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ABSTRACT

By 2040, global CO2 emissions and energy consumption are expected to increase
by 40%. In the US, buildings account for 40% of national CO2 emissions and
energy consumption, of which 75% is met by fossil fuels. Reducing this impact on
the environment requires both improved building energy efficiency and increased
renewable utilization. To this end, this dissertation presents a demand-supply-
storage-based decision framework to enable strategic energy management in smart
buildings. This framework includes important but largely unaddressed aspects
pertaining to building demand and supply such as occupant plugloads and the
integration of weather forecast-based solar prediction, respectively. We devote the
first part of our work to study occupant plugloads, which account for up to 50%
of demand in high performance buildings. We investigate the impact of plugload
control mechanisms based on the analysis of real-world data from experiments
we conducted at NASA Ames sustainability base and Carnegie Mellon University
(SV campus). Our main contribution is in extending existing demand response
approaches to an occupant-in-the-loop paradigm.

In the second part of this work, we describe methods to develop weather forecast-
based solar prediction models using both local sensor measurements and global
weather forecast data from the National Ocean and Atmospheric Administration
(NOAA). We contribute to the state-of-the-art solar prediction models by proposing
the incorporation of both local and global weather characteristics into their predic-
tions. This weather forecast-based solar model plus the plugload-integrated demand
model, along with an energy storage model constitutes the weather-driven plugload-
integrated decision-making framework for energy management. To demonstrate the
utility of this framework, we apply it to solve an optimal decision problem with the
objective of minimizing the energy-related operating costs associated with a smart
building. The findings indicate that the optimal decisions can result in savings of up
to 74% in the expected operational costs. This framework enables inclusive energy
management in smart buildings by accounting for occupants-in-the-loop. Results
are presented and discussed in the context of commercial office buildings.
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C h a p t e r 1

INTRODUCTION AND LITERATURE REVIEW

Significant advances in technology and infrastructure have enabled informeddecision-
making in building operations. Prior to integrating sustainability-related objectives
into the decision-making process, decisions pertaining to building operations were
predominantly driven by occupant safety and comfort. However, with the growth
in sustainability-related concerns over the years, energy efficiency and environmen-
tal factors have become increasingly important considerations in the operation and
maintenance of buildings [59] [36].

The Federal Executive Order 13693 [21] outlines several sustainability-related goals
and guidelines on how to achieve them. The policy (Sec 1 in [21]) states that
the priority should first be placed on reducing energy use and cost, and then on
finding renewable energy solutions. In order to realize this vision, emphasis must
be laid on improving demand management and renewable generation techniques,
especially in the context of commercial buildings, which account for approximately
20% of the total annual energy consumption in the US [47]. In this dissertation,
we improve the state-of-the-art methodologies to address the challenges in demand
management and renewable generation, and leverage these toward the construction of
an energymanagement framework in smart buildings. We first focus on constructing
occupant plugload models, which offer the ability to regulate occupant plugloads
using incentives and feedback-related inputs. Second, we focus on improving upon
the current solar power prediction mechanisms by integrating weather forecasts
into the prediction models. Thereafter, we construct a weather-driven plugload-
integrated framework for energy management in smart buildings. We demonstrate
the utility of this framework by applying it to formulate and solve an optimal
decision problem with the objective of minimizing energy-related costs within a
smart building.

1.1 Occupant plugload management
Power demand in commercial buildings can be broadly categorized into HVAC,
lighting and plugload-related categories [23]. Over the recent years, advancement
in building automation techniques have enabled the optimization of HVAC and
lighting systems for minimal energy consumption [54] [24] [62] [63]. However, the
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problem of reducing plugload consumption has received significantly less attention
compared to its counterparts (HVAC and lighting) [35].

It is important to acknowledge the importance of plugload regulation as it accounts
for a significant one-third of the demand in commercial buildings [41]. Further-
more, in high performance buildings, where HVAC and lighting demands are highly
regulated, unregulated plugloads account for a significant 40% of the overall build-
ing demand [35]. Despite the importance of regulating plugload consumption, this
problem has remained largely unsolved and has challenged the field of demand
management [18] [14]. This is because plugload consumption is primarily driven
by human occupants within the building, and hence is difficult to regulate. In order
to regulate plugload consumption, it is important to identify what motivates the
occupants to conserve plugload energy. Previous studies such as [30] [48] [66] have
shown that feedbackmechanisms and/or incentives could result in reducing occupant
energy consumption. In particular, works such as [30] [33] study the factors that
constitute effective feedback for motivating behavioral changes. They conclude that
the most effective factors affecting energy behavior are historical comparisons and
appropriate incentives. Yun et al. [66] outlines nine intervention techniques that can
motivate change of behavior in the workplace. They also note that it is possible to
obtain 12%-20% savings by modifications in behavior. A study involving feedback
and incentives was conducted in [48] on dormitory residents, wherein it was found
that real-time feedback in conjunction with education and incentives resulted in a
significant 32% energy conservation by students in dormitories. However, to the
best of our knowledge, there exist no reported models that quantitatively explain the
mechanisms behind such savings.

In this work, we design a controlled experiment to studymechanisms that explain the
roles that incentives and awareness play in changing occupant plugload consumption.
This experiment was conducted at the NASA Ames sustainability base [40], where
we monitored the participants’ plugload consumption under the action of incentives
and feedback, as described in Chapter 2. The data obtained from the study was
used to construct the occupant plugload models. In particular, we constructed
models based on statistical assumptions to explain the observed data. The statistical
analysis is presented in Chapter 3. A major contribution of our study is the inclusion
of occupant plugload models for demand management in smart buildings.



3

1.2 Weather forecast-based solar prediction
While demand management in buildings is necessary to meet a target lower than
usual demand [1], it is also important to increase reliance on renewable power
supply. However, this is difficult for several reasons including rapid fluctuations,
unpredictability, and lack of market regulation [45]. Since environmental fluc-
tuations inevitably affect the renewable generation, it is useful to forecast these
fluctuations. Using such forecast plus a model that maps the environmental states
to the renewable output, we can forecast the renewable output. While there exist
several forecast products from the National Oceanic and Atmospheric Administra-
tion (NOAA), the spatial resolution of each of these products are typically on the
order of kilometers [11]. Resolution at such scales are inadequate for purposes of
localized predictions over smaller spatial scales.

In this work, we are concernedwith the problem of solar power forecasting. Methods
proposed in the literature to forecast solar power are either based on time-series
power data, global weather forecast data, or local weather measurement data. In
models such as those in Pedro et al. [46], time-series power data with no exogenous
inputs are used for short-term forecasting with a horizon of up to two hours into
the future. However, using only past power data for forecasting does not directly
account for weather-related changes in the forecasting model. In [6] [65], both
time-series power data and global weather forecasts based on mesoscale models
were used for forecasting. Bacher et al. [6] conclude that incorporating weather
data into the forecast model results in a 35% better performance compared to using
only time-series power inputs. However, using only global weather forecast data
does not incorporate local characteristics such as shadows, bird movements, and
other natural occurrences into the weather forecast model. Therefore, incorporating
information about the local characteristics into the forecast model results is expected
to refine the forecasts for localized predictions. Typically, the information about local
characteristics are encoded in the on-site sensor data, and hence such data can help
refine the forecast models. There have also been forecasting approaches that use
local weather data measurements, such as the models in Chen et al. [12]. However,
using only local weather data does not allow the model to be sensitive to global
weather changes.

In order to overcome these limitations, we attempt to construct amodel that leverages
the advantages of previously mentioned approaches. In particular, we tailor the
global weather forecasts to incorporate local weather characteristics based on sensor
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measurements. This allows for localizing solar forecasts at the level of rooftops
while simultaneously leveraging the contributions of global weather changes. We
then use a data-based approach to map these local weather forecast inputs into
corresponding solar power outputs at a given plant. The details of the approach are
presented in Chapter 5. Our main contribution to the field of solar power forecasting
is to provide localize solar forecasting by integrating localized weather prediction
models with data-based power prediction models.

1.3 Energy management in smart buildings
Given the weather-driven solar generation models and plugload demand models
discussed in Sections 1.1 and 1.2 respectively, we turn our attention to energy
management in commercial buildings. Along with demand-supply, we also consider
the presence of energy storage, which is integral to a sustainable smart building
design [38] [13] [57]. We also assume that the building is connected to the grid,
which acts as both an infinite source, and an infinite sink from the perspective of the
building. The grid is also assumed to pre-specify cost and selling prices associated
with grid transactions. The energy management problem then seeks decisions that
determine the power flows between various components in the building, thereby
incurring grid transaction-related costs. As an example, a decision might direct the
renewable output to charge the energy storage component instead of exporting it to
the grid. Such a decision could be based on forecasts about poor weather conditions
and high electricity prices in the immediate future. Such decisions might incur
less electricity bills compared to those decisions which always result in exporting
renewable output to the grid.

We employ the above framework consisting of demand1, supply, storage, grid, and
pricing to solve a decision problem to minimize a pre-specified cost. This problem
is known as the optimal decision problem, and the corresponding solutions are
known as optimal decisions. Although related formulations have been studied in
recent literature [61] [55] [34] with several simplifications, this problem has not
been solved in its present form to the best of the author’s knowledge. The novelty
in this formulation is two-fold: (i) we incorporate weather-related uncertainties
into the solar predictions, and (ii) we incorporate controllable plugloads into the
demand model, thereby making it partially controllable. In Wang et al. [61],
controllable solar generation and load models were employed within a deterministic

1We use the terms demand and load interchangeably to refer to the instantaneous power usage
within the building
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prediction framework to obtain power flows based on model predictive control
(MPC) techniques. In Kanchev et al. [34], non-controllable deterministic demand-
supply models were considered, but without the notion of optimality. However,
in this case, the renewable supply is treated as a non-controllable weather-driven
first order Markov chain under the assumption that the solar power output operates
at its maximum power point. Furthermore, the demand is assumed to be partially
controllable due to the presence of controllable plugloads, which is modeled as a
controllable markov chain. In Ono [43], a distributed robust control method was
proposed for a smart grid using a chance-constrained programming framework that
accommodates risky solutions with bounds on the constraint-failure probabilities.
In comparison, our work involves developing non-risky solutions for optimal energy
management in smart buildings wherein the solutions are guaranteed to satisfy the
constraints. Furthermore, Ono describes a chance-constrained model predictive
control framework to solve the optimization problem while this work focuses on
using stochastic dynamic programming to determine the optimal control within a
Markov decision process framework. Also, unlike in [55] and [34], where the
dynamics of the energy storage were not explicitly considered, we regard the energy
storage as a dynamical system along with its charging and efficiency constraints.
Unlike the conventional Markov chain models [4][39] which employ stationary
Markov chains, we incorporate time-dependent transitions in the solar and the load
Markov processes by representing them as cyclo-stationary stochastic processes.
Given the representations of these individual components which constitute aMarkov
decision process in the storage state, we solve for the optimal decisions using a
stochastic dynamic programming (SDP) approach as detailed in Chapter 6.

1.4 Main Contributions
The main contributions of this dissertation are as follows:

1. This dissertation provides a novel experimental design for studying occupant
plugload consumption in the presence of feedback and incentives. Unlikemost
related studies which monitor aggregate consumption, we adopt an individual
device level real-time monitoring of each participant using smart powerstrips,
and provide a detailed statistical analysis on the data from the experiment
consistent with the design assumptions.

2. This dissertation addresses the challenging problem of occupant plugload
modeling based on feedback and incentive interventions. To the best of
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our knowledge, there do not exist studies that quantify the mechanisms by
which these interventions influence the observed changes in the occupant
plugload consumption. We employ autoregressive models with exogenous
interventions as the tool to explain these mechanisms.

3. This dissertation proposes a novel local weather forecastingmodel via integra-
tion of global weather forecasts with local sensor-based data. Several methods
have been proposed in literature based exclusively on local data or global data,
and we suggest that the performance of a conventional autoregression-based
local prediction model can be augmented using global weather forecasts as
exogenous inputs.

4. This dissertation introduces a novel plugload-integrated energy management
framework by integrating controllable plugload models and weather-driven
solar generation models in the presence of energy storage and pricing mod-
els. This contribution extends energy management in buildings into a new
paradigm by including occupants-in-the-loop.

1.5 Dissertation Outline
This dissertation is organized as follows: Chapter 2 describes the experimental
setup. It is followed by statistical analysis of the experimental data in chapter 3. The
plugload-integrated controllable demand model is described in Chapter 4. Solar
forecasting based on weather forecasts is presented in Chapter 5. The entire energy
management framework and its application to address the optimal decision problem
is described in Chapter 6, followed by concluding remarks in Chapter 7.
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C h a p t e r 2

EXPERIMENTAL DESIGN

We are interested in understanding and quantifying the influence of incentives and/or
feedback on the plugload consumption of building occupants. We employ the sci-
entific method [27] to gather this knowledge. Our research hypothesis is:

Providing incentives and/or feedback to building occupants results in the reduction
of their plugload consumption.

A logical consequence of this hypothesis is that the average plugload consumption
of the occupants in the presence of an incentive and/or feedback is less than their
average plugload consumption of the occupants in the absence of incentive or
feedback. Given that the prediction is testable, we designed and conducted a carefully
controlled plugload experiment within the constraints imposed by the available
facilities, participants, and the institutional review board (IRB). This experiment
enabled us to record observations that could be used to test these predictions, and
hence the validity of the research hypothesis. We discuss various aspects of the
experimental setup in the following sections.

2.1 Location of the experiment
The two plugload experiments were conducted in three buildings at the NASA
research park in Mountain View, California. One experiment was conducted at the
NASA sustainability base, a test-bed for a typical work environment in a medium
office building. The other experiment was conducted at the CMU SV campus in
buildings 19 and 23, a test-bed for an academic environment. Let N and C denote
the plugload experiments at NASA and CMU respectively.

2.2 Experiment design
The experiment was designed to monitor the power usage of occupant plugloads
in the presence of the treatment factors such as incentives and/or feedback. There-
fore, the response variable was the time-averaged power usage of a participant, and
the input variables were the incentives and/or feedback provided to the participant.
The input factors are also known as treatment factors or simply, treatments. The
incentives were provided in the form of monetary rewards to promote energy conser-
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vation among the participants. The feedback was provided by a web browser-based
self-monitoring dashboard to raise awareness about the participant’s own power
use. In designing the experiment, we took note of the difference between providing
feedback and receiving it because different participants receive different amounts of
feedback based on the attention paid to their dashboard. We intended to quantify
the attention paid by each participant based on the time spent by the participants on
their respective dashboards.

2.2.1 Design principles and implementation
The objective of the experiment is to determine the impact of feedback and/or
incentives on building occupants. The objective of the experimental design is then
to strengthen the causal connection between the treatment/input and the response
variables. The objective of the design is realized by eliminating or minimizing
the effect of nuisance factors using the core principles of experimental design [37],
namely, randomization, replication, and blocking. These principles have a direct
impact on the validity of the statistical assumptions used to analyze the experiment’s
results. The principles and their implementation are described below.

2.2.1.1 Randomization

We recruited subjects based only on thewillingness to participatewithout attempting
to introduce systematic bias. This ensures that any effect that might be observed due
to the treatment on the sample is not due to the random factors such aswork schedules
or work loads. Furthermore, this principle helps us to make the assumption of
random sampling from the underlying occupant population for purposes of statistical
analysis.

2.2.1.2 Replication

While each subject is sampled randomly from the occupant population, this alone
does not guarantee that any effects observed due to a treatment/input are generaliz-
able to the entire population. A treatment can be considered truly effective if it is
repeatable over the population. Therefore, the principle of replication is important.
We implement this principle by assigning several subjects to each treatment factor
(feedback and/or incentive). This allows us to draw more general inferences under
the assumption of a replicated design. The number of replicates in an experiment is
commonly known as the sample size.
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2.2.1.3 Blocking

While randomization and replication allow for averaging out the effects of random
factors, there is a danger of introducing systematic bias due to practical constraints.
For example, in this investigation, factors related to the work environment, such as
industry vs academic, may affect the results from the experiment as found in the
literature [67]. For this reason, we intend to block the influence of this nuisance
factor by conducting separate experiments, one in a university environment, and
the other in an industry environment. Though blocking limits the inferences drawn
to a university or an industry setting, it helps in homogenizing the experimental
conditions. This homogenization helps in minimizing the effects of the nuisance
factor across the individual samples within an experiment.

Despite the efforts to randomize and block away the effect of nuisance factors, certain
nuisance factors may still manage to confound any observed experimental effects.
This arises due to incomplete randomization. For example, the randomization might
not have occurred across all levels of all nuisance factors. This is especially true in
the case of subjects with intrinsic variability, such as humans. Therefore, we adopt
a special case of the randomized block design called the matched pairs design to
further strengthen the causal connection between the treatments provided and any
observed effects. This is done by exposing the same set of subjects to both the
baseline and the treatment conditions. In this manner, the effect of treatment across
subjects is deduced by comparing each subject’s response under treatment to his/her
baseline response.

2.2.2 Dashboard design
The dashboard was designed to provide relevant information to the participants to
help reduce their energy consumption. The elements of the feedback consisted
of appropriate information and analytics that were previously found effective in
motivating energy conservation among building occupants in the workplace [66]
[67] [29]. The various power analytics on the dashboard were represented by
easily comprehensible elements with minimal cognitive and visual load [9]. The
designed dashboardwas implemented in PHP (back end), HTMLCSSand JavaScript
(front end) by the software developers who worked on this project. An image of
the dashboard consisting of these analytics is shown in Figure 2.1. The different
graphical features of the dashboard are explained below in section 2.2.2.1.
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2.2.2.1 Graphical elements

1. Radio buttons (upper left): The radio buttons represent the comfort reporting
feature of the dashboard. It consists of seven levels, in line with the ASHRAE
7-point scale for reporting thermal comfort [17] [64]. This element served
two purposes, namely, (i) engaging the attention of the participants, and (ii)
building comfort models using the reported comfort values in light of the
building conditions.

2. Dial (center): The central dial provides a comparison of the participant’s
instantaneous power use to that of his/her historical baseline power use. The
dial’s needle was set to saturate beyond the maximum power consumption
represented by the dial. Similar analytics were found to motivate households
to reduce energy consumption [49]. In this study, the dial was calibrated
using the baseline data as follows. The average baseline power use computed
after eliminating the power data below a threshold of 5 W was chosen to
represent the zenith of the dial. The threshold was chosen to prevent the low
consumption during either non-business hours or absence from pulling down
the mean value on the dashboard dial. This ensured that the needle wouldn’t
stay pegged (saturated) during hours of normal operations. The participants
were asked to interpret the dial as representing their current performance in
light of their typical performance.

3. Scoreboard/Leaderboard (upper right): The scoreboard helps participants to
realize their position in the competition to remain ahead of the other partici-
pants. In cases where an incentive is provided, the participant with the highest
score (rank 1) by the end of the day (11:59:59 PM local time) is declared the
winner. The score of a participant is a measure of the improvement of the
participant over his/her baseline. Section 2.2.2.2 below describes the scoring
mechanism in further detail.

4. Line charts (lower left): The line chart provides a comparison between the
participant’s total instantaneous usage and the average participant’s total in-
stantaneous usage. Such social comparisons have shown success inmotivating
participants to reduce energy consumption [3] [5].

5. Bar charts (lower right): The bar charts provide channel-specific feedback to
the participant. While the other power analytics represent the participant’s
aggregate consumption across all channels/sockets, the bar chart represents
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the consumption split across these channels. Therefore, the bar chart provides
actionable feedback to the participant by indicating the power consumption
across all devices connected to the channels.

6. Message box (top right): An additional feature to send messages to the par-
ticipant’s dashboard was provided in the dashboard. This was used to notify
the winners during the study by sending a link to the dashboard from an email
reminder.

2.2.2.2 Score computation

The scoreboard described above represents the participant’s score in comparison
to the other participants. In case of the experiments involving incentives, the
participant with the highest score at the end of the day (11:59:59 PM local time)
was declared the winner and was provided the incentive. The steps involved in the
scoring mechanism are described as follows:

1. The time-averaged power across each channel was computed for the average
baseline day by excluding data points below a threshold (5 W). The threshold
served as a measure of power consumption during absence or inactivity.

2. The channel-specific averages computed above were aggregated over all the
channels assigned to a participant to obtain the average active baseline con-
sumption of a participant.

3. The above steps were repeated for all the participants to obtain their individual
baseline usage. This informationwas incorporated into the score computation.

4. During each day of the incentive experiment, average power consumption of
the participant averaged across the time-of-activity was determined similar to
the baseline case. The only difference between the average power computation
during the experiment day and during the baseline days was that the average
power during the experiment day was computed from local midnight till the
time the score computation occurred.

5. The score was then computed as the percentage improvement during the
experiment in comparison to the baseline, and can be written as score = 900+
100× baseline_average−expt_average

baseline_average . The variable baseline_average represents
the baseline average power computed for a given participant in step 2 above,



12

and the variable expt_average represents the experiment day average power
computed for a given participant in step 4 above.

The 5W threshold, which was unknown to the participants, ensured that participants
could not win due to absence or inactivity. The participants were informed that the
scoring mechanism only rewards reducing power consumption via active changes
as opposed to reducing the consumption via passive changes such as turning off
devices, or by being inactive or absent. Despite all the inactivity measures, it was
also possible that a participant could win due to constant activity such as leaving a
computer monitor on. In such cases, a moving average of time metric was used to
eliminate such participants from winning. In this manner, a participant could not
win an incentive without active changes in power consumption.

2.3 Recruitment
As stated in section 2.1 above, the study locations consisted of participants from
three buildings. The recruitment for the experiments began after the approval from
both the CMU and NASA Institutional review boards. The reader is referred to
chapter A in the Appendix for more information regarding the IRB approvals.

The recruitment for the experiment at NASA was conducted by holding one-on-
one meetings with the occupants in the building who were potentially interested in
participating in the study. The interested candidates signed the consent forms (ARC
475), and were briefed about the study in further detail.

The recruitment for the experiment at CMU was conducted by approaching the
potential participants in buildings 19 and 23, which constitute the CMU campus in
Silicon Valley. The pool of interested candidates comprised of students, faculty, and
staff. The interested candidates were briefed about the study in further detail.

The recruitment process was followed by the installation of the smart powerstrips
[20] for each participant at NASA and CMU, thereby enabling us to monitor the
power consumption of the participants.

2.4 Data collection
The response variable (power consumption) was monitored by sensors from En-
metric systems [20], which were placed between the power source and the load.
The inputs provided to the participants were incentives and/or feedback. These
incentives were provided as equivalents of monetary rewards, whose values ranged
from $5 to $50 in multiples of $5. The feedback was provided in the form of a web
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application, that contained a personalized energy dashboard displaying power con-
sumption analytics of the participants in relation to their respective baseline usages.
The amount of feedback received by the participants was quantified based on the
time spent by the participants on their dashboards. Therefore, the feedback-related
input variable was monitored by monitoring the amount of screen time associated
with the dashboard of every participant.

2.5 Execution of the experiment
The two experiments were conducted based on the same principles but with different
objectives. For example, in theNASA experiment, therewere no incentives provided
to the participants. These differences in objectives led to the differences in execution
of both experiments. The execution procedures of both experiments are summarized
below:

2.5.1 Experiment 1 at NASA sustainability base
The experiment at the sustainability base was conducted in two phases. The first
phase was the baseline phase, wherein the power consumption data of each partic-
ipant was recorded in the absence of any treatment variable. This data constituted
the baseline dataset, which was assumed to represent the typical usage patterns of
the participants. Let the baseline phase be denoted by P1N. The second phase was
the phase of the experiment, wherein all the participants were provided with the
dashboard feedback with all the five elements indicating their power analytics and
the scoreboard/leaderboard. Let this phase be represented by P3N. An explanation
of each feature of the dashboard was provided as shown in Figure 2.3. Furthermore,
the time spent by each participant on the web-based dashboard screen was recorded.
The screen time variable served as an indication of how much attention was paid
by each participant to his/her respective dashboard. In the NASA experiment, the
baseline phase was conducted for a period of 5 weeks from 12 Sep 2016 to 17 Oct
2016, and the phase of the experiment was conducted for a period of 4 weeks from
18 Oct 2016 to 11 Nov 2016 as shown in figure 2.2.

2.5.2 Experiment 2 at CMU buildings 19 and 23
The experiment at the CMU campus (buildings 19 and 23) was conducted in four
phases, and its schedule is shown in Figure 2.6. The first phase was the baseline
phase was conducted for five weeks from 12 Sep 2016 to 17 Oct 2016, wherein
the power consumption data of each participant was recorded in the absence of any
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treatment variable. This data constituted the baseline dataset, which was assumed
to represent the typical usage patterns of the participants. We represent this phase
of the experiment by P1C.

The second phase of the experiment was the incentive only phase phase was con-
ducted for two weeks from 18 Oct 2016 to 30 Oct 2016, wherein all the participants
were asked to compete for the incentive by reducing their power consumption with
respect to their own baseline consumption. Let this phase of the experiment be
denoted by P2C. In order to help participants realize their position in the compe-
tition and help them be aware of the competition itself, scores and rankings of the
participants were displayed to them. The participants were asked to compete for
incentives, which were provided during each weekday. The values of the incentives
provided each day varied in their value between $5 and $50 in a random order.
Therefore, there was no systematic bias introduced due to the order of the incentive
treatments. The were awarded to the individual with the highest score at the end of
the day (11:59:59 PM local time). The score was displayed to the participants on
their respective dashboards on a near real-time basis (updating once a minute), along
with the scores of the other participants. However, there was no other feedback pro-
vided on the participants’ dashboards regarding their power consumption. In other
words, only elements 1 and 3 were displayed on the dashboard during the incentive
phase. The near real-time score was quantified the improvement of a participant
over his/her average baseline consumption, based on their average power usage from
midnight (00:00:00 AM local time) until the time the score was computed. An
explanation of the relevant elements was provided to the participants as shown in
Figure 2.4.

The third phasewas the dashboard feedback only phasewas conducted for twoweeks
from 31 Oct 2016 to 13 Nov 2016, wherein all the participants were provided with
the dashboard feedback containing power analytics relating to the comparison of
individual power consumption against individual historical usage as well as to that of
the participant pool. We represent this phase of the experiment byP3C. Specifically,
all the elements of the dashboard except for the scoreboard/leaderboard were made
visible to the participants. Furthermore, the time spent by each participant on the
web-based dashboard screen was recorded. The screen time variable was assumed
to serve as an indicator of howmuch attention was paid by each participant to his/her
respective dashboard. An explanation of the relevant elements were provided to the
participants as shown in Figure 2.5.
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Device name Number of devices
Monitor 21
Laptop 11
Docking station 9
Desktop 2
Headset 7
Phone 9

Table 2.1: Device list of participants in the NASA experiment

Device name Number of devices
Monitor 23
Laptop 13
Desktop 8
Phone 6

Table 2.2: Device list of participants in the CMU experiment

The final phase of the experiment was the both incentive and dashboard feedback
phase of the experiment was conducted for two weeks from 14 Nov 2016 to Nov
25 2016, wherein all the participants were provided with both incentives and the
dashboard feedback. The proximity to winning the incentive was indicated by the
scoreboard component of the dashboard as provided in the second phase. All the
other elements of the dashboard representing power analytics of the participant with
respect to their historical usage and the participant pool were also made available
during the both incentive and dashboard phase of the experiment. Let the both
incentive and dashboard feedback phase of the experiment be denoted by P4C. The
explanations provided are similar to the complete dashboard study at NASA and are
shown in Figure 2.3.

2.5.3 Device list
A list of devices associated with each participant were also listed for personalizing
the feedback, both for the CMU and the experiment. A list of devices for the NASA
and CMU experiments are provided in the tables 2.1 and 2.2 respectively.

Prior to the experiment, the participants were provided with an information sheet
which provided them information on how to reduce energy consumption, should
they wish to. In other words, this information was intended as a tool to help them
realize the change in their energy-related behavior, if any. In that manner, we
hoped to have any behavioral change reflect in the individual’s energy consumption.
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The sheet contained a graphical representation of possible energy conservation
practices associated with the majority of devices present in both the experimental
environments, as shown in Figure 2.7.
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Figure 2.1: A screenshot depicting all the elements of the dashboard
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Figure 2.2: NASA experiment schedule
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Power dial (top center) 
The central dial represents your instantaneous power use in the light of your baseline use  

- green zone indicates less than baseline use,  
- yellow zone indicates around baseline use, and  
- red zone indicates higher than baseline use 

 
Bar chart (right bottom) 
The bar chart represents your socket/channel-specific usage across all the channels in your powerstrip(s). The labels are based 
on the last 4 digits of the MAC address of your powerstrip, found on the back side of your powerstrip, and the socket/channel 
number, illuminated in green on the top of every socket. 

 
Line chart (left bottom) 
The green line in the line chart represents your instantaneous power usage aggregated across all of your powerstrips. The 
orange line represents the instantaneous aggregated consumption of an average user. In other words, it represents the average 
of aggregated usages represented by the green line charts in every dashboard. 

- If green is below (above) the orange, then your instantaneous aggregate consumption is less (more) than that of the 
“average” user’s instantaneous aggregated power consumption 
 

 
 
Comfort report (left top) 
The comfort reporting feature allows you to report your comfort levels at the click of a button.  

- Hit the radio buttons to report your comfort levels 
- You are strongly encouraged to report the comfort levels multiple times at different times of the day 

 
Scoreboard/Leaderboard (right top) 
The scoreboard ranks your usage in the participant pool anonymously. The less your rank, the better your performance. 

- Your score is determined by how your power since midnight today (00:00:00 till NOW) fares in comparison to your 
average baseline use. 

- Please note that the scoring mechanism accounts for inactivity/absence.  
o In other words, credit (or discredit) is not awarded for reducing consumption of energy due to passive 

means such as by absence (or) by remaining inactive. Credit is awarded only for reducing energy usage 
during hours of active operation. 

- Ranks are assigned based on scores. In other words, ranks are based on how your improvement over your baseline 
consumption compares to the others’ improvement over their baseline consumption. 

Figure 2.3: Information provided to the participants during the complete dashboard
experiment
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Comfort report (left) 
The comfort reporting feature allows you to report your comfort levels at the click of a button.  

- Hit the radio buttons to report your comfort levels. 

 

- You are strongly encouraged to report the comfort levels multiple times at different times of the 

day. 

 

 
 

Scoreboard/Leaderboard (right) 
The scoreboard/leaderboard ranks your usage in the participant pool anonymously. The lower the rank, the 

better your performance. 

- Your score is determined by how your power since midnight today (00:00:00 till NOW) fares in 

comparison to your average baseline use. 

-  

- Please note that the scoring mechanism accounts for inactivity/absence.  

 

o In other words, credit (or discredit) is not awarded for reducing consumption of energy due 

to passive means such as by absence (or) by remaining inactive. Credit is awarded only for 

reducing energy usage during hours of active operation. 

 

- Ranks are assigned based on scores. In other words, ranks are based on how your improvement over 

your baseline consumption compares to the others’ improvement over their baseline consumption. 

 

Figure 2.4: Information provided to the participants during the incentive only ex-
periment
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Power dial (top center) 
The central dial represents your instantaneous power use in the light of your own baseline use  

- green zone indicates less than baseline use,  

- yellow zone indicates around baseline use, and  

- red zone indicates higher than baseline use 

 

 

 

Bar chart (right bottom) 
The bar chart represents your socket/channel-specific usage across all the channels in your powerstrip(s). The 

labels are based on the last 4 digits of the MAC address of your powerstrip, found on the back side of your 

powerstrip, and the socket/channel number, illuminated in green on the top of every socket. 

- Use the knowledge about the high power devices to shape your power conservation strategies, 

should you wish to 

 

Line chart (left bottom) 
The green line in the line chart represents your instantaneous power usage aggregated across all of your 

powerstrips. The orange line represents the instantaneous aggregated consumption of an average user. In other 

words, it represents the average of aggregated usages represented by the green line charts in every dashboard. 

- If green is below (above) the orange, then your instantaneous aggregate consumption is less (more) 

than that of the “average” user’s instantaneous aggregated power consumption 

Figure 2.5: Information provided to the participants during the feedback only phase
of the experiment
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Figure 2.6: CMU experiment schedule
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Figure 2.7: Possible energy conservation practices associated with workspace de-
vices
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C h a p t e r 3

STATISTICAL INFERENCE

The results from the experiments at NASA and CMU were analyzed in the light
of the assumptions made during the experiment design. The analysis involved
hypothesis testing and confidence interval estimation based on a set of statistical
assumptions. For developing regression-based models from the experimental data,
the classical linear regression model are employed. In what follows, we describe
the statistical analysis of the data from the NASA experiment followed by that of
the CMU experiment. For the purpose of analysis, we consider the time window to
be situated within the time frame of a day. Let the time window within a day be
represented by [t0, t f ), where (t f − t0) denotes the number of seconds elapsed since
the begin of the time window t0 >= 0 until the end of the window t f < 86400.

3.1 Analysis of the NASA experiment
The objective of the NASA feedback experiment was to quantify the impact of
feedback on energy consumption. We start our analysis by introducing the relevant
notation. For the baseline phase of the experiment, let the response variable (average
power consumption) of the ith participant during the time interval [t0, t f ) be denoted
by yP1Ni

(t0, t f ). For the experiment phase, let the response and the input variables
of the ith participant during the time interval [t0, t f ) be denoted by yP3Ni

(t0, t f ) and
xa
P3Ni
(t0, t f ) respectively. The input variable refers to the screentime spent by the par-

ticipant on the dashboard-based feedback provided to him/her. In order to perform
statistical inference, we assume that the observed data points are the realizations of a
random sample from the occupant population. This assumption is supported by the
randomized design of the experiment. Let the random sample corresponding to the
baseline response observation of the ith participant during the time interval [t0, t f )
be denoted by YP1Ni

(t0, t f ). Similarly let the corresponding random samples associ-
ated with the response and input observations of the experiment be represented by
YP3Ni
(t0, t f ) and Xa

P3Ni
(t0, t f ) respectively. The realizations of these random samples

from the current experiment are represented by the lower case names yP3Ni
(t0, t f )

and xa
P3Ni
(t0, t f ) respectively. Also, we represent the statistical summaries of random

samples graphically using box plots. For purposes of interpretation, the legend
associated with the box plot format used in this dissertation is shown in Figure 3.1.
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Figure 3.1: Legend associated with the box plot legend for representing statistical
sample characteristics

3.1.1 Statistical assumptions
Given the random samples, we are interested in drawing inferences about the popula-
tion behind the sample. To enable statistical inferences, we assume that the response
samplesYP1Ni

(t0, t f ) andYP3Ni
(t0, t f ) have a mean, variance and we represent them by(

µP1Ni
(t0, t f ), [σP1Ni

(t0, t f )]2
)
and

(
µP3Ni
(t0, t f ), [σP3Ni

(t0, t f )]2
)
respectively for the

different phases of the experiment. Furthermore, for purposes of regression anal-
ysis, we are almost always not concerned with the statistics of the input sample
Xa
P3Ni
(t0, t f ) since we deal only with the conditional expectation of the response

random variable conditioned upon the input variable. We refer the readers to [10]
for further discussion on the requirement of specifying distributions of the input
random variables in the context of regression analysis.
Given the knowledge about the statistics of the response variables, we draw our
attention to the population constituted by differences between the random vari-
ables pertaining to the baseline and experiment responses. Let this difference
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YP1Ni
(t0, t f ) −YP3Ni

(t0, t f ) be represented by YNi (t0, t f ). Given a matched pairs design
in our case, this difference captures the improvement of an experiment response
sample over its corresponding baseline response sample, both drawn from the pop-
ulation of occupants. Furthermore, any significant difference between the response
variables during the experiment and baseline conditions can be attributed to a change
in experiment conditions instead of attributing the difference to idiosyncratic factors
in a participants behavior. In other words, the matched pairs design reduces the ef-
fects of confounding factors and strengthens the causal relationship, if any, between
the differential response and the experimental conditions.

3.1.2 Hypothesis testing and confidence interval estimation
The statistical significance of the difference in means between the baseline and the
experimental response samples was tested via a paired t-test. We note that the t-test
can be used even for departures from the normality assumption in the population,
more so if differences in populations are compared or if the sample sizes are large
[7] [8], which happens to be case in our matched pairs t-test. The t-test requires that
the means of the samples from the experiment be normally distributed and in our
case, this assumption can be strengthened by using larger number of samples and
appealing to the central limit theorem. For this t-test, let t0 refer to midnight and
t f denote the subsequent midnight so that t0 = 0 and t f = 24 × 3600 = 86400 sec.
This allows the sample observations to correspond to average power data, averaged
across the day for each day during both the baseline phase P1N and the experiment
phase P3N. The null and the alternative hypotheses are presented below:

1. HN0 : µP1Ni
(0, 86400) − µP3Ni

(0, 86400) = 0

2. HNA: µP1Ni
(0, 86400) − µP3Ni

(0, 86400) , 0

Under the above assumptions, we conducted a paired sample two tailed t-test. The
mean pre-treatment score was found to be 55.16 W and the mean post-treatment
score was found to be 51.93 W. A matched-pairs t-test was performed to determine
if the difference was significant. The t-statistic was significant at the .05 critical
alpha level, t(219)=4.6512, p=5.7063 × 10−6. Therefore, the evidence against the
null hypothesis is statistically significant (α = 0.05) and we conclude that the power
usage during the experiment phase was (statistically) significantly different than
the power usage during the baseline phase. The corresponding 95% confidence
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interval of the mean parameter µP1Ni
(0, 86400) − µP3Ni

(0, 86400) was found to be
[3.74,9.26] W, or equivalently, a reduction of [6.79,16.78]% with a confidence of
95%. Since the difference is difference in means is positive, the conclusion is that
the experimental usage µP3Ni

(0, 86400) is (statistically) significantly less than the
baseline usage µP1Ni

(0, 86400). The statistical summary of both the experiment and
the baseline phase energy consumption (kWh) is shown in Figure 3.2.

Figure 3.2: Statistical summary of the data from the NASA experiment

3.1.3 Regression-based modeling
Given the observed reduction, we seek explanations to quantify this reduction based
on the knowledge of input variables. For the purposes of regression analysis, let de,
db denote a day in the experiment dataset and the corresponding day in the baseline
dataset respectively. We also use a single argument h ∈ {1, ..., 24} to represent the
hour of a day enclosed in an interval [th

0 , t
h
f ]. Therefore, we can write the experiment

and baseline hourly consumption of the ith participant during hour h as YP3Ni
(h),

YP1Ni
(h) respectively. Also, let ’:’ denote the sample mean of the participant pool

when used in place of ’i’, the index corresponding to the ith participant. We then
hypothesize that the mean differential response ∆µN:(h) := µP1N: (h) − µP3N: (h) can
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αN βN γN σε.

-0.05116 0.8253 -0.00453 4.0583

Table 3.1: Regression model parameter estimates from the NASA experiment

be modeled as a linear first-order autoregressive model AR(1) with screentime as
the exogenous regressor. Written otherwise,

∆µN:(h) = αN + βN∆µN:(h − 1) + γNxa
P3Ni
(h − 1) + εh (3.1)

The time-lagged dependent term ∆µN:(h − 1) is instrumental in weakening the
residual serial correlation across the various time instants. Figure 3.3 shows the
impact of adding time-lagged dependent variables on the serial correlation of the
errors. The consistency in the residual serial correlation after one lag indicates that
most of the time-dependent information is captured by the introduction of one-lag
in the model, and introducing additional lags does not contribute to significant new
information as far as weakening the residual serial correlation is concerned. From
the experimental standpoint, this time-lagged dependent variable captures the change
in experiment conditions with respect to the baseline conditions. For example, any
change in work schedules between the baseline and the experiment can be captured
by the time-lagged dependent term in the model, and hence allow us to strengthen
the assumption that the residuals corresponding to consecutive hours are a result
of random factors between those hours and that the residuals are uncorrelated in
time given the model inputs. Along with the residual autocorrelation plot, the root
mean square error as a function of time-lags (shown in figure 3.4) was considered to
make the decision about the number of lags that need to be introduced in the model.
We also note that the above model can be interpreted as representing ∆µN:(h)

by a first-order discrete-time continuous-state Markov chain with screentime as the
exogenous input. Consequently, we also observe that the power consumption during
the current hour YP3Ni

(h) depends on the power consumption during the previous
hour YP3Ni

(h − 1). Therefore, we note that YP3Ni
(h) also follows a Markov process

with the baselines and screentime as exogenous inputs. Given this rationale behind
the autoregressive model, we proceed to estimate the coefficients of the model.
The parameters of the linear model are listed in table 3.1, and were estimated
using ordinary least squares (OLS) by the MATLAB system identification toolbox.
The prediction performed on the test dataset is shown in the figure 3.5. The figure
represents the power consumed (absolute power and not the differencewith respect to
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Figure 3.3: Serial correlation of residuals against the number of time-lagged depen-
dent variable in the NASA experiment

the baseline) in the experiment against the predictions, along with their confidence
intervals. The root mean square error was found to the 5.19 W, and the 95%
confidence interval (averaged across all data points) was found to be [13.18, 17.18]
W.

3.1.4 Discussion
Our findings indicate that the average plugload reduction between the baseline and
the experiment is 11.79%, along with a 95% confidence interval corresponding
to a [6.79,16.78]% reduction per occupant. Prior to the statistical analysis, the
inactivity of the participants (using no power) were accounted for by applying a
threshold of 2.5 W per channel on the dataset during the pre-processing stage. This
ensured that any savings estimated are only due to reducing power consumption
actively. However, this also means that the analysis didn’t account for any change in
behavior due to turning off devices when not in use, and hence our estimates may
be considered conservative. The observed significant reduction could be the result
of feedback-induced behavioral changes captured by the screentime variable or due
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Figure 3.4: Residual RMS against the number of time-lagged dependent variable in
the NASA experiment

to changes induced by factors such the hawthorne effect indicated by the bias term
[56]. In the auto-regressive model, we note that by increasing the number of lags the
root mean squared error does not vary much as shown in Figure 3.4. This suggests
that the relationship between the inputs and the output in the auto-regressive model
is non-linear, which can only be approximated by a linear model. Furthermore,
since the residuals have zero-mean, and are uncorrelated, we note that the extent
to which the random factors dictating the residual processes result in a constant
variance in the residuals determines the validity of the conditions for the application
of the Gauss-Markov theorem. Given the validity of these conditions, the linear
least squares estimator can be considered the best linear unbiased estimator.

3.2 Analysis of the CMU experiment
The objective of the experiments conducted at CMU was to quantify the impact
of feedback and incentives on occupant plugload consumption. This objective is
realized by comparing the power usage from the three phases of the experiment
P2C,P3C, and P4C against the baseline usage to draw inferences about the impact
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of incentives alone, feedback alone, and both incentives and feedback respectively.
We introduce the relevant notation prior to the analysis. Let the response variable
(average power consumption) of the ith participant during the time interval [t0, t f )
within the baseline phase P1C be denoted by yP1Ci

(t0, t f ). For the incentive experi-
ment phase P2C, let the response and the input variables of the ith participant during
the time interval [t0, t f ) be denoted by yP2Ci

(t0, t f ) and
(
xa
P2Ci
(t0, t f ), xi

P2Ci
(t0, t f )

)
re-

spectively. The input variables in the ordered pair represent the screentime spent
on the scoreboard and the incentive quantity respectively. In this experiment, the
incentive was held fixed during each day. Written otherwise, xi

P2Ci
(t0, t f ) is constant

between t0 = 0 and t f = 86400 sec for a given observation. Similarly, for the
dashboard feedback experiment phase P3C, let the response and the input vari-
ables (screentime) of the ith participant during the time interval [t0, t f ) be denoted
by yP3Ci

(t0, t f ) and xa
P2Ci
(t0, t f ) respectively. During the last phase of the experi-

ment P4C consisting of both the feedback and incentives, let the response and the
input variables of the ith participant during the time interval [t0, t f ) be denoted by
yP4Ci
(t0, t f ) and

(
xa
P4Ci
(t0, t f ), xi

P4Ci
(t0, t f )

)
respectively. In this case, the input ordered

pair represents the time spent on the dashboard and the incentive amount respec-
tively. In order to perform statistical inference, we assume that the observed data
points are the realizations of a random sample from the occupant population. Let
the random sample corresponding to the response observations of the ith participant
during the time interval [t0, t f ) for each of the phases P1C, P2C, P3C, and P4C be
denoted by YP1Ci

(t0, t f ), YP2Ci
(t0, t f ), YP3Ci

(t0, t f ), and YP4Ci
(t0, t f ) respectively. Simi-

larly, let the corresponding random samples associated with the input observations
during each of the three experiment phases P2C, P3C, and P4C be represented
by

(
Xa
P2Ni
(t0, t f ), X i

P2Ni
(t0, t f )

)
,
(
Xa
P3Ni
(t0, t f )

)
, and

(
Xa
P4Ni
(t0, t f ), X i

P4Ni
(t0, t f )

)
respec-

tively.

3.2.1 Statistical assumptions
Given the random samples above, we make assumptions about the distributions
of their respective populations to infer statistical properties of the observed sam-
ple. Specifically, we assume that the first and second moments of the distribu-
tion of the response samples exist for all the phases of the experiment. Writ-
ten otherwise, YP1Ci

(t0, t f ), YP2Ci
(t0, t f ), YP3Ci

(t0, t f ) are assumed to have a mean,
variance represented by

(
µP1Ci
(t0, t f ), [σP1Ci

(t0, t f )]2
)
,
(
µP2Ci
(t0, t f ), [σP2Ci

(t0, t f )]2
)
,(

µP3Ci
(t0, t f ), [σP3Ci

(t0, t f )]2
)
, and

(
µP4Ci
(t0, t f ), [σP4Ci

(t0, t f )]2
)
respectively. Similar

to the regression analysis from the NASA experiment, we are not concerned with
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either the normality of the response data or with the statistics of the input samples
since we deal only with the conditional expectation of the response random variable
conditioned upon the realizations of the input random variable(s) [10]. To infer the
difference between populations exposed to the experimental conditions vs the base-
line populations, we draw our attention to the population constituted by differences
between the random variables pertaining to the baseline and experiment responses.
Let the difference in the ith random variables during P1C and P jC, j ∈ {1, 2, 3} be
denoted byYP1P jNi

(t0, t f ) := YP1Ci
(t0, t f )−YP jCi

(t0, t f ). Given a matched pairs experi-
mental design similar to that of the NASA experimental design, any inferences from
the difference population YP1P jNi

(t0, t f ) can be attributed to change in the conditions
during P jN, and not to the idiosyncratic factors in individual participant’s behavior.
Therefore, this strengthened causal connection enables a more focused experimental
analysis.

3.2.2 Hypothesis testing and confidence interval estimation
Given the assumptions about the population consisting of the difference in baseline
and experiment responses YP1P jNi

(t0, t f ), j ∈ 2, 3, 4, we seek to answer if there exists
any underlying difference in the population responses that indicate a statistically
significant power reduction over the baseline conditions. We perform hypothesis
tests and also obtain the 95% confidence interval estimates on the differential mean
parameter µP1Ci

(t0, t f ) − µP jCi
(t0, t f ), j ∈ 2, 3, 4.

3.2.2.1 CMU incentive experiment phase P2C

Since we are concerned in the population consisting of the difference in means, we
can formulate our null and alternate hypothesis for the incentive experiment analysis
as follows:

1. H2C
0 : µP1Ci

(0, 86400) − µP2Ci
(0, 86400) = 0

2. H2C
A : µP1Ci

(0, 86400) − µP2Ci
(0, 86400) , 0

By performing a paired difference two tailed t-test, we found the following. The
pre-treatment and the post-treatment scores were found to be 68.83 W and 53.66 W.
The t-statistic was significant (t(117)=2.8597, α = 0.05) with a p-value of 0.005.
Therefore, the evidence against the null hypothesis is statistically significant (α =
0.05) and we conclude that the power usage during the incentive experiment phase



33

was (statistically) significantly different than the power usage during the baseline
phase. The corresponding 95% confidence interval of themean parameter was found
to be [4.22,23.23]W, or equivalently a reduction [6.13,33.76]%with a confidence of
95% compared to the baseline power use. Since the difference is difference in means
is positive, the conclusion is that the incentive experimental usage µP2Ci

(0, 86400)
is (statistically) significantly less than the baseline usage µP1Ci

(0, 86400). The
statistical summary of both the incentive experiment and the baseline phase energy
consumption (kWh) is shown in the Figure 3.6.

3.2.2.2 CMU feedback experiment phase P3C

Similar to the incentive experiment analysis, we formulate the null and alternate
hypothesis for the feedback experiment analysis as follows:

1. H3C
0 : µP1Ci

(0, 86400) − µP3Ci
(0, 86400) = 0

2. H3C
A : µP1Ci

(0, 86400) − µP3Ci
(0, 86400) , 0

For the matched pairs two tailed t-test, the pre-treatment and the post-treatment
scores were found to be 65.53 W and 50.26 W. The t-statistic was significant
(t(94)=2.9567, α = 0.05) with a p-value of 0.0039. Therefore, the evidence against
the null hypothesis is statistically significant (α = 0.05) and we conclude that the
power usage during the feedback experiment phase was (statistically) significantly
different than the power usage during the baseline phase. The corresponding 95%
confidence interval of the mean parameter was found to be [5.21,26.53] W, or
equivalently a reduction of [7.95,40.48]% with a confidence of 95% compared to
the baseline. Since the difference in means is positive, the conclusion is that the
incentive experimental usage µP3Ci

(0, 86400) is (statistically) significantly less than
the baseline usage µP1Ci

(0, 86400). The statistical summary of both the incentive
experiment and the baseline phase energy consumption (kWh) is shown in the Figure
3.7.

3.2.2.3 CMU incentive and feedback experiment phase P4C

Similar to the analysis with either interventions (feedback or incentives), we for-
mulate the null and alternate hypothesis for the incentive and feedback experiment
analysis as follows:

1. H4C
0 : µP1Ci

(0, 86400) − µP4Ci
(0, 86400) = 0
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2. H4C
A : µP1Ci

(0, 86400) − µP4Ci
(0, 86400) , 0

A matched pairs t-test confirmed that the t-statistic was significant (t(75)=2.83, α =
0.05) with a p-value of 0.006. Therefore, the evidence against the null hypothesis is
statistically significant (α = 0.05) and we conclude that the power usage during the
incentive and feedback experiment phase was (statistically) significantly different
than the power usage during the baseline phase. The corresponding 95% confidence
interval of the mean parameter was found to be [4.92,28.30] W, or equivalently
a relative change of [7.75,44.61]% with a confidence of 95% compared to the
baseline. Since the difference in means is positive, the conclusion is that the
usage in the presence of both incentive and feedback interventions µP4Ci

(0, 86400)
is (statistically) significantly less than the baseline usage µP1Ci

(0, 86400). The
statistical summary of both the incentive experiment and the baseline phase energy
consumption (kWh) is shown in the Figure 3.8.

3.2.3 Regression-based modeling
Given the knowledge about the significant mean difference in the responses of
the underlying occupant population, it is of interest to construct a model that can
explain the observed changes. We attempt to construct a linear model based on
data from all the experiment phases. For the purposes of regression analysis, let
de, db denote a day in the experiment dataset (from any phase of the experiment)
and the corresponding day in the baseline dataset respectively. We also use a single
argument h ∈ {1, ..., 24} to represent the hour of a day enclosed in an interval
[th

0 , t
h
f ]. Therefore, we can write the feedback experiment and baseline hourly

consumption of the ith participant during hour h asYP3Ni
(h) andYP1Ni

(h) respectively.
Furthermore, since the regression model includes the data from all the phases
of the experiment, we denote all the experiment phases (incentive only,feedback
only, and both incentive and feedback) by PeC, and that the notation influences
the downstream such as the experimental response, observed, mean variables as
yPeCi
(h),

(
xaPeCi

(h), xiPeCi
(h)

)
, µPeCi

(h) respectively. Also, let ’:’ denote the sample
mean of the participant pool when used in place of ’i’, the index corresponding to the
ith participant. We then hypothesize that the mean differential response, denoted by
∆µC:(h) := µP1C: (h) − µPeC:

(h) can be modeled as a linear first-order autoregressive
model AR(1) with screentime as the exogenous regressor. Written otherwise,

∆µC:(h) = αC + βC∆µC:(h − 1) + γCxa
PeCi
(h − 1) + δCxi

PeCi
(h − 1) + εh (3.2)
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αC βC γC δC σε.

-1.744 0.7898 -0.05778 -0.4293 6.6873

Table 3.2: Regression model parameter estimates from the CMU experiment

The time-lagged dependent term ∆µC:(h − 1) is instrumental in weakening the
residual serial correlation across the various time instants. Figure 3.9 shows the
impact of adding time-lagged dependent variables on the serial correlation of the
errors. The consistency in the residual serial correlation after a couple of lag
indicates that most of the time-dependent information is captured by the introduction
of two lags in the model, and introducing additional lags does not contribute to
significant new information as far as weakening the residual serial correlation is
concerned. From the experimental standpoint, this time-lagged dependent variable
captures the change in experiment conditions with respect to the baseline conditions.
For example, any change in work schedules between the baseline and the experiment
can be captured by the time-lagged dependent terms in the model, and hence allow
us to strengthen the assumption that the residuals corresponding to consecutive
hours are a result of random factors between those hours and that the residuals are
uncorrelated in time given the model inputs. Along with the residual autocorrelation
plot, the root mean square error as a function of time-lags (shown in figure 3.10)
was considered to make the decision about the number of lags that need to be
introduced in the model. We also note that the above model can be interpreted
as representing ∆µC:(h) by a first-order discrete-time continuous-state controllable
Markov chain with incentive as the control input and screentime as the exogenous
input. Consequently, we also observe that the power consumption during the hour ’h’
YPeCi
(h) depends on the power consumption during hour ’h-1’YPeCi

(h−1). Therefore,
we note that YPeCi

(h) also follows a controllable Markov process with the incentive
as the control input, and the baselines, screentime as exogenous inputs. Given this
rationale behind the autoregressive model, we proceed to estimate the coefficients
of the model. The parameters of the linear model are listed in table 3.2, and were
estimated using ordinary least squares (OLS) by theMATLAB system identification
toolbox. The prediction performed on the test dataset is shown in the figure 3.11.
The figure represents the power consumed (absolute power and not the difference
with respect to the baseline) in the experiment against the predictions, along with
their confidence intervals. The root mean square error was found to the 2.1543 W,
and the 95% confidence interval (averaged across all data points) was found to be
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[16.28, 23.58]W.

3.2.4 Discussion
The data from three experiment subjects from the CMU study was not considered for
analysis due to the following reasons: plugging in new loads (space heaters), extreme
increase in workloads due to very different work schedule, or for taking a vacation
during the experiment phases. Furthermore, similar to the NASA experiment, we
accounted for inactivity by only considering some samples for hypothesis testing
whose power data was larger than a threshold (2.5W per channel/device). Therefore
the results of the hypothesis test in terms of the percentage reduction in experiment
phase may be considered conservative as in the case of the NASA experiment.

We also note that the 95% confidence intervals indicate that the power reduction
over the feedback phase [7.95,40.48]% is, on an average, greater than the power
reduction over the incentive phase [6.13,33.76]%. This can be explained as follows
based on our interactions with the participants after the experiment. During the
incentive phase P2C, some participants were reported to have cultivated energy
conservation practices, which possibly manifested in the observed power reduction
during the dashboard feedback phase. In other words, after the incentive phase was
complete, there were only a couple of days prior to the begin of the experiment phase
due to design constraints. This did not provide a sufficient washout period for the
participants to revert back to their baseline behavior, which supposedly represents
their stable equilibrium. These findings from the CMU experiment can be leveraged
by the building manager to prepare an efficient power reduction strategy by an
incentive intervention phase followed by feedback phase. This strategy seeks to
achieve power reduction over a greater period of time by investing in the incentives
of a relatively lesser period of time 1. In case of both the incentive and the feedback
phaseP4C, themean reductionwas found to be only slightly higher than the feedback
phaseP3C. This could be due to the limited scope to reduce the consumptionwithout
significantly affecting the productivity of the participants. In other words, the scope
for reduction could have been realized to a large extent during the incentive-only or
feedback-only phases of the experiment thereby reducing the further scope available
for reduction during the incentive and baseline phase of the experiment.

In the auto-regressive model, the observed significant reduction can be explained as
a collective result of feedback, incentives, and/or bias factors such as the hawthorne

1The duration of these time periods would depend on the ability of the participant pool to imbibe
and retain energy conservation practices



37

effect [56]. We also note that the addition of lags to the auto-regressive model
does not vary the root mean squared error significantly as shown in Figure 3.10.
This suggests that the linear model has fundamental limitations in attempting to
approximate the possible non-linear relationships between the output and the inputs.
Furthermore, since the residuals have a zero-mean, and are uncorrelated, we note
that the extent to which the random factors determining the residual processes have
closer to a constant variance the validity the assumptions pertaining to the Gauss-
Markov theorem are strengthened, and in such cases the OLS estimates would be
closer to the best linear unbiased estimate.
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Figure 3.5: Power prediction in light of the observed data from theNASAexperiment
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Figure 3.6: Statistical summary of the data from the CMU incentive experiment
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Figure 3.7: Statistical summary of the data from the CMU feedback experiment
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Figure 3.8: Statistical summary of the data from the CMU incentive and feedback
experiment
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Figure 3.9: Serial correlation of residuals against the number of time-lagged depen-
dent variable in the NASA experiment
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Figure 3.10: Residual RMS against the number of time-lagged dependent variable
in the CMU experiment
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Figure 3.11: Power prediction in light of the observed data from theCMUexperiment
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C h a p t e r 4

PLUGLOAD-INTEGRATED CONTROLLABLE DEMAND
MODEL

Given the ability of feedback and incentives in lowering plug load consumption
within commercial buildings, we attempt to integrate the plugload model into larger
building demand models. In this chapter, we illustrate the proof-of-concept integra-
tion of the plugloadmodels into the buildingmodel. First, we formulate a data-based
demand model by excluding plugload consumption, and then include the incentive
and screentime-driven plugload consumption model to obtain a plugload-integrated
controllable demand model in Section 4.2.

4.1 Discrete time notation
Wedevelop the temporal notation in this section that will be referred to in this chapter
(demand model) and the subsequent ones that describe the weather forecast-driven
solar model, and the integrated decision framework.
Let the time interval of interest be denoted byI := [tst, tend], where tst and tend denote
the start and end times respectively. Also, let a collection of subsets {[tk−1, tk)}Nk=1
denote a partition T of the interval I such that the following properties hold:

t0 = tst

tN = tend

tk = t1 + (k − 1)∆t (4.1)

where ∆t represents the difference between consecutive instants in time. We also
construct a sequence of points T = {tk}Nk=0 that represents a discrete time instants in
the interval I at which we make predictions and decisions. For this reason, we refer
to the elements in the set T as decision-epochs. In addition to the interval I, we
also consider a time interval Ip representing time in the past to be able to integrate
weather data from the past. Similar to the above description, we also construct
the partition Tp := {[Ti−1,Ti)}

Np

i=1 corresponding to Ip, wherein Np represents the
number of elements of the partition. Furthermore, we also construct the sequence
of points Tp := {Ti}

Np

i=0 that represents the discrete time instants in Ip, such that
Ti − Ti−1 = ∆T ∀i = {1, · · · , Np}. In this work, we use ∆T = ∆t = 3600 seconds so
that the time instants in Tp and T are one hour apart in time for purposes of modeling
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both the building load in this chapter and the solar generation in the subsequent ones.
In the next section, we rely on this temporal notation to build a data-driven building
demand model.

4.2 Building demand model
The load in a building is primarily due to Heating Ventilation and Air Conditioning
(HVAC), lighting, and plug loads. The previous chapter developed regression
models to predict the plugload statistics of an average occupant in time. In this
section, we attempt to integrate the plug load model into building load model in
order to develop a plugload-integrated controllable demand model in section 4.3.
Let the building load be represented as a discrete time stochastic process denoted
by Lk with corresponding realizations lk, ∀ k ∈ {0, · · · , N} with Nlo-states so that
lok ∈ {lmin, · · · , lmax}. We classify the load process into two, namely, the plugload
stochastic process Lp

k , and the non-plugload stochastic process Lnp
k . We make two

assumptions regarding the nature of these loads, namely, the markovian nature of
the plugload process Lp

k (similar to the assumption in 3.2.3) and cyclo-stationarity
of the non-plugload process Lnp

k . The rationale behind cyclo-stationarity in the
non-plugload building demand (HVAC, lighting) is that this demand is driven by
periodically varying factors such as occupancy schedules, temperatures, lighting
whose variation within a day is repeated across days1. The Markovian assumption
of the plugload stems from the consideration that the variation in the plugload
process at k is explained significantly by the variation at k − 1. Therefore, the
building demand model can be written as:

P(Lp
k = lp

k |l
p
k−1, l

p
k−2, ..., l

p
0) = P(Lp

k = lp
k |l

p
k−1) (4.2)

P(Lnp
k = lnp

k |l
np
k−pl
) = P(Lnp

k−pl
= lnp

k ) (4.3)

where, P(·) denotes the probability mass function of the corresponding random
variable · and pl denotes the time period of the cyclostationary non-plugload process.
In this work, we use a value of 24 × 3600 seconds for pl , thereby assuming that
the cyclostationary load has a period of 24 hours. The commercial medium office
building data from openEI [44] was used to compute the model characteristics such
as the hourly load statistics. Figure 4.1 shows the statistics of the building demand
over a 24 hour period assuming cyclo-stationarity for the overall building demand
process.

1This assumption is invalidated by the effect of seasonal factors, which can be integrated with
the models developed in this work
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Figure 4.1: Demand characteristics of a commercial medium office building

4.3 Plugload-integrated controllable demand model
Given the overall building demand, it is estimated that almost one-third of commer-
cial building load is due to plug and process loads [41]. In case of high efficiency
buildings, plugloads can contribute to as high as 50% of the overall load [28]. This
is due to significant reduction in the HVAC and lighting loads as a result of tight
integration of automated HVAC and lighting systems into the building operations.
Given the additive nature of the loads from various categories, the plugload model
can be additively integrated into the non-plugload demandmodel. Let the fraction of
plugload be denoted by fp, 0 < fp < 1, then the overall plugload-integrated demand
model can be written as:

Lk = Lnp
k−pl
+ Lp

k (4.4)

Let ηk denote the factor by which the baseline plugload is reduced into lp
k due to

use of feedback and/or incentives. Then, we can write lp
k = (1 − ηk)lpb

k . Given the
fraction of plugload consumption in the building fp, we note that lpb

k = fplk and
lnp
k−pl
= (1 − fp)lk−pl by definitions. Let the reduction process corresponding to ηk

be denoted by Rk . We develop a model for Rk similar to the autoregressive model
detailed in 3.2.3. The corresponding autoregression model for predicting fractional
changes with respect to the baseline can be written as follows:

Rk = αl + βl Rk−1 + γl xak−1 + δl xik + ξk (4.5)

The regression coefficients found are listed in table 4.1. Based on equations 4.5 and
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αl βl γl δl σξ·
-0.06534 0.8078 0.005597 0.07303 1.2779

Table 4.1: Regression model parameter estimates from the CMU experiment

4.4, we can constitute the plugload-integrated demand model as follows

Lk = Lnp
k−pl
+ lpb

k (1 − αl − βl Rk−1 − γl xa
k−1 − δl xi

k − ξk) (4.6)

where, xa
k−1 and xi

k represent the screentime variable (exogenous input) and the
incentive variable (control input) respectively. In the optimization problem to be
discussed in chapter 6, we will use fp = 0.5 to demonstrate potential impact of
plugload regulation on the overall building costs.
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C h a p t e r 5

WEATHER-DRIVEN SOLAR FORECAST MODEL

With the recent interest in net-zero sustainability in commercial buildings, integra-
tion of photovoltaic (PV) assets becomes even more important. While PV technol-
ogy has made significant progress, its long-term efficiency and reliability remains a
challenge. Furthermore, it is a highly variable source and its integration into exist-
ing building energy management systems remains an open question. Specifically,
there is a need to optimally integrate PV assets with other building technologies to
improve overall energy efficiency. The power output from a PV is known to depend
on environmental variable such as irradiance, temperature (ambient and cell), wind
velocity, relative humidity, air pressure, and sky conditions in various forms. Pre-
vious works have shown that the lack of accurate information about these variables
can affect the prediction error significantly [32]. Ultimately, the most important
factor for solar power forecasting is irradiance [60] and hence the need for accurate
prediction.

5.1 Weather forecast-based irradiance prediction
Several methods have been proposed in literature for irradiance forecasting which
are based on cloud cover satellite imagery, numerical weather prediction models,
autoregressive models based on past data. A review of these methods can be found
in [19]. We note that these methods are either based on global weather forecast
models or local sensor data-driven models. In this work, we seek to integrate
global weather forecast data into the local sensor data. The motivation behind this
integration stems from two considerations, namely, (i) the global weather forecast
data contains information about the global characteristics such as cloud covers that
influence the local irradiance, and is provided at a spatial resolution in the order of
kilometers [2] and (ii) the local sensor data contains exclusive information about
the local characteristics such as shadows induced by obstacles such as buildings
or trees. We propose an autoregressive model with global irradiance forecast as
the exogenous input (ARMAX) to forecast the local irradiance. We use the High
Resolution Rapid Refresh (HRRR) [2] data in the forecast model below. NOAA
also provides the 0-hour forecast based on data from several sensors, and the 0-hour
forecast was regarded as the measured sensor in the HRRR results below.
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Let Mi denote the irradiance data obtained from sensor measurement at a time
instant in the past Ti ∈ Tp and let Fi denote the forecast value available at ti (based
on the archived data from an 15-hour ahead forecast). Then the ARMAXmodel can
be written as:

MH
i = αsMH

i−86400 + βsFH
i + ξ

H
s (5.1)

where,Mi−86400 represents the irradiance 24 hours prior to the time ti (seconds). The
model was trained over seven days of data, and the resulting predictions were tested
over two days of data. Figure 5.1 illustrates the comparison between the observed
and the predicted data over the test dataset. The RMSE of the ARMAXwas found to
be ≈ 62.4 W/m2. This corresponds to a RMSE of 21%, which was found to be 3%
lower compared to the baseline prediction accuracy with an autoregressive model
using only the sensor data from 24 hours in the past. It was also found that the using
the forecasts alone as the input resulted in an error of ≈ 30%. Similar ARMAX-
based predictions were made for temperature and windspeed and the illustrations
are shown in Figures 5.2 and 5.3.

5.2 Weather-based power prediction
Given the knowledge of local weather states, we proceed to construct a data-based
power prediction model that can be incorporated into the energy management model
described in Chapter 6. Let the power output generated by a given solar array be
represented by a discrete time stochastic process ek, ∀ k ∈ {0, · · · , N} with discrete
states pvk ∈ {0, · · · , Npv}.

5.2.1 Integrating NOAA Forecasts
NOAA provides a wide variety of weather forecast products varying in spatio-
temporal resolution, prediction horizon and update frequency [42]. In this illus-
tration, forecast data from the NOAA North American Mesoscale Model (NAM)
archives are used to infer the probability distributions of the measured solar irradi-
ance. Using the historical sensor dataMi and the forecast archives Fi, the error can
be computed as shown in 5.2.

Ei =Mi − Fi (5.2)

For this part of the work, sensor data from Carnegie Mellon University (CMU)
in Moffett Field, California was used. The sensor data was available at a sub-
hourly granularity. However, the data from the NAM model was available only
at a granularity of 6 hours since the NAM model runs 4 times per day at Tf ∈
{00, 06, 12, 18} hr UTC (i.e. {5, 11, 17, 23} hr PST) forecasting up to 84 hours
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ahead. We note that Ei obtained from equation 5.2 is available only when ( Ti
3600

mod 23) ∈ Tf since the temporal resolution of NAM data is one data point 6 hours.
In order to mitigate the coarse temporal resolution, we assumed that the data for Ei

is available at all instants in the past i ∈ {0, · · · , Np} by applying a first-order hold
over the data Ei ∀ i ∈ Np | ( Ti

3600 mod 23) ∈ Tf . Thereafter, the error measurements
Ei were well defined for every Ti ∈ Tp.

Given the error population Ei ∀ i ∈ {0, · · · , Np}, letE j denote the dataset available at
the time instant Tj ∈ Tp containing the error data Ei, where i =

{
m ∈ {0, · · · , Np} |

(Tm mod T (Pp)) = (Tj mod T (Pp))
}
. Here T (Pp) denotes the periodicity factor,

which determines the grouping of the elements Ei ∀ i ∈ {0, · · · , Np} into E j for each
j in {0, · · · , Np}. The reader is referred to section 4.1 for the discrete time notation
employed here. We note that the dataset E j is constituted by the set of errors Ei

such that the corresponding time instants t j and ti leave the same remainder when
divided by T (Pp). Let the error generating process be represented by a stochastic
process Êk ∀ k ∈ {0, · · · , N} with its corresponding distribution denoted by Fk .
Based on the error datasets E j constructed above, the empirical distribution was
obtained at each time instant Tj . In what follows, we assume that the time instants Tj

in the past and tk in the future correspond to various hours of the day h ∈ {1, ..., 24}.
Furthermore, we assume that the error process Êk is cyclostationary with a time
period of 24-hours. Given the description of the error process Êk, ∀ k ∈ {0, · · · , N},
we employ a linear signal-noise regression model to predict the measured value M̂k

as shown in the Equation 5.3.

M̂k = Fk + Êk (5.3)

In this manner, the distribution of the estimated irradiance measurements M̂k is
computed based on the error distribution of the stochastic process Êk and the
deterministic forecast Fk . Similar to the irradiance estimation, other weather-related
variables such as temperature, cloudiness can be estimated. With the knowledge of
distributions corresponding to theseweather processes, models thatmap theweather-
related variables to the solar power output can be employed to obtain the solar power
distribution. Although any sophisticated model can be used [58] [50], we resort to a
linear scaling for a proof-of-concept illustration on how the solar power prediction
can be integrated into the larger framework for energy management described in
chapter 6. The resulting solar power distributions are denoted by Pe(k, pvk), where
k represents the time instant tk ∈ T and pvk ∈ {emin, · · · , emax} represents the
Npv-states of the photovoltaic generation.
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5.2.2 NAM-based prediction results
We analyzed the weather forecast data from the NAMmodel in light of both the sen-
sor measurements as well as the true data as provided by NAM (0-hr ahead forecast).
Results from the error distribution were used to determine the probability distribu-
tions of the solar generation process. Firstly, to analyze the similarity between the
true data provided by NAM (0-hr ahead forecast) and the sensor measurements, we
compared both these datasets over a period of two months (Aug - Oct 2014). The
comparisons at different hours of the day - 11 AM PST and 5 PM PST are shown
in Figures 5.4 and 5.5 respectively. It can be observed that the NOAA NAM model
describes trends similar to those of the sensor measurements. To obtain a better
understanding of the accuracy, the Root Mean Square (RMS) errors were computed
based on percentage errors between NOAA and sensor measured data. The mean
error was found to be 17.9% along with a standard deviation of 33.4%. Assuming
the integrity of the sensor measurements, the mismatch arising from both these
datasets can be attributed to several factors including coarse spatial granularity,
modeling error, and low update frequency of the NAM model (4 per day). Since
the NAM model forecasts up to 84 hours ahead, we compared the accuracy of the
forecasts against several prediction window lengths assuming that the 0-hr ahead
forecasts represented the truth. The comparison depicting the absolute RMS errors
between the NAM truth (0-hr ahead) and the NAM forecasts up to 84 hours ahead
is shown in Figure 5.6. To better illustrate the error magnitudes, this figure also
depicts the percentage accuracies relative to the NAM truth data (shown in green).
The overall accuracy across various prediction window lengths was found consistent
with a mean of 81.9% and a standard deviation of 1.5%. Thus the use of 84 hour
ahead NAM forecast provides predictions comparable to that of a 6 hour ahead NAM
forecast. Based on the error distributions obtained from the irradiance archives, we
estimated the distributions of the measured irradiance state with the knowledge of
the forecasts (equation 5.3).

5.2.3 Solar forecast distributions
Based on the distribution of the measured irradiance estimates described above, the
expected values of the irradiance process were obtained. Assuming an installation
capacity of 84kW based on the usable roof area for solar panels for a commercial
medium office building in the US [16] under standard conditions, the expected
solar power was computed based on the above computed distribution and is shown
in Figure 5.7. As aforementioned, the NAM model provides data at a temporal
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granularity of 6 hours (4 per day). However, the forecast Fk∀k ∈ {0, · · · , N} as well
as the error datasets Ei∀i ∈ {0, · · · , Np} were reconstructed at an hourly granularity
based on a first-order hold. In this manner, we obtained the hourly resolution
depicted in the Figure 5.7.
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Figure 5.1: Solar irradiance prediction using the ARMAX model
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Figure 5.2: Temperature prediction using the ARMAX model
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Figure 5.3: Windspeed prediction using the ARMAX model
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Figure 5.4: Comparison between NOAA and Sensor irradiance data at 11 AM,
µaccuracyRMS = 82.2%
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Figure 5.5: Comparison between NOAA and Sensor irradiance data at 5 PM,
µaccuracyRMS = 81.8%
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Figure 5.6: Comparison between NAM truth and x-hour ahead forecasts: x ∈
{6, 12, · · · , 84}
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Figure 5.7: Expected Solar Generation data based on NOAA NAM irradiance
estimates



61

C h a p t e r 6

A DECISION FRAMEWORK FOR ENERGY MANAGEMENT IN
SMART BUILDINGS

Given the cyclo-stationary solar generation and load processes described in chapters
5 and 4 respectively, we proceed to integrate these into the framework for energy
management in smart buildings as shown in Figure 6.1. The energy management
framework in smart buildings comprises of load, renewable solar generation, energy
storage, decision-making unit (DMU), and their interconnections. A model of this
system allows us to (1) study the evolution of the overall building energy in time
and (2) provide a framework to design and evaluate power-flow decisions within the
building. The schematic of a grid-connected smart building is depicted in Figure
6.2. In what follows, we describe the various elements required to constitute the
framework.

6.0.1 Energy Storage
The objective of furthering renewable penetration and simultaneously maintaining
grid stability can be practically realized by incorporating energy storage systems
[52]. In a more localized environment like a building, storage systems help achieve
self-reliance independent of the main grid and enable reduced electricity costs. In
this work, the building storage system is represented by a dynamical system with
capacity S. There are several approaches to modeling the storage dynamics with
varying levels of complexity [31]. To illustrate the concept of energy management
in the context of a single building, we resort to a linear dynamic representation of
the storage system similar to [61]:

sk+1 = ηssk − ξpvk∆t (6.1)

where, sk ∈ [0,S] represents the energy content (state) of the energy storage at tk ∈
T and vk represents the net power output from the storage system from the current
time instant tk until the next instant tk+1.The power flow constraints associated with
the storage system are represented by vk ∈ [Pmin, Pmax]. Furthermore, the self-
discharge losses [53] are represented by the storage efficiency factor ηs and the
closed-circuit losses by the factor ξp1 [22].

1Note that ξp < 1.0 during charging and ξp > 1.0 during the discharge phase. In other words,
more power is discharged from the storage system compared to the storage output and less power is
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6.0.2 Grid Transactions
The electric grid facilitates the transfer of power from the suppliers to the consumers
over transmission and distribution networks. In this work, we assume that the grid
is is an infinite resource. As depicted in Figure 6.2, we assume that the transactions
between the grid and the building are enabled by the Decision-Making Unit (DMU).
Let the power flow from the grid to the building DMU at any tk ∈ T be denoted
by uk 2. These grid transactions incur a monetary cost for the building depending
on the quantity of power exchanged and the pricing scheme offered by local utility
company or the energy market [15]. We consider a deterministic pricing model,
where the purchase prices (cp(k), k ∈ {0, · · · , N}) are based on the PG&E schedule
A10 [25] and selling prices (cs(k), k ∈ 0, · · · , N) are based on the PG&E E-SRG
PPA [26]. Thus, the monetary cost incurred due to the grid transactions over the
horizon T becomes:

C(u0, · · · , uN−1;w0, · · · ,wN−1) =
N−1∑
i=0
{cp(i)I(ui > 0)+cs(i)I(ui <= 0)}ui∆t (6.2)

where, positive C indicates the cost to be paid by the building to the grid on the
account of the grid transactions (u0, · · · , uN−1).

6.0.3 Nanogrid Topology
In a distributed power system consisting of several generation units, loads, storage
systems and the main grid, the interconnecting topologies play a critical role in
routing power effectively. From a decision-making perspective, there exist intercon-
nected designs with varying levels of decentralization, each differing in autonomy
and complexity. In the building under consideration, we employ a centrally intercon-
nected design wherein all the components are connected via the DMU as depicted
in Figure 6.2.

6.0.4 Smart building DMU
The smart building consists of two interdependent networks: (1) a communication
network for routing information and (2) a power network for routing power. The
’smart’ aspect is in leveraging the information available to make informed decisions.
In our work, we assume that the information about the various components of the
building is available to the DMU. Depending on the states of the storage system, the
generation, the load, and the electricity pricing, the DMU computes the power flow
used to charge the storage system compared to the storage input due to losses incurred

2According to our convention, power flowing into the DMU is considered positive
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decisions. Specifically, the decisions involve determining the power flows from/to
the battery vk and from/to the grid uk . We describe the decision-making process
below.

Let the generation output and the load at an instant tk ∈ T be denoted by e(re)k and
load l(rl)k respectively. Here e(re)k and l(rl)k represent the real-world realizations of the
non-controllable stochastic processes ek and lk at the time tk . Given the power flows
e(re)k and l(rl)k , the decisions computed at the DMU (uk , vk) must result in the power
balance at every time instant tk ∈ T as shown:

e(re)k + uk + vk + l(rl)k = 0 (6.3)

6.0.5 System Parameters
Decision-making within the building requires information about the system param-
eters. Let the system parameters at tk ∈ T be denoted byWk . Also, letWk be
classified into the deterministic parameters of the system (denoted by zk) and the
distribution of the random parameters the system (denoted bywk). The deterministic
parameters consist of zk = [cp(tk), cs(tk),S, Pmin, Pmax, ηs, ξp, N,∆t] and the distribu-
tion parameters of the stochastic processes (ek, lk) consist of wk = [Pe(k, ·), Pl(k, ·)].
Thus, the system parameters can be written asWk = (zk,wk).

6.1 Policy Formulation
The framework described above enables structured power-flow decision-making.
Specifically, the information about the state sk is useful in determining the “decision
pair” (uk, vk). The mapping between the state space and the decision space of the
system is provided by a policy, denoted by π. The building energy policy π can be
viewed as a collection of two policies, namely the storage transaction policy πB and
the grid transaction policy πG. Thus, the policy map π between the states (sk) and
the decisions (uk ,vk) can be written as:

π B {πB, πG},where
πB : {0, · · · , N − 1} × Sk →Vsk

πG : {0, · · · , N − 1} × Sk →Usk (6.4)

where, the admissible decision space is represented by (Usk,Vsk ) ⊂ R2 and Sk

denotes the storage state space. It must be noted that the admissible decision space
consists of the decisions which, when implemented do not result in the violation
of the system constraints (Refer to Appendix B for details). Furthermore, it can be
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observed that only one of the decisions (uk or vk) is made explicitly, since the other
decision will the be fixed to ensure system power balance 6.3. In what follows, we
describe heuristics-based policies, also known here as ’naive’ policies:

1. Policy 1: Exhaustive Storage Dependence Policy π1: This policy seeks to uti-
lize the storage to the fullest extent for meeting the power balance (equation
6.3). Given the non-controllable supply e(re)k and demand l(rl)k , the policy seeks
to offset the supply-demand gap using the storage resource transactions vk .
When the storage resource can no longer be used to maintain power balance,
the policy resorts to the grid transactions uk to handle the excess or deficit
condition faced by the building. The decision-making process for this policy
(π1) is illustrated by the flowchart in Figure 6.3.

2. Policy 2: Look Ahead Policy π2: The notion behind the look-ahead policy
design is to make informed decisions based on the present as well as the
expected future supply-demand gap. With these considerations, four scenarios
are possible: (i) excess supply in the present as well as in the expected future,
(ii) excess supply in the present and deficit supply in the expected future, (iii)
deficit supply in the present and excess supply in the expected future, and (iv)
deficit supply in the present as well as in the expected future. When there
is excess supply in the present as well as in the expected future, the storage
is charged before exporting power to the grid. In the scenario with deficit
supply in the present as well as in the expected future, the storage is partially
discharged to meet the deficit provided the storage does not get exhausted
after discharging. The rest of the deficit is met by both the solar generation
and the grid. In the other scenarios, the policy relies on the generation and
the grid for power balance, leaving the storage state unchanged. The policy
π2 is illustrated by the flowchart in Figure 6.4.

6.2 Optimal Power Flow Problem
Given heuristics-based policies such as the ones described above, it is important
to compare the performance of these policies based on cost metrics, one of which
was described in equation 6.2. This allows the policy-maker to order and choose
policies based on their cost. In this work, we attempt to design policies that result
in decisions minimizing the building energy costs.
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We consider the scenario where the cost metric describes the expected monetary
cost over a finite horizon T. Thus, the cost metric depends on the costs associated
with both the grid transactions uk, ∀k ∈ 0, · · · , N − 1 as well as the expected storage
state at the end of the horizon. It must be noted that the storage state at the end
of the horizon is uncertain at all instants k < N and hence regarded as a random
variable ŝN . The probability distribution of ŝN can, however, be computed with the
knowledge of (i) probabilistic supply and load distributions Pl(k, pvi) and Pl(k, pvi)
respectively over the instants {k, · · · , N−1}, and (ii) the storage dynamics described
in Equation 6.1. Therefore, the cost metric over the horizon3 {tk, · · · , tN } can be
written as:

J(sk, uk, uk+1, · · · , uN−1;Wk, · · · ,WN )

= E
{ N∑

i=k

L(ui;Wi) + g1(ŝN ;Wk, · · ·WN )
}

= E
{ N∑

i=k

(
1(ui > 0)cp(ti) + 1(ui ≤ 0)cs(ti)

)
ui − ŝN cs(tN )

}
(6.5)

where, 1(·) denotes the indicator function, E denotes the expectation operator with
respect to the solar and load distributions, andWk denotes the system parameters
at the time instant tk ∈ T. Given the above cost metric J, the problem of interest is
to compute the optimal policy π∗ that minimizes J over the entire horizon [t0, tN ].

6.3 Optimal Policy Computation
In order to solve for the optimal policy, we first note that the states (sk), the deci-
sions (uk, vk), the Markovian state transitions (Equation 6.1), and the cost metric J

(Equation 6.5) together constitute a discrete time stochastic control process, com-
monly known as the Markov decision process (MDP). Within the MDP framework,
the policy-maker enforces a decision (uk, vk) on the system and the system state sk

responds by randomly transitioning into a new state sk+1 while incurring a transi-
tion cost L. We consider a problem of the policy-maker, where the objective is to
obtain the policy (π∗), which, when enforced, results in a sequence of decisions that
minimize the cost J over the optimization horizon [t0, tN ]. The optimal policy can

3In the dynamic programming formulation of decision-making problems, the cost metric over
the horizon {tk, · · · , tN } is also known as the cost-to-go from stage k to N .
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be obtained by solving the following optimization problem:

π∗(s0; (Wk)Nk=0) = (u
∗
k, v
∗
k)

N−1
k=0 , such that

(u∗k)
N−1
k=0 = argmin[

(uk )N−1
k=0 ∈

N−1∏
k=1
U

E

{
ŝk |s0

}] J(s0, u0, · · · , uN−1, {Wk}Nk=0),

and v∗k = −(u
∗
k + E(ek) + E(lk)), ∀k ∈ {0, · · · , N − 1} (6.6)

where, ŝk denotes the random variable representing the uncertain state of the storage
in the future. The corresponding optimal cost then becomes:

V0(s0; {Wk}Nk=0) = J(s0, u∗0, · · · , u
∗
N−1; {Wk}Nk=0) (6.7)

where, V0(s0; {Wk}Nk=0) is known as the value of the state s0 at the time instant
t0. The function V , known as the value function maps the states and parameters
(k, sk ; {Wk}Nk=0) at the time instant tk to a real value as shown:

Vk(sk ; {Wi}Ni=k) = J(sk, u∗k, · · · , u
∗
N−1; {Wi}Ni=k) (6.8)

In other words, the value function at the instant k describes the optimal cost-to-go
from stage k through the final stage N .

We address the above discrete time stochastic dynamic optimization problem by
applying the principle of optimality and solving the resulting sub-problems using
a stochastic dynamic programming (SDP) approach. The sequence of solutions to
these sub-problems are obtained using the backward induction algorithm, wherein
the updated values at the previous time step are obtained by solving the Bellman
equation. In ourwork, theBellman equation is solved approximately by interpolating
the value function at the subsequent stage. In what follows, we describe the details
of the SDP approach to arrive at near-optimal solutions to the problem described
in Equation 6.6. By applying the principle of optimality, we can transform the
decision-making problem into a sequence of sub-problems as shown:

J(s0, u∗0 · · · , u
∗
N−1;W0, · · · ,WN ) = min

u0

{
L(u0;W0) +[

N−1∑
k=1

E
{
J
(
ŝk, u∗k, · · · , u

∗
N−1;Wk−1, · · · ,WN

)}] }
(6.9)
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Using the definition of the value function in equation 6.8, we can rewrite the equation
6.9 as:

V0(s0; {Wk}Nk=0) = min
u0

{
L(u0;W0) + E

{
V1(ŝ1; {Wk}Nk=0)

}}
(6.10)

Continuing the course of dividing the problem into sub-problems, we arrive at the
following generalized equation:

Vk(sk ; {Wi}Ni=k) = min
uk

{
L(uk ;Wk) + E

{
Vk+1(ŝk+1; {Wi}Ni=k)

}}
(6.11)

which describes a recursive relationship between the values at consecutive time
steps. This equation, known as the Bellman equation, offers a recursive method to
compute the values at the current instant of time based on the knowledge of values at
the next of time. We apply backward induction to solve for the values in the Bellman
equation 6.11, starting with the end of the horizon tN ∈ T and solving backwards in
time.

To solve for the value function as well as the optimal decisions, we resort to a
numerical approach. First, we observe that the domain of the value function is the
continuous state space sk ∈ [0,S]. We proceed to quantize the state space only for
the purposes of computing the values and the optimal decisions, thereby introducing
sub-optimality into the solution. Let the discretized version of the continuous state
space [0,S] be represented by the finite sequence S B {s1 = 0, s2, · · · , sNs = S}.

At the end of the horizon tN , the values are computed for the quantized state space
sN ∈ S:

VN (sN ;WN ) = g(sN ;WN ) (6.12)

At every previous time step {tk}0k=N−1, the decisions resulting in the minimum ex-
pected cost-to-go are computed by solving equation 6.11 across the feasible decision
space Usk (see Appendix B). This results in a near-optimal sequence of decisions
{u∗k}

N−1
k=0 that constitutes the non-stationary near-optimal policy π∗.

6.4 Results
We simulated the nanogrid model under the action of both the naive and the optimal
policies over an optimization horizon of 30 days (720 hours). The storage capacity
was chosen to be 500kWh with a peak power of 500kW such that the building could
be run off the grid entirely on the storage for 6 hours. The storage parameters (ηs, ξp)
were set to their ideal values ηs = ξp = 1.0 in the simulation. The remain aspects
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such as the pricing scheme, load and solar processes were chosen for a commercial
medium office building as described previously. Given the assumption of cyclo-
stationarity, the distributions of the estimated load and solar were pre-computed over
a 24-hour horizon. In what follows, we present the results and discussion pertaining
to the various policies.

The expected state evolution under the action of policy π1 is shown in Figure 6.5.
We note that the policy π1 was designed to primarily rely on the storage resource. In
other words, we expect the policy to charge the storage device in the case of excess
solar generation and discharge during deficit generation prior to any dependence
on the grid. From the bottom subplot in Figure 6.5, we note that there exists only
deficit generation throughout the horizon which directs the policy to make decisions
that discharge the storage. This explains the observed behavior of battery discharge
since the beginning of the horizon.

In case of the look ahead policy π2 design, the decisions are influenced by both
the current imbalance (solar minus load) as well as the expected imbalance in the
future as described in the Figure 6.4. These decision-making factors are shown
in the bottom subplots of Figure 6.6. As can be noticed from the bottom two
subplots in the figure, both the current imbalance in the future are always negative.
As per the policy, this should allow the battery to discharge until the point where
supplying for further deficit doesn’t discharge the battery completely. Given that
the maximum imbalance (solar-load) is −40kW , it can be observed that the storage
doesn’t discharge the battery as soon as the state reaches 40kWh (since Deltat = 1
hour).

The optimal policy π∗ described in Section 6.3was computed by backward induction.
By using the values computed at the forward time instant tk+1, optimal decisions
and current values at tk that minimize the expected cost were computed using the
Bellman equation 6.11. The optimal policy alongwith its impact on state evolution is
shown in figure 6.7. The optimal decision depends on several factors that combine
together to result in the least expected cost-to-go over the optimization horizon.
These factors include the solar generation, demand, cost price, selling price, the
current state of the system, and the distributions of the solar and load processes.

The behavior of the optimal policy can be better understood by observing Figure
6.8 that describes the evolution of the system over a two day horizon. We note that
the optimal policy charges and discharges the battery multiple times during the time
period when the selling prices are higher than the cost prices. During this time,
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the policy directs withdrawal and selling transactions with the grid respectively.
Therefore, it can be stated that the withdrawal from the grid charges the battery in
light of the low cost prices compared to the selling prices so as to sell at a later point.

The complexity involved in computing the optimal policies pays off in terms of
minimizing the expected cost. The expected costs associated with the various
policies and scenarios are shown in Figure 6.9. The first scenario depicts the
average monthly cost incurred by a commercial building with similar load profile
in Santa Clara county ($7568.14) based on the average prices for Santa Clara
from the US Energy Information Administration (EIA). The parameters used in the
simulation for the demand model with the A10 pricing scheme yields comparable
costs ($7549.78) as shown by the second bar, thereby indicating that the pricing
scheme used in the simulation reasonably matches that of the one provided by US
EIA. On using the solar panels for a commercial building (84 kW), the expected
monthly costs drop to $5715.51 as shown by the yellow bar, which is expected due to
the availability of in-house generation to meet partial demand. The performance of
the exhaustive battery utilization policy (policy 1) and the look ahead policy (policy
2) yield costs that closely match the case with no energy storage. This means that
these heuristics-based policies do not effectively capitalize on the energy storage
resource. However, in case of the optimal policy, the performance results in costs
that are more than 60% lower than the heuristic policies, thereby indicating that
the optimal policy could capitalize on the energy storage resource much more than
the heuristic policies. Furthermore, we also investigated the case of the plugload-
integrated controllable demand model for energy management based on the results
of the plugload experiment chapter 2 for the case of a high performance building
with fp = 0.5. In this case, the cost function also included the cost incurred in $ due
to providing the incentives to the occupants for lowering their energy consumption.
The findings indicated that the plugload-integrated optimal policy outperformed the
optimal policy with non-controllable loads by 13%, thereby quantifying the impact
of plugload management on the operating costs of a building. The lower costs in
case of the controllable plugloads are expected due to the increase in dimensionality
of the search space for the optimization problem. In other words, the optimization
problemwith non-controllable demand can be viewed as a problemwith constrained
search space in comparison to the optimization problem with controllable demand.
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Figure 6.1: Energy management framework in a smart building
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Figure 6.2: Schematic of a grid connected smart building
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Figure 6.3: Flow Chart depicting the Exhaustive Storage Dependence Policy

Figure 6.4: Flow Chart depicting the Look Ahead Policy
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Figure 6.5: System evolution under the action of Policy 1
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Figure 6.6: System evolution under the action of Policy 2
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Figure 6.7: System under action of Optimal Policy over a 30 day horizon
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Figure 6.8: System under action of Optimal Policy over a two day horizon
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Figure 6.9: Expected savings under various policies
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C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

This dissertation describes a weather-driven plugload-integrated framework for fa-
cilitating energy management in smart buildings. From a demand management
perspective, the present work contributes to the advancement of existing demand re-
sponse approaches by quantifying the savings due to the occupant-in-the-loop. The
controlled experiments described in chapter 2 highlight important issues in both
designing and implementing intervention mechanisms targeted toward promoting
energy conservation practices among building occupants. The findings based on
carefully controlled experimentation and analysis allows the building manager to
design effective intervention mechanisms by considering the quantitative impact of
the interventions using the plugload models developed in chapter 3. These results
can also be used to develop more accurate building demand models as outlined in
chapter 4. Furthermore, novel autoregression model with exogenous global forecast
inputs is proposed in chapter 5 for augmenting the performance of local sensor
data-based predictions.

The load and the solar models along with energy storage and a pricing scheme were
integrated together in chapter 6 to constitute a framework for energy management
in smart buildings. Two optimization problems were solved to minimize energy-
related costs in the building over a finite horizon. The first problem considered the
case of non-controllable demand, wherein the corresponding optimal policy was
found to outperform heuristic policies by 60% in the expected case. The second
optimization problemwas considered within similar load profiles as the first one, but
in the context of high performance buildings with plugload-integrated controllable
demand. Results from the controllable demand optimization indicated a further
13% reduction in costs compared to the optimization problem with non-controllable
demand. The developed framework provides new avenues for plugload-integrated
strategic energy management in smart buildings. Furthermore, this framework can
also be used as a tool to support design decisions such as the solar power and/or
battery capacity to be installed in a building based on the expected cost reduction,
or to evaluate the cost-effectiveness of utility pricing schemes.
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7.1 Future work
Future work can extend our work in several directions including, 1. designing large-
scale plugload studies, 2. development of game-theoretic plugloadmodels, 3. energy
management in a smart campus, 4. automated inventory management.

7.1.1 Large-scale plugload studies
The pilot study mentioned in this work can be further extended into a large-scale
plugload study across several buildings to be able to strengthen the generality of
the conclusions. Such studies must still adhere to the core design principles 2.2.1
but have the advantage of stricter adherence to the principles of replication and
randomization compared to the pilot study. The former is due to the increase in the
sample size, and allows for strengthening the generality of the resulting inferences.
The latter is due to the availability of a larger scope for randomization across various
nuisance factors such as job requirements and/or work schedules compared to the
pilot study consisting of smaller number of samples. Furthermore, the future designs
can also study the impact of the timespans for the various treatments in relation to the
ability to retain the effect of the treatment on the behavior of the participants. This
extension would also provide insight into the change of participant behavior under
prolonged treatment, retainability, and formation of plugload energy conservation
habits.

7.1.2 Game-theoretic plugload models
The results from the experiment were treated under the statistical assumptions to
draw generalized conclusions. Alternatively, one could employ a game-theoretic
model by assuming that the participants are playing a game to win the incentive
by minimizing an unknown cost function that encompasses both comfort (consum-
ing less than baseline plugload consumption) and the desire to win the incentive.
For example, the incentive mechanisms implemented this study naturally fits the
conception of a stackelberg competition. Furthermore, if the cost function is pa-
rameterized by weights corresponding to comfort and incentive components, then
these parameters can be estimated based on the experiment data. Such parameters
can then be assumed to represent a statistical sample of the occupant population.
Using such analyses, the equilibrium behavior of a population in the presence of
incentives can be studied by combining statistical and game-theoretic assumptions.
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7.1.3 Energy management in a smart campus
While the optimization framework described in this dissertation is geared toward
a smart building, it could be extended toward a network of smart buildings, such
as a smart campus. In the context of a smart campus, individual buildings can
be treated as players playing an energy conservation game with the objective of
realizing both individual and collective goals. This enables the smart campus to
leverage competition and cooperation to improve upon its baseline energy behavior.
Furthermore, assuming interconnections between the smart buildings within the
smart campus or within a network of smart campuses to allow power flows, energy
trading can be investigated. In this context, the trade routes for power flows can be
represented by the network topologies, which can optimized as per the designer’s
choice. Such designs also allow for the systematic analysis of networks such as
microgrids.

7.1.4 Automated inventory management
During the plugload study, data about the devices connected to the various channels
were noted. This information can be used to extract device signatures based on
the power data recorded from the experiment. By storing to the device-signature
maps for the set of possible device categories in a database, a signature extracted
from the power signal from a channel with an unknown device can be associated
with the device by referring to the database. In this manner, automated inventory
management systems can be developed to identify and track the location of devices
based on the knowledge about the location of the smart powerstrips.

In addition to the above, the following areas can be considered for future work:
1. Models predicting changes in energy behavior based on the screen time spent
on different components of the dashboard can be developed, 2. The integration of
weather forecasts into local sensor-based predictions could be explored further by the
use of sophisticated modeling approaches, 3. In the context of energy management,
detailed HVAC and lighting models could be employed to design and test various
demand management strategies to optimize overall energy-related costs.

7.2 Summary
This dissertation provides a novel experimental design targeted toward study-

ing occupant plugload consumption. It also addresses the challenging problem
of occupant plugload modeling based on feedback and incentive interventions. It
attempts to unravel the mechanisms by which these interventions influence the ob-
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served changes in the occupant plugload consumption using autoregressive models.
Furthermore, it proposes a novel local weather forecasting model via integration
of global weather forecasts with local sensor-based data. Finally, this dissertation
introduces a novel plugload-integrated energy management framework by integrat-
ing controllable plugload models and weather-driven solar generation models in the
presence of energy storage and pricing models. This contribution extends energy
management in buildings into a new paradigm by including occupants-in-the-loop.
The practical significance of plugload control and plugload-integrated optimization
resulting in cost reduction1 is shown in Figure 7.1.

1Based on PG&E schedule A-10 medium demand pricing scheme, NREL rooftop potential
survey (84 kW) for commercial medium office buildings [16] and commercial building energy
consumption survey [23]
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Figure 7.1: Potential savings in operating costs expected based on integration of
plugloads for building energy management (does not include initial investment or
maintenance costs)
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A p p e n d i x B

HANDLING CONSTRAINTS IN THE OPTIMIZATION
PROBLEM

The constraints in the decision-making problem include the following: (i) the power
limits during the storage charge-discharge process, (ii) storage state/charge limits,
and the (iii) power balance constraint (equation 6.3).

The decisions that do not violate the above constraints are referred to here as
the feasible decisions. Similarly, the policies that result in such feasible decisions
shall be known as the feasible policies. We now attempt to determine the feasible
decision space, as it is required to solve the Bellman equation 6.11. In what follows,
e(re)k ∈ {emin, · · · , emax} and l(rl)k ∈ {lmin, · · · , lmax} represent a realization of the
stochastic processes ek and lk respectively at the time instant tk and sk represents
the storage state at tk .

B.0.1 Handling State Constraints
Given the dynamics of the battery 6.1 and the state constraints sk ∈ [0,S] kWh,

the following can be stated by taking advantage of the discrete time formulation. If
the state constraint needs to be satisfied at any time step tk+1 assuming it holds at tk ,
then the following holds true:

sk+1 ∈ [0,S] given sk ∈ [0,S],
⇐⇒ ηssk − ξpvk∆t ∈ [0,S] sk ∈ [0,S]

(i.e.) − ηssk

ξp∆t
≤ lk + uk + ek ≤

S − ηssk

ξp∆t

(or) − ηssk

ξp∆t
− l(rl)k − e(re)k ≤ uk ≤

S − ηssk

ξp∆t
− l(rl)k − e(re)k (B.1)

Let the decision constraint in equation B.1 be written as uk ∈ Θ(sk, l
(rl)
k , e(re)k ). It is

easy to observe that, if uk ∈ Θ(sk, l
(rl)
k , e(re)k ) and sk ∈ [0,S], then the above proves

that the state constraint at tk+1 is not violated.
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B.0.2 Handling Power Constraints
Since the storage power flow vk must be within the limits [Pmin, Pmax] kW, we

can use equation 6.3 to claim the following:

vk ∈ [Pmin, Pmax]
⇐⇒ l(rl)k + uk + e(re)k ∈ [Pmin, Pmax]

(i.e.) Pmin − l(rl)k − e(re)k ≤ uk ≤ Pmax − l(rl)k − e(re)k (B.2)

Let the decision constraint in equation B.2 be written as uk ∈ Γ(sk, l
(rl)
k , e(re)k ). It is

easy to observe that, if uk ∈ Γ(sk, l
(rl)
k , e(re)k ), then the battery power constraints hold

as proved above.

Since the equations B.1 and B.2 constrain the same decision variable uk ,
the feasible decision space can be obtained by the intersection of these con-
strained spaces. Let the intersection be represented by U(r)sk := Θ(sk, l

(rl)
k , e(re)k ) ∩

Γ(sk, l
(rl)
k , e(re)k ). ThusU

(r)
sk can be written as,

max(Pmin,−
ηssk

ξp∆t
) − l(rl)k − e(re)k ≤ uk

≤ min(Pmax,
S − ηssk

ξp∆t
) − l(rl)k − e(re)k (B.3)

From equation B.3, we note the following observations:

1. The decision space U(r)sk is guaranteed to have a positive Lebesgue measure,
since max(Pmin,− ηssk

ξp∆t ) ≤ 0 and min(Pmax,
S−ηssk
ξp∆t ) ≥ 0 but both cannot be

simultaneously 0. Thus the existence of a non-empty feasible decision space
is guaranteed by definition.

2. The bounds of the decision space U(r)sk depend on the realizations e(re)k and
l(rl)k of the stochastic processes ek and lk respectively. However, during the
optimal policy design phase, the realizations of the stochastic processes e(re)k

and l(rl)k are unknown until the time instant tk occurs in the real world.

3. Despite the guaranteed existence of a feasible decision space, it is unknown
on the account of uncertainty in the generation and load processes.

In order to eliminate the dependence of the feasible decision space on the unknown
solar and load in the real world at tk , we use the information about the bounds of
the stochastic processes ek and lk . Let the range space of these random variables
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at time instant tk be represented by: (i) [emin
k , emax

k ] for the solar generation, and (ii)
[lmin

k , lmax
k ] for the load demand. Since the solar generation and load are bounded

in the real world, the bounds {emin
k , emax

k , lmin
k , lmax

k } are physically well-defined.
Using these bounds, we construct a subset of the feasible spaceU(r)sk and call it the
computable feasible decision space (Usk ) as follows:

max(Pmin,−
ηssk

ξp∆t
) − lmin

k − emin
k ≤ uk

≤ min(Pmax,
S − ηssk

ξp∆t
) − lmax

k − emax
k (B.4)

It is easy to verify thatUsk is constructed by the intersection of the feasible decision
spaces across all sample paths with non-zero probability. In other words, Usk :=
∩

r={0,··· ,Nr }
U(r)sk , where

[
Pl(k, lk = l(rl)) × Pe(k, ek = e(rl))

]
, 0.

Though the computable feasible decision space Usk possibly introduces sub-
optimality, it is nevertheless a sufficient condition to ensure that the system con-
straints are upheld under all possible realizations of the stochastic processes. How-
ever, its existence is contingent on themeasure ofUsk beingwell-defined. Therefore,
the necessary conditions for the existence of a computable feasible decision space
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of non-zero measure are:

(lmax
k + emax

k ) − (emin
k + lmin

k )

≤ min(Pmax,
S − ηssk

ξp∆t
) − max(Pmin,−

ηssk

ξp∆t
)

= min(Pmax,
S − ηssk

ξp∆t
) + min(−Pmin,

ηssk

ξp∆t
)

= min(Pmax,
S − ηssk

ξp∆t
) + min(Pmax,

ηssk

ξp∆t
)[

Assuming Pmin = −Pmax
]

=



2 × Pmax, if Pmax < min(S−ηssk
ξp∆t ,

ηssk
ξp∆t )

S−ηssk
ξp∆t + Pmax, if S−ηssk

ξp∆t ≤ Pmax <
ηssk
ξp∆t

Pmax +
ηssk
ξp∆t , if ηssk

ξp∆t ≤ Pmax <
S−ηssk
ξp∆t

S
ξp∆t , if Pmax > max(S−ηssk

ξp∆t ,
ηssk
ξp∆t )

= min
(
2Pmax,

S − ηssk

ξp∆t
+ Pmax, Pmax +

ηssk

ξp∆t
,
S
ξp∆t

)
≥ min

(
Pmax,

S
ξp∆t

)
(B.5)[

equality iff sk = 0 or ηssk = S or
S
ξp∆t

≤ Pmax
]

It is easy to verify that, if (lmax
k + emax

k ) − (emin
k + lmin

k ) ≤ min(Pmax,
S
ξp∆t ), then the

inequation B.4 holds true. Hence, the inequation (lmax
k + emax

k ) − (emin
k + lmin

k ) ≤
min(Pmax,

S
ξp∆t ) provides a stricter condition for the existence of a non-empty feasibel

decision spaceUsk . Progressively stronger sufficiency conditions can be derived as
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follows:

(lmax
k + emax

k ) − (emin
k + lmin

k ) ≤ min
(
Pmax,

S
ξp∆t

)
, or (B.6)

emax
k − lmin

k ≤ min
(
Pmax,

S
ξp∆t

)
(B.7)[

since − emin
k ≤ 0, lmax

k ≤ 0 by definition
]

(i.e.) max
k∈{0,··· ,N}

(emax
k − lmin

k ) ≤ min
(
Pmax,

S
ξp∆t

)
[
Let l̄k = −lk, and let l̄k ∈ {l̄min, · · · , l̄max}

]
max

k∈{0,··· ,N}
(emax

k + l̄max
k ) ≤ min

(
Pmax,

S
ξp∆t

)
[
Since max

k∈{0,··· ,N}
l̄max
k = −lmax]

(emax − lmin) ≤ min
(
Pmax,

S
ξp∆t

)
(B.8)

Note that the left-hand side (LHS) of equation B.6 represents the maximum possible
supply-demand offset gap at the instant tk ∈ T, the LHS of equation B.7 represents
the maximum supply-demand sum at the instant tk , and the LHS of B.8 maximum
possible supply-demand over the horizon {0, · · · , N}. In each of these sufficiency
conditions, the right-hand side represents a time-independent expression dependent
on a subset λk of the storage parameters zk .

Equations B.4-B.8 represent the worst case sufficiency conditions that ensure
that the existence of a corresponding computable feasible decision spaceUsk despite
the unknown realizations of the solar and load processes. Furthermore, given any
grid transaction decision uk ∈ Usk , it is ensured that the corresponding feasible
battery decision space is the same as the space defined by the battery constraint
sinceVsk = [Pmin, Pmax] is equivalent to equation B.2 by definition.

Let the parameters λk satisfying the sufficiency condition1 in equation B.4
belong to the space Λk ⊆ Rdim(λk ), where dim(λk) refers to the dimension of
λk . We call Λk as the computable feasible configuration space of the system
for which a computable feasible decision space exists. Therefore, satisfying the
sufficiency condition λk ∈ Λk guarantees the existence of such computable feasible
decision spaces which are required to design the near-optimal policy. Only decisions
belonging to the computable feasible decision space are considered admissible

1Since the conditions represented by equations B.4-B.8 are in the increasing order of strictness
requirements, satisfying any of these equations ensures that equation B.4 is satisfied.
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for computing the near-optimal policy, hence we also refer to this decision space
(Usk,Vsk ) as the admissible decision space for the optimal decision-making problem.

As aforementioned, a feasible decision space is guaranteed to exist for every
realization of the stochastic processes (equation B.3), but is unknown at the time of
determining the optimal policy. However, the optimal policy design as per equation
6.11 involves computing the expected state at the next instant of time E(ŝk+1), and
thus requires that all possible realizations of ŝk+1 be pre-computed, accounting for
every possible realization of the load and solar stochastic processes. In the pre-
computation process, the realization of ŝk+1 can be represented as a function of the
decision uk . Thus the state constraints on ŝk+1 translate into corresponding control
constraints uk for every possible realization of the load and solar stochastic processes.
In other words, respecting the state and control constraints while making optimal
decisions amidst uncertainties based on dynamic programming not only restricts the
admissible decision space (Usk,Vsk ) but also artificially imposes constraints on the
system parameters as shown in equations B.5-B.8.
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A p p e n d i x C

QUESTIONNAIRE

Questionnaires were designed to obtain responses of the participants regarding their
energy awareness, their thermal comfort, and for their feedback on the dashboard
design. Two questionnaires were provided to the participants in each experiments,
one prior to the experiment and the other at the end of the experiment. These
questionnaires are enclosed below for reference.



Powered by

Beginofstudy survey: 232
Please answer the following questions to the best of your knowledge.

* Required

1. Enter the first two letters of your first name
followed by the last two letters of your last
name *

2. How would you rate your awareness level about your energy consumption? *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Completely
unaware

Extremely
aware

3. In general, when do you use electrical devices at the workplace? Please select all options that
apply. *
Check all that apply.

 Weekdays, MonFri (9 AM  6 PM)

 Weekdays, MonFri (6 PM  12 AM OR 12 AM  9 AM)

 Weekends, SatSun

4. Please indicate the dates between sep 12, 2016
and nov 15, 2016 when you will not use any
electric power at your cubicle? Exclude
weekends and federal holidays. Write 'NA' if
you do not anticipate any such day. *



Powered by

Beginofstudy survey: CMU
Please answer the following questions to the best of your knowledge.

* Required

1. Enter the first two letters of your first name
followed by the last two letters of your last
name *

2. How would you rate your awareness level about your energy consumption? *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Completely
unaware

Extremely
aware

3. In general, when do you use electrical devices at the workplace? Please select all options that
apply. *
Check all that apply.

 Weekdays, MonFri (9 AM  6 PM)

 Weekdays, MonFri (6 PM  12 AM OR 12 AM  9 AM)

 Weekends, SatSun

4. Please indicate the dates between sep 12, 2016
and nov 15, 2016 when you will not use any
electric power at the workplace? Exclude
weekends and federal holidays. Write 'NA' if
you do not anticipate any such day. *



End of study survey: 232
Thank you very much for participating in the plugload study. Your participation helped us to 
systematically study about the plugload consumption among building occupants. Please take a minute 
or two to answer the following questions.

* Required

1. Please enter the first two letters of your first
name followed by the last two letters of your
last name. *

2. How would you rate your awareness level about your energy consumption? *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Completely
unaware

Extremely
aware

3. Please check one or more options below that best describe your work responsibilities. *
Check all that apply.

 Engineering

 FInance

 Human resources

 Operations

 Research

 Other: 

4. Which of the following elements on the dashboard (more than one may apply) do you
consider useful in motivating occupants to reduce their energy consumption? *
Check all that apply.

 Comfort report

 Central dial

 Scoreboard/Leaderboard

 Line charts

 Bar charts

 None of the above



Powered by

5. Which range of temperatures would you consider as being thermally hot?
Mark only one oval.

 65 F and higher

 70 F and higher

 75 F and higher

 80 F and higher

 85 F and higher

 90 F and higher

 95 F and higher

6. Which range of temperatures would you consider as being thermally cold?
Mark only one oval.

 90 F and lower

 85 F and lower

 80 F and lower

 75 F and lower

 70 F and lower

 65 F and lower

 60 F and lower

7. What is be your feedback about the study? Please list the positive and/or negative aspects.
Please be assured that all the survey data is analyzed anonymously to protect your privacy. *
 

 

 

 

 



End of study survey: CMU
Thank you very much for participating in the plugload study. Your participation helped us to 
systematically study about the plugload consumption among building occupants. Please take a minute 
or two to answer the following questions.

* Required

1. Please enter the first two letters of your first
name followed by the last two letters of your
last name. *

2. How would you rate your awareness level about your energy consumption? *
Mark only one oval.

1 2 3 4 5 6 7 8 9 10

Completely
unaware

Extremely
aware

3. Please check one or more options below that best describe your work responsibilities. *
Check all that apply.

 Engineering

 FInance

 Human resources

 Operations

 Research

 Other: 

4. Which of the following elements on the dashboard (more than one may apply) do you
consider useful in motivating occupants to reduce their energy consumption? *
Check all that apply.

 Comfort report

 Central dial

 Scoreboard/Leaderboard

 Line charts

 Bar charts

 None of the above



Powered by

5. Which range of temperatures would you consider as being thermally hot?
Mark only one oval.

 65 F and higher

 70 F and higher

 75 F and higher

 80 F and higher

 85 F and higher

 90 F and higher

 95 F and higher

6. Which range of temperatures would you consider as being thermally cold?
Mark only one oval.

 90 F and lower

 85 F and lower

 80 F and lower

 75 F and lower

 70 F and lower

 65 F and lower

 60 F and lower

7. What is be your feedback about the study? Please list the positive and/or negative aspects.
Please be assured that all the survey data is analyzed anonymously to protect your privacy. *
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A p p e n d i x D

CONSENT FORM

The participants at sustainability base were recruited based on the NASA ARC
475 consent form, which was filled and signed by each participant at NASA after
being briefed about the experiment protocol. The consent form used is enclosed
below for reference. It can also be found at https://hrirb.arc.nasa.gov/content/arc-
475-category-ii.



                 Ames 
                 Research 
                 Center 

CATEGORY II – HUMAN RESEARCH 
MINIMAL RISK CONSENT 

To the Research Participant: Please read this consent form and the attached protocol and/or subject instructions carefully. Make 
sure all your questions have been answered to your satisfaction before signing. 

  
A. I agree to participate in the ____________________________________________________ research experiment as described 
in the attached protocol or subject instructions. I understand that I am employed by___________________________ who can be contacted 
at ____________________________________________. 
 
B. I understand that my participation could cause me minimal risk*, inconvenience, or discomfort. 
The purpose and procedures have been explained to me and I understand the risks and discomforts as described in the attached 
research protocol. 

 
C. To my knowledge, I have no medical conditions, including pregnancy, that will prevent my participation in this study. 
I understand that if my medical status should change while I am a participant in the research experiment there may be unforeseeable 
risks to me (or the embryo or fetus if applicable). I agree to notify the Principal Investigator (PI) or medical monitor of any known 
changes in my condition for safety purposes. 

 
D. My consent to participate has been freely given. I may withdraw my consent, and thereby withdraw from 
the study at any time without penalty or loss of benefits to which I am entitled. I understand that the PI may request my withdrawal or 
the study may be terminated for any reason. I agree to follow procedures for orderly and safe termination. 

 
E. I am not releasing NASA or any other organization or person from liability for any injury arising as a result of my 
participation in this study.  I will be contacted by the PI if an unusual or abnormal (anomalous) finding is detected during 
this study. 
 
F. In the event of injury or illness resulting from this study and calling for immediate action or attention, NASA will provide, or cause 
to be provided, the necessary emergency treatment.  If I am eligible for and receive workers’ compensation benefits while 
participating in this study, I cannot sue my employer because the law makes workers’ compensation my only remedy against my 
employer.  I may have other remedies against other persons or organizations, depending on the circumstances of the injury.  The 
United States Government will pay for any claims of injury or loss of life to the extent required by the Federal Employees 
Compensation Act or the Federal Tort Claims Act. 

 
G. I hereby agree that all records collected by NASA in the course of this study are available to the research study investigators, 
support staff, and any duly authorized research review committee. I grant NASA permission to reproduce and publish all records, notes, 
or data collected from my participation, provided there will be no association of my name with the collected data and that 
confidentiality is maintained, unless specifically waived by me. All stated precautions will be taken to protect anonymity, but there is a 
small risk that some or all of the participants ' data could become identifiable. 

 
H. I have had an opportunity to ask questions and have received satisfactory answers to all my questions. I understand that 
the Pl for the study is the person responsible for this activity and that any questions regarding the research will be addressed to 
him/her during the course of the study. I have read the above agreement, the attached protocol and/or subject instructions prior to 
signing this form and I understand the contents.  

*  Minimal Risk means that the probability and magnitude of harm or discomfort anticipated in the research are not greater, in and of 
themselves, than those ordinarily encountered in daily life or during the performance of routine physical or psychological examinations or tests.	  
Signature of Research Participant                                  Date Signature of Principal Investigator                                  Date 

Printed/Typed Name of Research Participant Printed/Typed Name of Principal Investigator 

Telephone Number of Research  Participant Telephone Number of Principal Investigator 

Address Subject Signature: Authorization for Videotaping 

City, Sate, Zip Code  

ARC	  475	  (Mar	  2015)	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Previous	  editions	  are	  obsolete	  


