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Abstract 
The wide application of fluid injection has caused a concern of the potential critical risk 

associated with induced seismicity. To help clarify the concern, this dissertation proposes 

a statistical approach for assessing seismic transitions associated with fluid injections by 

scientifically analyzing instrumental measures of seismic events. The assessment problem 

is challenging due to the uncertain effects of wastewater injections on regional seismicity, 

along with the limited availability of seismic and injection data. To overcome the 

challenge, three statistical methods are developed, with each being focused on a different 

aspect of the problem. Specifically, a statistical method is developed for early detection 

of induced seismicity, with the potential of allowing for site managers and regulators to 

act promptly and preparing communities for the increased seismic risk; the second 

method aims for addressing the further need of quantitatively assessing the transition of 

induced seismicity, which can reveal the underlying process of induced seismicity and 

provide data to support probabilistic seismic hazard analysis; and finally, the third 

method steps further to characterize the process of spatial distribution of induced 

seismicity, which accounts for spatial evolution of induced seismicity. All the proposed 

methods are built on the principles of Bayesian technique, which provides a flexible 

inference framework to incorporate domain expertise and data uncertainty. The 

effectiveness of the proposed methods is demonstrated using the earthquake dataset for 

the state of Oklahoma, which shows a promising result: the detection method is able to 

issue warning of induced seismicity well before the occurrence of severe consequences; 

the transition model provides a significantly better fit to the dataset than the classical 

model and sheds light on the underlying transition of induced seismicity in Oklahoma; 

and the spatio-temporal model provides a most comprehensive characterization of the 

dataset in terms of its spatial and temporal properties and is shown to have a much better 

short-term forecasting performance than the “naïve methods”. The proposed methods can 

be used in combination as a decision-making support tool to identify areas with 

increasing levels of seismic risk in a quantitative manner, supporting a comprehensive 

assessment to decide which risk-mitigation strategy should be recommended.  
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Chapter 1 Overview 

1. 1 Introduction 

Underground fluid injection has long been in practice as a low-cost approach to dispose 

of fluid wastes and to facilitate mining and oil and gas production. According to 

Underground Injection Control (United States Environmental Protection Agency, N.D), 

there are six types of injection wells with each being responsible for injecting a different 

kind of fluid. In particular, Class II wells are responsible for injecting fluids (primarily 

brines) associated with oil and natural gas production. They fall into one of three 

categories, including Disposal, Enhanced recovery and Hydrocarbon storage wells. They 

have been widely applied across the state: approximately 180,000 Class II wells are in 

operation in the United States and, over 2 billion gallons of brine are injected in the 

United States every day. Most oil and gas injection wells are in Texas, California, 

Oklahoma and, Kansas. 

 

As one consequence of the wide application of this technology, an increasing number of 

cases of induced seismicity have emerged and raised concerns among stakeholders, 

including local communities under exposure, operators and managers of disposal wells 

and scientists in the seismic-risk community. The concern of potentially triggering large 

and physically and/or psychologically damaging seismic events can be well justified by 

many well-documented cases of induced earthquakes associated with waste fluids 

injection, including at the Rocky Mountain Arsenal (RMA), Colorado, in the 1960s 

(Healy et al., 1968); Ashtabula, Ohio, in the 1980s (Seeber et al., 2004); and Paradox 

Valley, Colorado, in the 1990s (Ake et al., 2005), among many others. The Most recent 

cases can be found in the midcontinent region of the United States (Horton, 2012; 

Ellsworth, 2013; Frohlich et al., 2014; Rubinstein et al., 2014), especially in the state of 

Oklahoma, where much evidence has been proposed by geoscientists to link the 2011 

Mw 5.7 earthquake to the fluid-injection activities in the region (Keranen et al., 2013).  
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It is worth noting that the proportion of injection wells that have shown to induce felt 

earthquakes is small (United States Geological Survey, N.D). A combination of many 

factors is necessary for injection to induce felt earthquakes, e.g. the injection rate and 

total volume injected; the presence of faults that are large enough to produce felt 

earthquakes; stresses that are large enough to produce earthquakes; and the presence of 

pathways for the fluid pressure to travel from the injection point to faults. However, the 

concern for the potential risk is considerable due to the potential critical consequence of 

induced earthquakes. 

 

This concern is responsible for the intense research activity in the field of induced 

seismicity, with research efforts devoted to the study of related inducing mechanisms 

(Talwani and Acree, 1984; Hickman et al., 1995; Streit and Hillis, 2004; McClure and 

Horne, 2011; Goertz-Allmann and Wiemer, 2012), and to the development of models for 

risk monitoring and forecasting (Bachmann et al., 2011; Convertito et al., 2012; Brodsky 

and Lajoie, 2013; Llenos et al. 2013; Mena et al., 2013). These efforts are vital for 

providing data to decision-makings on site-selection, regulation and risk-management of 

injection wells. However, there is still a lack of efforts of quantifying the transition of 

induced seismicity (especially when the injection data is unavailable or the correlation 

between induced seismicity and a specific injection well is difficult to identify), which is 

important for providing data to probabilistic seismic risk analysis (PSHA). In this 

dissertation, the problem is addressed using a statistical approach. 

 

1.2 Problem Statement 

To determine whether the concern of induced seismicity can be justified, and to guide 

risk-management of wastewater injections, it is beneficial to clarify the risks of induced 

seismicity. One of the crucial steps is to detect and quantify the seismic transition of 

induced seismicity (i.e., when, how much and where induced seismicity is occurring). An 

early detection allows for prompt response from well regulators and operators, while the 

quantification is an important step for accurate seismic hazard assessment. 
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In this dissertation, a series of statistical methods are presented to provide a solution to 

the challenge by scientifically analyzing instrumental measures of seismic events, 

including magnitude, location and time of occurrence. Firstly, an early detection method 

is proposed as a simple and computationally less expensive tool to monitor an injection 

site for early signs of induced seismicity. If the model confirms a detection of induced 

seismicity, two progressively more sophisticated methods are proposed and applied to 

quantify the level of induced seismicity and its spatial evolution. The objectives and 

methodologies of the three models are briefly described in the following section. 

 

1.3 Objectives and Methods 

The main objective of the thesis is to provide a solution to the detection and 

quantification of induced seismicity, or when, where and to what extent induced 

seismicity occurs. Specifically, it will be achieved by the following three sub-objectives.  

 

(1) A statistical method for early detection of changes in seismic rate. The objective 

of the detection method is to use instrumental measures of seismic activity to allow for 

empirical early detection of symptoms of change. The corresponding early warning is 

critical to allow site managers and regulators to act promptly, revising the injection 

activity and/or preparing communities for the increased seismic risk. The method adopts 

a statistical hypothesis testing procedure in which data from test period are tested against 

a baseline model. The test period is extended gradually to collect just sufficient evidence 

to reject the null hypothesis, which provides a basis for early detection. The effectiveness 

of the method is demonstrated using a dataset from the Oklahoma state.  

 

(2) A Bayesian approach for assessing seismic transitions associated with fluid 

injection. The objective of this effort is to provide a more general methodology using a 

statistical model that considers not only the time and magnitude but also the form of 

seismic rate transitions. With subsequent linkage to information on ground motions, 

exposure, fragility and consequences, the developed method can also provide an initial 

decision-support tool to identify areas with increasing levels of induced events, updating 
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seismic hazard estimates (Petersen et al., 2015), and supporting a comprehensive 

assessment to decide which risk-mitigation strategy should be recommended (Bommer et 

al., 2015). The method adopts and modifies the Epidemic Type Aftershock Sequences 

(ETAS) model (Ogata, 1988), which provides a popular framework for statistically 

modelling seismic events. The quantitative assessment of seismic activities follows the 

paradigm of Bayesian modeling, in which the prior uncertainty of the model can be 

updated upon acquisition of new information. The performance of the model is 

investigated in an application to the Oklahoma dataset. 

 

(3) A Bayesian approach for assessing spatio-temporal evolution of seismic event 

rate. This effort aims for providing a comprehensive solution to the challenge by 

assessing seismic transitions in both time and space. The developed method can be used 

to provide data for monitoring and periodically updating the regional seismic hazard 

under uncertain effects of fluid injection. It involves updating the spatial event rate based 

on the previous rate and the current observation. Due to the lack of analytical solutions, 

the inference of the model is carried out using Particle Filter method, in which a set of 

weighted samples/particles are periodically updated to represent our belief about the state 

of the event rate. The method is applied to the Oklahoma dataset to evaluate its 

performance. 

 

Each method focuses on one or more aspects of the challenge (i.e. when, where and to 

what extent) and has its unique advantage, but provides a relatively more comprehensive 

solution than the previous methods. The relative advantage of each method is discussed 

in Chapter 6, along with the possibility of using them in combination to address the 

challenge.  
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1.4 Dissertation Layout 

The first chapter serves as an introduction to the research problem and the specific 

objectives to be addressed. Chapter 2 describes the earthquake dataset of the Oklahoma 

state, which is used to demonstrate the performance of the proposed methods. Chapters 3 

to 5 are used to describe each research objective, proposed method, and application 

results, respectively. The last chapter is devoted to summarizing the achievements of the 

dissertation and discussing the outlook for future research.  
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Chapter 2 The State of Oklahoma and Its 
Earthquake Dataset 

Abstract 
Facts are presented in this chapter regarding the injection history in the state of Oklahoma 

and the general trend of its earthquake activity. And also, an earthquake dataset (last 

assessed in April 2016) from the state is described in terms of temporal and spatial 

properties of seismic events, frequency and magnitude relationships, and magnitude of 

completeness. This dataset will be subsequently used to demonstrate the performance of 

each proposed method.  

 

2.1 Injection and induced seismicity in the Oklahoma State 

Oklahoma is a region that is well known for a long history of wastewater injection with 

numerous injection wells across the state and, has seen a remarkable increase in the 

regional seismic activity after decades of absence of induced earthquakes since the first 

injection wells were deployed (although it has been suggested that induced earthquakes 

have occurred in Oklahoma during these decades, but at lower frequency and magnitude 

(Hough, 2015)). The second largest earthquake ML 5.7 in the history of the state struck its 

central region in 2011 and damaged nearby infrastructures. More recently, the largest 

earthquake M5.8 in the history of the state shook Pawnee on September 2016, which is 

shortly followed by a M5.0 event that struck near Cushing, Oklahoma and building 

damages have been reported. 

 

The ML5.7 earthquake sequence initiated very close to a pair of wastewater injection 

wells where disposal operations began almost 20 years earlier (Oklahoma Corporation 

Commission Well Data System). There has been some evidence to suggest that this 

earthquake was induced by nearby wastewater injection activities (Keranen et al., 2013). 
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Some of the geological and geophysical characteristics related to the recent earthquake 

activity within Oklahoma, documented by the Oklahoma Geological Survey, include: a) 

the seismicity rate in 2013 was 70 times greater than the background seismicity rate 

observed in Oklahoma prior to 2008; b) the majority of earthquakes in central and north-

central Oklahoma occur as earthquake swarms and not in the typical foreshock-

mainshock-aftershock sequences that are characteristic of naturally occurring earthquake 

sequences; c) these earthquake swarms are occurring over a large area, about 15% of the 

area of Oklahoma, that has experienced a significant increase in wastewater disposal 

volume over the last several years; d) most of the earthquakes are occurring within the 

crystalline basement, deeper than most oil and gas operations; and e) the majority of 

wastewater disposal is targeted for injection in the Arbuckle formations, which closely 

overlie the crystalline basement. 

 

2.2 The Oklahoma earthquake dataset 

The dataset roughly spans the time period from January 1975 to March 2016. The total 

number of recorded seismic events during this period is 20,595, with the largest being ML 

5.7 and the smallest ML-1.2. The Entire-Magnitude-Range method (Woessner and Stefan, 

2005) reveals that the magnitude completeness (Mc) of this dataset is ML2.4 +/- 0.06 

(uncertainties are calculated by bootstrapping). In this study, a more conservative value 

of ML2.5 is used for Mc to mitigate the effect of missing occurring, but unrecorded 

seismic events below this threshold level and the b-value is set at 1.0, as commonly 

assumed in literature (Frohlich and Scott, 1993). As a consequence of the Mc selection, a 

total number of 7010 events, constituting a complete catalog, remain for subsequent 

analysis. The temporal and spatial properties of the catalog are illustrated in Figure 1.  
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Figure 1 Spatial and temporal illustrations of the complete catalog (M ≥ 2.5). Plot (a) shows a map of Oklahoma 
(shaded section) and the epicenters and magnitude ranges of the earthquake events. Faults are taken from 
Heran et al., (2003) and Sims et al., (2008), geological provinces are taken from Northcutt and Campbell (1995); 
plot (b) graphs the cumulative behavior of the catalog time series and (c) displays the event occurrence times 
and associated magnitudes.  

 

As shown in plot 1(a), two major areas of seismic events are the central and northern 

border parts of the Oklahoma state. Plot 1(b) shows that Oklahoma has undergone a 

substantial increase in the seismicity rate beginning around year 2010 or earlier, for 

events with local magnitude 2.5 and above.  

 

This dataset are used to investigate the performance of each proposed method as 

documented in the following sections. Note that due to the development times of the 

earlier methods (i.e. method 1 and 2), their analysis does not incorporate the latest trend 

of the earthquake activity in the state, but the general conclusions would not be affected. 
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Chapter 3 A statistical approach for early 
detection of induced seismicity 

 

Abstract 
In this chapter, a statistical approach is proposed to detect increments in seismic rate, 

accounting for model uncertainty, which is particularly acute when the monitoring period 

is short, and interdependence among events. The approach is composed of two steps: 

first, stochastic earthquake declustering identifies main shocks and, second, the 

hypothesis of a constant rate of main shocks is statistically tested. The method is applied 

to the analysis of the Oklahoma injection region, demonstrating that it is able to detect an 

increment in seismic rate before the change is large enough to produce severe 

consequences. The statistical power of the method is investigated using synthetic data 

simulated for a wide range of scenarios. 

 

3.1 Introduction 

The objective of a seismic monitoring-detection system is to use instrumental measures 

of seismic activity to allow for empirical early detection of symptoms of change. The 

corresponding early warning is critical to allow site managers and regulators to act 

promptly, revising the injection activity and/or preparing communities for the increased 

seismic risk. Detecting changes is challenging because of: the possible long delay 

between the commencement of disposal operations and the onset of a change in 

seismicity (Kerenan et al., 2013); the aleatoric randomness affecting seismic productivity; 

and the scarcity of available seismicity data. Statistical modeling is needed to properly 

account for these effects. 

 

To address this need, this Chapter proposes a hypothesis test for early detection of any 

abnormal increment in the rate of the seismic activity, as a proxy for the seismic state. 

The test compares the number of seismic events observed during a past baseline period, 
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unaffected by the fluid injection, with that during a test period that may be affected or not. 

Baseline seismic rate is inferred by the first datum, and the likelihood of change by 

comparison with the second one.  

 

The analysis is complicated by the interdependence among the occurrence of events 

(Ogata, et al. 1998). To deal with this phenomenon, we propose a two-step procedure: i) 

to pre-process the occurrence data using a declustering algorithm, so that declustered 

events can be considered as main independent shocks, and ii) to adopt a Bayesian 

approach based on the Gamma/Poisson model to perform an hypothesis test on the 

sequence of main shocks. The outcome of the procedure is the probability (or p-value) for 

the null hypothesis that declustered rates in the baseline and testing period are the same 

(Gelman et al. 2003).  To implement the method, the baseline period data are first 

analyzed to characterize the uncertainty in the Poisson rate of main events and the 

predictive distribution of the number of events in the test period given the baseline model.  

If the probability (i.e., the p-value) of obtaining as many events as are observed during 

the test period is too low under the baseline model, then the null hypothesis is rejected. 

 

We demonstrate the effectiveness of the technique by analyzing the Oklahoma 

earthquake catalog, showing that after the detection of a critical rate shift, a reliable 

warning could have been sent well before the occurrence of the first large induced 

earthquake (i.e. the first event above M4) occurred. By a power analysis, we also 

investigate the effectiveness of the method in terms of the probability of detection within 

a specified time interval, depending on the magnitude and rapidity of the change in 

seismic rate induced by the injection. 

 

The rest of the Chapter is organized as follows: firstly, we report the technical details of 

the declustering algorithm and the proposed hypothesis test; subsequently, the analysis of 

the Oklahoma dataset is reported.  A power analysis tailored to the Oklahoma baseline 

condition is then illustrated, followed by conclusions and the identification of further 

research needs. 
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3.2 Methods 

Event declustering and the stochastic algorithm. Following the ETAS model (Ogata, et 

al. 1998), we classify earthquakes in two categories: independent events, or main shocks; 

and dependent events, or aftershocks. Earthquakes are main shocks if their occurrence is 

due to tectonic loading and fluid intrusions, etc., unrelated to the occurrence of other 

events. In contrast, aftershocks are triggered by static or dynamic stress changes and/or 

seismically-activated fluid flows, and are at least partially related to previous 

earthquakes. The process of classifying events into these two categories is known as 

“earthquake declustering”. We focus on main shocks only, whose rate we intend as the 

main feature for detecting symptoms of change due to fluid injection, because: i) earlier 

papers have linked changes in the ETAS main shock rate to changes in fluid flow (Hainzl 

and Ogata, 2005; Matsu’ura and Karakama, 2005; Lombardi et al., 2010; Daniel et al., 

2011); and ii) although it has been hypothesized that fluid injection could affect the rate 

of aftershocks (Llenos et al. 2013), no model has been generally accepted for this 

phenomenon. Therefore declustering is a crucial step for our analysis, as it eliminates the 

fluctuations of the seismic rate due to interdependence. 

 

There exist a few approaches for earthquake declustering, such as the deterministic 

methods proposed by Gardner and Knopoff (1974) and Reasenberg (1985). In this study, 

we adopt the stochastic algorithm proposed by Zhuang et al. (2002), which properly 

accounts for the uncertainty related to the inference procedure. The input to the algorithm 

is the complete earthquake catalogue, reporting magnitude and occurrence time for all 

events, while its outcome is a realization of the possible catalogue of main shocks only. 

The algorithm relies on models for the baseline activity and for the clustering structure. 

In our approach, these are both provided by the ETAS model, which models the non-

declustered seismic events as a Poisson process whose rate Λ, as a function of time 𝑡, is: 

 

𝛬   𝑡|  𝐻,𝜃 = 𝜆! +
!!

!!!!!!
p𝑎𝑓𝑡!!!!       (1) 
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where dataset 𝐻= 𝑡!,… , 𝑡!;𝑀!,… ,𝑀!  includes the magnitude and occurrence time for 

all events in the catalogue (but note that the summation accounts for past events only), 

ϴ:{λ0; K0; αETAS; c; paft} is the set of ETAS model parameters, λ0 is the background rate 

for main events; paft is the decay rate of aftershocks in the modified Omori law (T Utsu et 

al., 1995), c is a calibrating constant and parameter Ki is the productivity of the i-th main 

shock, given by: 

 

K! = K!  e!!"#$  (!!!!!)          (2) 
 

where K0 and α!"#$ control the productivity of parent events, a larger magnitude Mi 

event (parent) is expected to generate more aftershocks (children); and Mc is the 

magnitude threshold for the inclusion of events in the catalogue.  

 

According to the thinning theory, the probability φ!  that event i is an 

independent/background event is  

 

φ! =
!!

!   !!|  !,!
         (3) 

 
Therefore, the background earthquake sequence is realized by selecting each event i with 

probability φ! . The outcome is intrinsically stochastic, as different sequences are 

generated from different runs of the algorithm with different initial random seed 

numbers.  

 

In practical applications, ETAS parameters 𝜃 are not known, and we estimate their values 

by maximizing the following log-likelihood function [Ogata et al., 1998]: 

 

ℒ 𝜃 =    log  𝛬 𝑡!|𝐻,𝜃!
!!! − 𝛬 𝑡|𝐻,𝜃 𝑑𝑡!!

!!
    (4) 
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where 𝑡! and 𝑡! indicate the start and end of the period of analysis. Optimization is 

performed numerically using a standard nonlinear technique (Fletcher and Powell, 1963). 

 

Note that if a single ETAS model is estimated for both the baseline and test periods, an 

increment of seismicity in the test period can be masked by a thinning rate that is 

determined primarily by the baseline seismic record. To avoid this, we recommend 

estimating independent ETAS models for the training and the testing periods. To allow 

for further flexibility, the test period can be divided into sub-periods, independently 

estimating an ETAS model for each sub-period. However, each sub-period must be long 

enough to allow a reliable estimate of the corresponding model.  

 

Considering that it might be difficult to robustly separate out temporal variations in 

background rate and triggered rate (Touati et al., 2011; Touati et al., 2014), an alternative 

approach in which triggering parameters were fixed at their estimates from the baseline 

period was also explored. This yielded only very small differences in detection times and 

performance. Since the productivity of earthquakes might also have changed from the 

base period to the testing period (Llelnos and Michael, 2013), allowing for separate 

estimation of the triggering parameters in each provides a more general and flexible 

approach.  

 

Gamma-Poisson hierarchical model for hypothesis testing. After declustering, we 

assume that the occurrence of independent events follows a homogeneous Poisson 

process, until the cumulative effect of injected fluids crosses a certain critical threshold. 

After that, the rate can increase due to a change in the pore pressure around the active 

faults. To detect this change, we first establish a baseline condition for the seismicity rate 

(λbase) by modeling the seismicity in the period believed to be under a normal regime 

(baseline period) by a Bayesian hierarchical Gamma-Poisson model. The number of 

seismic events ytest observed in the testing period is then compared via hypothesis testing 

to the expected distribution of the number of events if baseline conditions still prevailed.  

The distribution for this number of events is determined by a negative binomial 

predictive distribution with parameters that depend on the length of the baseline period, 
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the number of events in the baseline period (these also determine the posterior 

uncertainty distribution for the baseline rate), and the length of the test period.    

 

The Gamma-Poisson model assumes that events occur as a Poisson process, but that the 

occurrence rate λ is uncertain, with its uncertainty represented by a gamma distribution fy:  

 

   (5) 

 

The gamma is a particularly effective choice for modeling a Poisson rate, since it is the 

conjugate distribution to the Poisson, allowing computationally effective Bayesian 

updating. If ybase main shocks are observed over the baseline period of duration Tbase, the 

posterior distribution of λbase is also Gamma with updated parameters calculated as 

follows: 

 

𝛼! = 𝛼! + 𝑦!"#$   

𝛽! = !!

!!!!!!"#$

        (6) 

 

Prior parameters 𝛼! and 𝛽! can be assigned depending on the available information on 

the seismic rate. As can be noted from Eq.5, we can model a flat, informationless prior by 

assigning 𝛼!=1 and 𝛽!à . The posterior parameters are then computed as: 

 

𝛼! = 𝑦!"#$ + 1

𝛽! = !
!!"#!

  
        (7) 

 

We assume declustered seismic events during the testing period follow a Poisson process 

with unknown rate λtest. We assess whether or not the number of main shocks ytest 

observed during the test period of duration Ttest is statistically consistent with the 

posterior distribution of λbase. This calculation is facilitated by the fact that, if λtest and 

0,;0;
)(
1)( /1 >≥

Γ
= −− βαλλ

βα
λ βλα

αλ ef

∞
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λbase are equal, the predictive distribution for ytest is a negative binomial, with probability 

mass function: 

 

𝑃! 𝑦!"!" 𝛼!,𝛽!,𝑇!"#!     =     
!
!!

!!"#!
∗ !!"#! !!

!
!!
!!!"#!

!!!!!"#!
∙ ! !!"#!!!!

! !! !!"#!!
;         𝑦!"#! = 0,1,2,⋯       (8) 

 

where 𝛼!and  𝛽! are given by Equation 7. The cumulative distribution function (cdf) of 

ytest, 𝐹! 𝑦!"#! 𝛼!,𝛽!,𝑇!"#! , can be evaluated numerically; facilitated by the availability of 

internal functions for the negative binomial distribution in a number of statistical 

packages. 

 

Formally, we define the null hypothesis H0 and complementary hypothesis H1 as follows: 

 

Ho: λtest  <  λbase 

         (9) 
H1: λtest  >  λbase 

 

According to the null hypothesis seismicity does not increase from the baseline to the test 

period, and we only reject Ho if the outcome ytest (or larger) is very unlikely to occur 

under it.  The probability of this occurrence (ytest or larger) is referred to as the “p-value” 

of the test. 

 

For any value of ytest, we can compute the corresponding p-value for the test as: 

 

p-value = 1− 𝐹! 𝑦!"#! − 1 𝛼!,𝛽!,𝑇!"#!      (10) 
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To properly account for randomness in the declustering, a set of independent executions 

of the following steps are performed:  

 

1. Decluster the earthquake record related to the baseline period and count the 

number of main events ybase; 

2. Compute the parameters of the posterior distribution of λbase, according to Eq.7; 

3. Independently decluster each sub-interval of the test period, and count the number 

of main events ytest for the entire test period; 

4. Calculate the p-value of the test of hypothesis, according to Eq.10.  

 

An empirical distribution function for the p-value is thereby determined across the set of 

random declustered samples.  If the 95th percentile (or another selected quantile) of the p-

value distribution is below a specified level of significance (e.g., below 5% or 1%), then 

we can reject the null hypothesis with high confidence, and infer that injection has 

affected an increase in the seismic rate. 

 

This test follows the paradigm of computing posterior predictive p-values for Bayesian 

modeling (Gelman et al. 2003) and may be characterized as a hybrid 

Bayesian/Frequentist test. Purely frequentist approaches have been also formulated for 

tests of Poisson rates (Lehmann et al., 2006). We chose the former over the latter because 

we consider the hybrid approach more flexible, since it allows including any information 

external to the data in the prior distribution on λbase. When an informationless prior is 

adopted, as in Eq.7, hybrid and frequentist tests are in close agreement. 

 

It is worth noting that the proposed hypothesis-testing algorithm can also be applied to 

detection of decreases in seismic rate by changing the null and complementary 

hypotheses, and correspondingly the calculation of the p-value. This could also be 

potentially relevant for induced seismicity, in instances where injection has stopped, to 

help estimate when/how quickly the seismic rate starts to decay back to its background 

level.  
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3.3 Application to the Oklahoma Earthquake Dataset 

The approach presented in the previous section is applied to the study of the earthquake 

catalog of Oklahoma. The study period of this application roughly spans from Jan. 1975 

to April 2014. As mentioned in Chapter 2, the magnitude of completeness is M2.5, which 

might influence the analysis result in this study. Its effect is investigated and shown in 

Appendix A1. 

 

Temporal delineation of the catalogue for hypothesis testing. As described in Statistical 

Methods, our proposed hypothesis testing technique requires a pre-activation period of 

normal seismicity to establish a baseline model, which is subsequently tested against 

newly observed data to infer whether the new period exhibits a significant change. In 

application to the earthquake sequence for the Oklahoma region, we divide the dataset 

into two periods, with the first one being the baseline period, initially chosen to span the 

interval from Jan. 1975 through Dec. 2008, with the remaining observations constituting 

the test period. The precise transition point from the baseline to the test period is not 

apparent by itself, but can be varied as part of a sensitivity analysis, as shown later in the 

paper. In order to establish a prospective detection of a shift in the seismic regime for the 

Oklahoma earthquake dataset, test periods of increasing duration are evaluated, with an 

incremental step of 2-months. Hence, starting from the beginning of 2009, test periods of 

2 months, 4 months, 6 months and up to 64 months are considered, until the testing is 

terminated when either the longest test period reaches the end of the dataset or the 

evaluated p-value reaches below 1×10-10.  This threshold is chosen to represent a point at 

which overwhelming evidence is present to reject Ho, and further reductions in the p-

value contribute no further insight or inference in this regard.  A critical value for first 

rejecting Ho (and implementing some type of management response) might occur at 

typical critical p-values adopted in statistical practice, e.g., 𝛼 = 0.05  or  0.01.  

 

If a significant increase in seismic rate has occurred, the p-value should decline as more 

evidence of a shift in seismic regime is uncovered by acquiring more data and 

lengthening the duration of the test period.  Consistent with the incremental step of the 

test period, we divide the test period into separate sub-intervals of 2-months and decluster 



18	
  
	
  

them independently. We perform 1,000 parallel runs of the declustering algorithm, and 

compute the 95th percentile of the p-value. The faster the p-value reaches and then 

remains below a critical value (e.g., 𝛼 = 0.01), the more rapidly the shift in seismicity 

rate can be detected and confirmed. 

 

Modeling Results. First, we elucidate the relation between the ETAS fitting and the 

Bayesian model for the rate λ of the declustered events. Specially, parameter λ0 of the 

ETAS model defines the background independent shock rate, and can be related to λ. As 

an example, in Figure 2, we show how the posterior distribution of λbase is consistent with 

the estimated value of λ0 for the baseline period. Here λ0 is estimated as 0.0147 

#events/day. And then we obtain 1,000 posterior distributions of λbase, one distribution 

per realization of the declustered sequence.  Each of the 1000 distributions describe the 

uncertainty in λbase based on its posterior gamma distribution (Equations 5 and 7).  As 

indicated in Figure 2, the resulting distributions of the 10th, 50th and 90th percentiles of the 

posterior distributions of λbase show that λ0 is covered by the 80% confidence interval of 

λbase with high probability. 

 
Figure 2 The comparison between 10th, 50th and 90th percentiles of each resulting posterior distribution of λbase, 
and the MLE point estimate of the fixed λ0 (0.0147 # events/day) in the declustering ETAS model as indicated by 
the vertical bold line in the plot. 	
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To illustrate the effect of the time-dependent declustering algorithm, Figure 3 compares 

the sequence of original and declustered events. Sequences are represented by the bi-

monthly rate, and the declusted rate is averaged along the 1,000 runs of the algorithm.   

 

 
Figure 3 Oberved bimonthly seismicity rate versus the average bimonthly seismicity rate for 1000 samples of the 
declustered earthquake sequence for Oklahoma – (a) displays the evolution of seismicity for the entire studied 
period, while (b) shows that only for the period before 2009 but at a larger scale.  

 

Figure 4 shows the corresponding temporal evolution of the p-value for the hypothesis 

test assuming a test period that ensues at the beginning of 2009, with increasingly longer 

subsequent testing periods. The 5th, 50th and 95th percentile values of the p-value are 

computed from the 1000 tests conducted using the 1000 realizations of the ETAS 

declustering algorithm for the baseline and test periods.  Generally speaking, the result is 
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consistent with our expectation that, for a location where a change in seismic rate has 

occurred, the p-value declines consistently with time. As such, by the end of August, 

2009, when the testing period is 8 months long, the p-value becomes low enough to reject 

the baseline seismic rate with high confidence.   This detection is achieved well before 

the occurrence of the first in the sequence of most-recent large earthquakes (M>4.0, 

indicated with stars in Figure 4) in March 2010.  As shown in Figure 1c, three such 

events had occurred previously in the record, from 1990 through 1998.  A model for the 

occurrence of (formerly) rare events requires specification of the distribution of event 

magnitudes as well as frequency. The occurrence of the March 2010 event, and the 

sequence of large events that have followed, could be reflective of transitions in both 

frequency and magnitude, though the latter is not addressed in this analysis.  Furthermore, 

the specific timing of these events is influenced by the inherent randomness of the event 

processes, even as the events become more or less frequent.   

 

 
Figure 4 P-value evaluated based on the declustered seismic sequence at 2-month intervals with test origin at 
year 2009. At each point in time the algorithm is reiterated 1000 times, once for each realization of the ETAS 
algorithm for the baseline and test period, and the 5th, 50th and 95th percentiles are displayed. The dash line 
indicates the 0.01 significance level, while the dash dot line shows the threshold of 1×10-10 for the p-value, below 
which the hypothesis-testing algorithm terminates evaluation. In addition, the stars point out when large 
earthquakes (M>4.0) occurred.  
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The need for an 8-month period for the shift to be detected is determined in part by the 

significance level chosen for the test (here α = 0.01), but also by the magnitude and 

rapidity of the shift in seismic event frequency and the length of the baseline period. 

These factors are considered in a general manner in the power analysis presented in the 

following section. However for the specific earthquake sequence in Oklahoma, it is first 

worth considering how the detection results are affected by choosing a different start date 

for the beginning of the test period.  

 

To evaluate the effect of different transition dates from the baseline to the testing period, 

we move the assumed transition point from the beginning of the year 2009 to the 

beginning of 2000, 2005, 2007, or 2008, and repeat the analysis shown in Figure 4. In 

each scenario, the baseline period starts at the beginning of the catalogue and ends at the 

transition point to the test period. The evolution of the p-value for each test origin 

scenario is shown in the Appendix A2. The results are plotted together in Figure 5 to 

compare how quickly detection occurs in each case. Regardless of the choice for the 

origin of the test period, the p-value does not decline significantly until the year 2009 or 

beyond, indicating that the time of detection is relatively insensitive to our initial 

determination of the onset of the baseline period (Jan. 1975 to Dec. 2008). However, 

some differences are notable.  In particular, initiating the test period at the beginning of 

2008 or 2009 yields very similar results; in both cases detection is made before the end of 

2009. However, selecting a start date for the test period that is too early can cause the 

more recent shift in seismicity to be diluted by the inclusion of a portion of the baseline 

period of record in the data for the test period. This is shown in Figure 5, where the 

selection of 2007 and 2005 as the test period initiation dates cause small, but increasing 

delays in the time of detection, while beginning the test period in 2000 (clearly well 

before the shift in seismic frequency) delays the detection significantly, until 2010.  
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Figure 5 Evolution of the 95th percentile of the p-value under different time origins for test period. The dash line 
indicates the critical value of 0.01 for the p-value, while the dash dot line shows the threshold of 1×10-10 for the 
p-value, below which the hypothesis-testing algorithm terminates evaluation.  

 

In practice, alternative transition dates may be considered for the statistical test of seismic 

rate.  If one or more of these tests yields a statistically significant increase, it is likely that 

some significant increase in seismic rate has occurred in the time interval since the 

corresponding hypothesized transition, especially if the other transition times and tests 

yield results that are suggestive, e.g., with p-values between 0.01 and 0.2, even if not 

below the critical value for the test (in this case, 0.01).  Since determination of an exact 

time of transition is not the objective of the method, this type of sensitivity analysis 

allows for consideration of the impact of transition time uncertainty on possible 

misallocation of portions of the measurement data to either the background or the test 

period, or the occurrence of gradual transitions. 
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3.4 Power Analysis 

The power to positively detect the change in seismic rate is characterized by the 

probability within a specified time period that the null hypothesis in Equation 9 will be 

rejected, assumed here to occur when the 95th percentile of the p-value (across the 

multiple declustering outcomes) drops below a specified level of significance α. This 

probability is dependent on several factors, including:  

a) The amount of information available to define the baseline seismicity rate for 

the baseline period – power increases with a longer Tbase, which results in lower 

variances for the gamma distribution of λbase and for the negative binomial 

distribution of ytest;  

b) The degree to which the seismicity rate is increased in the testing period due to 

the impact of fluid injection – bigger increases are easier to detect; and  

c) The critical p-value chosen for the test of hypothesis – the lower the critical p-

value (equivalent to the false positive rate for the test) the lower the power.  

As such, the successful detection of a modest or a slight increase in seismicity, with a 

short period to define the baseline frequency, and with a high standard of proof (low 

critical p-value), is less likely within a specified time period.  

 

To illustrate the factors influencing the power for detection, different scenarios are 

considered. For the baseline period, we investigate durations of 1, 10 and 20 years. For 

the magnitude of the change in the seismic rate, we assume injection increases the 

baseline rate by factors ranging from 2 to 10 during the test period, and we investigate 

different growth patterns, including an instantaneous increase and a gradual linear 

growth. For the former case we model the transition as a step function increasing from 1 

to 2, 5, or 10 times the baseline seismic rate during the test period; for the latter, we 

model it as a ramp from 1 to 5 times the baseline seismic rate, over a duration of 1, 10 or 

20 years (again, starting at the origin of the test period), followed by a constant value at 5 

times the baseline rate. 

 

Consistent with the procedure applied to the Oklahoma dataset, we use the ETAS model 

for declustering event sequences as a first step in the power analysis. The parameters 
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adopted for simulation of the synthetic event sequences for the baseline period are the 

maximum likelihood estimates (MLE) derived from the Oklahoma catalogue over the 

interval from 1975 to 2009, and are summarized in Table 1. Occurrence times of events 

are simulated iteratively: suppose 𝑡! defines the time of the last event, time 𝑡! of the next 

one is obtained by solving the following equation: 

 

 𝛬   𝑡|  𝐻,𝜃 𝑑𝑡!!
!!

= − log 𝑟      (11) 

 

where r is randomly generated from a uniform distribution between 0 and 1. For each 

event, its magnitude is randomly selected according to the Gutenberg-Richter law: in our 

study, we fix the b-value at 1.0, as is usually assumed in the literature (Frohlich and 

Scott, 1993). 
  

 

λ0 (Events/day) K0 (Events/Day) αETAS c (Days) paft 

0.0147 0.012 0.8059 0.0030 0.9199 
Table 1 Parameter Values of the Epidemic Type Aftershock Sequence (ETAS) Model for the Simulation of 
Synthetic Data 

 

As noted above, we simulate the influence of injection by changing the background rate 

𝜆!, leaving the other parameters unchanged. Figure 6 depicts the assumed variation in the 

main event rate 𝜆! as a function of time in the different scenarios explored in the power 

analysis. 
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Figure 6 Illustrations of how λ0 changes with time: a) for the instantaneous increase case, and b) for the gradual 
linear growth case. The beginning horizontal segment stands for the baseline period of a certain length.  

 

To account for statistical uncertainties inherent in the power analysis, in each scenario 

100 independent synthetic event catalogues are generated. We process each synthetic 

dataset in the same way as in analyzing the Oklahoma dataset (i.e., repeating the 

evaluation of the p-value every 2 months), and identify the corresponding time to 

detection, defined by the point at which the 95th percentile of the p-value becomes lower 

than 1%. 

 

Figures 7 and 8 display the cumulative distribution functions of the time to detection for 

the instantaneous increase scenarios and the gradual linear increase scenarios, 

respectively. As shown, if we compare the distributions of time to detection resulting 

from different duration scenarios of the baseline period, with other modeling parameters 

held equal, a longer baseline period enables our algorithm to more likely accomplish a 

successful detection for a specified test period. In practice, this finding suggests that 

seismic monitoring should start as soon as possible in a region of fluid injection, to 

reduce uncertainty in the baseline seismicity rate, allowing changes in seismicity in the 

region to be detected more rapidly.  
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Figure 7 Cumulative distribution functions of time to detection (based on the 95th percentile of the p-value) 
resulting from the instantaneous increase scenarios. Each line style stands for a duration scenario of baseline 
period—1, 10 or 20 years. Subsequently, each type of marker represents a level of increase—2-, 5- or 10-fold the 
baseline seismicity rate.  

 

 
Figure 8 Cumulative distribution functions of time to detection (based on the 95th percentile of the p-value) 
resulting from the gradual linear increase scenarios. Each line style stands for a duration scenario of baseline 
period—1, 10 or 20 years. Subsequently, each type of marker represents a level of increase pace—1, 10 or 20 
years to linearly reach the peak, e.g. 5-fold the baseline seismicity rate.  

 

As expected, the degree and the pace of change in the seismicity rate play a major role in 

determining the power of the proposed detection method. If the increase is drastic and 

rapid as represented by the ten-fold increase scenario that occurs instantaneously, the 

change can be quickly confirmed by the statistical test, as shown: the probability is 
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around 0.8 for the change to be detected by the first 2-month test period. For the 

moderate increase scenario in Figure 7, the probability of detection is around 0.4 by the 

first test period, but it increases well above 0.5 when the test period is 4-months long, 

while for the small increase scenario (2-fold increase), the probability of detection is as 

low as 0.1 in the first test period, and does not rise above 0.5 until after one and a half 

years of monitoring when the baseline period is 10-20 years in length, and until after 10 

years when a short (1-year) record is used to define the baseline condition. 

 

As for the pace of change in seismicity, if we compare the ramp increase scenarios 

against the instantaneous increase scenarios (specifically, the 5-fold instantaneous 

increase scenarios), the probability of positive detection in the first test period drops 

below 0.1 for the fast increase scenarios in Figure 8, as opposed to the power of 0.4 that 

is generally achieved for the corresponding instantaneous case. For the moderate ramp 

scenarios, the change in seismic frequency can barely be detected in the first test period, 

and it requires over 3 years to be detected with a probability greater than 0.5 when the 

baseline period is 10 or 20 years in length, and requires approximately 10 years when the 

baseline period is limited (1-year).  For the slow ramp scenarios (20 years to linearly 

reach the peak rate at 5-fold the baseline value), one year of monitoring cannot render a 

probability of detection better than 0.1, and it requires over 5 years for the probability to 

reach 0.5 when the baseline period is 10 or 20 years in length, and well over 10 years 

when only a short (1-year) record is available for the baseline period. Additionally, the 

comparison between the instantaneous increase scenarios and the ramp increase scenarios 

indirectly implies that if a ‘normal period’ is mistakenly included in the test period, the 

power of the detection method will be attenuated because the change that occurs during 

the true test period is diluted and masked by the inclusion of occurrence data from the 

normal period. To avoid this outcome, it is suggested that multiple tests be implemented 

at a given point in time with different time origins selected to initiate the algorithm to see 

if one or more yield a statistically positive signal.   
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3.5 Conclusions & Discussions 

Detection of an increment in seismic activity due to deep-well wastewater disposal is of 

critical importance when assessing and managing risk and hazard. In this paper we 

propose a detection method based on earthquake declustering and statistical hypothesis 

testing. The method properly accounts for interdependency in the events, uncertainty in 

the independent shock rates, variability in the realized number of independent events, and 

the option to choose alternative hypothesis test specifications, including the critical level 

of significance used for the test. Application to the earthquake catalogue of the Oklahoma 

region shows that the proposed method is able to reliably detect a change before stronger 

evidence of an actual change (including the occurrence of a large earthquake) occurred. 

By simulating synthetic event sequences for different scenarios of change, we show how 

the power of detection depends on several factors, including the amount of historical data 

available for constraining and inferring the baseline seismicity rate, the extent and pattern 

of the change induced by injection, and the significance level chosen for the statistical 

test.  

 

We believe that our proposed statistical method for seismic change detection can provide 

a preliminary decision-support tool to guide management and operations of disposal 

wells by providing information at an early stage. After such detections, more extensive 

seismic studies can be conducted to corroborate whether a change has in fact occurred, 

pinpoint locations of increased pore pressure and fault enhancement, and better assess 

future seismic risks for different mitigation strategies that might be adopted. More 

generally, as the detection method does not rely on injection data, it can also be applied to 

cases where the background rates may have changed due to natural fluid flow, dike 

intrusions, slow slip events, and other (natural) driving processes.  

 

For future work, we are also interested in using the proposed method to help design an 

array of seismic stations in conjunction with a value of Mc (estimated with estimated 

Maximum Likelihood b-value) able to satisfy a pre-determined Time to Detection (yrs.) 

with a given probability for each criteria level of increased seismicity.  
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Chapter 4 A Bayesian approach for 
assessing seismic transitions associated 
with wastewater injections 

Abstract 
In this chapter, we develop a statistical method for modeling a seismic sequence 

involving non-stationary induced seismicity. It is composed of two steps: first, we select 

a model for the integrated seismicity (i.e., natural and induced) within the framework of 

the Epidemic Type Aftershock Sequence via Bayesian model comparison. Second, we 

perform Bayesian inference within that model, to assess the seismic activity and 

associated parameters.  

The method is applied to the analysis of the events from Oklahoma, demonstrating that it 

is able to provide a consistent representation of the occurrence of the dataset. Results 

show that the overall seismic rate (including main and aftershock events) for events with 

local magnitudes (ML) above 2.5 has been escalated by a factor of over 100, from 0.05 to 

over 5 events per day, between January 1975 and August 2014. For this overall increase, 

the contribution of the main events is estimated to be approximately 56%. Assuming the 

b-value of the Gutenberg-Richter law is 1.0, the probability of exceeding ML 5.0 in a 

two-month period is predicted to have increased from about 0.05 to over 0.5 during the 

study period. A sensitivity analysis is presented to show how the probabilistic inference is 

affected by the assumed b-value and the assumed maximum event magnitude. 

 

4.1 Introduction 

To promote sustainable and safe management of wastewater injection, it is necessary to 

clarify the hazards caused by the combination of induced and natural seismicity. This 

paper provides a general methodology using a statistical model that considers not only 

the time and magnitude but also the form of seismic rate transitions, and associated event 

probabilities. It is worth mentioning that this methodology can also be employed to 
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model seismicity driven by other nonstationary processes, such as aseismic creep, 

magmatic intrusions, and natural fluid intrusion.  

 

To develop the methodology, we adopt and modify the Epidemic Type Aftershock 

Sequences (ETAS) model (Ogata, 1988), which accounts for both main (independent) 

and aftershock (dependent) events. We consider aftershocks in addition to main events in 

our analysis for two reasons: (i) due to the concern that they can cause significant 

damages, and (ii) for a more complete interpretation of the collected data when 

estimating seismic rates and their transitions.  

 

The ETAS model has been well established in statistical seismology; however, Llenos 

and Michael (2013) demonstrated the inadequacy of a stationary ETAS model for fitting 

an earthquake sequence involving induced seismicity (i.e., the catalog for the state of 

Oklahoma) via various statistical tests, and concluded that the rate of main earthquakes 

must have increased in 2009 to explain the more recent seismic history. In order to 

capture the non-stationarity due to induced seismicity, we modify the ETAS model by 

parametrically encoding induced seismicity into the model, enabling it to learn both the 

frequency of natural earthquakes and the timing and magnitude of transitions in the rate 

of induced events. The resultant model is called non-stationary ETAS model. Making use 

of the Gutenberg-Richter law (GR law) (Gutenberg and Richter, 1944), the inferred 

intensity of natural and induced earthquakes combined can then be related to a hazard 

projection, as the probability of an event exceeding a given magnitude threshold in a 

specified time window. 

 

It is worth noting that various non-stationary ETAS models have been the subjects of 

many previous research efforts studying temporal characteristics of seismicity patterns. 

For example, they have been employed to detect and monitor aseismic forcing (such as 

fluid signals) in seismicity data (Hainzl and Ogata, 2005; Marsan and Helmstetter, 2013) 

by focusing on the variation of main event rates. In another example, Matsu’ura and 

Karakama (2005) investigated the effect of water on earthquake occurrence by 

statistically comparing alternative functional forms for the main event rate. In a third 
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example, Kumazawa and Ogata (2013) assumed a non-stationary process to 

quantitatively describe remotely triggered seismic activities. Not only have non-

stationary ETAS models been used to study natural earthquake occurrences, they have 

also been used to analyze and monitor induced earthquakes at geothermal fields, based on 

the correlation between event occurrence rate and operational parameters (Bachmann et 

al., 2011; Brodsky and Lajoie, 2013; Mena et al., 2013); and to study temporal features of 

earthquakes induced by water injection in a gas field (Lei et al., 2008). Although all the 

existing ETAS models have the potential for modeling non-stationary main event rates 

associated with wastewater injection, the methodology proposed in this paper offers 

several advantages, as discussed in the “Discussions and conclusions” section. 

 

The quantitative assessment of seismic activities follows the paradigm of Bayesian 

modeling, in which the prior uncertainty of the non-stationary ETAS model can be 

updated upon acquisition of new information, and posterior credible intervals for seismic 

occurrence rates can then be identified. Such a structure is flexible, particularly since it 

allows processing instrumental seismic records and the incorporation of expert 

geophysical knowledge, helping to constrain the prior parameter ranges of random 

variables involved in the inference process. 

 

We investigate the performance of the non-stationary ETAS model in an application to 

the earthquake catalog for the state of Oklahoma, a region that is well known for a long 

history of wastewater injection and has seen a remarkable increase in the regional seismic 

activity after decades of absence of induced earthquakes since the first injection wells 

were deployed (although it has been suggested that induced earthquakes have occurred in 

Oklahoma during these decades, but at lower frequency and magnitude (Hough, 2015)). 

In analyzing this dataset, we compare parametric functions for modeling the effects of 

induced seismicity, including step, linear ramp, and logistic functions, through Bayesian 

modeling comparison (MacKay, 2003). As shown in a later section, the model with three 

superimposed logistic functions provides the optimal fitting to the dataset, and 

subsequently is selected to reconstruct the historical transitions in seismic events in 

Oklahoma.  
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The rest of this chapter is organized as follows: firstly, we describe in detail the proposed 

integrated model and the Bayesian procedure for inferring its parameters; subsequently, 

the Oklahoma earthquake catalog data used for demonstration are presented and the 

corresponding analysis of seismic transition is reported. A sensitivity analysis is then 

conducted for the probability of events of different magnitude occurring in different time 

intervals, exploring the effects of selected parameter values, followed by further 

discussion and conclusions. 

 

4.2 Statistical models and methods 

Non-stationary ETAS model. The general ETAS model has been presented by Eq. 1-2 in 

Chapter 3. It has a wide application in statistical seismology. In the context of induced 

seismicity, however, the cumulative effects of underground wastewater disposal can lead 

to non-stationarity, so that λ0 can vary with time. Note that λ0 now includes both 

background and induced main events. To model this behavior, we propose to represent λ0 

as a sum of the natural main-event rate µ0 and an induced main-event time function rate 

Δµ0(t). Instead of imposing a fixed parametric form for Δµ0(t), we assume a set of 

possible alternative functions, so that the appropriate model can be selected through data 

processing, including a jump function, a linear ramp, and a logistic function. More 

generally, Δµ0(t) can be assumed to be the sum of several components, each modeling the 

activation of induced seismicity in one area, at a specific time, in a large region with 

numerous operating injection wells. To illustrate one possible form of λ0, assume that 

Δµ0(t) includes one logistic function: 

 

𝜆! 𝑡 = 𝜇! +
∆

!!!!!(!!!!!!!)
         (12) 

 

where to stands for the start of the study period and td is a model parameter indicating the 

delay between to and the time when induced seismicity reaches half of its full intensity Δ; 

η controls the slope of the logistic curve – the bigger the η, the faster the induced 

seismicity increases at to + td. According to Eq. 3, λ0 is initially dominated by µ0, 
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transitions upward at an increasing rate until time to + td, and then asymptotically 

approaches a value of µ0 + Δ as t increases further.  

 

Table 2 lists the alternative model classes investigated in this study, including the 

stationary (i.e., with no induced seismicity) ETAS model E0. Models E1-3 assume one 

increase of various forms in seismicity, while models E4-6 allow for more than one 

logistic increase to occur in the dataset. For the models with more than one increase, 

parameter tdi is defined as the time delay between: to and the 1st increase in λ0 for i=1; the 

(i-1)th and ith increase for i>1. 
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Table 2 Summary and designation of all the alternative models investigated in this study with respect 
to λ0. E0 is the stationary (i.e., no induced seismicity) ETAS model. Models E1-3 assume one increase 
of various forms in seismicity, while models E4-6 allow for more than one logistic increase to occur in 
dataset. I stands for the indication function. For the models with more than one increase, parameter 
tdi is defined as the time delay: between to and the 1st increase in λ0 for i=1; between the (i-1)th and ith 
increase for i>1. 

Name Assumptions Formula 

E0 
No induced 

seismicity 
𝜆! 𝑡 = 𝜇! 

E1 
Step jump in 

seismicity 
𝜆! 𝑡 = 𝜇! + ∆ ∗ 𝐼(𝑡 ≥ 𝑡! + 𝑡!) 

E2 
Linear ramp in 

seismicity 
𝜆! 𝑡 = 𝜇! +min  (∆, 𝜂 𝑡 − 𝑡! ∗ 𝐼(𝑡 ≥ 𝑡! + 𝑡!)) 

E3 

1 logistic 

increase in 

seismicity 
𝜆! 𝑡 = 𝜇! +

∆!
1+ 𝑒!!!(!!!!! !!"!

!!! )

!!!!

!!!

 

E4 

2 logistic 

increases in 

seismicity 

𝜆! 𝑡 = 𝜇! +
∆!

1+ 𝑒!!!(!!!!! !!"!
!!! )

!!!!

!!!

 

E5 

3 logistic 

increases in 

seismicity 

𝜆! 𝑡 = 𝜇! +
∆!

1+ 𝑒!!!(!!!!! !!"!
!!! )

!!!!

!!!

 

E6 

4 logistic 

increases in 

seismicity 

𝜆! 𝑡 = 𝜇! +
∆!

1+ 𝑒!!!(!!!!! !!"!
!!! )

!!!!

!!!
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The selection of the best form to model induced seismicity should be based on the 

specific earthquake data under study and, in principle, simple models are preferred over 

complex models unless the complexity can be justified by the likelihood of the data. A 

detailed method for model selection is provided later in the section on “Bayesian model 

comparison”.  

 

The fit of an inferred ETAS model can be assessed by first converting the occurrence 

times ti to transformed times τi using the following theoretical cumulative function 

(Ogata, 1988):  

 

𝜏! = Λ 𝑡 𝑑𝑡.!!
!          (13) 

 

The transformed times τi thus represent the mean number of events that the model 

predicts should occur in the time interval [0, ti]. If the model fits the data well, then the 

events in the transformed time behave as a homogenous Poisson process with unit rate. 

Therefore, the observed cumulative number of events should grow linearly with unit 

slope as a function of the transformed times. Positive or negative deviations from the 

unit-slope line indicate that the model under- or over- predicts, respectively, the seismic 

rate for the corresponding intervals of the study period. 

 

If change in the main event rate, Δµ0(t), represents the direct effect of external forces on 

induced seismicity; and Λ 𝑡  represents the total event rate, including total main event 

rate and aftershocks of all previous earthquakes, then the direct contribution of external 

forces on seismicity transitions from time t0 to tf is given by 

 

!!!!
!!

=
!!! ! !"

!!
!!

Λ 𝑡 !"
!!
!!

        (14) 

Bayesian inference for the non-stationary ETAS model. Inference for the ETAS model 

consists of updating the assumed prior parameter distribution to obtain the posterior 

distribution based on observations, using Bayes’ formula: 
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𝑝(𝜽|𝐻) ∝ 𝜋 𝜽 𝑝(𝐻|𝜽)        (15) 

 

where dataset 𝐻= 𝑡!,… , 𝑡!;𝑚!,… ,𝑚!  includes the magnitude and occurrence time for 

all events in the sequence, θ={µ0, K0, αETAS, c, p, Δ, η, td} is the set of model parameters, 

π(θ) is the prior distribution and p(H|θ) is the likelihood for observation H given θ, which 

considers all of the N events in the time interval [to, tf] and takes the form of Eq. 4.  

 

As all the parameters are non-negative, we assume the prior of each parameter θi in θ is 

an independent lognormal distribution:  

 

𝜃!~  ln𝒩   𝑎! , 𝑏! ,                            𝑖 = 1,… ,𝑛!       (16) 

 

where 𝑛!  is the number of parameters in θ; and hyperparameters ai and bi can be selected 

according to ETAS parameter estimates across different global tectonic zones (Chu et al., 

2011), or with flatter distributions with higher uncertainty to allow for unusual behavior 

at the targeted site; to be subsequently updated by the observed data in the calculation of 

the posterior p(θ|H). Note that for more general applications, the value of parameter Δ 

can also be negative by choosing a proper distribution. 

 

Since the posterior in Eq. 15 has a complicated form and cannot be solved analytically for 

this application, we numerically approximate that distribution using the Markov Chain 

Monte Carlo (MCMC) method (Rasmussen, 2013). Specifically, the Metropolis-Hastings 

algorithm (Chib and Greenberg, 1995) is used to simulate the parameter chain: in each 

sampling step, a new proposal 𝜽 is drawn based on a random walk on a transformed 

standard normal distribution, 𝑼 = !"#  (𝜽  )!𝒂
𝒃

, and then the acceptance ratio AR is 

calculated based on Eq. 7 : 

 

𝐴𝑅 =    !(𝜽)
!(𝜽)

!(!|𝜽)
!(!|𝜽)

         (17) 
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The new proposal 𝜽 is accepted if AR ≥ r, r being uniformly drawn from [0, 1], and 

rejected if otherwise. The sampling process is repeated until the chain reaches a sufficient 

length, with stable statistical properties for the fitted joint distribution of the model 

parameters.  

 

Bayesian model comparison. Each form of the function for λ0(t) defines a parametric 

model class for the non-stationary ETAS model. In the Bayesian paradigm, model classes 

can be compared probabilistically. As in Eq. 15, we calculate the posterior probability of 

each alternative model Ei, using Bayes’ formula (MacKay, 2003): 

 

𝑃 𝐸! 𝐻 = ! !! ! ! !!
!(!)

           (18) 

where H is the observed catalog; P(Ei) is the prior probability assigned to model Ei; 

p(H|Ei) is the global likelihood on H for model Ei with parameter θEi, given by: 

𝑝 𝐻 𝐸! = 𝜋 𝜽𝑬𝒊 𝐸! 𝑝 𝐻 𝜽𝑬𝒊,𝐸! 𝑑𝜽𝑬𝒊       (19) 

and, P(H) is a normalizing factor.  

 

The global likelihood p(H|Ei) measures the probability that randomly selected parameter 

values from the model Ei would generate dataset H. Model classes that are too simple are 

unlikely to generate the dataset. Model classes that are too complex can generate many 

possible datasets; so they may generate that particular data set H at random. Therefore 

p(H|Ei) can provide a balance between model complexity and data likelihood.  

 

If we refer to the stationary ETAS model as E0, the goodness of fit of other alternatives 

can be assessed by their posterior probability ratio with respect to E0 as:   

 

𝑂!! =
! !! !
! !! !

= ! !!
! !!

! ! !!   
!(!|!!)

          (20) 

 

If the posterior probability ratio (Oi0) is above unity, it means the alternative model class 

(Ei) is more probable, a posteriori, than E0. Since the calculation of the global likelihood 
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in Eq. 19 is analytically infeasible for alternative models, we resort to parallel tempering 

MCMC (Gregory, 2005) to approximate its value, as described in Appendix B.  

 

Seismic transition analysis. Seismic transition analysis with the ETAS model consists of 

determining the event occurrence rate and then estimating the probability of events 

exceeding a specified magnitude threshold, based on the GR law, in a moving time 

window. Moving time windows can be chosen to be separate and, for example, 2-months 

in length. Since estimates with the ETAS model include secondary aftershock triggering, 

the frequency of occurrence is simulated via Monte Carlo Simulation (MCS). Occurrence 

times of events are simulated iteratively as follows. Suppose tA defines the time of the 

last event, then tB is the time of the next one and is obtained by solving the following 

equation: 

 

 Λ   𝑡|  𝐻,𝜃 𝑑𝑡!!
!!

= − log 𝑟      (21) 

 

where r is randomly generated from a uniform distribution between 0 and 1. For each 

event, its magnitude is randomly selected according to the GR law, with a certain fixed b-

value. Uncertainties in the ETAS model are taken into account by replicating the 

simulation process with random parameter vectors sampled from the posterior MCMC 

chain, and thereby determining an empirical distribution function for the occurrence rate. 

 

Subsequently, the rate distribution is utilized to calculate credible intervals for the 

probability of occurrence of events with a given magnitude. This is defined as the 

probability of exceeding a certain magnitude M, given the number of events n that occur 

in the studied time window and the b-value in the GR law: 

 

𝑃 𝑀 > 𝑀 = 1− 1− !"!!∗!!!!!!∗!"#$

!"!!∗!"!!"!!∗!"#$

!
     (22) 

where Mc and Mmax represent the assumed minimum and maximum event magnitudes, 

respectively.  
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4.3 Application to the Oklahoma earthquake catalogue 

The model and method proposed in the previous section are applied to the study of the 

earthquake catalog for Oklahoma. The study period for this application spans the time 

period from January 1975 to September 2014. The following shows modeling approaches 

and application results. 

 

Modeling approaches. As aforementioned, we assume the priors for each parameter θi in 

θ are independent lognormal distributions, with parameters chosen to yield relatively 

broad prior distributions, as documented in Appendix C. 

 

The model is selected based on the posterior probability ratio relative to model E0, 
calculated using Eq. 20. We select a uniform prior because no discriminative knowledge 

is available for the alternative models. Subsequently, the posterior distribution of the 

parameters of that model is obtained based on the entire Oklahoma seismic dataset, using 

the Metropolis-Hasting MCMC algorithm with a total number of 1×105 simulation steps. 

Five hundred of these steps are randomly selected after the burn-in phase (the first 2×104 

values of the chain) through down-sampling to represent the posterior uncertainties of the 

model. 

 

The selected ETAS model is then deployed to reconstruct the historical transitions in 

seismicity for the Oklahoma dataset by determining seismicity rates within 2-month 

moving windows for a magnitude bin of ML = [2.5, 6.0]. Note that since the estimation of 

the model parameters has already been completed, the following seismic transition 

analysis is not very sensitive to the length of the moving windows. Also note that the 

upper bound of the magnitude range, Mmax, is somewhat arbitrary as there is no certain 

knowledge about how to set it (McGarr, 2014). Beginning in January 2000 through the 

end of the study period (August 2014), for each 2-month interval, we first simulate 20 

sequences of seismic events for each parameter sample, using MCS with the 500 selected 

parameter vectors for event occurrence and the Gutenberg-Ritchter law with the assumed 

value of b for event magnitude. Then, the counts of events across all the simulated 

seismic sequences are collected and treated as the empirical distribution for the number 
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of events to occur in the studied interval. The corresponding credible interval for the 

magnitude probability is calculated using Eq. 22 with the assumed b-value and Mmax. 

 

Model comparisons. Figure 9 shows the posterior expected value of λ0 and Λ as a 

function of time, along with model fits as a function of transformed time τi, for three of 

the alternative models: E0 (no induced seismicity), E3 (1 logistic transition) and E5 (3 

logistic transitions). These models encompass the key range of outputs and alternatives, 

so are emphasized here. The results for all seven of the alternative models are presented 

in Appendix B. As shown, models E1-6 all begin showing signs of an increase in λ0 in late 

2009. Furthermore, comparing the relationships between the observed cumulative 

number of events and the transformed times τi for the alternative models, models E4-6 

(i.e., the models with more than one logistic increase) appear to better match the observed 

data. Specifically, models E4-6 predict that λ0 increases multiple times from approximately 

0.01 events per day to well above 2 events per day during the study period. 
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Figure 9 Expected values of λ0 as a function of time on the left, and the characteristic fit as a function of 
transformed time τi on the right, for model E0 in (a), model E3 in (b) and model E5 in (c), respectively.  

 

Table 3 lists posterior probability ratios in favor of each alternative model over the 

stationary model E0 (details of the calculation are illustrated in Appendix B). While 

model E0 is clearly dominated by all other models considered, models E4-6 have the 

highest posterior probability ratios (i.e., approximately 1×1090 more likely than model 

E0). These results strongly indicate that there was more than one increase in seismicity in 
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the data. Furthermore, Bayes’ formula justifies the complexity of models E4-6 and regards 

them as the best models to represent the seismic behavior of the Oklahoma dataset. 

However, increasing complexity does not necessarily lead to improved performance, as 

the performance of the models peaks at E5 and then decreases at E6 due to the penalty 

imposed for the additional parameters. Model E5 provides the best balance of model 

complexity and data likelihood, and therefore is selected for further analysis of the 

seismic activity in Oklahoma. It is worth mentioning that the result is the same under 

other information criteria, such as the AIC and BIC. 
 

Model E0 E1 E2 E3 E4 E5 E6 

Posterior 

probability 

ratio (Oio) 

1 2.0×1044 4.0×1048 1.4×1056 3.6×1089 1.4×1091 5.3×1089 

Table 3 Posterior probability ratios in favor of each alternative model over the stationary model E0 
with regard to the Oklahoma dataset. 

	
  
Parametric inference in model E5. Features of the five hundred samples from the 

posterior parameter distribution of model E5 are summarized in Table 4, including their 

means, standard deviations, 5th, 50th and 95th percentiles (a more complete description is 

presented in Figure C1). As shown, the first increment in seismic rate occurred 

approximately 35 years after the beginning of the study period (i.e., around January 2010 

in real time, consistent with the result found by Llenos and Michael (2013) and Wang et 

al., (2015)), followed by a second increment 3.5 years later (i.e., June 2013) and a third 

increment around 6 months after the second one (i.e., January 2014). The magnitudes of 

the three increments are 0.28, 0.78 and 2.16 events per day, respectively. The 

corresponding uncertainty in λ0 (t) is shown in Figure 10. Besides, the direct contribution 

of external forces on the seismicity transitions is estimated to be 56% on average, 

calculated using Eq. 14 and the selected parameter samples. The upper and lower bound 

of the 95% confidence interval for this quantity is 51% and 59%, respectively. 
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Mean Std. Dev 5th percentile 50th percentile 95th percentile 

µ0 (Events/day) 0.02 0.001 0.015 0.017 0.019 

td1 (years) 35.06 0.16 34.84 35.03 35.37 

Δ1 (Events/day) 0.28 0.02 0.24 0.27 0.31 

η1 (days-1) 0.008 0.002 0.005 0.008 0.011 

td2 (years) 3.49 0.19 3.15 3.49 3.78 

Δ2 (Events/day) 0.78 0.26 0.44 0.71 1.37 

η2 (days-1) 0.02 0.01 0.01 0.02 0.04 

td3 (years) 0.58 0.13 0.37 0.57 0.78 

Δ3 (Events/day) 2.16 0.25 1.68 2.18 2.54 

η3(days-1) 0.13 0.12 0.05 0.08 0.42 

K0(Events/day) 0.03 0.01 0.02 0.03 0.05 

α 1.79 0.09 1.65 1.78 1.94 

c (days) 0.23 0.06 0.15 0.22 0.35 

p 1.83 0.11 1.67 1.82 2.04 

Table 4 Statistics of the marginal posterior distribution of the parameters of model E5 based on the 
posterior samples. 
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Figure 10 Posterior distribution of λ0 (t) of model E5. 

 

Our study is limited in its ability to provide insight into spatial variations of the seismic 

rate, which we intend to address in our further research efforts. Nonetheless, the 

identified three seismic rate increments in Oklahoma seemingly correspond to a complex 

system of faults that have been activated (McNamara et al., 2015). Linking our results to 

the geophysical observations made by McNamara et al. (2015), it may be noted that the 

first identified increment corresponds to an increased seismicity rate in the vicinity of 

Jones and of Prague, which began in 2010 and late 2011, respectively; the second 

increment corresponds to the vicinity of Guthrie and Langston, where the seismic rate 

increased significantly in mid-2013; and the third increment corresponds to the seismicity 

in north-central Oklahoma (increasing significantly since late 2013) and in the vicinity of 

Cushing (beginning to emerge in late 2014).  

 

It is also of interest to examine the correlation between the logistic model parameters. 

Consider the three important parameters that affect the timing and upward shift of the 

logistic curve {td, Δ, η}. For the first increment, td and Δ are positively correlated as 

shown in Table 4, meaning that the later the time that the model assigns as the midpoint 

of the increase in the induced seismicity, the higher is the amount of increase in λ0 
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predicted necessary to compensate for the delayed timing. On the other hand, td is 

negatively correlated with η because a large value of td requires a small value of η to 

account for previous increases in the induced seismicity. Similarly, Δ and η are 

negatively correlated so that under-estimating η can lead to over-estimating Δ. As for the 

other sets of logistic parameters, we can draw similar insights from the full correlation 

coefficient matrix for the parameters of model E5 presented in Table C2 in the appendix.  

 

Assessment of seismic transitions. Figure 11 shows the inferred rate, as a function of 

time estimated to have occurred in each 2-month interval from January 2000 through 

August 2014 (including natural, induced and aftershock events with magnitude Mc and 

above). The results suggest a period of stationary natural seismicity from January 2000 

until late 2009. Thereafter, a distinct increasing seismicity began to occur and the region 

experienced two more increments in λ0, resulting in an overall seismic rate increase of a 

factor of more than 100, from 0.05 to over 5 events per day (across the state of 

Oklahoma) by August 2014. As indicated, the past trends of seismicity modeled by 

model E5 are generally in agreement with the observed record.  

  

Figure 11 Empirical distribution of event frequency (including natural, induced and aftershock events) to occur 
in each 2-month interval from Jan. 2000 through Aug. 2014, reconstructed using model E5.  
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Figure 12 shows the corresponding result for the predicted probability of exceeding a 

given magnitude in a given time interval. We evaluate it as the probability of exceeding 

ML 4 or 5 for a moving 2-month window according to Eq. 22. Based on the GR law, the 

resulting magnitude probability for the state of Oklahoma exhibits a similar trend to the 

seismic rate: the probability of occurrence of an ML 4.0 event or larger in a two-month 

period increases from less than 0.1 in January 2000 to nearly 1.0 (i.e., almost surely to 

occur) by late 2014. For an ML 5.0 event the probability of exceedance increases from 

about 0.01 in 2000 to over 0.5 in late 2014. Note that these results are subject to variation 

under different b-values, as shown in a subsequent sensitivity analysis.  

 

 
Figure 12 Empirical distribution of magnitude probability for each 2-month interval from Jan. 2000 through 
Aug. 2014, reconstructed using model E5.  
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Sensitivity of predicted probabilities of event magnitude to the assumed b-value and 

Mmax. As well known, b-value and Mmax play an important role in estimating the 

probability of events exceeding a certain magnitude. It is thus important to examine the 

impact of these two parameters, especially since we do not estimate their values by 

processing data. A range of values for the b-value and Mmax are investigated – allowing 

the b-value to equal 0.9, 1.0 or 1.1, and Mmax to increase from ML 6.0 to 7.0 and 8.0 - and 

the results are displayed for the probability of exceeding ML 5.0 with other parameters 

held equal in Fig. 13 (note that in the previous analysis, the b-value is fixed at 1.0 and 

Mmax at ML 6.0). As shown, the magnitude probability is quite sensitive to the b-value - a 

lower b-value generates a higher probability; while the choice of Mmax is less influential 

on the estimated probability.  

 
Figure 13 (a) Sensitivity analysis of the b-value for the magnitude probability analysis for the Oklahoma dataset. 
(b) Sensitivity analysis of Mmax. Note that in each analysis scenario, the value is set at 1.0 and M6.0 for the b-
value and Mmax respectively, if not otherwise specified.  
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4.4 Conclusions and Discussions 

Modeling the effect of external forces on a seismic activity is critical for providing direct 

inputs to a probabilistic seismic hazard analysis. In this paper, we propose a method 

based a parametric extension of the ETAS model, Bayesian inference, Monte Carlo 

Simulation, and the GR law. The method properly accounts for interdependence among 

events, comparison of alternative parametric functions for modeling induced seismicity, 

and uncertainty in both the natural event rate and the timing and magnitude of increases 

in the event rate associated with induced seismicity. 

 

The methodology in this paper offers several advantages, compared to the existing non-

stationary ETAS models. First of all, instead of using windowing techniques, our method 

estimates model parameters based on the entire dataset, providing a consistent and fully-

informed inference. This is also the case for Kumazawa and Ogata (2013) and Marsan 

and Helmstetter (2013), but they adopted non-parametric inference methods, and these 

tend to introduce additional complexity and computational burden to the inference, 

compared to the parametric method used in this paper. And finally, because our method 

does not use injection data, it can be applied more generally to other non-stationary 

processes, allowing for the presence of physical processes and random outcomes that 

make it difficult to specify a direct correlation between event rates and operational 

parameters.   

 

Application to the Oklahoma region shows that the proposed method is able to provide 

consistent inferences on seismic transitions, identifying an appropriate model and its 

parameters. According to the identified model, the direct contribution of external forces 

on the seismicity transitions in Oklahoma is approximately 56%. By reconstructing past 

seismicity, we show that the overall seismic rate increased by a factor of more than 100, 

from 0.05 to over 5 events per day during the study period. Accordingly, the probabilities 

of large magnitude events have been considerably affected in this region. Through a 

sensitivity analysis, we show how these event probabilities depend on the b-value in GR 

law and the Mmax to occur. 
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Wastewater injection data (e.g. injection rates) for Oklahoma are not available in this 

study. Such data could be used to better interpret the inferred transition times or to 

provide prior statistical likelihood to time periods when major changes in injection rates 

occur. If such correlations are identified, this could provide important insight into the 

development of the pore pressure level of the injection site, helping to identify a critical 

pore pressure level at which the strength of local faults has been significantly weakened 

and susceptible to pore-pressure perturbation. These correlations can also provide 

guidance to future operations and management of injection wells in terms of minimizing 

seismic hazards. Injection data can also be used to help choose functional forms for the 

non-stationary ETAS model. For example, if the injection scheme is periodic and the 

corresponding correlation is evident, we may consider using periodic functions for 

modeling seismicity transitions. 

 

We believe that the proposed method can provide a statistical basis for modeling and 

assessing the transitions of seismicity. With subsequent linkage to information on ground 

motions, exposure, fragility and consequences, the method can provide an initial 

decision-support tool to identify areas with increasing levels of induced events, updating 

seismic hazard estimates (Petersen et al., 2015), and supporting a comprehensive 

assessment to decide which risk-mitigation strategy should be recommended (Bommer et 

al., 2015). 
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Chapter 5 A Bayesian approach for 
assessing spatio-temporal evolution of 
seismic event rate associated with fluid 
injections 

Abstract 
In this chapter, we develop a statistical method for periodically updating the spatial 

seismic event rate based on the previous event rate and the current observation. The 

method accounts for uncertainty in the initial state and the transition of the event rate 

from the previous to the current time step. The transition model contains a correlation 

structure for the changes in event rate in different locations, the parameter of which can 

be tuned to achieve the optimal correlation function. The Monte Carlo sequential 

Bayesian inference method is employed to estimate the parameters involved in the 

inference process. 

 

Application of this approach to the Oklahoma dataset shows the model is able to well 

characterize the spatial distribution of seismic rate as a function of time. It shows that a 

considerable part (i.e., the middle and the northern part) of the Oklahoma state has seen 

significant increase in seismic rate. The timing and magnitude of the increase varies for 

different locations, with the timing ranging from year 2010 to 2015 and the magnitude 

ranging from 0.1 to 1 events per day. The model is also investigated for its short-term 

forecasting ability. In general, its forecasting performance is satisfactory both in itself and 

in comparison to a naïve method. 

 

5.1 Introduction 

An increased event rate implies an increased seismic hazard (McGarr et al., 2015). 

Characterization of event rates and locations is necessary for performing probabilistic 

seismic hazard analysis (e.g., Cornell, 1968; McGuire, 2004). There are existing methods 
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for developing seismic source characterizations of tectonic earthquakes (e.g., Field et al., 

2014; Lawrence et al., 2014; Moschetti et al., 2015). However, due to the highly non-

stationary nature of induced earthquakes, these existing methods for tectonic events are 

not suitable for characterizing the evolution of induced seismic event rate in time and 

space. 

  

This study presents a general sequential Bayesian inference method for characterizing 

where, when and to what extent induced seismicity increases, by recursively updating the 

spatial event rate based on the previous rate and the current observation. The method 

relies discretizing the region into a grid and the time into time intervals. As a result, the 

spatial event rate is represented by points on the grid and the evolution is represented by 

the correlated transition of those points from one time step to the next. Due to lack of 

analytical solutions, the inference of the model is carried out using Monte Carlo method, 

in which a set of weighted samples/particles are periodically updated to represent our 

belief about the state of the event rate. The overall Bayesian framework provides a 

flexible inference structure since it allows processing instrumental seismic records and 

the incorporation of expert geophysical knowledge, helping to constrain the prior 

parameter ranges of random variables involved in the inference process. 

 

The performance of the proposed model is investigated in an application to the Oklahoma 

earthquake dataset. In order to apply the model, the dataset needs to be preprocessed 

properly as shown in the “data preprocessing” section. And then, the model is tuned for a 

hyper-parameter, which controls the correlation strength in the transition of event rates on 

the grid points, based on the entire processed data using Bayesian model selection 

method. The tuned model is subsequently employed to perform inference showing how 

seismic event rate evolves across the Oklahoma state. The model is also investigated in 

terms of its short-term event rate forecasting ability for the dataset, which is compared to 

a naïve forecasting model. It is shown that the proposed model considerably outperforms 

the naïve model.  
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The rest of this chapter is organized as follows: firstly, we describe in detail the proposed 

model and the Monte Carlo procedure for inferring its parameters; subsequently, the 

analysis of the seismic evolution is reported. Finally, the result for the predicting 

performance of the proposed model is presented both in itself and in relative to a naïve 

method, followed by further discussion and conclusions. 

 

5.2 Models and Methods 

Spatio-temporal Point Process Model. We consider independent earthquake occurrences 

(without aftershocks) as a Spatio-temporal point process (STPP). STPP is a random 

collection of points, where each point represents the time and location of an event. Such a 

process is generated by a statistical model characterized by its associated event rate 

function 𝜆, with the rate at time 𝑡 and spatial coordinate 𝐳 = 𝑥 𝑦 ! given by 𝜆 t, 𝐳 . If 

𝜆 is known, we can calculate the probability density of the occurrence of a sequence of 

events. If given a sequence of data and a uncertain prior knowledge about 𝜆, we can 

update our belief through Bayesian theorem based on the prior knowledge and the 

likelihood function induced on the data. The formula for the log of the likelihood 

function is given by: 

log p 𝑯 𝜆 = log 𝜆 𝑡! , 𝐳!!
!!! − 𝜆 𝑡, 𝐳 𝑑𝐳𝐳∈! 𝑑𝑡!

!     (23) 

 

where 𝑯 = 𝑡! , 𝐳! : 𝑖 = 1, . . ,𝑁  contains the sequence of times and space coordinates of 

𝑁events occurring in region A, during time interval 0,𝑇 . 

 

The key component in a STPP model is 𝜆. In the following, we will specify its form used 

in this study and how to learn its parameters using Bayesian estimation methods.  

 

Specification of 𝝀. To specify the form of 𝜆, we start by discretizing space into a grid, 

and time into equal-duration time intervals. Subsequently, let vector 𝛌! contain the event 

rates on each point on the grid at time interval 𝑡!. As a result, 𝜆 can be represented by a 

sequence of 𝛌! , given information about the spatio-temporal discretization. 

Correspondingly, let 𝑯𝒌 contain events occurring during 𝑡!. 
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The sequence of 𝛌! can be treated as a sequence of the state of a system and it can be 

estimated using Bayesian sequential updating methods, in which we sequentially update 

the current system state based on one or more prior states and the current observation. We 

assume the sequence follows a first-order Markov process, meaning the current state 

depends on the historical states only through the previous state. This process is 

graphically displayed in Figure 14.  

 
Figure 14 Graphical representation of the process for the state and observation of the earthquake system.  

 

To complete the updating process, we need to specify the initial uncertainty and state 

transition function for the system. Let the initial distribution 𝛌!  be modeled by a 

multivariate lognormal distribution: 

𝛌!~ℒ𝒩 𝝁!,𝜮!          (24) 

 

where 𝝁𝟎 is a vector and 𝜮𝟎 is a covariance matrix, the combination of which specifies 

the statistical property of 𝛌!. In the covariance matrix, the correlation between two 

components is calculated using the squared-distance exponential function: 

 

𝜌!" =   𝑒
!

𝒛𝒊!𝒛𝒋
!
𝒛𝒊!𝒛𝒋

!!!          (25) 
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where 𝒛!  and 𝒛!  stand for the spatial coordinates of the components, 𝒛𝒊 − 𝒛𝒋
!
 is the 

transpose of 𝒛𝒊 − 𝒛𝒋  and, hyper-parameter 𝑙 controls the decay of the correlation as a 

function of distance. The smaller 𝑙 is, the faster the decay.  

 

The state transition is assumed to take the following form 

𝛌! =   𝚨! + 𝛌!!!          (26) 

where 𝚨! is a random vector, encoding the uncertain effect of induced seismicity. For 

simplicity, the distribution of 𝚨! is assumed to be stationary in time so that 𝚨! = 𝚨 for 

any 𝑘. Let random variable C takes value in 0, 1  with C = 0 standing for no change in 

the state and C = 1 for the occurrence of an increase. We assume the effect of induced 

seismicity is such that the state of the system experiences an increase with a probability 

P C = 1 , specifically in terms of 𝚨 

𝑝 𝚨 = P C = 0 ×𝛿 𝚨− 𝟎 + P C = 1 ×ℒ𝒩 𝝁𝚨,𝜮𝚨      (27) 

where 𝛿 𝚨− 𝟎  is the delta function centered on 0, 𝝁𝚨 is a vector and 𝜮𝚨 is a covariance 

matrix for the components in 𝚨 . The correlation between the components in also 

calculated according to Eq. 25. In this case, parameter 𝑙 is responsible for controlling 

correlation among the changes in different state components. The choice of its value is 

vital for optimizing model performance. In principle, the optimal value can be identified 

via model selection as shown later.  

 

As a result, 𝑝 𝛌!|𝛌!!!  can be represented by 

𝑝 𝛌!|𝛌!!! = P C = 0 ×𝛿 𝛌! − 𝛌!!! + P C = 1 ×ℒ𝒩 𝛌! − 𝛌!!!;𝝁𝚨,𝜮𝚨  (28) 

where 𝛿 𝛌! − 𝛌!!!  is the delta function centered on 𝛌!!!. 

 

With the initial uncertainty and transition function, we can now estimate the sequence of 

𝛌! based on the set of all available observation vectors 𝑯!:! = 𝑯!,𝑯!,… ,𝑯! . The 

estimation problem can be understood in a Bayesian sense by turning the problem into an 

estimation of the conditional posterior 𝑝 𝛌!|𝑯!:! . Our goal is to recursively evaluate 

this density on the arrival of new observations. For interested readers, the description of 

the recursive procedure is in documented in Appendix D.  
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Updating and Particle Filter. Analytical methods have been developed for solving such 

recursive Bayesian estimation problems, including Kalman Filter and its variants. 

However, they cannot be applied to our case because of the non-linear transition and the 

non-Gaussian (i.e. non-homogenous Poisson) likelihood used in this study. Although at 

the expense of more intense computation, the Particle Filter (PF) method provides a more 

general framework to solve the estimation problem, requiring no requirements on 

linearity and Gaussian likelihood. Therefore, it is employed in this study. 

 

The PF method is a general Monte Carlo method for approximating sequential 

distributions that are analytically intractable. It is traditionally based on Sequential 

Importance Sampling (Liu and Chen, 2001), which, at time 𝑘 − 1, aims at approximating 

𝑝 𝛌!!!|𝑯!:!!!  with a set of weighted samples 𝛌𝒌!𝟏𝒊 ,𝑤!!!!
!!!
!! , also known as particles, 

and recursively update these particles to obtain an approximation 𝛌𝒌𝒊 ,𝑤!! !!!
!!  to the 

posterior distribution at the next time step 𝑝 𝛌!|𝑯!:! . Under certain assumptions 

specified below, the particles are updated in a way that: 

𝛌𝒌𝒊   ~𝑞 𝛌𝒌𝒊 |𝛌𝒌!𝟏𝒊 ,𝐻!          (29) 

𝑤!! = 𝑤!!!! ! !!|𝛌𝒌
𝒊   ! 𝛌𝒌

𝒊 |𝛌𝒌!𝟏
𝒊

! 𝛌𝒌
𝒊 |𝛌𝒌!𝟏

𝒊 ,!!
        (30) 

 

where 𝑞 𝛌𝒌𝒊 |𝛌𝒌!𝟏𝒊 ,𝐻!  is a importance distribution for propagating particles at the current 

time step, which is assumed only dependent on the previous state and the current 

observation, and 𝑝 𝛌𝒌𝒊 |𝛌𝒌!𝟏𝒊  is the predicative density. 𝑤!! !!!
!! is normalized in each 

time step to sum to 1.  

 

According to Eq. 28, the distribution of 𝐱𝒌𝒊 |𝐱𝒌!𝟏𝒊  follows a mixture of two probability 

densities 

𝑝 𝛌𝒌
𝒊 |𝛌𝒌!𝟏

𝒊 = P C = 0 ×𝛿 𝛌𝒌
𝒊 − 𝛌𝒌!𝟏

𝒊 + P C = 1 ×ℒ𝒩 𝛌𝒌
𝒊 − 𝛌𝒌!𝟏

𝒊 ;   𝝁𝚨,𝜮𝚨  (31) 

where 𝛿 𝛌𝒌𝒊 − 𝛌𝒌−𝟏𝒊  is the delta function centered at 𝛌𝒌!𝟏
𝒊 . 
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If 𝑞 𝛌𝒌𝒊 |𝛌𝒌!𝟏𝒊 ,𝐻!  is chosen to be equal to 𝑝 𝛌𝒌𝒊 |𝛌𝒌!𝟏𝒊 , then Eq. 30 reduces to  

𝑤!! = 𝑤!!!! 𝑝 𝐻!|𝐱𝒌𝒊          (32) 

 

This variant of PF method is referred to as the Boot Strap Particle Filter. It is one of the 

easiest to implement, and thus one of the most widely used. However in the conflict 

between the predicative density and the likelihood, particles generated from the 

predicative density are not able to well explore the important region of the posterior 

space. This problem is particularly severe when the predicative density is broad and the 

dimension of 𝛌! is high. In order to draw samples effectively, one needs to design an 

informative importance density, considering both the predicative density and the 

likelihood. Specifically, we propose 𝑞 𝛌𝒌𝒊 |𝛌𝒌!𝟏𝒊 ,𝐻!  to be of a similar form as the 

predicative density: 

𝑞 𝛌𝒌𝒊 |𝛌𝒌!𝟏𝒊 ,𝐻! = P C = 0|𝛌𝒌−𝟏𝒊 ,𝐻𝑘 ×𝛿 𝛌𝒌𝒊 − 𝛌𝒌−𝟏𝒊 + P C = 1|𝛌𝒌−𝟏𝒊 ,𝐻𝑘 ×ℒ𝒩 𝛌𝒌𝒊 −

𝛌𝒌−𝟏𝒊 ; 𝐱𝑘|𝛌𝒌!𝟏𝒊 ,𝐻𝑘,C=1
𝑖 ,𝛽𝜮𝚨         (33) 

where 𝐱
!|𝛌𝒌−𝟏

𝒊 ,!!,!!!
! is the point estimate for the posterior mode of the log of 𝛌𝒌

𝒊  in the case of 

change, 𝜮𝚨 is the same covariance matrix as for the predicative density, 𝛽 is a scalar controlling 

the spread of the importance density, and P C = 0|𝛌𝒌−𝟏𝒊 ,𝐻𝑘  and P C = 1|𝛌𝒌−𝟏𝒊 ,𝐻𝑘  represent 

the posterior coefficients of the mixture. The posterior mode estimate can be obtained using 

Newton methods.  

 

The formula for P C = 0|𝛌𝒌−𝟏𝒊 ,𝐻𝑘  and P C = 1|𝛌𝒌−𝟏𝒊 ,𝐻𝑘  are: 

P C = 0|𝛌𝒌−𝟏
𝒊 ,𝐻𝑘 =

! 𝐻𝑘|𝛌𝒌−𝟏
𝒊 ,!!! ! !!!|𝛌𝒌−𝟏

𝒊

! 𝐻𝑘|𝛌𝒌−𝟏
𝒊 ,!!! ! !!!|𝛌𝒌−𝟏

𝒊 !! 𝐻𝑘|𝛌𝒌−𝟏
𝒊 ,!!! ! !!!|𝛌𝒌−𝟏

𝒊   

                                                              = ! 𝐻𝑘|𝛌𝒌−𝟏
𝒊 ,!!! ! !!!

! 𝐻𝑘|𝛌𝒌−𝟏
𝒊 ,!!! ! !!! !! 𝐻𝑘|𝛌𝒌−𝟏

𝒊 ,!!! ! !!!
    (34) 

P C = 1|𝛌𝒌−𝟏𝒊 ,𝐻𝑘 = 1− P C = 0|𝛌𝒌−𝟏𝒊 ,𝐻𝑘      (35) 

where 𝑝 𝐻𝑘|𝛌𝒌−𝟏
𝒊 , C = 0  can be easily calculated by 

𝑝 𝐻𝑘|𝛌𝒌−𝟏
𝒊 , C = 0 = 𝑝 𝐻𝑘|𝛌𝒌

𝒊 = 𝛌𝒌−𝟏
𝒊        (36) 

while 𝑝 𝐻𝑘|𝛌𝒌−𝟏
𝒊 , C = 1  is difficult to compute but can be expanded and approximated as an 

Gaussian-density weighted integral, given by 
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𝑝 𝐻!|𝛌𝒌!𝟏𝒊 ,𝐶 = 1 =    𝑝 𝐻!|𝛌𝒌𝒊 = 𝐀+ 𝛌𝒌−𝟏𝒊 ℒ𝒩 𝑨;   𝝁𝚨,𝜮𝚨 𝑑𝛌𝒌𝒊   

                                                                          = ! !!|𝛌𝒌
𝒊 !𝐀!𝛌𝒌−𝟏

𝒊

𝐀
𝒩 log 𝑨 ;   𝝁𝚨,𝜮𝚨 𝑑𝛌𝒌𝒊   

                      = ! !!|𝛌𝒌
𝒊 !𝒆𝐱!𝛌𝒌−𝟏

𝒊

! 𝐱 𝒩 𝐱;   𝝁𝚨,𝜮𝚨 𝑑𝛌𝒌𝒊  

                      = 𝑓 𝐱 𝒩 𝐱;   𝝁𝚨,𝜮𝚨 𝑑𝛌𝒌𝒊       (37) 

where 𝐱 = log 𝑨   and 𝑓 𝐱 = ! !!|𝛌𝒌
𝒊 !𝒆𝐱!𝛌𝒌−𝟏

𝒊

! 𝐱 . 

 

A common technique to approximate such a weighted integral is the Sigma Point method, 

which can provide an estimate of 𝑝 𝐻!|𝛌𝒌!𝟏𝒊 ,𝐶 = 1  using a discrete sum of the form 

𝑤!𝑓 𝝌 !!!!
!!!          (38) 

where 𝝌 !  is a set of sigma points, 𝑤!  is the set of the corresponding weights, and 𝑛! 

is the dimension of the state vector 𝐱. The specific rule for determining the sigma points 

and the corresponding weights can be found in Appendix E. 

 

In practice, the iterations of the update equations in Eq. 29-30 lead to a degeneracy 

problem where only a few particles possess the majority of the total weight. One common 

way to overcome it is resampling (Liu and Chen, 2001). In resampling, a new set of 𝑁! 

particles is generated according to the discrete approximation to the distribution 

𝑝 𝛌𝒌|𝐻!:! , provided by the weighted particles: 

𝑝 𝛌𝒌|𝐻!:! ≈ 𝑤!!𝛿 𝛌𝒌 − 𝛌𝒌𝒊
!!
!!!         (39) 

where 𝛿 𝛌𝒌 − 𝛌𝒌𝒊  is the delta function centered at 𝛌𝒌𝒊 . After resampling, the weight of 

each particle should be set to !
!!

. Thus resampling effectively deals with the degeneracy 

problem by getting rid of particles with very small weights.  

 

We have completely described the steps necessary for the sequential update procedure; 

which is now summarized in Table 5. 

  



58	
  
	
  

 

A. Initialize filter  

      1. Initialize state vector samples 𝛌!! ~𝑝 𝛌!   

      2. Initialize weights   𝑤!! = 1  /  𝑁!    

      3. Initialize time step 𝑘 𝑘 = 1  

B. Importance sampling  

      For i = 1,…,Ns  

      a. Calculate the j Sigma points 𝝌!
!,! = 𝝁𝚨 + 𝐋𝐜 𝒋 , 𝑗 = 0,1,… ,2𝑛!  

      b. Calculate the 𝑝 𝐻!|𝐱𝒌!𝟏𝒊 ,𝐶 = 1  𝑝 𝐻!|𝛌𝒌!𝟏𝒊 ,𝐶 = 1 = 𝑤!𝑙 𝝌!
!,!!!!

!!!   

      c. Calculate the posterior coefficients 
P C = 0|𝛌𝒌−𝟏

𝒊 ,𝐻𝑘 =
𝑝 !!|𝛌𝒌!𝟏

𝒊 ,C=0 P C=0

𝑝 !!|𝛌𝒌!𝟏
𝒊 ,C=0 P C=0 +𝑝 !!|𝛌𝒌!𝟏

𝒊 ,C=1 P C=1
  

P C = 1|𝛌𝒌−𝟏𝒊 ,𝐻𝑘 = 1− P C = 0|𝛌𝒌−𝟏𝒊 ,𝐻𝑘    

      d. Obtain the estimate of the  

          posterior mode for the log of 𝛌𝒌𝒊  

𝐱
!|𝛌𝒌−𝟏

𝒊 ,!!,!!!
!   

      e. Propagate particles 𝛌𝒌𝒊 ~𝑞 𝛌𝒌𝒊 |𝛌𝒌!𝟏𝒊 ,𝐻!   

C. Update the importance weights 𝑤!! =   𝑤!!!! 𝑝 𝐻𝑘|𝛌𝒌
𝒊 𝑝 𝛌𝒌

𝒊 |𝛌𝒌−𝟏
𝒊 ,𝐻𝑘

𝑞 𝛌𝒌
𝒊 |𝛌𝒌−𝟏

𝒊 ,𝐻𝑘
  

  𝑤!! = 𝑤!!   /    𝑤!!
!!
!!!   

D.Resample  

G. Moment Calculations  

H. Time step update and return to B 𝑘 = 𝑘 + 1  
Table 5 Particle Filter procedure. 

 

Bayesian model selection. The parameter 𝑙  in the correlation function is a hyper-

parameter for the model. Different choices of 𝑙  correspond to models of different 

complexity, which can considerably affect the modeling performance. Therefore, it is of 

interest to identify the optimal choice of 𝑙 and hence the optimal model. The model with 

𝑙 → 0 corresponds to the most complicate model as it allows the components in 𝛌! to 

change independently; while the model with 𝑙 → ∞ corresponds to the simplest model 

since all the components in the system state are forced to change by the same amount as 
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if there is only one parameter. Therefore, the selection method should prefer models with 

large 𝑙, unless the complexity induced by small 𝑙 can be justified by data likelihood. 

 

To optimize for 𝑙, Bayesian model selection technique is employed. A set of alternative 

models, each with a different value of 𝑙, are proposed and compared. In the Bayesian 

paradigm, models can be compared probabilistically: the posterior probability of each 

alternative model 𝑆! is calculated using Bayes’ formula (MacKay, 2003): 

𝑃 𝑆! 𝐻!:! = ! !! ! !!:! !!
!(!!:!)

           (40) 

 

where 𝐻!:! is the full input dataset; P 𝑆!  is the prior probability assigned to model 𝑆!; 

𝑝 𝐻!:! 𝑆!  is the global likelihood on 𝐻!:! for model 𝑆!, given by: 

𝑝 𝐻!:! 𝑆! =   𝑝 H! 𝑆! …𝑝 𝐻! 𝑆! ,𝐻!:!!! …𝑝(𝐻!|𝑆! ,𝐻!:!!!)   (41) 

 

where 𝑝 𝐻!|𝑆! ,𝐻!:!!!  can be approximated by  

𝑝 𝐻!|𝑆! ,𝐻!:!!! = 𝑤!!!
!,! 𝑝 𝐻!|𝛌!!!

!,!!!
!!!       (42) 

 

where 𝛌!!!
!,! represents the ith particle generated at time step 𝑘  under model 𝑆! , and 

𝑝 𝐻!|𝛌!!!
!,! = P 𝐶 = 𝑐 ×𝑝 𝐻!|𝛌!!!

!,! ,𝐶 = 𝑐!
!!!   . 

 

In the absence of prior preference over alternative models, the model yielding the highest 

global likelihood 𝑝 𝐻!:! 𝑆!  is considered the best model. One way to interpret the global 

likelihood is to treat it as the probability density of generating the earthquake data by the 

model. The model that is mostly likely to generate the data should be considered the 

optimal. It is worth noting that model selection through global likelihood provides a 

balance between model complexity and data likelihood, which is a desirable property.  

 

Thinning algorithm. In order to apply the above model, earthquake datasets must be first 

declustered as it typically contains both independent and dependent events. We adopt the 

same stochastic algorithm as in Chapter 3. The algorithm relies on models for the 
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independent activity and that for the clustering structure. They both can be provided by 

the non-stationary ETAS model proposed in Chapter 4. The parameters 𝛉 in the ETAS 

model can be estimated using Bayesian inference method.  

 

After obtaining the posterior distribution of 𝛉, we select the predicted mean 𝛉 to perform 

declustering using the thinning method presented in Chapter 3. Therefore, the 

independent earthquake sequence is realized by selecting each event 𝑖 with probability 

φ!. Although the outcome is intrinsically stochastic, as different sequences are generated 

from different runs of the algorithm, we focus on only one of the possible declustered 

sequences. The associated stochastic effect on our analysis can be investigated by 

comparing results from different declustered sequences. 

 

5.3 Application to the Oklahoma Earthquake Dataset 

Data pre-processing. The model and method proposed in the previous section are applied 

to the study of the earthquake catalog for Oklahoma. The study period roughly spans the 

time period from January 1975 to March 2016.  

 

Since the catalog contains both independent and clustering events, the declustering 

algorithm is employed to remove the clustering events. As one realization, the number of 

resulted independent events is 4327. The declustered events are illustrated in Figure 15, 

along with the complete data and the λ!(𝑡). As expected, the frequency of the declustered 

data is below that of the complete data, but close to the employed independent event rate. 

These events are used to infer the evolution of the seismic state for the study region.  
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Figure 15 Spatial and temporal illustrations of the declustered catalog (M ≥ 2.5). Plot (a) shows the frequency of 
the declustered data along with that of the complete data and the estimated independent rate; (b) shows a map 
of Oklahoma, the study region (inside the rectangle), and the epicenters of the declustered earthquake events. 

 

Modeling approaches. The dataset period is discretized by 2-month intervals, resulting in 

247 time steps in total (i.e., K = 247). In order to apply the proposed method in a regular 

setting, we focus on the events in a rectangular geographical region within the Oklahoma 
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boarder as shown by the rectangle in Figure 15(b). The study region goes from 99.5°W to 

95°W in longitude, and from 34.5°N to 37°N in latitude. It is divided into cells of 

0.5°×0.5°, generating a 5 by 9 grid and thus a state vector with 45 components. The 

location of each point on the grid is represented by the center of the corresponding cell. 

Figure 16 shows the grid on the Oklahoma map. Figure 17 shows the cumulative number 

of events functions over time for each cell. Since some of the cells experience more 

events during the study period than the others, they are labeled out in both figures for 

highlighting purposes. As a result, there are 16 cells to be used to highlight the model 

performance.  

 

 

 

 

 

 
Figure 16 The 5 by 9 grid on the map of Oklahoma. The cells with labels will be used to show model 
performance in details.  
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Figure 17 Cumulative number of events functions over time for each cell. As the vertical axis is displayed in log 
scale, 1 is added to each point on the curves to display zero values. 

 

The values for 𝝁𝟎,𝛴!,𝝁𝚨,𝛴!  are chosen to render broad distributions for the initial 

uncertainty and the transition functions. 𝝁𝟎 and 𝝁𝚨 are a vector of -8 and -5, respectively. 

𝛴!  and 𝛴!  are specified by two components: the standard deviation vector and the 

correlation matrix. For both of them, the standard deviation is assumed to be 1 and the 

correlation matrix is obtained through the correlation function in Eq. 22. We assume the 

probability of experiencing a change P 𝐶 = 1 = 0.1.  

 

Without prior preference over alternative models, the optimal model should yield the 

highest global likelihood on the dataset. We examine a range of values for the hyper-

parameter 𝑙, corresponding to different models, as shown in Table 6. The model deemed 

optimal is then selected to carry out the sequential inference on 𝛌!. 
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Model 𝑺𝟏 𝑺𝟐 𝑺𝟑 𝑺𝟒 𝑺𝟓 𝑺𝟔 

l (km) 1 50 100 150 200 250 
Table 6 Summary of alternative models with different values for the hyper-parameter l. 

Model Comparison and Inference Results. Figure 18 displays the log global likelihood 

for the model comparison. As we can see, the model performance is optimized by 𝑆! with 

𝑙 = 50𝑘𝑚, which therefore is chosen for the following analysis. 

 

 
Figure 18 Log global likelihood for each alternative model. 

 

The inference results from model 𝑆! are displayed in several different ways for the 

Oklahoma dataset. First of all, Figure 19 shows the estimated event rate as a function of 

time for the whole study region. It suggests the event rate experiences a sequence of 

increases rising from 0.01 to over 7 events per day initiating at 2010 in Oklahoma, which 

is consistent with results from existing literature on the earthquake activity in Oklahoma 

State. It is notable that the uncertainty in the inference changes with time. For a period of 

stationary earthquake process, the inference uncertainty reduces as more data becomes 

available, which is the case for the time period from 1975 to 2010. However, the 
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uncertainty increases right after changes occurring in the system as in 2010, 2011 and 

2014. This is caused by the limited availability of data to infer the new state, but as more 

data becomes available later on, the uncertainty reduces until new changes in the event 

rate. The uptick in the estimated event rate for the end of the dataset seems in conflict 

with the decline in the overall observed event rate, but it can be explained by the increase 

in event rate in individual cells including cell 2, 3, 6 and 7, as shown in Figure 20.  

 
Figure 19 Average estimated event rate as a function of time for the whole study region, along with its 
confidence interval and the observed event rate.  

 

Figure 20 shows how the mean estimated event rate evolves for each of the highlighting 

cells (a full display for each cell is in Figure F1 in Appendix F). Basically, the estimated 

event rate reacts not only according to the observation in the cell but also is affected by 

the data in the nearby cells. If the number of observed events in a cell or its surrounding 

cells increases significantly, the event rate in the cell is predicted to jump accordingly; if 

there is no increase or the increase is insignificant, the system state stays stationary. For 

those cells rarely seeing earthquakes, their states are also predicted to jump slightly 

because of the correlation dictated by the model as shown in the non-labeled cells in the 

full graph. Another visualization of the inference result is shown in Figure 21, which 

shows the mean estimated event rate in each cell for the first two months of 2016.  



66	
  
	
  

 
Figure 20 Average estimated event rate as a function of time for each highlighting cell along with the observed 
event rate.  

 

 
Figure 21 Mean estimated event rate in each cell for the first two months of 2016. 
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So far, we have shown the model’s ability to sequentially update the event rate for the 

region based on the previous state and the current observation. It is also of interest to 

examine its predicting performance. First of all, we need to specify to how perform 

predictions for future earthquakes using the model. Unlike traditional earthquake 

predictions in which the prediction is carried out for an extensive future period (e.g. 

50yrs) , we are focused on short term predictions due to the changing nature of induced 

earthquake. Specifically, the prediction is based on the average estimated event rate 

resulting from the current time step and it is used to predict the number of events to occur 

in the next time step. This prediction procedure is applied to each cell for each time step. 

Note that one time step is 2 months.  

 

The predicted number of events to occur in each time step for each cell is shown in 

Figure 22, along with the number of observed events. Note that the display is only for the 

critical period from 2009 to 2016, and the highlighting cells; a display for the entire 

region is in Figure F2. An ideal prediction result is such that the number of observed 

events equals the number of predicted events, as indicted by the curve in each plot. As we 

can see, although the model’s prediction is not ideal, generally it is satisfactory. Due to 

the absence of an ideal model, it is more interesting to conduct comparative analysis to 

evaluate the model’s predicting performance in relative to “naïve models” as defined in 

the following. 
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Figure 22 The predicted number of events to occur in each time step for each cell, along with the number of 
observed events. The timing of the prediction is indicated by the color of the circle with blue representing the 
beginning of the period and red for the most recent time. The curve in each subplot represents an ideal 
prediction, on which the predicted number of events equal the observed number. 

 

At each time step, a naïve model uses the average event rate in the past observational 

period of a certain length to predict the number of events to occur in the next time step. 

The performance of the naïve model depends on the length chosen for the past 

observational period – none of the extremely short and long values, but only a moderate 

value can yield a good forecast. Due to this consideration, a range of values are 

investigated from 2 months up to 20 months to identify the optimal naïve model. 

 

The comparison of predicting performance is based on the measurement of the predicting 

likelihood, which can be calculated similarly as the global likelihood. Figure 23 shows 
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the log ratio of the likelihood of model S! to that of each naïve model. A positive log 

ratio indicates a better predicting ability of the proposed model. As shown, regardless of 

the choice of the observational length, the log ratio is well above 1 in favor of our model. 

In another words, the proposed model is able to provide a significantly better forecast 

than the naïve model. 

 

 
Figure 23 Log ratio of the predicting likelihood of model 𝐒𝟐 to that of each naïve model with a different value for 
the observational length.  

 

5.4 Conclusions and Discussions 

Spatially mapping event rates as a function of time is critical for providing direct inputs 

to temporal probabilistic seismic hazard analysis of induced earthquakes. In this chapter, 

we propose a general model for modeling the evolution of event rate in time and space. 

The model consists of spatial and temporal discretization and periodic updating of the 

event rate, which is based on the previous state, transition model and current observation. 
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Application to the Oklahoma dataset shows that the proposed method is able to well 

characterize the spatial distribution of the increased seismicity as a function of time. In 

general, a considerable part (e.g., the middle and the northern part) of the region has seen 

significantly increase in seismic rate. The exact timing and magnitude of the increase 

varies for different subareas, with the timing ranges from 2010 to 2014 and the 

magnitude ranges from 0.1 to 1 events per day. The model is also shown to have arguably 

satisfactory short-term forecasting ability, both in itself and in comparison to a naïve 

method.  

 

We believe the model is able to provide insight into the underlying process of the spatial 

distribution of induced earthquakes. It can also be used as a tool to provide data for 

monitoring and periodically updating the regional seismic hazard influenced by the 

uncertain effect of fluid injections. Besides, its ability to perform short-term earthquake 

forecasting can be potentially used for guiding the operation of injection wells.  
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Chapter 6 Summary and Future 
Research 

The dissertation results in three main achievements: 

 

(1) A statistical method for the early detection of induced seismicity. The early 

detection of symptoms of change is critical to allow well managers and regulators 

to act promptly, revising the injection activity and/or preparing communities for 

the increased seismic risk.  

(2) A general methodology using a statistical model that considers not only the time 

and magnitude but also the form of seismic rate transitions. The proposed method 

can provide a statistical basis for modeling and assessing the transitions of 

seismicity. With subsequent linkage to information on ground motions, exposure, 

fragility and consequences, the developed method can also provide an initial 

decision-support tool to identify areas with increasing levels of induced events, 

updating seismic hazard estimates, and supporting a comprehensive assessment to 

decide which risk-mitigation strategy should be recommended. 

(3) A comprehensive method for assessing seismic transitions in both time and space. 

The model is able to provide insight into the underlying process of the spatial 

distribution of induced earthquakes. It can also be used as a tool to provide data 

for monitoring and periodically updating the regional seismic hazard influenced 

by the uncertain effect of fluid injection. Besides, its ability to perform short-term 

earthquake forecasting can be potentially used for the planning of the operation of 

injection wells.  

 

Each achievement has its unique advantage in providing solutions to the research 

challenge. The early detection method is simple and computationally less expensive, and 

therefore it is recommended as a preliminary tool to monitor an injection site for early 

signs of induced seismicity. After a detection of change in seismic rate is predicted using 

the detection method, sophisticated methods and tools (e.g., the 2nd/3rd method) can be 
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employed to more closely monitor and assess the process of induced seismicity. The 

temporal assessment model is able to parametrically describe the transition of seismic 

rate, using a limited number of parameters and therefore less complicate in relative to the 

spatio-temporal method. If knowledge regarding the parametric form of induced 

seismicity is available, one would prefer a parametric model over a non-parametric model 

such as the proposed spatio-temporal model. When such knowledge is not available, the 

spatio-temporal model is recommended due to its flexibility. It is expected that such 

flexibility usually comes at the expense of complexity, which makes a practical solution 

difficult when the dimensionality of the problem (i.e. the grid resolution) is high and no 

analytical solution is available.  

 

There are several open questions regarding how to use and improve the proposed 

methods: 

• For example, we are interested in using the proposed detection method to help 

design an array of seismic stations in conjunction with a value of Mc (estimated 

with estimated Maximum Likelihood b-value) able to satisfy a pre-determined 

Time to Detection (yrs.) with a given probability for each criteria level of 

increased seismicity.  

• We are also interested in using the spatio-temporal model to handle problems of 

high dimensionality. One possible solution to this issue might be using certain 

approximation technique to convert the Poisson likelihood to Gaussian likelihood 

and manipulating the transition model to be linear. Then Kalman Filter can be 

applied to the model to provide analytical solutions, requiring significantly less 

computation and making high dimensional problems feasible. Another possible 

solution is to employ parallel programming and computer clusters to provide 

powerful computations to meet the challenge of high dimensionality.  

• In addition, it is valuable to modify the correlation function in the spatio-temporal 

model to greater flexibility. Currently, the correlation function is assumed 

universal across the study region, which does not account for variations in 

correlation strength for different locations.  
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Beyond the improvement of the proposed methods, it is important to combine them with 

other models such as frequency-magnitude distribution, ground motion and exposure 

models to evaluate seismic risk under the framework of PSHA. The combined effort is 

valuable for providing a decision-support tool to identify areas with increasing levels of 

seismic risk in a quantitative manner, supporting a comprehensive assessment to decide 

which risk-mitigation strategy should be recommended.  

 

Finally, it is worth mentioning that the proposed methods can also be employed to model 

seismicity driven by non-stationary processes other than fluid injection, such as aseismic 

creep, magmatic intrusions, and natural fluid intrusion. 

Data and Resources 

Seismicity data were obtained from Oklahoma Geological Survey, the University of 

Oklahoma, at http://www.ou.edu/content/ogs/research/earthquakes/catalogs.html (last 

accessed March 2016). The operation history of wastewater injection wells was obtained 

from Oklahoma Corporation Commission Well Data System, at 

http://www.occpermit.com/WellBrowse (last assessed October 2014). The geological and 

geophysical characteristics related to the recent earthquake activity within Oklahoma, 

documented by the Oklahoma Geological Survey, can be found at 

http://wichita.ogs.ou.edu/documents/OGS_Statement-Earthquakes-4-21-15.pdf (last 

assessed May 2015). W.D. Heran, G.N. Green, and D.B. Stoeser’s 2003 geologic map 

database (“A digital geologic map database for the state of Oklahoma, No. 2003-247”) is 

available from https://pubs.er.usgs.gov:443/publication/ofr03247 (last assessed 

May 2015). 
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Appendices 

Appendix A 

To investigate the effect of different values of Mc, we applied the detection algorithm to 

three Mc scenarios - Mc=2.0, 2.5, or 3.0, and repeat the p-value analysis with the test 

origin at the beginning of 2009. The evolution of the 95th percentile of the p-value for 

each Mc scenario is shown in Figure A1. As shown, when Mc is M2.0, the detection is 

achieved later than when Mc equals to M2.5; while if it is M3.0, the detection is made 

earlier.  

 

Figure A1 Evolution of the 95th percentile of the p-value under different Mc scenarios, with the test origin at the 
beginning of 2009. The dash line indicates the critical value of 0.01 for the p-value, while the dash dot line shows 
the threshold of 1×10-10 for the p-value, below which the hypothesis-testing algorithm terminates evaluation. 

 

To evaluate the effect of different transition dates from the baseline to the testing period, 

we move the assumed transition point from the beginning of the year 2009 to the 

beginning of 2000, 2005, 2007, or 2008, and repeat the p-value analysis shown in Figure 

4. In each scenario, the baseline period starts at the beginning of the catalogue and ends at 

the transition point to the test period. The evolution of the p-value for each test origin 
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scenario is shown in Figure A2. As shown, regardless of the choice for the point of time 

to initiate the testing algorithm, the p-value does not decline significantly (e.g. below 

0.01 as indicated by the dash line) until the year 2009 or beyond. 

 

 

 

 

Figure A2 P-value evolutions under distinct time origins for the test period. Plots (a) to (d) display the p-value 
evolution for the test origin at Jan. 2000, Jan. 2005, Jan. 2007 and Jan. 2008, respectively. The dash dot line 
shows the threshold of 1×10-10 for the p-value, below which the hypothesis-testing algorithm terminates 
evaluation. 
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Appendix B. Parallel Tempering MCMC & Model Comparison 

Results 

In Bayesian model comparison, since the calculation of the global likelihood p(H|E) for 

alternative models, is analytically infeasible for the model considered in this study, we 

resort to parallel tempering MCMC (Gregory, 2005) to approximate its value. 

 

To evaluate p(H|E) using parallel tempering MCMC, we first define a partition function 

 

Z β = dθ  p θ E p H E, θ ! = dθ  exp   ln p θ E + βln p(H|E, θ)   (B1) 

 

where β is the tempering parameter [0, 1]. Now take the derivative of ln Z(β)  

 

!
!!
ln Z(β) = !

! !
!
!!
Z(β)        (B2) 

 
!
!!
Z β = dθ  ln p(H|E, θ) ×exp ln p(θ|E) + βln p(H|E, θ) =

dθ  ln p(H|E, θ) p θ E p H E, θ !       (B3) 

 

Substituting Eq. B3 into Eq. B2, we obtain 

 
!
!!
ln Z(β) = !!  !" !(!|!,!) ! ! ! ! ! !,! !

!!  ! ! ! ! ! !,! ! = 𝔼! ln p H E, θ     (B4) 

 

where 𝔼! ln p H E, θ  is the expectation value of the ln p(H|E, θ) . This quantity can 

be evaluated from the MCMC results which consist of sets of parameter θ! samples, one 

set for each value of the tempering parameter β. Let {θ!,!} represent the samples for 

tempering parameter β. 

 

𝔼! ln p H E, θ   = !
!

ln   p(H|E, θ!,!)! ,        (B5) 
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where n is the number of samples in each set after the burn-in period. From Eq. B4 we 

can write 

 

d  ln Z β = ln Z 1 − ln Z 0!
! = dβ  𝔼! ln p H E, θ     (B6) 

 

Now from Eq. B1 

 

Z 1 = dθ  p θ E p H E, θ ! = p(H|E),      (B7) 

 

and  

 

Z(0) =    dθ  p θ E .         (B8) 

 

From Eq. B6, B7, and B8 we can write 

 

ln p H E = ln Z 0 +    dβ  𝔼! ln p H E, θ  .     (B9) 

 

For a proper prior, Z 0 = 1 and Eq. B9 reduces to 

 

ln p H E = dβ  𝔼! ln p H E, θ        (B10) 

 

In comparing alternative models for the Oklahoma dataset, the right side of Eq. B10 is 

approximated by first evaluating Eq. A5 for a set of different values of β (here the set is 

{0.01, 0.2575, 0.505, 0.7525, 1}), based on the whole Oklahoma dataset of magnitude 

Mc and above. Subsequently, an interpolating function is generated using MATLAB and 

integrated over the interval [0 1]. Thus p(H|E) can be solved and the posterior probability 

ratios of the alternative models can be calculated. The detailed results of the model 

comparison are displayed as follows in Table B1. Figure B1 displays the expected value 

of λ0 and λ as a function of time for posterior alternative model E0-6, according to the 

Oklahoma dataset, as well as their characteristic fit as a function of transformed times τi. 
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Model Name 

𝔼𝜷 𝒍𝒏 𝒑 𝑯 𝑬,𝜽  Global 

Likelihood 

Posterior 

Probability 

Ratio (Oi0) β=0.01 β=0.2575 β=0.505 β=0.7525 β=1 

E0 -2406.9 -1715.9 -1697.7 -1693.4 -1688.4 -1791.3 1 

E1 -2378.5 -1614.2 -1596.5 -1588.0 -1587.4 -1698.3 2.0×1044 

E2 -2390.3 -1588.4 -1572.0 -1567.2 -1565.0 -1679.4 4.0×1048 

E3 -2351.0 -1585.0 -1556.5 -1547.5 -1543.8 -1662.0 1.4×1056 

E4 -2410.5 -1474.9 -1461.2 -1456.9 -1455.7 -1585.1 3.6×1089 

E5 -2451.0 -1473.5 -1447.9 -1443.6 -1440.3 -1581.4 1.4×1091 

E6 -2479.2 -1477.0 -1447.8 -1440.0 -1438.1 -1584.7 5.3×1089 

 

Table B1 Evaluated Eq. B5 for different values of β and the corresponding global likelihood and posterior 
probability ratios Oi0 (in relative to the stationary ETAS model) for each alternative model based on the 
Oklahoma dataset. 
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Figure B1 Expected values of λ0 as a function of time on the left, and the characteristic fit as a function of 
transformed times τi on the right, for model E0 - E6 in (a) – (g), respectively.  
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Appendix C. Prior for Parameters of Alternative Models in Chapter 4 and Inference 

of model E5 

Priors are an important component of the Bayesian methodology: if a considerable 

amount of prior knowledge is available, an informative prior should be used on the 

parameters; while in the case of absence a non-informative prior is more appropriate. In 

analyzing the Oklahoma dataset, we base the choice of the prior on literature (Chu et al., 

2011) for the basic parameters of the ETAS model (i.e., {µ0, K0, αETAS, c, p}); and that for 

the induced seismicity parameters (i.e., {Δ, td, η}) is based on expertise. Considering 

parameter td as an example, its prior is set broadly distributed but not completely flat, as it 

is barely reasonable to assign equal probability to all times in the infinite future for the 

activation of induced seismicity. The statistics of the prior adopted in this study for the 

parameters of each alternative model is documented in Table C1.  

 

A full exhibition of the selected samples from the posterior parameter distribution of 

model E5 is shown in Figure C1, as well as the corresponding complete correlation 

coefficient matrix in Table C2. 
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Parameters 
Model 

E0 E1 E2 E3-6 

µ0 (Events/day) 
mean 0.05 0.05 0.05 0.05 

coefficient of variation 2 2 2 2 

K0 (Events/Day) 
mean 0.001 0.001 0.001 0.001 

coefficient of variation 5 5 5 5 

α 
mean 2 2 2 2 

coefficient of variation 2 2 2 2 

c (Days) 
mean 0.001 0.001 0.001 0.001 

coefficient of variation 2 2 2 2 

p 
mean 1 1 1 1 

coefficient of variation 1 1 1 1 

td(years) 
mean NA 20 20 20 

coefficient of variation NA 2 2 2 

Δ (Events/day) 
mean NA 0.5 0.5 0.5 

coefficient of variation NA 0.5 0.5 0.5 

η (day-1) 
mean NA NA 0.0001 0.01 

coefficient of variation NA NA 10 2 
 

Table C1 The statistics of the prior adopted in this study for the parameters of each alternative model. Note that 
for models E3-6, each set of induced seismicity parameters {tdi, Δi, ηi} shares a common prior represented by {td, 
Δ, η} in the table. 
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Figure C1 Selected samples from the posterior distribution of model E5 parameters, as the representation of the 
uncertainties of model E5. 
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Corr. Coeff. 
Matrix 

µ0 
(Events/da

y) 

td1 
(years

) 

Δ1 
(Events/day

) 

η1 
(days-

1) 

td2 
(years) 

Δ2 
(Events/day

) 

η2 
(days-

1) 

td3 
(years) 

Δ3 
(Events/day

) 

η3(day
s-1) 

K0(Events
/day) α 

c 
(days

) 
p 

µ0 
(Events/day) 1 0.04 -0.21 -0.07 -0.04 0.09 0.23 0.00 0.00 0.04 -0.05 0.0

3 -0.10 
-

0.1
7 

td1 (years)  1 0.54 -0.60 -0.73 0.06 -0.07 -0.12 -0.15 -0.09 -0.14 0.1
5 -0.13 

-
0.1
6 

Δ1 
(Events/day)   1 -0.29 -0.38 -0.14 -0.02 -0.10 0.01 -0.19 -0.12 

-
0.0
6 

-0.12 0.0
0 

η1 (days-1)    1 0.30 -0.31 0.11 0.26 0.32 -0.21 0.18 
-

0.1
7 

0.17 0.2
2 

td2 (years)     1 0.52 -0.35 -0.58 -0.36 0.50 -0.12 0.0
9 -0.13 

-
0.1
6 

Δ2 
(Events/day)      1 -0.46 -0.80 -0.75 0.78 -0.43 0.3

8 -0.41 
-

0.5
2 

η2 (days-1)       1 0.58 0.38 -0.22 0.29 
-

0.4
9 

0.18 0.2
8 

td3 (years)        1 0.69 -0.59 0.32 
-

0.2
9 

0.31 0.4
0 

Δ3 
(Events/day)         1 -0.58 0.12 

-
0.1
7 

0.16 0.3
0 

η3(days-1)          1 -0.30 0.1
4 -0.34 

-
0.4
3 

K0(Events/da
y)           1 

-
0.5
4 

0.93 0.7
3 

α            1 -0.32 
-

0.5
1 

c (days)             1 0.7
9 

p              1 

 

Table C2 Complete correlation coefficient matrix for the parameters of model E5. 
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Appendix D. Recursive Procedure for the Sequential Bayesian Updating 

Process 

This appendix shows briefly how a sequential Bayesian updating process can be 

implemented recursively. Let us consider to estimate the system state x at time 𝑘 based 

on the previous state and all the available observations. In Bayesian paradigm, this 

problem can be formulated by 𝑝 𝐱!|𝑯!:!  where 𝑯!:! stands for the set of available 

observations.  

 

Using Bayes law, 𝑝 𝐱!|𝑯!:!  can be expanded as 

𝑝 𝐱!|𝑯!:! =    ! 𝑯!:!|𝐱! ! 𝐱!
! 𝑯!:!

          (D1) 

 

Because the set 𝑯!:! can be written as 𝑯! ,𝑯!:!!! , Eq. D1 can be rewritten as  

𝑝 𝐱!|𝑯!:! = ! 𝑯!,𝑯!:!!!|𝐱! ! 𝐱!
! 𝑯!,𝑯!:!!!

       (D2) 

 

Using the chain rule of probability, Eq. D2 becomes 

𝑝 𝐱!|𝑯!:! = ! 𝑯!|  𝑯!:!!!,𝐱! ! 𝑯!:!!!|𝐱! ! 𝐱!
! 𝑯!|𝑯!:!!! ! 𝑯!:!!!

      (D3) 

 
Applying Bayes law to 𝑝 𝑯!:!!!|𝐱! , and reducing the resulting equations, yields the 

following progression 

𝑝 𝐱!|𝑯!:! = ! 𝑯!|  𝑯!:!!!,𝐱! ! 𝐱!|𝑯!:!!! ! 𝑯!:!!! ! 𝐱!
! 𝑯!|𝑯!:!!! ! 𝑯!:!!! ! 𝐱!

   

                                            = ! 𝑯!|  𝑯!:!!!,𝐱! ! 𝐱!|𝑯!:!!!
! 𝑯!|𝑯!:!!!

  

                                              = ! 𝑯!|𝐱! ! 𝐱!|𝑯!:!!!
! 𝑯!|𝑯!:!!!

       (D4) 

where 𝑝 𝑯!|  𝑯!:!!!, 𝐱! → 𝑝 𝑯!|𝐱!  because observation at time 𝑡! is assumed to be 

only dependent on the current state 𝐱!. 

 

One last step is needed to create a completely recursive form for the conditional 

probability density function equations. The Chapman-Kolmogorov equation provides a 
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link between the prior density, defined as 𝑝 𝐱!|𝑯!:!!! , and the previous posterior 

density 

𝑝 𝐱!|𝑯!:!!! =    𝑝 𝐱!|𝐱!!!,𝑯!:!!! 𝑝 𝐱!!!|𝑯!:!!! 𝑑𝐱!!!    
                                                    = 𝑝 𝐱!|𝐱!!! 𝑝 𝐱!!!|𝑯!:!!! 𝑑𝐱!!!     (D5) 

where 𝑝 𝐱!|𝐱!!!,𝑯!:!!!   → 𝑝 𝐱!|𝐱!!!  is due to the property of the first-order Markov 

process.  

In light of this, Eq. D4 can be rewritten as 

𝑝 𝐱!|𝑯!:! =    ! 𝑯!|𝐱! ! 𝐱!|𝐱!!! ! 𝐱!!!|𝑯!:!!! !𝐱!!!
! 𝑯!|𝑯!:!!!

     (D6) 

 
Now, from Eq. D6, a recursive link has been established between the previous posterior 

𝑝 𝐱!!!|𝑯!:!!!  and the current posterior 𝑝 𝐱!|𝑯!:!  that requires the specification of the 

predictive density given by 𝑝 𝐱!|𝐱!!!  and the likelihood function 𝑝 𝑯!|𝐱! .  
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Appendix E. Sigma Point Integration Method  

Appendix E describes the Sigma Point Integration Method for approximating Guassian-

weighted integrals. To introduce the method, let us first consider a general 

multidimensional Gaussian-weighted integral 

𝐟 𝐱 = 𝐟 𝐱 𝒩 𝐱; 𝐱,𝚺 𝑑𝐱        (E1) 

Apply affine transformation 

𝐱 = 𝐱+ 𝐋𝐜           (E2) 

where 𝐋 is defined by the matrix square root equation  

𝚺 = 𝐋𝐋𝐓          (E3) 

As a result, 𝐜~𝒩 𝐜;𝟎, 𝐈  and Eq. E1 can be rewritten as  

𝐟 𝐱 = 𝐟 𝐜 𝒩 𝐜;𝟎, 𝐈 𝑑𝐜        (E4) 

For a general nonlinear function 𝐟 𝐜 , the integral in Eq. B4 cannot be solved 

analytically. Numerical methods to solve integrals of this kind are called multiple 

integration rules and each rule is designed to integrate a specific class of 

multidimensional polynomial approximations of 𝐟 𝐜 . The application of affine 

transformation is very important as it allows for evaluating integrals weighted by a 

Gaussian density that is symmetric about zero in all dimensions. This can be shown to 

greatly simplify numerical methods for approximating Gaussian-weighted integrals of 

nonlinear functions. The integration rules that involve polynomial approximations 

typically require calculation of Jacobian and Hessian differential matrices, which itself is 

a difficult task. An alternative is to replace the differential matrices by their 

multidimensional central finite difference approximations, which leads to a class of 

methods called the Sigma Point method.  

 

Basically, Sigma Point method approximate the integral in Eq. E4 by a discrete sum of 

the form 

𝐟 𝐱 ≅ 𝑤!𝐟 𝐜 !!!
!!!         (E5) 

The exact form of 𝑤!, 𝐜 !  and 𝑛! depends on the choice of the integration rules. The 

value of 𝑛! typically depends on the dimension of the state vector 𝑛!. The integration 

rule used in this study is as follows 
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𝑤! =
𝑤!, 𝑗 = 0

  !!!!
!!!

, 𝑗 = 1,2,… ,2𝑛!
        (E6) 

𝐜 ! = !!
!!!!

𝐫 ! , 𝑗 = 0,1,… ,2𝑛!       (E7) 

where 𝐫 !  is a unit vector along one of dimensional axes, such as 0,… ,1,… ,0 !, except 

for 𝐫 ! = 𝟎. 

From Eq. E2 and E4, for each vector integration point 𝐜 !  we can write 

𝐟 𝐜 ! =   𝐟 𝐱+ 𝐋𝐜 𝒋 , 𝑗 = 0,1,… ,2𝑛!      (E8) 

Defining the sigma points as 

𝝌 ! = 𝐱+ 𝐋𝐜 𝒋 , 𝑗 = 0,1,… ,2𝑛!       (E9) 

the approximate integral in Eq. E5 becomes 

𝐟 𝐱 ≅ 𝑤!𝐟 𝝌 !!!!
!!!         (E10) 
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Appendix F. Full Inference and Forecasting Results. 

Appendix F contains the full display of the inference and forecast results of the proposed 

model in Chapter 5. 

 

 

 

 

Figure F1 Average estimated event rate as a function of time for each cell along with the observed event rate. 
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Figure	
  F2	
  The	
  predicted	
  number	
  of	
  events	
  to	
  occur	
  in	
  each	
  time	
  step	
  for	
  each	
  cell,	
  along	
  with	
  the	
  number	
  
of	
   observed	
   events.	
   The	
   timing	
   of	
   the	
   prediction	
   is	
   indicated	
   by	
   the	
   color	
   of	
   the	
   circle	
   with	
   blue	
  
representing	
   the	
  beginning	
  of	
   the	
  period	
  and	
  red	
   for	
   the	
  most	
   recent	
   time.	
  The	
   curve	
   in	
  each	
   subplot	
  
represents	
  an	
  ideal	
  prediction,	
  on	
  which	
  the	
  predicted	
  number	
  of	
  events	
  equal	
  the	
  observed	
  number. 
 

 

 


