smart-memory design example: Parallel-access memory

There are also reconfigurable smart-memory examples to meet the demands of multiple

applications. “Smart-Memories” [33] is a modular reconfigurable architecture of PIM arrays,

whereby processing core and embedded memory are tightly coupled to offer efficient, low

power, and high performance solutions for a varying type of applications. These smart-memory

arrays are reconfigured to match the needs of the chosen application by configuring their on-chip

memory operation, interconnect network, and computational elements accordingly.

ii) Conventional methods to implement smart-memories

A smart-memory design can be implemented by using conventional digital IC design methods of

ASIC synthesis or full-custom design approaches (Figure 2.2). For a given application that

performs logical function(s) on stored data, the traditional ASIC approach is implementing these

functions with synthesized logic block(s) and transferring the data from/to embedded memory.

To reduce power and data movement cost, the logic can be synthesized to reside near the

compiled memory. The same functionality can be integrated directly into the memory abstraction

with the full-custom design approach to save further energy and gain performance. A semi-

12

custom design approach also exist wherein non-crucial logic block(s) are synthesized, but crucial

blocks of the system (such as the customized memory) are still built with full-custom design.

Figure 2.2. Conventional methods for implementing a smart-memory

An ASIC synthesis approach provides an affordable design-cost. In-memory customization

benefits, however, are extremely limited since the compiled memory instances are provided as

“black-box” or hard-IP instances from the vendor. Other than configuring the memory size,

banking, partitioning, or input/output bus-widths, extra functionality cannot be integrated into the

black-box memory. Full-custom design approach, on the other hand, provides efficient

customization benefits as extra functionalities can be finely embedded into the memory by

designing it from the transistor level. Full-custom design of smart-memories with such

capabilities, however, incurs a high design cost. Transistor-level design involves intricate hand

calculations, manual schematic and layout implementation, and SPICE level simulations. Any

design iteration, design-space exploration, or designing alternative architectures for the same

application adds on to the non-recurring design-cost. Customization benefits and non-recurring

design-cost can assumed to be the same for semi-custom design approach.

The trade-off between efficient in-memory customization and design-cost suggests the need for a

novel design methodology for implementing smart-memories whereby in-memory customization

13

benefits and an affordable design-cost can be achieved together.

2.2 Restrictive Patterning Enablement

As CMOS scales below 22nm technology node with 193nm immersion lithography, design rules

become increasingly complex and grow in number [14]. Morris et al. showed in [15] that a

pattern construct based layout design approach can provide an efficient and affordable interface

between design and manufacturing by limiting the number of patterns used to construct a block

design. With such an approach, both logic and memory bitcells can be mapped on to a small set

of pre-characterized layout patterns, or “pattern constructs”, thereby making them

lithographically compatible. Enabled by this notion, the opportunity for efficient Logic-in-

Memory patterning has been introduced where computation logic can be put inside the memory

abstract without yield, area, or manufacturing penalties [34] [35]

To demonstrate this patterning influence, Vaidyanathan et al. placed area efficient and

manufacturable standard cells next to embedded bitcell arrays on a 14nm IBM test chip in [36] to

analyze the impact of neighborhood of random logic on the printability of bitcell arrays. Three

test cases in Figure 2.3 show Scanning Electron Microscope (SEM) images for Metal-1 layers.

As a reference for optimum printability, bitcell printability in the neighborhood of other bitcells

is shown in Figure 2.3.A. It is observed that design rule compliant standard cells with

conventional “non-regular” layout style hurt the printability of bitcells (Figure 2.3.B), whereas

extremely regular standard cells next to bitcells do not impact bitcell printability (Figure 2.3.C).

These results validate that restrictive patterning, which is already a necessity for deeply scaled

technologies, enables tightly integrating logic and embedded memory cells without requiring

14

extra spacing for lithographic compatibility. Design methodology for implementing the layouts

of both memory and logic cells based on restricted pattern constructs is explored and

demonstrated in the Ph.D. dissertation of K. Vaidyanathan in [35].

Figure 2.3. Metal-1 SEMS from a 14nm IBM test-chip showing bitcell printability when

random logic is put next to bitcell arrays. SEM image reprinted with permission from [36].

2.3 Application-Specific Logic-in-Memory Designs

If memory cells and standard cells can be lithographically compatible, memory periphery

(customized or non-custom) can be then synthesized using compatible logic cells without

compromising manufacturing robustness, and integrated with the bitcell arrays as shown in

Figure 2.4. Synthesizing smart-memories would provide the best of both ASIC synthesis and

full-custom design approaches. Fine-grained integration of logic and memory enables efficient

customization benefits while synthesis maintains an affordable design-cost.

15

Figure 2.4 A synthesized application-specific smart-memory.

We have worked collaboratively with others who are working on algorithm-level exploration and

conceptual system demonstrations. Application-specific LiM designs, algorithms, and their

targeted applications are analyzed in great detail in the Ph.D. dissertation of Q. Zhu in [18].

Basics of a LiM synthesis framework are conceptualized in [20].

Based on the same parallel access memory proposed in [32], a smart interpolation memory is

proposed in [37] [38] to accelerate the bottleneck of polar to rectangular grid conversion in

Synthetic Aperture Radar (SAR) application in an energy efficient way. The proposed

interpolation memory is a LiM based seed table that uses a parallel access memory as a smaller

seed table and interpolates the required data on the fly as if it is readily stored. Experimental

simulation results in [20] and [39] show that a LiM based architecture have great potential for

improving the performance of SAR application. Further experimental simulations in [40] show

that same LiM based architecture can be ported to a 3D IC stack as a low-power accelerator layer

for SAR application to exploit the high bandwidth of TSVs. The interpolation memory is also

16

proposed to be used as a performance accelerator for computing twiddle factors in fast Fourier

transform (FFT) operation in [41] [42], targeted for image processing in computed tomography

back-projection application.

Graph processing is another data-intensive application-domain that LiM based architectures are

demonstrated to provide high gains in energy efficiency and performance. As graphs are

structurally large and sparse, processing graphs effectively translates into processing sparse

matrices. LiM based architectures are then ideal platforms for accelerating graph processing

applications, as logic and memory are finely distributed. A smart content-addressable memory

(CAM) based algorithm and architecture is proposed in [19] [43] to affordably accelerate sparse-

matrix sparse matrix multiplication (SpGEMM) kernel. It is further demonstrated in [44] on

silicon that synthesized LiM architecture for SpGEMM kernel provides orders of magnitude

improvement in latency and energy efficiency.

Although the benefits of LiM designs have been successfully demonstrated, a formalized design

methodology is still required to ensure affordable and efficient synthesis of LiM blocks. In this

dissertation, we will conceptualize, implement, and verify a circuit design methodology for the

automated synthesis of the application-specific LiM blocks.

17

3 LiM Synthesis and Memory Bricks

In this chapter, our LiM synthesis flow and its building block “memory bricks” are discussed in

detail. Automation of the synthesis flow is discussed next in Chapter 4. By leveraging the

restrictive patterning for deeply scaled technologies, we developed a framework to fully

synthesize logic and memory using the pattern constructs as the only necessary hard-IP. By

directly synthesizing application-specific functionality into the LiM block design in a fine-

grained manner, smart-memories would not be custom designed at great cost, or compiled from

hard IP slices at the expense of significant loss of performance and area. Moreover, by fully

automating the synthesis approach, rapid design-space exploration and co-optimization of

hardware and algorithm would be available for system level exploration.

3.1 Overview of LiM Synthesis Flow

A high-level overview of our LiM synthesis flow is shown in Figure 3.1. Custom periphery and

logic are mapped to compatible standard cells, and bitcell arrays are mapped to “memory

bricks.” Then using a conventional physical synthesis flow, smart-memory blocks are described

in RTL, and physically synthesized using the gate-level netlist. Commercial synthesis tools, such

as Synopsys Design Compiler (DC) for logic synthesis, and Synopsys IC Compiler (ICC) or

Cadence Encounter for physical synthesis are used to implement the designs. In traditional ASIC

18

design, compiled memory blocks are “black boxes” with very limited customization allowed. In

LiM synthesis flow, however, since all logic and memory arrays are represented at the same

abstraction level, any memory block becomes a highly customizable “white box”. Libraries of

memory bricks and standard cells are used for the LiM synthesis flow. Bricks are integrated by

Verilog modules at the RTL, by library files at the gate netlist (.lib that includes timing, power,

and area), and as macro blocks at physical synthesis. No modification to the existing physical

synthesis tools is required by defining and utilizing the bricks as conventional macro cells.

Figure 3.1. LiM synthesis flow: Smart-Memory is synthesized from its RTL description.

3.2 Memory Bricks

Memory bricks are the main building blocks of our LiM synthesis flow for building smart-

memories. Similar to a standard cell that describes a Boolean logic function, a memory brick is

an abstraction for the storage function. As shown in Figure 3.2, a brick is a bitcell array with

simplified local periphery that enables communication to standard cells in a rail-to-rail manner,

but it is not a fully functional memory slice. This simplified structure allows for integration with

19

custom/non-custom periphery, as well as other bricks. They are designed to be stackable so that

any banking configuration, memory structure (e.g. different hierarchies and/or partitioning), or

memory size that is envisioned in RTL can be implemented. Wordlines (WL) and read/write

operations are clocked so that the brick behaves like a sequential cell in the netlist. Decoders,

write drivers, and input/output latching are not included inside the brick so that they can be

synthesized with the logic to allow for smart-memory customization at the RTL level. Any type

of bitcell, such as 6T, 8T, CAM (content addressable), embedded DRAM, or multi-ported bitcells

can be utilized to form a brick.

Figure 3.2. Memory brick as a bitcell array with simplified local periphery.

3.2.1 Bitcells Used in Memory Bricks

To construct a LiM synthesis flow, 6T, 8T, and CAM (content addressable) based memory bricks

are implemented. Circuit topology and layout for these bitcell types are shown in Figure 3.3.

Layouts of the bitcells are built in a commercial 65nm technology node. Scale and technology

information is omitted for non-disclosure.

20

Figure 3.3. Bitcell schematics and their corresponding layouts for 6T, 8T, and 12T CAM

bitcells. Scale omitted for non-disclosure.

6T bitcell is designed as a conventional single port SRAM cell with a back-to-back inverter to

hold the data. NFET pass gates are activated by a word-line (WL) to form access paths to

differential bitlines (BL). 6T bitcell layout is implemented as “modern type layout”, with long

WL and short BLs for faster BL driving [45]. Although WLs are longer, access delay can be still

optimized by adequate sizing of the WL drivers. For good readability and writability, NFET

access transistors are sized to be weaker than the pull-down NFETs and to be stronger than the

pull-up PFETs of the inverter-pair [46]. Read and write operations are done by driving the WL to

enable an access path from BLs to the storage nodes. For a read operation, differential BLs are

precharged to Vdd and left floating. As the pull-down NFET of the back-to-back inverter is sized

to be stronger than the pass transistor, the storage node that holds logic-0 slowly drives the

21

floating BL to ground [46]. For a write operation, BLs are driven differentially to logic-1 and

logic-0. As the pass transistor is sized to be stronger than the pull-up PFET of the back-to-back

inverter, it overpowers the storage node that is holding logic-1 and writes logic-0, flipping the

values of the storage nodes in the process [46].

The 8T bitcell is designed as 1R1W capable SRAM cell by adding an extra read-stack to a 6T

bitcell [47]. Stacked NFETs are used to decouple the read and write operation in the 8T bitcell

[47]. Read-stack is activated by a separate read WL (RWL) to drive a single ended read BL

(RBL). Write operation is performed the same way as the 6T bitcell by activating the write WL

(WWL) to open a path to write BLs (WBL). As read and write are decoupled, 8T bitcell provides

more robustness in static read and write noise margins compared to 6T bitcell [47]. 8T bitcell

layout is built on top of the 6T bitcell by adding a horizontal RWL wire, a vertical RBL wire, and

the two NFETs of the read-stack as shown in Figure 3.3.

Content addressable memory (CAM) is a memory type that can work as look-up table (or a hash-

table) in addition to conventional random-access capability [48]. When an input key (or select

data) is provided to the CAM, a single cycle search (or matching) operation is performed against

the stored data. If there is a match, the matching address (or match line) corresponding to the

select data is activated. For the CAM brick, we have built a NOR-type CAM cell [48] by adding

extra CAM NOR structure to the existing 8T bitcell as shown in Figure 3.3. We have chosen the

8T bitcell as the basis of the CAM cell for single ended read and robustness in static read and

write noise margins. NOR type structure is chosen for rail to rail read on match line [48], which

results in a 12T CAM cell. Read and write operations are performed in the same way as the 8T

bitcell. NOR NFET stacks are added to drive the match line (ML), and are gate connected to

22

select line (SL) pair and storage nodes (Figure 3.3). ML is precharged to logic-1 before the

matching operation. When the select data and stored data match, the ML is left floating,

otherwise it is driven to logic-0. This way, ML is left at logic-1 only if all the stored bits in a row

are exactly matching to the select data. Layout of the CAM cell is built on top of the 8T bitcell

layout as shown in Figure 3.3 by adding a horizontal ML wire, vertical SL pair, and the NOR

type NFET stacks.

Dimensions and areas of the bitcells are compared in Table 3.1. Note that the numbers are

normalized for non-disclosure. All bitcells are designed with regular design rules of a

commercial 65nm technology node (without the “pushed design rules” for SRAMs).

 Area Height Length X/Y ratio

6T 1.00 1.00 3.15 3.15

8T 1.33 1.04 3.84 3.69

CAM 2.42 1.39 5.48 3.94

Table 3.1. Area comparison of the bitcells. Area is normalized with respect to 6T bitcell

area. Height and Length are normalized with respect to 6T bitcell height. X/Y ratio is

Length/Height for aspect ratio.

Logic peripheries in a memory are laid-out by matching the pitch of the bitcells for compact

area, or by “pitch-matching”. Layout design, however, is a technology dependent process.

Bitcells and their local peripheries can be laid out differently under various different technology

constraints. It should be noted that although circuit characteristics and layout styles may vary

from technology to technology, the methodology of building memory bricks and the benefits of

using them as building blocks in synthesis remain the same.

23

3.2.2 8T Bitcell Based Memory Brick

Circuit structure of 8T bitcell based memory brick, or 8T brick, is shown in Figure 3.4, and its

corresponding layout is shown in Figure 3.5. Memory architecture of the brick is chosen as a T-

shaped memory topology, wherein the bitcell array is row-divided into two same size arrays that

share a local read circuit. This architecture is chosen for its good performance as the length of

RBLs is halved, and its compact area as read block is shared. The 8T brick structure is comprised

of three local periphery blocks to control and access the bitcell arrays: WL driver, local read, and

control block.

Figure 3.4. 8T bitcell based memory brick schematic

Figure 3.5. 8T bitcell based memory brick layout

24

As there is no decoding within the brick, WL drivers simply act as clocked buffers for the

external row-decoder. They require decoded one-hot WL signal (DRWL and DWWL) as input.

This structure allows peripheral operations to be handled by the synthesized logic. All WLs and

read/write operations are clocked so that the memory brick behaves as a sequential block in the

RTL netlist. Layout of the WL driver is pitch-matched to the bitcell row. As 8T bitcell requires

both RWL and WWL, there are two separate WL drivers per row that are placed contiguously in

the same row to keep the pitch-matching.

The 8T bitcell allows 1R1W access, and has a single ended RBL. Local sense is performed by a

shared and skewed NAND gate that reads in two RBLs (of top and bottom arrays). As the critical

edge for sensing is the falling edge, the shared NAND gate has a skew ratio of strong PFETs to

weak NFETs for faster sensing. The NAND is followed by a tri-state inverter that drives global

Array Read Bitlines (ARBL). ARBLs can be shared by multiple bricks, as they can be left

floating by the tri-state drivers. RBL precharge is handled by PFETs which are also placed in the

local sense cell. Layout of the local sense cell is pitch-matched to a single bitcell column.

A control block is also needed to produce read enable for the tri-state inverter and reset signal for

the precharge PFETs. To stack multiple bricks, ARBLs have to be shared. Therefore, the brick

that contains the read address actively drives the ARBLs while other bricks leave them floating.

An external “EN” signal is used to generate a read-enable signal to activate the tri-states. Read

enable generation is clocked so that the read operation is performed at clock-high. Every RBL

has to be initially pre-charged, or “reset”, as the read operation in 8T bitcell is performed by

pulling-down a precharged RBL. Reset signal to control RBL pre-charging is generated from EN

and inverted clock, since the precharge is needed at clock-low before a read starts. Control block

is fitted into the brick by matching its layout dimensions to WL driver and local sense cells.

25

Power and signal routing in layout is done so that bricks are stackable, thereby any type of BL is

shared without any design rule violations. Our design choice for brick circuits is static logic, as it

makes integration with the standard cells in the netlist easier. Write drivers, and input/output

latching are also left for the outside synthesized periphery for any possible customizations.

Timing diagram of the memory brick is given in Figure 3.6. By making the brick behave as a

sequential cell in the netlist, it is made compatible with other standard cells and registers in the

netlist. As a design choice, read and write operations are performed at clock high, and the RBLs

are precharged at clock low. For this particular configuration (rising clock edge triggered brick),

the read-out data is captured by negative clock edge triggered registers in the netlist. For a clock-

low active brick and positive edge triggered registers for data capturing, only requirement for the

brick schematic is to invert the clock (CLK) signal for the WL driver and the control circuits.

Figure 3.6. Timing diagram for 8T bitcell based memory brick

26

For the read operation, it is expected that one-hot DRWL and EN signal are already at logic-1

before CLK is received. When CLK goes high, chosen RWL is activated and the tri-state inverter

for ARBL is enabled through EN going high. Activated bitcell row drives the RBLs, and shared

local sense reads the data. Activated brick then drives the ARBL (EN at logic-1), while other

bricks remain inactive (EN at logic-0). This operation expects the RBLs to be precharged before

CLK goes high. For write operation, there is no need for activating the brick beforehand;

however it is again expected for one-hot DWWL to be at logic-1. When CLK goes high, chosen

WWL is activated and the WBLs are written into the bitcell row. As 8T bitcells are 1R1W, a

read-write operation is handled the same way, however the read-out and written addresses cannot

be the same address, as it would cause a logic failure. This structure makes the critical path of the

brick read operation. If the brick is the slowest path in the overall netlist, then the minimum

clock period for the netlist becomes:

𝑇𝑏𝑟𝑖𝑐𝑘 = 𝑇𝑊𝐿 𝑑𝑟𝑖𝑣𝑒𝑟 + 𝑇𝐵𝐿 𝑑𝑟𝑖𝑣𝑒 + 𝑇𝐴𝑅𝐵𝐿 𝑑𝑟𝑖𝑣𝑒
Eq. 3.1

𝑇𝐶𝐿𝐾 𝑚𝑖𝑛 = 2. (𝑇𝑏𝑟𝑖𝑐𝑘 + 𝑡𝑠𝑒𝑡𝑢𝑝−𝑓𝑙𝑖𝑝𝑓𝑙𝑜𝑝)
Eq. 3.2

Read and write operations present several timing constraints on external signals. DRWL and

DWWL are expected to be at logic-1 (or monotonously rising) when CLK goes high. Any switch

on DWLs during CLK high will result in a read failure or corrupt data in write. Brick read enable

signal EN has to arrive before CLK high to precharge the RBLs. When EN is received during

CLK low, control block first generates a reset signal, and then reset PFETs precharge the RBLs.

This deterministic delay enforces a setup time for EN signal with respect to CLK rising edge.

Moreover, for a successful and error-free write, WBL pairs have to be held constant when WWL

is going low to deactivate the bitcell row. As there is a deterministic delay from CLK going low

27

to WWL driven back to logic-0, WBL pairs have to remain constant for a certain time after CLK

falling edge. This dictates a hold time on WBL with respect to CLK falling. These constraints are

embedded into a brick library file that is used by the synthesis tools. Brick library files are

discussed in Section 3.3.

Design choices for the brick topology and its sub-blocks, timing of the operations, and decoupled

read and write at array-level enable bricks to be stackable on the same brick type. Write and read

operations are exclusively handled on WBL and ARBL respectively. For multiple bricks sharing

WBLs and ARBLs in a stack, WBLs can be driven with static gates with no need for a periodic

reset, and ARBLs are always driven by the enabled brick without a drive fight. RBLs are always

local to a brick, and are precharged internally without affecting other bricks or the netlist.

3.2.3 6T Bitcell Based Memory Brick

The 6T bitcell based memory brick (6T brick) is implemented with the same T-type memory

topology as 8T brick. 6T brick circuit topology and its corresponding layout are shown in Figure

3.7 and Figure 3.8 respectively. 6T bitcell is a single port cell where read and write operations

are coupled and handled by the same WL and BLs. However, from a synthesis point of view, a

brick has to behave as a sequential cell in the netlist, both compatible with other static standard

cells and stackable on the same type of bricks. This challenge is overcome by decoupling the

read and write operations at array-level (or global-level) as it is handled in the 8T brick, such that

all external access operations to and from the 6T brick are static and rail-to-rail. This design

choice, however, comes with an area and power overhead. All the extra circuitry to decouple the

read and write operations require an intricate controlling mechanism.

28

Figure 3.7. 6T bitcell based memory brick schematic. BL reset and Reset control circuits

are identical to 8T bitcell based memory brick.

Figure 3.8. 6T bitcell based memory brick layout

Local Peripheries

WL driver schematic and working mechanism for 6T brick is exactly the same as the 8T brick; it

Local BL Buffer

GBL[0]

LBL[0] LBL[1]

g_mx[0]

g_mx[1]

Col Mux

BL BL

LBL[0] LBL[1]LBL[0] LBL[1]

mx[0]

mx[1]

vdd

gnd

BL BL

R_EN

R_EN

A
r
ra

y
 R

B
L

SE

Local Read

GBL to BL col mux control

W
wr[0]

CLK

g_mx[0]

Sense Enable Control

R

CLK
Replica Path R_EN

R_EN

SE
Col Mux

Col Mux

CLK

Control

Circuits

R/W

DWL WL

WL
DWL

GBL ARBL

GBL to BL

col_mux

control

BLLocal

BL

buffer

Local

BL

bufferBL

GBL

mux

Rst_EN

Bcell Array

Bcell Array

Local

Read

Global_BL to Local_BL

WL driver

WL driver

GBL to BL

col_mux

control

+
-

Global_BL to Local_BL

6T BitcellWL

BLBL

R/W

col[0]

col[1]

col[2]

col[3]

wr[0]
wr[1]

mx[0]

mx[1]

mx[2]

mx[3]

Col Mux Control

29

is a clocked buffer for one-hot decoded WL (DWL), and its layout is pitch-matched to the 6T

bitcell. As 6T bitcell is single port, however, only a single WL driver is needed for a bitcell row

compared to two WL drivers of 8T brick for RWL and WWL.

Read operation is handled by a latch-type sense amplifier (SA) for fast performance [49]. Since

the 6T bitcell has a weak driver to drive a large BL capacitance, a full-rail pull-down of BL can

take a long time depending on the array size. Therefore, using a sense amplifier speeds up the

read process by sensing a small voltage difference on the differential BL pair and producing a

full-rail read output. As shown in Figure 3.7, latch-type SA is basically a bitcell that is controlled

by a sense enable (SE) signal. At the beginning of a read operation, internal storage nodes of the

SA are precharged to Vdd same as the BLs by holding SE signal at logic-0. When WL goes high,

the bitcell starts driving one of the BLs, thereby creating a voltage difference at SA storage

nodes. When SE signal goes high, it isolates the storage nodes and creates a virtual ground

through the NFET it activates. Unequal voltages on the storage nodes creates a regenerative

feedback, and resolves the voltage difference to a full rail-to-rail difference [49].

Two equally sized inverters follow the storage nodes of the SA for symmetric loading. One of

these inverters then passes the full-rail read-out value to a tri-state inverter. As with the 8T brick,

the tri-state inverter drives the ARBL and is controlled by a read enable signal. Local sense cell

is comprised of the SA, two equal sized inverters (one of which is unused) and the tri-state

inverter. Due to this large area requirement and to achieve a compact block, local sense is pitch-

matched to two bitcell columns. This design choice, however, necessitates column muxing.

Since the local read block is pitch-matched to two bitcells, SA is shared by two bitcell columns.

Two-to-one column muxing (col-mux 2:1) is implemented to pass the differential BLs of the

30

chosen bitcell column to the SA. Muxes are built with only PFETs since the critical transmitted

signal is Vdd or close to Vdd (Figure 3.7). Moreover, as the top and bottom bitcell arrays share

the local sense in T-shaped memory topology, col-mux block is instantiated for both array sides.

This means that, however, we need one more col-mux 2:1 hierarchy to choose from top and

bottom arrays, which adds one more PFET delay to the already slow BL driving time delay. The

extra top/bottom array muxing is pushed to the control side instead, such that the col-mux 2:1

blocks at top and bottom sides of the SA are activated exclusively. The circuit topology for the

col-muxes are shown in more detail in Figure 3.9. Differential BLs have to be precharged before

a read operation, similar to 8T brick. Reset PFETs are then implemented the same way as the 8T

brick, but instantiated at both sides of col-muxes to precharge the local BLs. Col-muxing comes

with the price of area penalty and energy spent on activating the muxes. Since two bitcells are

now activated for a single bit during a read, there is also wasted energy coming from precharging

un-used BLs.

As read and write are desired to be decoupled at the global-level, differential BLs have to be

separated as global BLs (GBL) and local BLs (LBL) from a netlist perspective. GBL should be

only used for writing data into the brick without the need for any reset, same as the WBLs of 8T

brick. Read and write operations are decoupled this way, since read operation is already handled

through ARBLs.

A GBL to LBL driver is implemented for the hierarchical separation of GBL and LBL pairs as

shown in Figure 3.7 and Figure 3.9. GBLs are driven externally from the netlist to full-rails,

whereas LBLs are internal to the 6T brick, and driven by the GBLs only for the write operation.

As two bitcell columns share a single SA, GBL to LBL also needs a 2:1 muxing. Also by

31

disabling the mux pass-gates during a read, GBL to LBL paths are disconnected at the array-

level.

As the GBL to LBL buffer brings an area overhead, driving the differential LBL pairs are

separated to top and bottom sides. As it can be seen in more detail in Figure 3.9, one side buffers

the GBL to LBL (bottom side of the figure), while the other side buffers the GLB_bar to

LBL_bar (top side of the figure). Two-to-one muxing inside the GBL to LBL buffers are built

with the PFET-only structures instead of transmission gates (TG) for saving area. Design choice

can be TG based muxes if Vdd versus Vth scaling becomes a problem. Control signal for GBL to

LBL muxing, however, has to be paired accordingly as TG based mux require both select and

inverted select for NFET-PFET pairs.

Figure 3.9. Detailed circuit topology of 6T bitcell based memory brick under 2:1 column

muxing configuration.

+

-

R_EN

R_EN_b

L
B

L
[0

]

L
B

L
[0

]

+

-

R_EN

R_EN_b

L
B

L
[N

]

L
B

L
[N

]

GBL[0] GBL[N] GBL[N]GBL[0] ARBL[0] ARBL[N]

CLK

WL[0]

WL[1]

WL[W-1]

WL[W]

R/W

col[3]

col[2]

col[1]

col[0]

wr[0]
wr[1]

W

wr[0]

wr[1]

W

wr[0]

wr[1]
g_mx[1]

g_mx[0]

g_mx[1]

g_mx[0]

mx[0]

mx[1]

mx[2]

mx[3]

32

Control for the local peripheries

For read operation, col-mux is required to pass only a single LBL pair to the SA from a group of

four possible LBL pairs; 2:1 for left/right bitcell columns and 2:1 for top/bottom bitcell arrays as

shown in Figure 3.9. For a successful write, both GBL to LBL muxing and the column muxing

have to work in coordination to pass GBL pair to the activated LBL pair (left/right) to form a

single connection in between top and bottom bitcell arrays.

Control circuit for the col-mux signal re-direction mechanism is shown in Figure 3.9. Four

separate signals are generated to control the col-muxes, namely mx[0:3]. During read, only a

single MX control signal is activated to choose a single LBL pair from the group {top-left, top-

right, bottom-left, and bottom-right} to be directed to SA inputs. During write, two MX control

signals are activated together to connect the top and bottom LBLs but to choose either left or

right column. MX signals are controlled by col[0:3] signals during read, and by wr[0:1] during

write externally. These signals are distributed to four MX signals by using 2:1 muxes that are

controlled by an external R/W signal. R/W is logic-0 for read and logic-1 for write. Generation of

col[0:3], wr[0:1], and R/W are handled at the netlist for any possible memory configuration that

the user may want. Distribution of these signals to the col-muxes are handled internally. At the

RTL level, col[0:3] can be generated by a 2:4 decoder and wr[0:1] by a 1:2 decoder, depending

on the distribution of the address space and the bits on bricks. As GLBL to LBL drive for write

operation works in cooperation with col-mux blocks, it is also controlled by the same wr[0:1]

signals activated exclusively at write. During a read or reset, connection of array-level GBL is

cut with the local LBLs for decoupling the write from read at array-level.

As a design choice, control of the reset enable is left to the outside netlist. Therefore, brick read

33

enable signal of 8T brick (EN) is replaced with a reset enable signal (RST_EN) in the reset

control circuit that is shown in Figure 3.4 (control circuit identical to 8T brick). This design

choice makes it possible to intelligently reset the LBLs such that a 1R1W-like access can be

possible even for the 6T brick. This approach, however, requires array-level blocking of bricks

and is discussed in more detail in Section 3.3.

SE signal generation for controlling the SA requires an accurate timing circuit. SE signal should

arrive to the SA when bitcell drives the BL to a certain offset [50]. SA offset is chosen as 75-80%

of Vdd empirically for a good enough sensing margin. To control the timing of SE signal arriving

to SAs at the chosen offset, two alternatives circuits can be used. A simple and area efficient way

is to build an inverter chain to match the worst-case delay of SE signal reaching the SA

simultaneously the differential BL offset is achieved. This inverter chain delay, however, can

drastically change under process and random variations [50]. Therefore a buffer time window

has to be put to make sure SA offset is handled correctly. A replica path, on the other hand,

mimics the critical path delay under any variation and matches the SA offset timing [50]. By

replicating the read critical path with a WL and BL driving, the SA offset is matched under any

variation. This option, however, comes with the price of extra area allocated to replica WL driver

and replica bitcell column. SE signal is created using either of these options. Read enable signal

for the tri-state inverter is generated by buffering the SE signal.

WL drive can be pulsed to turn-off the bitcells after the SAs are activated to reduce precharge

energy. A pulsed WL period matches the timing of SA offset reaching to chosen 75% of Vdd.

BLs can be then precharged starting from 75% of Vdd instead of a full-rail precharge. Pulsed WL

driver is implemented by controlling the falling edge of the WL signal by inserting a series

34

transmission gate (TG) followed by a pull-down NFET in between the AND and buffer stages of

the WL driver. In this mechanism, rising edge of the WL pulse is still generated by the AND

stage of the WL driver (generated by CLK and DWL high), whereas the falling edge is controlled

by SE signal going high. When SE goes high, series TG is deactivated to disconnect the buffer

stage from the AND stage, and the NFET is activated to pull down the input of the buffer stage,

essentially pulling down the WL signal. Both the series TG and the pull-down NFET are

controlled by the SE signal. An extra control block is needed for this mechanism to buffer the SE

signal to WL drivers.

Two-to-one column muxing enforces two words to be stored on the same row for a brick. Under

this rule, a given Words x Bits array is mapped to a memory brick bitcell array with Rows =

Words/2 and Columns = Bits x2. An example mapping under 2:1 col-muxing is shown in Figure

3.10 for an 8word x 4bits array. The decoder that controls the DWL generation is also shown for

this example mapping. Col-muxing is controlled by the least and most significant bits of the

address (LSB and MSB), where LSB controls choosing left/right columns for a bit and MSB

controls choosing top/bottom of the bitcell array. Other address mappings are also valid as long

as Rows x Columns of the brick bitcell array is mapped to (Words/2) x (Bitsx2).

Figure 3.10. WordxBit mapped to RowsxCols in 6T based memory brick under column

muxing configuration of 2:1

35

Design choices of the local periphery circuits and their controlling mechanisms enforce 6T brick

to behave the same way as a 8T brick at array-level since the read and write operation are

decoupled. As a result, the timing diagram and constraints for the 6T brick are identical to the

timing provided in Figure 3.6. The minimum clock period that the brick enforces on the netlist is

also the same as Eq. 3.2. Timing constraints on col-muxing controls (col[0:3], wr[0:1]) are

identical to DWL pin with respect to clock rising edge. As DWL is used in both read and write

operation, there is also a hold time on DWL with respect to clock falling edge at the end of a

write operation. Rst_EN and R/W have the same setup time constraints with respect to clock

rising edge with the EN signal of 8T brick.

As a result of the 6T brick topology, GBLs can be driven statically by standard cells for write

operations, and ARBL ports drive other standard cells rail-to-rail on read operations. Multiple 6T

bricks can be also stacked, as ARBL driving is handled by the brick that is activated for read

while other bricks in the stack are deactivated.

3.2.4 Content Addressable Memory (CAM) Based Brick

To demonstrate the flexibility of the memory brick idea, we also built a content addressable

memory (CAM) brick that behaves as a standalone sequential cell in the netlist. CAM requires

extra circuitry to handle matching operations. Since the 6T brick already brings an area overhead

due to read/write decoupling, CAM brick is built by expanding on the 8T brick. 8T brick is

inherently capable of handling array-level operations with rail-to-rail signals at the netlist as

read/write are decoupled at the bitcell level. CAM cell design is based on 8T bitcell (Section

3.2.1) so that there is no need for extra circuitry to make the CAM brick compatible with the

36

netlist for read/write. The same T-shaped memory architecture and circuit topology of 8T brick is

built by using CAM cell arrays. This way, CAM brick behaves identical to 8T brick in the netlist

for read and write operations, and is capable of 1R1W random access. Extra circuitry for match

operations are built around the T-shaped architecture as shown in Figure 3.11 with the

corresponding layout in Figure 3.12.

Figure 3.11. CAM brick schematic. Local read, read-enable control, and reset control are

identical to 8T brick.

Figure 3.12. CAM brick layout based on the 8T brick architecture at its core (highlighted

with yellow dotted lines).

37

Local periphery for read and write operations are implemented identical to 8T brick peripheries;

namely, WL driver (driving RWL and WWL), local read, and read control. These blocks have the

same circuit and layout styles, except for being pitch-matched to the larger CAM cell. As a result

of this design choice, CAM brick circuits, layouts, external signals, control mechanisms, timing

diagram, and timing constraints on the external pins are identical to that of 8T brick for read and

write operations.

Single cycle matching operation in the CAM cell is discussed previously in Section 3.2.1. Match

operation for the brick is done by passing the array select-lines (ASL) into the CAM cells to

drive the local select-lines (LSL) differentially. Then the NOR-type NFET stacks within the

CAM cells resolve the matching instantaneously without any row activation. A match-line (ML)

of a row connects all the NOR-type NFET stacks, and is precharged to Vdd. Even a single-bit

mismatch per row drives the ML to the ground. If all the LSLs and stored bits are matching for a

row, then the ML is left floating at logic-1. All the row MLs are then passed to outside netlist

through a tri-state buffer. Driving the global MLs (GML) are activated with a CAM enable

signal.

Same with all other bricks types, match operation in the CAM brick has to be compatible with

the standard cell based netlist, and the CAM bricks have to be stackable. Match operation,

however, is fired by the select lines. This suggests the need of a global (or array level) vs. local

SL mechanism whereby ASLs can be driven externally and statically without misfiring a local

match operation. For this, an ASL to LSL driver is implemented for the differential SLs, as

shown in Figure 3.11. ASL buffering is clocked and LSL is driven only if CAM enable signal is

high. CAM enable (C_EN and inverted C_EN) are simply buffered from the external CAM

38

enable (CAM_EN) signal as shown in Figure 3.11. To save area, driving LSL from ASL is

separated into two for LSL and inverted LSL, and placed on top and bottom arrays as shown in

Figure 3.11 and Figure 3.12. When there is no match operation, connection between ASL and

LSL is cut by disabling the tri-state inverter driving the LSL through CAM_EN going low. This

mechanism imposes a hold-time on ASLs with respect to clock falling edge, in an analogous way

to WBL hold time.

Match operation expects the MLs to be precharged to logic-1. A reset PFET is placed into the

ML to GML driver to precharge the MLs. Reset PFETs are controlled by ML precharge control

circuit which activates the reset when a CAM_EN is received during CLK-low. When the match

operation is done, ML to GML drivers drive the MLs that are at logic-0 or logic-1 to the outside

world. GMLs are captured by negative edge flip flops with or without an encoder first. When

matching operation is done, a weak PFET pull-up in the ML out cell is activated by C_EN going

low to drive all GMLs to logic-0 to make sure that there are no floating signals at the netlist. A

weak keeper mechanism can also replace this design choice. The overall CAM operation

imposes both a setup time and a hold time on the CAM_EN signal. With respect to clock rising

edge, there is a setup time on CAM_EN such that every MLs are precharged before the clock

arrives. With respect to clock falling edge, a hold time is needed such that every negative edge

triggered flip flops connected to GMLs capture their corresponding GML correctly before the

outputs are all pulled down.

Depending on the array size, CAM brick critical path can be either read operation for a large

number of words or the matching operation for a large number of bits. Both delay information is

put in the library file for the synthesis. Critical path for the CAM brick is then:

39

𝑇𝐶𝐴𝑀 𝑏𝑟𝑖𝑐𝑘 = max{ (𝑇𝑊𝐿 𝑑𝑟𝑖𝑣𝑒𝑟 + 𝑇𝐵𝐿 𝑑𝑟𝑖𝑣𝑒 + 𝑇𝐴𝑅𝐵𝐿 𝑑𝑟𝑖𝑣𝑒) ,

(𝑇𝐿𝑆𝐿 𝑑𝑟𝑖𝑣𝑒𝑟 + 𝑇𝑀𝐿 𝑑𝑟𝑖𝑣𝑒 + 𝑇𝐺𝑀𝐿 𝑑𝑟𝑖𝑣𝑒) }
Eq. 3.3

𝑇𝐶𝐿𝐾 𝑚𝑖𝑛 = 2. (𝑇𝐶𝐴𝑀 𝑏𝑟𝑖𝑐𝑘 + 𝑡𝑠𝑒𝑡𝑢𝑝−𝑓𝑙𝑖𝑝𝑓𝑙𝑜𝑝)
Eq. 3.4

3.2.5 Analysis of Bricks

Critical path delay, energy per operation, and total area of the bricks are cross-analyzed in this

section. Same bitcell array size of 16x10bits is used for all the bricks for a better comparison.

Load for each brick is assumed to be stack of 8x bricks of the same type. Since 6T brick has

different memory size (WordxBits) mapping to bitcell array size (RowsxCols) due to col-mux 2:1,

two instances of 6T bricks are added to the comparison. Memory sizes of 16x10bits and 32x5bits

are mapped to bitcell array sizes of 8x20bits and 16x10bits respectively for the compared 6T

bricks. The following tables summarize SPICE simulations for post-layout bricks.

 Memory

size

Bitcell

Array size

Number of

Sense Cells

Read

Critical Path

Total Area

[um x um]

Length

[um]

Height

[um]

8T brick 16x10b 16x10b 10 307ps 664.2 36.1 18.4

CAM brick 16x10b 16x10b 10 330ps 1254.2 51.4 24.4

6T brick 16x10b 8x20b 10 331ps 879.5 44.3 19.8

6T brick 32x5b 16x10b 5 362ps 636.7 26.1 24.4

Table 3.2. Critical path and area of 16x10bit bricks

Delay [ps] Self-

loading

1xWL

cap

2xWL

caps

4xWL

caps

5xWL

caps

6xWL

caps

8xWL

caps

Match

critical path
388.8 402.7 413.2 430.3 438 445.8 461.1

Table 3.3. Match delay of 16x10bit CAM brick under different loads

40

Energy [fJ] 8T based

16x10bit

CAM based

16x10bit

6T based

16x10bit

6T based

32x5bit

Read opp 920 1091 524 382

Write opp 149 177 356 236

Match opp - 2463 - -

Table 3.4. Energy per operation (opp) of 16x10bit bricks

For the read delay, 8T brick is the fastest and 6T brick is the slowest as expected. CAM brick

read delay is also relatively close to the 8T brick, as the CAM cells are built based on the 8T

cells. Performance penalty on CAM read is paid due to extra capacitance coming from larger

area. For the 6T brick with 8rows x 20bits, read delay is relatively close to 8T brick, as BL

heights are approximately the half of 8T brick RBLs. However, when we look at the comparable

bitcell array of 6T with 16rows x 10bits, 6T brick is slower. WL drivers and final tri-state

inverters are sized optimally for minimum delay, so the delay coming from WL driving and final

load driving is roughly the same for all the bricks. Sizing of the brick circuits is explained in

detail in Chapter 4. CAM match delay with no loads on GML (self-loading) is still slower than

CAM read delay with 8x stacked bricks. This does not necessarily mean, however, that critical

path of CAM is always the match operation, as a CAM array with a large number of rows (or

long RBLs) and short bit-length (or short ML) may result in CAM read delay being comparable

or worse than the CAM match delay. Table 3.3 shows the CAM match operation delay with

changing final load capacitances. Load capacitance unit is set as WL capacitance.

6T brick area with comparable bitcell array size of 16rows x 10cols has the smallest area,

whereas CAM brick has the largest area as expected. But it should be noted that 8T brick area

and 6T brick area with comparable bitcell array size are very close. This is mainly coming from

41

the extra area overhead of the local periphery that is introduced in 6T brick for global read/write

decoupling. Also, the 6T brick with 16words x 10bits (bitcell array size 8rows x 20cols) has a

larger area compared to 8T brick, although 8T bitcell is larger than 6T bitcell. This is mainly due

to the aspect ratio that col-mux 2:1 enforces. As the 6T brick with same memory size has two

times the columns of 8T brick, length of the 6T brick becomes nearly 25% longer than the length

of 8T brick. It also has nearly the same height with 8T brick due to extra area overhead at top and

bottom arrays.

Energy-per-operation is compared for read and write operations for one full clock cycle, such

that both operations include the energy dissipated on precharging BLs. When energy results are

analyzed for read operation, 6T brick is the low-power choice as expected, and CAM brick is the

least power efficient. In between two 6T bricks, the one with 32x5bit memory size consumes less

energy as it is comprised of half the number of local sense cells, precharge circuits, and columns

per activated row when compared to the one with 16x10bit memory size. During the write

operation, local BLs are driven internally and global BLs are driven externally by the netlist for

the 6T bricks. Write BLs are all global in 8T and CAM bricks, so they are all driven externally

by the netlist. As a result, write energy for 6T bricks are higher than the 8T and CAM bricks. The

energy for driving the write BLs for 8T and CAM bricks, however, will be still dissipated by the

standard cells that will drive the WBLs. For 8T and CAM bricks, 8T brick has lower write

energy as expected with its lower array capacitances. CAM match operation consumes high

energy, as all the MLs are first precharged and then driven to the ground except for the matching

row(s) due to the chosen NOR-type CAM cell structure.

Brick layouts are technology, PDK, and bitcell dependent. All layouts are implemented with

42

conventional technology rules, and “pushed design rules” are not used. Preferred directions for

M2 and M3 are horizontal and vertical respectively. All layouts are done such that signals are

distributed in up to M3 only, with the exception of read-enable control signals going up to M4

(horizontal) in the 6T brick due to wire congestion. Both rail and grid type power distribution

layout styles are used up to M3 wherever possible. Clock distribution in the bricks is

implemented as wire-only with no internal buffering. Clock signal is only used at the initial stage

of WL driver and control circuits, so keeping the first gates at minimum size for these blocks

help with minimizing the loading on the clock network of the netlist.

3.3 Memory Bricks in Synthesis

Enabled by their design, memory bricks are physically and functionally compatible with standard

cells and other bricks. By further defining bricks in hardware-description languages (HDL) as a

module, they are integrated with RTL designs and behavioral simulations. To use the brick

modules in a netlist at physical synthesis, their circuit level timing, power, area details and pin

capacitance information are exported into a library file, which is then used in the synthesis flows

as a macro cell. Flexible brick stacking allows building any memory configurations at the RTL.

3.3.1 Verilog for Synthesized SRAM

A simplified HDL example on how the bricks are used in the netlist and RTL is given in this

section. A simplified Verilog code that is given in Figure 3.13 implements a 32x10bit 1R1W

SRAM using an 8T brick with 16x10bit array size (brick_16_10). Array size of 32x10bits is first

created by instantiating two of 16x10bit bricks and stacking them by connecting their input

43

WBLs and output ARBLs. As bricks do not have a decoder, a 5 to 32 decoder generating 32 one-

hot DWLs is built with standard cells (decoder_5to32). Since the SRAM is desired to be 1R1W,

the same decoder is instantiated twice for handling read and write addresses separately. Enable

signal for the bricks can be generated from the most significant bit of the address to activate one

of the bricks while the other stays idle to preserve energy during a read operation. Depending on

the brick size or the memory brick type (8T, CAM, 6T), the module that is instantiated is

changed to the appropriate Verilog module. A Verilog pseudo-code of the used memory brick in

this simplified example (1R1W 8T brick with 16x10bit size) is given in Appendix A.

Figure 3.13. Simplified Verilog code describing a 32x10bit 1R1W SRAM using two stacked

16x10bit memory bricks.

3.3.2 Memory Bricks and Partitioning

Circuit and layout structure of memory bricks enable their flexible use within a design, making it

possible to build any memory configuration and hierarchy at the RTL. As bricks are stackable

and distributable, local and global peripheries defined at RTL can configure and utilize memory

brick partitions to form different memory hierarchies. Partitioning example for building an

44

SRAM with three different configurations are shown in Figure 3.14. An SRAM with a given

memory size can be built as a single partition by stacking N bricks, or with multiple partitions by

stacking N/2 bricks or N/4 bricks. Partitions can share the decoder for the same memory size, or

can have separate decoders to implement parallel accessible banks.

Figure 3.14. Partitioning examples for a synthesized SRAM

More complex hierarchies can be built by configuring the global accesses to WLs and BLs. By

introducing different levels of hierarchies to row/column decoders and banking formations at the

RTL level, various different memory configurations can be implemented; such as divided WL

structures [51] [52], hierarchical word decoding [53], or hierarchical divided BLs [54] [55]. As

bricks permit their activation and deactivation through their control pins (read enable, reset

enable, or CAM enable), global memory structures can be controlled by generating the

appropriate control signals from the available address space.

An interesting capability for the 6T brick is an “area-windowing” mechanism, as described in

45

[56], whereby the reset-enable and read-enable pins are used to control internal read, write, and

precharge operations. A 3R2W application-specific register file is implemented in [56] by using

four 1R1W banks with shared global BLs. By mapping read and write operations to available

address spaces, or “area-windows”, 3R2W capability is achieved without modifying the bitcells.

The same concept can be used for the 6T bricks by carefully timing the read, write, and

precharge operations. After a read operation that is performed at clock high, BLs in the 6T brick

are precharged at clock low. Since reset-enable of a brick is controlled externally, however, we

can leave the BLs discharged if we know that we will perform write immediately after the read.

Then a write operation can be done at clock low instead, making the 6T brick behave as a 1R1W

capable brick for that cycle. For the next cycle, however, the same brick should be blocked for

the address space if a consecutive read operation is scheduled, and another brick in the partition /

stack should be used. In the consecutive cycle, BLs of the blocked brick are then precharged by

activating reset-enable signal, making the brick available at the beginning of the third cycle and

so forth. With this control and address mapping at the RTL, a 6T brick can be used as a “modify

after read” (or read-before-write) [57] memory where the decoded WL is kept the same to

immediately modify the read-out address, or as a 1R1W memory by implementing two decoders

that work at exclusively at clock high and clock low.

Different partitioning choices lead to different area, power, and delay numbers for the same

SRAM size. The choice of memory brick array size further changes the overall performance. For

instance the same single partition can be built by a single brick, or by multiple bricks stacked on

top of each other. Although bitcell array size stays exactly the same at the RTL level, changing

brick sizes impact the delay, energy, and area as. All of these partitioning and memory

configurations span to a design-space, and the exploration of this LiM based design space is

46

analyzed in detail in Chapter 7.

3.3.3 Library of Memory Bricks

A library file of a cell guides the synthesis tool regarding how the cell behaves under different

conditions. It includes gate-level characteristics and technology dependent timing models of the

cell under different input driver and output loading scenarios [58].

The timing of a cell is characterized with respect to varying output loads and input signal slews.

These numbers are then tabulated in a characterization look-up table (LUT). When a cell is

placed in the netlist, its timing behavior is modeled by performing interpolation on its

characterization LUTs with respect to the input slew and output load the gate sees. Modeling

involves cell delay and output slew, which in turn, becomes the input slew of the next gate(s)

placed on the same net. Hold and setup times with respect to a signal edge are also modeled and

used in the same way. Power is modeled for different input-output combinations for multiple

operations based on a unit clock period. Then, depending on the netlist clock period and pin

switching activity, power of a cell is calculated by appropriately scaling the power numbers

reported in the library. Pin capacitances are also reported in the library to calculate loading of the

previous gates in the path driving the cell. Area information is used in logic-synthesis to estimate

the overall area of a synthesized netlist.

Memory brick library files for synthesis are created in Liberty format (.lib) [58], and they include

the following information:

 Timing and capacitance indexes for the characterization LUTs

 Critical path delay

47

 Output rise and fall times

 Hold times with respect to a signal

 Setup times with respect to a signal

 Pin capacitances (extracted wire and total gate capacitance)

 Area

 Power for read, write, no-operation (no-op), leakage, match, mismatch, and any possible

multi-port operations such as read & write, match & read, etc.

Typical-typical (TT), slow-slow (SS), and fast-fast (FF) corners (for both NFETs and PFETs) for

each of these characterization points are needed in three separate library files. Library files in .lib

format are human readable, and can be generated by a tool, or via a text editor by modifying an

existing .lib file.

LUT that holds the timing models of the bricks are stored in a 7x7 matrix format, where rows

and columns are indexed by the input index key. LUT columns denote output loads and rows

denote input slew. The appropriate index key has to be provided in the brick library file. Typical

loading scenario for a brick is other bricks in a partition plus the final gate load. Then a typical

load capacitance index key for a brick partition with 8 stacked bricks is {0x, 1x, 4x, 8x, 9x, 12x,

16x} of total ARBL pin capacitance, where 0x denotes no load case (self-loading) and 16x

denotes twice the intended load of 8x bricks. Note that the typical load that the brick will see in

the netlist is placed into the middle of the index. In the same way, a row index is also created for

typical input/output slews in terms of “fan-out of four” (FO4) delays [59]. Rise and fall times of

the output pin are also stored in the same way. Post-layout RC extracted (RCX) SPICE

simulations are performed on the bricks by sweeping the output load and input slews to simulate

48

the timing delays. SPICE simulations for generating all these numbers have to be repeated in TT,

FF, and SS corners. Note that performing all these simulations are very time-consuming.

Alternatively, an automated delay estimation to generate the timing characterization LUTs is

discussed in Chapter 4.

Critical path delay is modeled as CLK received (CLK rising) to output delay. As the critical path

is read operation for 8T and 6T bricks, delay is modeled as mid-to-mid delay of CLK to ARBL

delay. For CAM brick, there is additional delay of match operation that is defined as mid-to-mid

delay of ASL to GML. Brick delays and output rise/fall slews are modeled by sweeping possible

output loads that the brick can see in a netlist. Since a brick is a large macro block with more

than eight stages of gates on its read delay path, the effect of input CLK slew on the ARBL

rise/fall time and CLK to ARBL delay is typically negligible. As discussed in the previous

section, each brick has its own hold and setup time constraints on certain input signals with

respect to CLK. Hold and setup time characterizations are performed by pushing the signal

towards the intended CLK edge and checking if the operation fails. FF simulations for hold time

and SS simulations for setup time are critical.

Area information is directly imported from the layout, and pin capacitances are calculated from

RCX wire capacitances plus the total gate capacitance on the net. Power for brick operations are

simulated in SPICE at a typical clock period. Power operations are defined by logical checks on

input pin data, such that the tool can understand which power number to use for a given

operation. For instance, in an 8T brick, if any of DRWL pins are at logic-1 and all the DWWLs

are at logic-0, then the operation is read and read power should be used. On the other hand if

none of the DRWL or DWWL is activated (all at logic-0), then the operation is a no-op.

49

3.3.4 Synthesized SRAM vs. Compiled SRAM

Using the Verilog modules described Figure 3.13, the partitioning examples given in Figure 3.14,

and the brick library files described in the previous section, we synthesized several brick based

1R1W capable SRAMs. RTLs are created and verified in Mentor Modelsim, gate-level netlist is

synthesized in Synopsys DC, and final layout (in gds format) is generated in Synopsys ICC. A

commercial standard cell library of low-Vt gates (LVT) in 65nm technology is used. Chosen

memory size is 128x10bits, and it is synthesized by using 32x10bit, 64x10bit, and 128x10bit

bricks with possible partitioning configurations of single, two, and four partitions. Bricks are

stacked whenever needed and six different SRAM configurations are synthesized. Used brick

type is 8T bitcell based 1R1W capable brick.

To analyze the circuit-level penalty introduced by synthesis, two different versions of the same

SRAM size are designed as a compiled memory alternative, namely SRAM_v1 and SRAM_v2.

Bitcell arrays are distributed to four 32x10bit arrays that share local sense in SRAM_v1. Only

one array is activated to read out the 10bit word. Bitcell arrays are distributed to four 64x5bit

arrays that share the local sense in SRAM_v2. Two arrays are activated simultaneously to read

out the 10bit word. SRAM is implemented by using the 8T bitcell, and pitch-matched sense and

WL driver (for row-decoder) instances of the brick. Pre-decoder is designed by modifying the

WL driver of the brick. In/out flip-flops for read and write addresses, and data-in/out are used

from the same LVT standard cell library.

50

Figure 3.15. Synthesized LiM based SRAM comparisons to compiled-type SRAMs.

Comparison results for synthesized SRAM configurations and compiled type SRAM are shown

in Figure 3.15 for area, frequency, and read energy. Results are aggregated from SPICE

simulations and block-level estimations. All results are normalized for SRAM_v1 and SRAM_v2

numbers for an easier discussion. Results point out that the comparison of a compiled SRAM and

synthesized SRAM based on LiM flow depend on many interacting factors, and a clear-cut

apples-to-apples quantitative analysis is not feasible. Bitcell design, memory formation,

architecture of the compiled SRAM, partition sizes and aspect ratios have a visible impact on the

results. Furthermore, synthesis parameters such as flat vs. hierarchical synthesis, increased wire

congestion for smaller area, brick sizes, partitions formed with bricks (stacking bricks), use of

global or hierarchical peripheries vs. single monolithic array architecture have equally important

impact on the comparison results. Note that this comparison is simply done on conventional

SRAM without any application-specific customizations. Any smart-memory type customization

would make the overall quantification of the comparison even harder.

When the results are compared, we can see that the area penalty coming from synthesized global

peripheries ranges from 20-50% for matching bitcell array sizes. Overall delay results have a

bigger margin, showing that synthesized SRAM can be faster or slower depending on how it is

51

configured. As bricks have their own local sense cells, any stacked brick partition immediately

becomes a hierarchical access with fast read due to shorter BLs. Energy comparison is the

hardest to quantify as it heavily depends on the stored data and switching of address bits. Read

energy, however, roughly matches the area trends.

A qualitative analysis of this comparison is more meaningful in this case. Design choice of

including the WL driver into the brick results in a roughly 10% area penalty. WL driver is

embedded into the row-decoder in a compiled SRAM, whereas decoder is re-instantiated in the

netlist for the synthesized SRAM, resulting in an additional penalty of 10-20% depending on

how big the area allocated to standard cells is. When more bricks are stacked, they each include

their local sense and control circuits, analogous to local vs. global read in the hierarchy. This

increases the speed, but comes with a price in area and energy. Critical path of the brick sets the

clock-high period as given in Eq. 3.2, whereas the critical path of the compiled SRAM is pre-

decoder, row decoder, bitcell read, and sense-out delay. This total delay is hidden under the

whole clock cycle and not only at clock-high, resulting in a faster frequency. This does not,

however, mean that more work is done with a compiled SRAM, as the other half of the clock

cycle is used for any application-specific computation in the synthesized SRAM. Energy

difference depends on total switched capacitance at the decoder side, as the bitcell and read

energies are more or less the same for equal bitcell array sizes. As a result, it follows the area

trends for equal bitcell array sizes. Changing the partitioning and brick sizes, however, has an

immediate impact on the energy.

It is also meaningful to analyze the impact of using different brick and stacking on the memory

performance. Results show that bricks with larger bitcell array sizes are more area efficient

52

compared to the equal memory size built from stacking multiple bricks. Smaller bricks are,

however, faster as they have shorter BLs. WL driver delay for a constant bit number per row

roughly gives the same delay, as sizing, load capacitance, and gate stages are the same. For the

same bitcell array size, energy burned for precharging BLs and read-out are roughly the same.

More bits per row, however, results in more power burned for the control of the reset PFETs for

the same array size. Single partitions result in area and energy efficiency, but this is traded off

with a penalty in speed due to longer wire delays.

3.4 Design-cost of Implementing Bricks

Without a design methodology, design cost of building smart-memories is pushed back to brick

generation. To obtain full customization benefits and reduced design cost, a complete LiM

framework requires a well formulated end-to-end design methodology. For this purpose, we

automated the memory brick generation.

If done manually, non-recurring custom design cost of an application-specific smart memory still

exists since the memory bricks have to be generated both in circuit and layout level, and

simulated accurately to get timing and power numbers to be used in physical synthesis. Memory

bricks need to be compatible with any given application and novel algorithms; therefore any type

of memory brick should be readily available. Custom designing bricks every time for the needs

of a new application defeats the purpose of eliminating the design cost, and recreates a relatively

high cost. In addition, this cost increases drastically if an effective design-space exploration is to

be performed, since all memory types and sizes may be needed. For a true design-space

exploration, LiM synthesis framework requires having a virtually infinite memory library

53

including any combination of any word numbers, bit lengths, bank sizes, etc.

A formalized design methodology is implemented to ensure that LiM synthesis framework can

be used as an automated synthesis flow that can facilitate co-design of algorithm and hardware,

and design-space exploration. Automated memory brick generation methodology is discussed in

the next chapter.

54

4 Dynamic Brick Library Generation

An automated memory brick generation flow is formulized and laid out in this chapter under

three main parts; netlist generator, layout generator, and synthesis library estimator. The

automation flow provides parameterized memory bricks for any memory type, thereby allowing

creation of a dynamically sized, virtually infinite brick library for the synthesis. Bricks are sized

optimally for minimum delay, specifically for the intended memory configuration that is

provided by the user as an input. Accuracy of timing and energy estimations are also verified on

a test-chip by comparing simulation results based on estimated brick library and silicon results

for various synthesized SRAM blocks. Such flow further allows a rapid design-space exploration

of the LiM block targeted for the application. Dynamic generation of the brick library at the

backend of the LiM synthesis flow now enables the co-design of the algorithm and hardware.

4.1 Automated Brick Generation

Our automated brick generation tool consists of three main parts, namely netlist, layout, and

library generations (Figure 4.1). To enable instantaneous generation of the necessary synthesis

files for a given brick, brick netlists are first generated by a circuit compiler. The netlist is then

passed to a layout generator for automated generation of its corresponding layout. Finally, the

transistor sizing and layout area information are passed to performance estimation tool to

55

generate the corresponding library files for synthesis.

Figure 4.1. Automated brick generation comprised of netlist generator, layout generator,

and performance estimator (synthesis library generator).

4.1.1 Memory Brick Netlist Generator

Circuit structure and working mechanisms for bricks are pre-defined for any memory type

(Chapter 3). Taking the memory type, array size (words x bits), and number of bricks to be

stacked in a bank as user input parameters, a netlist of a brick is automatically generated by

translating the desired user configurations into a gate sizing problem. To optimally size the

peripheral blocks within the brick, we have developed a formulized circuit design methodology

based on logical effort calculations and RC delay estimations.

Logical Effort [59] [60] is a circuit methodology that is used for optimally sizing a stage of gates,

wherein each gate is driving the consecutive gate. Fundamental expressions and equations for

logical effort calculations are given in Eq. 4.1. Then going through logical effort calculations, we

arrive at the following equation set:

𝐿𝐸 =
𝐶𝑔

𝐶𝑔𝑖𝑛𝑣
 ; 𝐹𝑂 =

𝐶𝑜𝑢𝑡
𝐶𝑔
 ; 𝑆𝐸 = 𝐿𝐸. 𝐹𝑂 ; 𝑃𝐸 =∏𝑆𝐸𝑖

𝑁

𝑖=1

 𝑤𝑖𝑡ℎ 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑔𝑒𝑠
Eq. 4.1

56

𝐹𝑜𝑟 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑑𝑒𝑙𝑎𝑦 𝑆𝐸𝑖±1 = 𝑆𝐸𝑖 = 𝑆𝐸
Eq. 4.2

 𝑃𝐸 =∏𝑆𝐸𝑖

𝑁

𝑖=1

𝑆𝐸 = 𝑆𝐸𝑖
⇒ 𝑃𝐸 = (𝑆𝐸)𝑁 =∏𝑆𝐸𝑖

𝑁

𝑖=1

=∏(𝐿𝐸𝑖 . 𝐹𝑂𝑖)

𝑁

𝑖=1

Eq. 4.3

𝑆𝑖𝑛𝑐𝑒 𝐹𝑂𝑖 =
𝐶𝑖+1
𝐶𝑖
 𝑡ℎ𝑒𝑛 (𝑆𝐸)𝑁 =∏(𝐿𝐸𝑖 . 𝐹𝑂𝑖)

𝑁

𝑖=1

= (∏𝐿𝐸𝑖

𝑁

𝑖=1

) .
𝐶𝑙𝑜𝑎𝑑
𝐶𝑖𝑛

Eq. 4.4

⇒ 𝑆𝐸𝑁 = (∏𝐿𝐸𝑖

𝑁

𝑖=1

) .
𝐶𝑙𝑜𝑎𝑑
𝐶𝑖𝑛

Eq. 4.5

Given that the technology dependent β ratio is a known parameter, logical effort LE of any gate

(LEi) is known. So from Eq. 4.5, for a known number of stages N and gates types (LEi), output

load Cload of the final stage, and input capacitance Cin of the first stage, we can calculate the stage

effort SE that gives the minimum delay for all the stages. Based on Eq. 4.5, we then conclude

that every gate in a memory brick can be sized optimally for minimum delay considerations,

given that the input and final load capacitances are set.

The formulation we use in Eq. 4.5 is applicable for any technology node or physical design kit

(PDK). As sizing transistors, however, is technology dependent, several technology dependent

parameters have to be initially characterized before going into circuit generation. These

parameters are β ratio for equal PFET and NFET delays, FO4 delay (fanout of four delay), and

gate capacitance (Cg) per gate width (Wg) for transistors with minimum gate length in form of

fF/uM. We further characterized charging time of a given capacitance with respect to PFET gate

size (Wp) by finding a fitting function in the form of 𝑡𝑝𝑠 = 𝛼(𝑅𝑝)
𝐾
(𝐶)𝑀. These parameters are

characterized in SPICE simulations using the chosen PDK.

The formulation driven in Eq. 4.1 to Eq. 4.5 dictates that we need to know the load capacitance

57

of a given path. As all the local periphery in the memory bricks are designed to drive and control

the operations of bitcell arrays, their load capacitances can be driven out from array sizes and

bitcell capacitances. Any type of bitcell (6T, 8T, or CAM cells) are either custom designed and

laid out, or acquired as a hard-IP. There is no modification or resizing done on bitcells. Then a

look-up table (LUT) that stores capacitance values of bitcell arrays can be created to be used

when local peripheries are sized. For this purpose, a single column of bitcells with 8x, 16x, and

32x rows and a single row of bitcells with 8x, 16x, and 32x bits are created. By performing post-

layout RC extraction (RCX) on these instances, we created a LUT for all wordline (WL), bitline

(BL), and array read-bitline (ARBL) capacitances, swept over 8 to 32 rows and columns. Two

dummy columns for the single column instance and two dummy rows for the single row instance

are also added to each side as wrappers to include coupling capacitances.

As a case sizing example, assume that the user requested an 8T bitcell based 1R1W capable

memory brick. As the circuit topology set (refer to Chapter 3.2), there are three main local

periphery circuits in 8T memory brick; wordline driver, local sense (comprised of read circuit

and bitline precharge PFETs), and control block. The user inputs set the bitcell array size and the

number of bricks stacked per bank. Assume that the desired array size is W words, each word L

bits, and there will be S bricks stacked within a bank. By using the post-layout RCX extraction

LUT of bitcell array capacitances, RWL and WWL capacitances are interpolated with respect to

L, RBL capacitance is interpolated with respect to W, and ARBL capacitance is interpolated with

respect to W and S. For minimizing the loading on the clock network and signal routing at

system-level, all gates that receive clock and signal wires in the brick directly from a pin are set

to minimum sizes. For the wordline driver, then the input gate capacitance Cin is known from

minimum gate size Wmin, output load capacitance Cload is RWL capacitance (or WWL

58

capacitance) and the total gate capacitance coming from the bitcell row, number of stages N is 4,

and LE of each gate are known (LE of NAND and inverters under a known β ratio). Then from

Eq. 4.5, SE for the wordline driver that gives minimum delay can be derived using these

parameters. Going through logical effort calculations in the same manner for all stages as shown

in Figure 4.2, memory brick peripherals are sized in an automated fashion based on the user

inputs for the desired configuration, and by using LUT for bitcell array capacitances and

technology characterization parameters at the backend.

The only exception in sizing formulation is for BL precharge (or reset) PFETs. For sizing the

reset PFETs, we use the RBL capacitance that is interpolated from the LUT and the delay

function for charging a capacitance 𝑡𝑝𝑠 = 𝛼(𝑅𝑝)
𝐾
(𝐶)𝑀 that is initially characterized for the

technology. For the fitting function, total capacitance C is 𝐶 = 2. 𝐶𝑅𝐵𝐿 + 𝐶𝑔𝑁𝐴𝑁𝐷
 with CgNAND the

gate capacitance of the skewed NAND gate of the local sense cell, and Rp is Ron of the PFET.

Setting the precharge time as 4xFO4 delays, Rp for the PFET is derived from the fitting function,

which sets the gate size of reset PFETs. This delay also correlates to the setup time for read

enable signal (defined in Chapter 3.2). The BL reset delay can also be set as a parameter if

needed.

The 6T bitcell and CAM based bricks have the same cells as 8T memory brick (WL driver, BL

reset, control circuits, etc.). Additionally, for the 6T memory brick, sense amps and column

muxing cells have fixed sizes. For both 6T brick and CAM brick, there is also additional global

BL and select line (SL) to local BL and SL drivers respectively. These cells are sized the same

way as WL driver by simply replacing total WL capacitance with total BL or SL capacitances.

59

Figure 4.2. Netlist generation for an 8T based 1R1W memory brick based on Logical Effort

calculations and curve fitting

By using the logical effort calculations given in this section, the brick netlists are optimally sized

for minimum delay with respect to user inputs. As this approach does not require any manual

intervention, the formulation automates the netlist generation. This methodology further permits

using any other sizing formulation, such as low-power sizing by relaxing the performance. The

benefit of this approach is any alternative sizing formulation (such as low power, minimum

energy-delay, high speed, etc.) can be easily plugged in to the brick generation flow as a sizing

option for the user. Template code in MATLAB for brick generation can be found in Appendix A.

4.1.2 Memory Brick Layout Generator

Once the brick netlist is compiled, its gate sizes are passed to a layout generator. Layout

generation is based on “leaf cell” approach, which is similar to conventional SRAM compilers.

Leaf cells are pre laid-out template cells that can be modified according to the gate sizes and

60

desired dimensions. Leaf cells are cell layouts of the local periphery circuit blocks, and are

initially laid-out in a full custom way. They are pitch-matched to the bitcells, and snap to each

other when laid-out in array form with no design rule check (DRC) violations. Brick layout is

generated by first modifying leaf cells according to gate sizes set in the netlist, and then arraying

these modified leaf cells around the bitcell arrays. Manipulation of the leaf cells are handled in

SKILL coding language [61], and the codes are executed in Cadence Virtuoso environment.

SKILL coding lets the user to have access to layout shape and layer information, and

manipulation of the shapes.

Figure 4.3. Leaf cell based layout generation for an 8T based 1R1W memory brick.

There are no pre-defined functions written in SKILL to easily manipulate layout shapes, so

several basic procedures (procedures are equivalent to functions in SKILL) are created initially.

These procedures are “stretch”, “move”, and “copy” for any given shape and layer in any x-y

61

direction. These basic functionalities are used extensively during the modification of leaf cells.

Leaf cells are divided into “leaf constructs” as shown in Figure 4.3, for an easier manipulation of

the layout shapes. There are three types of leaf constructs defined; active, connection, and fixed

constructs. An “active construct” includes an active region (RX) and poly (PC) to define a

transistor. A “connection construct” is used for connecting transistors and includes non-active

shapes (PC, metals, or vias) and only used for connections. Similarly, “fixed constructs” are also

used for connections and don’t include active shapes, but they are fixed layout instances like

VDD / VSS rails, or a particular layout shape that never changes with respect to netlist. Leaf

cells (and in parallel leaf constructs) are designed and laid-out with minimum possible gate sizes

so that they are either enlarged or left un-modified. This approach ensures the final layout to be

DRC clean in terms of RX enclosures and minimum gate area rules.

Layout generation starts with modifying the leaf cells with respect to input gate sizes. Consider

the local read cell of an 8T bitcell based memory brick, as shown in Figure 4.3. First the active

constructs are modified with respect to the transistor sizes. RX, PC and metal layers are stretched

to match the new gate size, and via arrays are added if needed. When adding new via shapes,

enclosure rules have to be always met so that there is no DRC errors afterwards. Once every

active leaf construct of the leaf cell are modified, they are placed to their dedicated slots within

the leaf cell as depicted in Figure 4.3. Any fixed constructs that are abutting the active constructs

are also placed at this point. Then the new dimensions of the leaf cell under modification is

checked. With respect to the new dimensions, connection constructs are modified and placed into

their slots in the leaf cell, followed by placing and stitching the remaining fixed constructs. This

assures that a modified leaf cell layout is comprised of the updated gate sizes, as shown in Figure

4.3. Modify-and-stich flow ensures no violation of design rules.

62

The same flow is repeated for all the leaf cells for the given brick. Then the bitcells are arrayed

with respect to the array size, and all the modified leaf cells are arrayed around the bitcell arrays

accordingly (Figure 4.3). Since all the leaf cells are pitch-matched to the bitcells, no DRC error

results from tiling the cells together. Finally, any fixed “wrapper” layout that the brick may

require are also put around the final layout. Wrapper layouts can generally include body

connections, supply rails, or simply empty “pr boundary” boxes that make the final layout

dimensions multiples of standard cell library gate dimensions. For both 6T bitcell based and

CAM bricks, the layout generation flow is exactly identical. For the 6T bricks, sense amps and

column muxing instances have always fixed gate sizes, so they are placed as non-modified leaf

cells. A pseudo-code in SKILL for leaf cell modifications are given in Appendix A.

4.1.3 Performance and Energy Estimation of Memory Bricks

After an optimized netlist and its corresponding layout are generated, the final step in automation

is to generate a parameterized library model of the brick. Brick library file includes critical path,

energy, area, and setup & hold times that are needed for use in the subsequent synthesis flow.

The gate components within the brick netlist are each represented by LUT models based on

bilinear interpolation and curve fitting for delay and energy as a function of fanout and slew rate.

The LUT based estimation method is similar to tabulated empirical gate delay modeling (or

nonlinear delay modeling [2]) approach that is extensively used in conventional ASIC synthesis

flows for performance estimations [58].

I) Modeling

Simple RC based estimation for gate delays are not accurate enough as it does not cover the

63

effects of input slew rate, short-circuit in between PFET and NFET network, dynamic effects,

transistor stacking effects, or effective capacitance. For an accurate estimation for generating a

library, we need another approach. Since brick topology is known, all possible gate types that

will be used in a netlist is also known. Physical information (such as number of gate fingers) for

each gate in the netlist are known as well from the pre laid-out leaf cells. Then we can

characterize each gate type by using SPICE simulations for delay and energy, store the

characterizations in a LUT with respect to input driver and output load information, and then use

interpolation to estimate the performance of a gate in the netlist. This characterization, however,

is technology and PDK dependent, so it has to be carried out initially.

Figure 4.4. SPICE simulation results for delay characterization of a gate are stored in a

look-up table (LUT), in form of input slew vs. fan-out of the gate.

Our SPICE-simulation-based gate characterization test-bench is illustrated in Figure 4.4. The

gate with width W drives the same type of gate with width N x W, which sets the fanout of the

gate under characterization to be N. Input gate capacitance is denoted as Cg and the parasitic

load of the gate is denoted as Cd, which makes the total load capacitance to be “N x Cg + Cd”.

Input slew of the gate is driven by a pulse generator, and the shape of the signal rise/fall type is

set to be half-sine for a realistic input drive. An extra gate with total width of 4 x (N x W) is

placed to the output of the load gate to eliminate Miller Effect [2], such that node M does not

64

dynamically affect node OUT through parasitic Cgd capacitance in an unrealistic way by

switching very fast. Slew of the input can be fast, average, or slow (1xFO4, 2xFO4, and 4xFO4

delays respectively), with slew time defined as signal rise/fall from 20% to 80% of the rail.

Definition of fast, average, and slow slews are technology, PDK, and standard cell library

dependent, and can be changed without affecting the flow. Using this test infrastructure, a SPICE

level parameter sweep is performed for the gate, sweeping input slew rate (fast, avg, and slow)

and fanout (from 1 to 10, by incrementing 1). Mid-to-mid delays for high-to-low and low-to-

high, and output slew for rise and fall times are then all stored in respective LUTs. Mid-to-mid

delay is defined as delay from 50% of input signal to 50% of output signal. Gate finger count (pc

= 1, 2, 6) is also added as an extra parameter to the sweep when needed.

The same characterization mechanism is used for energy estimation by checking total energy

drawn from the supply for a full switching event of gate charging and then discharging the load

capacitance of node OUT. Then energy is calculated by taking the integral of instantaneous

power over the switching time interval. Equations for the energy calculations are as follows:

𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑒𝑛𝑜𝑢𝑠(𝑡) = 𝐼(𝑡). 𝑉(𝑡) , 𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = 𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒 . 𝑉𝑑𝑑
Eq. 4.6

𝐸𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = ∫ 𝑃𝑖𝑛𝑠𝑡𝑎𝑛𝑡𝑒𝑛𝑜𝑢𝑠(𝑡). 𝑑𝑡

𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

0

= ∫ −𝐼𝑠𝑢𝑝𝑝𝑙𝑦(𝑡). 𝑉𝑠𝑢𝑝𝑝𝑙𝑦(𝑡). 𝑑𝑡

𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔

0

Eq. 4.7

 𝑃𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝐸

𝑇
 ⇒ 𝐸𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 = 𝑇𝑠𝑤𝑖𝑡𝑐ℎ𝑖𝑛𝑔 . (𝐼𝑎𝑣𝑒𝑟𝑎𝑔𝑒 . 𝑉𝑑𝑑) Eq. 4.8

Based on Eq. 4.6, either Eq. 4.7 or Eq. 4.8 can be used to tabulate the energy of a switching event

in SPICE simulations. We use both Eq. 4.7 and Eq. 4.8 as a double-checking mechanism for the

validity of the results gathered from the simulations. Note that for a full switching event, first the

65

PFET network is ON and draws current from the supply and charges the capacitance. When

PFET network is OFF and NFET network is ON, the charge stored in the capacitance is

discharged to the ground, without drawing supply current. Using this test-bench, gate width and

fanout are swept in parametric SPICE runs. Input slew is also added as the third parameter to the

sweep. We found that energy based characterization is easier, as the power numbers that are

needed for the brick library can be calculated using Eq. 4.8 with respect to the brick frequency.

By using this characterization approach, all circuit level effects are captured within the

simulations, namely input slew rate to output driving time, parasitic capacitances of the

transistors, effects of transistor stacking, energy lost on short-circuit power, and effect of input

slew to short-circuit power. Characterized gates under this approach are inverter (pc=1, 2),

NAND (regular Vt and low Vt, with pc=1,2), Tri-state buffer (RVt and LVt, pc = 1, 2, 6, and with

load capacitance of CARBL x Stack#), and Sense Amp (fixed size, with load RVt tri-sate buffer

gate capacitances).

One modeling phenomena that cannot be captured by this test bench is the effective capacitance

of long RC interconnects [62]. As a wire gets longer, its parasitic metal wiring resistance gets

larger and becomes dominant relative to the Ron of the driver transistor. Large resistance of the

RC network then shields some of the capacitance at the end of the network, changing the

effective capacitance that the driver "sees" and ultimately changes the gate delay. As large bitcell

array sizes can present large RC for the WLs or BLs, the impact of effective capacitance has to

be embedded into our LUTs for efficient and accurate estimation. This issue is solved by

replacing the load gate with a single row or column of RC extracted bitcell arrays. Instead of

sweeping for fanout for the output load, the sweeping parameter for the LUT becomes the

66

number of bits per row for WL, and words per column for BL. Extra LUT cases that come from

this approach are an inverter driving a WL (pc=2, variable wire load = number of bits per row),

single bitcell driving a BL (fixed bitcell, variable wire load = number of rows per column), and

reset PFETs pre-charging BL (pc=1, variable wire load = number of rows per column). Bitcells

for the bricks are also chosen accordingly. For 8T brick or CAM brick, an 8T bitcell drives the

load of LVt NAND gate capacitance. For a 6T brick, a 6T bitcell drives the load of fixed sense

amp. With this approach, both RC effects of the BL and WL, and delay/energy dependency on

the size of the array is embedded into the corresponding LUTs.

II) Estimation

By using our LUT based energy and delay modeling approach, every possible gate combination

that will be encountered in a given brick netlist is covered. For each gate and possible loading

scenarios, LUTs storing mid-to-mid delay, output slew, and switch energy are ready. Output slew

of a gate is the input slew of the consecutive gate in the path. Since brick netlist and layout are

generated before the estimation phase, size of each gate, their paths, and their final loads are

known. By performing bilinear interpolation and curve fitting based on the LUTs, delay and

energy for each gate are estimated. Fitting functions in form of 𝑦(𝑥) = 𝑎. 𝑥𝑏 + 𝑐 are added for

certain gate delays that are showing exponential delay behavior for better accuracy. By summing

up individual energy and delay estimation numbers of every gate under a brick operation, critical

path delay, and read / write / no-operation energies for a given brick netlist are automatically

estimated. Leakage for the inactive rows are also included into the energy estimations by using a

separate LUT that stores leakage energy in terms of number of bits per row. Leakage coming

from inactive bits within an active row are embedded in the read and write energy LUTs.

67

As an example, Figure 4.5 illustrates how path delay is estimated for the WL driver. At the start

of the operation, Decoded WL (DWL) signal is ready at high and the operation starts with clock

signal (CLK) going high. So the delay estimation for the this signal path starts with input rising

and NAND output falling, and then signal traversing all the way to WL load, and rising the WL

node. For worst case scenario, any signal coming from outside of the brick is assumed to be

received with a slow slew. So for NAND gate, input slew is slow, fanout is 𝑊2 𝑊1⁄ , and gate has

single poly finger (pc=1). With these known parameters, NAND high-to-low delay t1, and output

fall slew s1 are interpolated from the appropriate LUTs. The same procedure is then repeated for

INV2 and INV3 in the path with input slew coming from the output slew of the previous gate.

Since INV4 is driving the WL, its delay and slew numbers are interpolated from the bitcell based

LUT by using number of bits per row for the load. At the end, every delay is summed up to get

the path delay, and the output slew of the path is equal to s4. Energy of WL driver switching WL

to 1 then to 0 is calculated with the same approach by using energy LUTs.

Figure 4.5. LUT based delay and energy estimation for read wordline (RWL) driver stage

The same path delay and energy estimations are performed on all the activated paths depending

on the brick operation, and then are summed up to calculate the critical path delay and energy of

68

the brick. Energy calculations assume reading and writing alternating bits of <10101…>, with

last bit always set to 0 for a worst case delay from the farthest placed bit. Energy is estimated for

read, write, read-write, read-write with area windowing (only for 6T bricks), and no-operation.

Critical path, output slew, and energy for all operations are then put into a library file. With this

approach, the library file of the brick is generated instantaneously without the need for any

simulations or manual intervention. A pseudo-code in MATLAB is provided in Appendix A.

Liberty format (.lib) is used for the library files for compatibility with synthesis tools. Area

information and routing blockages are generated by the layout generator and are also part of the

brick library model. All input pin capacitances are known from leaf cells. For an 8T brick, there

is a hold time restriction on write BLs and setup time restriction on read enable signal. During

write operation, there is a delay between CLK going low and WL going low to shut off the

bitcells. During this small time window where the WL is still high and bitcells are “writable”, the

write BLs should hold their current values; otherwise the bitcells can go into a metastable state or

flip to the wrong logic state, causing a logical-failure. This indicates the need of a hold time on

write BLs with respect to CLK falling-edge. Hold time for write BLs is estimated for WL going

back to 0 after CLK goes low. As for read enable signal, all the read BLs have to be precharged

to Vdd before a read operation can start. There is, however, a delay between read enable signal

going high and the reset PFETs finish precharging the BLs. This indicates a setup time for read

enable signal with respect to CLK rising-edge. Setup time for read enable is estimated from the

total delay of reset PFETs pre-charging BLs plus the delay of reset control signal. Other types of

setup and hold constraints for 6T and CAM bricks are calculated the same way.

69

III) Accuracy

To validate the accuracy of our estimation tool, two memory bricks with 16x10bits and

32x12bits sizes are generated by the compiler, and their estimated read path delays and read

energies are compared to SPICE simulations with RC extracted bitcell array layouts. Results for

critical path delay (read delay) and read energy are summarized in Table 4.1 for different bank

sizes of 1x, 2x, 4x, and 8x stacked bricks, and for reading a word of alternating bits

(<1010...10>). For both bricks, error rates are within 2-7% for critical path estimation, within 0-

4% for read energy estimation, and 0-2% for write energy estimation. General trend of results

indicates that our estimation accuracy gets better when array sizes are larger and/or there are

more stacked bricks. Breakdown of the results for tool estimation and SPICE simulations are

summarized in Table 4.2 (in percentages). CLK refers to clock received, RWL refers to driving

read word line, and RBL refers to driving read bitline. Ratios of estimated delay/energy of a sub-

operation to the overall estimated delay/energy are within +/- 1% of SPICE simulation

breakdown. This accuracy enables the user to get valuable feedback from the estimation tool on

where the bottlenecks are happening within a brick to better optimize circuit-level choices.

of stacked bricks Brick 16x10bits Brick 32x12bits

Critical path [ps] Tool SPICE Error Tool SPICE Error

1x 247 265 6.6% 295 307 4.0%

2x 256 273 6.2% 305 316 3.4%

4x 269 285 5.5% 322 331 2.6%

8x 292 307 4.9% 353 359 1.8%

Read Energy [pJ] Tool SPICE Error Tool SPICE Error

1x 0.54 0.54 -0.1% 0.65 0.63 3.1%

2x 0.59 0.59 0.5% 0.73 0.70 3.5%

4x 0.71 0.70 1.1% 0.88 0.85 3.6%

8x 0.93 0.92 1.3% 1.19 1.16 2.8%

Table 4.1. Tool estimation vs SPICE simulation (on RC extracted arrays) for read delay

and energy.

70

Performance CLK to RWL RWL to RBL RBL to OUT

Tool estimated 38% 25% 37%

SPICE 37% 26% 37%

Read Energy Driving RWL Local Sense Control

Tool estimated 2% 74% 24%

SPICE 2% 73% 25%

Write Energy Driving WWL Write-in Array

 Tool estimated 55% 45%

 SPICE 55% 45%

Table 4.2. Performance and energy breakdown comparison for stages.

4.2 Automated Synthesis of LiM designs

Dynamically generated brick library covers all memory brick sizes, types, and aspect ratios

whereby bricks are generated automatically and instantaneously with respect to user inputs.

Automated LiM synthesis framework is realized by integrating the dynamically generated brick

library with the conventional ASIC synthesis tools. Bricks are generated as macro cells before

starting the synthesis. There is no restriction on number of rows or bits per brick, or the number

of stacked bricks, as every gate is sized optimally using LE calculations. With this approach, any

unconventional bit, row, and stacking numbers (non-power of 2) are permitted in our

methodology. This opens up many interesting possibilities for algorithm level optimizations.

There is no design-cost for the user to generate a memory brick. As circuit compilation, layout

generation, and performance estimation are technology dependent, however, there is an initial

design-cost of technology characterization. Technology related characterization of delay-energy

LUTs and leaf cells have to be re-implemented when the designer moves to a new technology or

a new PDK. This cost, however, is one time only, and vendor supplied memory compilers go

through the same iteration as well.

71

4.2.1 Overview of the Automated Synthesis Flow

For every generated memory brick, the tool also creates necessary synthesis files as shown in

Figure 4.6. Bricks are represented in Verilog modules (.v) for integrating with RTL description of

the system. Netlist generator passes the array size to the Verilog file. For logical and physical

synthesis tools, the performance, energy, and area information is passed through library files in

Synopsys Liberty and database formats (.lib, .db). Generated layout is first transformed into an

abstract file using Cadence Abstract generator, and then Library/Library Exchange Format (.lef)

and Milkyway format files are generated. Layout is also streamed out as Graphic Database

System (GDSII, or .gds) format so that it can be used in any compatible tool. Template .lib file

for a brick is given in Appendix A.

Once the brick synthesis files are generated, it is straightforward to integrate them with the

existing ASIC synthesis flows since the files are compatible with them. Bricks are used and

integrated as macro files into the ASIC synthesis flow. Overview of the LiM synthesis flow is

shown in Figure 4.7. The user first designs the system conceptually as a smart-memory (SM) and

defines what brick instances are needed. Then these brick sizes and types are given as user inputs

to the brick library. Brick library generates all the desired bricks automatically without any

design cost. The user then implements the SM in HDL and the bricks are instantiated as Verilog

modules. The SM goes through logical synthesis to create the gate-netlist, and bricks are

integrated as .lib (and .db) files. Finally, the gate-netlist goes through physical synthesis wherein

the bricks are integrated as library (.lib, .db) and macro cell (.lef, milkyway) formats. SM layout

is implemented by going through the conventional flow of floor planning, place and routing

(PnR), power and clock network implementation, and verification. Bricks are placed by the user.

72

Figure 4.6. Dynamically generated brick library and synthesis files. Brick array sizes and

stack numbers are chosen arbitrarily to show possible examples.

Figure 4.7. Overview of automated LiM synthesis flow.

73

An important result of this flow is that it enables the user not to finalize the decision on the

memory sizes initially. Since there is no extra design cost of generating memory bricks, the user

can perform a rapid design-space exploration to find the optimum sizes and memory

configurations for the chosen application. A simplified example for rapid design-space

exploration is given in the following section, and a system-level case study is discussed in detail

in Chapter 6.

4.2.2 Rapid Design-Space Exploration Example

Enabled by the automated brick generation, we performed rapid design-space exploration to

compare various system-level tradeoffs for a simplified case study in Figure 4.8. Three SRAMs

with single partitioning of sizes 128x8bits, 128x16bits, and 128x32bits were created. To analyze

the impact of brick array size on memory performance, each of the 128xN bit SRAM partitions

were built with three different bricks of sizes 16xN bit, 32xN bit, and 64xN bit by stacking them

8x, 4x, and 2x times respectively. Overall, 9 different bricks are compiled with optimum gate

sizing (word numbers: 16, 32, 64 and bits: 8, 16, 32).

Figure 4.8. Simplified design-space exploration example for different SRAMs with single

partitions, all synthesized by using different sizes of memory bricks

74

Performance, energy, and area consumption of these partitions are estimated within seconds by

our library generation tool, and the normalized results are summarized in Figure 4.8. As the brick

size gets larger, critical path also increases since a brick with larger array size has longer local

RBLs. Within the same sized partitions, however, partition with larger bricks consume less

energy and area as they have less number of local sense and control blocks per number of words.

More interesting results are observed when different memory sizes are cross-analyzed. For

instance, 128x16bit memory built with 16x16bit bricks is still faster than 128x8bit memory built

with 64x8bit bricks, while it consumes nearly the same energy as the 128x32bit memory built

with 64x32bit bricks. These results show that array size of the brick and the number of bricks per

partition have equally important impact on the overall performance as to overall memory size

itself. For this analysis, compiling the netlists and generating the library estimations were

finalized within 2 seconds of wall clock time. Thus, the same analysis can be done over a finer

resolution of row numbers and bit length without any design cost. Library files for any chosen

configuration can be then simply fed into a gate-level synthesis tool (e.g. Synopsys DC) to

perform system-level analysis.

To capture the impact of application-specific changes on the system, timing and power analysis

are done after logic synthesis. For analyzing the tradeoffs of various memory partitioning and

floor planning choices of bricks, a parameterized Verilog code with parameters describing

different memory configurations is used (such as array sizes, banking, memory hierarchy, etc.).

For analyzing modifications to the algorithm, the design itself is parameterized by using object

oriented tools like “Stanford Chip Generator” [63] [64]. Different RTLs can be generated by

scripts to explore different corners of the algorithm with varying bus widths, number of parallel

cores, or choice of the used arithmetic blocks. A system-level design-space exploration study is

75

discussed in great detail in Chapter 6.

4.3 Accuracy of Estimated Library Generation

To validate our automated synthesis flow we implemented a LiM based test-chip that includes

different sizes and configurations of synthesized 1R1W SRAMs in a commercial 65nm CMOS

technology. Using the same 8T bitcell based memory brick of array size 16x10bits, we

implemented different sizes and configurations of SRAMs (Figure 4.9). By stacking the 16x10bit

brick for 1x, 2x, 4x, and 8x times to form a single partition, we implemented 1R1W SRAMs

with sizes 16x10bits, 32x10bits, 64x10bits, and 128x10bits respectively (configurations A, B, C,

and D). We also constructed an SRAM of size 128x10bits with 4 partitions (configuration E)

such that each bank has a size of 32x10bits formed by stacking two 16x10bit bricks. Chip

measurements for performance and power are aggregated from multiple chips, under nominal

Vdd of 1.2V and room temperature. Simulations on synthesized netlists are done in Synopsys

PrimeTime (PT) using standard cell libraries, generated brick libraries, RC parasitic file for

routing (.spef), and switching activity file (.saif) that is generated in Modelsim for accuracy.

Comparison of chip measurements and simulations based on the estimated brick libraries are

summarized in Figure 4.10 for the SRAM configurations. Performance is reported in GHz, and

chip measurements are averaged out of multiple chips with maximum and minimum tested

speeds shown as bars. Simulation results are shown for best, worst, and nominal cases. Energy

numbers are reported for the maximum respected frequencies, and are normalized with respect to

the smallest SRAM for ease of analysis.

76

Figure 4.9. LiM test chip containing different sizes and configurations of synthesized

SRAM blocks.

Figure 4.10. Comparison of chip measurements to estimated library based simulations for

taped out SRAM configurations.

77

When we analyze both performance and energy, we observe that simulation results are in line

with chip measurements and capture the trend of chip results over the range of different

configurations within a small error rate. As SRAM size increases for a single partition (from A to

D), performance drops and energy increases as it is expected. For the same size of SRAMs D and

E, partitioning results in faster performance in E. Although individual partitions of E have the

same size with B, E is still slower than B due to its slower decoder and global signal routing

coming from its larger size. Banks of E are implemented such that only the bank with the read

address hit is activated during read, thus making E consume less energy compared to D. This

gain in energy and performance of E however is traded off with larger area consumption that

inherently comes from partitioning, when compared to D.

These results validate the accuracy of our automatically generated libraries and capture the

circuit behavior of the memory bricks efficiently. Error rates are also consistent with the circuit-

level results given in Table 4.1. As system-level simulations based on dynamically generated

libraries can capture the trade-offs in between different configurations efficiently, our flow opens

up many opportunities for design-space exploration.

4.4 Algorithm and Hardware Co-design

Building a customized memory provides benefits at the circuit-level, but LiM synthesis

facilitates broader benefits at the system-level. At the low-level, all memory and logic are

represented at the same level of abstraction, and the white-box memory elements have no hard

boundaries. Therefore, all architecture and hardware customizations can be efficiently realized at

the RTL. Memory arrays of any size can be integrated with logic in a fine-grained manner,

78

thereby enabling efficient data-streams to be built – even for large datasets. Now that the

hardware is customizable beyond what a conventional ASIC flow permits, the algorithm

constructions can exploit application-level knowledge more aggressively at the high level. With

the LiM synthesis flow facilitating the hardware and algorithm co-optimization, superior system-

level designs can be realized.

79

5 Silicon Validation for Two Data-Intensive

Applications

To demonstrate the efficacy of LiM synthesis we have implemented two data-intensive

applications in silicon. First implementation is a smart-memory based Synthetic Aperture Radar

(SAR) image reformatting block that is built in commercial 130nm CMOS technology. Second

implementation is smart-CAM based low-power accelerator core for graph processing algorithms

that is built in commercial 65nm CMOS technology. Chip-level layouts for both systems are

shown in Figure 5.1.

Figure 5.1. Chip layouts for LiM based system demonstrations

80

Both systems are implemented using the LiM synthesis flow, and optimal design points were

identified after performing design-space exploration. Our silicon results show that the circuit-

level customizations provide significant benefits at the system-level, but that co-optimization of

the algorithm with the hardware provides dramatic system-level benefits.

5.1 Synthetic Aperture Radar Image Reformatting

Figure 5.2. Overview of Synthetic Aperture Radar (SAR) polar-to-Cartesian image

reformatting. Flow picture modified with permission from [18].

Synthetic Aperture Radar (SAR) is a data- and compute-intensive application that is similar to

taking a picture using radar data [65] [66]. SAR requires translation of sampled radar data from

Polar to Cartesian coordinates that can be fed into a 2-D inverse Fast Fourier Transform (FFT) to

reconstruct an image as shown in Figure 5.2. This polar to rectangular grid conversion using

FFT-based interpolation is an essential step for SAR [65]. FFT-based algorithms, however, have

multiple non-local passes on stride-accesses leading to high data traffic, thereby creating energy

and performance challenges [39].

81

To address this challenge, Zhu et al. proposed a LiM based design approach for a localized polar

to rectangular conversion with an error rate comparable to FFT-based conversion in [39] [38]

[20]. They used a mapping function that relies on simple arithmetic operations and a smart

interpolation memory. The interpolation memory is a “seed table” based on localized bilinear

interpolation that performs as if it readily stores all interpolated data, but it actually computes the

data on the fly by using a smaller seed table and an arithmetic unit. It is further shown in [40]

that a low-power LiM layer based on the same concept can be built for a 3D IC stack to

accelerate the SAR by co-designing the algorithm and system architecture to reduce the data-

intensity of the application.

5.1.1 LiM Based SAR Architecture and Test-chip

For a 2D interpolation operation, a constant number of spatially neighboring elements within a

rectangular window are needed. This makes a parallel-access memory (as discussed in Chapter

2.1) an ideal candidate to implement a single-cycle interpolation-memory that would increase the

system performance and throughput. The parallel access memory stores a 2D image pixel array

with a size of K x L, and allows random access of pixels in a window of m x n in a single cycle

(where m<K and n<L). For a traditional ASIC approach, parallel access memory is realized by

implementing logic blocks next to parallel accessible SRAM banks. 2D pixels are distributed to

m.n parallel memory banks for a conflict-free access, however, this does not exploit the address

pattern commonality between the accessed pixels. Moreover, area and energy penalties are

incurred when the image or access window size is large.

For the same functionality, the smart-memory in [32] exploited the address pattern commonality

82

and implemented an application-specific SRAM with shared and customized decoders. Row

decoders are shared between m banks and customized to activate n adjacent wordlines with

respect to single address. A column decoder is added under each bank group to select a single

element per column from the activated multiple rows. With this customization, the same parallel

access functionality can be handled inside the memory block with significantly less power and

area.

Using the LiM synthesis framework (Chapter 3 and Chapter 4), it is straightforward to synthesize

a smart parallel-access memory. At the RTL level, row decoders are customized to fire up n

adjacent wordlines with respect to incoming address. A column decoder and AND gates are

added to choose any elements within the n activated rows. Memory bricks are grouped and

stacked to form m partitions, and row decoders are shared between the partitions to exploit

address commonality to save area. Single-cycle parallel-access memory is then combined with a

2D bi-linear interpolation block to build the interpolation memory.

Figure 5.3. SAR test-chip and LiM based architecture for image reformatting

To validate the LiM synthesis approach for SAR, we implemented a LiM based image re-

formatting chip in a commercial 130nm CMOS technology. As shown in Figure 5.3, the

83

architecture of the LiM based SAR image reformatting system is a perspective transformation

block followed by an interpolation memory, which is the parallel-access memory that feeds data

to surface interpolation logic. Chosen image size is 128x128x16bit pixels, and it is tiled into 16

tiles. For the chosen tiling size, the LiM system has 0.41 mm2 area.

In addition, we also implemented smart-memory based (SM) and traditional banked memory

(TM) based 2x2 parallel access memories on the same test chip for comparison purposes. Both

memory blocks are implemented by utilizing the same memory bricks and synthesis flow for a

fair comparison. A micrograph of the taped-out chip of area 2mm x 2mm is shown in Figure 5.3.

5.1.2 SAR Test-chip Results

When we first compare the benefits of using a smart-memory (SM) based parallel-access

memory over a traditional banked memory (TM), we observe that SM is more power and area

efficient, whereas TM has a better performance as shown in Figure 5.4.

In the SM based parallel-access memory, row decoders are shared. Although there are additional

column decoders, area penalty coming from partitioning a monolithic memory block is

minimized in SM when compared to TM. Therefore, SM based parallel-access memory is 31%

smaller. Furthermore, the customization embedded inside the SM combined with smaller area

results in less global signal traffic, leading to 29% less power consumption. However, SM has a

longer critical path compared to TM as it has a customized decoder that activates two adjacent

wordlines shared by two partitions and column decoders performing parallel selection. As the

memory read path is longer, SM is 24% slower than TM. Therefore, in this specific smart

memory implementation, we are trading-off performance for power and area benefits when

84

compared to a banked memory. It is worth noting, however, that by carefully timing different

operations in the SM read path the performance penalty can be minimized. These results

demonstrate that our LiM synthesis framework enables efficient circuit-level customization of

memory blocks.

Figure 5.4. SAR chip results. (a) Comparison of SM and TM based parallel access

memories. (b) SAR image reformatting Energy x Delay product results for SM based and

conventional approaches.

Functionality of the SAR image reformatting system is verified on tiles of a test image, with the

tile size of 32x32x16bits. The synthesized LiM system works correctly within the error rate that

is provided in [20]. System-level energy comparison is done by back annotating the chip results

of 2x2 parallel-access SM and TM for SAR image reformatting system. At 1.5V nominal supply

voltage and for an image size of 128x128x16bits, SM based SAR implementation working at

300MHz clock frequency consumes 37% less energy in overall to process and reformat an image

tile of 32x32x16bits when compared to the conventional ASIC approach that uses a banked

memory working at 395MHz clock frequency, as highlighted in Figure 5.4.

85

SAR system-level energy results are directly in-line with parallel-access SM and TM power

comparison results. For the two compared SAR systems of LiM based implementation and

conventional ASIC implementation, two main logic blocks (i.e. perspective and surface

interpolation blocks) are the same. Therefore, the difference between these two systems indicates

how the parallel-access memory was implemented, as SM or TM. This demonstrates that by

using SM we get significant circuit-level benefits. However, LiM synthesis methodology opens

up more opportunities than just replacing traditional memories with smart memories. Dramatic

benefits are possible by co-designing the algorithms and hardware.

5.2 Graph Processing Accelerator

Figure 5.5. Overview of LiM based graph processing core.

To demonstrate the efficacy of algorithm-hardware co-design that is enabled by our LiM

synthesis approach we have implemented a low-power accelerator for Generalized Sparse Matrix

Sparse Matrix Multiplication (SpGEMM) that is intended to be used in a 3D IC stack (Figure

5.5). SpGEMM is a core function for accelerating graph problems and is inherently a data-

intensive application due to high data-traffic coming from sparse matrix operations.

86

Graphs are the unified representation of large data structures for modeling networks, data

analysis problems, or high-level features of extracted objects in advanced imaging applications.

As large graphs are sparse, efficient processing of graphs translates into proper manipulation of

sparse matrices [67]. SpGEMM is a core kernel in sparse matrix algorithms such as shortest-path

search or graph contraction [68] [69]. However, since sparse matrices have highly unpredictable

data access patterns and can be structurally large, SpGEMM operations inevitably cause very

high and unpredictable data traffic, leading to serious energy and performance related issues.

One way to reduce the data traffic in SpGEMM operations is by using column-by-column

multiplication [70], whereby only non-zero elements at the intersections are accessed and

processed. Conventional ways to implement this algorithm is a heap based design (priority

queue) for computing the columns by using multi-way merging [70], that can be built by first-in

first-out (FIFO) based SRAMs. FIFO SRAMs cause latency problems, however, due to

sequential read/write operations for shifting, which ultimately wastes energy.

To improve the column-by-column algorithm for SpGEMM, Zhu et al. explored the data storage

and access patterns in [19] [43] and showed that the SpGEMM operations can be effectively

mapped to LiM based content addressable memory (CAM) blocks. As matrix sparsity requires

storing only the non-zero elements that are accompanied by their row and column indices, the

single cycle “matching” capability of CAMs facilitates index comparison and alignment.

Consider a sparse matrix multiplication C = A x B. In this LiM based algorithm, multiplication is

separated into two main parts, forming all the columns of resulting matrix C in parallel and

assembling them into C. Non-zero elements of a single column of C are formed by using the

proposed CAM based architecture for multi-way merging. Row indices of each non-zero element

are stored in a CAM array, and their corresponding values are stored in an SRAM array. By using

87

single-cycle CAM matching for cross-checking the intersection of elements in A and B columns,

“multiply and add” or “new entry” operation is decided and executed. Since this architecture

assembles row indices of each C column, it is called a “horizontal CAM”. A similar operation is

performed for assembling C by using a single “vertical CAM,” which activates individual

horizontal CAM blocks only if their corresponding column indices are matched.

High-level system simulations in [19] [43] show that such a LiM based CAM-SpGEMM core

can be used as a low-power hardware accelerator in 3D IC stacks. Sparse matrices are

decomposed into sub-blocks and then mapped to DRAM rows for maximizing off-chip DRAM

row buffer hit. By this approach, access patterns are rendered predictable, thereby maximizing

bandwidth of through silicon vias (TSV) for the 3D stack. Sub-blocks of source matrices A and B

are stored in the on-chip memory, and the result matrix C is overwritten as it is computed.

5.2.1 LiM Based SpGEMM Architecture and Test-chip

Figure 5.6. LiM based SpGEMM CAM architecture built with distributed SRAM and

CAM memory bricks

88

We synthesized a CAM based SpGEMM chip in a commercial 65nm CMOS technology. CAM

bricks are compiled with the same circuit formulation as SRAM bricks. Optimum numbers for

tile and array sizes for CAM and SRAM bricks are chosen by sweeping array size parameters in

gate-netlist simulations on various SpGEMM benchmarks. As a result of this design-space

exploration, row index and data array sizes are chosen as 16x10bits, and column number N for

sub-blocks is chosen as 32, both consistent with [19]. In contrast to a conventional ASIC flow,

since generated CAM and SRAM bricks with such small array size are still very area efficient,

the system is synthesized in a fine grained manner from its RTL into 32 horizontal CAMs and 1

vertical CAM with 32 entries.

The CAM-SpGEMM architecture is shown in Figure 5.6, which is basically the hardware

realization of the novel LiM based algorithm. The CAM brick holds the row indexes of non-zero

elements in the column and the SRAM brick holds their associated data values. For CAM

peripherals, a customized mismatch detection block and a sequencer instead of a decoder is built.

When there is a mismatch of row indexes, the index of the new data is added to the CAM brick

by using the sequencer as the address pointer. When there is a row index match in the CAM

brick, the detection block acts as a priority decoder for the SRAM brick. The SRAM brick is

designed as a scratch pad with its customized periphery capable of updating or placing new

entries. For updating an SRAM entry, a multiply and add block is integrated with a write-back

driver. Data is modified (read, modify, write-back) if there is a match, and a new data is added if

there is a mismatch. The smart-CAM architecture is distributed throughout the SpGEMM core

for 32 columns. The overall SpGEMM core is synthesized without the limitations of black-box

memory instances as the LiM synthesis permits fine-grained integration of logic and memory

bricks.

89

The resulting LiM based SpGEMM chip area is 1.3mm2, with a 0.39mm2 LiM computation core

block. A second chip was implemented based on a standard heap based SpGEMM design for

comparison. It consumed 1.24mm2 total area and a 0.33mm2 computation core block. On-chip

SRAM blocks for storing source matrices A and B are the same in both chips for a fair

comparison. Chip micrograph is shown in Figure 5.6.

5.2.2 SpGEMM Test-chip Results

Both the Heap-based and LiM-based implementations were fully synthesized with our approach

and the fabricated chips were fully functional. Test-chip measurement results show that our

proposed LiM synthesis methodology provides dramatic system-level benefits for the chosen

data-intensive application.

Figure 5.7. SpGEMM chip results for performance comparison of LiM based and Heap

based (baseline) implementations

Circuit-level results for both chips are summarized in Figure 5.7. For the same array size of

16x10bits, the CAM brick area is 83% larger than SRAM brick area, and 26% slower. A single

read for the SRAM brick consumes 0.73mW power, whereas it is 0.87mW for read and 1.94mW

90

for matching for a CAM brick (at 0.8GHz clock). As a result of these circuit-level differences

and added customizations in the CAM based architecture, silicon measurements show that the

maximum frequency for LiM based SpGEMM chip is 475MHz, whereas it is 725MHz for the

non-LiM SpGEMM chip. Furthermore, the LiM computation core block consumes 20% more

area. At the system level we measured the maximum frequencies of the two designs for a

nominal Vdd of 1.2V at room temperature. At their respective maximum frequencies, the LiM

chip consumes 72mW per clock while the non-LiM based chip consumes 96mW per clock (for

both chips, averaged out of multiple test vectors).

When these numbers are back-annotated for benchmark sparse matrix operations that are taken

from University of Florida sparse matrix collection [71], the LiM based chip offers dramatic

energy and performance benefits. Overall latency and energy results for completing SpGEMM

benchmarks are summarized in Figure 5.8. Although the maximum frequency of the LiM chip is

35% slower than the non-LiM chip, the completion time of benchmarks are 7x to 250x faster for

LiM chip. Moreover, LiM chip consumes 10x to 310x less energy overall. Utilization of single-

cycle CAM matching for multi-way merging drastically reduces the completion time and energy

for LiM based SpGEMM chip. Whereas, re-arrangement of FIFO based SRAM arrays at every

column computation causes long latency in overall completion time, and higher energy

consumption for non-LiM SpGEMM chip.

91

Figure 5.8. Silicon results of latency and energy for LiM based CAM-SpGEMM and

standard non-LiM SpGEMM chips.

92

5.3 Analysis of the Results

Our silicon results show that superior energy and performance results of the LiM based

architecture comes from the co-design of algorithm and hardware. The LiM based SAR design

gives significant energy benefits that are coming from a synthesized smart-memory, whereas

LiM based SpGEMM gives dramatic system-level benefits coming from embedding the

application specific knowledge into the overall hardware. We have further shown that LiM

synthesis flow provides area efficient integration of fine-grained memory arrays based on white-

box primitives of logic and memory bricks. Such logic and memory granularity would be

impractical and inefficient with a traditionally compiled embedded memory block approach. Flat

synthesis of LiM designs can provide even more area savings when compared to the approach

with traditionally compiled memory blocks.

Chapter 3 and Chapter 4 show how the automated memory-brick generation enables affordable

synthesis of LiM systems. Chapter 5 demonstrates that LiM synthesis enables fine-grained

distribution of bitcell arrays into logic permits co-optimization of application-level knowledge

and system design without the black-box limitations of a compiled memory. Another major

benefit that LiM synthesis methodology enables is rapid design-space exploration whereby the

LiM blocks can be finely optimized and tuned without an extra design cost. A design-space

exploration case study on system-level is discussed in detail in Chapter 6.

93

6 Design-Space Exploration

Our LiM synthesis methodology enables exploration of the design-space with high accuracy to

better tune the overall system performance. Using this methodology, the user can narrow down

possible floor planning options, explore the trade-offs between energy, delay, and area coming

from different memory configurations, and fine tune application-specific “knobs” such as

memory partitioning, band-width, number of distributed computational blocks, or number of

through silicon vias (TSV).

To demonstrate how automated LiM synthesis flow facilitates design-space exploration, we look

at Sparse-Matrix Vector (SpMV) multiplication application as a case study. Similar to SpGEMM

application that is discussed in the previous chapter, SpMV is a data-intensive and band-width

bound problem on traditional architectures. Combining 3D integration with a low power and fast

processing core, this problem can be transformed into a compute bound problem. An application-

specific LiM core can efficiently handle the sparse data structure of SpMV and provide fast and

energy efficient computation. To accelerate SpMV kernel, a LiM based smart streaming-buffer is

designed as a logic layer in a 3D IC stack. Tuning various co-dependent algorithm and hardware

parameters for such a large system, however, could impact the design turn-around time. In this

section, we will show how LiM synthesis based design-space exploration enables the user to co-

optimize the algorithm, architecture, and the LiM based hardware.

94

The algorithm-level novelties and the finalized implementation results of the overall LiM based

SpMV system is beyond the scope of this thesis. The LiM based SpMV architecture is discussed

as a case study and the core focus of this chapter is LiM synthesis enabling a design-space

exploration flow.

The LiM based 3D architecture for the SpMV system is proposed by Fazle Sadi, Larry Pileggi,

and Franz Franchetti. All the algorithm, design, and architecture related details and

implementation results of the proposed SpMV system can be found in the accompanying work

and doctoral thesis of F. Sadi.

6.1 Spares-Matrix – Vector Multiplication (SpMV)

SpMV is a core kernel that is widely used in various data intensive and scientific applications

such as graph algorithms, iterative linear equation solvers, finite element analysis, and analysis

of various networks [68]. SpMV algorithms in current architectures, however, are heavily

memory bound problems. SpMV applications have very low ratio of computation to memory

accesses, leading to very low utilization fraction of the peak performance of the processor (going

as low as 10%) [72]. The reason for this low performance is two-fold. For a given matrix-vector

multiplication, temporal locality of the elements in a matrix is very low as they are only needed

once and not re-used. As a result, conventional memory hierarchy and caching mechanisms

cannot be efficiently used. Furthermore, when the source matrix is sparse, the spatial locality of

the matrix elements also decreases as sparse matrices are structurally large and non-predictable.

With low temporal and spatial locality, SpMV kernel operations cause high and wasted data

transfer within the memory sub-system of traditional architectures.

95

There is existing work on accelerating SpMV applications on CPU [73] and GPU [74] platforms,

however, they all suffer from the memory-bound performance and energy issues when the

problem size is big enough [75]. A LiM based design, on the other hand, is an ideal approach for

such a data-intensive problem with its highly customizable and finely distributed memory

instances. Similar to LiM based SpGEMM approach (Chapter 5), a LiM based accelerator layer

in a 3D IC stack can exploit the high TSV band-width of the 3D DRAM that is crucial for a

memory-bound problem. Unlike SpGEMM, however, there is a dense vector with random access

to a large data space, which can add more complexity to both the algorithm and hardware.

6.1.1 LiM Based SpMV Architecture

To alleviate the memory-bound SpMV problem, we implement a LiM based smart streaming

buffer, or a sequential access memory, to continuously feed in sparse matrix data to the SpMV

core on the logic accelerator layer. The conceptual 3D architecture is depicted in Figure 6.1. An

eDRAM cache layer with random access capability fetches and holds the vector data. By

modifying the algorithm accordingly for this architecture and LiM based approach, all the

accesses to the 3D DRAM that holds the sparse matrix data are rendered sequential and

predictable. With this approach, peak DRAM performance can be now achieved with maximum

row buffer hits by utilizing the high band-width provided by fast TSV buses to the DRAM

layers. As a result, memory bound problem of SpMV algorithm can be transformed into a

compute bound problem with high computation to memory access ratios.

96

Figure 6.1. Algorithm-hardware co-design of LiM based SpMV system on a 3D IC stack

Consider the sparse matrix - dense vector multiplication of “y = Ax + y” where A is sparse matrix

and y is the dense vector. The vector is divided into segments (horizontal), and the source matrix

is divided into equal number of vertical stripes accordingly, whereby the multiplication is done

in a segmented way (Figure 6.1). Within the 3D stack, DRAM layers hold the source matrix and

the dense vector. An eDRAM layer acts as a scratch pad with fast random access to hold a given

segment of the vector. A LiM based accelerator layer is connected to both eDRAM and DRAM

layers through TSVs. The eDRAM feeds the dense vector segment to the LiM layer with random

access capability.

The LiM layer is designed as a smart stream buffer that fetches a block of the source matrix from

the corresponding vertical matrix stripe. It computes the multiplication of the dense vector

segment and the matrix block, where the source matrix elements are only needed once. With this

approach, all the DRAM accesses are rendered sequential and predictable although the matrix

itself is sparse and large, thereby enabling prefetching matrix blocks intelligently and hiding the

fetch delay behind the ongoing multiplication. To better utilize the DRAM bandwidth, sparse

matrix elements are stored in CSR format accompanied by their row and column indices.

97

By co-designing the algorithm and hardware, a novel compressed meta-data that accompanies

each element is created to allow pointer based accesses and element tracking. For this

implementation, elements are chosen to be stored in 32 bits single-precision floating point

format. Resulting compressed meta-data for 32bits is 6bits for row and column indexing each,

making the stored data to be 44bits. As the automated brick generation permits any

unconventional bit-lengths, this algorithm choice does not present any “wasted memory bit”

problems as it would in conventionally compiled SRAMs due to power of two bit-lengths.

6.1.2 Design-Space of the LiM Based SpMV Architecture

Finding the optimum ratio of the matrix block size for the minimum data transfer given the

storage size requires exploration of the design-space. Efficient utilization of the available high

bandwidth further requires careful tuning of the hardware. Different design-points such as floor

planning, memory partitioning, architectural choices, TSV distribution and access can all lead to

different utilization rates of the available bandwidth.

For the LiM based SpMV case study, we have defined several application-specific design

parameters:

1. Memory size for the smart stream buffers

Size of the fetched source matrix block from the DRAM depends on the memory size that

is chosen for the stream buffer. The decision for the memory size, however, can be a

choice in the algorithm, or it can be dictated by the physical area limitations of the LiM

layer.

98

2. Aspect ratio of the distributed memory instances

TSVs are allowed to be placed on a certain pitch in a 3D or 2.5 IC stack. Arbitrary aspect

ratios or large memory areas can overlap with TSV pitch, decreasing the number of

possible TSVs used and impacting the overall bandwidth. Furthermore, these technology

and PDK related information are generally not readily available before starting the actual

fabrication process and signing the agreements with the foundry.

3. Memory partitioning and banking within the stream buffer

Different partitioning, floor planning, and parallelism of memory configurations result in

different frequency, energy, area, and aspect ratios for the streaming memory. Stream

buffer frequency can directly affect the overall performance of the LiM layer if it

becomes the critical path. Energy of the stream buffer affects the energy efficiency and

MIPS/W of the system. Memory area and aspect ratios affect physical contact points of

TSVs, and thus, the available band-width.

4. Single-port vs. multi-port memory instances

Modified SpMV algorithm requires performing read and write-back operations in a single

cycle as modified elements may be needed in the consecutive cycle. Performing read and

write-back operations in two cycles directly impacts the overall latency. As a result, using

a multi-port or single-port memory affects the overall latency and energy-delay product.

99

As there are multiple co-dependent parameters that can impact the overall system performance,

defining a problem size and hardware specifications for this case is not straightforward. Finding

an optimum point for many interacting parameters necessitates a design-space exploration. Other

than the parameters mentioned previously, there are also number of algorithm related parameters

such as the number of parallel processing cores for SpMV computations, storage and

compression formats for the elements, and the resulting meta-data size. For this case study, these

algorithm-dependent parameters are assumed to be set beforehand.

6.2 Design-Space Exploration Flow

The automated brick generation flow that was presented in Chapter 4 enables a parameterized

brick library. By further parameterizing the generation of the RTL of the system, a design space

is generated by synthesizing the LiM blocks in an automated fashion. As it is demonstrated in

Chapter 4.3, LiM synthesis simulations are efficiently accurate when compared to actual silicon

data. By analyzing the impact of different system and memory configurations accurately and

affordably, the user can now better optimize the overall system.

Certain variables in HDL coding are already permitted to be parameterized such as bus widths or

bit-width going into an instance. Hardware related parameterization such as number of

instantiated modules depending on a case, however, are not permitted and synthesizable. To be

able to parameterize different memory and system configurations, hardware parameterization is

also needed for the design-space exploration. This is achieved by using scripting languages to

automate the generation of the HDL codes. A main script that can call other scripts, programs,

and configure their input/outputs is created. This script can be in any type or coding language.

100

The smart stream buffer can be configured with four different parameters:

 Type of the SRAM memory (8T bitcell vs. 6T bitcell)

 Parallel partitions (distributing total bit numbers into parallel partitions)

 Number of bricks in each partition (stack number per bank)

 Brick array word and bit sizes

The main script then calls the brick library generator in a loop to generate all of the meaningful

combinations of these four parameters, as shown in Figure 6.2. It is assumed that Synopsys DC

is used for the logical synthesis in the following flow.

Figure 6.2. Tool flow example for generating a design-space

101

Within the loop of the main script, the brick generator is called the first to generate an optimally

sized memory brick for the memory configuration. For the ith run of the loop, the newly created

brick is denoted as brick[i]. Then the performance estimator tool is called to generate the energy,

performance, and area of brick[i]. At the end of the brick generation, a brick synthesis library

lib[i] is dynamically populated; ready for the memory configuration [i].

After the brick library is generated, a separate script (Python, Perl, Tcl, etc.) that generates

Verilog codes for each memory configuration is called by the main script. Using lib[i] and

memory configuration [i], RTL for the ith system configuration is generated. The HDL generation

script modifies an already written and synthesizable Verilog code structure depending on the

requirements of the configurations. In the same manner, a second script generates all the

corresponding DC .tcl scripts that are needed to run the logic synthesis on the RTLs. These

scripts essentially use the critical path of the bricks as CLK period, and feeds in the

corresponding brick structures. It also calls the corresponding RTLs and brick library files that

were generated within the same iteration.

At the end of the loop, main script runs the generated DC script and collects the simulation

outputs. As all the necessary libraries and Verilog files were generated during the same iteration,

there is no need for manual intervention. The main script checks whether clock period is met or

not for the current design, and re-synthesizes the design with a relaxed clock period if it fails.

After all the different designs are synthesized with their unique system and memory

configurations, their corresponding performance results are collected and compiled into a table.

With this approach, any synthesis related result that is desired to be analyzed can be collected at

the end of the synthesis of each design point iteration. These results can be (and not limited to)

102

energy, frequency, and area numbers, or more detailed results such as clock network power,

dynamic and static power consumptions, or physical characteristics such as gate counts.

Application-specific metrics such as total band-width, pre-defined figure-of-merits, etc., can also

be collected in the same manner. To generate these application-specific numbers, however, the

user has to add several extra design-specific functions to the main script loop. At the end of the

run, the results of each design-point iteration spans to a design-space.

Enabled by the automated LiM synthesis methodology, design-space exploration flow provides

an early feedback mechanism in terms of optimizing the floor plan and memory configurations.

The user can now narrow down possible system configurations affordably with good enough

accuracy for the comparisons. By setting minimum and maximum targets for any of the design

parameters, the system can be optimized even before going into physical synthesis phase. For

instance, by setting a minimum frequency, maximum energy and area, or minimum band-width,

low performing floor plans and system configurations can be eliminated. By further analyzing

how the overall design behaves under different system, memory, and floor planning

configurations, the user can start the physical synthesis process better informed on the optimum

design choices for desired target metrics. For example, by looking at the designs that give the

best and worst results for a chosen specification, the user can gain valuable understanding on the

system-level impact of any of the design choices. This feedback mechanism is tested on the

SpMV system in the next section.

103

6.3 Design-Space Exploration on SpMV Architecture

6.3.1 Creating a Design-Space

Using the flow that was described in the previous section, we explored the design-space of smart

stream buffers for the SpMV system. Source matrix storage format is CSR, stream in/out data is

44bits (32bit single-precision and 12 bit meta-data), and the system is built with a single SpMV

core. As LiM permits fine-grained distribution of memory instances, SpMV multiplication core

is integrated with the smart-stream buffer. Variable design parameters for the exploration run are

as follows:

 Matrix block size to fetch from DRAM: 32x44bits, 64x44bits, 128x44bits

 Partitioning and floor planning of the stream buffer: Single, 2x, and 4x

 Number of bricks stacked per bank: 1x, 2x, 4x, 8x.

 Memory types: 1R1W 8T brick, R-before-W 6T brick, 1R1W 6T brick, 6T brick

Matrix block-size parameter also defines the memory size of the stream buffer. Row numbers are

chosen as power of two numbers for optimum decoder organization. Bricks for the single

monolithic memory are 44bits long, whereas 2x parallel partitions are 22bits long and 4x parallel

partitions are 11bits long distributed to each partition. 8T memory brick is inherently 1R1W

capable. Single cycle read-before-write (R-W) and 1R1W capabilities for 6T brick is handled by

area windowing scheme at the RTL (Chapter 3.3). For the conventional single port 6T brick, read

and write operations are done in two consecutive cycles thereby doubling the overall latency of

SpMV multiplication. As a result of these chosen variables, there are 81 resulting different

combinations of possible configurations for the smart stream buffer for this exploration run.

104

6.3.2 Design-Space Exploration

By using our design-space creation flow, frequency, energy, total area, aspect ratio of partitions,

and energy-delay product are collected for every configuration. Isolated results for stream buffers

are summarized in Figure 6.3 to Figure 6.7 for a better analysis of memory configuration.

Naming convention for the results are {memory type | configuration: # of partitions, # of stacked

bricks | memory size}. For memory types, 1R1W refers to 8T bitcell based 1R1W capable

memory brick, R-W refers to 6T bitcell based memory brick with area windowing for read-

before-write operation, 1R1W_6T refers to 6T bitcell based memory brick with area windowing

for 1R1W operation (with extra penalty on its critical path), and SP refers to 6T bitcell based

memory brick with conventional single port operation. For instance, “1R1W c1.1 32x44b” refers

to the memory configuration of 8T bitcell based 1R1W memory.

Results are further clustered into groups of three in every plot for space considerations. There are

27 labels on the x-axis to represent the total of 81 configurations. Each label refers to three bars

for 1x, 2x, and 4x parallel partitions from left to right respectively. For instance for the label

“1R1W c1.1 32x44b”, left bar is representing the single partition configuration (c.1.1), middle

bar is representing the configuration of 2x parallel partitions (c.2.1), and the right bar is for the

configuration of 4x parallel partitions (c.4.1).

105

Figure 6.3. Design-space for frequency

Figure 6.4. Design-space for energy

Figure 6.5. Design-space for area

0.0

0.5

1.0

1.5

2.0

1
R

1
W

 c
.1

.1
 3

2
x4

4
b

1
R

1
W

 c
.1

.2
 3

2
x4

4
b

R
-W

 c
.1

.1
 3

2
x4

4
b

1
R

1
W

_
6

T
c.

1
.1

 3
2

x4
4

b

SP
 c

.1
.1

 3
2

x4
4

b

1
R

1
W

 c
.1

.1
 6

4
x4

4
b

1
R

1
W

 c
.1

.2
 6

4
x4

4
b

1
R

1
W

 c
.1

.4
 6

4
x4

4
b

R
-W

 c
.1

.1
 6

4
x4

4
b

R
-W

 c
.1

.2
 6

4
x4

4
b

1
R

1
W

_
6

T
c.

1
.1

 6
4

x4
4

b

1
R

1
W

_
6

T
c.

1
.2

 6
4

x4
4

b

SP
 c

.1
.1

 6
4

x4
4

b

SP
 c

.1
.2

 6
4

x4
4

b

1
R

1
W

 c
.1

.1
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.2
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.4
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.8
 1

2
8

x4
4

b

R
-W

 c
.1

.1
 1

2
8

x4
4

b

R
-W

 c
.1

.2
 1

2
8

x4
4

b

R
-W

 c
.1

.4
 1

2
8

x4
4

b

1
R

1
W

_
6

T
c.

1
.1

 1
2

8
x4

4
b

1
R

1
W

_
6

T
c.

1
.2

 1
2

8
x4

4
b

1
R

1
W

_
6

T
c.

1
.4

 1
2

8
x4

4
b

SP
 c

.1
.1

 1
2

8
x4

4
b

SP
 c

.1
.2

 1
2

8
x4

4
b

SP
 c

.1
.4

 1
2

8
x4

4
bFr
eq

u
en

cy
 [

G
H

z]

0
2000
4000
6000
8000

1
R

1
W

 c
.1

.1
 3

2
x4

4
b

1
R

1
W

 c
.1

.2
 3

2
x4

4
b

R
-W

 c
.1

.1
 3

2
x4

4
b

1
R

1
W

_
6

T
c.

1
.1

 3
2

x4
4

b

SP
 c

.1
.1

 3
2

x4
4

b

1
R

1
W

 c
.1

.1
 6

4
x4

4
b

1
R

1
W

 c
.1

.2
 6

4
x4

4
b

1
R

1
W

 c
.1

.4
 6

4
x4

4
b

R
-W

 c
.1

.1
 6

4
x4

4
b

R
-W

 c
.1

.2
 6

4
x4

4
b

1
R

1
W

_
6

T
c.

1
.1

 6
4

x4
4

b

1
R

1
W

_
6

T
c.

1
.2

 6
4

x4
4

b

SP
 c

.1
.1

 6
4

x4
4

b

SP
 c

.1
.2

 6
4

x4
4

b

1
R

1
W

 c
.1

.1
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.2
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.4
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.8
 1

2
8

x4
4

b

R
-W

 c
.1

.1
 1

2
8

x4
4

b

R
-W

 c
.1

.2
 1

2
8

x4
4

b

R
-W

 c
.1

.4
 1

2
8

x4
4

b

1
R

1
W

_
6

T
c.

1
.1

 1
2

8
x4

4
b

1
R

1
W

_
6

T
c.

1
.2

 1
2

8
x4

4
b

1
R

1
W

_
6

T
c.

1
.4

 1
2

8
x4

4
b

SP
 c

.1
.1

 1
2

8
x4

4
b

SP
 c

.1
.2

 1
2

8
x4

4
b

SP
 c

.1
.4

 1
2

8
x4

4
b

En
er

gy
 p

er
 C

LK
 [

fJ
]

0

10000

20000

30000

1
R

1
W

 c
.1

.1
 3

2
x4

4
b

1
R

1
W

 c
.1

.2
 3

2
x4

4
b

R
-W

 c
.1

.1
 3

2
x4

4
b

1
R

1
W

_
6

T
c.

1
.1

 3
2

x4
4

b

SP
 c

.1
.1

 3
2

x4
4

b

1
R

1
W

 c
.1

.1
 6

4
x4

4
b

1
R

1
W

 c
.1

.2
 6

4
x4

4
b

1
R

1
W

 c
.1

.4
 6

4
x4

4
b

R
-W

 c
.1

.1
 6

4
x4

4
b

R
-W

 c
.1

.2
 6

4
x4

4
b

1
R

1
W

_
6

T
c.

1
.1

 6
4

x4
4

b

1
R

1
W

_
6

T
c.

1
.2

 6
4

x4
4

b

SP
 c

.1
.1

 6
4

x4
4

b

SP
 c

.1
.2

 6
4

x4
4

b

1
R

1
W

 c
.1

.1
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.2
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.4
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.8
 1

2
8

x4
4

b

R
-W

 c
.1

.1
 1

2
8

x4
4

b

R
-W

 c
.1

.2
 1

2
8

x4
4

b

R
-W

 c
.1

.4
 1

2
8

x4
4

b

1
R

1
W

_
6

T
c.

1
.1

 1
2

8
x4

4
b

1
R

1
W

_
6

T
c.

1
.2

 1
2

8
x4

4
b

1
R

1
W

_
6

T
c.

1
.4

 1
2

8
x4

4
b

SP
 c

.1
.1

 1
2

8
x4

4
b

SP
 c

.1
.2

 1
2

8
x4

4
b

SP
 c

.1
.4

 1
2

8
x4

4
b

A
re

a
[u

m
 x

 u
m

]

106

Figure 6.6. Design-space for aspect-ratios.

Figure 6.7. Design-space for energy-delay product.

As expected, LiM synthesis provides significant system customization benefits when compared

to conventional synthesis approach, as memory arrays with such small sizes are not possible to

implement by using a traditional SRAM compiler. The main interest in this chapter, however, is

to perform design-space exploration to analyze the impact of different system configurations and

getting an early feedback from the tool.

0.0

2.0

4.0

6.0

8.0

1
R

1
W

 c
.1

.1
 3

2
x4

4
b

1
R

1
W

 c
.1

.2
 3

2
x4

4
b

R
-W

 c
.1

.1
 3

2
x4

4
b

1
R

1
W

_
6

T
c.

1
.1

 3
2

x4
4

b

SP
 c

.1
.1

 3
2

x4
4

b

1
R

1
W

 c
.1

.1
 6

4
x4

4
b

1
R

1
W

 c
.1

.2
 6

4
x4

4
b

1
R

1
W

 c
.1

.4
 6

4
x4

4
b

R
-W

 c
.1

.1
 6

4
x4

4
b

R
-W

 c
.1

.2
 6

4
x4

4
b

1
R

1
W

_
6

T
c.

1
.1

 6
4

x4
4

b

1
R

1
W

_
6

T
c.

1
.2

 6
4

x4
4

b

SP
 c

.1
.1

 6
4

x4
4

b

SP
 c

.1
.2

 6
4

x4
4

b

1
R

1
W

 c
.1

.1
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.2
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.4
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.8
 1

2
8

x4
4

b

R
-W

 c
.1

.1
 1

2
8

x4
4

b

R
-W

 c
.1

.2
 1

2
8

x4
4

b

R
-W

 c
.1

.4
 1

2
8

x4
4

b

1
R

1
W

_
6

T
c.

1
.1

 1
2

8
x4

4
b

1
R

1
W

_
6

T
c.

1
.2

 1
2

8
x4

4
b

1
R

1
W

_
6

T
c.

1
.4

 1
2

8
x4

4
b

SP
 c

.1
.1

 1
2

8
x4

4
b

SP
 c

.1
.2

 1
2

8
x4

4
b

SP
 c

.1
.4

 1
2

8
x4

4
b

Le
n

gt
h

(x
)

/
H

ei
gh

t(
y)

0.0E+00

1.0E-21

2.0E-21

3.0E-21

4.0E-21

5.0E-21

6.0E-21

1
R

1
W

 c
.1

.1
 3

2
x4

4
b

1
R

1
W

 c
.1

.2
 3

2
x4

4
b

R
-W

 c
.1

.1
 3

2
x4

4
b

1
R

1
W

_
6

T
c.

1
.1

 3
2

x4
4

b

SP
 c

.1
.1

 3
2

x4
4

b

1
R

1
W

 c
.1

.1
 6

4
x4

4
b

1
R

1
W

 c
.1

.2
 6

4
x4

4
b

1
R

1
W

 c
.1

.4
 6

4
x4

4
b

R
-W

 c
.1

.1
 6

4
x4

4
b

R
-W

 c
.1

.2
 6

4
x4

4
b

1
R

1
W

_
6

T
c.

1
.1

 6
4

x4
4

b

1
R

1
W

_
6

T
c.

1
.2

 6
4

x4
4

b

SP
 c

.1
.1

 6
4

x4
4

b

SP
 c

.1
.2

 6
4

x4
4

b

1
R

1
W

 c
.1

.1
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.2
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.4
 1

2
8

x4
4

b

1
R

1
W

 c
.1

.8
 1

2
8

x4
4

b

R
-W

 c
.1

.1
 1

2
8

x4
4

b

R
-W

 c
.1

.2
 1

2
8

x4
4

b

R
-W

 c
.1

.4
 1

2
8

x4
4

b

1
R

1
W

_
6

T
c.

1
.1

 1
2

8
x4

4
b

1
R

1
W

_
6

T
c.

1
.2

 1
2

8
x4

4
b

1
R

1
W

_
6

T
c.

1
.4

 1
2

8
x4

4
b

SP
 c

.1
.1

 1
2

8
x4

4
b

SP
 c

.1
.2

 1
2

8
x4

4
b

SP
 c

.1
.4

 1
2

8
x4

4
b

En
er

gy
 x

 D
el

ay
 [

Js
]

107

6.3.3 Analysis of the Design-Space

To better analyze the design-space, a combination of different variables should be cross-

examined. By defining minimum and maximum target specifications, the user can narrow down

the design-points even before moving in to physical synthesis. To narrow down the resulting

design-space, we created an example case. Assume that minimum FLOPS/W metric expected

from the overall SpMV system, the TSV pitch given from the foundry, maximum DRAM band-

width, and available silicon area allocated for the LiM accelerator layer co-dictate the following

target specifications for the stream-buffer:

1. Memory size: 64x44bits

2. Maximum Energy x Delay product: 2.5 x 10-21 J.s

3. Maximum Area: 7000 um2

4. Maximum aspect ratio of a partition for the memory size 64x44bits (in X:Y) ≤ 2:1

These target specifications are then set as minimum / maximum filters for the design-space to

eliminate any configuration that fails any of them. Visualization of the target specifications as

horizontal bars on the 64x44bit memory size configurations are shown in the following plots

(Figure 6.8 to Figure 6.10). Any configuration that passes the maximum allowed target

specification are eliminated as a floorplan and memory type choice.

108

Figure 6.8. Design-space for energy-delay under specific target metrics.

Figure 6.9. Design-space for area under specific target metrics.

Figure 6.10. Design-space for aspect-ratio of partitions under specific target metrics.

109

As a result of the parameters set by this example case, possible floor-planning and memory type

configurations for the 64x44bit stream buffer are narrowed down to the configurations that are

summarized in Table 6.1. The same filtering procedure can be done to obtain the best in class

configurations as well. For 64x44bit memory size, feedback from the design-space exploration

flow suggests that using an 8T bitcell type 1R1W memory with 2 partitions with either single or

two stacked bricks per partition, or a 6T bitcell type Read-before-Write memory with 4 partitions

with single brick in the stack will meet the target specifications set by the user.

Configuration Memory

Type

Partitioning Bricks stacked per

partition

1R1W c.2.1 64x44b 8T 2x Partitions (22 bits) 1x Brick (64x22bit)

1R1W c.2.2 64x44b 8T 2x Partitions (22 bits) 2x Bricks (32x22bit)

R-W c.4.1 64x44b 6T 4x Partitions (11 bits) 1x Brick (64x11bit)

Table 6.1. Smart-stream buffer configurations meeting the target metrics.

We can gather further information from the design-space exploration data on how the system

behaves when certain parameters are changed. For instance increasing brick number per stack to

four bricks for the 1R1W 8T memory type does not impact the energy-delay product much, but

can cause problem with the maximum area limitations. On the other hand for R-W 6T memory

type, decreasing stacked brick number from four violates the target aspect ratio specification.

This case study demonstrates that our automated LiM synthesis methodology enables detailed

exploration of the design-space without any extra full-custom extra design cost. Moreover, the

tool itself gives crucial feedback to the user in terms of floorplan and memory configuration

assistance. Using the design-space exploration flow as a tool, the user can now optimize the

system better. With all simulation results, assistance in floorplan and memory configurations, and

110

a better grasp of the system knobs, the user can move on to the physical synthesis with reference

system configurations.

111

7 Scaling, Future Work, and Conclusions

In the final chapter of this thesis, applicability of LiM synthesis methodology to future

technology nodes and SoC trends is discussed. As this dissertation attempts to implement a

methodology rather than a specific accelerator design depending on a technology, device, or

architecture, we can argue that the LiM synthesis flow remains applicable as a tool to localize

computation for memory-intensive applications in foreseeable future IC trends. Possible future

work for the implemented methodology and final conclusions drawn out from the dissertation are

also highlighted at the end of this chapter.

7.1 Technology Scaling and Future Trends

The work implemented in this dissertation aims to formulate a methodology and not a

technology or architecture dependent design. Therefore, we can argue that the applicability of

this work holds true as long as the design intent is building an in-memory processing block.

7.1.1 Technology Scaling Below 14nm Node

Layout patterns are getting more restricted due to manufacturing limitations as technology scales

beyond 14nm node. Since the restricted pattern constructs are the enabling technology for LiM

112

synthesis, there is no foreseeable obstacles that would cause LiM synthesis approach to fail due

to scaling. To validate a synthesized LiM block on silicon at a deeply scaled technology node, a

synthesized smart parallel-access SRAM is demonstrated at a 14nm process from IBM in [36]. A

traditional compiled-like SRAM with parallel accessible banks is implemented at the same node

as a baseline for comparison. The results validate the hypothesis of restricted constructs enabling

tight logic and memory integration (as it is shown in Chapter 2.2), and further verifies the

significant circuit-level benefits coming from the smart-memory implementation (in accordance

to the results demonstrated in Chapter 5.1). Moreover, the devices in the 14nm process that are

used in [36] are fin-type field effect transistors (FinFETs), which shows that the synthesis of

smart-memories is applicable to any device type that will be used down the scaling path of

digital IC industry.

Restricted patterns are a necessity coming from the limitations of utilizing 193nm wavelength

immersion lithography in modern IC manufacturing. A cost-efficient breakthrough in extreme

UV wavelength or electron-beam lithography technologies may relax the restrictions imposed on

future layout patterns. Benefits of fine-grained integration of logic and memory, however, is

independent of the layout patterns or the technology node. As LiM synthesis methodology

enables co-design of algorithm and hardware and detailed design-space exploration capabilities,

the work presented in this dissertation would be still applicable to next generation technologies.

7.1.2 Future SoC Trends

“Big data” applications

As the amount of data to capture, store, process, and send is growing exponentially in the

113

upcoming era of “big data” applications [76], on-chip localization of computation, data-intensive

processing methods, and minimizing the data-transfer bandwidth of chip to chip/server

communications will be even more crucial. Customized smart-memories are built for

accelerating specific application-domains in the LiM synthesis paradigm, and it is an efficient

design approach to transform memory-bound problems into compute-bound ones. In the big data

applications era, LiM synthesis methodology would arguably provide designers an affordable

design approach for low-power application acceleration.

“Dark silicon” era

Clock and power gating techniques, wherein the clock signal or the supply voltage are turned off

for an inactive block to save power, are highly used circuit techniques to meet the tight power

budget of an SoC [2]. As technology scales down to sub-10nm regions and the number of cores

on a single die piles up, however, it is predicted that more than half of the chip will be required

to be switched off at a given time to meet the ever-tightening power budgets (commonly known

as “dark silicon” [77]).

To address this challenge while making a better use of the chip real-estate for optimum

performance and power efficiency, [78] proposes to embed heterogeneous hardware accelerators

on the chip for various tasks instead of copying more cores that will eventually stay idle. It is

further shown in [78] that a diverse class of accelerators all contain significant amounts of

memory (reported up to 90%). As this dissertation demonstrates that LiM synthesis methodology

enables affordable implementation of finely tailored low-power accelerators for various data-

intensive applications, we can argue that LiM synthesis methodology will remain to be an

efficient and affordable tool in the dark silicon era of IC industry.

114

Advent of 3D Integration

As the 3D die stacking is emerging to become a commercially available technology such as the

examples of hybrid-memory cube (HMC) [29], in-memory processing designs are attracting

more interest as they present simple and energy-efficient acceleration solutions for heavy data

processing [79] [17]. It is already demonstrated in system-level simulations that LiM based logic

layers in 3D IC stacks are ideal platforms for energy efficient performance enhancement in [43]

[19] [40]. It is also interesting to note that 3D stacked dies can be heterogeneous with different

technology nodes and/or different memory types (SRAM, DRAM, eDRAM, STT-based). LiM

based accelerator layer(s) can still be used without any integration issues as long as the data

signals reach to the LiM die layer(s) through TSVs.

7.2 Future Work for the Synthesis Methodology

This dissertation opens up many interesting opportunities and use cases for the implemented

synthesis methodology. Here we discuss three possible future directions for this work, but many

more interesting applications may emerge in the future.

a) Circuit level: DRAM based LiMs

This dissertation does not address building memory bricks based on DRAMs or embedded

DRAMs (eDRAM). DRAM-based synthesized LiM blocks may open up brand new application

domains and architectures as DRAM characteristics are different than SRAM characteristics.

Since DRAMs are heavily used as off-chip memory, specialized computation can be then off-

loaded to the off-chip memory as well to create smart off-chip memories. As eDRAMs offer

115

more density with a comparable performance to on-chip SRAMs, eDRAM based LiM blocks

may also present interesting alternatives in the design-space. DRAM technology, however,

requires more constraints on the circuit design and it is harder to implement and verify DRAM

based LiM blocks on silicon. Moreover, periodical refresh requirements of DRAMs may present

challenges on the brick design from an architectural stand-point.

b) Tool & synthesis level: Bricks as standard cells

Memory bricks are currently integrated as macro cells in the physical synthesis flow, and an

existing brick library is needed before starting the synthesis. Therefore synthesis tools such as

Synopsys DC, ICC, or Cadence Encounter do not have the ability to improve the design by

compiling the bricks on-the-fly. One future work for this methodology is to enhance the design

flexibility by allowing the selection of memory bricks to be optimized like standard cells. With

such an approach, the synthesis tools could choose and optimize the array size and placement of

the memory bricks in a standard cell like manner. The LiM synthesis methodology can be then

inserted as a “plug-in” to the commercially available synthesis tools. With this approach, current

design-space exploration flow can be further improved to a “LiM based chip generator” whereby

different system configurations are optimally implemented by the physical synthesis tools.

c) Application-level: Exploration of different systems and architectures

Existing work on LiM designs are comprised of several data-intensive applications. Now that

this dissertation presents a synthesis tool, a wide range of different applications and architectures

can be explored quickly and affordably using this tool. A detailed research on benefits and

challenges of utilizing LiM designs on a pool of application domains can then give insightful

information to IC designers.

116

7.3 Conclusion

In today’s SoCs, it is a necessity to incorporate more memory on chip to overcome the well-

known memory-wall and power-wall challenges. As embedded memory consumes more than

half of the IC real estate, however, it is essential to integrate application level knowledge into the

memory blocks to improve processing efficiency for data intensive applications. Many core

architectures in the era of big-data, dark silicon, and 3D die stacking call for even more

integration of heterogeneous smart-memory based accelerators on the die. Logic-in-Memory

designs are one of the ideal platforms to overcome the multi-faceted challenges of today’s and

tomorrow’s data-intensive applications.

This work aims to formulate a Logic-in-Memory synthesis approach that enables the IC

designers to reliably and affordably synthesize application-specific smart-memory blocks with a

cell-based design flow. This dissertation demonstrates that the LiM synthesis flow, by

construction, is scalable, manufacturable, customizable, verifiable, and provides efficient co-

design of algorithm and hardware as demonstrated by the chip implementation. Automated

generation of memory-cell instances further enables a rapid system-level design-space

exploration flow as a pre-floorplanning system optimization tool.

117

References

[1] B. Mohammad, Embedded Memory Design for Multi-Core and Systems on Chip, New

York: Springer New York, 2014.

[2] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective (4th

edition), Boston: Pearson, 2010.

[3] "International Technology Roadmap for Semiconductors - System Drivers," ITRS, 2011.

[4] E. J. Marinissen, B. Prince, D. Keltel-Schulz, and Y. Zorian, "Challenges in embedded

memory design and test," Design Automation and Test in Europe (DATE), vol. 2, pp. 722-

727, 2005.

[5] "Semico: System(s)-on-a-Chip – A Braver New World.," Semico Research Corp, 24 October

2007. [Online]. Available: http://www.semico.com/content/semico-systems-chip-

%E2%80%93-braver-new-world. [Accessed 14 June 2015].

[6] "ISSCC Technology Trends 2015," [Online]. Available:

http://isscc.org/doc/2015/isscc2015_trends.pdf. [Accessed 14 July 2015].

[7] W. A. Wulf and S. A. McKee, "Hitting the Memory Wall: Implications of the Obvious,"

118

SIGARCH Comput. Archit. News, vol. 23, no. 1, pp. 20-24, Mar. 1995.

[8] S. Naffziger, "High-Performance Processors in a Power-Limited World," Symposium on

VLSI Circuits, 2006. Digest of Technical Papers, pp. 93-97, 2006.

[9] F. J. Pollack, "New Microarchitecture Challenges in the Coming Generations of CMOS

Process Technologies," Proceedings of the 32Nd Annual ACM/IEEE International

Symposium on Microarchitecture, pp. 2-., 1999.

[10] A. Saulsbury, F. Pong, and A. Nowatzyk, "Missing the Memory Wall: The Case for

Processor/Memory Integration," 23rd Annual International Symposium on Computer

Architecture, pp. 90-90, 1996.

[11] M. Horowitz and W. Dally, "How Scaling Will Change Processor Architecture," Digest of

Technical Papers. ISSCC. 2004 IEEE International, vol. 1, pp. 132-133, 2004.

[12] B. S. Amrutur and M. A. Horowitz, "Speed and power scaling of SRAM’s," IEEE Journal of

Solid-State Circuits, vol. 35, no. 2, pp. 175-185, 2000.

[13] R. J. Evans and P. D. Franzon, "Energy consumption modeling and optimization for

SRAM’s," IEEE Journal of Solid-State Circuits, vol. 30, no. 5, pp. 571-579, 1995.

[14] G. Northrop, "Design technology co-optimization in technology definition for 22nm and

beyond," 2011 Symposium on VLSI Technology (VLSIT), pp. 112-113, 2011.

[15] D. Morris, V. Rovner, L. Pileggi, A. Strojwas, and K. Vaidyanathan, "Enabling application-

119

specific integrated circuits on limited pattern constructs," Symposium on VLSI Technology

(VLSIT), pp. 139-140, 2010.

[16] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R. Thomas,

and K. Yelick, "A case for intelligent RAM," IEEE Micro, vol. 17, no. 2, pp. 34-44, Mar.

1997.

[17] G. H. Loh, "3D-Stacked Memory Architectures for Multi-core Processors," Proceedings of

the 35th Annual International Symposium on Computer Architecture, pp. 453-464, 2008.

[18] Q. Zhu, "Application Specific Logic-in-Memory," Ph.D. dissertation, Dept. Elect. and

Comp. Eng., Carnegie Mellon Univ., Pittsburgh PA, 2013.

[19] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. C. Hoe, L. Pileggi, and F. Franchetti, "A 3D-

stacked logic-in-memory accelerator for application-specific data intensive computing,"

IEEE International 3D Systems Integration Conference (3DIC), pp. 1-7, 2013.

[20] Q. Zhu, K. Vaidyanathan, O. Shacham, M. Horowitz, L. Pileggi, and F. Franchetti, "Design

automation framework for application-specific logic-in-memory blocks," IEEE 23rd

International Conference on Application-Specific Systems, Architectures and Processors

(ASAP), p. 125–132, 2012.

[21] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki, J. Shin, C. Chen,

C. W. Kang, I. Kim, and G. Daglikoca, "The Architecture of the DIVA Processing-in-

memory Chip," Proceedings of the 16th International Conference on Supercomputing, pp.

120

14-25, 2002.

[22] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper, J. LaCoss, J. Granacki, J.

Brockman, A. Srivastava, W. Athas, V. Freeh, J. Shin, and J. Park, "Mapping Irregular

Applications to DIVA, a PIM-based Data-intensive Architecture," Proceedings of the 1999

ACM/IEEE Conference on Supercomputing, 1999.

[23] C. Kozyrakis, D. Judd, J. Gebis, S. Williams, D. Patterson, and K. Yelick,

"Hardware/compiler codevelopment for an embedded media processor," Proceedings of the

IEEE, vol. 89, no. 11, pp. 1694-1709, Nov. 2001.

[24] B. R. Gaeke, P. Husbands, X. S. Li, L. Oliker, K. A. Yelick, and R. Biswas, "Memory-

Intensive Benchmarks: IRAM vs. Cache-Based Machines," Proceedings of the 16th

International Parallel and Distributed Processing Symposium, pp. 203-, 2002.

[25] M. Oskin, F. T. Chong, and T. Sherwood, "Active Pages: A Computation Model for

Intelligent Memory," Proceedings of the 25th Annual International Symposium on

Computer Architecture, p. 192–203, 1998.

[26] D. G. Elliott, M. Stumm, W. M. Snelgrove, C. Cojocaru, and R. McKenzie, "Computational

RAM: implementing processors in memory," IEEE Design Test of Computers, vol. 16, no. 1,

pp. 32-41, Jan. 1999.

[27] D. G. Elliott, W. M. Snelgrove, and M. Stumm, "Computational Ram: A Memory-SIMD

Hybrid And Its Application To DSP," Proceedings of the IEEE 1992 Custom Integrated

121

Circuits Conference, pp. 30.6.1-30.6.4, 1992.

[28] M. Gokhale, B. Holmes, and K. Iobst, "Processing in memory: the Terasys massively

parallel PIM array," Computer, vol. 28, no. 4, pp. 23-31, Apr. 1995.

[29] J. T. Pawlowski, "Hybrid memory cube (HMC)," Hot Chips, vol. 23, 2011.

[30] R. Balasubramonian, J. Chang, T. Manning, J. H. Moreno, R. Murphy, R. Nair, and S.

Swanson, "Near-Data Processing: Insights from a MICRO-46 Workshop," IEEE Micro, vol.

34, no. 4, pp. 36-42, Jul. 2014.

[31] D. H. Woo, N. H. Seong, D. L. Lewis, and H.-H. S. Lee, "An optimized 3D-stacked memory

architecture by exploiting excessive, high-density TSV bandwidth," IEEE 16th International

Symposium on High Performance Computer Architecture (HPCA), pp. 1-12, 2010.

[32] Y. Murachi, T. Kamino, J. Miyakoshi, H. Kawaguchi, and M. Yoshimoto, "A power-efficient

SRAM core architecture with segmentation-free and rectangular accessibility for super-

parallel video processing," IEEE International Symposium on VLSI Design, Automation and

Test (VLSI-DAT), pp. 63-66, 2008.

[33] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and M. Horowitz, "Smart Memories: A

Modular Reconfigurable Architecture," Proceedings of the 27th Annual International

Symposium on Computer Architecture, pp. 161-171, 2000.

[34] K. Vaidyanathan, R. Liu, L. Liebmann, K. Lai, A. Strojwas, and L. Pileggi, "Rethinking

ASIC design with next generation lithography and process integration," SPIE Advanced

122

Lithography, pp. 86840C-86840C, 2013.

[35] K. Vaidyanathan, "Exploiting Challenges of Sub-20 nm CMOS for Affordable Technology

Scaling," Ph.D. dissertation, Dept. Elect. and Comp. Eng., Carnegie Mellon Univ.,

Pittsburgh PA, 2013.

[36] K. Vaidyanathan, Q. Zhu, L. Liebmann, K. Lai, S. Wu, R. Liu, Y. Liu, A. Strojwas, and L.

Pileggi, "Exploiting sub-20-nm complementary metal-oxide semiconductor technology

challenges to design affordable systems-on-chip," Journal of Micro/Nanolithography,

MEMS, and MOEMS, vol. 14, no. 1, pp. Journal of Micro/Nanolithography, MEMS, and

MOEMS, Dec. 2014.

[37] Q. Zhu, E. L. Turnerz, C. R. Bergery, L. Pileggi, and F. Franchetti, "Application-specific

logic-in-memory for polar format synthetic aperture radar," IEEE Conference on High

Performance Extreme Computing (HPEC), vol. 44, 2011.

[38] Q. Zhu, C. R. Berger, E. L. Turner, L. Pileggi, and F. Franchetti, "Polar format synthetic

aperture radar in energy efficient application-specific logic-in-memory," 2012 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), p. 1557–

1560, 2012.

[39] Q. Zhu, C. R. Berger, E. L. Turner, L. Pileggi, and F. Franchetti, "Local Interpolation-based

Polar Format SAR: Algorithm, Hardware Implementation and Design Automation," Journal

of Signal Processing Systems, vol. 71, no. 3, p. 297–312, 2013.

123

[40] F. Sadi, B. Akin, D. T. Popovici, J. C. Hoe, L. Pileggi, and F. Franchetti,

"Algorithm/hardware co-optimized SAR image reconstruction with 3D-stacked logic in

memory," IEEE High Performance Extreme Computing Conference (HPEC), pp. 1-6, 2014.

[41] Q. Zhu, L. Pileggi, and F. Franchetti, "A Smart Memory Accelerated Computed

Tomography Parallel Backprojection," VLSI-SoC: From Algorithms to Circuits and System-

on-Chip Design, pp. 21-44, 2013.

[42] Q. Zhu, L. Pileggi, and F. Franchetti, "Cost-effective smart memory implementation for

parallel backprojection in computed tomography," IEEE/IFIP 20th International Conference

on VLSI and System-on-Chip (VLSI-SoC), p. 111–116, 2012.

[43] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, "Accelerating sparse matrix-

matrix multiplication with 3D-stacked logic-in-memory hardware," IEEE High

Performance Extreme Computing Conference (HPEC), pp. 1-6, 2013.

[44] H.E. Sumbul, K. Vaidyanathan, Q. Zhu, F. Franchetti, and L. Pileggi, "A Synthesis

Methodology for Application-Specific Logic-in-Memory Designs," 52nd ACM/EDAC/IEEE

Design Automation Conference (DAC), 2015.

[45] D. M. Fried et al., "Aggressively scaled (0.143 mu;m2) 6T-SRAM cell for the 32 nm node

and beyond," Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International,

pp. 261-264, 2004.

[46] E. Grossar, M. Stucchi, K. . Maex, and W. Dehaene, "Read Stability and Write-Ability

124

Analysis of SRAM Cells for Nanometer Technologies," IEEE Journal of Solid-State

Circuits, vol. 41, no. 11, p. 2577–2588, Nov. 2006.

[47] L. Chang, R. K. Montoye, Y. Nakamura, K. A. Batson, R. J. Eickemeyer, R. H. Dennard, W.

Haensch, and D. Jamsek, "An 8T-SRAM for Variability Tolerance and Low-Voltage

Operation in High-Performance Caches," IEEE Journal of Solid-State Circuits, vol. 43, no.

4, p. 956–963, Apr. 2008.

[48] K. Pagiamtzis and A. Sheikholeslami, "Content-addressable memory (CAM) circuits and

architectures: a tutorial and survey," IEEE Journal of Solid-State Circuits, vol. 41, no. 3, p.

712–727, Mar. 2006.

[49] B. S. Amrutur, "Design and analysis of fast low power SRAMs," Ph.D. Dissertation,

Stanford University, 1999.

[50] B. S. Amrutur and M. A. Horowitz, "A replica technique for wordline and sense control in

low-power SRAM’s," IEEE Journal of Solid-State Circuits, vol. 33, no. 8, p. 1208–1219,

Aug. 1998.

[51] M. Yoshimoto, K. Anami, H. Shinohara, T. Yoshihara, H. Takagi, S. Nagao, S. Kayano, and

T. Nakano, "A 64Kb full CMOS RAM with divided word line structure," Solid-State

Circuits Conference. Digest of Technical Papers. 1983 IEEE International, p. 58–59, 1983.

[52] M. Yoshimoto, K. Anami, H. Shinohara, T. Yoshihara, H. Takagi, S. Nagao, S. Kayano, and

T. Nakano, "A divided word-line structure in the static RAM and its application to a 64K

125

full CMOS RAM," IEEE Journal of Solid-State Circuits, vol. 18, no. 5, p. 479–485, Oct.

1983.

[53] T. Hirose, H. Kuriyama, S. Murakami, K. Yuzuriha, T. Mukai, K. Tsutsumi, Y. Nishimura, Y.

Kohno, and K. Anami, "A 20 ns 4 Mb CMOS SRAM with hierarchical word decoding

architecture," Solid-State Circuits Conference, 1990. Digest of Technical Papers. 37th

ISSCC., 1990 IEEE International, p. 132–133, 1990.

[54] A. Karandikar and K. K. Parhi, "Low power SRAM design using hierarchical divided bit-

line approach," International Conference on Computer Design: VLSI in Computers and

Processors, 1998. ICCD ’98. Proceedings, p. 82–88, 1998.

[55] K. Osada, H. Higuchi, K. Ishibashi, N. Hashimoto, and K. Shiozawa, "A 2-ns-Access, 285-

MHz, Two-Port Cache Macro Using Double Global Bit-Line Pairs," IEICE

TRANSACTIONS on Electronics, vol. E83–C, no. 1, p. 109–114, Jan. 2000.

[56] S. Hsu, A. Agarwal, M. Anders, H. Kaul, S. Mathew, F. Sheikh, R. Krishnamurthy, and S.

Borkar, "A 2.8GHz 128-entry x 152b 3-read/2-write multi-precision floating-point register

file and shuffler in 32nm CMOS," Symposium on VLSI Circuits (VLSIC), pp. 118-119, 2012.

[57] Y. Xie, "Modeling, Architecture, and Applications for Emerging Memory Technologies,"

IEEE Design Test of Computers, vol. 28, no. 1, pp. 44-51, Jan. 2011.

[58] E. Brunvand, Digital VLSI chip design with Cadence and Synopsys CAD tools, Addison-

Wesley, 2010.

126

[59] I. E. Sutherland, R. F. Sproull, and D. F. Harris, Logical Effort: Designing Fast CMOS

Circuits, Morgan Kaufmann, 1999.

[60] I. E. Sutherland and R. F. Sproull, Logical effort: Designing for speed on the back of an

envelope, MIT Press, 1991.

[61] T. J. Barnes, "SKILL: a CAD system extension language," 27th ACM/IEEE Design

Automation Conference, 1990. Proceedings, p. 266–271, 1990.

[62] J. Qian, S. Pullela, and L. Pillage, "Modeling the “Effective capacitance” for the RC

interconnect of CMOS gates," IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 13, no. 12, p. 1526–1535, Dec. 1994.

[63] O. Shacham, "Chip Multiprocessor Generator: Automatic Generation of Custom and

Heterogeneous Compute Platforms," Ph.D. Dissertation, Stanford University, 2011.

[64] O. Shacham, O. Azizi, M. Wachs, W. Qadeer, Z. Asgar, K. Kelley, J. P. Stevenson, S.

Richardson, M. Horowitz, B. Lee, A. Solomatnikov, and A. Firoozshahian, "Rethinking

Digital Design: Why Design Must Change," IEEE Micro, vol. 30, no. 6, pp. 9-24, Nov.

2010.

[65] W. G. Carrara, R. M. Majewski, and R. S. Goodman, Spotlight Synthetic Aperture Radar:

Signal Processing Algorithms, Boston: Artech Print on Demand, 1995.

[66] D. S. McFarlin, F. Franchetti, M. Püschel, and J. M. F. Moura, "High-performance synthetic

aperture radar image formation on commodity multicore architectures," SPIE Proceedings,

127

vol. 7337, p. 733708–733708–12, 2009.

[67] J. R. Gilbert, V. B. Shah, and S. Reinhardt, "A Unified Framework for Numerical and

Combinatorial Computing," Computing in Science Engineering, vol. 10, no. 2, pp. 20-25,

2008.

[68] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear Algebra, Philadelphia:

SIAM, 2011.

[69] A. Buluc and J. R. Gilbert, "Challenges and Advances in Parallel Sparse Matrix-Matrix

Multiplication," 37th International Conference on Parallel Processing (ICPP ’08), p. 503–

510, 2008.

[70] A. Buluc and J. R. Gilbert, "On the representation and multiplication of hypersparse

matrices," IEEE International Symposium on Parallel and Distributed Processing (IPDPS

2008), pp. 1-11, 2008.

[71] T. A. Davis and Y. Hu, "The university of Florida sparse matrix collection," ACM

Transactions on Mathematical Software, vol. 38, no. 1, pp. 1:1-1:25, 2011.

[72] N. Bell and M. Garland, "Implementing sparse matrix-vector multiplication on throughput-

oriented processors," ACM Proceedings of the conference on High Performance Computing

Networking, Storage and Analysis, p. 18, 2009.

[73] J. B. White III and P. Sadayappan, "On improving the performance of sparse matrix-vector

128

multiplication," IEEE High-Performance Computing, pp. 66-71, 1997.

[74] X. Yang, S. Parthasarathy, and P. Sadayappan, "Fast sparse matrix-vector multiplication on

GPUs: Implications for graph mining," Proceedings of the VLDB Endowment, vol. 4, no. 4,

pp. 231-242, 2011.

[75] J. D. Davis and E. S. Chung, "Spmv: A memory-bound application on the GPU stuck

between a rock and a hard place," Microsoft Research Silicon Valley, Technical Report, Sept.

2012.

[76] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. Byers, "Big

data: The next frontier for innovation, competition, and productivity," May 2011.

[77] H. Esmaeilzadeh, E. Blem, R. St.Amant, K. Sankaralingam, and D. Burger, "Dark silicon

and the end of multicore scaling," 38th Annual International Symposium on Computer

Architecture (ISCA), pp. 365-376, 2011.

[78] M. J. Lyons, M. Hempstead, G.-Y. Wei, and D. Brooks, "The Accelerator Store: A Shared

Memory Framework for Accelerator-based Systems," ACM Trans. Archit. Code Optim., vol.

8, no. 4, pp. 48:1-48:22, Jan. 2012.

[79] G.H. Loh, N. Jayasena, M.H. Oskin, M. Nutter, D. Roberts, M. Meswani, D.P. Zhang, and

M. Ignatowski, "A Processing-in-Memory Taxonomy and a Case for Studying Fixed-

function PIM," Workshop on Near-Data Processing (WoNDP), 2013.

129

130

Appendix A: Memory Brick Generator Codes

A.1 Memory Brick Verilog Module

A template Verilog module code for an 8T bitcell based SRAM memory brick with size

16x10bits is as follows:

// Verilog module for 8T bitcell based 1R1W capable SRAM brick of 16x10bits

module sram_brick_16_10 (CLK, R_EN, DRWL, DWWL, WBL, WBL_B, ARBL);

input CLK, R_EN ;

input [9 : 0] WBL, WBL_B;

input [15: 0] DRWL, DWWL;

output reg [9 : 0] ARBL;

// Create a dummy register array and dummy encoders for Read / Write addr

reg [9 : 0] mem_brick[15 : 0];

wire [3 : 0] read_addr, wr_addr;

wl_encoder dummy_enc_R (.in_dwl(DRWL), .out_addr(read_addr));

wl_encoder dummy_enc_W (.in_dwl(WRWL), .out_addr(wr_addr));

// Read - Write operations w.r.t. CLK

always @(CLK) begin

 if(CLK == 1) begin

 if(|DWWL) // WRITE

 mem_brick[wr_addr] <= WBL & (~WBL_B);

 if(R_EN) // READ

 ARBL <= mem_brick[read_addr];

 else

 ARBL <= 10'bz; // for tri-state behavior

 end

end

endmodule

131

A.2 Memory Brick Synthesis Library file

A template synthesis library file in Liberty format (.lib) for an 8T bitcell based SRAM memory

brick with size 16x10bits is as follows:

library(sram_brick_16_10_lib_TT) {

 -- Start with default definitions (units, supply V, temperature, corners, etc.)

 lu_table_template(ma_16_10_template) {

 variable_1 : input_net_transition;

 variable_2 : total_output_net_capacitance;

 index_1("10, 20, 30, 40, 50, 60, 70"); // example numbers

 /* in ps - scale in FO4: [1/10 , 1/4 , 1/2 , 1 , 2 , 4 , 10] */

 index_2("10, 20, 30, 40, 50, 60, 70"); } // example numbers

 /* in fF - scale in "extra" ARBL cap driven: [0x, 1x, 4x, 8x, 9x, 12x, 16x]*/

 type (ma_16_10_ARBL) {

 base_type : array;

 data_type : bit;

 bit_width : 10;

 bit_from : 9;

 bit_to : 0;

 downto : true; }

 type (ma_16_10_DRWL) { .. }

 type (ma_16_10_DWWL) { .. }

 type (ma_16_10_WBL) { .. }

 type (ma_16_10_WBL_B) { .. }

 cell(sram_brick_16_10) {

 area : <in um2>

 dont_touch : true ;

 dont_use : true ;

 interface_timing : true ;

 cell_leakage_power : <in uW>

 pg_pin (VSS) { voltage_name : VSS;

 pg_type : primary_ground; }

 pg_pin (VDD) { voltage_name : VDD;

 pg_type : primary_power; }

132

 bus(ARBL) {

 bus_type : "ma_16_10_ARBL";

 direction : output;

 three_state : "!BLK_RE";

 capacitance : <ARBL pin capacitance in fF>

 max_capacitance : <max output driving cap in fF>

 related_power_pin : VDD;

 related_ground_pin : VSS;

 timing () {

 related_pin : "CLK";

 timing_type : rising_edge;

 timing_sense : non_unate;

 cell_rise(ma_16_10_template) {

 values ("200, 220, 240, 260, 280, 300, 320",\

 "210, 230, 250, 270, 290, 310, 330",\

 ..7x7 array .. "); }

 -- All 7x7 arrays:

 cell_fall(ma_16_10_template) { .. }

 fall_transition(ma_16_10_template) { .. }

 rise_transition(ma_16_10_template) { .. }

 }

 }

 pin(CLK) {

 direction : input;

 max_transition : <in ps, technology and design dependent>

 capacitance : <clk pin total capacitance in fF >

 min_pulse_width_high : <in ps, tech and design dependent>

 min_pulse_width_low : <in ps, tech and design dependent>

 clock : true;

 related_power_pin : VDD;

 related_ground_pin : VSS;

 /* Mem Read & Write – 16rows, 10bits */

 internal_power () {

 when : "((DWWL[15]) | (DWWL[14]) | (DWWL[13]) |

(DWWL[12]) | (DWWL[11]) | (DWWL[10]) | (DWWL[9]) | (DWWL[8]) | (DWWL[7]) |

(DWWL[6]) | (DWWL[5]) | (DWWL[4]) | (DWWL[3]) | (DWWL[2]) | (DWWL[1]) |

(DWWL[0])) & ((DRWL[15]) | (DRWL[14]) | (DRWL[13]) | (DRWL[12]) | (DRWL[11])

| (DRWL[10]) | (DRWL[9]) | (DRWL[8]) | (DRWL[7]) | (DRWL[6]) | (DRWL[5]) |

(DRWL[4]) | (DRWL[3]) | (DRWL[2]) | (DRWL[1]) | (DRWL[0])) ";

 related_pg_pin : "VDD";

 rise_power (scalar) { values (" <R+W power in uW> "); }

 fall_power (scalar) { .. }
 }

133

 /* Mem Write – 16rows, 10bits */

 internal_power () {

 when : "((DWWL[15]) | (DWWL[14]) | (DWWL[13]) |

(DWWL[12]) | (DWWL[11]) | (DWWL[10]) | (DWWL[9]) | (DWWL[8]) | (DWWL[7]) |

(DWWL[6]) | (DWWL[5]) | (DWWL[4]) | (DWWL[3]) | (DWWL[2]) | (DWWL[1]) |

(DWWL[0])) & (!((DRWL[15]) | (DRWL[14]) | (DRWL[13]) | (DRWL[12]) |

(DRWL[11]) | (DRWL[10]) | (DRWL[9]) | (DRWL[8]) | (DRWL[7]) | (DRWL[6]) |

(DRWL[5]) | (DRWL[4]) | (DRWL[3]) | (DRWL[2]) | (DRWL[1]) | (DRWL[0]))) ";

 related_pg_pin : "VDD";

 rise_power (scalar) { values (" <W power in uW> "); }

 fall_power (scalar) { .. }

 }

 /* Mem Read – 16rows, 10bits */

 internal_power () {

 when : "((DRWL[15]) | (DRWL[14]) | (DRWL[13]) |

(DRWL[12]) | (DRWL[11]) | (DRWL[10]) | (DRWL[9]) | (DRWL[8]) | (DRWL[7]) |

(DRWL[6]) | (DRWL[5]) | (DRWL[4]) | (DRWL[3]) | (DRWL[2]) | (DRWL[1]) |

(DRWL[0])) & (!((DWWL[15]) | (DWWL[14]) | (DWWL[13]) | (DWWL[12]) |

(DWWL[11]) | (DWWL[10]) | (DWWL[9]) | (DWWL[8]) | (DWWL[7]) | (DWWL[6]) |

(DWWL[5]) | (DWWL[4]) | (DWWL[3]) | (DWWL[2]) | (DWWL[1]) | (DWWL[0])))";

 related_pg_pin : "VDD";

 rise_power (scalar) { values (" <R power in uW> "); }

 fall_power (scalar) { .. }

 }

 /* CLK received, but no operation – 16rows, 10bits */

 internal_power () {

 when : "(!((DRWL[15]) | (DRWL[14]) | (DRWL[13]) |

(DRWL[12]) | (DRWL[11]) | (DRWL[10]) | (DRWL[9]) | (DRWL[8]) | (DRWL[7]) |

(DRWL[6]) | (DRWL[5]) | (DRWL[4]) | (DRWL[3]) | (DRWL[2]) | (DRWL[1]) |

(DRWL[0]))) & (!((DWWL[15]) | (DWWL[14]) | (DWWL[13]) | (DWWL[12]) |

(DWWL[11]) | (DWWL[10]) | (DWWL[9]) | (DWWL[8]) | (DWWL[7]) | (DWWL[6]) |

(DWWL[5]) | (DWWL[4]) | (DWWL[3]) | (DWWL[2]) | (DWWL[1]) | (DWWL[0])))";

 related_pg_pin : "VDD";

 rise_power (scalar) { values (" <No-op pwr in uW> "); }

 fall_power (scalar) { .. }

 }

 }

 bus(DRWL) {

 bus_type : "ma_16_10_DRWL";

 direction : input;

 max_transition : <in ps, technology and design dependent>

 capacitance : <in fF>

 related_power_pin : VDD;

 related_ground_pin : VSS; }
 bus(DWWL) { .. same as DRWL .. }

134

 bus(WBL_B) {

 bus_type : "ma_16_10_WBL_B";

 direction : input;

 max_transition : <in ps, technology and design dependent>

 capacitance : <in fF>

 related_power_pin : VDD;

 related_ground_pin : VSS;

 timing() { timing_type : hold_falling ;

 rise_constraint (scalar) {values("0");}

 fall_constraint (scalar) {values(" <hold time in ps> ");}

 related_pin : " CLK "; }

 }

 bus(WBL) { .. same as WBL_B .. }

 pin(BLK_RE) {

 direction : input;

 max_transition : <in ps, technology and design dependent>

 capacitance : <in fF>

 related_power_pin : VDD;

 related_ground_pin : VSS;

 timing() { timing_type : setup_rising ;

 rise_constraint (scalar) {values(" <setup time in ps> ");}

 fall_constraint (scalar) {values("0");}

 related_pin : " CLK "; }

 }

 } //end of “cell(sram_brick_16_10)”

} //end of library file

135

A.3 Memory Brick Netlist Generator

A template MATLAB code for 8T bitcell based SRAM memory brick netlist generator is as

follows:

function [netlist_name, Cload_ARBL] = compiler_8T_brick(word_num, bit_num,

stack_num)

% ----------- INPUTS:

Num_2xRows = word_num;

Num_Cols = bit_num;

Num_Bricks = stack_num;

Num_Rows = Num_2xRows/2;

% ----------- LUT based Wire Cap Estimation:

[RBL_cap, ARBL_cap, RWL_cap, WWL_cap] = CAP_LUT_8T_brick(Num_Rows,

Num_Cols);

% ----------- CONSTANTS:

-- Define technology and bitcell dependent constant parameters:

-- beta, FO4, Gate_C_fFpUM, min_W, bcell transistor sizes (in uM)

% -- Logical Efforts of each gate in the topology

% WL driver

LE_wl_driver = [(2+beta)/3, 1, 1, 1];

% Local sense

skew = 2;

LE_nand = (2+beta*skew)/(skew*(1+beta));

LE_local_sense = [LE_nand, 2];

% Control circuit

LE_CNTRL_rst = [1, (2+beta)/3, 1, 1];

LE_CNTRL_r_en = [1, 1, 1];

LE_CNTRL_r_en_b = [1, 1];
LE_CNTRL_r_nand = [(2+beta)/3];

136

% ---

% ----------- Start compiling the netlist ---------

% ---

% 1) RWL/WWL driver (picking WWL cap as it is the worst case)

Cload_WL_gates = (2 * bcell_pass_N * Gate_C_fFpUM) * Num_Cols;

Cload_WL = Cload_WL_gates + WWL_cap;

% First decide what "Win (Cin)" == "SE of each gate" will be:

% a) check what min W gives:

nand_N = min_W;

nand_P = (min_W / 2) * beta;

Cin_nand = (nand_N + nand_P) * Gate_C_fFpUM;

SE_for_minWin = calculate_SE(LE_wl_driver, size(LE_wl_driver,2), Cload_WL,

Cin_nand);

% b) if starting with min W leads to a non-ideal SE, then iterate for a better SE

-- Essentially re-do the problem by first picking an SE, but make sure that nand_N

stays relatively small

-- An example SE range: 2.5 < SE < 4.5

% calculate all Cgates (and Wgates) with Cin, Cload, SE known:

% Cin_nand = set

Cin_inv2 = SE_wl_driver * (Cin_nand / LE_wl_driver(1,1));

Cin_inv3 = SE_wl_driver * (Cin_inv2 / LE_wl_driver(1,2));

Cin_inv4 = SE_wl_driver * (Cin_inv3 / LE_wl_driver(1,3));

W_NMOS_nand1 =(2*Cin_nand /(2+beta)) / Gate_C_fFpUM ;

W_NMOS_inv2 = (Cin_inv2 /(1+beta)) / Gate_C_fFpUM ;

W_NMOS_inv3 = (Cin_inv3 /(1+beta)) / Gate_C_fFpUM ;

W_NMOS_inv4 = (Cin_inv4 /(1+beta)) / Gate_C_fFpUM ;

W_NMOS_WL_driver = [W_NMOS_nand1, W_NMOS_inv2, W_NMOS_inv3,

W_NMOS_inv4];

% 2) Local Sense

-- Same as WL driver sizing, include "total RBL_cap x #stacked_bricks" as the load

capacitance

137

% 3) RBL RESET PMOSES

Cg_read = W_NMOS_lvt_nand * (Gate_C_fFpUM * (2 + beta*skew));

RBL_cap_total = Cg_read + RBL_cap;

% Setting delay to 4xFo4 delays for reset:

rst_delay = 4 * FO4;

% RC Delay Formulas (Fitted from SPICE simulation results)

% Technology dependent and not disclosed

-- t = a x R^b x Cap^c %with R in kohm, C in fF, t in ps

-- R = (k*Wp^-1)+m %with Wp in nm, R in kohm

% With these fitted formulas, then t = RC --> R = t/C

Rp = ((rst_delay *1e+12)/(a*((RBL_cap_total *1e+15)^c)))^(1/b); % in kohm

Wp = k /(Rp - m); % in nm

W_PMOS_RST = round(Wp);

% 4) CONTROL - Reset_EN signal generation

% 5) CONTROL - Read_EN control (Branched into 2)

-- (4) and (5) are same as WL driver sizing

-- Include "total WL cap + (#bits x gate_cap)" as the appropriate load capacitances

% ---- Save the compiled netlist ----

-- Save all the gate sizes to be used in timing & energy estimation

end

138

A.4 Memory Brick Timing Estimator

A template MATLAB code for critical path timing estimation on 8T bitcell based SRAM

memory brick netlist is provided. Functions such as “FO_NAND_delay” are LUTs that store the

delay and output slew of a gate in terms of input slew vs. gate fan-out.

function [critical_path] = perf_est_8T(netlist, cload)

load(netlist); %loads: wl_driver, read & skew_read, array

% ---- Stage 1: WL driver ----

% Assuming DWL is received with a "slow input" slew for critical-path testing.

% calculate Fan-Out of gates:

fo_nand = (wl_driver(1,2)*3) / (wl_driver(1,1)*2) ; %fo of wl_driver nand

fo_wl = wl_driver(1,3) / wl_driver(1,2) ; %fo of inverters in wl_driver

% WL driver of 4 gates: nand, inv1, inv2, inv_driving_RWL

[del_wl_1, slew_wl_1] = FO_NAND_delay(fo_nand*(4/3), 'l', 62) ; % pc=1

[del_wl_2, slew_wl_2] = FO_delay_pc2(fo_wl, 'h', slew_wl_1) ; % fingered, pc=2

[del_wl_3, slew_wl_3] = FO_delay_pc2(fo_wl, 'l', slew_wl_2) ; % fingered, pc=2

[del_wl_4, slew_wl_4] = FO_delay_pc2_RWL_drive(array(1,2), wl_driver(1,4),

slew_wl_3); % fingered, pc=2

del_wl = del_wl_1 + del_wl_2 + del_wl_3 + del_wl_4 ;

% ---- Stage 2: Bitcells ----

% Extra LVT NAND added to the end of the RBL in 8T SRAM is handled inside the RBL

delay LUT as a load

[del_bcell, slew_rbl] = bcell_delay(array(1,1), read(1,1), slew_wl_4) ;

% ---- Stage 3: Local Sense (All LVT gates) ----

% Local sense for 8T sram brick: NAND (pc = 1) + Tri-state (pc = 2)

fo_LVTNAND = (read(1,2)*3) / (read(1,1)*(1+skew_read));

[del_read_LVTNAND, slew_read_LVTNAND] = nand_lvt_pc1_skew_interp(fo_LVTNAND,

slew_rbl, skew_read) ;

[del_read_LVTTRI, output_slew] = fo_lvt_tri(slew_read_LVTNAND, cload, read(1,2));

del_read = del_read_LVTNAND + del_read_LVTTRI;

% ---- Critical Path: Reading a 0 from the last bit of first row ----

critical_path = del_wl + del_bcell + del_read;

end

139

A.5 Memory Brick Layout Generator

A template SKILL code example for generating the layout of an 8T bitcell based SRAM memory

brick is given in this section. First several basic procedures (equivalent of functions in SKILL

coding language) are given. Then a code example that generates a leaf construct for the local

sense leaf cell is provided. At the end, a code example that generates the modified leaf cell for

the local sense block is given.

;; ----------------------- Basic Stretch Functions (Example):

procedure(stretch_right_side(cellid layer purpose extend_right)

 shapes=setoff(ARG cellid->shapes ARG->layerName == layer && ARG->

purpose == purpose)

 foreach(ARG shapes

 llx=LLX(ARG->bBox)

 lly=LLY(ARG->bBox)

 urx=URX(ARG->bBox)

 ury=URY(ARG->bBox)

 new_urx=urx+extend_right

 newbBox=list(list(llx lly) list(new_urx ury))

 ARG->bBox=newbBox))

;; ----------------------- Basic Move Functions (Example):

procedure(move_right(cellid layer purpose to_right)

 shapes=setof(ARG cellid->shapes ARG->layerName == layer && ARG->

purpose == purpose)

 foreach(ARG shapes

 llx=LLX(ARG->bBox)

 lly=LLY(ARG->bBox)

 urx=URX(ARG->bBox)

 ury=URY(ARG->bBox)

 new_llx=llx+to_right

 new_urx=urx+to_right

 newbBox=list(list(new_llx lly) list(new_urx ury))

 ARG->bBox=newbBox))

;; ----------------------- Getting BBOX corners of a shape:

procedure(LLX(bBox)

 caar(bBox)) ;; similarly using cadar for LLY, caadr for URX, cadadr for URY

140

;; Create a leaf construct for the leaf cell

procedure(create_read_rst(unique_brick_name new_lib g_W stretch_reset_Mx_up)

 id = strcat("read_rst_" unique_brick_name)

 cvID_read_rst = dbOpenCellViewByType("SKILL_LIB" "Read_RST" "layout")

 dbCopyCellView(cvID_read_rst new_lib id "layout" nil nil t)

 dbClose(cvID_read_rst)

 cvID_read_rst_modded = dbOpenCellViewByType(new_lib id "layout" "" "a")

 ;; ------- Modifications

 default_RX_w= <non disclosed, in um>

 default_via_pos = <non disclosed, in um>

 default_via_num = <non disclosed, integer>

 stretch_amount=g_W-default_RX_w

 stretch_top_side(cvID_read_rst_modded "M1" "drawing" stretch_amount)

 stretch_top_side(cvID_read_rst_modded "RX" "drawing" stretch_amount)

 stretch_top_side(cvID_read_rst_modded "PC" "drawing" stretch_amount)

 ;; M4, M5, M6 are used as dummy layers for easier manipulation of unique M1

shapes

 move_up(cvID_read_rst_modded "M4" "drawing" stretch_amount)

 move_up(cvID_read_rst_modded "M5" "drawing" stretch_amount)

 stretch_top_side(cvID_read_rst_modded "M5" "drawing" stretch_reset_Mx_up)

 stretch_top_side(cvID_read_rst_modded "M6" "drawing"

 (stretch_reset_Mx_up+stretch_amount))

 ;; ---- Contact (CA) Vias:

 manipulate_CA_vias_UP(cvID_read_rst_modded g_W default_RX_w

default_via_pos default_via_num stretch_amount)

 ;; ----- Mx colors: (Revert all M4,5,6 back to M1)

 shapes_M45_to_M1=setof(ARG cvID_read_rst_modded->shapes ARG->

layerName == "M4" || ARG->layerName == "M5")

 foreach(ARG shapes_M45_to_M1

 ARG->layerName="M1"

)

 ;; Repeat the same for all high-level Mx, transform all back to “M1”

 ;; ----------- Mods done

 dbSave(cvID_read_rst_modded)

 dbClose(cvID_read_rst_modded)

)

141

;; Create the modified leaf cell

procedure(create_local_sense(unique_brick_name new_lib)

 ;; Get the gate widths for Local Sense cell

 gates = <read in gate sizes from a file>

 ;;---- Create all new leaf constructs and modify them

 -- Going through generation of all leaf constructs:

 …

 create_read_rst_04(unique_brick_name new_lib gate_rst (gate_nand*2.0)

(gate_tri*2.0))

 …

 ;;----- Create the modified leaf cell:

 read_rst_name = strcat("read_rst_" unique_brick_name)

 cvID = dbOpenCellViewByType("SKILL_LIB" "Read_RST_outline" "layout")

 dbCopyCellView(cvID new_lib read_rst_name "layout" nil nil t)

 dbClose(cvID)

 cvID_read_rst_modded = dbOpenCellViewByType(new_lib read_rst_name

"layout" "" "a")

 ;; Start placing leaf constructs cells into the final leaf cell

 x=0.0

 y=0.0

 -- Going through placing all leaf constructs w.r.t. each other’s coordinates:

 …

 ;; ---- construct #04

 leaf_cell_name=strcat("read_rst_04_" unique_brick_name)

 sub_leaf_cell=dbOpenCellViewByType(new_lib leaf_cell_name "layout")

 dbCreateInst(cvID_read_rst_modded sub_leaf_cell "inst4" list(x y) "R0")

 bbox=sub_leaf_cell~>bBox

 x=nth(0 upperRight(bbox))

 x_tri=x ;; update x

 y_nand = nth(1 upperRight(bbox)) ;; update y to use later on

 …

 ;; -------------- Save & close

 dbSave(cvID_read_rst_modded)

 dbClose(cvID_read_rst_modded)

)

	Contents
	1 Introduction
	1.1 Motivation
	1.2 Thesis Contribution
	1.3 Outline

	2 Background
	2.1 Application-Specific Smart-Memories
	2.2 Restrictive Patterning Enablement
	2.3 Application-Specific Logic-in-Memory Designs

	3 LiM Synthesis and Memory Bricks
	3.1 Overview of LiM Synthesis Flow
	3.2 Memory Bricks
	3.2.1 Bitcells Used in Memory Bricks
	3.2.2 8T Bitcell Based Memory Brick
	3.2.3 6T Bitcell Based Memory Brick
	3.2.4 Content Addressable Memory (CAM) Based Brick
	3.2.5 Analysis of Bricks

	3.3 Memory Bricks in Synthesis
	3.3.1 Verilog for Synthesized SRAM
	3.3.2 Memory Bricks and Partitioning
	3.3.3 Library of Memory Bricks
	3.3.4 Synthesized SRAM vs. Compiled SRAM

	3.4 Design-cost of Implementing Bricks

	4 Dynamic Brick Library Generation
	4.1 Automated Brick Generation
	4.1.1 Memory Brick Netlist Generator
	4.1.2 Memory Brick Layout Generator
	4.1.3 Performance and Energy Estimation of Memory Bricks

	4.2 Automated Synthesis of LiM designs
	4.2.1 Overview of the Automated Synthesis Flow
	4.2.2 Rapid Design-Space Exploration Example

	4.3 Accuracy of Estimated Library Generation
	4.4 Algorithm and Hardware Co-design

	5 Silicon Validation for Two Data-Intensive Applications
	5.1 Synthetic Aperture Radar Image Reformatting
	5.1.1 LiM Based SAR Architecture and Test-chip
	5.1.2 SAR Test-chip Results

	5.2 Graph Processing Accelerator
	5.2.1 LiM Based SpGEMM Architecture and Test-chip
	5.2.2 SpGEMM Test-chip Results

	5.3 Analysis of the Results

	6 Design-Space Exploration
	6.1 Spares-Matrix – Vector Multiplication (SpMV)
	6.1.1 LiM Based SpMV Architecture
	6.1.2 Design-Space of the LiM Based SpMV Architecture

	6.2 Design-Space Exploration Flow
	6.3 Design-Space Exploration on SpMV Architecture
	6.3.1 Creating a Design-Space
	6.3.2 Design-Space Exploration
	6.3.3 Analysis of the Design-Space

	7 Scaling, Future Work, and Conclusions
	7.1 Technology Scaling and Future Trends
	7.1.1 Technology Scaling Below 14nm Node
	7.1.2 Future SoC Trends

	7.2 Future Work for the Synthesis Methodology
	7.3 Conclusion

	References
	Appendix A: Memory Brick Generator Codes

