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A Biomechanical Model of Human Upper Limb for 

Objective Stroke Rehabilitation Assessment 

Abstract 

In stroke rehabilitation, the assessments of the severity of stroke that are based on objective and 

robust measurements are the key to improve the efficacy of the rehabilitation efforts. It is essential, 

therefore, to complement the existing tools, where the assessments are partly relied on therapists’ 

subjective judgements, with a tool that can quantify important indicators of stroke recovery. One 

such indicator is the level of spasticity. The reliability of the current methods of measuring the 

severity of spasticity can be significantly improved by incorporating a feasible way to measure 

muscle forces and activations during stroke assessment. However, most of the present methods of 

estimating muscle forces require input parameters that are difficult to obtain in a clinical setting. 

A musculoskeletal arm model has been developed to bridge the gap between the domains of muscle 

forces estimation and stroke rehabilitation assessment.  

The project is divided into three stages. In the first stage, a biomechanical arm model that computes 

the joint torques with kinematic data from sensors is developed. The model has three features that 

eliminate the need for parameters that are difficult to obtain thus making it a feasible tool in clinical 

settings. The first is the use of a hybrid method that combines the data from sensors and a shoulder 

rhythm model to compute the orientation of the shoulder complex. The second is a method to 

compute the elbow joint angles without the need to compute the ambiguous carrying angle. The 

third is a method of estimating the inertial properties using published data, scaled by parameters 

that can be easily measured. 

The musculoskeletal properties of the human arm are added to the model in the second stage. The 

muscle model consists of 22 muscles that span from the thorax via the shoulder and the upper arm 

to the forearm. The muscle path is defined using Obstacle Set method where the anatomical 

structures are modelled using regular-shaped rigid bodies. Dynamics of the muscle is computed 

based on the Hill’s type muscle model that consists of an active contractile element, a passive 

parallel element and a series element. Due the difficulties in defining the moment arms, an 

optimization routine is designed to compute the optimal moment arms for each muscle for a subject. 
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The muscle-sharing problem is solved using optimization which minimises the square of sum of 

muscle stresses. The muscle activation predicted by the model is compared to EMG signal for 

validation. 

In the final stage of this project, the model is used in the application of spasticity assessment. The 

tonic stretch reflex threshold (TSRT) which is an indicator for the severity of spasticity is 

computed using the model. Fifteen patient subjects participated in the experiments where they 

were assessed by two qualified therapists using Modified Ashworth Scale (MAS), and their 

motions and EMG signals were captured at the same time. Using the arm model, the TSRT of each 

patient was measured and ranked. The estimated muscle activation profiles have a high correlation 

(0.707) to the EMG signal profiles. The null hypothesis that the rankings of the severity using the 

model and the MAS assessment have no correlation has been tested, and was rejected convincingly 

(p ≈ 0.0003). These findings suggest that the model has the potential to complement the existing 

practices by providing an alternative evaluation method. 
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1. Introduction 
1.1 Motivations 

1.1.1 The need for robotics and automation technologies in stroke 

rehabilitation 

Stroke patients often suffer from both sensory and motor difficulties in one or more limbs. Besides 

the initial huge medical costs incurred in treating the patients, the survivors of stroke require 

intensive care and the road to recovery through rehabilitation is a long and expensive one [1]. This 

is partly because the current common practice of rehabilitation of stroke patients is a combination 

of both physical and occupational therapy [2], which requires at least a one-to-one attention of a 

trained therapist to a patient [3]. To alleviate the financial and manpower burden on the healthcare 

sector, hospitals and rehabilitation centres are exploring the possibilities of automating some of 

the rehabilitation procedures, taking advantage of emerging robotics and automation technologies 

[4-6]. 

1.1.2 Assessment in rehabilitation of the upper limbs of stroke patients and its 

current limitations 

The assessments of the severity of stroke in patients during rehabilitation that are based on 

objective and robust measurements are the key to justify evidence-based practice and serve as a 

tool for communication among researchers and practitioners [7]. The assessments are needed in 

three situations: (a) to plan for the best initial treatment methods, (b) to quantify the efficacy of the 

treatment sessions so that they could be fine-tuned progressively, and (c) to assess the recovery 

status of the patients after rehabilitation [8]. In a typical rehabilitation session, the patient, assisted 

by a therapist, performs tasks and/or exercise routines that target at the affected limbs. Periodically, 

the therapist assesses the progress of the recovery using various standard assessment methods. 

There are many tools for stroke assessment [9], each was developed to cater for different needs 

identified by clinicians and therapists. Some of the tools are very simple and are only meant to be 

used for getting a quick and general overview of the conditions of the patient. One example is the 

Box and Block Test (BBT), where the patient is tasked to transfer as many small blocks from a 
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container to another as possible within a time limit. The assessment results of these tools cannot 

be used for in-depth understanding of the patient’s impairment. On the other hand, more complex 

assessment tools, for example the Fugl-Meyer Assessment (FMA), where the therapist observes 

the ability of the patient performing daily tasks and rates it, and the Modified Ashworth Scale 

(MAS), where the therapist rates the patient’s susceptibility to involuntarily resist passive motions, 

may suffer from the problem of subjectivity. That is, the result of the assessment partly relies on 

subjective judgments, which is dependent on the experience of the therapist administrating the test. 

The inability of these tools to fully address the complexity of the motor deficits also reveals their 

limitations as a mean to understand the issues pertaining to the stroke recovery process. A more 

objective and comprehensive assessment method that provides quantitative results would be a 

valuable tool to complement the existing practices. In particular, researchers have attempted to 

develop tools to objectively quantify one of the most important indicators of stroke recovery: the 

level of spasticity. 

Most of the current tools developed by researchers to quantify the level of spasticity make use of 

kinematic data of the arm measured by sensors. Since spasticity is defined as a motor disorder 

characterized by a velocity-dependent exaggeration of tonic stretch reflexes [10], researchers 

attempted to quantify the level of spasticity by measuring the joint velocities and 

electromyography (EMG) signals of muscles to deduce the patient’s tonic stretch reflex threshold 

(TSRT) [11-14]. Due to selectivity issues inherent to using non-invasive EMG sensors, only the 

activities of the largest superficial arm muscles like biceps brachii or triceps brachii can be 

measured [12, 13]. However, it was shown by Mullick et al. in [14] that TSRT measurement is 

sensitive to the muscles that are been measured and the placement of the sensors. To eliminate 

these reliability issues, it is required to develop a better method that can determine the activation 

of more muscles, including smaller and deeper muscles. Without the dynamic information of the 

muscles during the motions, it is also very difficult to understand the underlying mechanisms of 

the motor deficits and thus hindering the selection of appropriate motor rehabilitation strategies 

for individual patients [15]. The key in resolving the problems in quantifying spasticity lies in 

deriving a feasible way to measure muscle forces and activations during stroke assessment. 

 



3 
 

1.1.3 Estimation of Muscle Activations and Its Limitations on Using in Stroke 

Assessment 

Researchers have developed many methods to estimate muscle forces and activations, but there 

are still gaps to bridge before they can be used directly in the assessment of stroke rehabilitation. 

First, direct measurement of muscle force is only possible in a few specific muscles [16, 17]. So 

instead of measuring the muscle force directly, many researchers  develop musculoskeletal models 

of human extremities to estimate the muscle forces [18]. However, the arm models in these studies 

are developed to specifically address certain research problems. In some cases, they are over-

simplified and do not represent the anatomy accurately to be used for estimation of the muscle 

strength [19, 20], and in others, the models require input parameters that are difficult to obtain in 

a rehabilitation setting [21-23]. Some models are developed using commercial software where 

costs and the trainings needed for the clinicians to use the model are also a hindrance to make these 

methods useful in assessing stroke rehabilitation [18]. 

1.2 Objective and Scope 

The main objective of the project is to bridge the gap between the current model-based methods 

for estimating muscle force, which are complex and mainly restricted to the research domain, and 

a tool that can be used clinically in stroke assessment, which is of low cost, requires simple 

parameters, and accessible to a broader group of users. This is achieved by the development of a 

musculoskeletal model of the human upper limb that: (1) requires input parameters that can be 

obtained in a clinical setting; and (2) has accuracy comparable to the existing models. By providing 

a mean to estimate the muscle forces/activations using only simple protocols, we can objectively 

quantify the level of spasticity of patients in a clinical setting. We hypothesize that there are 

significant correlations between the level of severity of stroke predicted using the model and by 

the current practices. 

The complete project consists of three stages: (1) developing a biomechanical arm model; (2) 

incorporating musculoskeletal features to the model; and (3) applying the model to quantify 

spasticity (See Figure 1). In the first stage of the project, we developed a biomechanical arm model 

that takes in the orientation information provided by four sensors attached to the subject’s body, 

and computes the joint torques using inverse dynamics. The four sensors measure the movements 
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of the thorax, scapula, humerus and forearm respectively. In the second stage, we use the joint 

torques together with a musculoskeletal model for the arm and estimate the muscle forces and 

activations via optimization techniques. The final stage is to use the complete model to assess the 

severity of stroke by measuring TSRT to quantify the level of spasticity. Fifteen patient subjects 

participated in the experiment where we compare the severity of spasticity predicted using the 

model with the assessments in Modified Ashworth Scale (MAS) done by experienced therapists. 

 

 

 

 

 

 

 

 

 

 

 

The main contributions of this project are summarized as follows: (a) Developed a biomechanical 

model of the human upper limb that computes the shoulder orientation accurately using a hybrid 

method and the elbow orientation without invoking orthogonality and carry angle assumptions; (b) 

Developed a musculoskeletal model (that incorporates the aforementioned biomechanical model) 

that is designed to be useful clinically for the assessment of stroke rehabilitation; (c) Applied the 

model to assess the severity of spasticity of stroke patients and achieved a good correlation with 

the assessment by professional therapists. 

 

Stage 1 Stage 2 Stage 3 

Figure 1: The three stages of the project. Stage 1 – Biomechanical arm model takes in measured data 

and computes joint torques using inverse dynamics. Stage 2 – Muscle model incorporates joint 

torques and estimates muscle force/activation via optimization. Stage 3 – Practical applications. 
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The research works were published in the following papers: 

1. Wei Sin Ang, I-Ming Chen, Qilong Yuan, “Ambulatory measurement of elbow kinematics 

using inertial measurement units”, IEEE/ASME International Conference on Advanced 

Intelligent Mechatronics, (AIM), 2013 

2. Wei Sin Ang, I-Ming Chen, Qilong Yuan, “Ambulatory measurement of shoulder 

kinematics using inertial measurement units and shoulder rhythm model”, 3rd IFToMM 

International Symposium on Robotics and Mechatronics, (ISRM), 2013 

3. Wei Sin Ang, Hartmut Geyer, I-Ming Chen, “Objective Assessment of Spasticity with a 

Method based on a Human Upper Limb Model”, IEEE Transactions on Neural Systems & 

Rehabilitation Engineering, 2017 (Accepted). 

 

1.3 Organization of the Report 

This report presents the modelling of the arm in Stage 1 and 2, and discusses the methods and 

results of the application in Stage 3. Chapter 2 provides a thorough literature review on the current 

status of stroke rehabilitation assessment and muscular activation measurement. The development 

of a biomechanical model of the human upper limb (Stage 1) is presented in Chapter 3. Chapter 4 

shows the incorporation of muscular features into the arm model (Stage 2), and estimation of the 

muscular activations using the joint torques computed from Stage 1. Chapter 5 describes the 

methods used in applying the arm model to assess spasticity through the measurement of tonic 

stretch reflex threshold (TSRT). It also presents the experimental results and discusses the 

implications. Chapter 6 concludes the report and discusses the future works.  
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2. Literature Review 

2.1 Assessment of Motor Recovery after Stroke 

The survivors of stroke often suffer from upper limb paresis that can have severe impact on 

disability and health [24]. Assessment of the severity of the impairment before, during and after 

therapeutic treatment is necessary to identify the best rehabilitation program for individuals and 

whether the treatment has achieved its purpose [25]. As there are large variations in the 

characteristics and scope of upper limb recovery among individuals [26, 27], there are over 60 

different assessment tools that are been used by clinicians and therapists [9]. The tools are grouped 

under specific domains that the assessors are interested in. See Table 1 for some the domains that 

are relevant to motor recovery and the more commonly used tools. 

Table 1: Stroke Rehabilitation Assessment Tools 

Domains Tools Notes 

Activities of Daily Living 

(ADL) 

Assessment of Motor and Process 

Skills (AMPS) [28] 

Effects of motor and process skills 

on ADL.  

Barthel Index (BI) [29] 
The extent to which a patient can 

function independently. 

Motor Function 

Fugl-Meyer Assessment (FMA) [30] 

Designed to assess motor 

functioning, balance, sensation and 

joint functioning. 

Motor Assessment Scale [31] 
Performance-based scale designed 

to assess everyday motor function. 

Upper Extremity Activity 

Action Research Arm Test (ARAT) 

[32] 

Assess specific change in upper 

limb functions. 

Box and Block Test (BBT) [33] 
Measures unilateral gross manual 

dexterity. 

Spasticity 
Modified Ashworth Scale (MAS) 

[34] 

A rating scale to measure tonus 

abnormality. 

 

The BBT is a simple exercise that aims at measuring the subject’s gross manual dexterity of one 

arm. It is composed of a wooden box divided in two compartments by a partition and 150 blocks. 

See Figure 2. The subject is asked to move, one by one, the maximum number of blocks from one 

compartment of a box to another of equal size, within 60 seconds, and the score equals the number 

of blocks moved. Because of its simplicity, it is routinely used by clinicians to have a quick and 

general assessment on the recovery progress of the patients. Although it was found to have good 

reliability and validity [35], the lack of complexity of BBT means that it cannot provide in-depth 
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understanding of conditions of the subject, which can be seen in the floor-effect when compared 

to other tests like FMA [32]. 

 

 

 

 

In contrast to BBT’s simple equipment, ARAT consists of 19 items (see Figure 3) grouped into 

four subscales: grasp, grip, pinch, and gross movement, and all items are ordered according to 

ascending difficulty. The subject is to attempt the most difficult tasks first and will only proceed 

to the easier ones if he/she cannot complete the task with full score. Although ARAT seems to be 

more complex and detailed than BBT, and studies have shown that it has good reliability and 

validity [36], it also susceptible to both floor and ceiling-effect [37]. 

The FMA is one of the most popular assessment tools in the field of stroke rehabilitation and many 

consider it to be the most comprehensive quantitative measures of motor impairment [38]. The FM 

scale consists of five domains: motor function, sensory function, balance, joint range of motion, 

and joint pain. Each item within the domains is assessed using a 3-point scale (0, 1 or 2), with a 

total score of 226 points. FMA was designed with the intention to fill in the voids in the 

neuromuscular capacity in most existing scales at the time of its inception [30]. The main merits 

Figure 2: Box and Block Test (BBT) equipment 

Figure 3: Action research Arm Test (ARAT) equipment 
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of FMA are given to the motor function domain of the scale [38, 39], where there are 33 items on 

the upper extremity and 17 items on the lower extremity. Its reliability and validity have been 

shown to be very good [39, 40], and it has been used as a benchmark for other test scales [32]. 

Spasticity is a condition that results from injury to the central nervous system. Basically, there is 

a velocity dependent increase in muscle tone (resistance to stretch) due to excessive contraction of 

the muscles [41]. The MAS is the most commonly used clinical measures of spasticity [42]. During 

the test, the limb of the patient is passively moved by the therapist from extreme flexed position 

to extreme extended position, or vice versa, in one second. The resistance to the passive movement 

is then graded by the therapist using a set of rules, shown in Table 2. Its reliability is found to range 

from excellent [43] to poor [44]. When it is validated against biomechanical measurement (using 

a force transducer and a electrogoniometer), the correlation is found to be poor [41]. 

Dynamic stretch reflex threshold (DSRT) is defined as the joint angle at which the involuntary 

resistance to the motion set in at a certain velocity. Higher stretch velocities result in smaller DSRT. 

If we use linear regression to approximate the DSRTs of various velocities and extrapolate to zero 

velocity, we will get the tonic stretch reflex threshold (TSRT), which is used as an indicator of the 

severity of the spasticity [12]. To improve the reliability and objectivity of using the MAS, 

researchers have attempted to objectively quantify the patient’s TSRT by simultaneously 

measuring the joint velocity and the muscle activation via electromyography (EMG) signals [11-

14]. Due to the selectivity and representativeness issues related to non-invasive, surface EMG 

(sEMG) measurement [45], only the activities of large and superficial muscles like biceps brachii 

or triceps brachii can be reliably recorded [12, 13]. It has been shown, however, that the deduced 

TSRT is sensitive to the selection of muscles and the placement sites of the sEMG electrodes [14].   

Table 2: The Modified Ashworth Scale 

 

Grade Modified Ashworth Scale [34] 

0 No increase in muscle tone 

1 

Slight increase in muscle tone, manifested by a catch and release or by minimal  

resistance at the end of the range of motion when the affected part(s) is moved in  

flexion or extension 

1+ 
Slight increase in muscle tone, manifested by a catch, followed by minimal 

resistance throughout the remainder (less than half) of the range of motion (ROM) 

2 
More marked increase in muscle tone through most of the ROM, but  

affected part(s) easily moved 

3 Considerable increase in muscle tone, passive movement difficult 

4 Affected part(s) rigid in flexion or extension 
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Despite having some progresses in justifying the usages of these common assessment tools, and 

therapists and clinicians all over the world are using them routinely in helping the patients, 

recovery from stroke is still notoriously difficult to quantify [46, 47]. Some of the reasons for this 

are the difficulty in differentiating recovery by rehabilitation from patient’s spontaneous recovery, 

the variability in the types and severities of the stroke, and the experience and subjectivity of the 

therapists that administrate the tests [48]. Measurements that are robust and objective are the key 

to justify evidence-based practice and serve as a tool for communication among researchers and 

practitioners [7]. The World Health Organization International Classification on Functioning, 

Disability and Health (WHO ICF) [49] classifies upper limb assessments into three areas: (a) Body 

Functions and Structures, (b) Activities, and (c) Participation. The most commonly used 

assessment tools that include BBT, ARAT and FMA, make use of clinician-observed and patient 

self-report methods, and fall mainly into the “Activities” framework [7]. They are not adequate 

and objective in capturing the dynamic process of recovery and provide indications on the efficacy 

of the specific treatments [38, 50]. 

 

2.2 Muscle Strength and Rehabilitation 

There is no one single parameter that can encompass the complexity and variability of motor 

recovery after stroke. Muscle strength, however, is a good candidate as the quantity to assess the 

functional capabilities and general quality of life of stroke patients [51, 52]. Motor deficits are 

probably the most easily identifiable impairment in stroke patients, and the partial loss in muscle 

strength is the most noticeable form [53]. Therefore, assessing muscle function is important in 

many different areas, like determining the existence of an impairment or disability, types and levels 

of treatment to be administrated, and tracking effectiveness of a treatment [51]. 

The fact that the motions of the limbs are generated by actions of the muscles means that when the 

ability to fully activate certain muscles is challenged, as in the case of stroke patients, the 

acceleration of the corresponding body segments is also compromised [52]. The relevance of 

muscle strength to functional activities depends on the level of difficulty in performing the 

activities. Easy tasks like eating, dressing oneself, or combing do not require large strength but 

more on dexterity of the arm and hand. When an individual has certain difficulties in carry out the 

motions in a natural trajectory, that is, to perform the task in the same way before the injury, motor 
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compensation will inevitably be employed by the person [54]. Motor compensation typically falls 

into three areas: derivation of a new function, performing of a function in a new way, and complete 

a task using a different technique [55]. The quantification of the muscle strength will provide 

insights to the motor compensation and the comparison of the muscle usage between a patient and 

that of healthy subjects will be very helpful in assessing the recovery status. 

2.3 Measurement of Muscle Strength 

2.3.1 Manual Muscle Test (MMT) 

The most common method of assessing muscle strength is the manual muscle test (MMT) [56]. 

(See Figure 4) It is a procedure that evaluates the strength of a particular muscle or muscle group 

in which the subject voluntarily uses the muscle against some imposed loads or gravity. The body 

part of the subject under testing is positioned and isolated so that its movement is constrained in 

the designated direction. Evaluation is then done based on palpation or observation of the 

contraction of the muscle and the range of motion, and the assignment of scores is purely 

dependent on the clinical judgment of the therapist [51]. That MMT is one of the most widely used 

methods to measure muscle strength does not eliminate the fact that its reliability, validity and 

accuracy are questionable [57]. It is also not useful in ambulatory measurements of daily functions 

of the limbs and other body parts. 

 

 

 

 

Figure 4: Manual Muscle Testing in progress 

https://upload.wikimedia.org/wikipedia/commons/1/1c/Muscle_Testing.jpg
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2.3.2 Electromyography (EMG) 

During muscle contractions, depolarization of the muscle fiber membrane occurs, causing two 

traveling action potentials that start at the neuromuscular junction halfway the fiber and propagate 

in opposite directions along the fiber. The membrane depolarization causes a time-varying electric 

current field that emits an electrical signal known as the electromyogram (EMG). EMG can be 

measured invasively by means of needle or wire electrodes, or non-invasively at the skin using 

skin-attached electrodes [45] (see Figure 5). The invasive measurement of EMG has been done for 

many years by researchers [58]. It can capture electric potentials in a point of the volume conductor 

close to the active muscle fibers, thus the diffusion effect of the soft tissues is limited. This means 

that it can measure motor units activation and thus contraction of muscles accurately. However, 

its usefulness is heavily restricted by the fact that needle-insertion is not feasible in many 

applications [59]. The non-invasive method, termed as surface EMG (sEMG), on the other hand, 

suffers the diffusion effects as the skin and other soft tissues sandwiched between the electrodes 

and the muscles [60, 61]. Recently, there has been a lot of interest in refining the instrumentations 

and algorithms of sEMG, in the hope of improving its accuracy and precision, so that it can reliably 

measure muscle force and be used as a clinical tool in the diagnosis of neuromuscular diseases [59, 

62, 63]. There are still many hurdles to cross before this can be realized [64], however. These 

challenges include normalization of EMG amplitudes to maximum muscle force, difficulty in 

tracking dynamic contraction of muscles [45], and representativeness of EMG due to the 

heterogeneity of muscle [59]. Currently, EMG signals are only used as a supporting tool that 

qualitatively validate other muscle force measuring methods [65]. 

 

 
Figure 5: A schematic of measuring EMG using skin-attached electrodes. 
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2.3.3 Model-based Estimation 

Direct measurement of muscle force in vivo, when done invasively, can only be used on specific 

tendons such as Achilles [16], or flexor tendon of fingers [17]. Non-invasive methods, like MMT 

and EMG measurement described above, either focus on the overall strength or are not precise 

enough to provide insight into the functions of individual muscle or muscle groups. 

Instead of measuring the muscle force directly, many researchers are developing mathematical 

models of muscle functions [21, 66]. Using quantities that can be relatively easier to measure, like 

kinematics of the body parts, as inputs to these models, one can calculate the joint torques and then 

deduce the muscle strengths that are needed to produce the motions [65].  

The equations of motion in a musculoskeletal model with a set of n joint angles q can be concisely 

expressed as [22]: 

𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�) + 𝐺(𝑞) + 𝑇 + 𝐸 = 0                             Eq. (2.1) 

where 𝑀(𝑞) is the system mass matrix (𝑛 × 𝑛), 𝐶(𝑞, �̇�) is the centrifugal and coriolis loading 

(𝑛 × 1), G(q) is the gravitational loading (𝑛 × 1), T is the muscular joint torque (𝑛 × 1), and E 

represents external forces. If we know the mass properties and the time history of joint kinematics 

and reaction forces, we can calculate the joint torques, T, by using Eq. ( 2.1 ) and work recursively 

from distal to proximal segments of the body part of interest [67]. This is call inverse dynamics 

analysis. (See Figure 6.) 

If the joint torques are known, usually from experimental data or prior knowledge of the movement, 

we can rearrange Eq. ( 2.1 ) as 

�̈� = 𝑀(𝑞)−1[𝐶(𝑞, �̇�) + 𝐺(𝑞) + 𝑇 + 𝐸]                             Eq.( 2.2 ) 

and �̈� can be integrated twice to obtain the joint angles [65]. This approach is called the forward 

dynamics analysis. (See Figure 6.) 

 

 

 

 

 

 

 

Joint Kinematics 
(𝑞, �̇�, �̈�) Inverse Model 

Joint Torque 
(𝑇) 

Forward Model 

Figure 6: The inverse and forward dynamics models. 
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The knowledge of the origins and insertions of the muscles of interest is very important as it defines 

the moment arms, which when multiplied to the corresponding muscle forces give the torques at 

the joints [68]. Moment arms are defined as the distance between the muscle’s line of action and 

the joint’s axis of rotation [69]. The exact locations of the origins and insertions of muscles are 

usually found using magnetic resonance imaging (MRI) or measurements from cadaveric samples 

[70]. The former is impractical in a clinical or rehabilitation setting. The latter provides a database 

from which a subject’s actual locations of the sites can be approximated by scaling from the 

anthropometric information, like height, weight and gender. 

The model of muscle can range from very complex, with up to 50 parameters to describe the 

motion of a single joint [71], to very simple, like being considered as a simple torque generator 

[72]. The key to the modeling is to make it as complex as needed in the purpose of the studies, 

such that the model reveals the behavior of interest but does not include parameters that cannot be 

identified or controlled. Generally, a Hill-type input-output model is a good balance, as it considers 

the force-velocity, force-length and activation dynamics at a whole muscle level [73]. The model 

consists of an active contractile element (CE), simulating the active muscular action, a passive 

elastic element (PE), simulating the rigidity of the muscle fiber, and a serial passive element (SE) 

representing the attached tendons. Figure 7 (taken from [65]) shows the most general form of the 

model which includes the pennation angle, α. The patterns of the force-length and force-velocity 

relationship are also shown. The muscle force, 𝐹𝑚 is defined as [75]: 

 

 

 

 

 

𝐹𝑚 = 𝐹𝐶𝐸
𝑚 (𝐿(𝑡), 𝑣(𝑡), 𝑎(𝑡)) + 𝐹𝑃𝐸

𝑚 (𝐿(𝑡))                                        Eq.( 2-3 ) 

where 𝐹𝐶𝐸
𝑚  and 𝐹𝑃𝐸

𝑚  are the forces from the CE and PE respectively, and they are functions of the 

muscle length, 𝐿(𝑡), the rate of change of the length, 𝑣(𝑡), and the muscle activation, 𝑎(𝑡). 

Figure 7: The general form of a Hill-type muscle model, and the force-length and 

force-velocity relationships of the elements. 
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Musculoskeletal systems are redundant systems, that is, there are many more muscles spanning 

the joints than the number of joints. Optimization techniques are usually employed to handle the 

redundancy issues [22]. In the popular inverse dynamics-based static optimization approach [76], 

the joint torques are first calculated using Eq. (2.1), and the muscular load-sharing problem is 

solved by minimizing an objective function, J, subject to the constraints of equality of the products 

of muscular forces and moment arms to the joint torques. The objective function, J, depends on 

the nature of the studies and the information available. The most common forms are square of 

muscle stresses and maximum muscle stress, and their merits and drawbacks are discussed in [65]. 

Another approach is called the forward dynamics assisted data tracking. In this method, an initial 

set of muscle activation data is fed into the forward dynamics model, and by comparing to the 

experimental data, the muscle activation information is iteratively updated. The objective function 

to minimize is the error between the calculated and the measured kinematics of the joints [77]. 

This approach is less sensitive to the measurement errors of the kinematic inputs when compared 

to the inverse dynamics model approach. But because it requires the a priori knowledge of muscle 

activation, which can only be obtained from periodic movement patterns, it is currently only 

feasible for lower extremity studies [78]. 

Other alternative approaches include using EMG data incorporated into the calculations, as in the 

EMG-driven forward dynamics model [79, 80], and combination of EMG data and inverse 

dynamics model [81]. However, these methods suffer the same problems associated with the 

ambiguity and inaccuracy inherent to the EMG data, and the procedures and instrumentations are 

too demanding to be practical in most clinical settings. 

In the context of measuring muscle strength to assess rehabilitation of stroke patients, using inverse 

dynamics model approach seems to be the most feasible, for two reasons: first, it is best suited for 

upper limb measurements as it does not require a priori information of the muscle activation, 

which is difficult, if possible, to obtain for the arm as no standard movement pattern is available 

[82]; secondly, the kinematic data of the arm can be measured relatively easier than the parameters 

of the muscles, using motion capturing devices like inertial measurement unit (IMU) [83]. But in 

order for the approach to work, a biomechanical model for the arm that has the appropriate 

complexity has to be developed first. 
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3. A Biomechanical Model for the Human 

Upper Limb 
3.1 Introduction 

Compared to the researches on the motions of the lower limbs, there are relatively fewer studies 

in the literature on the upper limb motion analyses [84]. This is because: (a) there is no common 

or repetitive activity of the arm that can be viewed as a standard motion, unlike walking or running 

for the legs; and (b) the range of motion of the arm is much greater, and to model it realistically, 

one has to include the shoulder complex, which has proven to be very difficult to model [85]. 

Despite these difficulties, many quantitative motion analysis techniques for the upper extremity 

have been developed over the past twenty years [86]. Each of these studies focuses on addressing 

different problems, but most of them adopted the same approach of having a biomechanical model 

of the arm at the central of the investigation, and using measurable quantities captured by sensors 

to carry out calculations of non-measureable quantities based on the model. 

There no standard protocol for arm motion analysis currently recognized by all researchers. 

However, some of the issues that studies on the arm motions have to address are universal [86]. 

3.1.1 Joint Kinematics 

Joint kinematics is the relative attitude of two adjacent bony segments. In the context of the upper 

limb, it refers to clavicle relative to thorax, scapula relative to clavicle, humerus relative to scapula, 

ulna or radius relative to the humerus. When developing the model, one has to firstly decide on 

the degree of freedom (DOF) of each joint, since this will determine the overall complexity of the 

model and thus the information it can provide. Take the shoulder complex as an example, the DOF 

designated can range from five [87], six [88], to nine [89], each study considering its own 

constraints and assumptions made. 

The coordinate systems of the joints must be defined with respect to some known references. For 

the results from different studies to be comparable, anatomical frames should be used whenever 

possible. Anatomical frames are coordinate systems associated with known bony landmarks on the 

body, usually located by palpation. In [90], the International Society of Biomechanics (ISB) 

comprehensively proposed a framework on defining anatomical frames for the upper limb motions. 

However, palpation of the less obvious bony landmarks requires skills of experienced clinicians, 

or special equipment [91], which may not be readily available in many situations. Another type of 
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frame, called the functional frame, uses functional axes of rotation as the basis for definitions of 

coordinate systems. One example is using the flexion/extension axis of the elbow to define the 

forearm coordinate system (see Section 3.5). 

The definitions of the joint angles are also a concern when different studies are compared. The ISB 

recommendations in [90] define these angles with respect to anatomical landmarks. Whenever 

possible, the joint angles in the model should follow closely to these recommendations, where the 

Euler angles decompositions are clearly defined. 

3.1.2 Sensors Setup 

The method used to track the motions of the arm is an important aspect in the development of a 

model, and it has to be decided at the very beginning. This is because the tracking method will 

determine (a) the type of motions that can be measured, whether it is static, quasi-static, or dynamic; 

(b) the space and setting of the venue of the experiment; (c) the positions of the markers or 

wearable sensors on the arm, and whether they can be easily fitted onto the subjects; and (d) the 

costs. Some common sensors used by researchers are (1) electromagnetic sensors [92, 93] (Figure 

8a), (2) optoelectronic systems with passive or active markers [94-96] (Figure 8b), (3) 

electrogoniometers [97] (Figure 8c), (4) inertial measurement units [98] (Figure 8d), and (5) 

magnetic resonance imaging (MRI) [99]. Researchers also design and build custom-made 

measuring tools for specific purposes, for example in [100], a potentiometer-based tool is used in 

tracking the scapular motions. 

Electromagnetic systems determine the positions of receivers attached to the arm relative to a 

transmitter. The advantage of these systems is that they do not require line-of-sight, and therefore 

the position and motions of the subject are relatively less restricted. The major drawback of 

electromagnetic systems is that it is very sensitive to metals, and such interference should be 

carefully eliminated during experiments.  

Optoelectronic systems do not suffer from sensitivity to metals, but it requires more elaborated 

setups and the space required is considerably larger. At least three markers are needed for each 

segment for its rigid body motion to be accurately calculated. More markers or cameras are needed 

if the movements obstruct the line-of sight of some of the markers. 
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Electrogoniometers are devices that can measure the relative angle between two segments. They 

are cheap and easy to use, but may not be able to accurately represent angles in 3-dimensions and 

may obstruct the movements in some configurations. 

Most recent studies make use of either electromagnetic or optoelectronic systems in tracking of 

the arm motions. They are reliable, accurate, and many protocols have been developed to address 

operational issues. However, the costs and complexity in the implementation might be a hindrance 

for them to be a routine tool in a rehabilitation setting. The optoelectronic systems also have the 

additional problem of requiring an empty room of considerable size. One alternative to these 

systems which has gain popularity recently is the inertial measurement unit (IMU). Commercially 

available IMUs are relatively cheaper than both electromagnetic or optoelectronic systems and the 

costs of custom-made units have the potential of going even lower. The angular measurements 

Figure 8: (a) A electromagnetic tracking system (Flock of BirdsTM, Ascension 

Technology Corp.); (b) An optoelectronic tracking system with markers on subject 

(ViconTM, Oxford Metrics Limited); (c) A electrogoniometer adhered to the forearm; 

and (d) Inertial measurement units attached to the body of a subject. 
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from an IMU usually are a result of fusion of data from gyroscopes, accelerometers and 

magnetometers. However, one drawback is its accuracy compared to the optoelectronic and 

electromagnetic systems which have many protocols proven to be effective. The solution to this is 

to develop algorithms that can apply the information captured by the IMUs onto accurate models 

of the human anatomy. And this shall be explained in details in the sections that follow. 
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3.2 The Denavit-Hartenberg (D-H) Representation of the 

Upper Limb Model 

The arm model developed in this study consists of a base (thorax), four segments (clavicle, scapula, 

humerus and forearm), and four joints (sternoclavicular (SC), acromioclavicular (AC), 

glenohumeral (GH), and elbow). Each of the first three joints (SC, AC and GH) has 3 DOFs, 

modeled by three orthogonal revolute joints, and the elbow joint has two DOFs, simulated by two 

non-orthogonal revolute joints. See Figure 9 for the illustration. The details on the shoulder and 

elbow models will be discussed in later sections. In this section, an overview of the arm model is 

presented. 

 

 

 

There are altogether 11 rotation axes, Zn, (n = 0,1,2,…,10), assigned according to the D-H 

representation algorithm. The D-H kinematic parameters (𝜃, 𝑑, 𝑎, 𝛼) of each link are listed in Table 

3. 

Figure 9: The illustration of the arm model that consists of 4 segments (clavicle, scapula, 

humerus and forearm), 4 joints (SC, AC, GH and Elbow), and a base (Thorax). The 

rotation axes, Zn, in the D-H representation are also shown. 
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Table 3: Rotation axis descriptions and D-H parameters 

Axis Joint Description of the rotation θ d a α 

1 SC Protraction-Retraction θ1 0 0 − 𝜋 2⁄  

2 SC Axial Rotation θ2 0 0 𝜋 2⁄  

3 SC Elevation-Depression θ3 0 a3 0 

4 AC Medial-Lateral Rotation θ4 0 0 − 𝜋 2⁄  

5 AC Posterior-Anterior Tilt θ5 0 0 − 𝜋 2⁄  

6 AC AC Protraction-Retraction θ6 d6 a6 − 𝜋 2⁄  

7 GH Posterior-Anterior Elevation θ7 0 0 − 𝜋 2⁄  

8 GH Medial-Lateral Elevation θ8 0 0 − 𝜋 2⁄  

9 GH Axial Rotation θ9 d9 0 α9 

10 Elbow Flexion-Extension θ10 0 0 α10 

11 Elbow Supination-Pronation θ11 d11 0 0 

 

The calculation of the link offsets (d6, d9, and d11) and the link lengths (a3 and a6) will be explained 

in Section 3.5.5. The link twists (α9 and α10) will be discussed in Section 3.3.5. The model is 

implemented using the Robotics Toolbox [101] in Matlab®. The following sections will discuss 

in details about the modeling of each segment of the arm. 

3.3 Placement of the Sensors 

The APDM Opal™ wireless inertial measurement units system is used in this study (APDM Inc., 

Portland, OR, USA). It has an accelerometer, a gyroscope, and a magnetometer all encased into a 

small unit of 48.4 x 36.5 x 13.4 mm, and weighs 22 g. The static and dynamic accuracy of the 

measured angle is 1.5º and 2.8º respectively. It is able to synchronize up to 24 units, with data 

synchronized typically within 1ms. The device local coordinate system, with x-axis pointing 

downwards, y-axis pointing to the side, and z-axis pointing forwards, is with respect to an earth-

based global coordinate system. The system calculates and gives the quaternion representation of 

the orientation as the output. In this study, data was acquired at a sampling rate of 128 Hz. 

Four IMUs were attached to the subject’s body. The first is positioned at the sternum, just below 

the neck, with the IMU frame (x1, y1, z1) shown in Figure 10. This IMU is used to measure the 

orientation of the thorax (which is expected to have very small changes throughout the experiment). 

The second IMU is attached to the broad, flat surface of the posterior-lateral acromion at the right 

shoulder, measuring the orientation of the scapula. The IMU frame is (x2, y2, z2). And the third 

IMU is strapped to the centre of the right upper arm to record the motion of the right humerus. The 

frame is designated as (x3, y3, z3). The fourth IMU is strapped to the lower arm near the wrist to 

measure movement of the forearm. The frame is designated as (x4, y4, z4). See Table 4. The global 

coordinate system is defined as: XG – north, YG – east, and ZG – down. 
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Table 4: Positions of IMUs and orientations of the frames 

IMU Position x y z 

1 At the sternum, just below the neck. Cranial Lateral Left Dorsal 

2 
At the broad, flat surface of the posterior-

lateral acromion at the right shoulder. 
Dorsal Medial Left Caudal 

3 At the centre of the right upper arm. Cranial Medial Left Dorsal 

4 At the lower arm near the wrist. Cranial Medial Left Dorsal 

 

In [90], the International Society of Biomechanics (ISB) proposed joint coordinate systems for 

each of the bones at the upper limb. The local coordinate systems of the thorax, scapula, clavicle, 

humerus and forearm are defined using anatomical landmarks, so to achieve standardization of 

joint motions. However, there are difficulties in the execution and instrumentation of locating these 

landmarks if the recording of the data is to be done in a non-laboratory environment. The locating 

of anatomical landmarks requires skilful palpation by trained therapists, which may not be readily 

available due to the low therapists-to-patients ratio in many ageing societies. The reliability and 

repeatability of palpation is also a concern [102]. The located landmarks have to be digitized using 

expensive and sophisticated camera systems or electromagnetic devices. The complexity and costs 

Figure 10: The coordinate systems and placement of the IMUs, the global frame, and the local 

frames. Note that the local frames of the clavicle and scapula are not shown. 
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of these instruments may also hinder wide acceptance of the protocols in cost-sensitive fields like 

rehabilitation [98]. In view of these constraints, we propose to use local coordinate systems that 

are only dependent of the initial resting position of the arm. The local coordinates of the thorax, 

clavicle, scapula, humerus and forearm when the arm is resting naturally by the side are defined 

as: xT, xC, xS, xH, xF – medial (left), yT, yC, yS, yH, yF – cranial (up), and zT, zC, zS, zH, zF – ventral 

(front). With the help of a compass, the initial local z-axes were aligned with the north during the 

experiments, so that the orientations of the local systems are known with respect to the global 

system. 

3.4 The Shoulder Model 

3.4.1 Introduction 

The human shoulder complex consists of three bones: clavicle, scapula and humerus, and with the 

thorax acting as a rigid base for the shoulder motions [103]. The kinematics of the shoulder are 

usually described by the movements at three joints: sternoclavicular (SC), acromioclavicular (AC) 

and glenohumeral (GH) joints [84, 90]. The scapulothoracic articulation (ST), where the scapula 

glides over the rib cage, is sometimes considered to be a fourth joint, although it is not synovial 

[103, 104]. The SC, AC and GH joints all have three degrees of freedom (DOF), but the 

movements are constrained by the ST gliding plane and the conoid ligament between clavicle and 

scapula. Thus the scapula and clavicle plus the thorax form a closed-chain mechanism [88]. See 

Figure 11, taken from [105]. 

 

 

 

 

The three-dimensional motion of the shoulder complex can provide important information in 

understanding abnormalities in upper limb motion. It is also crucial in the development of 

Figure 11: Anatomy of the shoulder. It consists of three bones: clavicle, scapula and 

humerus, and the thorax as the base. The three synovial joints are sternoclavicular (SC), 

acromioclavicular (AC) and glenohumeral (GH). The scapula glides along the ribcage 

forming the scapulothoracic articulation (ST). 
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biomechanical models of the arm [106, 107]. Accurate measurement of the orientations of the 

scapula and clavicle are typically done either by tedious stationary posture recordings or in a highly 

constrained clinical environment using X-ray or complex camera systems [84]. However, these 

methods are not feasible when dynamic recordings are needed, e.g., in ergonomic and sports 

studies, and when the subjects are patients who have difficulties to comply with the protocols, e.g., 

in rehabilitation assessment of stroke patients. 

An alternative method is to use wearable electromagnetic sensors or inertial measurement units 

(IMUs) attached to the skin to measure the orientations of the bones underneath [98, 107, 108]. 

Although these non-invasive methods have fewer constraints in terms of setups and executions, 

and can work in ambulatory situations, they are susceptible to the problems faced by every non-

invasive method [84], like measurement noise and noise caused by soft tissue movements and 

involuntary rotations of other body joints by the subjects during experiments. The discrepancy in 

the measurements between invasive (where sensors are attached to pins drilled into the bones) and 

non-invasive methods becomes very large when the humeral elevation angle rises beyond 110° 

[108]. 

Shoulder rhythm is the term used to describe the relationships between the motion of the humerus 

and scapula, and of the humerus and clavicle [109]. To address the issues on the difficulty of 

measuring scapular and clavicular movements, some studies have tried to establish models for 

shoulder rhythm through experiments. These models are useful in approximating the kinematics 

of large arm movements but they cannot capture subtle movements of the shoulder girdle like 

shrugging. Moreover, these models are based on the data collected from healthy subjects and might 

not be very accurate when apply on patients with shoulder abnormalities. 

In our model, we propose a hybrid method that fuses the ambulatory data from the IMUs attached 

to the humerus and scapula, and the regression models based on the data collected from invasive 

measurements in [106]. 

3.4.2 Shoulder Rhythm Model 

Invasive measurement methods, where sensors are fitted on pins that are securely drilled into the 

bones, can provide accurate measurements for the motions of the bones, especially for the scapula 

and clavicle. Although these methods are not practical to be used routinely in most applications, 

the data can be used as a benchmark for accuracy for non-invasive methods. In [106], the 

orientations of SC, AC and ST joints with respect to the elevation of GH joint are measured using 
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a invasive method. The regression models of the graphs of SC and ST are used in this study as the 

shoulder rhythm models and are presented in Table 5 and Table 6. Only linear and quadratic 

functions are used in the regression models. No data was given for GH elevation angles less than 

20° in [106]. This may be due to the difficulty in handling ill-defined angles as a result of gimbal 

lock problem. In the regression models, we make use of the angles at the rest position and 

performed a linear fitting. The local coordinate systems at the joints in [106] are designated 

according to the recommendations given in [90], we mapped the angles to our designated frames 

using the direction cosines in the global reference frame given in [75]. 

 

Table 5: Regression models of sternoclavicular (SC) joint based on results in [106]. θCX, θCY, and 

θCZ are the orientation of the clavicle with respect to the thorax in the xC, yC, and zC axes 

respectively. θH is the humeral elevation angle measured in the three different elevation planes 

(90°, 40°, 0° with respect to the frontal plane). For θCX, the variations are insensitive to the 

elevation plane. All angles are in degree. 

 
SC angles as 

a function of 
θH in: 

θCX θCY θCZ 

θH
2 θH constant θH

2 θH constant θH
2 θH constant 

Sagittal 
Plane (90°) 

0.001 0.108 -2.91 

-0.001 0.082 -21.865 0 -0.049 -8.902 

Scapular 
Plane (40°) 

0 -0.128 -20.7 0.001 -0.097 -9.322 

Frontal 
Plane (0°) 

0.001 -0.252 -24.42 0.001 -0.132 -10.537 

 

 

Table 6: Regression models of scapulothoracic (ST) joint based on results in [106]. θSX, θSY, and 

θSZ are the orientation of the scapula with respect to the thorax in the xS, yS, and zS axes 

respectively. θH is the humeral elevation angle measured in the three different elevation planes 

(90°, 40°, 0° with respect to the frontal plane). For θSX and θSZ, the variations are insensitive to 

the elevation plane. There no significant change in θSY when the arm is abducted in the frontal 

plane. All angles are in degree. 

 
ST angles as 

a function of 

θH in: 

θSX θSY θSZ 

θH
2 θH constant θH

2 θH constant θH
2 θH constant 

Sagittal 

Plane (90°) 

0 -0.168 16.31 

-0.002 0.303 36.907 

0 -0.328 -5.084 
Scapular 

Plane (40°) 
-0.001 0.072 36.726 

Frontal 

Plane (0°) 
0 0 31 
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3.4.3 Measurement of the orientations of scapula and humerus using IMUs 
The initial orientations of thorax relative to IMU 1, scapula relative to IMU 2 frame and humerus 

relative to IMU 3 frame are constant matrices given as 

𝑅1𝑇
0 = (𝑅𝐺1

0 )𝑇𝑅𝐺𝑇
0                                                      Eq.( 3.1 ) 

𝑅2𝑆
0 = (𝑅𝐺2

0 )𝑇𝑅𝐺𝑆
0                                                      Eq.( 3.2 ) 

  𝑅3𝐻
0 = (𝑅𝐺3

0 )𝑇𝑅𝐺𝐻
0                                                      Eq.( 3.3 ) 

where the subscripts G, 1, 2, 3, T, S and H denote global, IMU 1, IMU 2, IMU 3, thorax, scapular 

and humeral frames respectively; the superscript 0 denotes initial position when the arm is resting 

by the side. The notation of the rotation matrix, RXY, represents orientation of frame Y in frame X. 

Subsequently, the orientations of the thorax, scapula and humerus in the global frame during the 

arm motions can be calculated as 

𝑅𝐺𝑇 = 𝑅𝐺1𝑅1𝑇
0                                                        Eq.( 3.4 ) 

𝑅𝐺𝑆 = 𝑅𝐺2𝑅2𝑆
0                                                        Eq.( 3.5 ) 

𝑅𝐺𝐻 = 𝑅𝐺3𝑅3𝐻
0                                                       Eq.( 3.6 ) 

where RG1, RG2 and RG3 are the rotation matrices formed using the Euler angles given by the IMUs 

during the motions. Next, we can represent the scapular and humeral orientations in the thorax 

frame as 

𝑅𝑇𝑆 = (𝑅𝐺𝑇)𝑇𝑅𝐺𝑆                                                   Eq.( 3.7 ) 

𝑅𝑇𝐻 = (𝑅𝐺𝑇)𝑇𝑅𝐺𝐻                                                  Eq.( 3.8 ) 

According to the recommendations in [90], to obtain the Euler angles from the rotation matrices, 

RTS is decomposed using a Y-Z-X sequence (𝜃𝑆𝑌
𝑚 , 𝜃𝑆𝑍

𝑚  and 𝜃𝑆𝑋
𝑚 ), and RTH is decomposed using Y-

Z-Y sequence (𝜃𝐻
𝑚, 𝜃𝐻𝑃

𝑚  and 𝜃𝐻𝐴
𝑚 ). The superscript m differentiates the measured angles from the 

angles calculated from the regression models. The subscripts P and A in the humeral angles denote 

plane of elevation and axial rotation. 

3.4.4 Fusion of data from regression models and sensor measurements for 

scapular orientation 

The limitation of using IMU to measure scapular orientation becomes apparent when the humeral 

elevation angle is more than 100°. The sensor is incapable of capturing the real orientation of the 

bone when the arm movement is large due to the relative motions between the scapula and the skin. 

On the other hand, many of the regression models found in the literature [84, 109, 110] present the 
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scapular and clavicular orientations as a function of humeral elevation plane and angle. If an arm 

model solely relies on this humeral-scapular or humeral-clavcular relationship, it will be 

insensitive to shoulder movements like shrugging or involuntary upward rotation of the scapula 

and elevation of the clavicle, since the humerus may be stationary when these movements occur. 

This is undesirable in applications like rehabilitation where subtle differences in the movements 

at SC and AC joints between healthy subjects and patients are precisely the telltale signs a therapist 

may be looking for in assessing a therapeutic session. 

To eliminate these problems, we propose a hybrid method that fuses the data from the sensors and 

the shoulder rhythm model from Ludewig et al. in [106]: 

𝜃𝐶
𝑖 = 𝜃𝐶

𝑖−1 + (1 − 𝛼)(𝜃𝑀
𝑖 − 𝜃𝑀

𝑖−1) + 𝛼(𝜃𝑅
𝑖 − 𝜃𝑅

𝑖−1)                    Eq.(3.9)      

where 𝜃𝑀
𝑖 , 𝜃𝑅

𝑖  and 𝜃𝐶
𝑖  are the measured (from sensors), calculated (from rhythm model) and fused 

orientations at ith time step respectively; and 𝛼 = 𝛼(∆𝜃𝐻
𝑚) has a value between 0 and 1, depending 

on the rate of change of the measured humeral elevation angle, ∆𝜃𝐻
𝑚 . See Figure 12 for the 

relationship between α and ∆𝜃𝐻
𝑚. When the subject raises or lowers his arm, α has a value close to 

1 and the fused orientation, 𝜃𝐶
𝑖 , will follow the rhythm model closely; and when the arm is near 

stationary, α will be near 0, and the sensor data will be used. This hybrid method combines the 

accuracy of the rhythm model and the ability of the sensor to track subtle motions. 

 

 

 

 

 

 

 

 

α 

∆𝜃𝐻
𝑚 (°/s) 30 5 

0 

1 

Figure 12: The relationship between α (in Eq. 3.9) and measured humeral elevation 

angle, ∆𝜽𝑯
𝒎. 
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3.4.5 Validating Shoulder Model 

The orientation of the shoulder complex is difficult to measure directly with non-invasive methods. 

The shoulder rhythm model, on the other hand, was developed using measurements from invasive 

methods, and the orientation of the shoulder complex was accurately captured relative to the 

humeral elevation. For validation purpose, we propose to perform a simple experiment to 

demonstrate the working principles of the hybrid model, and compare the orientation profiles of 

simple motions with published results in [82].  

Four healthy male subjects (mean age 26.5 years, with SD 2.65 years) volunteered for the 

experiment after informed consent was obtained from them. All subjects do not have any known 

upper limb disorder. The subjects are asked to perform five arm motions: (a) raise the arm from 

initial resting position to about 90° and then to over the head in the sagittal plane at a controlled 

speed; (b) repeat the same motion as (a) but in the frontal plane; (c) shrugging of the shoulder 

without raising the arm; (d) moving the hand to grab a bottle of water and then towards the mouth 

as if drinking from the bottle and returned to the initial position; and (e) raise the hand to the 

forehead and towards the back of the head, as if combing the hair. The purpose of (a), (b) and (c) 

is to show the idea of the proposed method in two different situations: the former two are with 

significant humeral movements and the latter does not. The other two motions are the common 

activities of daily living (ADL), and the results can be used to compare with other upper limb 

kinematic studies [82]. 

Figure 13 shows the clavicular and scapular orientations of one subject performing arm motions 

(a) raising arm in the sagittal plane, (b) raising arm in the frontal plane, and (c) shrugging of 

shoulder. The solid lines are the fused orientations; the dotted lines are the orientations from the 

regression models; and the dot-dashed lines are the measured orientations from the IMUs. The 

continuous raising of the arm means that the rate of change of the elevation angle, ∆𝜃𝐻
𝑚 , is 

significant, and α is close to 1, and as a result the fusion actions will favor the regression model. It 

can be seen clearly that for motions (a) and (b), the fused orientations followed closely to the 

regression models. When the elevation was about 90° and maximum at about 150°, the arm was 

momentarily stationary, thus the measured data has more influences in these areas. This is a 

desirable characteristic of the hybrid method as it captures the subtle movements while the 

elevation angle remains unchanged. As a contrast, in Figure 13c, the subject performed a shrugging 

of the shoulder without lifting the arm. As the elevation angles changed only minimally, the 
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regression models did not provide significant values for the clavicular and scapular angles. The 

value of α is near 0 and the fused angles largely followed the measured angles from the IMUs. The 

clavicle has relatively large variations in the pro-retraction (θCY) and depression-elevation (θCZ) 

but not in the axial rotation (θCX). The scapula, on the other hand, has its all three rotations (tilting 

θSX, pro-retraction θSY, and lateral/medial rotation θSZ) showing significant variations during 

shrugging motions. This shows that the clavicle axial rotation is closely related to humeral 

elevation and not dependent on scapular motions, whereas the motions of the scapula is three 

dimensional. This observation is useful if the kinematic model is used in a dynamic model that 

includes musculoskeletal information. The movement of θCX can be an indicator to whether the 

muscles are working on elevating the humerus or just merely moving the scapula.  

In Figure 14, the shoulder orientations of all four subjects performing the drinking and the combing 

motions are plotted with the movement cycle. Generally, all the angles from the subjects show 

similar patterns in their motions. We can compare the scapular orientations with the plots of 

measured scapular angles presented in [82]. The θSZ (lateral/medial rotation) for the drinking 

motion are very similar in both studies, with the angles rising gradually for about 15° from the 

start till 50% of the movement cycle (the movement cycle in [82] corresponds to 50% movement 

cycle in our experiment), as shown in Figure 14a. In [82], other two angles, θSX and θSY (tilting and 

pro-retraction, respectively), were relatively flat. This is different from the observations in our 

experiment where both angles rose gradually and peaked at around 20°. The humeral elevation for 

the drinking motion ranged from 0° to about 80°. For this range, according to the shoulder rhythm 

model, both θSX and θSY would have peaked at around 20°. Similar situation occurred in the 

combing motion. In Figure 14b, the θSZ for the combing motion has good agreement between the 

two studies. But for θSX and θSY, the profiles presented in [82] are relatively flat again. The humeral 

elevation for the combing had an even larger range, from 0° to 150°. The angular profiles for θSX 

and θSY had a peak at around 35° and 20° respectively. The discrepancies can be explained by the 

fact that, in [82], the orientations of the scapula were measured using a single marker attached to 

the acromion, while we had made use of the hybrid model in our experiment. The former method 

of measurement is susceptible to inaccuracy due to soft tissue movement, as we have discussed 

previously, especially for movements that involve large humeral elevation. As the marker was 

attached to the flat part of the acromion, lateral rotation (θSZ ) can be captured more accurately than 

tilting and pro-traction (θSX and θSY, respectively). During the drinking and combing motions, the 
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humerus was elevated substantially and continuously, so the hybrid model was following the 

shoulder rhythm model closely.     

We showed that the proposed hybrid model is able to perform the intended mechanism: it follows 

the shoulder rhythm model when the humeral elevation is significant and continuous; or it adopts 

the measured scapular orientation by sensors attached to the acromion if there is little or no change 

in the humeral elevation angle; or a combination of both as described by Eq. 3.9. The hybrid model 

combines the strengths and eliminating the weaknesses of the shoulder rhythm model and the IMU 

sensor system. The orientations of scapula and clavicle calculated are used in the overall model of 

the arm. 
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(a) 

(b) 

(c) 

Figure 13: Clavicular (θCX, θCY, and θCZ) and scapular (θSX, θSY, and θSZ) orientations 

versus humeral elevation angle (θH) of one subject raising right arm in (a) the sagittal 

plane, and (b) the frontal plane; and (c) versus time-step for shrugging. Solid lines are 

the fused angles; dotted lines are the regression model data; and dot-dashed lines are 

the measured data from the IMUs. 
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Figure 14: Clavicular (θCX, θCY, and θCZ) and scapular (θSX, θSY, and θSZ) orientations 

versus movement cycle in (a) drinking, and (b) combing motions of all four subjects. 

The black lines are the corresponding angular profiles in [82] (for the drinking motion 

the cycle ends at 50% cycle of our experiment). No result of clavicular angles were 

presented in [82]. 

(a) 

(b) 
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3.5 The Elbow Model 

The methods to find the elbow rotation axes described in [111-113] required the precise locations 

of several bony landmarks with respect to a reference. These landmarks were either located using 

cadaver data or in vivo by using electromagnetic tracking devices with proper palpation techniques. 

The electromagnetic systems are too expensive and cumbersome for practical use of the kinematic 

data in a clinic or rehabilitation facility. And proper palpation requires the skills of trained 

therapists, which may not be readily available. The discrepancy in the definitions of palpated 

locations of the landmark among different therapists is also a problem. 

In general, the flex/extension axis, SFE, is not orthogonal to the longitudinal axis of the humerus, 

yH. SFE and the pro/supination axis, SPS, are also non-intersecting and not orthogonal to each other 

[103, 113]. This introduces a third angle, the carrying angle, when we want to obtain the rotation 

angles in SFE and SPS from decomposing the rotation matrix of the forearm relative to the upper 

arm. The definition of the carry angle is inconsistent [84], but in this context it is viewed as the 

angular offset between the orthogonal of SFE and SPS. For the ease of finding the rotation angles in 

SFE and SPS, the two axes are often taken to be orthogonal and the carrying angle is often 

conveniently regarded as a constant [83, 98]. However, the carrying angle varies significantly 

among individuals [114], and it is dependent on the two elbow rotation angles [115]. In this study, 

we propose a method to decompose the rotation angles, obtained from the data captured by IMUs, 

in SFE and SPS directly using product of exponentials (POE) [116] and optimization without making 

any assumption on the carrying angle and the orthogonality of SFE and SPS. 

3.5.1 Estimation of the rotation axes of the forearm 

To find SFE with respect to the humerus frame, the orientations of the IMUs strapped to the upper 

and lower arm between two consecutive positions were calculated. The orientation of the lower 

arm IMU in the upper arm IMU frame at the current (initial) position and the next (final) position 

are given by [117, 118] 

𝑅𝑈𝐿
𝑖 = (𝑅𝐺𝑈

𝑖 )
𝑇

𝑅𝐺𝐿
𝑖                                                   Eq.( 3.10 ) 

𝑅𝑈𝐿
𝑓 = (𝑅𝐺𝑈

𝑓 )
𝑇

𝑅𝐺𝐿
𝑓

                                                  Eq.( 3.11 ) 

 

where the superscripts i and f denote initial and final positions; the subscripts G, U and L denote 

global, upper arm IMU and lower arm IMU frames respectively. The rotation matrix RXY represents 
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orientation of frame Y in frame X. The rotation matrix of the final position relative to the initial 

position in the lower arm IMU frame is 

𝑅𝐿
𝑖𝑓 = (𝑅𝐺𝐿

𝑖 )
𝑇

𝑅𝐺𝐿
𝑓

                                                  Eq.( 3.12 ) 

The skew-symmetric matrix, 𝑊𝐿
𝑖𝑓

, that represents the rotation axis of 𝑅𝐿
𝑖𝑓

 is [119] 

𝑊𝐿
𝑖𝑓 = 𝑅𝐿

𝑖𝑓 − (𝑅𝐿
𝑖𝑓)

𝑇
                                               Eq.( 3.13 ) 

The rotation axis in the lower arm IMU frame is calculated as 

𝑆𝐿 = [𝑤1, 𝑤2, 𝑤3]𝑇 √𝑤1
2 + 𝑤2

2 + 𝑤3
2⁄                                  Eq.( 3.14 ) 

where w1, w2, and w3 are the independent components of 𝑊𝐿
𝑖𝑓

. 

The rotation axis can be represented in the upper arm IMU frame using 

𝑆𝑈 = 𝑅𝑈𝐿
𝑖 𝑆𝐿                                                      Eq.( 3.15 ) 

And the rotation axis, when represented in the humerus frame, H, is 

𝑆𝐹𝐸 = (𝑅𝐺𝐻
𝑖 )

𝑇
𝑅𝐺𝑈

𝑖 𝑆𝑈                                             Eq.( 3.16 ) 

The procedures to find SPS is exactly the same. In the first experiment, both SFE and SPS were 

calculated for ten times for the duration of the experiment. These axes are the Instantaneous Helical 

Axes (IHA) [120] during the motion of the elbow. The optimal axes were then calculated closest 

to the IHAs using least-squared method as 

Minimize 𝑱(𝑺𝒐𝒑𝒕) 

where 

𝐽(𝑆𝑜𝑝𝑡) = ∑ ‖𝑆𝑜𝑝𝑡 − 𝑆𝑖‖10
𝑖=1                                       Eq.( 3.17 ) 

where Si are the IHAs in either flexion/extension or pronation/supination motions.  

3.5.2 Decomposition of joint angles at the elbow 

After finding the orientations of the rotation axes of the forearm relative to the humerus, we can 

make use of the IMU data during arm motion to estimate the flexion/extension and 

pronation/supination angles of the elbow at each time-step. 

The orientations of the humerus frame in the upper arm IMU frame and the forearm frame in the 

lower arm IMU frame are constant matrices, given as 

𝑅𝑈𝐻
0 = (𝑅𝐺𝑈

0 )𝑇𝑅𝐺𝐻
0                                                 Eq.( 3.18 ) 

𝑅𝐿𝐹
0 = (𝑅𝐺𝐿

0 )𝑇𝑅𝐺𝐹
0                                                   Eq.( 3.19 ) 
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where the superscript 0 denotes initial position when the arm is resting by the side. The orientations 

of the humerus and the forearm in the global frame at time-step n can be calculated as 

𝑅𝐺𝐻
𝑛 = 𝑅𝐺𝑈

𝑛 𝑅𝑈𝐻
0                                                     Eq.( 3.20 ) 

𝑅𝐺𝐹
𝑛 = 𝑅𝐺𝐿

𝑛 𝑅𝐿𝐹
0                                                      Eq.( 3.21 ) 

Next, we can calculate the orientation of the forearm frame in the humerus frame as 

𝑅𝐻𝐹
𝑛 = (𝑅𝐺𝐻

𝑛 )𝑇𝑅𝐺𝐹
𝑛                                                 Eq.( 3.22 ) 

The rotation matrix that represents the transformation of the forearm frame at time-step n relative 

to n-1 in the humerus frame is 

 𝑅𝐻
𝑛−1,𝑛 = (𝑅𝐻𝐹

𝑛−1)𝑇𝑅𝐻𝐹
𝑛                                            Eq.( 3.23 ) 

The rigid body rotation about a fixed axis, 𝑅 ∈ SO(3), where [119] 

 SO(3) = {𝑅 ∈ ℜ3×3: 𝑅𝑅𝑇 = 𝐼, det 𝑅 = 1}                           Eq.( 3.24 ) 

The skew-symmetric matrix that corresponds to the axis of rotation is 

�̂� = 𝑅 − 𝑅𝑇 = [

0 −𝑤𝑧 𝑤𝑦

𝑤𝑧 0 −𝑤𝑥

−𝑤𝑦 𝑤𝑥 0
]                               Eq.( 3.25 ) 

In the exponential form, 𝑅 = 𝑒�̂�𝑞, where 𝑞 ∈ ℜ is the angle of rotation. In a more explicit form 

[116], 

𝑅 = 𝑒�̂�𝑞 = 𝐼 + sin 𝑞
�̂�

‖𝑊‖
+ (1 − cos 𝑞)

�̂�2

‖𝑊‖2                        Eq.( 3.26 ) 

In the context of the elbow joint which has two DOF, the joint motion can be represented by two 

consecutive rotations, one about SFE axis, followed by one about SPS axis: 

𝑅elbow = 𝑒�̂�𝐹𝐸𝑞𝐹𝐸𝑒�̂�𝑃𝑆𝑞𝑃𝑆                                      Eq.( 3.27 ) 

where �̂�𝐹𝐸 and �̂�𝑃𝑆 are the skew-symmetric matrices that correspond to SFE and SPS respectively; 

qFE and qPS are the respective rotation angles. 

The rotation matrices 𝑅𝐻
𝑛−1,𝑛

 and 𝑅elbow describe the same motion at the elbow if qFE and qPS are 

the change in angle about the respective axes from time-step n-1 to n. To calculate qFE and qPS 

from the rotation matrices without having to induce a third non-DOF angle (the carrying angle), 

we introduce an optimization routine: 

Minimize 𝑱(𝒒𝑭𝑬, 𝒒𝑷𝑺)  

where 

𝐽(𝑞𝐹𝐸, 𝑞𝑃𝑆) = ∑ ‖𝑒𝑖 × 𝑟𝑖‖23
𝑖=1                                   Eq.( 3.28 ) 
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where ri and ei are the ith column of 𝑅𝐻
𝑛−1,𝑛

 and 𝑅elbow  respectively. The optimization routine 

ensures the respective column vectors of 𝑅𝐻
𝑛−1,𝑛

 and 𝑅elbow are optimally in the same directions. 

We do not attempt to match all nine components of the matrices because it may cause convergence 

issues in the optimization process. The routine is implemented in Matlab® using the function 

fsolve with the ‘trust-region-dogleg’ algorithm.  

3.5.3 Validating the elbow model 

There were two sets of experiment done in this study. The first was to find the two axes of rotation 

of the forearm (SFE, flexion-extension, and SPS, pronation-supination) with respect to the humerus 

frame. As the sensors were wireless, the subjects were able to stand at a clearing in the lab, away 

from any metallic objects that might affect the measurements. To find SFE, the subject stood upright 

with both arms resting naturally by the sides. During the experiment, the subject flexed the forearm 

completely at a controlled speed, and then extended back to the initial position. To find SPS, the 

subject fully pronated the forearm from the initial position, and then supinated the forearm fully at 

a controlled speed. Both motions were performed three times by the subjects.  

The second experiment was designed to test the accuracy of the methods proposed in this study. 

The subjects stood upright with their arms resting naturally by the sides. Then they performed the 

following two motions: (1) raising the whole arm in the sagittal plane to above the head at a 

controlled speed; (2) moving the hand towards the mouth as if drinking water from a cup and 

returned to the initial position.  

Four healthy male subjects (mean age 26.5 years, with SD 2.65 years) volunteered for the 

experiment after informed consent was obtained from them. All subjects do not have any known 

upper limb disorder. 

The calculated SFE and SPS of one subject are shown in Figure 15. The dashed lines show the axes 

of rotation of the twenty segments throughout the duration of the experiment. The solid lines are 

the optimal axes. The view is presented in the frontal plane where the relative orientation between 

SFE and SPS is most apparent. The results of all four subjects are shown in Table 7. The error 

estimations of the optimal axes are calculated as [112]: 

𝑒𝑆 =
1

𝑁
∑ cos−1(𝑆𝑜𝑝𝑡 ⋅ 𝑆𝑖)𝑁

𝑖=1                                       Eq.( 3.29 ) 

where Si are the IHAs in either flexion/extension or pronation/supination motions, and Sopt is the 

optimal axes. 
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Table 7: Calculated SFE and SPS 

 

The average optimal axes and error estimations of SFE and SPS of all the subjects in the humerus 

frame are [0.967, -0.180, -0.097] and 6.37º, and [0.198, 0.974, -0.084] and 3.05º respectively. The 

results from [112] and [120] are included for comparison. The axes calculated and the 

corresponding errors in this study are very similar to that published in [112]. The axes calculated 

in [120] are closer to the axes in the humerus frame. This may be due to the fact that the results 

were calculated from cadaveric data where the sensors were fixed directly to the bones. Whereas 

Subject 
SFE SPS 

xopt yopt zopt eS (º) xopt yopt zopt eS (º) 

1 0.968 -0.229 -0.103 5.45 0.274 0.957 -0.097 4.39 

2 0.918 -0.251 -0.307 6.00 0.240 0.968 -0.073 3.45 

3 0.996 -0.087 -0.035 8.77 0.176 0.984 -0.034 2.09 

4 0.987 -0.151 0.058 5.24 0.103 0.985 -0.132 2.28 

Mean 
(sd) 

0.967 
(0.035) 

-0.180 
(0.075) 

-0.097 
(0.155) 

6.37 (1.64) 
0.198 

(0.075) 
0.974 

(0.014) 
-0.084 
(0.041) 

3.05 (1.08) 

Ref [112] 
0.965 

(0.035) 
-0.134 
(0.032) 

-0.212 
(0.118) 

4.12 (0.670)     

Ref [120] 
0.992 

(0.007) 
-0.084 
(0.066) 

-0.018 
(0.083) 

4.72 (0.073) 0.02 (0.088) 
0.996 

(0.004) 
-0.022 
(0.027) 

4.59 (0.039) 

Figure 15: The calculated SFE and SPS of one subject shown in the frontal plane. The 

dashed lines are the axes calculated between two consecutive positions. The solid lines 

are the optimal axes. The axes are dimensionless as only the directions of the axes are 

plotted. 
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in living subjects there are always some disturbances caused by soft tissue movements and 

involuntary motions from other parts of the body, there are no such issues in cadavers. 

The trajectories of the flexion/extension angle, qFE and the pronation/supination angle, qPS of a 

subject performing the arm motions are presented in Figure 16. For Figure 16a and b, the subject 

flexed his arm fully from initial position. The qFE started from 0° and decreased steadily to -118°. 

As the subject was told to flex the arm naturally, the forearm supinated slightly during theflexion.  

The subject pro/supinated the forearm from the initial natural resting position in the second motion, 

and the angles are shown in Figure 16c and d. The range of the qPS is from -50º to 50º. As no 

external constraint was used on the subject’s body during the experiment, the arm flexed slightly 

during movement. The subject raised his arm from initial position to above his head. As expected, 

both angles have only small variations during this movement, as shown in Figure 16e and f. In the 

last movement, the subject was told to pick up a bottle from a table in front of him, drink from it, 

and put it back. The qFE nearly reached its maximum at about -100º as shown in Figure 16g. It is 

apparent from Figure 16h that the movement invoked mainly pronation.  

All subjects have similar ranges and patterns in qFE and qPS in the first three movements, but not 

in the drinking motion, as shown in Figure 17. This is due to the differences in the trajectory taken 

by each subject in more complicated movements. 
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Figure 16: The plot of the trajectories of qFE (left column) and qPS (right column) 

versus the percent of movement cycle of one subject: (a) & (b) flexion; (c) & (d) 

supination/pronation ; (e) & (f) arm raised in the sagittal plane; and (g) & (h) drinking 

water. 
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The accuracy of obtaining the flexion/extension angle, qFE and the pronation/supination angle, qPS 

using the optimization method with respect to the measurements by the sensors is tested by an 

error estimation [116]. We define the logarithm of a rotation matrix, 𝑅 ∈ SO(3), as 

log[𝑅] =
𝜙

2 sin 𝜙
(𝑅 − 𝑅𝑇)                                             Eq.( 3.30 ) 

where 2cos 𝜙 = trace(𝑅) − 1 , and log[R] is skew-symmetric. The average quantified 

orientational deviations between the calculated and measured poses is defined as 

Δ𝑅 =
1

𝑚
∑ ‖log(𝑅𝑚𝑖

−1𝑅𝑐𝑖)∨‖𝑚
𝑖=1                                        Eq.( 3.31 ) 

where m is the number of time-steps, 𝑅𝑚 is the measured rotation matrix (in this case 𝑅𝐻
𝑛−1,𝑛

), and 

𝑅𝑐  is the calculated matrix (in this case 𝑅elbow). The notation (∙)∨  refers to the ℜ3  vector that 

represents log[R]. The results of ∆𝑅 of each subject performing each movement are shown inTable 

8. It can be seen that the deviations are small, and this means that the optimization gives reliable 

results. 

 

 

 

 

Figure 17: Comparison of (a) qFE and (b) qPS during the drinking movement among 

subjects. 
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Subject 
ΔR (º) 

Flexion Pro/Supination Raise Arm Drinking 

1 0.756 0.344 0.141 0.250 

2 2.05 0.412 0.303 0.604 

3 2.26 0.571 0.603 0.557 

4 0.622 0.101 0.194 0.527 

Mean (sd) 1.42 (0.853) 0.357 (0.195) 0.310 (0.207) 0.485 (0.160) 

 

The method described in this paper demonstrates that finding elbow rotation angles using IMUs 

can be performed easily and with accuracy comparable to protocols that requires palpation and 

more expensive devices. It also avoids complex and costly minimization computations that involve 

partial derivatives and integrals [121]. Comparing the errors in the calculations of SFE and SPS with 

[112] and [120], we see that the proposed method yields reasonably accurate results. 

The mean angle between SFE and SPS among the four subjects is 88.6º with a standard deviation of 

3.67º. This justifies our choice of not using Euler decomposition which assumes orthogonality of 

the two axes to find qFE and qPS. The effect of the non-orthogonality of SFE and SPS will be more 

apparent if the method is used in a whole arm model that aims to estimate muscle strengths. In 

these types of complex musculoskeletal model, the lines of action of the muscles with respect to 

the joints are very important. The assumption of orthogonality will compromise the accuracy in 

these models. 

The optimization routine used in calculating qFE and qPS yields results that have very small 

deviation from the measured data. The cost of computation is low since there are only two variables. 

This eliminates the need to introduce the carrying angle which is not a DOF at the elbow. In the 

complete arm model, qFE and qPS calculated using the method can be viewed as the joint angles of 

the elbow which can be modeled by two revolute joints. 

3.5.4 Calculating the link twists (α9 and α10) 

The link twists (α9 and α10) are not multiples of π/2 because of the non-orgothonality of SFE and 

SPS, and have to be computed separately. The vectors representing the two axes are calculated in 

the humeral frame. The link twist is defined as the angle between two consecutive axes of joints, 

Zk-1 and Zk, about Xk axis. In the arm model, α9 is the angle between Z8 and Z9, and α10 is between 

Z9 and Z10. See Figure 18.  

Table 8: Orientational deviation between the calculated and measured poses, ∆R 
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In the context of the D-H model, SFE is Z9 and SPS is Z10, and α9 and α10 are computed as 

𝛼9 = cos−1 𝑍8⋅𝑍9

|𝑍8||𝑍9|
= cos−1 𝑍8 ⋅ 𝑍9                                  Eq.( 3.32 )  

𝛼10 = cos−1 𝑍9⋅𝑍10

|𝑍9||𝑍10|
= cos−1 𝑍9 ⋅ 𝑍10                                Eq.( 3.33 )  

 

 

 

3.6 Anthropometric Data 

The calculation of joint torque requires the length, mass, center of mass and the inertial properties 

of each segment in the model. Obtaining accurate anthropometric information from subjects is a 

tedious and difficult task, for example, in [122], the body segment inertial parameters (BSIPs: 

mass, center of mass and principal radii of gyration) of the subjects are obtained using a gamma-

ray scanner. These methods are too expensive, too complex or too invasive to be used in a 

rehabilitation setting. Many researchers thus compromised the accuracy for convenience and cost 

by using scaled estimations from published anthropometric data [123]. 

The anthropometric information of the shoulder complex is very scarce in the literature, and data 

that separate clavicle from the scapula is even rarer. In [110], the scapula and the clavicle are 

assumed to have zero mass and inertia when their main purpose was to estimate forces at the 

glenohumeral joint. This is undesirable in our model because the two bones are two separate 

segments and their masses and inertias are significant factors in the calculation of the joint torques. 

In our model, we make use of the BSIPs of the clavicle and scapula in [75], which presented the 

data of the two bones separately. However, the data is based on the measurements of a single 

Z8 

Z9 

X8 

Y8 

X9 

α9 

X9 

Z9 

Y9 

X10 

Z10 

α10 

Figure 18: The definitions of the link twist α9 and α10. 
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cadaver. This can be used together with the data in [67] where a table of BSIP data from various 

sources is compiled. It is useful because the parameters are calculated as a percentage of body 

mass and segment lengths, which are measurable. 

3.6.1 Measurable Parameters 

In the arm model, four parameters that can be easily measured are used as inputs to scale the BSIP 

data. They are (a) body mass, (b) length of the clavicle, (c) length of the humerus, and (d) length 

of the forearm. The length of the clavicle, LC, of the subject is measured using a measuring tape 

from the Sternoclaviculare (SC) just beside Incisura Jugularis (IJ) at the thorax to the 

Acromioclaviculare (AC). The length of the humerus, LH, is measured from approximate position 

of Glenohumeral joint (GH) to the medial epicondyle (EM) at the elbow. And the length of the 

forearm, LF, is measured from EM to the wrist. All of the points can be easily palpated by an 

untrained person. 

3.6.2 Mass of segments 

The mass of the cadaver, MB, used in [75] is not stated in the paper. However, based on the mass 

of humerus (2.16 kg) stated, we can make use of the table in [67] to do an estimate: 

𝑀𝐵 =
2.16

0.028
= 77 kg                                                      Eq.( 3.34 ) 

MB will be our base mass and the mass of the subject performing the experiment is denoted as MT. 

The mass of the clavicle and scapula given in [75] is 0.12784 kg and 0.94898 kg respectively. 

Therefore, the clavicular mass, MC, and the scapular mass, MS, of the subject are scaled as: 

𝑀𝐶 = 0.12784 ×
𝑀𝑇

77
 kg                                                  Eq.( 3.35 ) 

𝑀𝑆 = 0.94898 ×
𝑀𝑇

77
 kg                                                  Eq.( 3.36 ) 

The humeral mass, MH, and the mass of the forearm, MF, are calculated using data in [67]: 

𝑀𝐻 = 0.028 × 𝑀𝑇  kg                                                     Eq.( 3.37 ) 

𝑀𝐹 = 0.022 × 𝑀𝑇 kg                                                     Eq.( 3.38 ) 

3.6.3 Center of mass (COM) of segments 

Based on the table that lists the coordinates of the bony landmarks in [75], the length of the clavicle 

of the cadaver (SC to AC) is 0.154 m. We will use the ratio of LC to this length to scale the positions 

of COM of clavicle and scapula of a subject. Based on the same table, the coordinates of the COM 

of clavicle of the cadaver, with respect to SC is: 
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[𝑋𝐶𝐵, 𝑌𝐶𝐵, 𝑍𝐶𝐵] = [0.04876,0.545, −0.0175]                                 Eq.( 3.39 ) 

And the coordinates of the COM of scapula, with respect to AC is: 

[𝑋𝑆𝐵, 𝑌𝑆𝐵, 𝑍𝑆𝐵] = [−0.087,0.053,0.02596]                                 Eq.( 3.40 ) 

Thus, the coordinates of the COM of clavicle and scapula of a subject are scaled to be: 

[𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶] =
𝐿𝐶

0.154
[𝑋𝐶𝐵 , 𝑌𝐶𝐵 , 𝑍𝐶𝐵]                                      Eq.( 3.41 ) 

[𝑋𝑆, 𝑌𝑆, 𝑍𝑆] =
𝐿𝐶

0.154
[𝑋𝑆𝐵 , 𝑌𝑆𝐵 , 𝑍𝑆𝐵]                                      Eq.( 3.42 ) 

The COM of humerus and forearm are calculated using data in [67] as, respectively: 

[𝑋𝐻 , 𝑌𝐻 , 𝑍𝐻] = [0,0, −0.436𝐿𝐻]                                       Eq.( 3.43 ) 

[𝑋𝐹 , 𝑌𝐹 , 𝑍𝐹] = [0,0, −0.682𝐿𝐹]                                       Eq.( 3.44 ) 

3.6.4 Moments of inertial (MOI) of segments 

The MOI of clavicle and scapula of the cadaver in the three principal axes from [75] in the 

respective link frames are: 

[𝐼𝑋𝐶𝐵, 𝐼𝑌𝐶𝐵, 𝐼𝑍𝐶𝐵] = [0.0011,0.00039,0.00123] kgm2                        Eq.( 3.45 ) 

[𝐼𝑋𝑆𝐵, 𝐼𝑌𝑆𝐵, 𝐼𝑍𝑆𝐵] = [0.0191,0.0112,0.0301] kgm2                          Eq.( 3.46 ) 

The MOI of clavicle of a subject is scaled using parallel-axis theorem and the thin cylinder formula 

as: 

[𝐼𝑋𝐶 , 𝐼𝑌𝐶 , 𝐼𝑍𝐶] =
𝑀𝑇𝐿𝐶

2

77(0.154)2
[𝐼𝑋𝐶𝐵, 𝐼𝑌𝐶𝐵, 𝐼𝑍𝐶𝐵] kgm2                        Eq.( 3.47 ) 

The MOI of scapula is scaled using only the mass as: 

[𝐼𝑋𝑆, 𝐼𝑌𝑆, 𝐼𝑍𝑆] =
𝑀𝑇

77
[𝐼𝑋𝑆𝐵, 𝐼𝑌𝑆𝐵, 𝐼𝑍𝑆𝐵] kgm2                          Eq.( 3.48 ) 

The MOI in the two non-axial principal axes of the humerus of a subject is calculated using data 

from [67] and they are assumed to be the same: 

𝐼𝑋𝐻 = 𝐼𝑌𝐻 = (0.322𝐿𝐻)2𝑀𝐻 kgm2                                 Eq.( 3.49 ) 

The MOI in the axial axis is scaled using data from [75]: 

𝐼𝑍𝐻 = 0.00392
𝑀𝑇

77
 kgm2                                           Eq.( 3.50 ) 

For the forearm, the computation of the MOI in the two non-axial principal axes uses data in [67]: 

𝐼𝑋𝐹 = 𝐼𝑌𝐹 = (0.468𝐿𝐹)2𝑀𝐹 kgm2                                  Eq.( 3.51 ) 

The information for the MOI in the axial axis is divided into two segments, the ulna and radius. 

However, we see that the MOI in the axial axis of both segments are nearly the same at 15.44% of 

the MOI of the non-axial axes. We use this fact to compute IZF: 
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𝐼𝑍𝐹 = 0.154𝐼𝑋𝐹 kgm2                                           Eq.( 3.52 ) 

 

3.7 Computation of the Joint Torques 

After computing the joint angles at each time-step for the duration of the movement, we need to 

compute the joint angular velocities and accelerations before the joint torques can be found. The 

velocities and accelerations are very noisy if we compute them directly from the joint angles using 

differentiations. Filtering of the joint angles data should be done because the arm movements is 

not expected to be high speed in the context of rehabilitation, and therefore any signals with 

frequency higher than 3 Hz are probably not due to the movement itself. 

3.7.1 Linear Kalman filter 

A linear Kalman filter is designed to estimate the velocities and accelerations from the joint angles. 

The state variables, x, are designated as  

𝑥 = [
angle

velocity
acceleration

] = [

𝑥𝑘

𝑣𝑘

𝑎𝑘

]                                      Eq.( 3.55 ) 

The system model for the filter is 

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝑤𝑘 

𝑧𝑘 = 𝐻𝑥𝑘 + 𝑣𝑘                                              Eq.( 3.56 ) 

where wk and vk are the state transition noise and measurement noise respectively. The state 

transition matrix A is 

𝐴 = [
1 ∆𝑡 0.5∆𝑡2

0 1 ∆𝑡
0 0 1

]                                         Eq.( 3.57 ) 

and the state-to-measurement matrix H is 

𝐻 = [1 0 0]                                            Eq.( 3.58 ) 

The system noise covariance, Q, and the measurement noise covariance, R, are designated as 
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𝑄 = [

𝑁𝑄 0 0

0 𝑁𝑄 ∆𝑡⁄ 0

0 0 𝑁𝑄 ∆𝑡2⁄

]                                  Eq.( 3.59 )   

𝑅𝑖 = 𝑁𝑅
𝑖                                                   Eq.( 3.60 ) 

where i = 1, 2, …, 11, denotes the joint numbers. The values of NQ and Ni
R are approximated using 

the data given in [108], and are listed in Table 9. 

Table 9: The values of NQ and Ni
R (approximated from data in [108]) 

Noise Covariance Estimated values 

NQ 1.2° = 0.0209 rad 

Ni
R for i = 1,2,7,8,9,10,11 1.2° = 0.0209 rad 

N3
R 1.5° = 0.0262 rad 

N4
R 8.0° = 0.1396 rad 

N5
R 4.7° = 0.0820 rad 

N6
R 3.2° = 0.0559 rad 

 

3.7.2 Calculation of joint torques 

The equations of motion of the arm model can be concisely written as 

𝑇(𝑞, �̇�) + 𝑅(𝑞, �̇�) = 𝑀(𝑞)�̈� + 𝐶(𝑞, �̇�)�̇� + 𝐺(𝑞) + 𝐽(𝑞)𝑇𝐹                    Eq.( 3.61 ) 

where M is the joint-space inertia matrix, C is the Coriolis and centripetal coupling matrix, G is 

the gravity loading, T is the active muscular joint torques, R is the passive joint resistance, and F 

is the external forces transformed by an appropriate Jacobian J. The equations can be solved by 

using Lagrangian function, where the matrices are formed separately. It is very tedious for a model 

of 11 joints to be solved in this way, although it provides meaningful insights into each term of Eq. 

(3.61). A more efficient way to obtain the effective joint torques, that is, the left-hand side of Eq. 

(3.61), is using the recursive Newton-Euler formulation [124]. This is implemented using the 

function rne (recursive Newton-Euler method) in the Robotic Toolbox in Matlab. 

There are, however, some limitations on the solutions of the arm model. First, it was intended from 

the start that the sensors for the model would exclude force transducers. This is because it is very 

difficult, if possible, to measure contact forces from the environment during functional tasks. The 

weight of the transducers may also add on unnecessary load to the arm and the placement may 

obstruct the movement. Therefore, the arm model can only simulate free-moving arm motions and 

functional tasks that do not involve significant external forces, like combing of hair or zipping a 
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coat, or only involve forces that can be modelled as a point mass, like drinking from a bottle or 

transferring objects. 

Secondly, the joint torques, 𝑄(𝑞, �̇�), computed from the model are the effective joint torques, 

which are the vector sum of the active muscular torques, 𝑇(𝑞, �̇�), and the passive joint resistance, 

𝑅(𝑞, �̇�). That is, 

𝑄(𝑞, �̇�) = 𝑇(𝑞, �̇�) + 𝑅(𝑞, �̇�)                                        Eq.( 3.62 ) 

The model cannot differentiate between active and passive torques. For the computation of the 

muscle strengths based on the effective joint torques of active motions, the model of the muscle 

mechanics has to include a passive component. For assisted motions, like in the case of a Modified 

Ashworth Scale (MAS) examination, the active torques of the arm of the subject can be neglected. 

The mechanics behind active and passive torques are different and this shall be taken into 

consideration when using the effective torques to calculate muscle strengths. 

 

3.7.3 Validation and experimental results 

Validation of the arm model using only joint torques is challenging because it is very difficult to 

measure the joint torque directly [18], and unlike in lower limb studies, where walking and running 

are the standard tasks for validation, there is no standard set of arm motions in upper limb studies 

[125], thus making comparison with previous works difficult. Many studies in the literature 

validate the muscle forces or activations predicted by their arm models qualitatively using surface 

EMG signals [18], but this can only be done with a complete musculoskeletal model. At the present 

stage, we compare the maximum joint torques during the raising of arm in the frontal and sagittal 

planes with the published results of a model based on finite element method (FEM) by Van der 

Helm in [104]. 

3.7.3.1 Experiment setup 

Four healthy male subjects (mean age 26.5 (SD 2.65) years, mean height 176.0 (SD 5.7) cm, and 

mean weight 61.5 (SD 3.9) kg) volunteered for the experiment after informed consent was obtained 

from them. The subjects stood upright with their arms resting naturally by the sides. Then they 

performed the following two motions: (a) raising the arm in the frontal plane, i.e., sideward, from 

the rest position to 90° elevation angle, and then over the head at about 180° elevation angle; (b) 

same as (a), but in the sagittal plane, i.e., frontward. 

 



47 
 

3.7.3.2 Results and discussions 

Figure 19a and 19b show the profiles of the torques at the dominant DOFs during the experiments. 

The maximum joint torque of all four subjects occurred when the arm was holding its position at 

90° elevation angle, shown in the plots in Figure 19 from 30 – 70% motion cycle. This is because 

the static moments caused by the weights of the arm segments at the shoulder joints are largest at 

this position. It also shows that total joint torque is dominated by the static component (the gravity 

loading, G(q)) instead of the dynamic components (the inertial term, 𝑀(𝑞)�̈�, and the Coriolis term, 

𝐶(𝑞, �̇�)�̇�). In the context of stroke rehabilitation, the motions of the arm are relatively slow, the 

gravity loading, G(q), in the equation of motion becomes the dominant term [124]. Since 𝐺(𝑞𝑖) =

− ∑ 𝑚𝑗𝑔𝑇 𝜕𝑐𝑗

𝜕𝑞𝑖

𝑛
𝑗=1 , where n is the number of joints, 𝑔 is the gravity vector, mj and cj are the mass 

and center of mass of link j, we see that the joint torque is dependent on the link mass. The link 

mass is in turn computed from the body mass of the subject. So there is a need to scale the torque 

by the body mass when performing comparisons. The maximum joint torques of the dominant 

DOFs during the experiments in the sagittal and frontal planes are shown in Table 10 and 11 

respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: Profiles of torque at dominant DOFs during arm raising in: (a) Sagittal plane 
(DOFs: SC posterior rotation and AC posterior tilting); (b) Frontal plane (DOFs: SC 

elevation and AC lateral rotation) 
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Table 10: Maximum Joint Torques during Arm Anteflexion (Sagittal Plane) 

Subject 

SC Posterior Rotation AC Posterior Tilting GH Sagittal Elevation 

Max Torque 

(Nm) 

Scaled 

Torque 

(Nm/kg) 

Max Torque 

(Nm) 

Scaled 

Torque 

(Nm/kg) 

Max Torque 

(Nm) 

Scaled 

Torque 

(Nm/kg) 

1 8.44 0.141 8.60 0.143 6.34 0.106 

2 11.04 0.167 11.29 0.171 8.02 0.122 

3 10.47 0.166 10.70 0.170 7.81 0.124 

4 8.57 0.150 8.76 0.154 6.63 0.116 

Mean 

(SD) 
 

0.156 

(0.013) 
 

0.160 

(0.014) 
 

0.117 

(0.008) 

Helm 

[104] 
11.50 0.149 11.90 0.155 9.30 0.121 

%Diff  4.49  3.13  -3.42 

 

 

Table 11: Maximum Joint Torques during Arm Abduction (Frontal Plane) 

Subject 

SC Elevation AC Lateral Rotation GH Frontal Elevation 

Max Torque 

(Nm) 

Scaled 

Torque 

(Nm/kg) 

Max Torque 

(Nm) 

Scaled 

Torque 

(Nm/kg) 

Max Torque 

(Nm) 

Scaled 

Torque 

(Nm/kg) 

1 11.50 0.192 9.33 0.156 7.94 0.132 

2 12.25 0.186 9.85 0.149 7.66 0.116 

3 11.14 0.177 10.48 0.166 6.95 0.110 

4 9.98 0.175 9.29 0.163 6.90 0.121 

Mean 

(SD) 
 

0.183 

(0.008) 
 

0.159 

(0.008) 
 

0.120 

(0.009) 

Helm 

[104] 
14.80 0.192 13.10 0.170 10.20 0.133 

%Diff  -4.92  -6.92  -10.83 

 

The standard deviations of the scaled torques among the subjects are small (relative standard 

deviation < 9%), which means that there is consistency in the sensor and model interface. The 

means of the scaled torque are compared with data from Helm [104], and the differences between 

the two models are small (<11%). The inertial parameters in Helm [104] are obtained using 

detailed scan of a single cadaver, and there is no validation on the results. The comparison between 

the two models should not be taken as a conclusive validation on the accuracy of our model. 

However, the small discrepancy in the scaled maximum torques shows that our model is able to 

have an estimation of the joint torques with accuracy comparable to a model that based on 
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parameters that are not possible to measure in a clinical setting. This small discrepancy may be 

due to the fact that the maximum joint torques in Helm [104] are computed from static analysis of 

a FEM model whereas our model used ambulatory data from sensors. 
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4. A Musculoskeletal Model for the Human 

Upper Limb 
4.1 Introduction 

Computational models of musculoskeletal properties of the human arm are developed to provide 

estimations for the muscle forces because these forces cannot be directly measured non-invasively. 

Many researchers have derived a variety of techniques in the modelling; each caters for different 

purposes and applications. However, the steps for the modelling process are largely similar. They 

are: (1) define the origin and insertion sites of the muscles relative to the bone structures; (2) define 

the muscle path relative to joint motion; (3) define the muscle contraction dynamics model; (4) 

compute the moment arms of the muscles; (5) set up optimization routine to solve muscle 

redundancy problem [18]. 

 

4.2 Defining origins and insertions of the muscles 

The muscle system model for the upper limb consists of 22 muscles (see Appendix A). Some of 

the muscles that span the shoulder are fan-shaped and their attachment sites are over a large area 

(e.g. trapezius and pectoralis major). Some muscles have multiple attachment points (e.g. triceps 

brachii and biceps brachii). For these muscles, they are divided into two or more bundles, with 

each bundle having its own line of actions. It is a difficult and expensive process to obtain the 

exact position of each attachment site of all the muscles of individual subject, which is not feasible 

as a routine procedure in a clinical setting. Some researchers make use of scanned data of cadavers 

to define the attachment sites of the muscles as input parameters for their models [21, 70, 75]. The 

coordinates of the origins and insertions of the muscles in our model are based on the data listed 

in [70], adjusted with respect to the local frames of the bones (see Appendix A). Although the data 

is obtained from a single cadaver, we can use it as a basis in the development of the arm model.  
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4.3 Defining muscle paths 

The muscle path describes the way a muscle is connected from the origin to the insertion relative 

to the posture of the body. It is an important aspect in muscle modelling as it determines the change 

in the muscle length during movements of the body, which in turns affects the force generated by 

the muscle. There are two main approaches that are used to model muscle path: the straight-line 

model and the centroid-line model. The straight-lined model uses a straight line to connect the 

centroids of the muscle attachment areas. This method is easy to implement but it ignores the 

complexity of muscle wrapping around tendon sheath and other muscles. The centroid-line 

approach attempts to address this problem by using a line that passes through the locus of the cross-

sectional centroids of the muscle [126]. The problem with this model lies in the difficulty to obtain 

the locations of the cross-section centroid which are dependent on the configuration of the joints. 

In [69], Garner and Pandy introduce an alternate approach, called the obstacle-set method, that can 

define the muscle path for all joint configurations. It is based on the assumption that anatomical 

structures like tendons and other muscles can be represented by regular-shaped, rigid bodies, called 

obstacles, and the path of the muscle that wraps around these obstacles can move freely over them. 

There are four types of obstacle defined by the method: single sphere, single cylinder, double 

cylinder and sphere-capped cylinder (see Figure 20, from [69]). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: The regular-shaped rigid bodies used as obstacles in obstacle-set method: 

single sphere, single cylinder, double cylinder and sphere-capped cylinder. 
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The muscle path is described by the lines joining points that represent origin, insertion, via points 

and points on the obstacle surface. The origin, insertion, via points and the obstacles are attached 

to the various local frames of the bones, so when the bones move relative to each other, the 

positions of the various points can be computed. The obstacles and their local frames for each of 

the 22 muscles are listed in Appendix A. 

4.4 Muscle contraction dynamics model 

Besides muscle path, the magnitude of the muscle force also depends on its activation level and its 

force-generation properties defined by force-length and force-velocity relationships. The most 

commonly used muscle contraction dynamics model is the Hill-type muscle model [127]. A Hill-

type muscle model consists of a contractile element (CE), and two non-linear spring elements, one 

in series (SE) and the other in parallel (PE) (see Figure 21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The muscle force produced by the muscle, Fm, is defined as [128, 129] 

𝐹𝑚 = 𝐹𝐶𝐸 + 𝐹𝑃𝐸                                                 Eq.( 4.1 ) 

where FCE and FPE are the forces at the CE and PE respectively. 

The force produced by the contractile element, FCE is  

𝐹𝐶𝐸 = 𝐹𝑚𝑎𝑥
𝑖𝑠𝑜 𝑓𝑙𝑓𝑣𝐴                                                 Eq.( 4.2 ) 

CE 

PE 

SE 

lCE lSE 

lm 

Fm 

Figure 21: Three-element Hill type muscle model consists of a contractile element (CE) 
and two non-linear spring elements, parallel element (PE) and series element (SE). lCE is 

the length of CE and lSE is the length of SE, both add up to the length of the muscle 

element, lm. Fm is the muscle force. 

http://www.google.com.sg/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCNuBxYv--scCFcoKjgod4akFTg&url=http://dragly.org/2010/09/27/updated-method-for-drawing-springs-in-inkscape/&bvm=bv.102829193,d.c2E&psig=AFQjCNFS_zfBHcGoYk4jKFl-hgIU7P2HmA&ust=1442473238084969
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where 𝐹𝑚𝑎𝑥
𝑖𝑠𝑜  is the maximum isometric muscle force; A is the activation level, a value ranging from 

0 (no activation) to 1 (maximum activation); 𝑓𝑙 and 𝑓𝑣 are the normalized force-length relationship 

and force-velocity relationship respectively. 

The normalized force-length relationship is a bell-shaped curve defined as: 

𝑓𝑙(𝑙𝐶𝐸) = 𝑒
−

|𝑙𝐶𝐸−𝑙𝑜𝑝𝑡|
2

𝑤2                                                 Eq.( 4.3 ) 

where lopt is the optimal muscle fiber length, and w is a parameter that is usually set to be 0.5lopt. 

The normalized force-velocity relationship is defined by two piecewise continuous curves: 

𝑓𝑣(𝑣𝐶𝐸) =

𝑣𝑚𝑎𝑥−𝑣𝐶𝐸

𝑣𝑚𝑎𝑥+𝑘𝑣𝐶𝐸
(𝑣𝐶𝐸 ≤ 0)

𝑁 + (𝑁 − 1)
𝑣𝑚𝑎𝑥+𝑣𝐶𝐸

7.56𝑘𝑣𝐶𝐸−𝑣𝑚𝑎𝑥
(𝑣𝐶𝐸 > 0)

                          Eq.( 4.4 ) 

where vmax is a parameter that defines the maximum rate of change of the muscle length when fv is 

zero; k is the shape factor of the curves; and N is a parameter termed as eccentric force 

enhancement.  

The resistive force in the parallel element only starts to have effect when the lCE is longer than lopt, 

and the force-length relationship is parabolic: 

𝐹𝑃𝐸(𝑙𝐶𝐸) = 𝐹𝑚𝑎𝑥
𝑖𝑠𝑜 (𝑙𝐶𝐸−𝑙𝑜𝑝𝑡)

2

𝜀2
(𝑙𝐶𝐸 > 𝑙𝑜𝑝𝑡)                             Eq.( 4.5 )    

where ε is a normalization parameter. 

The muscle force in CE and PE is equivalent to the force in SE as they are in series. Therefore the 

muscle force is also defined as: 

𝐹𝑚 = 𝐹𝑆𝐸(𝑙𝑆𝐸) = 𝐹𝑚𝑎𝑥
𝑖𝑠𝑜 (𝑙𝑆𝐸−𝑙𝑠𝑙𝑎𝑐𝑘)2

𝜀𝑟𝑒𝑓
2

(𝑙𝑆𝐸 > 𝑙𝑠𝑙𝑎𝑐𝑘)                          Eq.( 4.6 ) 

where lslack is the tendon slack length; and εref is a normalization parameter. 

4.5 Moment arm of a muscle force 

The tendency of a muscle to rotate a bone about a joint is described by the muscle’s moment arm. 

In the simplest case, a straight-line muscle whose origin and insertion points connect two adjacent 

bodies connected by a pin joint, the moment arm can be viewed as the same as conventional 

moment arm in mechanical engineering, where its definition is “the distance from the muscle’s 

line of action to the joint’s center of rotation”. However, in reality, most muscles may either span 

several joints, or follow a contorted crossing over other body parts, or both. For these situations, 

the definition of moment arm becomes more complex. 
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There are two methods commonly used to measure or estimate the moment arm of a muscle: (a) 

the geometric method, and (b) the tendon excursion method [130]. In the geometric method, the 

center of joint rotation and the muscle line of action are estimated using X-rays, CT scans or MRI 

scans, and the moment arm is the perpendicular distance between the two. The usage of these 

machines limits the usefulness of this method in clinical applications. In the tendon excursion 

method, the change in length of the muscle-tendon unit is measured or estimated as a function of 

the joint angle, and the instantaneous moment arm is defined as the slope of the curve when muscle 

length is plotted against the joint angle. The tendon excursion has the advantage of not requiring 

the knowledge of joint center of rotation and muscle line of action, but the quantities derived from 

this method is difficult to interpret geometrically. And for a muscle that spans more than a joint, 

the angular motion of the joint of interest has to be measured while other joints are held rigid. This 

proves to be a very difficult task especially for upper limb where certain degrees of freedom of the 

joints cannot be moved independently. 

There are a few studies on the measurement of the moment arms of the upper arm muscles relative 

to the shoulder [131-133] and elbow joints [134]  in the literature. There are large discrepancies in 

the estimated moment arms in some muscles. For example, deltoid’s moment arm for shoulder 

abduction ranged from about -4 cm to 1 cm [135]. This large variation is due partly to the 

differences in the modelling methods used in each study. The differences include the degree of 

freedom and the constraints of the model, and the definition of the origin and insertion of the 

muscles. This shows that there are still some difficulties to overcome before we can arrive at a 

standardized method to compute the moment arms for the muscles of the upper limb. 

In [135], Holzbaur et al. provide a list of muscle modelling parameters that includes the average 

moment arms for upper limb muscles. In our model we used the average moment arms in this list 

as the base values for an optimization procedure to determine the moment arms for our model. The 

procedures are as follow: 

1. Formulate the optimization problem for the muscle sharing problem (which will be 

discussed in the next section), but include the moment arm of each muscle as one of the 

optimizing variables. The upper bounds and lower bounds of the moment arm of each 

muscle are based on the maximum and minimum values we can find in the literature [131-

135]. For those muscles where no data is available, we assume a ±20% of the absolute 

value of the moment arm as the bounds. 
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2. The subject performs a set of arm motions: (a) raising the arm in the sagittal plane; (b) 

raising the arm in the frontal plane; and (c) drinking-from-a-cup motion. These motions 

invoke all the degree of freedom at the shoulder and elbow joints. The data captured by the 

sensors are used in the optimization procedure. 

3. After the optimization routine, the moment arms of the muscles are collated and a lookup 

table is set up where the moment arms of each muscle are tabulated against the joint angles. 

This lookup table will be used for the subject for subsequent applications of the model. 

The procedure ensures that there is consistency in the moment arm of the muscles for a particular 

subject using the model. However, the data from [135] was based on a single cadaver specimen. 

To make the model viable for different subject, the average moment arms have to be scaled using 

the height and lengths of clavicle, humerus and forearm. 

4.6 Muscle force sharing problem 

The human musculoskeletal system is characterized by having redundancy in muscular actuation 

at joints, that is, the number of muscle responsible for a motion is larger than the number of degree 

of freedom. In the context of our arm model, for example, the abduction of the arm is actuated by 

deltoid, pectoralis major, latissimus dorsi, and teres major. Such redundancy of muscular load 

sharing problem is usually solved by optimization methods [18], where the most established and 

common one is inverse dynamics-based static optimization. The joint torques we have computed 

previously in stage 1 are used as the input for the constraints for the optimization routine. The 

muscle force sharing problem is formulated as: 

Minimize 

 𝐽(𝐴) = ∑ (
𝐹𝑚

𝑖 (𝐴𝑖)

PCSA𝑖
)

2
𝑛
𝑖=1                                         Eq.( 4.7 ) 

Subject to: 

𝑹�⃗�𝑚(𝐴) − �⃗⃗⃗�𝑗 = 0⃗⃗                                              Eq.( 4.8 ) 

0 ≤ 𝐴𝑖 ≤ 1                                                 Eq.( 4.9 ) 

The objective of the problem, 𝐽(𝐴), is to minimize sum of muscle stress squared. This is done by 

finding the optimal activation levels of each muscle, 𝐴 ∈ ℝ𝑛, where n is the number of muscles in 

the model, and the activation level is between 0 (no activation) to 1 (maximum activation). PCSA 

is the physiological cross-sectional area of individual muscles. PCSA is typically used to describe 
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the contraction properties of muscles, and the muscle stress is defined as the muscle force per unit 

PCSA. The optimization is subjected to the constraint that the moments at the joints, �⃗⃗⃗�𝑗 ∈ ℝ𝑁, 

where N is the number of joints in the model, equal to the product of moment arm and the muscle 

force. 𝑹𝜖ℝ𝑁×𝑛 is the moment arm matrix for the model. 

The choice of objective function for muscle force sharing problem depends on the body parts and 

the objective of the research. In a biomechanical context, the objective function is also known as 

the performance criterion. It is a measure of performance of the muscles based on the assumption 

that the muscular system works in a way that minimizes the activation levels. For the research on 

upper limb, minimizing sum of muscle stress squared is the most commonly used objective 

function [18]. The advantage of using muscle stress over using muscle forces in the objective 

function is that it prevents the overuse of favorably located muscles. Computationally, it is also 

very efficient and stable, a crucial criterion for the model to be useful clinically. 

4.7 Results and discussions 

There is no simple and universal method to validate the muscle forces predicted by models. This 

is mainly because measuring the muscle forces directly is only possible in highly controlled and 

invasive situations that involves only one or two degrees of freedom [16, 136]. From the literature, 

most of the model predictions compare muscle loading or activation patterns against EMG data as 

an estimate of validity [18]. Such comparisons only provide qualitative validation but cannot verify 

the magnitude of the calculated muscle forces. 

To validate the muscle force estimations of our model, we carry out a simple experiment that 

involved a subject performing two sets of motion: (a) lifting a 5kg deadweight three times at a 

standing position; and (b) reaching out to a bottle of water and drink from it. Besides the IMUs 

attached to the arm (see Section 3.1.2), four EMG electrodes (TrignoTM Wireless Systems and 

Smart Sensors, Delsys Inc.) were attached to the deltoid muscle, the biceps brachii, the triceps 

brachii, and the brachioradialis (see Figure 22). 
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The maximum voluntary contraction (MVC) of the biceps brachii of the subject was measured 

prior to the experiment. As the MVCs of the other muscles are difficult to measure accurately, they 

are estimated based on the MVC of the biceps and the relative PCSAs of the muscles. In the 

experiment, each motion was repeated six times and the muscle forces were computed as the 

activation level (%MVC) of the particular muscle. The results are shown in Figure 23 and 24 for 

the (a) weight-lifting and (b) drinking motions respectively. 

 

Deltoid 

Biceps Brachii Brachioradialis 

Figure 22: The placement of EMG sensors on the deltoid, the biceps brachii, the triceps 

brachii, and the brachioradialis. 

EMG Sensors 

Triceps Brachii 
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Figure 23: Muscle activation level (%MVC) predicted by the model and EMG signals of 

four arm muscles during weight-lifting motion. The solid lines are the average muscle 

force of six trials and the standard deviation of the trials. The dotted line is the 

corresponding EMG signal. 
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Figure 24: Muscle activation level (%MVC) predicted by the model and EMG signals of 
four arm muscles during drinking motion. The solid lines are the average muscle force of 

six trials and the standard deviation of the trials. The dotted line is the corresponding 

EMG signal. 



60 
 

To establish the comparison between the estimated muscle forces from the model and the EMG 

signals, we can compute the cross-correlation coefficient [137], 𝑟𝐴𝐸, defined as [138]: 

𝑟𝐴𝐸 =
𝑐𝐴𝐸

√𝑐𝐴𝐴𝑐𝐸𝐸
                                               Eq.( 4.10 ) 

where  

𝑐𝐴𝐸 = ∑ [(𝐴𝑖 − 𝐴̅)(𝐸𝑖 − �̅�)]100
𝑖=1                               Eq.( 4.11 )  

𝑐𝐴𝐴 = ∑ (𝐴𝑖 − 𝐴̅)2100
𝑖=1                                      Eq.( 4.12 ) 

𝑐𝐸𝐸 = ∑ (𝐸𝑖 − �̅�)2100
𝑖=1                                        Eq.( 4.13 ) 

and 𝐴𝑖 is the estimated activation level at i% of the motion, 𝐴̅ is the mean of the activation level; 

𝐸𝑖 is the EMG signal level at i% of the motion, and �̅� is the mean of the EMG signal level. Both 

signals are measured in %MVC. The cross-correlation coefficients of each muscle for the two sets 

of motion are tabulated in Table 12. 

 

Table 12: Cross-correlation coefficients, rAE, between estimated muscle activation level and 

EMG signal level of each muscle for the weight-lifting and drinking motions.  

Weight-lifting Drinking 

Biceps Triceps Deltoid Brachioradialis Biceps Triceps Deltoid Brachioradialis 

0.7921 0.0473 0.6777 0.7108 0.8188 0.1598 0.2257 0.5959 

 

The four muscles are selected for the validation experiment mainly because they are superficial 

and large, such that the EMG signals are stronger and less ambiguous. From Figure 23 and 24, we 

see that the estimated activation levels of biceps brachii are very similar to the EMG signals. This 

is confirmed by the cross-correlation coefficients in Table 12, where both sets of motion registered 

a high correlation of about 0.8. The cross-correlation coefficients are also relatively high for 

brachioradialis in both motions. In contrast, it is apparent from the figures and table that the 

estimated activation levels of triceps brachii and deltoid do not correlate very well with the EMG 

signals, especially for the drinking motion. Both motions utilize a significant amount of activations 

on biceps brachii and brachioradialis, coupling with the fact that both muscles are easily palpable 

and the sensors can be placed on the muscle precisely, the EMG signals can be compared with the 

computed muscle activations more accurately. On the other hand, these motions do not make use 

of the triceps brachii significantly. Referring to Figure 23 and 24, the EMG signal levels of triceps 

brachii for both motions are less than 5%MVC, whereas the model predicted activation levels are 
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close to zero. The low EMG signal levels might be the results of crosstalk from other nearby 

muscles. This shows that these two motions are not suitable for the validation of the triceps muscle. 

For the deltoid muscle, it is modelled as three separate bundles: the clavicular, the acromial, and 

the scapular. There is some overlapping among the three bundles and EMG signal might come 

from all three bundles. So to compute the predicted muscle activation, the sum of the activations 

of all three bundles is taken to be the overall activation. However, from Figure 23 and 24, we see 

that the EMG signal contribution from each bundle changes during the course of the motion. Since 

there is no way to determine the contribution from each bundle, deltoid cannot be validated using 

the EMG signals. 

The high correlations between the EMG signals and the predicted muscle activations for biceps 

and brachioradialis provide confidence in the validity of the model. As an alternative way, we 

propose using the results of the applications of the model to indirectly validate the model’s 

predictions, and thus establishing the usefulness of the model. The application in spasticity 

assessment is the subject of the next chapter.  
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5. Application: Assessment of Spasticity  

In the Stage 3 of the project, the musculoskeletal model of the human upper limb is applied in the 

application to quantify the tonic stretch reflex threshold (TSRT) of stroke patient subject so as to 

assess the severity of spasticity. This is to complement the current practice of using Modified 

Ashworth Scale (MAS) for the assessment by providing an alternative with quantified 

measurement. The following sections present the methods used, describe the experimental 

procedures and discuss the implications of the results. 

 

5.1 Introduction 

Spasticity is the most common and serious complications resulted from stroke and spinal cord 

lesion. It may be defined as motor disorder characterized by a velocity-dependent exaggeration of 

stretch reflexes [11]. Quantification of the severity of spasticity can increase the efficacy of 

treatment and rehabilitation. However, clinicians generally agree that it is easy to recognize 

spasticity but very difficult to quantify it. The involuntary resistance to stretch maybe a result of 

changes in reflex threshold or reflex gain, or a combination of both [12], but the actual mechanism 

is still unclear [139]. One major difficulty to perform a quantitative assessment of spasticity is that 

some other diseases like Parkinson show similar symptoms in muscle resistance to passive motions 

[140]. The current common method used to quantify spasticity clinically is making use of the 

Modified Ashworth Scale (MAS) [34]. It is a very simple-to-use test but it only provides qualitative 

and subjective results. The velocity-dependency of spasticity distinguishes it from other syndromes 

but this is very difficult to identify using MAS examination [14]. Another less common method in 

quantifying spasticity is the pendulum test [141, 142]. Potentially, the pendulum test provides a 

more objective and reliable than MAS, but it requires equipment like electrogoniometers [143], 

two-dimensional video analysis [144], and magnetic tracking system [145], and the clinicians have 

to be trained to handle these complex systems. This is a possible reason why pendulum test is not 

routinely used by most clinicians [146]. 

Some researchers have proposed to use the Tonic Stretch Reflex Threshold (TSRT) as the parameter 

to quantify spasticity [12, 14]. TSRT is a measure of the joint angles when stretch reflex occurs at 

different velocities. It is an attractive alternative to MAS because it directly captures the velocity-
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dependency characteristic. The stretch reflexes in these studies are identified using 

Electromyography (EMG) sensors. However, besides the accuracy and reliability problems of the 

non-invasive EMG [45], there are many issues to resolve before TSRT measurement can become a 

routine protocol clinically. First, in these studies, only one or two major muscles’ activities are 

measured. The complexity of spasticity cannot be fully captured. Secondly, the EMG sensors have 

to be used together with motion sensors, where the former identifies the muscle stretch reflexes and 

the latter measures the velocity. The costs and trainings needed to operate these instruments may 

be hindrances to promote the method. 

We propose a method to address the issues faced by the current methods of measuring TSRT, 

using the musculoskeletal arm model we have developed. This section discusses the method and 

presents preliminary results. 
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5.2 Methods 

To discuss the method we are proposing we need to look at the definition of stretch reflex threshold 

(SRT). SRT represents the joint angle at which the involuntary recruitment of muscles begins. 

Researches have shown that the SRT of chronic stroke patients has significant differences from 

healthy people [147, 148], it is dependent on the joint angular velocity. To capture the velocity 

dependency characteristic of spasticity, we measure the dynamic stretch reflex threshold (DSRT). 

As the name implies, DSRT is the SRT at different joint angular velocities. Higher velocities 

invoke stretch responses at smaller joint angles. If we perform the stretches at different velocities, 

we can plot the DSRT against the joint angular velocities. Linear regression through the DSRTs is 

used to estimate the tonic stretch reflex threshold (TSRT) at zero velocity [12]. (See Figure 25.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The method we propose here aims to solve the issues related to relying on EMG signal 

measurements to estimate the TSRT. The equations of motion for the arms are: 

𝝉 − 𝑱𝑇𝒇 = 𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝑮(𝒒)                                     Eq.( 5.1 ) 

where 𝝉 is the active joint torques; 𝒇 is the contact forces at the wrist and hand, transformed by the 

Jacobian, 𝑱; 𝑴, 𝑪 and 𝑮 are the inertial, Coriolis, and gravitational terms respectively; and 𝒒, �̇�, �̈� 

are the generalized joint coordinates, velocities and accelerations. In a typical session for 

assessment of spasticity of the upper limb using Modified Ashworth Scale (MAS), the therapist 
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Figure 25: DSRTs are measured at different angular velocities and TSRT is estimated at 

the zero velocity via extrapolation of the linear regression. The maximum flexed position, 

θ-, and the maximum extended position, θ+, define the biomechanical range of the joint. 

For healthy subjects, the TSRT is beyond the biomechanical range. 
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abducts the arm of the patient using one hand supporting at the elbow to about 90° and places the 

forearm in a fully flexed position. Then the therapist extends the patient’s forearm in a swift motion 

(see Figure 26).  

 

 

 

 

If we were to compute the muscle activations of the patient’s arm, we need to measure the motions 

of both the therapist and the patient. This is because the unknowns in Eq. 5.1 are the active joint 

torques, and the contact forces between the therapist’s hand and patient’s wrist. One of the 

limitations of the arm model is the inability to handle dynamic contact forces (see Section 3.7.2). 

However, if we make the following three assumptions, we can eliminate the need to measure the 

contact forces in this situation. 

1. The contact force experienced by the patient is equal and opposite to the force experienced 

by the therapist: 

𝒇𝑝 = −𝒇𝑡                                                       Eq.( 5.2 ) 

where the subscripts p and t denote patient and therapist respectively. Both 𝒇𝑝 and 𝒇𝑡 are 

expressed in the inertial frame. As both arms of the subjects do not come in contact with 

other object, this is a reasonable assumption. The contact between the participant and the 

therapist is also assumed to be a point contact. It is a simplification from the actual area 

Figure 26: Elbow extension assessment for spasticity. The therapist supports the patient’s 

elbow with one hand while extending the forearm with the other hand.  
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contact, as an area contact is too complex to be modelled in the method and be useful 

clinically. As far as measuring TSRT is concerned, this simplification would not cause too 

much deviation from the more realistic area contact as the contact is localized in a small 

area. 

2. The time taken by the therapist to react to the sudden resistance is much longer than the 

sampling period of the sensors. That is, between two consecutive time steps up till the 

resistance set in, we assume that the change in the active joint torque of the therapist is 

very small: 

𝝉𝑡
2 ≈ 𝝉𝑡

1                                                         Eq.( 5.3 ) 

where the superscripts 1 and 2 denote two consecutive time steps. As the reaction time of 

human muscle is about 200 to 300 ms [149], and the sampling period is 7.8 ms, this 

assumption is reasonable too. 

Using these two assumptions, we can combine the equations of motion of the patient and the 

therapist to compute the change in the joint torques of the patient between two consecutive time 

steps, ∆𝝉𝑝: 

∆𝝉𝑝 = 𝝉𝑝
2 − 𝝉𝑝

1 = 

𝑱𝑝
𝑇(𝑱𝑡

𝑇)−1(𝑴𝑡
2�̈�𝑡

2 − 𝑴𝑡
1�̈�𝑡

1 + 𝑪𝑡
2�̇�𝑡

2 − 𝑪𝑡
1�̇�𝑡

1 + 𝑮𝑡
2 − 𝑮𝑡

1) + 𝑴𝑝
2�̈�𝑝

2 − 𝑴𝑝
1 �̈�𝑝

1 + 𝑪𝑝
2�̇�𝑝

2 − 𝑪𝑝
1 �̇�𝑝

1   

Eq.( 5.4 ) 

3. The patient does not exert any active joint torque voluntarily. This is important because 𝝉𝑝 

encompasses all active joint torques, there is no way to separate voluntary and involuntary 

actions. 

Finally, we integrate ∆𝝉𝑝 over the entire cycle of the movement to obtain the joint torques of the 

patient: 

𝝉𝑝 = ∫
∆𝝉𝑝

∆𝑡
𝑑𝑡                                                         Eq.( 5.5 ) 

With the joint torques computed, we can estimate the muscle activations.  
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5.3 Experimental Setup 

As mentioned in Section 4.7, one way to validate the arm model, albeit an indirect one, is to make 

use of the application to demonstrate its usefulness, by correlating with the existing practices. 

Naturally, the next step will be to design and perform experiments with therapists and stroke 

patients in a clinical setting. This section describes the experiment setup. 

 

5.3.1 Participants and evaluators 

Fifteen patient participants (8 females, 7 males, mean age 56.9 ± 10.4, age range 32 – 75) 

participated in the study after providing informed consent. The demographic information of the 

participants is detailed in Table 13. The study was approved by the internal review board of Tan 

Tock Seng Hospital in Singapore (DSRB No.: 2015/00371), and the experiment was performed at 

Centre for Advanced Rehabilitation Therapeutics (CART) at the hospital. Two trained therapists 

(one male and one female) were involved in the experiments. During each test, only one therapist 

evaluated the patient participant, and two assistants helped to record the measurements and ensure 

the experiment protocols were followed closely.  

 

Table 13: Demographic information of the participants 

Partici

-pant 

Gender Age Height 

(m) 

Weight 

(kg) 

Type of 

Stroke 

Side of 

Stroke 

Months since 

stroke 

1 F 56 1.6 65.9 H L 13 

2 F 32 1.75 61 H L 58 

3 F 52 1.73 57 H R 10 

4 M 53 1.56 68 I L 30 

5 M 53 1.83 66.5 I R 109 

6 F 53 1.62 44.8 I R 12 

7 M 45 1.81 78 H R 17 

8 F 57 1.58 65 I L 12 

9 M 63 1.68 63 H R 44 

10 F 61 1.53 60 H R 5 

11 F 68 1.52 60.6 H R 6 

12 M 69 1.8 80 I R 3 

13 F 56 1.56 55 H R 3 

14 M 75 1.59 73.1 H R 121 

15 M 61 1.71 75 I L 5 

  Note: H – Haemorrhage; I – Infarct 
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5.3.2 Clinical testing 

The therapists performed tests of the elbow flexor spasticity on the patient’s affected arm based 

on Modified Ashworth Scale (MAS) [34]. The patient sat on a chair with the arms resting in a 

relaxed position beside the body. The therapist stood beside the patient and abducted the patient’s 

humerus to 90° (or within a pain free range of shoulder movement), and flexed the elbow fully. 

While supporting the patient’s abducted arm in position, the therapist then extended the patient’s 

elbow fully in one second (counting “one thousand”, for example, as a guide). The therapist graded 

and recorded the MAS score of the patient. This assessment procedure was repeated for the patients’ 

shoulder, wrist and thumb, to obtain a comprehensive ranking of the severity of the patients’ 

conditions.  

 

5.3.3 Instrumented testing 

The instrument testing started 5 minutes after the clinical testing to diminish any possible fatigue 

effect in the patient’s upper limb. In addition to the recording of the height and weight of the patient 

participants and the therapists, the lengths of the clavicle (distance between the sternoclavicular 

(SC) joint and the acromioclavicular (AC) joint), the humerus (distance between the edge of the 

shoulder and the elbow) and the forearm (distance between the elbow and the wrist) were also 

measured using a measuring tape. All these measurements were used in the estimations of the 

inertial properties of the patient’s and therapist’s upper limbs using the method depicted in Section 

3.6. 

Three IMUs (APDM Opal™ wireless) were attached to the patient’s affected upper limb and three 

more to the therapist’s upper limb that performed the test (always the same side as the patient’s 

affected upper limb). The first IMU was attached to the flat portion of the sternum, just below the 

neck, using double sided tape or Velcro strap; the second IMU was strapped around the middle 

part of the upper arm; and the third IMU was strapped around the lower arm, just above the wrist 

(compare Figure 27). A pair of EMG electrodes (Biopac Systems Inc Data Acquisition System 

MP150 and EMG Amplifier EMG100C) was attached to the cleaned skin surface of the patient’s 

biceps brachii to monitor the electromyographic activities of the muscle for comparison to the 

upper limb model predictions. A ground electrode was placed at a neutral site on the upper arm as 

a reference. 
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Figure 27: Placement of the three APDM Opal™ wireless IMUs on the upper limb. 

The test procedure was similar to the clinical testing, except the therapist was instructed to perform 

the tests for slow, medium and fast speeds of motion. For the identification of the initial reference 

configuration of the upper limb models, the data were recorded while the patient sat on a chair 

with the arms resting in a relaxed position beside the body for 5 seconds before the therapist held 

up the patient’s arm. The therapist then extended the patient’s elbow in 2 to 3 seconds for slow 

speeds, in 1 to 2 seconds for medium speeds, and as quickly as possible without causing pain to 

the patient for fast speeds. For each speed range, the tests were performed four times with one 

minute rest after two repetitions. A total of 12 tests were carried out for each patient. 

5.3.4 Data analysis 

The EMG signal was first rectified and passed through a filter with frequency band of 20 – 350 

Hz. The frequency range of 20 – 350 Hz is the range where meaningful EMG signals can be 

captured. This range has been widely used by previous studies [12, 150, 151]. The linear envelope 

of the EMG signal was found using rectify-and-mean approach with window width of 1000 points. 

The magnitude of the EMG signal during the initial reference position was taken as the baseline 

EMG. The joint angle and the velocity at which the EMG signal went beyond 2SDs of the mean 

baseline defined the DSRT (DSRT_EMG) for that particular test.  
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The data from the IMUs, on the other hand, was used to compute the muscle activations with the 

upper limb model based on the procedure described in previous chapters. For instance, Figure 28 

shows the resulting predicted muscle activations of six muscle groups of participant 3 at a medium 

speed (about 75° per second). The DSRT was defined by the joint angle at which the predicted 

activation increased over 1% of maximum voluntary contraction (1%MVC). We made use of the 

measured MVC of stroke patients with similar demography as our participants published in [152]. 

Two types of DSRTs were computed for each test, one was based on the activation of biceps 

brachii (DSRT_B) and the other was based on the first activation of any muscle that crossed the 

1%MVC threshold (DSRT_A). In the particular example shown in Figure 28 the DSRT_A was 

triggered by the activation of the deltoid muscle, which crossed the 1%MVC first. The predicted 

TSRT of each participant was defined as the x-intercept of the linear regression on the DSRTs. 

For instance, Figure 29 shows the linear regression of the DSRT_Bs of participant 3 and her 

TSRT_B. Both DSRT and TSRT were measured in %Motion. 

 

  

 

 

 

 

 

 

Figure 28: Muscle activations of six groups of muscles predicted by the model at a medium speed 

of about 75°/sec. The muscle activation is computed in %MVC and plotted against the % 

completion of the extension motions. The muscles selected cover the forearm (Brachioradialis), 

upper arm (Biceps and Deltoid), shoulder anterior (Subscapularis) and shoulder posterior 

(Rhomboid Major and Minor).  
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Figure 29: The linear regression of the DSRT_B of Participant 3. TSRT_B is the x-intercept of 

the regression line. 

 

 

5.4 Results 

5.4.1 Validation of model using EMG 

There is no simple and universal method to validate the muscle forces predicted by models. Most 

attempts at validation compare predicted muscle loading or activation patterns against EMG data  

[18]. Some researchers are also using EMG-triggering in the design of stroke treatment methods 

[153]. These reasons compel us to use DSRT_EMG as a mean of validation for DSRT_B in our 

experiment. However, it was a challenge to obtain meaningful EMG from some of the participants 

due to muscle atrophy and the difficulty in the attachment of the electrodes. Out of the 15 

participants, only 5 participants (Participant 1, 3, 4, 9 and 11) provided useful EMG signals for the 

definition of DSRT_EMG (n = 38, where n is the number of DSRTs used in the comparison). 

Using these DSRT_EMG and the corresponding DSRT_B, we find the mean and the standard 

deviation of the difference [154], DSRT_diff, between the two sets of data 

(DSRT_EMG−DSRT_B), �̅� and 𝑠, to be -4.21 %Motion and 14.36 %Motion, respectively. From 

this, we compute the 95% confidence intervals for DSRT_diff using t-distribution [154] to be -
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8.93 to 0.51 %Motion. The profiles of model predicted muscle activation and the EMG signal 

through the full cycle of motion are also compared by computing the cross-correlations. One such 

comparison is shown in Figure 30. The linear envelope of the EMG signal is normalized such that 

the 2SDs above the mean baseline coincides with the 1%MVC. The mean cross-correlation of all 

38 tests, 𝑐̅, is 0.707 (with SD = 0.077). 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.2 Comparison between model predictions and clinical results 

Although the current practice of using MAS to assess the severity of spasticity in patients suffers 

from some issues that affect its reliability and accuracy [11], it is still widely accepted as the 

standard assessment method. It is therefore important for any new assessment method to 

benchmark its predictions against results based on MAS. To test if the assessment of spasticity 

using the upper limb model is a viable alternative to using MAS, we examine the correlation 

between the two methods. However, there is no quantifiable parameter for the comparison between 

the two methods. As such, we compare the rankings in the severity of spasticity in the patients as 

predicted by the two methods. 

Two sets of TSRT (computed in term of %Motion) for all 15 participants, one based on the 

activations of biceps brachii (TSRT_B), and the other (TSRT_A) on the earliest activations of any 

of the six groups of muscles (brachioradalis, biceps brachii, deltoid, subscapularis, rhomboid major 

and rhomboid minor), are being ranked from the lowest TSRT (least severe case) to the highest 

Figure 30: Model prediction of 

muscle activation and linear 

envelope of EMG signal of 

biceps brachii of Participant 3 at 

a speed of about 162°/sec. The 

EMG envelope was normalized 

such that the 2SDs above the 

mean baseline coincides with the 

1%MVC of the model 

prediction. The cross-correlation 

between the two profiles for this 

particular test is 0.84. 
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TSRT (most severe case). Similarly, the severity of spasticity of the participants assessed clinically 

is also ranked with respect to their MAS scores (0, 1, 1+, 2, 3 or 4). The participants are first ranked 

using the MAS scores for elbow extension tests. The ties are settled using MAS scores for shoulder, 

wrist and thumb, in that sequence. The MAS scores for shoulder, wrist and thumb do not directly 

measure the spasticity of the elbow flexors, but they are also used clinically as indicators to the 

severity of spasticity. Due to the ambiguity in the coarse scale of MAS, we need some indicators 

for us to meaningfully rank the severity of the participants. After consulting the therapists, we 

decided to make use of the scores. The results are summarized in Table 14. 

We use Spearman’s rank correlation and correlation testing via t-test to test the null hypothesis 

that there is no correlation between the severity rankings of (a) TSRT_B and MAS; and (b) 

TSRT_A and MAS. The results are presented in Table 15. The two tests have their null hypothesis 

rejected, showing correlations between the model predictions and the clinical assessments. The 

model predictions and assessment using MAS have very small p-value (0.0003 for TSRT_B and 

MAS, and 0.0002 for TSRT_A and MAS), showing high correlations between the two methods. 
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Table 14: The model prediction for TSRTs and the clinical assessment results in Modified 

Ashworth Scale (MAS). TSRT Biceps uses the activation of biceps brachii while TRST Others 

uses the earliest activation of any of the six groups of muscles (brachioradalis, biceps brachii, 

deltoid, subscapularis, rhomboid major and rhomboid minor). The model predictions are ranked 

based on the TSRT (in %Motion). The MAS is ranked first by the score (0, 1, 1+, 2, 3, 4) for 

elbow extension tests. The ties are settled using MAS scores for shoulder, wrist and thumb, in 

that sequence. 

Sub TSRT_B 

%Motion 

Rank TSRT_A 

%Motion 

Rank MAS-E 

Score 

MAS-S 

Score 

MAS-W 

Score 

MAS-T 

Score 

Rank 

1 85.02 7 70.91 10 1 0 1+ 1+ 9.5 

2 49.98 12 48.53 12 1 0 1 1+ 7 

3 76.49 10 75.50 8 0 0 0 0 2.5 

4 94.42 4 93.12 4 0 0 1 0 5 

5 42.46 14 38.64 14 1+ 1 1+ 1 15 

6 109.42 1 109.42 3 0 0 0 0 2.5 

7 89.90 5 89.92 5 1 0 0 1 6 

8 58.65 11 64.15 11 1+ 1 1 1 14 

9 88.84 6 89.59 6 1 0 1+ 1+ 9.5 

10 105.54 2 109.52 2 0 0 0 0 2.5 

11 80.64 9 74.38 9 1 1+ 1 0 11 

12 103.99 3 109.69 1 0 0 0 0 2.5 

13 44.26 13 39.86 13 1+ 1 1 0 13 

14 27.33 15 28.30 15 1 0 1+ 1 8 

15 82.23 8 85.41 7 1+ 0 0 0 12 

Note: TSRT_B – TSRT based on biceps; TSRT_A – TSRT based on any of the six muscles; MAS-E  – 

Modified Ashworth Scale on elbow; MAS-S – MAS on shoulder; MAS-W – MAS on wrist; MAS-T – 

MAS on thumb. For tied rankings, the average is used. 

 

 

Table 15: The results of the null hypothesis, H0, that the model prediction of the severity of 

spasticity via TSRT has no correlation to the clinical assessments via MAS. The hypothesis 

testing makes use of Spearman’s rank correlation test via t test, with n = 15 and significance 

level, α = 0.05. The null hypothesis is rejected if p-value < α. 

Comparison Pair n Spearman’s 

rho, r 

α t-

critical 

t p-value Reject 

H0? 

TSRT_B and MAS 15 0.807 0.05 2.16 4.93 0.0003 Yes 

TSRT_A and MAS 15 0.821 0.05 2.16 5.19 0.0002 Yes 

Note: TSRT_B – TSRT based on biceps; TSRT_A – TSRT based on any of the six muscles; MAS –

Modified Ashworth Scale on elbow. 
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5.5 Discussion 

5.5.1 Validation of the Model using EMG and Its Implications 

From the results, we see that the 95% confidence interval (-8.93 %Motion and 0.51 %Motion as 

the lower and upper bounds respectively) for the DSRT_diff (the difference between DSRT_EMG 

and DSRT_B) reveals that EMG tracking tends to provide a lower DSRT than that predicted by 

the model. The standard deviation of the difference at 14.36% is significant. Two of the possible 

reasons for this are: (a) the triggering thresholds of the EMG signals set at 2 SD of the baseline 

signal is too low; or (b) the 1%MVC threshold for the model prediction is set too high. The former 

is a standard practice which is based on the assumption that the baseline signal is white noise and 

it was not caused by muscle activation [11, 12]. The 1%MVC threshold for the model prediction 

was chosen by examining the muscle activation plots like the one shown in Figure 27, as it is 

necessary to exclude possible activation noise, which is more significant at low muscle activation 

[155], during the experiments. Lowering the threshold would risk taking noise as the actual 

involuntary muscle activation. However, the correlation coefficient (𝑐̅  = 0.707) between the 

activation profile of the model’s prediction and the EMG envelope indicates that the two correlate 

well. This is a better indicator for the similarity between the two methods because it compares the 

activations throughout the full motion and it is also independent of the chosen thresholds. 

Considering that the model uses kinematic data, which were fundamentally different from EMG 

signal, to predict the muscle activations, the high correlation provides confidence that the new 

method is performing well.  

Using EMG to evaluate spasticity has its own issues such as diffusion effects of the skin [60, 61], 

placement of the electrodes [45], and muscle atrophy of elderly or stroke patients [11], that need 

to be addressed. There are two advantages the upper limb model has over EMG to measure DSRTs. 

First, non-invasive EMG has the limitation of measuring only the large and superficial muscles 

and the complexity of spasticity cannot be fully captured. The muscular upper limb model provides 

a platform for the understanding of the relationship between involuntary resistance to movement 

and the activations of deep muscles. Secondly, the EMG sensors have to be used together with 

motion sensors, where the former identifies the muscle stretch reflexes and the latter measures the 

velocity. The costs and trainings needed to operate these instruments may hinder the promotion of 

using objective assessment methods in general. The model introduced in this paper uses only the 
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IMUs as sensors and requires only simple protocols to use. The time needed for the therapist to 

put on the sensors on the patient’s body and then on her own body is about 5 mins (with the help 

of another person, this can reduce to about 2 to 3 mins). This short set-up time is not likely to 

significantly lengthen the assessment routine.  

As the data collected from the experiment are only from five participants, there are too few data 

for this comparison to be a conclusive validation. More EMG data will be collected in future 

experiments to strengthen the validation. 

 

5.5.2 The Correlation between Model Prediction and the Clinical Assessments 

and Its Implications 

The model predictions correlate very well with the MAS assessments performed by trained 

therapists in terms of the severity ranking among the patients. This is not a surprise because both 

the model and the therapist are trying to identify the “catch” (the moment when the involuntary 

resistance sets in). The high correlation provides confidence in the model as a complementary tool 

to the existing practice. The particiapnts recruited for the experiments in this study were less severe 

stroke patients who showed mild to moderate conditions and their MAS scores for the elbow 

extension only ranged between 0 and 1+ (Table 14). The ranking of the MAS scores has to be 

aided by using the MAS scores for other parts of the upper limb. The simplicity in the Modified 

Ashworth Scale is the reason for its popularity and at the same time also its most criticized attribute 

[11, 156]. In particular, it is not easy to identify significant differences between the scores 1, 1+ 

and 2 [156]. If limited resources for rehabilitation were to be distributed among the patients 

according to the severity in spasticity, or one has to design rehabilitation programs for the patients 

based on the assessments, the lack of fine distinctions in the MAS score poses a problem. The 

model predictions can be used in these cases to differentiate the level of severity of spasticity 

among the patients. 
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5.6 Future Works for Spasticity Assessments 

The results from the experiment showed that there is a good correlation between the spasticity 

severity predictions using the model and from assessment by MAS. This provides some confidence 

that we are on the right track in developing a complementary assessment method to the current 

clinical practice. For the current study, due to experimental constraints, the MVCs were not 

directly measured. In the future experiments, the measurement of MVC of participants will be 

included in the experiment protocols. Moving forward, we will engage clinicians to use the system 

alongside with their daily assessment routine, collect more data, and make improvements to the 

model and protocols based on the feedback from the users. To make it a more viable and hassle-

free tool that the clinicians are willing to use, a few features can be added in the next stage of 

development. First, to simplify the set up procedure and reduce discomfort for the patient, the three 

sensors can be incorporated into a wearable sensor suit. The criteria for the design of such a suit 

are the movement of the user should not be constrained, and the sensors can be tightly secured to 

the various upper limb segments. Second, data logging and analysis processes to be automated. 

Currently, these two processes are done manually post-experiment by the researchers instead of 

the clinicians. They have to be automated since the purpose of the system is to be part of the daily 

assessment routine. 
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6 Conclusion and Future Works 
6.1 Conclusion 

The current trend for assessment during stroke rehabilitation is moving towards objective 

measurements to complement the subjective assessments by therapists. These objective 

measurements are important for at least three reasons. First, objective measurement provides a 

platform to resolve the subjectivity problem in many current methods where the interrater 

reliability is low. Second, the development of a standard protocol for assessment using 

measurement from sensors would reduce the reliance on experienced therapists to perform the 

routine assessments and ease the manpower shortage problem. Third, one good way to increase 

the efficacy of rehabilitation program is to customize the program based on the assessed condition 

of the patient. Objective measurements can provide physiological information that otherwise hard 

to obtain using subjective assessment. One parameter that can be used as an indicator in the 

assessment is the muscle force. As muscle forces are difficult, if possible, to measure directly, a 

popular alternative method is to estimate the forces using musculoskeletal models. However, there 

is still more work to be done before the current model-based methods for estimation of muscle 

forces can be used as a clinical tool in stroke assessment. In this research, we developed a 

musculoskeletal model for the human upper limb with the objective of bridging this gap, providing 

a tool for objective assessment in stroke rehabilitation that can be used to complement the current 

practices. To demonstrate the capability of the model, we use it in the application of quantifying 

the severity of spasticity by measuring the tonic stretch reflex threshold. The main contributions 

of this research are summarized in the following points: 

 Shoulder model: A hybrid method to fuse the ambulatory data from sensors with 

shoulder rhythm model data. 

The kinematics of the shoulder complex is generally considered as the most difficult to 

measure when compared to other joints. The movements of the shoulder are the complex 

relative motions (which are termed “shoulder rhythm”) among the three bones: clavicle, 

scapula and humerus. Non-invasive measurement, where a sensor or marker is attached to 

the skin, is often contaminated with the noise caused by soft tissue movements when the 

movement of the humerus is large. Invasive method, where markers are surgically attached 
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to the scapula, on the other hand, provides accurate measurements of the orientations of 

scapula and clavicle with respect to the position of the humerus, in the form of shoulder 

rhythm. However, it is unable to capture subtle movements like shrugging of shoulder. 

The hybrid method introduced in this research, combines the strengths of both invasive 

and non-invasive measurements. This is done through a selection of data either from direct 

non-invasive measurement, when the movement of the humerus is small, or from the 

shoulder rhythm model constructed using invasive measurement, when the movement of 

the humerus is large. This hybrid method provides a mean to measure the kinematics of 

the shoulder complex in a clinical setting. 

 Elbow model: A method to compute the orientation of the elbow joint using product 

of exponential (POE) and optimization to eliminate the need for orthogonality 

assumption and introduction of carry angle. 

The elbow is a two degree-of-freedom joint and the two axes of rotation (flexion/extension 

axis and supination/pronation axis) are, in general, non-orthogonal. In addition, the 

flexion/extension axis is not orthogonal to the longitudinal axis of the humerus too. When 

using sensors to measure the elbow orientation, it is common to assume orthogonality 

between the two axes and decompose the rotation matrix of the forearm relative to the 

humerus. This introduces a third angle called the carry angle, which is often treated as a 

constant angle, although it varies with the elbow orientation. In this research, we derived 

a method to obtain the flexion/extension angle and the supination/pronation angle from 

the rotation matrix using product of exponential expression and an optimization routine, 

without the need to assume orthogonality and to introduce the carry angle. By 

incorporating this decomposition method in our musculoskeletal model, we can improve 

the accuracy of the estimation of muscle forces because the lines of action of the muscles 

are more accurately represented. 

 Musculoskeletal model of the human upper limb: Developed to be useful clinically 

for the assessment of stroke rehabilitation. 

The main contribution of this research is the development of a musculoskeletal model of 

the human upper limb for the assessment of stroke rehabilitation. The model is specifically 

developed to be useful clinically as a tool for therapists to complement the existing 

practices. Building on the shoulder model and elbow model mentioned above, in addition 
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with a simple protocol to estimate the inertial properties of the upper limb segments, the 

biomechanical model computes the joint dynamics from the kinematic data measured by 

inertial sensors. The joint torques are used in the musculoskeletal model to estimate the 

muscle forces and activations. The estimated muscle forces can be used as indicators in 

the assessment of the efficacy of rehabilitation programs, and also as a mean of validation 

for the current subjective assessment methods. The key features of our model that make it 

potentially a viable clinical tool for stroke rehabilitation assessment are:  

(a) The model is designed to only require input parameters that can be readily obtained in 

a clinical setting without the need of a trained therapist and expensive equipment. 

(b) The operating protocol, including setting up the sensors, does not require any training 

for the operator and it takes only a few minutes. 

(c) The measurement of the kinematics of the upper limb segments can be performed 

simultaneously with the usual assessment routines, minimizing the discomfort for the 

patients. 

(d) Estimated muscle forces and activations from the model can be used as a validation 

for many different stroke assessment tools, including task-based and reaction-based 

tests. 

These key features lower the hurdle for clinicians to adopt the new tool by introducing 

non-drastic changes to the current practices. We believe such an objective assessment tool, 

which is meant to complement the current common tools, is only useful if the clinicians 

or therapists are willing to use it. 

 Application: Using the model to assess the severity of spasticity by measuring the 

tonic stretch reflex threshold. 

The upper limb model was used to quantify the tonic stretch reflex threshold (TSRT) in 

stroke patients to assess the severity of spasticity. The measurement of the kinematics of 

the upper limb was carried out concurrently with the Modified Ashworth Scale (MAS) 

assessment. The results showed that the rankings of the severity of spasticity predicted by 

using the model via TSRT have high correlation with the assessments by trained therapists. 

This means that the model has the potential to be used as a validation tool to MAS 

assessment, which has interrater reliability issues.  
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6.2 Future Works 
The main objective of this research work is to offer clinicians and therapists working on stroke 

rehabilitation a feasible alternative tool that provides objective assessment. Although we have 

demonstrated that the model is capable of predicting severity of spasticity with comparable 

accuracy to the current clinical practice, there are possible future improvements to be done in three 

areas: 

(a) Accuracy of the upper limb model 

 Muscle origin and insert positions 

The accuracy of the muscle origin and insert positions can be improved if they are 

adjusted according to the relative segment lengths between the subject and the 

reference data source.  

 Inertial properties of the upper limb segments 

The published data for the inertial properties we used currently were from 

publications focusing on the demography of western societies. Incorporating data 

from an Asian population would improve the accuracy of the prediction when the 

model is used in Asian countries like Singapore. 

(b) Operation procedures 

 Design of a wearable sensor suit for the upper limb 

Currently, each IMU is separately attached to the patient’s body using Velcro straps. 

To reduce the discomfort experienced by the patient, and speed up the preparation 

process, the next step is to design a sensor suit that attaches the sensors in position 

when the patient wears it on the affect upper limb. The suit would also minimize 

the risk of the clinician strapping the sensors at the wrong position or orientation. 

 Incorporating measurement of maximum voluntary contraction (MVC) of 

subjects into the protocol 

For the current study, due to experimental constraints, the MVCs were not directly 

measured. In the future experiments, the measurement of MVC of participants will 

be included in the experiment protocols. 
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Appendix A: List of muscles and their Obstacle-set 

parameters 
 

No. Muscle Obstacle Frame 

1 Subclavius (SBCL) 
Origin Thorax 

Insert Clavicle 

2a 
Serratus anterior (superior) 

(SRAS) 

Origin Thorax 

Single cylinder Thorax 

Insert Scapula 

2b 
Serratus anterior (middle) 

(SRAM)  

Origin Thorax 

Single cylinder Thorax 

Insert Scapula 

2c 
Serratus anterior (inferior)  

(SRAI) 

Origin Thorax 

Single cylinder Thorax 

Insert Scapula 

3a 
Trapezius (C1-C6)  

(TRPC) 

Origin Thorax 

Single cylinder Thorax 

Insert Scapula 

3b 
Trapezius (C7) 

(TRPC2) 

Origin Thorax 

Single cylinder Thorax 

Insert Scapula 

3c 
Trapezius (T1)  

(TRPT) 

Origin Thorax 

Single cylinder Thorax 

Insert Scapula 

3d 
Trapezius (T2-T7)  

(TRPT2) 

Origin Thorax 

Single cylinder Thorax 

Insert Scapula 

4 
Levator scapulae 

(LVS) 

Origin Thorax 

Insert Scapula 

5 
Rhomboid minor 

(RMN) 

Origin Thorax 

Single cylinder Thorax 

Insert Scapula 

6a 
Rhomboid major (T1-T2) 

(RMJ) 

Origin Thorax 

Single cylinder Thorax 

Insert Scapula 

6b 
Rhomboid major (T3-T4) 

(RMJ2) 

Origin Thorax 

Single cylinder Thorax 

Insert Scapula 

7 
Pectoralis minor 

(PMN) 

Origin Thorax 

Insert Scapula 

8a 
Pectoralis major (clavicular) 

(PMJC) 

Origin Clavicle 

Single cylinder Thorax 

Insert Humerus 

8b 
Pectoralis major (sternal) 

(PMJS) 

Origin Thorax 

Single cylinder Thorax 

Insert Humerus 

8c Pectoralis major (ribs) Origin Thorax 
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(PMJR) Single cylinder Thorax 

Insert Humerus 

    

    

9a 
Latissimus dorsi (thoracic) 

(LTDT) 

Origin Thorax 

Double Cylinder 
Thorax 

Scapula 

Insert Humerus 

9b 
Latissimus dorsi (lumbar) 

(LTDL) 

Origin Thorax 

Double cylinder 
Thorax 

Humerus 

Insert Humerus 

9c 
Latissimus dorsi (iliac) 

(LTDI) 

Origin Thorax 

Double cylinder 
Thorax 

Humerus 

Insert Humerus 

10a 
Deltoid (clavicular) 

(DLTC) 

Origin Clavicle 

Sphere-capped cylinder Scapula 

Via Humerus 

Insert Humerus 

10b 
Deltoid (acromial) 

(DLTA) 

Origin Scapula 

Sphere-capped cylinder Scapula 

Via Humerus 

Insert Humerus 

10c 
Deltoid (scapular) 

(DLTS) 

Origin Scapula 

Via1 Scapula 

Sphere-capped cylinder Scapula 

Via2 Humerus 

Insert Humerus 

11 
Supraspinatus 

(SUPR) 

Origin Scapula 

Via1 Scapula 

Via2 Humerus 

Insert Humerus 

12 
Infraspinatus 

(INFR) 

Origin Scapula 

Sphere-capped cylinder Scapula 

Insert Humerus 

13 
Subscapularis 

(SBSC) 

Origin Scapula 

Via Scapula 

Single cylinder Scapula 

Insert Humerus 

14 
Teres minor 

(TMN) 

Origin Scapula 

Via Scapula 

Sphere-capped cylinder Humerus 

Insert Humerus 

15 
Teres major 

(TMJ) 

Origin Scapula 

Single cylinder Scapula 

Insert Humerus 

16 
Coracobrachialis 

(CRCB) 

Origin Scapula 

Single cylinder Scapula 

Via Humerus 
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Insert Humerus 

17a 
Triceps brachii (long) 

(TRCL) 

Origin Scapula 

Double cylinder 
Humerus 

Humerus 

Insert Forearm 

17b 
Triceps brachii (medial) 

(TRCM) 

Origin Humerus 

Via Humerus 

Single cylinder Humerus 

Insert Forearm 

    

17c 
Triceps brachii (lateral) 

(TRCT) 

Origin Humerus 

Via1 Humerus 

Single cylinder Humerus 

Via2 Forearm 

Insert Forearm 

18a 
Biceps brachii (short) 

(BICS) 

Origin Scapula 

Double cylinder 
Scapula 

Humerus 

Insert Forearm 

18b 
Biceps brachii (long) 

(BICL) 

Origin Scapula 

Sphere Humerus 

Via Humerus 

Single cylinder Humerus 

Insert Forearm 

19 
Brachialis 

(BRA) 

Origin Humerus 

Via Humerus 

Single cylinder Humerus 

Insert Forearm 

20 
Brachioradialis 

(BRD) 

Origin Humerus 

Via1 Humerus 

Double cylinder 
Humerus 

Forearm 

Via2 Forearm 

Insert Forearm 

21 
Supinator 

(SUP) 

Origin Humerus 

Via Forearm 

Insert Forearm 

22 
Pronator 

(PRO) 

Origin Humerus 

Via Forearm 

Insert Forearm 
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