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ABSTRACT

Correlation filters (CFs) are well established and useful tools for a variety of tasks in signal

processing and pattern recognition, including automatic target recognition and tracking, biomet-

rics, landmark detection, and human action recognition. Traditionally, CFs have been designed

and implemented efficiently in the frequency domain using the discrete Fourier transform (DFT).

However, the element-wise multiplication of two DFTs in the frequency domain corresponds to

a circular correlation, which results in aliasing (i.e., distortion) in the correlation output. Prior

CF research has largely ignored these aliasing effects by making the assumption that linear cor-

relation is approximated by circular correlation. In this work, we investigate in detail the topic of

aliasing in CFs. First, we illustrate that the current formulation of CFs in the frequency domain

is inherently flawed, as it unintentionally assumes circular correlation during the design phase.

This means that existing CFs are not truly optimal. We introduce zero-aliasing correlation filters

(ZACFs) which fix this formulation issue by ensuring that each CF formulation problem corre-

sponds to a linear correlation rather than a circular correlation. By adopting the ZACF design

modifications, we show that the recognition and localization performance of conventional CF

designs can be significantly improved. We demonstrate these benefits using a variety of data sets

and present solutions to the computational challenges associated with computing ZACFs.

After a CF is designed, it is used for object recognition by correlating it with a test signal. We

investigate the use of the well-known overlap-add (OLA) and overlap-save (OLS) algorithms to

improve the computation and memory requirements of this correlation operation for high dimen-

sional applications (e.g., video). Through this process, we highlight important tradeoffs between
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these two algorithms that have previously been undocumented. To improve the computation and

memory requirements of OLA and OLS, we introduce a new block filtering scheme, denoted

partial-aliasing OLA (PAOLA) that intentionally introduces aliasing into the output correlation.

This aliasing causes conventional CFs to perform poorly. To remedy this, we introduce partial-

aliasing correlation filters (PACFs), which are specifically designed to minimize this aliasing.

We demonstrate through numerical results that PACFs outperform conventional CFs in the pres-

ence of aliasing.
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Chapter 1

Introduction

Correlation filters (CFs) [1] are well established and useful for a variety of tasks in signal process-

ing and pattern recognition. In these applications, we attempt to extract information from signals

of different types. These may be one-dimensional (1D) signals (usually time-varying wave-

forms); for example, a heartbeat signal, a wireless communication signal, or a speech waveform.

More often, the signal is a two-dimensional (2D) image in which we attempt to detect objects

or patterns. CFs can also be applied to three-dimensional (3D) signals (videos), to detect a

particular type of motion, e.g., action detection. In principle, CFs can be applied to signals of

any dimensions, except that the computational and memory complexities grow significantly with

increased signal dimensionality.

CFs work in a two step process: training and testing. In the training stage, CFs are designed

using a set of training signals. Using these signals, the CF is designed mathematically to mini-

mize some metric, such as the mean squared error between a desired output and the actual output

obtained when the training signals are correlated with the CF. Typically, the desired output has a

sharp peak at the location of the target, with low values everywhere else. There are many different

techniques for designing CFs, which we will review in Chapter 2. Once a filter is designed, it is

applied to test data via correlation. Using 1D notation (for simplicity), this correlation operation

can be expressed as
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g(t) = x(t)⊗ h(t)

=
∑
t0

x(t0)h(t0 + t) (1.1)

where h(t) is the CF template (in the time domain) and x(t) is a test signal. In our notation, ⊗

denotes correlation. Because correlation is related to convolution, we can write

g(t) = x(t) ? h(−t) (1.2)

where ? denotes convolution. This can be implemented in the frequency domain as

g(t) = F−1 {F (x(t))�F (h(−t))} (1.3)

where F and F−1 denote the discrete Fourier transform (DFT) and inverse DFT (IDFT), respec-

tively, and � denotes element-wise multiplication. This frequency domain implementation of

correlation is much faster than computing the correlation in the time domain because DFTs can

be implemented very efficiently using the fast Fourier transform (FFT) algorithm.

CFs are useful for different tasks in signal processing and pattern recognition. One such task

is classification, which involves assigning a class from a set of predetermined classes to a query

signal. For example, one may achieve classification by first determining the aforementioned set

of classes. Then, CFs may be trained from example signals of each class. This set of example

signals is known as the training set. The resulting CFs are then applied to test signals (which

should not be in the training set). Ideally, the CF from the correct class will generate a strong

output (a correlation peak) to the test image, whereas the other CFs will not produce a strong

peak in response to the test image. Classification is achieved by assigning the test image to

the class whose CF exhibits the strongest response (e.g., the tallest, or the sharpest, peak). We

illustrate this process in Fig. 1.1 for the problem of face recognition. In this case, we train two
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(a) Strong response to a test image from the same class.

(b) Rejected face image from a different class

Figure 1.1: Schematic of face recognition using CFs.
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Figure 1.2: Pedestrian localization example using correlation filters. Note that there are seven
peaks in the output (one is hard to see), where each peak corresponds to one pedestrian.

CFs, one each for each subject. The CF for subject 1 responds strongly to the test image (which

is of subject 1). The CF for subject 2 does not respond strongly to the test image of subject 1.

Therefore, the test image is determined to be an image of subject 1.

CFs are also be used for localization. Localization implies finding the location of a specific

signal (e.g., an object of some kind) within a larger signal. For example, this could be locating

pedestrians in a surveillance video (see Fig. 1.1) or finding the location of a person’s eye(s) in a

face image.

Recognition refers to simultaneous localization and classification - multiple CFs are applied

to an input signal. The outputs from all of the CFs are examined to determine both the location

of any possible targets and the corresponding classes. An example of recognition is automatic

target recognition (ATR), where a scene is processed to detect the location and class of targets

such as tanks, trucks, jeeps, etc.

One major advantage of CFs over other techniques is their property of shift invariance. Shift

invariance implies that the shifting the input test signal results in an identical shift in the correla-

tion output - in other words, the test signals do not need to be segmented and centered before a

8



signal is tested. In Fig. 1.2, for example, multiple pedestrians are detected. In the output correla-

tion plane, a correlation peak is present at the location of each pedestrian in the test image. The

ability to process unsegmented signals with the target(s) at any location is an important property

of CFs.

Finally, another advantage of CFs is a property known as graceful degradation. This means

that CFs perform well under the presence of occlusion. This is due to the implicit integration

in correlation. If a test image is occluded, the CF template will still match up well with the

unoccluded parts of each test patch. Therefore, the CF will still respond well to the parts of the

image that are visible. This is demonstrated in Fig. 1.3. Note that the occluded test image (in this

case, a modified image from the training set) still yields a sharp correlation peak when correlated

with the CF. This peak is not as high as the original peak obtained with the full image; however,

the fact that it is there in the first place is a major advantage of CFs to other techniques, which

cannot handle occlusion as well.

1.1 Thesis Overview

We have illustrated several advantages of CFs that make them useful and attractive tools for pat-

tern recognition. Over the past thirty years, CFs have evolved significantly with the introduction

of each CF design (see Chapter 2 for a summary). As CFs have been applied to newer problems,

some new research questions have come to the forefront of the field.

The bulk of CF literature has worked with applications in the image domain. Because corre-

lation is efficiently implemented using the FFT, computational considerations for CF design and

application were usually not discussed. However, recent work [2, 3, 4, 5, 6] has investigated the

application of CFs to the domain of human action recognition. In this case, the CF is typically

a 3D template that is correlated with a 3D test signal (a video) to find the locations of human

actions. This results in a 3D output correlation field (see Fig. 1.4 for an example) instead of a 2D

correlation peak, as is the case for conventional 2D applications. This move from 2D correlation
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(a) An input face
image

(b) Occluded
face image

(c) Output correlation (no occlusion) (d) Output correlation (with occlusion)

Figure 1.3: Demonstration of the graceful degradation property of CFs.

10



Figure 1.4: Example of a 3D correlation output. Spatial dimensions are given by x and y, and
the z axis denotes the frame number. The intensity of the color corresponds to the value of the
correlation, with low values being transparent.

to 3D correlation has brought to light various computational issues surrounding CFs. Initially,

we identified that the most obvious of these computational issues was the efficient application

of the CF itself to test data. Therefore, we investigated the well-known overlap-add (OLA) and

overlap-save (OLS) algorithms for multidimensional correlations. These algorithms break the

signal up into sections and process each section one at a time. This approach is much faster and

more memory efficient than processing the entire signal at once. Through our analysis of OLA

and OLS for multidimensional correlations, we uncovered important tradeoffs in each algorithm

that have been previously undocumented.

However, applying the CF to test data in an efficient manner is only one computational issue

surrounding CFs. Before a CF may be applied to data, it must be designed. Typically, CFs are

designed in the frequency domain using DFTs of the training signals. Because the DFT size

directly influences the size of the CF template, the efficient application of CFs to test data is

directly linked to how the CF is designed in the first place. Because the multiplication of two

DFTs in the frequency domain results in circular correlation in the time/space domain, the use of

DFTs also introduces aliasing into the output correlation. While this observation is not new, we

have found that the analysis of the effects of aliasing is lacking in CF literature, having never been
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(a) Conventional Formulation
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(b) Our Reformulation

Figure 1.5: Example correlation outputs for the conventional CF design and our design. The
ideal output is a sharp peak with low sidelobes. Under the conventional formulation, note that
the sidelobes are quite high. With our reformulation of CFs, the output features low sidelobes,
which is consistent with the original design criteria.

thoroughly discussed. In investigating these aliasing effects, we have uncovered a significant

formulation issue with existing CFs designs in the frequency domain. Because existing designs

do not account for aliasing, they are not truly optimal, as their formulations are inherently flawed.

This issue has always been known, but has been mostly ignored in the past, as it was assumed that

the aliasing issues were minimal. In this thesis, we explore the problem and introduce several

solutions that completely eliminate aliasing effects. This results in CFs that are truly optimal and

meet their intended design criteria. For example, our reformulation results in correlation outputs

that more closely resemble the original design’s desired output (see Fig. 1.5). More details will

be presented in later chapters.

As mentioned previously, the use of OLA and OLS can dramatically improve the computa-

tional requirements of correlating a CF with test data. In this thesis, however, we show that we

can make further improvements by reducing the DFT size used for processing each section of

the test signal. Doing this introduces errors (from aliasing) into the output correlations. Despite

this, we show that is is possible to tolerate this aliasing and still be able to recognize objects. In

this case, we design the CFs using the knowledge of the structure of the block filtering scheme,
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so that aliasing effects may be minimized. To the best of our knowledge, this is the first time in

which CFs have been specifically designed to work in the presence of intentionally introduced

aliasing.

As can be seen from the above discussion, these ideas in this thesis challenge conventional

notions in CF theory. First, conventional CF theory designs CFs that are corrupted by aliasing

due to circular correlation. This has been a long standing problem that, until now, did not have

a solution. We present new designs that eliminate these aliasing effects by designing CFs that

correspond to linear correlations. Second, conventional CF theory applies CFs to test data using

linear correlation; we illustrate how CFs can be applied to test data using circular correlations,

which intentionally introduces aliasing. Despite this, we are able to eliminate these aliasing

effects by carefully designing our CFs to account for and minimize aliasing.

1.2 Thesis Contributions

In this section, we outline the main contributions of this thesis. This thesis can be organized into

three major parts, as outlined below.

1.2.1 Designing the CF

(Chapters 2-4)

First, we explore the question, “what is the correct DFT size to use for designing the CF?”

Upon initial thought, it is unclear if there is a correct answer to this question. One issue that

is initially encountered is that the DFT size directly affects the size of the CF template that is

solved for. Intuitively, it would make sense that the template is the same size as the training

signals. However, it is also well-known that the multiplication of DFTs in the frequency domain

leads to circular correlation, not linear correlation. In the past, this has motivated the practice

of zero-padding the training images, as it was widely believed that this would avoid circular
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correlation effects. Other than this, the circular correlation issue has been ignored in the past.

In this thesis, we delve into this question in detail with the goal of providing more insight and

improvement to the filter design process.

Contributions:

• Detailed insight to the DFT size required for conventional CFs to work correctly;

• Illustration of how conventional CF formulations are incorrect;

• A new zero-aliasing correlation filter (ZACF) training framework for eliminating circular

correlation effects during training;

• Extension of ZACF to existing CF designs;

• Extensive results of ZACFs on a wide variety of datasets;

• Alternate formulations of the zero-aliasing problem to handle the computational complex-

ity: Tail Energy Minimization, Reduced-Aliasing Correlation Filters, Reduced-Aliasing

Tail Energy Minimization, and proximal gradient descent methods.

1.2.2 Applying the CF

(Chapter 5)

After we have designed a CF, we might ask, “what is the most efficient way to apply this CF

to test data?” While early work in CFs took advantage of optical Fourier transform techniques,

current digital implementations rely heavily on the efficiency of the FFT algorithm. In general,

these correlations are not considered to be overly demanding, so their computational aspects

are typically overlooked. However, the recent investigation of CFs in 3D has necessitated the

use of OLA and OLS, as otherwise these correlations cannot be computed on modern desktop

machines.

Contributions:
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• An in-depth computational analysis of OLA and OLS for multidimensional correlations,

including discussion of parameter selection;

• Discussion of memory requirements regarding OLA and OLS for multidimensional corre-

lations;

• The characterization of the tradeoffs involved between choosing OLA or OLS for filtering

a signal;

• The discussion of various design choices when implementing OLA and OLS for multidi-

mensional signals.

1.2.3 Designing the CF with Intentional Aliasing

(Chapter 6)

Traditional CF theory assumes that CFs must be applied to test data using linear correlation.

Here, we challenge that assertion, and ask, “can CFs still recognize objects in the presence of

aliasing?” In essence, this means that we design the CF to work specifically with the block

filtering architecture that will be used to apply it to test data. For example, we may use a gen-

eralized OLA architecture that intentionally allows aliasing (from circular correlation) by using

short DFT sizes. We show that it is possible to obtain a CF that performs well in the presence of

aliasing. The advantage of this alternative block filtering technique is that it requires less com-

putation and memory. We also investigate other ideas, including the design of CFs of varying

sizes, sometimes even smaller than the training data.

Contributions:

• Demonstration and analysis of circular correlation effects for a generalized form of OLA,

denoted partial-aliasing OLA (PAOLA);

• A new partial-aliasing correlation filter (PACF) training framework that is specifically de-

signed to work with PAOLA and intentional aliasing;
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• Demonstration that PACFs outperform conventional CFs in the presence of aliasing;

• Computational and memory analysis for PAOLA;

• Demonstration that it is possible to train a CF that is shorter than the training signals, which

in this case reduces aliasing.

1.3 Notation and Conventions

Throughout this document, we will be referring to CFs in both the time domain and frequency

domain. In general, we will use the word template to refer to the correlation filter in the time

(or spatial) domain; we will use the word filter to refer to it in the frequency domain. We use

the phrases “time domain”, “space domain”, and “spatial domain” interchangeably, and note that

our techniques are not limited to a particular dimension.

In general, our notational convention will denote the size of a D-dimensional signal m as

Nm,1 × · · · ×Nm,D. However, if we are discussing a 1D signal, we will often refer to its length

simply asNm for simplicity. Similarly, we will often be computing DFTs and IDFTs. The size of

these transforms are denoted in general by N1× · · · ×ND. Again, for a 1D signal, we will often

drop the subscript and simply refer to the DFT size as N . This notational convention extends

to other variables that will be defined for multidimensional algorithms. Additionally, if we are

referring to a general mathematical expression that applies to any dimension, we will often use

expressions such as Nm,d or Nd rather than write out each case for every dimension.

We list the rest of our notation below.

• Matrices will be denoted in capital boldface, e.g., A.

• Vectors will be denoted in lowercase boldface, e.g., h.

• Frequency domain signals will be represented with an overbar, e.g., h̄.

• Time domain signals will have no overbar, e.g., h.

• We denote the transpose with a superscript T , e.g., hT .
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• We denote complex conjugate with a superscript ∗, e.g., h̄∗.

• We denote complex conjugate transpose with a superscript +, e.g., h̄+.

• We denote correlation with the symbol ⊗ and convolution with the symbol ?.

• If we are referring to specific elements of a signal, image, template, or correlation plane,

we will use lowercase non-bold symbols, e.g., h(n) or h(n,m) for time/space domain

quantities and capital non-bold symbols, e.g., H(k) or H(k, l) for the frequency domain

counterparts.

• We denote image resolutions as r × c, where r is the number of rows (i.e., the number of

pixels in the vertical dimension) and c is the number of columns (i.e., the number of pixels

in the horizontal dimension).

• The N point DFT and IDFT matrices (of size N × N ) are given by FN and F−1
N , respec-

tively.

• We indicate an a× b matrix of all zeros as 0a×b and an a× a identity matrix as Ia.

1.4 Organization

This thesis is organized as follows. In Chapter 2, we provide the necessary background on

CFs and introduce the details of the aliasing caused by DFT circular correlation. We then present

several examples that illustrate in different ways the circular correlation issues in the conventional

formulation of CFs. In Chapter 3, we introduce ZACFs as a solution to this problem. We extend

ZACFs to a variety of existing CF formulations as well. Because computing ZACFs result in

new computational issues, we explore these issues in Chapter 4, presenting several computation

and memory efficient alternative formulations. We also present results on a variety of datasets

that indicate that our methods perform well and outperform conventional CF designs.

In Chapter 5, we shift our focus to the application of CFs to test data. We start by discussing

the use of OLA and OLS for multidimensional correlations and discuss the tradeoffs of each
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method with respect to computation and memory. In Chapter 6, we build on the ideas in Chapter

5 by introducing PAOLA and explaining how it is more efficient than OLA at the expense of

intentionally introducing aliasing into the correlation outputs. Then, we borrow ideas from ZA-

CFs and present PACFs as a new way of designing CFs to work in the presence of aliasing. We

summarize our contributions and discuss potential directions for future work in Chapter 7.
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Chapter 2

Aliasing Issues in Correlation Filters

Despite the success and use that CFs have enjoyed, there has always been a question about how to

properly design them in the frequency domain. Initially, filters were formulated in the frequency

domain because computation and optimization in the frequency domain was considerably more

efficient than working in the space domain. This is because correlation can be computed in the

frequency domain as an element-wise multiplication of two DFTs. It is this fact that has made

existing CF designs possible; however, this is also the cause of the circular correlation aliasing

effects that are present in existing CF designs.

In this chapter, we demonstrate that there is a serious issue with the formulation of existing

CF designs. This problem is very prevalent among many different CF designs. It has been

unaccounted for until now. To begin, however, we give a brief introduction to the details of

CFs. We then illustrate the issues with current CF formulations in different ways. First, we

ask ourselves, “what size DFT should we use to train the CF?” By exploring this question, we

expose a serious limitation to existing CF designs. Next, we investigate the formulation of the

well-known minimum average correlation energy (MACE) filter, and use it as an illustrative

example as to why CF designs are improperly formulated.
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2.1 Introduction to CFs

In this section, we give a brief introduction to CFs. The simplest type of CF is a matched filter,

in which the template itself is a single signal of interest. For example, for an ATR application, a

matched filter could be formed from a single image of a tank. While this matched filter would

work well to recognize the target under no distortion, it performs poorly once distortion (i.e.

scale, viewpoint, rotation, etc.) is introduced. Therefore, to recognize a single object under

any possible distortion, a large number of matched filters are required. This is not practical,

especially for applications of recognizing objects with greater space for distortions. For example,

human faces can undergo many non-linear transformations, such as expression. Therefore a

single matched filter is simply not sufficient.

To remedy this problem, synthetic discriminant functions (SDFs) were introduced. These

designs were aimed at determining a single template from a set of training images. This advance

signaled the birth of modern CFs. Over the past three decades, the design of CFs has evolved

significantly. We can divide all CFs into three categories: constrained CFs, unconstrained CFs,

and inequality constrained CFs. Recently, [7] provided a generalized framework for these CFs,

denoted the constrained CF (CCF) and unconstrained CF (UCF). In the next chapter, we will

take advantage of these formulations when we develop our zero-aliasing formulation, which

eliminates aliasing issues due to circular correlation.

2.1.1 Constrained CFs

Constrained CFs place constraints on the filter design such that the response of the CF to each

training image is constrained to a particular value. The first of these designs is the equal corre-

lation peak SDF (ECPSDF) [8]. In this case, the template is assumed to be a linear combination

of the training images. The dot product of the template and each training image is constrained

to a particular value, which corresponds to the value of the correlation output at the origin. This

value should represent the correlation peak when the input is a centered training image from the
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class of images for which the CF is being designed. However, there is no mechanism to control

the sidelobes of the peak; therefore, the resulting peak is not always sharp, and high sidelobes

can make it hard to detect.

To solve this issue, one approach was the MACE filter [9]. Like the ECPSDF, the MACE

filter imposes peak constraints for each of the training images. However, instead of assuming the

template is a linear combination of the training images, the MACE filter minimizes the average

correlation energy (ACE) of the output correlation planes with the training images. This essen-

tially reduces the sidelobes of the correlation outputs, which results in much sharper correlation

peaks. The MACE filter represents one of the first advanced CFs. Its formulation served as an

inspiration for many other filter designs. For example, the minimum correlation energy (MICE)

and minimum noise and correlation energy (MINACE) filters [10] adopt a modified method of

computing the statistics of the training set for the MACE filter, by placing limits on the energies

of particular frequencies in the signal spectrum. This can prevent over-emphasizing particular

frequencies. The Gaussian MACE filter (GMACE) [11] and the minimum squared error SDF

(MSESDF) [12] generalize the MACE filter by minimizing a mean squared error (MSE) metric

between a desired correlation output and the actual correlation output. These filters are general-

izations of the MACE filter, because the MACE filter essentially minimizes MSE while assuming

the desired output is a delta function.

Another type of constrained CF is the minimum variance SDF (MVSDF) [13]. The MVSDF

filter is designed to minimize the output noise variance (ONV) in the output correlation plane.

This requires a model of the input noise. The MVSDF is designed to build noise tolerance

into CF designs. It was later combined with the MACE filter leading to the optimal tradeoff

synthetic discriminant function (OTSDF) filter [14, 15]. The OTSDF filter offers a tradeoff

between minimizing ACE and ONV. This tradeoff builds robustness into the CF and allows for

better recognition performance. It also serves as one of the most important CFs to date, and

inspired many designs of similar optimal tradeoff CFs.
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2.1.2 Unconstrained CFs

The introduction of unconstrained CFs was a significant advance to CF theory. In constrained

designs, each the dot product of the CF and each training image is constrained to a constant

value. However, this does not guarantee that the test images, when correlated with the CF, will

produce that constrained peak value. Therefore, unconstrained CFs remove this constraint in

filter design. This in general allows for CFs to exhibit better generalization.

The most important unconstrained CF is the maximum average correlation height (MACH)

filter [16]. This CF maximizes the correlation height of the output while minimizing ACE and

a metric known as average similarity metric (ASM). Minimizing ASM essentially ensures that

the correlation outputs from training images from a particular class are as similar as possible.

The MACH filter in general performs very well in practice and has remained a popular CF. The

MACH filter with only the ACE term (no ASM) is called the unconstrained MACE (UMACE)

filter. An optimal tradeoff version of the MACH filter (similar to the OTSDF) was introduced

in [17]. This filter is sometimes called the Optimal Tradeoff MACH filter, but we prefer the

name unconstrained OTSDF (UOTSDF) filter. Other extensions to the MACH filter include the

extended MACH (EMACH) [18], and the eigen EMACH (EEMACH) filter [19].

Recently, the average of synthetic exact filters (ASEF) filter was introduced in [20]. Instead

of optimizing a particular metric, ASEF builds one “exact filter” for each training image. Each of

these exact filters are then averaged to form the ASEF filter. This method only performs well if

many training images (hundreds) are used. The minimum output sum of squared errors (MOSSE)

filter [21] aims to remedy this problem by minimizing the error between the desired correlation

output and the actual correlation between the template and the training images. The MOSSE

filter in general performs better than the ASEF filter. Finally, [22] introduces two new paradigms

for training the ASEF and MOSSE filters. First, the boosted synthetic correlation filter (BSCF)

modifies the weights of the exact filters for the ASEF formulation using boosting. Boosting is a

training method that iteratively updates the weights of a set of weak classifiers that combine to
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form a strong classifier. Second, the adaptive synthetic correlation filter (ASCF) introduces an

iterative method for retraining the ASEF or MOSSE filter. After the filters are trained initially,

they are correlated with the training set and the outputs containing false detections are used to

modify the desired correlation outputs and subsequently retrain the filters. This is done many

times until the correlation outputs improve.

2.1.3 Inequality Constrained CFs

Another important CF is the maximum margin correlation filter (MMCF) [23]. The MMCF is

the first (and only) inequality constrained CF. This filter combines the localization ability of CFs

with the generalization ability of support vector machines (SVMs) by maximizing the margin

between two classes. Unlike constrained CF designs, which constrain the dot products of the CF

and each of the training images to a specific value, the MMCF removes this hard constraint and

replaces it with an inequality constraint instead (e.g. the dot product of the CF and each of the

training images must be larger than or equal to some value). In some cases, a slack variable

allows some dot products to fall on the wrong side of the margin (this is allowed in order to get

a more generalized margin).

2.1.4 Applications of CFs

There are a wide variety of applications for CFs in biometrics, automatic target recognition,

landmark detection, and action recognition. For example, CFs are used for face recognition

in [24]. More recently, [25] demonstrated the use of CFs for occluded face recognition. This

demonstrated yet another advantage of CFs, namely their graceful degradation in the presence

of occlusions. A deformable pattern matching method is coupled with CFs in [26] to recog-

nize human iris images. More recently, ocular recognition has become of greater interest to the

biometric community, and CFs have been applied to this problem in [27]. CFs have also been

suggested for biometric key binding in [28]. Phase-only correlation methods, which are similar
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to CFs, have been used to correlate the phase information in two images. Biometric applica-

tions of these techniques include iris recognition [29], as well as face, fingerprint, palmprint, and

finger-knuckle recognition [30, 31].

CFs have been used for a long time for automatic target recognition [23, 32] and to track

moving objects in video [21, 32, 33]. Pedestrian detection has been demonstrated in [34]. CFs

have been also used as interest point detectors. For example, [20, 23] uses CFs for eye localiza-

tion in images of human faces, and [35] uses CFs for interest point detection in object alignment.

CFs have also proven useful for detecting and locating text strings for document processing [36].

CFs have also been extended to three dimensions (two spatial dimensions and one temporal

dimension) and have been applied to detect and classify human actions [2, 3, 4, 5, 6]. In [4], a

motion model is combined with 2D CFs to classify human activities. The use of CFs is not limited

to pixels; they have been applied to work with feature vectors such as optical flow [2], histogram

of oriented gradient (HOG), or scale invariant feature transform (SIFT) features [35, 37].

2.1.5 Aliasing and CFs

Despite all the work in CFs, the circular correlation problem (which we will explain in this

chapter) has been mostly ignored. This problem was initially observed in [38], which proposed

reformulating the MACE filter [9] in the space domain to avoid circular correlation. However,

computation of the MACE filter in the space domain is of significant complexity. Furthermore,

there was never a proposed frequency domain solution. More recently, [39] explored several

methods to reduce circular correlation effects. These methods use zero padding and/or windowed

training images to lessen the effects of circular correlation. One of these methods, originally

mentioned in [20], multiplies the training images by a cosine window to reduce edge effects (this

approach is explored in greater detail in [39]). Windowing is undesirable, however, because it

fundamentally changes the content of the training images. All of the methods discussed in [39]

fall short, as they do not adequately reduce circular correlation effects. Outside of the field of
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CFs, convolutional sparse coding was recently extended to the frequency domain [40]. In this

application, filters are learned in the frequency domain. Although the authors admit that circular

convolution is present, they only offer heuristics to fix these effects, such as utilizing symmetric

convolution.

We introduced zero-aliasing correlation filters (ZACFs) for the MACE filter in [41]. A main

contribution of this thesis is to show how this method solves the circular correlation problem in

CFs. The details of our approach will be explained in the next chapter.

2.2 Introduction to Circular Correlation

Before we begin discuss CF aliasing issues in detail, we provide a brief discussion of circular

correlation.

Suppose we have two signals, x(n) and y(n). One method to compute the correlation is to

do so in the time domain using a sliding correlator. However, it is also possible to compute

the correlation in the frequency domain. This is because the multiplication of two DFTs in the

frequency domain corresponds to a circular correlation in the time domain [42]. This is a well

known fact, but oftentimes circular correlation is assumed to be approximately the same as linear

correlation. Indeed, this is the assumption that was used for the bulk of CF theory. Despite this,

DFTs may still be used to compute linear correlation. In order for this to work, both signals must

be sufficiently zero padded prior to taking the DFT. If signal x(n) is of length Nx and signal y(n)

is of length Ny, then both signals must be padded with zeros to at least size Nx + Ny − 1. The

resulting correlation is still technically circular, but it is the same as a linear correlation, as the

zero-padding essentially nulls out any potential aliasing.

To illustrate the process of computing correlation in the frequency domain, we present an

example. First, we show a signal x(n) of length Nx = 16 in Fig. 2.1a and signal y(n) of length

Ny = 7 in Fig. 2.1b. First, we illustrate linear correlation in Fig. 2.1c through 2.1e. Here, we

use a DFT of size Nlin = Nx +Ny − 1 = 22. In Fig. 2.1c, we show x(n) with Ny − 1 = 6 zeros
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appended. In Fig 2.1d, we show y(n) with Nx−1 = 15 zeros appended. We then flip the padded

y(n) (which is necessary to compute correlation, not convolution) and take the Nlin-point DFTs

of both signals. We element-wise multiply them and take the Nlin-point IDFT to return to the

time domain. This output is the linear correlation shown in Fig. 2.1e. It is identical to a sliding

window correlation output.

Next, we illustrate circular correlation in Fig. 2.1f through 2.1h. Here, we use a DFT of size

Ncirc = 16. In Fig. 2.1f, we show x(n) with no zeros appended (because Nx = Ncirc). In Fig

2.1g, we show y(n) with Ncirc − Ny = 9 zeros appended. We then flip the padded y(n) and

take the Ncirc-point DFT of both signals. We element-wise multiply them and take the Ncirc-

point IDFT to return to the time domain. This circular correlation output is of length Ncirc.

However, we cyclically extend it so that it is of length Nlin, and plot it in Fig. 2.1h. Note that the

red values on each tail represent values that are corrupted from circular correlation. There are

exactly Nlin −Ncirc of these values on each tail.

Note that if x(n) and y(n) are much different in size, there will be less severe circular corre-

lation effects, using the methods we outlined here. As the signals become closer in size, aliasing

increases. In fact, if the signals are the same length, all of the circular correlation output values

will be different from the linear correlation output except for the value at the origin! This is

illustrated in Fig. 2.2. This is actually the case for conventional CF designs (when the DFT size

is the same as the image size), as the designed CF template will then be the same size as the

training images.

2.3 Investigation of DFT Size for Filter Design

When designing a CF in the frequency domain, the first question that comes to mind is, “what

DFT size should be used to train the filter?” Typically, this issue is not discussed much in

literature, as it is viewed as an implementation detail. Typically, CFs are trained with a set of

cropped training signals (or images) that serve as a representative sample of a particular class.
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Figure 2.1: Example illustrating the difference between linear and circular correlation. See text
for details.
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Figure 2.2: Example illustrating the difference between linear and circular correlation with equal
signal lengths. The red values in the circular correlation output denote values that have been
corrupted due to aliasing.

Therefore, the immediate logical answer to this question is to simply use a DFT size equal to the

image size. Another answer is to use a DFT that is larger than the image, but that is a power of

2, for efficiency. Still another answer is to use a DFT size that is at least of size Nd = 2Nx,d − 1,

where Nx,d is the size of the training signal in dimension d. The motivation for this choice is

that this provides enough zero-padding to avoid circular correlation. This is because if we are

correlating two signals of size Nx,d, we must zero-pad each to size 2Nx,d − 1 or greater prior

to taking the DFT. Then, the multiplication of the two signals in the frequency domain will

correspond to a linear correlation, rather than a circular correlation, in the space domain. This

argument makes the assumption that the CF template that we are solving for is also of length

Nx,d, or can at least be assumed to be of this length.

However, there is a problem! When we design CFs using different DFT sizes, we get different

templates! This is illustrated in Fig. 2.3. In this example, we train a CF using three face images

of size 92× 92. We use three different DFT sizes: 92× 92, 128× 128, and 183× 183. In each

case, we obtain a template of a different size, equal in size to that of the DFT that was used.

Typically, we would crop the template to size 92 × 92. This is shown in Fig. 2.4. Note that

even in this case, the three templates are different from each other. In particular, they all exhibit

different aliasing effects that are caused by the DFT size that was used to train them.
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Figure 2.3: The designed templates using different DFT sizes.
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Figure 2.4: Cropped templates using different DFT sizes. Note that the edges of the templates in
particular are different. Also, observe the vertical and horizontal lines present in the 128 × 128
template.
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Figure 2.5: Faces used in the experiment. All have been cropped to size 92× 92.

The question still remains, which template is the best? To further illustrate this point, we

perform an experiment. We use the AT&T/ORL Face Dataset [43]. In this dataset, there are 40

subjects, with 10 images of each subject. Each image is 112 × 92. To simplify this experiment,

we crop each image to size 92 × 92 by removing 10 pixels from the top and bottom of each

image. See Fig. 2.5 for example images for each subject.

We train UOTSDF filters using 9 training images from each class. The filters are trained in

three different ways:

1. DFT of size 92× 92;

2. DFT of size 183× 183, and then crop template to size 92× 92;

3. DFT of size 183× 183.

These filters were then tested on the remaining image for all subjects. This resulted in a total of

40 test images (one from each class) that were tested with 40 filters each, for a total of 1600 cor-

relations per cross validation step. This process was repeated 10 times to capture every possible

training set.

For each correlation output, we calculate peak to correlation energy (PCE) as described in

[1]. PCE is a measure of peak sharpness and is a good metric that may be used for classification.
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Figure 2.6: Performance of CFs while varying the DFT size used at testing.

PCE is computed as

PCE =
|cpeak|2∑
i

∑
j |ci,j|2

(2.1)

where cpeak is the value of the correlation peak, and ci,j represents the correlation plane. Using

the PCE scores for each filter, we varied the threshold to generate receiver operating characteristic

(ROC) curves, yielding the system’s true positive rate and false positive rate for a given threshold.

To consolidate these curves into a single score, we compute the equal error rate (EER). We also

perform classification on each of the test images and compute the rank-1 ID rate.

We run the above experiment multiple times, varying the DFT size used to compute the

correlation in the testing stage while keeping the trained templates the same. For the 92 × 92

templates, we start with a DFT of size 92 × 92. Since the test images are also 92 × 92, this is

a circular correlation. The correlation continues to be a circular correlation until the test DFT is

larger than or equal to 183× 183. Similarly, for the 183× 183 template, we start with a DFT of

size 183 × 183. Since the test images are 92 × 92, this is a circular correlation. The correlation

continues to be a circular correlation until the test DFT is larger than or equal to 274× 274.

We plot the results of this evaluation in terms of EER in Fig. 2.6a and in terms of Rank-1 ID

rate in Fig. 2.6b. We observe that:
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• For method 1 (train DFT size 92 × 92) and method 3 (train DFT size 183 × 183), perfor-

mance is best with the test DFT size is 92× 92 and 183× 183, respectively. Both of these

points represent circular correlation.

• For both methods 1 and 3, performance decreases as DFT size increases.

• Once the DFT size is greater than or equal to 183× 183 (method 1) or 274× 274 (method

3), the correlation becomes linear and the performance is constant.

• For method 2 (template size 92 × 92) we notice the opposite: performance is poor for a

DFT size 92× 92 (circular correlation). As the DFT size increases, aliasing due to circular

correlation decreases; performance increases, and becomes constant once the correlation

is linear (DFT size larger or equal to 183× 183).

This experiment illustrates several important points. First, conventional CF designs are very

dependent on the DFT size that is used in both training and testing. If these two DFT sizes

are not the same, then performance is poor. This can be a very serious problem if the training

images are not the same size as the testing images, which is often the case. Furthermore, we

have observed that performance is the best when the test DFT is a circular correlation. While

this result may not seem immediately intuitive, it will become more clear in Section 2.4, where

we investigate CF formulations in more detail. The answer, of course, is that existing CF designs

are inherently (and unintentionally) formulated as circular correlations. Therefore, they only

“work” if the circular correlation is the same during testing as it was in training (i.e., the DFT

size must be the same).

Method 2 represents a typical implementation of CFs in which the training DFT template

is cropped from a larger template. This is done because the template intuitively should be the

same size as the training images. Furthermore, this implementation is necessary for localization

tasks, where the test images are much larger than the training images (and the goal is to find the

precise location of the target within the scene, rather than to simply perform classification). We

have also consistently observed that this method typically performs better than the other methods
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assuming the filter is applied to data with a linear correlation. Therefore, method 2 is typically

our baseline method.

2.4 Investigation of CF Formulations

In this section, we discuss issues regarding the design of CFs in the frequency domain, namely

the unintended effects of circular correlation. This problem was initially observed in [38], which

proposed reformulating the popular MACE filter [9] in the space domain rather than the fre-

quency domain to avoid circular correlation. However, computation of the MACE filter in the

space domain is of significant computational complexity. More recently, [39] explored several

methods to reduce circular correlation effects. These methods use zero padding and/or windowed

training images to lessen the effects of circular correlation. One of these methods, originally

mentioned in [20], multiplies the training images by a cosine window to reduce edge effects (this

approach is explored in greater detail in [39]). Windowing is undesirable, however, because it

fundamentally changes the content of the training images. All of the methods discussed in [39]

fall short, as they do not adequately reduce circular correlation effects.

To illustrate the circular correlation problem, we introduce two different formulations of the

MACE filter - one in the frequency domain (FDMACE) and one in the time domain (TDMACE).

Then, we will illustrate that FDMACE is not as optimal as TDMACE.

2.4.1 FDMACE

The MACE filter is designed to respond well to training signals (in fact, the correlation output for

positive training signals is typically constrained to be exactly 1 at the origin). In addition, this fil-

ter attempts to minimize the ACE of the entire correlation plane. The result of this minimization,

coupled with the peak constraints, is a sharp correlation peak with low sidelobes.

Let us consider the 1D MACE filter. Let us assume that we will be training the filter using
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training signals, xq(n), with q = 1, . . . , Q and n = 0, . . . , Nx − 1. We will use H(k) and Xq(k)

to denote the CF and the training signals, respectively, in the frequency domain. The ACE for

these training signals is given by

ACE =
1

Q

Q∑
q=1

Nx−1∑
n=0

|cq(n)|2 (2.2)

where cq(n) is the correlation output of the filter and the qth signal. This can be expressed in the

frequency domain with Parseval’s theorem,

ACE =
1

NQ

Q∑
q=1

N−1∑
k=0

|Cq(k)|2 (2.3)

where Cq(k) is the N -point DFT of cq(n). In the traditional MACE formulation, Cq(k) =

H(k)X∗q (k), and ACE may be expressed as

ACE =
1

NQ

Q∑
q=1

N−1∑
k=0

|Xq(k)|2|H(k)|2 (2.4)

If we represent H(k) as a vector h̄ and Xq(k) as a diagonal matrix X̄q with the elements of

Xq(k) along the diagonal, ACE may be expressed in matrix-vector form as

ACE =
1

NQ

Q∑
q=1

h̄+X̄qX̄
∗
qh̄

= h̄+

[
1

NQ

Q∑
q=1

X̄qX̄
∗
q

]
h̄ (2.5)

= h̄+Dh̄ (2.6)

where
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D =
1

NQ

Q∑
q=1

X̄qX̄
∗
q (2.7)

is an N ×N matrix.

The standard MACE formulation will minimize Eq. 2.6 subject to the constraints

X̄+h̄ = Nu (2.8)

In this case, X̄ (no subscripts) is a matrix whose columns contain the N -point DFTs of the

training signals, and u is a ground truth vector, whose elements correspond to each training

signal. Typically, 1 is used for a positive class training element and 0 is used for a negative

training element. The solution for the MACE filter is given by [9]

h̄ = ND−1X̄
(
X̄+D−1X̄

)−1
u (2.9)

As we mentioned previously, the implementation of Eq. 2.9 is ambiguous. Specifically, the DFT

size, N , must be chosen. As shown previously, different choices of N will yield different filters.

Therefore, we can remove this choice by formulating the MACE filter in the time domain instead.

We can then compare FDMACE to the TDMACE formulation.

2.4.2 TDMACE

In general, computing CFs in the time or space domain is not as attractive due to computational

concerns. In this section, we formulate this problem for discrete 1D signals. Note that a general-

ized space domain implementation of MACE can also be found in [38].

Consider a CF h(n) and a set of input signals xq(n), q = 1, . . . , Q. For the purpose of this

example, h(n) is defined for 0 ≤ n ≤ Nh−1 and is 0 elsewhere; similarly, each xq(n) is defined

for 0 ≤ n ≤ Nx − 1 and is 0 elsewhere. We assume that the template length Nh is shorter than

the training signal length Nx. In most practical cases Nh = Nx. Correlation in the time domain

may be defined as
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cq(n) =

Nh−1∑
k=0

h(k)xq(k − n) (2.10)

Here, cq(n) will be zero outside of the range −(Nx − 1) ≤ n ≤ Nh − 1. This corresponds to

Nh +Nx − 1 correlation values. We can define the correlation energy for xq(n) as

Ec,q =

Nh−1∑
n=−(Nx−1)

|cq(n)|2

=

Nh−1∑
n=−(Nx−1)

∣∣∣∣∣
Nh−1∑
k=0

h(k)xq(k − n)

∣∣∣∣∣
2

=

Nh−1∑
n=−(Nx−1)

(
Nh−1∑
k=0

h(k)xq(k − n)

)(
Nh−1∑
l=0

h(l)xq(l − n)

)∗
(2.11)

=

Nh−1∑
n=−(Nx−1)

Nh−1∑
k=0

Nh−1∑
l=0

h(k)xq(k − n)x∗q(l − n)h∗(l) (2.12)

Rearranging the summations, we can express this as

Ec,q =

Nh−1∑
k=0

Nh−1∑
l=0

h(k)

 Nh−1∑
n=−(Nx−1)

xq(k − n)x∗q(l − n)

h∗(l)

=

Nh−1∑
k=0

Nh−1∑
l=0

h(k)Rq(k, l)h
∗(l) (2.13)

where

Rq(k, l) =

Nh−1∑
n=−(Nx−1)

xq(k − n)x∗q(l − n) (2.14)

We can rewrite Eq. 2.13 as
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Ec,q = h+Rqh (2.15)

where h is an Nh × 1 vector given by

h =


h(0)

...

h(Nh − 1)

 (2.16)

and matrix Rq is an Nh × Nh matrix, in which the element for row k and column l is given by

Eq. 2.14. The matrix Rq is Toeplitz and conjugate symmetric (see Appendix A).

We may now compute the average correlation energy as

Ēc =
1

Q

Q∑
q=1

Ec,q

=
1

Q

Q∑
q=1

h+Rqh

Ēc = h+

(
1

Q

Q∑
q=1

Rq

)
h

= h+R̄h (2.17)

where

R̄ =
1

Q

Q∑
q=1

Rq (2.18)

is also a Toeplitz conjugate symmetric matrix. To formulate the TDMACE filter, we want to

minimize Ēc subject to several constraints. In particular, we want the filter to generate a peak at

the origin of each of the positive-class training signals. This correlation output at the origin is

given by
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cq(0) =

Nh−1∑
k=0

h(k)xq(k)

= hTxq,Nh (2.19)

where

xq,Nh =


xq(0)

...

xq(Nh − 1)

 (2.20)

is the vector formed by the first Nh values of xq. We can formulate the TDMACE filter design

by minimizing Ēc subject to the linear constraints XTh = u. Here, the columns of the Nh × Q

matrix X are the vectors xq,Nh . The Q × 1 constraint vector u is chosen based on the training

signals. Typically, a 1 is used for a true class signal and a 0 is used for a negative class signal.

Note that this quadratic minimization problem subject to linear constraints is very similar to the

FDMACE filter formulation. The optimal TDMACE CF template is given by

h = R̄−1X
(
XT R̄−1X

)−1
u (2.21)

2.4.3 Comparing FDMACE to TDMACE

Let us consider a simple 1D example to see how the TDMACE compares to the FDMACE.

To illustrate both formulations, we use data from the MIT-BIH Arrhythmia Database [44]. In

this case, we have extracted the first 5 minutes of record 103 in the database, resulting in 355

heartbeat cycles. For reference, we have plotted all 355 segmented heartbeat signals in Fig. 2.7.

Each signal is 301 samples long and represents a single heartbeat, which has been segmented by

a cardiologist expert based on the location of the main peak. The purpose of using these signals
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Figure 2.7: Plot of the segmented MIT-BIH heartbeats used as a test to evaluate TDMACE and
FDMACE filters.

is to use real signals to demonstrate CF performance. We do not imply that CFs should be used

for heart beat detection or Arrhythmia classification.

To begin with, we we choose our correlation template to be Nh = Nx samples long for the

TDMACE formulation. For the FDMACE formulation, we use N = Nx for the DFT size. In our

first experiment, we randomly select Q = 10 heartbeat signals from the dataset and build both

a TDMACE and FDMACE correlation template. We apply the resulting correlation template to

the training examples (using time domain correlation) and compute the unaliased ACE. We use

the term unaliased ACE to make a distinction from ACE, which is given in Eq. 2.6. Unaliased

ACE is simply the average correlation energy of the linear correlations of the training samples

and the template. Ideally, the answers should be identical, if the TDMACE and FDMACE are

identical. However, what we find is actually the opposite - the unaliased ACE achieved by the

conventional MACE formulation (FDMACE) is always higher than the unaliased ACE achieved

by the TDMACE formulation. We have repeated this experiment 100 times and show the results

in Fig. 2.8a. This same result has been observed on other signals as well, and indicates that there

is an issue with the FDMACE formulation, as it is clearly not optimal.

After making this observation, we determined that the reason for the FDMACE’s poor perfor-

mance was the formulation of ACE in the frequency domain (initially, Eq. 2.4). This expression
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Figure 2.8: Unaliased ACE for FDMACE and TDMACE. (a) TDMACE achieves a lower un-
aliased ACE than FDMACE, regardless of the training set. (b) Adjusting the zero padding to
generate a new FDMACE filter. Here, the filter size varies as a function of zero padding.

features the multiplication of the filter with the DFT of each training signal. Because we are

using the DFT, this is inherently a circular correlation! One common misconception is that zero

padding the training signals to a sizeN ≥ 2Nx−1 prior to taking the DFT will avoid this circular

correlation. However, because the DFT size (N ) is now longer than the original training signals,

the resulting template will beN samples long. Note that this in itself is another issue, as we really

desire a template size that is the same size as the training signals. Nevertheless, we demonstrate

this approach in Fig. 2.8b. Here, we have taken the same training set (Q = 10) and have varied

the zero padding used, denoting the number of zeros appended to each signal as p. Note that

the length of the DFT and the resulting template is now N = Nx + p. Because the template

size varies, we standardize the unaliased ACE computation by normalizing each template to unit

energy and computing normalized correlation (i.e. each signal segment corresponding to each

correlation lag is also normalized to unit energy). If this method is to work, the unaliased ACE

should decrease to a minimum at a zero padding of 300 and above (because Nx = Nh = 301,

then Nx +Nh − 1 = 601, which means the necessary zero padding to avoid circular correlation

must be at least p = 300). However, this is not the case! The unaliased ACE does not improve
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as p increases. This is because, for the ACE expression to represent linear correlation, both the

training signals and the correlation template must be zero padded! For example, if we pad the

training signals with p = 300 zeros, we use DFTs of size 601, and therefore obtain a correlation

template of size 601. This template is nonzero for all 601 entries. Thus, it is the template we

solve for, not the training signals that we use, that contributes to the circular correlation effects

in this case. If we were to avoid the effects of circular correlation, we would have to pad the

training images and force the template that we solve for to have zeros in the last 300 positions.

To accomplish this in the frequency domain, we reformulate the FDMACE in the next chapter.

We call this enhanced filter design a zero-aliasing correlation filter (ZACF).

2.5 Conclusions and Discussion

In this chapter, we presented two different viewpoints of the current issues with conventional

CF designs. First, we examined the effect of DFT size on CF design. Next, we illustrated

how current CF designs are incorrectly formulated, as they (unintentionally) assume a circular

correlation. We summarize the main points of this chapter below.

• Conventional CF formulations give different templates for different DFT sizes.

• Conventional designs assume a circular correlation at training time, regardless of how

much zero-padding is used on training images.

• Performance for conventional designs is best when the testing DFT is the same size as the

training DFT; however, if this is the case, the testing process is in fact a circular correlation.

This is, itself, an important observation that has not been made previously.

• Conventional CF designs perform worse for linear correlation than they do with circular

correlation. This is an important observation, and can be used to reduce computation for

classification tasks.

• Because the DFT size at testing must be the same as the DFT size at testing, conventional
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CF designs inherently are not well designed for localization tasks, i.e. when the test images

are different in size from the training images.

• The TDMACE formulation achieves a lower unaliased ACE on the training set than the

conventional FDMACE formulation. This is an indication that the FDMACE formulation

is in fact, not optimal if linear correlation is assumed at testing time, which is the case in

CF theory. This type of problem is found in the MACE filter as well as many other CF

designs, as we will show in the next chapter.

• The problem with current CF designs is that they are nonzero for all elements of the tem-

plate. This is the precise cause of circular correlation aliasing during training. This ob-

servation leads to our enhanced CF formulation, ZACFs, which we present in the next

chapter.
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Chapter 3

Zero-Aliasing Correlation Filters

In the previous chapter, we introduced CFs, discussed circular correlation, and illustrated the

formulation problem for existing CF designs. This formulation problem is that CFs implicitly

assume circular correlation when the CF is trained. This means that good performance is only

attained at testing time if the DFT at testing time is the same size as the DFT at training time

(i.e., a circular correlation). This may be possible for very simple tasks (such as when the training

images are the same size as the testing images), but it is not a safe assumption for many other

tasks, in particular localization. Furthermore, this subtlety has not been common knowledge,

because the application of CFs has has historically been implemented using linear correlation, not

circular correlation. Therefore, if linear correlation is to be used at testing time, the optimization

function for CF designs ought to express correlation as a linear correlation as well. In this

chapter, we introduce our zero-aliasing correlation filter (ZACF) formulation, starting with the

well-known MACE filter [9]. Because the MACE filter was one of the fundamental filters of

the field, this problem exists in other formulations, including, but not limited to, the designs

presented in [7, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23]. Furthermore, any method using

CFs, up until now, would likely benefit from incorporating our ZACF designs.

43



Figure 3.1: Overview of our proposed zero-aliasing approach. Conventional CF designs result in
templates that are non-zero for all values. This means that, during the optimization, the correla-
tion between the template and the test images is in fact a circular correlation. By constraining the
tail of the template using zero-aliasing constraints, we force the optimization step to correspond
to a linear correlation. This results in correlation planes that resemble the original design criteria
- in this case, a sharp peak with low sidelobes.

3.1 Zero-Aliasing MACE Formulation

In this section, we present the formulation for the zero-aliasing MACE (ZAMACE) filter. The

problem with the conventional FDMACE formulation is twofold. First, the CF template that

is generated is the same size as the DFT used to train the CF. Typically, we desire a template

that is the same size as the training signals (i.e., the template should be the same size as the

signal/object of interest). While it is possible for the DFT size to be the same size as the training

signals, this is not optimal, because the training images should be zero padded to avoid circular

correlation. Therefore, it is clear that the training signals should be padded with zeros. The

second problem with conventional CF designs is that there is no mechanism for forcing the tail

of the CF template to zero (see Appendix B for further discussion). This is analogous to the zero-

padding we enforce on the training signals. These two mechanisms work together to ensure that

the correlation between the template and the training images is linear, i.e. there is no aliasing. A

block diagram illustrates these ideas in Fig. 3.1. Note that our zero-aliasing formulation results

in a template with a tail constrained to zero. As a result, the correlation output with a train image

used as a test image will be much more desirable (i.e., a sharper peak with lower sidelobes). The

details of how we achieve this follow.
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The conventional FDMACE formulation solves for the CF h̄ in the frequency domain by

minimizing the ACE term h̄+Dh̄ subject to X̄+h̄ = Nu. However, this objective function (the

expression of the ACE term) implicitly assumes circular correlation. To move towards a new

formulation, we want a time domain template such that h(n) = 0 for n ≥ Nx. Recall that the

N -point IDFT is given by

h(n) =
1

N

N−1∑
k=0

H(k)ej2πkn/N (3.1)

where H(k) (unknown) denotes the kth elements of the CF in the frequency domain (h̄). We

therefore want to satisfy the set of linear equations,

0 =
N−1∑
k=0

H(k)ej2πkn/N , n ≥ Nx (3.2)

We can write this as

A+h̄ = 0 (3.3)

where 0 is the (N −Nx)× 1 zero vector and

A+ =



1 ej2π(1)(Nx)/N · · · ej2π(N−1)(Nx)/N

1 ej2π(1)(Nx+1)/N · · · ej2π(N−1)(Nx+1)/N

...
... . . . ...

1 ej2π(1)(N−1)/N · · · ej2π(N−1)(N−1)/N


(3.4)

Note that the matrix A+ is (N − Nx) × N . We may now rewrite the optimization problem as

the minimization of Eq. 2.6 subject to the old constraints (Eq. 2.8) and the new zero-aliasing

constraints (Eq. 3.3). We can rewrite these constraints as
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B+h̄ = k (3.5)

where

B+ =

 X̄+

A+

 (3.6)

and

k =

 Nu

0

 (3.7)

Since this is in the same form as the FDMACE, the new ZAMACE formulation is given by

h̄ = D−1B
(
B+D−1B

)−1
k (3.8)

Note that D is N × N , B is N × (Q + N − Nx), and k is (Q + N − Nx) × 1. Note that

the matrix B+D−1B is (Q + N − Nx) × (Q + N − Nx), and must be inverted. This is one

downside of this proposed method, because the size of this matrix depends on the amount of

zero padding p = N −Nx, and therefore grows with the signal’s dimension. By comparison, the

dimensionality of the matrix to be inverted in the standard FDMACE formulation was Q × Q,

which scales only by the number of training signals, making it more computationally feasible.

Let us return to the 1D example from the previous chapter to illustrate our zero-aliasing ap-

proach. Recall that we train CFs using Q = 10 heartbeat signals of length Nx = 301. Regardless

of the training signal pad size (p), the conventional FDMACE formulation provides an unac-

ceptable solution to this problem. This is because increasing p alone will never remove aliasing,

as the template will always be nonzero for all Nx + p values, and therefore the ACE term will
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Figure 3.2: Value of ACE = h̄+Dh̄ as a function of the amount of zero padding for both the
FDMACE and ZAMACE formulations.

correspond to a circular correlation rather than a linear correlation. Using our example, We com-

pare both the conventional and ZAMACE formulations while varying p. Because the ZAMACE

formulation introduces additional constraints on h̄, we cannot expect the ACE term that we min-

imize (h̄+Dh̄), to be any smaller. In Fig. 3.2 we show ACE as a function of zero padding.

Notice that, as zero padding is increased, ACE decreases for both the FDMACE and ZAMACE

formulations. However, ACE is always smaller for the original FDMACE formulation.

Despite this result, the h̄+Dh̄ term (ACE) is not a good measure of unaliased ACE, which

is what we really want to minimize. Specifically, the term h̄+Dh̄ represents the average corre-

lation energy of a circular correlation for the conventional FDMACE formulation. On the other

hand, h̄+Dh̄ represents the average correlation energy of a linear correlation for the ZAMACE

formulation. This is the desired paradigm, as we apply the filter using linear correlations.

To illustrate the benefits of the zero-aliasing formulation, we compute FDMACE and ZA-

MACE templates and truncate them to length Nx. This is because we desire a template that is

equal in size to the training signals. This cropping inconsequential for the ZAMACE because

the last p values are zero anyways. For the FDMACE formulation, this cropping does not sig-

nificantly affect performance (in fact it usually helps to crop the template). We then compare

these templates to TDMACE, normalizing all templates to unit energy. We then compute the un-
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Figure 3.3: Comparison of FDMACE, TDMACE, and ZAMACE. Note that the PCE values here
appear to be small because we do not normalize by the number of elements in the correlation
output. In this case, a PCE of ~0.18 corresponds to a very sharp peak.

aliased ACE (described in the previous experiments in the previous chapter) on the training set

for each of the formulations. The results of this analysis are shown in Fig. 3.3a. Here note that

the unaliased ACE for the conventional FDMACE formulation does not reduce as zero padding

increases. The zero-aliasing approach, however, features an unaliased ACE that drops off con-

siderably as zero padding increases. The unaliased ACE becomes the same as the TDMACE

unaliased ACE at p ≥ 300. We also compute the PCE (Eq. 2.1) for the correlation planes of each

of the training images. We plot the average PCE for the training set in Fig. 3.3b. Note that the

PCE for the zero-aliasing formulation increases as zero padding increases. However, note that

PCE is quite good even for a small amount of zero-padding, which suggests that the ZAMACE

filter will perform very well even when it does not completely eliminate all aliasing (we will take

advantage of this fact later, in Section 4.1).

We also compute the resulting MSE between each of the ZAMACE and FDMACE templates

and the TDMACE template in Fig. 3.4. Note that the ZAMACE template converges to the

TDMACE template as the zero padding approaches 300. Note that the ZAMACE formulation

acts as a bridge between the FDMACE and TDMACE formulations. When p = 0, the ZAMACE
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Figure 3.4: MSE of the FDMACE and ZAMACE filters compared to the TDMACE. Based on the
magnitude of the training signals, an MSE on the order of 10−6 (in this example) is significant.

is equivalent to the FDMACE; when p ≥ 2Nx− 1, the ZAMACE is equivalent to the TDMACE.

3.2 Extension to 2D

We can extend the formulation of the ZAMACE to 2D. In this case, the training images are of size

Nx,1×Nx,2, and the DFT size required to avoid aliasing is N1×N2 = (2Nx,1−1)× (2Nx,2−1).

This is illustrated in Fig. 3.5. Here, the shaded region must be set to zero via zero-aliasing

constraints.

In the 2D case, we must constrain the spatial values of the 2D IDFT of the frequency domain

filter, h̄. The the N1 ×N2 2D DFT is given by

h(n,m) =
1

N1N2

N2−1∑
l=0

[
N1−1∑
k=0

H(k, l)ej2πkn/N1

]
ej2πlm/N2 (3.9)

When we extend the FDMACE formulation to 2D, we vectorize each 2D DFT. For example, in

Eq. 2.7, the matrix X̄q is the matrix formed by putting the vectorized 2D DFT of the training

image xq(n,m) along the diagonal of an N1×N2 matrix. Similarly, the matrix X̄ in Eq. 2.8 is a

matrix whose columns consist of the vectorized 2D DFTs of each of the training images. Finally,

the correlation filter h̄ is the vectorized 2D DFT of the resulting N1 × N2 correlation filter.
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Figure 3.5: Illustration of the constraints required for the 2D formulation of the ZAMACE tem-
plate. The shaded red region denotes the locations that are constrained.

Because our new formulation is based on how we vectorize each DFT, we must explicitly define

a convention. Here, we will assume that we vectorize each DFT column-by-column. Written

explicitly,

h̄ =



H(0, 0)

...

H(N1 − 1, 0)

H(0, 1)

...

H(N1 − 1, 1)

...

H(0, N2 − 1)

...

H(N1 − 1, N2 − 1)



(3.10)

We now seek a formulation that will translate the frequency domain elements of vector h̄ into

spatial domain elements. Our first step is to compute the IDFT of each column,
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h̄′ = Φh̄ (3.11)

where

Φ =
1

N1



W∗
N1

0 · · · 0

0 W∗
N1
· · · 0

...
... . . . ...

0 0 · · · W∗
N1


(3.12)

and WN1 is the N1 point DFT matrix. Next, we must compute the IDFT along each row. We

define an intermediate matrix Ψm, whose first row is given by

Ψm(0, :) =
1

N2

[
ej2π(0)m/N2 0TN1−1 ej2π(1)m/N2 0TN1−1 · · · ej2π(N2−1)m/N2 0TN1−1

]
(3.13)

where 0N1−1 is an (N1 − 1)× 1 zero vector. We can define the remaining rows of Ψm as

Ψm(r, :) = CS(Ψm(0, :), r) , r = 1, . . . N1 − 1 (3.14)

where CS(Ψm(0, :), v) denotes a v-element right circular shift of the row vector Ψm(0, :). We

then form the full matrix Ω such that

Ω =



Ψ0

Ψ1

...

ΨN2−1


(3.15)

Finally, we can compute the (spatial domain) vectorized 2D IDFT of h̄, as
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h = ΩΦh̄ (3.16)

To elaborate on this derivation, note that each Ψm effectively computes the mth element of

the N2-point IDFT for each row of the unvectorized 2D array h̄′. The reason for the zeros in

the expression for each row of Ψm is because the row elements have been “split up” due to

the vectorization. The reason for the circular shift is to “shift” the operators to work on each

consecutive row of the unvectorized h̄′. It is often helpful to remind oneself of the structure of

h̄ (Eq. 3.10) to understand these expressions. To illustrate, the second row of Ψm computes the

first element of the IDFT for the second row of the unvectorized 2D array h̄′.

Note that Eq. 3.16 only gives the vectorized 2D IDFT of h̄. However, we only wish to

constrain some of these values, specifically those illustrated in Fig. 3.5. Therefore, we must

select the rows of the matrix ΩΦ corresponding to the values of h that we wish to constrain. We

may do this by forming a matrix S such that

S =

 0Nx,1×Nx,2 1Nx,1×(N2−Nx,2)

1(N1−Nx,1)×Nx,2 1(N1−Nx,1)×(N2−Nx,2)

 (3.17)

We may then define the selection vector sv as

sv = vect(S) (3.18)

where vect() is the column-by-column vectorization operation. We finally form a new matrix

A+ whose rows are taken from the rows of matrix ΩΦ corresponding to entries in vector sv that

are equal to 1. At this point in time, the formulation of ZAMACE is identical to the 1D case,

where we use Eq. 3.5 for the constraints and Eq. 3.8 to solve for the ZAMACE filter. However,

notice in this case that matrix D is N1N2 ×N1N2, B is N1N2 × (Q+N1N2 −Nx,1Nx,2), and k

is (Q+N1N2−Nx,1Nx,2)× 1. Note that this means that the matrix to be inverted, B+D−1B, is

(Q+N1N2−Nx,1Nx,2)× (Q+N1N2−Nx,1Nx,2). Therefore, as in the 1D case, the complexity
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of this matrix inversion increases with dimensionality. However, note that the matrix

K = B+D−1B (3.19)

is a real, symmetric, and positive definite matrix (see Appendix C). Because of this, we may

decompose it using Cholesky factorization,

K = RTR (3.20)

where R is an upper-triangular matrix of size (Q+N#−N#
x )× (Q+N#−N#

x ) in the general

D-dimensional case. Therefore, the solution to ZAMACE can be written as

h̄ = D−1B
(
RTR

)−1
k

= D−1BR−1(RT )−1k (3.21)

To solve for h̄, we may first compute k1 = (RT )−1k using forward substitution and then compute

k2 = R−1k1 using back substitution. We can then compute h̄ = D−1Bk2. This method is much

faster and more memory efficient than computing the ZAMACE as in Eq. 3.8. In Chapter 4,

we will discuss alternate formulations to the ZACF formulation that may be used to reduce to

computational complexity.

To illustrate the ZAMACE in 2D, we consider a simple example. Here, we train both con-

ventional and ZAMACE filters with three face images of the same person in the AT&T/ORL

Database of Faces [43]. We have downsampled the images to size 28 × 23 pixels for computa-

tional reasons. In this case, we again vary the zero padding amount, except in this instance we

vary it in both the vertical and horizontal dimensions, denoting it as p1 and p2, respectively. For

each iteration, we use a DFT size of N1 × N2 = (Nx,1 + p1) × (Nx,2 + p2). In each case, the

resulting filter is cropped to size Nx,1×Nx,2 and correlated with the training images using space
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Figure 3.6: Plot of the unaliased ACE achieved on the training set for a 2D example, under
different amounts of zero padding.

domain correlation. We then compute the unaliased ACE on the training set and show it in Fig.

3.6. Note that the conventional FDMACE formulation does not improve in terms of unaliased

ACE as zero padding increases. The ZAMACE, on the other hand, features a sharp decrease in

unaliased ACE as zero padding is increased. Like in the 1D case, note that just a small amount

of zero padding leads to excellent results. This fact will be taken advantage of in Section 4.1. We

also show corresponding plots for the MSE between the conventional FDMACE/ZAMACE and

the space domain MACE template in Fig. 3.7. In the FDMACE case, the MSE decreases only

slightly as zero padding increases, whereas MSE approaches zero for the ZAMACE case. Note

that the amount of zero padding required to completely avoid aliasing is p1 = 27 and p2 = 22.

In Fig. 3.8, we show both the conventional and ZAMACE templates (uncropped, but nor-

malized) at this level of zero padding. Note that the conventional FDMACE formulation results

in some very high values outside of the image pixel ranges y = (1, Nx,1) and x = (1, Nx,2),

whereas the ZAMACE does not.

Finally, we show an example correlation output obtained from correlating these templates

with a training image in Fig. 3.9. Note that the correlation output has lower correlation energy

for the zero-aliasing case than it does for the conventional case. The ZAMACE filter yields an
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Figure 3.7: Plot of the MSE between each template and the space-domain MACE filter for a
2D example, under different amounts of zero padding. Based on the magnitude of the training
images, an MSE on the order of 1 (in this example) is significant.
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Figure 3.8: Space domain plots of the templates before truncation. Note that the conventional
FDMACE has large values outside of the ranges of the desired template size, where as the ZA-
MACE does not, as the constraints force these values to zero. In these plots, we display the
absolute value of the templates.
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Figure 3.9: Example correlation outputs for one of the training images. Note that the ZAMACE
filter yields an output that is much sharper and thus more consistent with the conventional FD-
MACE filter design criteria.

output that is much more consistent with the original MACE filter design criteria.

We have demonstrated the fundamental ideas behind ZACFs by illustrating them explicitly

using the TDMACE, FDMACE, and ZAMACE filters. We now extend these zero-aliasing con-

straints to other popular CF designs.

3.3 OTSDF

The OTSDF [14, 15] is a popular filter that builds on the ideas in the MACE filter. It combines the

MACE filter with the MVSDF [13]. The MVSDF filter assumes that the input training images

are corrupted by additive noise, and is designed such that the filter minimizes the ONV due to

this noise. For a stationary noise process, the variance of the output noise is given by

ONV = h̄+Ph̄ (3.22)

where the diagonal matrix P contains the power spectral density of the noise.

We may form a tradeoff between minimizing the ONV and ACE by minimizing a weighted
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sum of the two criteria [14] as follows,

min
h̄
λACE + (1− λ)ONV

min
h̄
λh̄+Dh̄ + (1− λ)h̄+Ph̄

min
h̄

h̄+ (λD + (1− λ)P) h̄

min
h̄

h̄+Th̄ (3.23)

where

T = λD + (1− λ)P (3.24)

At the same time, we include the peak constraints (Eq. 2.8) as in the MACE formulation. This

yields the OTSDF filter,

h̄ = T−1X̄
(
X̄+T−1X̄

)−1
u (3.25)

To derive the zero-aliasing OTSDF (ZAOTSDF), we simply include the zero-aliasing con-

straints (Eq. 3.3) in the minimization of Eq. 3.23. Similar to the ZAMACE filter, the ZAOTSDF

filter is given by

h̄ = T−1B
(
B+T−1B

)−1
k (3.26)

Note that the matrix B+T−1B is positive definite, real, and symmetric, and h̄ may be computed

efficiently in a similar manner to that described in Eq. 3.19 to Eq. 3.21.
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3.4 Generalized Correlation Filters

Rodriguez and Kumar [7] proposed a unified framework to combine all constrained and un-

constrained correlation filters into one framework. For constrained filters, the CCF framework

is used, and for unconstrained filters, the UCF framework is used. Each of these frameworks

minimize three metrics. By combining these parameters in different ways, the solution for the

CCF/UCF filters simplifies to the solution for different constrained/unconstrained filter designs.

Therefore, if we derive the zero-aliasing CCF (ZACCF) and the zero-aliasing UCF (ZAUCF)

filters, we can essentially generalize zero-aliasing constraints to the majority of existing CF de-

signs. Before we begin, we define the MSE, ASM, and ONV metrics. Then, we provide the

derivations of UCF, ZAUCF, CCF, and ZACCF.

3.4.1 Preliminaries

First we define the MSE metric. The correlation output in the frequency domain in response to

the qth training image is given by ḡq = X̄+
q h̄. The desired correlation output in the frequency

domain for the qth training image is ḡD,q. The MSE metric is defined as

MSE =
1

NQ

Q∑
q=1

‖ḡq − ḡD,q‖2 (3.27)

where N is the size of the DFT (we use 1D notation for simplicity). By minimizing the MSE

metric, we are in effect attempting to make the actual correlation output look like the desired

correlation output. We can expand the MSE expression in Eq. 3.27 as
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MSE =
1

NQ

Q∑
q=1

ḡ+
q ḡq − 2ḡ+

q ḡD,q + ḡ+
D,qḡD,q

=
1

NQ

Q∑
q=1

h̄+X̄qX̄
∗
qh̄− 2h̄+X̄qḡD,q + ḡ+

D,qḡD,q

= h̄+

(
1

NQ

Q∑
q=1

X̄qX̄
∗
q

)
h̄− 2h̄+

(
1

NQ

Q∑
q=1

X̄qḡD,q

)
+

1

NQ

Q∑
q=1

ḡ+
D,qḡD,q

= h̄+Dh̄− 2h̄+p̄ + Ef (3.28)

where

D =
1

NQ

Q∑
q=1

X̄qX̄
∗
q (3.29)

p̄ =
1

NQ

Q∑
q=1

X̄qḡD,q (3.30)

Ef =
1

NQ

Q∑
q=1

ḡ+
D,qḡD,q (3.31)

Note that the MSE term contains the term h̄+Dh̄, which is the ACE as defined in the MACE

formulation. We have repeated the expression here for convenience.

We also wish to design a filter that generalizes well to all images from a particular class. This

approach was first presented in [16]. First, average squared error (ASE) is defined as

ASE =
1

Q

Q∑
q=1

(ḡq − f̄)+(ḡq − f̄) (3.32)

where ḡq is the correlation output for training image q and f̄ is an (unknown) reference shape.

We would like to choose f̄ to minimize ASE. This in effect makes all of the correlation outputs

for one class similar by minimizing the variation between each correlation plane. We now take
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the gradient of ASE in Eq. 3.32 with respect to f̄ and set to zero,

2

Q

Q∑
q=1

(ḡq − f̄) = 0

f̄ =
1

Q

Q∑
q=1

ḡq

f̄ = ḡavg (3.33)

where ḡavg = 1
Q

∑Q
q=1 ḡq is the average correlation output plane. Note that ḡavg may be written

as

ḡavg =
1

Q

Q∑
q=1

X̄+
q h̄

= X̄+
avgh̄ (3.34)

where X̄avg = 1
Q

∑Q
q=1 X̄q is the average of the DFTs of the training images. We can now

substitute the optimal f̄ = ḡavg into the expression for ASE (Eq. 3.32). This yields what is

defined as ASM (discussed in the previous chapter),

ASM =
1

NQ

Q∑
q=1

(ḡq − ḡavg)
+(ḡq − ḡavg) (3.35)

The ASM metric represents a measure of how dissimilar correlation output ḡq is from the

average correlation output ḡavg. By minimizing ASM, we are in effect minimizing the differences

between the correlation outputs ḡq for q = 1 . . . Q. The CF can also be interpreted as a transform

that maximizes the compactness of each class in the transform domain (in this case, the transform

domain is the correlation domain). Expanding Eq. 3.36 gives
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ASM =
1

NQ

Q∑
q=1

(
ḡ+
q ḡq − ḡ+

q ḡavg − ḡ+
avgḡq + ḡ+

avgḡavg
)

=
1

NQ

Q∑
q=1

ḡ+
q ḡq −

1

N

(
1

Q

Q∑
q=1

ḡ+
q

)
ḡavg −

1

N
ḡ+
avg

(
1

Q

Q∑
q=1

ḡq

)
+

1

NQ

Q∑
q=1

ḡ+
avgḡavg

=
1

NQ

Q∑
q=1

ḡ+
q ḡq −

1

N
ḡ+
avgḡavg −

1

N
ḡ+
avgḡavg +

1

N
ḡ+
avgḡavg

=
1

NQ

Q∑
q=1

ḡ+
q ḡq −

1

N
ḡ+
avgḡavg

=
1

NQ

Q∑
q=1

h̄+X̄qX̄
∗
qh̄−

1

N
h̄+X̄avgX̄

+
avgh̄

= h̄+

(
1

NQ

Q∑
q=1

X̄qX̄
∗
q

)
h̄− h̄+

(
1

N
X̄avgX̄

+
avg

)
h̄

= h̄+Dh̄− h̄+Mh̄ (3.36)

where

M =
1

N
X̄avgX̄

+
avg (3.37)

Finally, we may write the ONV as previously defined for the OTSDF filter. We repeat it here for

convenience,

ONV = h̄+Ph̄ (3.38)

where P is the power spectral density of the input noise. Note that D, M, and P are all diagonal

matrices. We now present the UCF and CCF formulations. These formulations will minimize a

combination of the quadratic terms MSE, ASM, and ONV. This is similar to OTSDF, in which

the weighted sum of two quadratics was minimized. The primary difference between these for-
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mulations is that the UCF will have no peak constraints on the optimization, whereas the CCF

will enforce peak constraints.

3.4.2 UCF

The UCF filter [7] is derived by minimizing the functional

LUCF (h̄, γ, β) = MSE + γASM + βONV

= h̄+Dh̄− 2h̄+p̄ + Ef + γ
(
h̄+Dh̄− h̄+Mh̄

)
+ βh̄+Ph̄

= h̄+ ((1 + γ)D− γM + βP) h̄− 2h̄+p̄ + Ef

= h̄+Th̄− 2h̄+p̄ + Ef (3.39)

where

T = (1 + γ)D− γM + βP (3.40)

and γ and β are Lagrange multipliers. We want to minimize LUCF (h̄, γ, β), so we take the

gradient with respect to h̄ and set it to zero,

∂LUCF
∂h̄

= 2Th̄− 2p̄ = 0 (3.41)

Finally we can solve for the UCF filter,

h̄ = T−1p̄ (3.42)
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3.4.3 ZAUCF

To derive the ZAUCF, we minimizeLUCF (h̄, γ, β) subject to the zero-aliasing constraints, A+h̄ =

0. We do this by forming the new functional

LZAUCF (h̄, γ, β,ω) = h̄+Th̄− 2h̄+p̄ + Ef − 2ω+(A+h̄)

where we have introduced the vector ω, which is a vector of Lagrangian multipliers. We want to

minimize LZAUCF (h̄, γ, β,ω), so we take the gradient with respect to h̄ and set it to zero,

∂LZAUCF
∂h̄

= 2Th̄− 2p̄− 2Aω = 0 (3.43)

We can solve for h̄,

h̄ = T−1(p̄ + Aω) (3.44)

We then substitute this back into the zero-aliasing constraint equation, and solve for ω,

A+(T−1(p̄ + Aω)) = 0

A+T−1p̄ + A+T−1Aω = 0

ω = −(A+T−1A)−1A+T−1p̄ (3.45)

Substituting this back into Eq. 3.44, we obtain the ZAUCF filter,
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h̄ = T−1p̄−T−1A(A+T−1A)−1A+T−1p̄

= ∆TT−1p̄ (3.46)

where

∆T = I−T−1A(A+T−1A)−1A+ (3.47)

Note that the matrix A+T−1A is positive definite, real, and symmetric, and h̄ may be computed

efficiently in a similar manner to that described in Eq. 3.19 to Eq. 3.21.

3.4.4 CCF

In the case of the CCF [7], the filter is derived by minimizing the linear combination MSE +

γASM + βONV from the UCF formulation subject to the peak constraints X̄+h̄ = Nu. There-

fore we form the new functional

LCCF (h̄, γ, β,ω) = h̄+Th̄− 2h̄+p̄ + Ef − 2ω+(X̄+h̄−Nu) (3.48)

We want to minimize LCCF (h̄, γ, β,ω), so we take the gradient with respect to h̄ and set it to

zero,

∂LCCF
∂h̄

= 2Th̄− 2p̄− 2X̄ω = 0 (3.49)

We can solve for h̄,

64



h̄ = T−1(p̄ + X̄ω) (3.50)

we then substitute this back into the peak constraints equation, and solve for ω,

X̄+(T−1(p̄ + X̄ω)) = Nu

X̄+T−1p̄ + X̄+T−1X̄ω = Nu

ω = (X̄+T−1X̄)−1(Nu− X̄+T−1p̄) (3.51)

substituting this back into Eq. 3.50, we obtain the CCF filter,

h̄ = T−1p̄ + T−1X̄(X̄+T−1X̄)−1(Nu− X̄+T−1p̄) (3.52)

3.4.5 ZACCF

To derive the ZACCF, we impose the additional zero-aliasing constraints. As in the ZAMACE

case, we group the peak constraints X̄+h̄ = Nu and the zero-aliasing constraints, A+h̄ = 0 into

a single constraint equation, B+h̄ = k. At this point, the ZACCF derivation is the same as that

of the CCF, except that X̄ is replaced by B and Nu is replaced by k. The ZACCF is given by

h̄ = T−1p̄ + T−1B(B+T−1B)−1(k−B+T−1p̄) (3.53)

Note that the matrix B+T−1B is positive definite, real, and symmetric, and h̄ may be computed

efficiently in a similar manner to that described in Eq. 3.19 to Eq. 3.21.
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3.5 MACH

We now turn our attention to the MACH filter [16]. Previously, we stated that the UCF for-

mulation can be used as a general case formulation for unconstrained CF designs. However, it

is unclear if applying the zero-aliasing constraints to the UCF formulation will give the same

result as applying the zero-aliasing constraints to the MACH filter formulation, because these

formulations minimize different cost functions. In this section, we introduce the MACH filter

formulation and then derive the zero-aliasing MACH (ZAMACH) filter. By doing this, we prove

that the ZAMACH filter is of the same form as the ZAUCF.

3.5.1 MACH

The MACH filter is aimed at generalizing well to all images from a particular class. Instead of

specifying the response to individual training images, as in constrained correlation filters, the

MACH filter attempts to generalize over all the training images provided to it. The MACH filter

comes in different forms, but here we will present the version that minimizes ACE and ASM.

First, ASM (initially presented in Eq. 3.35) can be expanded as

ASM =
1

Q

Q∑
q=1

(ḡq − ḡavg)
+(ḡq − ḡavg)

=
1

Q

Q∑
q=1

(X̄+
q h̄− X̄+

avgh̄)+(X̄+
q h̄− X̄+

avgh̄)

= h̄+

[
1

Q

Q∑
q=1

(X̄q − X̄avg)(X̄q − X̄avg)
+

]
h̄

= h̄+Sh̄ (3.54)

where
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S =
1

Q

Q∑
q=1

(X̄q − X̄avg)(X̄q − X̄avg)
+ (3.55)

is a diagonal matrix that is a frequency domain measure of the similarity of the training images

to the class mean. From before, note that S = D −M. The MACH filter also minimizes

ACE, which was introduced in Eq. 2.6. Because there are no peak constraints, the MACH filter

makes the average correlation peak as large as possible. This is done by maximizing the average

correlation height (ACH)1, which is defined as

ACH =

∣∣∣∣∣ 1

NQ

Q∑
q=1

gq(0, 0)

∣∣∣∣∣
2

(3.56)

where gq(0, 0) is the spatial domain correlation value at the origin for the qth training image. In

the frequency domain, this may be expressed as

ACH =

∣∣∣∣∣ 1

Q

Q∑
q=1

x̄+
q h̄

∣∣∣∣∣
2

=
∣∣m̄+h̄

∣∣2
= h̄+m̄m̄+h̄ (3.57)

where m̄ = 1
Q

∑Q
q=1 x̄q is the mean of the vectorized 2D DFTs of the Q training images x̄q,

q = 1 . . . Q. The MACH filter is formulated by maximizing ACH and minimizing ASM and

ACE. This is accomplished by maximizing the Rayleigh quotient given by

1Strictly speaking, this is the square of the average correlation height. The form used for ACH here is used for
dimensional consistency with ACE and ASM, which are quadratic functions of h̄.
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J(h̄) =
h̄+m̄m̄+h̄

γh̄+Sh̄ + αh̄+Dh̄

=
h̄+m̄m̄+h̄

h̄+(γS + αD)h̄

=
h̄+m̄m̄+h̄

h̄+Th̄
(3.58)

where

T = γS + αD (3.59)

Note that if additional metrics are minimized (such as ONV), they would simply be included

in the expression for T. To solve for the MACH filter, we take the gradient of Eq. 3.58 with

respect to h̄ and set it to zero,

m̄m̄+h̄(h̄+Th̄)−Th̄(h̄+m̄m̄+h̄)

(h̄+Th̄)2
= 0

1

h̄+Th̄

(
m̄m̄+h̄− h̄+m̄m̄+h̄

h̄+Th̄
Th̄

)
= 0

m̄m̄+h̄ = J(h̄)Th̄

T−1m̄m̄+h̄ = J(h̄)h̄ (3.60)

Note that this is an eigenvalue problem. Here, J(h̄) acts as the eigenvalue in this expression.

Therefore, the solution for the MACH filter is to choose the eigenvector of the matrix T−1m̄m̄+

corresponding to the largest eigenvalue. Because m̄m̄+ is of rank 1, there is only one eigenvalue.

We may write Eq. 3.60 as
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T−1m̄λ = J(h̄)h̄

T−1m̄ = φh̄

where λ = m̄+h̄ is a constant and φ = J(h̄)/λ is a constant scaling factor. We can ignore φ

(because J(h̄) is unaffected by scalar multipliers) and write the MACH filter solution as

h̄ = T−1m̄ (3.61)

Note that this solution is given by the UCF formulation (Eq. 3.42) when the desired correlation

output is a delta function in the time/spatial domain. This means that ḡD,q will be a constant

in the frequency domain, and p̄ reduces to the mean of the DFTs of the training images, m̄

(compare Eq. 3.42 to Eq. 3.61).

3.5.2 ZAMACH

In Section 3.4.2, we presented the UCF formulation. In Section 3.5, we showed that the MACH

filter solution can be obtained from this UCF formulation. However, it is unclear if the ZAUCF

(Section 3.4.3) gives the same solution as the the ZAMACH filter. This is because the ZAUCF

formulation minimizes metrics (such as ACE and ASM) subject to zero-aliasing constraints.

However, note that the MACH filter minimizes these same metrics while also maximizing the

ACH.

To derive the ZAMACH filter, we maximize the original MACH cost function given in Eq.

3.58 subject to the zero-aliasing constraints A+h̄ = 0. For convenience, we repeat Eq. 3.58

below,
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J(h̄) =
h̄+m̄m̄+h̄

h̄+Th̄
(3.62)

Because T is a real, positive diagonal matrix, we may express it as T = T1/2T1/2. Through a

change in variable y = T1/2h̄, we can rewrite this as

J(h̄) =
y+T−1/2m̄m̄+T−1/2y

y+y

=
y+Λy

y+y
(3.63)

where

Λ = T−1/2m̄m̄+T−1/2 (3.64)

The zero-aliasing constraints A+h̄ = 0 can also be rewritten as

C+y = 0 (3.65)

where

C = T−1/2A (3.66)

Before proceeding, we must ensure that the matrix Λ is positive semi-definite (we want to ensure

that the numerator, y+Λy is a positive number before we maximize J(h̄)). To show this, note

that we can write
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y+T−1/2m̄m̄+T−1/2y = k+m̄m̄+k

= k+m̄m̄+k

= (k+m̄)(k+m̄)+

= (k+m̄)(k+m̄)∗

= |k+m̄|2 (3.67)

where

k = T−1/2y (3.68)

Note that k+m̄ is a complex scalar. This shows that for any value of y, y+Λy ≥ 0, and therefore

Λ is positive semi-definite.

Our new problem is to minimize Eq. 3.63 subject to the constraints in Eq. 3.65. This is

equivalent to maximizing y+Λy subject to y+y = 1 and the constraints in Eq. 3.65. The

solution for this problem is outlined in [45]. We may form the functional

LZAMACH(y, λ,µ) = y+Λy − λ(y+y − 1) +

p∑
i=1

2µiy
+ci (3.69)

where we can write the matrix C as

C =

[
c1 c2 · · · cp

]
(3.70)

and the λ and µ are Lagrange multipliers, with µ given by

µ =

[
µ1 µ2 · · · µp

]T
(3.71)

The number of zero-aliasing constraints, p, is equal to N# − N#
x . We can take the gradient of
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LZAMACH in Eq. 3.69 with respect to y and set it to zero,

2Λy − 2λy + 2

p∑
i=1

µici = 0

Λy − λy + Cµ = 0 (3.72)

We now introduce C̃, the generalized inverse of C, which is given by

C̃ = (C+C)−1C+ (3.73)

Note that this implies that C̃C = I. We may now multiply both sides of Eq. 3.72 by C̃ to obtain

C̃Λy − λC̃y + C̃Cµ = 0

C̃Λy − λ(C+C)−1C+y + µ = 0

µ = −C̃Λy (3.74)

Where we have used the fact that C+y = 0. We may now substitute this result into Eq. 3.72 to

obtain

Λy − λy −CC̃Λy = 0

(I−CC̃)Λy = λy

PΛy = λy (3.75)

where

P = I−CC̃ (3.76)
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This is simply an eigenvalue problem. To get a closed form solution for the ZAMACH filter, we

may take Eq. 3.75 and substitute for Λ,

PT−1/2m̄m̄+T−1/2y = λy (3.77)

Because m̄m̄+ is of rank 1, there is only one eigenvalue. We observe that α = m̄+T−1/2y is

simply a constant. Therefore we can rewrite Eq. 3.77 as

αPT−1/2m̄ = λy (3.78)

We now substitute for y, and solve for h̄,

αPT−1/2m̄ = λT1/2h̄

h̄ =
α

λ
T−1/2PT−1/2m̄ (3.79)

We now substitute for P and subsequently write C̃ in terms of C to obtain

h̄ =
α

λ
T−1/2(I−CC̃)T−1/2m̄

=
α

λ
T−1/2(I−C(C+C)−1C+)T−1/2m̄

=
α

λ

[
T−1/2IT−1/2m̄−T−1/2C(C+C)−1C+T−1/2m̄

]
(3.80)

We now substitute for C and simplify,
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h̄ =
α

λ

[
T−1m̄−T−1/2T−1/2A(A+T−1/2T−1/2A)−1A+T−1/2T−1/2m̄

]
=
α

λ

[
T−1m̄−T−1A(A+T−1A)−1A+T−1m̄

]
=
α

λ
∆TT−1m̄ (3.81)

When p̄ = m̄ (i.e., the desired correlation output is a delta function), note that Eq. 3.81 matches

that of 3.46 by a scale factor. This scale factor has no significance to the filter. Therefore we have

shown that the ZAMACH filter, which explicitly maximizes average correlation height, is still

adequately described by the ZAUCF filter, which maintains its role as a generalized formulation

for unconstrained ZACFs.

3.6 ASEF and MOSSE

In this section, we discuss the ASEF [20] and MOSSE [21] filters.

3.6.1 ASEF

The ASEF filter as presented in [20] does not actually optimize any cost function. Instead, it

computes what are denoted “exact filters” for each training image. These exact filters are then

averaged to obtain the ASEF filter. The exact filters are given by

Hq(k, l) =
GD,q(k, l)

X∗q (k, l)
(3.82)

where GD,q is the 2D DFT of the desired correlation plane, Xq(k, l) is the 2D DFT of training

image q, and Hq(k, l) is the exact filter for training image q. The ASEF filter is then obtained by

averaging the exact filters,
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H(k, l) =
1

Q

Q∑
q=1

Hq(k, l) (3.83)

Note that the BSCF [22] is very similar to this formulation, with the exception that the weights

for each of the exact filters are not equal. Before we can present a zero-aliasing version of the

ASEF filter, we must determine what optimization metric ASEF corresponds to. After all, the

expression in 3.82 implicitly assumes a circular correlation.

We can rewrite Eq. 3.82 in the matrix-vector notation as

h̄q = (X̄+
q )−1ḡD,q (3.84)

with the exact filter given by

h̄ =
1

Q

Q∑
q=1

h̄q (3.85)

We also assert that each exact filter in the ASEF formulation minimizes the cost function

J(h̄q) =
∥∥X̄+

q h̄q − ḡD,q
∥∥2 (3.86)

with respect to h̄q. It should be noted that this is never actually mentioned in [20]. To show this,

we expand Eq. 3.86,

J(h̄q) = (X̄+
q h̄q − ḡD,q)

+(X̄+
q h̄q − ḡD,q)

= h̄+
q X̄qX̄

+
q h̄q − h̄+

q X̄qḡD,q − ḡ+
D,qX̄

+
q h̄q + ḡ+

D,qḡD,q (3.87)

Differentiating with respect to h̄q and setting to zero we obtain
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X̄qX̄
+
q h̄q − X̄qḡD,q = 0

h̄q = (X̄qX̄
+
q )−1X̄qḡD,q

h̄q = (X̄+
q )−1ḡD,q (3.88)

Note that this matches Eq. 3.84, which proves that each exact filter minimizes Eq. 3.86. There-

fore, to derive the zero-aliasing form of ASEF, we may start with Eq. 3.86.

3.6.2 ZAASEF

The zero-aliasing ASEF (ZAASEF) filter is obtained in two steps. First, we must solve for the

zero-aliasing exact filters; then, we must solve for the ZAASEF by simply averaging these exact

filters. The zero-aliasing exact filters are obtained by minimizing Eq. 3.86 subject to A+h̄q = 0.

We form the functional

LZAASEF (h̄,ω) =
∥∥X̄+

q h̄q − ḡD,q
∥∥2 − ω+A+h̄q (3.89)

Differentiating with respect to h̄q and setting to zero we obtain

X̄qX̄
+
q h̄q − X̄qḡD,q −Aω = 0

h̄q = (X̄qX̄
+
q )−1(X̄qḡD,q + Aω)

= D−1
q (X̄qḡD,q + Aω) (3.90)

Where Dq = X̄qX̄
+
q . Substituting this into the zero-aliasing constraints, we obtain
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A+D−1
q (X̄qḡD,q + Aω) = 0

A+D−1
q X̄qḡD,q + A+D−1

q Aω = 0

ω = −(A+D−1
q A)−1A+D−1

q X̄qḡD,q (3.91)

Substituting this back into Eq. 3.90, we obtain the zero-aliasing exact filter for training image q

as

h̄q = D−1
q (X̄qḡD,q −A(A+D−1

q A)−1A+D−1
q X̄qḡD,q)

= ∆DqD
−1
q X̄qḡD,q (3.92)

where

∆Dq = I−D−1
q A(A+D−1

q A)−1A+ (3.93)

The ZAASEF is then given as the average of the zero-aliasing exact filters,

h̄ =
1

Q

Q∑
q=1

h̄q (3.94)

where h̄q is given in Eq. 3.92.

3.6.3 MOSSE

One disadvantage of the ASEF filter is that it requires a large number of training images to

generate a filter that performs well. The MOSSE filter [21] was proposed as a solution to this.

MOSSE is an unconstrained filter that minimizes the MSE between the correlation of the CF

template with the training signal(s) and the desired correlation output. For example, the desired
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correlation output in the time domain could take on a value of one at the location of a positive

class signal and zeros elsewhere. The MOSSE filter with a desired output of a delta function is

essentially a MACH filter. The MOSSE filter may be solved by minimizing the function

J(h̄) =
1

Q

Q∑
q=1

∥∥X̄+
q h̄− ḡD,q

∥∥2 (3.95)

where ḡD,q represents the vectorized 2D DFT of the desired correlation output for the qth train-

ing image. Note the the product X̄+
q h̄ represents the vectorized 2D DFT of the correlation of

training image q and the template h(n,m). However, this term is actually a circular correlation!

Differentiating J(h̄) with respect to h̄ and setting to zero yields

h̄ = D−1p̄ (3.96)

where D and p are given in Eq. 3.29 and 3.30, respectively (note that these expressions are off by

a constant, but this is inconsequential to minimizing Eq. 3.95). The expression we have included

here is written in matrix-vector notation, but is equivalent to the expression given in [21].

3.6.4 ZAMOSSE

Here, we introduce the zero-aliasing MOSSE (ZAMOSSE) filter. To remove the effects of circu-

lar correlation, we need to minimize Eq. 3.95 subject to the zero-aliasing constraints A+h̄ = 0.

We do this by forming the new functional

LZAMOSSE(h̄,ω) =
1

Q

Q∑
q=1

∥∥X̄+
q h̄− ḡD,q

∥∥2 − ω+A+h̄ (3.97)

where ω is a column vector of Lagrangian multipliers. Taking the gradient of LZAMOSSE(h̄,ω)
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in Eq. 3.97 with respect to h̄ and setting it to zero, we obtain

h̄ = D−1(p̄ + Aω) (3.98)

We then substitute this back into the zero-aliasing constraints and solve for ω,

ω = −(A+D−1A)−1A+D−1p̄ (3.99)

Substituting this back into Eq. 3.98, we obtain the ZAMOSSE filter,

h̄ = D−1p̄−D−1A(A+D−1A)−1A+D−1p̄

= ∆DD−1p̄ (3.100)

where

∆D = I−D−1A(A+D−1A)−1A+ (3.101)

In our MOSSE and ZAMOSSE filter implementations, we replace D with T = λD + (1− λP)

as was described in the OTSDF formulation. This is referred to as regularization in [21], and

is commonly used in optimal tradeoff filters (OTSDF, UOTSDF, etc.) to provide better noise

tolerance [14, 16, 17, 46].
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3.7 MMCF

In [23, 47], the MMCF was introduced. This filter combines the ideas of correlation filters

with that of SVMs by removing the hard peak constraints and replacing them with inequality

constraints. We first introduce the general idea of an SVM before introducing the MMCF filter.

3.7.1 Introduction to SVM

Given a set of training signals, the SVM approach finds a vector h (in the space domain) that

maximizes the smallest L2 norm distance between a training sample and a hyperplane (which is

defined by the vector h). This can be expressed as

max
h,b

′

(
min
q

(
lq(h

Txq + b
′
)

|h|

))
(3.102)

Note that, xq is the qth (vectorized) training signal in the space domain (of which there are Q

total), and h is a space domain vector. The variable b′ here is called the bias term, and lq is the

class label (typically−1 or 1) of training signal xq. The term hTxq + b
′ represents the projection

of training signal xq onto a hyperplane. This formulation does not give a unique solution - that

is, any solution (h, b
′
) will have infinitely many solutions (αh, αb

′
), where α is a scalar. One

common idea is to therefore constrain the term lq(h
Txq + b

′
) to unity for the signal closest to the

hyperplane, i.e.

lq(h
Txq + b

′
) = 1 (3.103)

where q represents the training signal closest to the boundary. This can also be expressed as

min
q

(lq(h
Txq + b

′
)) = 1 (3.104)

An equivalent statement is to say that the projections of all training signals on the hyperplane
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yield a value greater than 1, that is

lq(h
Txq + b

′
) ≥ 1 (3.105)

for all q. Therefore, the optimization problem in Eq. 3.102 can be rewritten as

max
h,b′

1

|h|

= min
h,b′

hTh (3.106)

subject to the constraints

lq(h
Txq + b

′
) ≥ lqu

′

q (3.107)

where we have simply generalized the bound to the product of the class label lq and the peak

value u′
q. This so-called hard-margin SVM formulation assumes that all of the training signals

are linearly separable and all fall on the correct side of the margin. However, this is not always the

case in practice. Therefore, it is common to introduce a slack variable for each training signal, ξ′
q,

which allows for training signals to be on the wrong side of the margin (in other words, it allows

some training signals to be misclassified). The idea here is that the obtained margin with slack

variables may be more appropriate (and more generalized) to avoid an outlier training signal

from skewing the classifier. The so-called soft margin SVM formulation relaxes the constraints.

The new optimization is given by

min
h,b′

hTh + 2C

Q∑
q=1

ξ
′

q (3.108)

such that
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lq(h
Txq + b

′
) ≥ lqu

′

q − ξ
′

q (3.109)

where ξ′
q ≥ 0 for all q. The variable C is a scalar that controls the “penalty” term that penalizes

samples from being on the wrong side of the margin. This problem may be formulated in vector

notation as

min
h,b

hTh + 2C1Tξ
′

(3.110)

such that

L(XTh + b
′
1) ≥ Lu

′ − ξ′
(3.111)

where L is a Q × Q diagonal matrix with the class label values l1, . . . , lQ along the diagonal,

u
′ is a vector formed from the training signal peak constraints, u′

1, . . . u
′
Q, and the matrix X is

formed by concatenating the vectors x1, . . . ,xQ. It can be shown that

h = XLa (3.112)

where the vector a is solved numerically with the quadratic programming problem

max
0≤a≤C1

2aTLu
′ − aTLXTXLa (3.113)

such that aTL1 = 0. This can be expressed in the frequency domain as
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max
0≤a≤C1

2aTL(
1

N
u)− aTL(

1

N
X̄+X̄)La

max
0≤a≤C1

1

N#
(2aTLu− aTLX̄+X̄La)

max
0≤a≤C1

2aTLu− aTLX̄+X̄La (3.114)

such that aTL1 = 0. The columns of matrix X̄ consist of vectorized DFTs of training signals,

x̄1, . . . , x̄Q.Note that XTX = 1
N

X̄+X̄ (Parseval’s Theorem). We have chosen u = Nu
′ for

convenience (we use 1D notation for simplicity). In a similar manner, the primal problem may

also be expressed in the frequency domain as

min
h,b

1

N
h̄+h̄ + 2C1T

1

N
ξ

min
h,b

1

N

(
h̄+h̄ + 2C1Tξ

)
min
h,b

h̄+h̄ + 2C1Tξ (3.115)

subject to the constraints

L(
1

N
X̄+h̄ +

1

N
b1) ≥ L(

1

N
u)− 1

N
ξ

L(X̄+h̄ + b1) ≥ Lu− ξ (3.116)

Note that h̄ represents the hyperplane in the frequency domain. From Parseval’s Theorem,

hTh = 1
N

h̄+h̄ and XTh = 1
N

X̄+h̄. We have made the substitution u = Nu
′ , b = Nb

′ ,

and ξ = Nξ
′

for convenience. We introduce this frequency domain notation as it will be used

from now on.
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3.7.2 MMCF

The MMCF combines ideas from correlation filters with the constraints from SVMs. The MMCF

is formulated similar to the CCF filter, as

min
h̄,b

h̄+Th̄− 2h̄+p̄ + 2C1Tξ (3.117)

subject to the constraints

L(X̄+h̄ + b1) ≥ Lu− ξ (3.118)

ξ ≥ 0 (3.119)

where ξ = [ξ1, . . . , ξQ]T is a vector of slack variables that penalize features that are on the wrong

side of the margin and C is a tradeoff parameter. The other quantities are the same as in the

CCF formulation, and are given by T = (1 − γ)D − γM + βP, p̄ = 1
NQ

∑Q
q=1 X̄qḡD,q, and

u = [u1, . . . , uQ]T . As shown in [47], the filter may be solved as

h̄ = T−1p̄ + T−1X̄La (3.120)

where the vector a is solved numerically with the quadratic programming problem

max
0≤a≤C1

aTMa + aTb (3.121)

where

M = −LX̄+T−1X̄L (3.122)

b = 2L(u− X̄+T−1p̄) (3.123)
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subject to the constraints aTL1 = 0, which may be written as

aTy = 0 (3.124)

where y is a vector formed from the diagonal of L,

y = diag(L) (3.125)

The details of this derivation may be found in [47].

3.7.3 ZAMMCF

In this section, we detail the derivation of the zero-aliasing MMCF (ZAMMCF) filter, which

adds zero-aliasing constraints to the MMCF formulation. The ZAMMCF is formulated as

min
h̄,b

h̄+Th̄− 2h̄+p̄ + 2C1Tξ (3.126)

subject to the constraints

L(X̄+h̄ + b1) ≥ Lu− ξ (3.127)

ξ ≥ 0 (3.128)

A+h̄ = 0 (3.129)

We may form a functional with Lagrange multipliers,

LZAMMCF (h̄, ξ, b, a,µ,ω) = h̄+Th̄− 2h̄+p̄ + 2C1Tξ − 2aT [L(X̄+h̄ + b1)− Lu + ξ]

− 2µTξ − 2ω+A+h̄ (3.130)
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where a,µ ≥ 0 and ω are vectors of Lagrange multipliers. Taking the partial derivative with

respect to h̄ and setting it equal to zero gives

∂LZAMMCF

∂h̄
= 2Th̄− 2p̄− 2X̄La− 2Aω = 0 (3.131)

Solving for h̄ gives

h̄ = T−1(p̄ + X̄La + Aω) (3.132)

Note that h̄ is a function of a. The goal, therefore, is to rewrite Eq. 3.130 as a function of only

a. Then, we may optimize for a and therefore solve for h̄. Taking the partial derivatives of Eq.

3.130 with respect to b, ξ, and ω, and setting them equal to zero gives

∂LZAMMCF

∂b
= −2aTL1 = 0 (3.133)

∂LZAMMCF

∂ξ
= 2C1− 2a− 2µ = 0 (3.134)

∂LZAMMCF

∂ω
= −2A+h̄ = 0 (3.135)

If we solve Eq. 3.134 for C1 gives

C1 = a + µ (3.136)

Given that a,µ ≥ 0 and a = C1 − µ , then 0 ≤ a ≤ C1. Also note that, from Eq. 3.133,

aTL1 = 0. These constraints will be used when solving for a.

Next, we may substitute h̄ (Eq. 3.132) and C1 (Eq. 3.136) into Eq. 3.130 to obtain
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LZAMMCF (a) =
[
T−1(p̄ + X̄La + Aω)

]+
T
[
T−1(p̄ + X̄La + Aω)

]
− 2

[
T−1(p̄ + X̄La + Aω)

]+
p̄ + 2(a + µ)Tξ

− 2aT [L(X̄+T−1(p̄ + X̄La + Aω) + b1)− Lu + ξ]− 2µTξ (3.137)

where we have used the fact that A+h̄ = 0 (Eq. 3.135). We may expand this expression to

obtain

LZAMMCF (a) = (p̄ + X̄La + Aω)+T−1(p̄ + X̄La + Aω)

− 2(p̄ + X̄La + Aω)+T−1p̄ + 2aTξ + 2µTξ

− 2aTLX̄+T−1(p̄ + X̄La + Aω)− 2baTL1 + 2aTLu− 2aTξ − 2µTξ (3.138)

We may simplify this expression and invoke Eq. 3.133 to obtain

LZAMMCF (a) = (p̄+ + aTLX̄+ + ω+A+)T−1(p̄ + X̄La + Aω)

− 2(p̄+ + aTLX̄+ + ω+A+)T−1p̄

− 2aTLX̄+T−1(p̄ + X̄La + Aω) + 2aTLu (3.139)

This may be further expanded to yield
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LZAMMCF (a) = p̄+T−1p̄ + aTLX̄+T−1X̄La + ω+A+T−1Aω

+ 2aTLX̄+T−1p̄ + 2ω+A+T−1p̄ + 2aTLX̄+T−1Aω

− 2p̄+T−1p̄− 2aTLX̄+T−1p̄− 2ω+A+T−1p̄

− 2aTLX̄+T−1(p̄ + X̄La + Aω) + 2aTLu (3.140)

Finally, we simplify to obtain

LZAMMCF (a) = −aTLX̄+T−1X̄La+ 2aT (Lu−LX̄+T−1p̄) +ω+A+T−1Aω+κ (3.141)

where

κ = −p̄+T−1p̄ (3.142)

is a constant that does not affect the cost function (as it is not a function of a). Note that Eq.

3.141 is a function of a and ω. We may substitute Eq. 3.132 into the constraints in Eq. 3.129, to

obtain

A+T−1(p̄ + X̄La + Aω) = 0

A+T−1p̄ + A+T−1X̄La + A+T−1Aω = 0

ω = −(A+T−1A)−1(A+T−1p̄ + A+T−1X̄La)

ω = −Γ−1A+(T−1p̄ + T−1X̄La) (3.143)

where we use the variable Γ for notational convenience,
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Γ = A+T−1A (3.144)

Substituting ω into Eq. 3.141, we obtain

LZAMMCF (a) = κ− aTLX̄+T−1X̄La + 2aT (Lu− LX̄+T−1p̄)

+
[
Γ−1(A+T−1p̄ + A+T−1X̄La)

]+
Γ
[
Γ−1(A+T−1p̄ + A+T−1X̄La)

]
(3.145)

= κ− aTLX̄+T−1X̄La + 2aT (Lu− LX̄+T−1p̄)

+ (p̄+T−1A + aTLX̄+T−1A)(Γ+)−1(A+T−1p̄ + A+T−1X̄La) (3.146)

Note that Γ+ = Γ,

LZAMMCF (a) = κ− aTLX̄+T−1X̄La + 2aT (Lu− LX̄+T−1p̄)

+ κ2 + 2aTLX̄+T−1AΓ−1A+T−1p̄ + aTLX̄+T−1AΓ−1A+T−1X̄La (3.147)

= κ+ κ2 − aTLX̄+
[
I−T−1AΓ−1A+

]
T−1X̄La . . .

+ 2aTL
[
u− X̄+(I−T−1AΓ−1A+)T−1p̄

]
(3.148)

where

κ2 = p̄+T−1AΓ−1A+T−1p̄ (3.149)
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is a constant that does not affect the cost function (as it is not a function of a). We may drop the

constants write Eq. 3.148 as

LZAMMCF (a) = aTM̂a + aT b̂ (3.150)

where

M̂ = −LX̄+∆TT−1X̄L (3.151)

b̂ = 2L
(
u− X̄+∆TT−1p̄

)
(3.152)

∆T = I−T−1A(A+T−1A)−1A+ (3.153)

To solve for the ZAMMCF filter, we first calculate M and b. Then, we numerically solve the

quadratic programming problem

max
0≤a≤C1

aTM̂a + aT b̂ (3.154)

subject to the constraints aTL1 = 0, which may be written as

aTy = 0 (3.155)

where y is a vector formed from the diagonal of L,

y = diag(L) (3.156)

Finally, we first obtain ω by substituting the vector a into Eq. 3.143. Then, we solve for the

ZAMMCF filter by substituting the vectors a and ω into Eq. 3.132.

NOTES: In this derivation, we maintained the bias term (b) in the ZAMMCF derivation.

We have observed, however, that better performance is obtained by removing this bias term.
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We speculate this is because the original MMCF formulation cost function expresses correlation

without a bias term (the bias term only shows up in the constraints). It is possible better perfor-

mance could be obtained by completely reformulating the MMCF objective function to include

the bias term. However, this is beyond the scope of this thesis and is therefore reserved for future

work. Note that if we remove the bias term from the above derivation, the changes are minimal.

First, the constraint in Eq. 3.127 would instead be

LX̄+h̄ ≥ Lu− ξ (3.157)

As a consequence, the term containing b (initially in Eq. 3.130) would disappear, and Eq. 3.133

would not exist. The answer is then the same as what was derived above, with the exception that

the constraints aTL1 = 0 on the numerical optimization in Eq. 3.154 would no longer exist.

3.8 Preliminary Results

In this section, we present initial results for ZACFs on test data. Here, we will only consider

the task of face recognition on the AT&T/ORL face recognition dataset [43]. For computational

reasons, we downsample each image to size 28 × 23 pixels. Recall that in the full dataset,

there are 40 subjects with 10 images each. We normalize all images in the dataset but we do not

subtract the mean2 of each image (hereafter referred to zero-mean). For this dataset, our standard

approach is to test using leave-one-out cross validation. For each experiment, 9 training images

were used to train filters for each subject. These filters were then tested on the remaining image

for all subjects. This resulted in a total of 40 test images (one from each class) that were tested

with 40 filters each, for a total of 1600 correlations. This was repeated 10 times to capture every

possible set of 9 training images. For each correlation, we calculate PCE (Eq. 2.1). Another score

2In general, we observe that aliasing effects are more severe when the images are not zero-mean. In general,
better performance for both the original formulation and the ZACF formulation can be achieved when using zero-
mean images. In the case of this experiment, however, using non-zero mean images aids in demonstrating the
efficacy of the ZACF approach.
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Figure 3.10: Illustration of the computation of PSR. We show a correlation peak (centered) in red.
The region immediately around this peak, ±a pixels (shown in yellow) is set to 0. The annular
region A around this (shown in green) has outer dimension ±b pixels away from the peak. This
annular region is used to measure the properties of the peak’s sidelobes. In this figure, a = 3 and
b = 7.

metric is peak to sidelobe ratio (PSR), which gives a more localized measure of peak sharpness.

Referring to Fig. 3.10, PSR is computed as [1]

PSR =
cpeak −mean(A)

std(A)
(3.158)

where A denotes the area around the peak. In general we prefer PCE over PSR, but they give

similar results in our experiments.

3.8.1 FDMACE vs. ZAMACE

In this experiment (see [41]), we build four filters for each subject:

• conventional FDMACE, using a DFT size of 28× 23.

• conventional FDMACE, using zero padding on training images and a DFT size of 55×45,

cropped to size 28× 23.

• conventional FDMACE, using zero padding on training images and a DFT size of 55×45.

• ZAMACE, using zero padding on training images and a DFT size of 55 × 45, cropped to

size 28× 23.

The purpose of testing three types of FDMACE filters is to determine the effectiveness of padding

the training images in different ways. Notice that the first two methods and the ZACF method
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Figure 3.11: ROC curve for the AT&T/ORL dataset. Here the ROC curve represents 10 experi-
ments, each of which uses a train size of 9 images. The score metric used here is PCE.

generate templates of size 28 × 23. When the full ZACF template is cropped, this is inconse-

quential, as the tail is zero already. The third method uses a full size DFT but does not crop, so

the template is of size 55× 45. The purpose of showing this method is to show that cropping this

template to size 28× 23 does not hurt performance.

We show an ROC curve in Fig. 3.11, using PCE as the score metric. We note that we get

similar results for different training set sizes as well. We make the following observations:

• The padded and cropped FDMACE method outperforms the padded FDMACE, which

indicates that cropping the full template helps;

• The padded and cropped FDMACE outperforms the FDMACE using the small DFT size

(28 × 23). This is because some of the circular correlation effects are removed due to

padding the images.

• The ZAMACE outperforms all other techniques by a substantial margin. This is because

the ZAMACE eliminates all circular correlation effects during training, those due to the

template (forcing the tail to zero) and those due to the training images (padding prior to

taking the DFT).
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Table 3.1: EER for Different Score Criteria, AT&T/ORL Dataset

Train Size = 3 PCE PSR (2, 6) PSR (2, 10) PSR (4, 10)
FDMACE (28× 23) 0.303 0.284 0.294 0.308
FDMACE (55× 45) 0.279 0.255 0.270 0.279

FDMACE (55× 45) cropped 0.195 0.238 0.229 0.232
ZAMACE 0.135 0.143 0.135 0.132

Train Size = 6
FDMACE (28× 23) 0.282 0.262 0.272 0.287
FDMACE (55× 45) 0.278 0.259 0.270 0.282

FDMACE (55× 45) cropped 0.184 0.237 0.227 0.234
ZAMACE 0.104 0.111 0.0975 0.0960

Train Size = 9
FDMACE (28× 23) 0.265 0.260 0.253 0.271
FDMACE (55× 45) 0.270 0.260 0.270 0.280

FDMACE (55× 45) cropped 0.170 0.236 0.223 0.235
ZAMACE 0.0856 0.0900 0.0850 0.0800

We further show the EER for all three filters in Table 3.1. We show these values for multiple

training sizes as well as different scoring metrics. For each training size, we repeated the exper-

iment 10 times with a different train and test set. For PSR, we denote the pair (a, b) to describe

the size of the region as illustrated in Fig. 3.10. Based on these results, we move forward using

PCE as our preferred score metric. We also typically will only show results for a train size of 9

on the AT&T/ORL dataset from this point forward.

3.8.2 Performance Insight

Here, we briefly investigate why the ZAMACE outperforms the conventional FDMACE. Fun-

damentally, ZAMACE offers a formulation that represents a linear correlation, whereas the con-

ventional FDMACE formulation represents a circular correlation. Therefore, ZAMACE achieves

better correlation outputs because the ACE is minimized more effectively than in the FDMACE

case. This is always true for the training set, as has been shown earlier for both 1D and 2D

examples. In general, ZAMACE achieves lower output correlation energy for test images as well
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(although this is not guaranteed). This lower ACE yields a higher PCE score, which results in

improved recognition performance. To illustrate this, we plot the distributions of the maximum

peak value, correlation energy, and PCE scores for all of the test images (authentic and imposter)

from the ORL experiment using a training size of 9. These distributions are shown in Fig. 3.12.

In these plots, the distributions for the authentic cases are shown in blue and the distributions

for imposter cases are shown in red. All histograms have been normalized to a maximum value

of unity. Note that, in the test case, all four filters generally produce higher peaks for authentic

classes than for imposter classes. However, ZAMACE yields significantly lower ACE for both

imposter and authentic classes. As a result, the PCE for ZAMACE is considerably higher for

authentic classes than for imposter classes. As a result, the ZAMACE is better able to differ-

entiate between imposter and authentic classes, which directly leads to improved recognition

performance.

3.8.3 Results for Other CF Types

We repeated the previous experiment using other CF formulations. Here, we use as a baseline

the padded and cropped FDMACE formulation, which we observed to be the best option for the

original FDMACE formulation. We show the results of this evaluation in Table 3.2. In the table,

we denote the filter type as well as the applicable parameters for the CF. For OTSDF, UOTSDF,

and MMCF, the parameters reflect the choice of the tradeoff for T = λD + (1 − λ)P. For

MSESDF, ASEF, and MOSSE, the σ2 parameter denotes the variance of the desired correlation

peak, which is Gaussian shape located at the origin of each training image. For the MACH

filter, the parameters given are for the UCF formulation, which in turn correspond to the original

MACH filter formulation [16] (D and S evenly weighted).

With the ZACF formulations we have currently presented, efficiently training ZACFs for

training images much bigger than 28× 23 becomes quite difficult. Therefore, it is very difficult

to use the closed-form solutions presented here and test on datasets containing full resolution
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Figure 3.12: Distributions showing the peak scores, output correlation energy, and PCE for au-
thentic (blue) and imposter (red) test images.
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Table 3.2: EER for Different CF Formulations

Filter Name Parameters Original Formulation EER Zero-Aliasing Formulation EER
MACE n/a 0.170 0.0856

OTSDF
λ = 0.5 0.148 0.108
λ = 0.7 0.136 0.0925
λ = 0.9 0.132 0.0800

MVSDF n/a 0.143 0.143

MSESDF

σ2 = 0 0.170 0.0856
σ2 = 1 0.183 0.0878
σ2 = 2 0.199 0.103
σ2 = 5 0.255 0.153

UOTSDF
λ = 0.5 0.138 0.106
λ = 0.7 0.137 0.100
λ = 0.9 0.128 0.0950

MACH λ = 1, ψ = 0.5 0.170 0.0984
UMACE n/a 0.168 0.103

MMCF
λ = 0.5 0.138 0.106
λ = 0.7 0.136 0.0999
λ = 0.9 0.128 0.0950

ASEF

σ2 = 0 0.180 0.105
σ2 = 1 0.135 0.0900
σ2 = 2 0.170 0.100
σ2 = 5 0.268 0.140

MOSSE

σ2 = 0 0.168 0.103
σ2 = 1 0.105 0.0745
σ2 = 2 0.140 0.090
σ2 = 5 0.253 0.137
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images. In the next chapter, we will explore several alternative formulations that better allow us

to train ZACFs on larger training images. We then present results on larger datasets.

3.9 Conclusions and Discussion

In this chapter, we have introduced our zero-aliasing solution to the aliasing issue in CFs. We

first used the MACE filter to illustrate the concept, and then we extended the idea to other CF

designs. In the next chapter we will discuss alternative solutions to the problem and will present

experimental results. We summarize the contributions of this chapter below.

• The formulation problem with existing CFs is that the tail of the CF template is non-zero.

We force this tail to be zero by introducing zero-aliasing constraints into the optimization

step of CF design.

• We illustrate the concept of ZACFs with the MACE filter, comparing the old approach

(FDMACE), the time/space domain approach (TDMACE), and our new approach (ZA-

MACE). We show that ZAMACE outperforms the conventional FDMACE approach in

terms of yielding lower unaliased ACE on the training set.

• We show that the ZAMACE filter converges to the TDMACE filter when the zero padding

is equal to Nx− 1. Therefore, the ZAMACE formulation acts as a bridge between the FD-

MACE formulation (no zero-padding) and the TDMACE formulation (full zero-padding).

• We extend the zero-aliasing approach to 2D.

• We extend zero-aliasing constraints to the OTSDF filter.

• We extend zero-aliasing constraints to the class of generalized CFs, UCF and CCF.

• We derive the ZAMACH filter and show that it yields the same answer at the ZAUCF filter

with the appropriate parameters selected.

• We show how zero-aliasing constraints can be added to the ASEF and MOSSE filter for-

mulations.
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• We extend zero-aliasing constraints to the MMCF formulation.

While we have not extended zero-aliasing constraints to every type of CF, it should become

obvious how to extend the constraints to other CFs not covered here. Note that the UCF and

CCF formulations generalize a large number of existing CF designs, which is a useful tool for

extending zero-aliasing constraints to CFs not mentioned here.
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Chapter 4

Alternatives to Zero-Aliasing Correlation

Filters

In the previous chapter, we introduced ZACFs. This formulation completely fixes the aliasing

issue found in CFs. Despite having closed form expressions for ZACFs for multiple CF designs,

computation of these ZACFs can still be extremely challenging, because the constraint matrix

A+ is quite large (N# − N#
x × N#). Thus forming this matrix is a memory challenge, and

performing computations (especially matrix inversions) on the resulting large matrices is very

computationally intensive. In this chapter, we present three alternate formulations to the problem

that perform better computationally. They are reduced-aliasing correlation filters, tail energy

minimization, and proximal gradient methods. These formulations are helpful to making ZACFs

practical for real data. At the end of this chapter, we present results on larger datasets.

4.1 Reduced-Aliasing Correlation Filters

In this section, we introduce the Reduced-Aliasing Correlation Filters (RACFs). RACFs are

very closely related to ZACFs and can be viewed as a direct extension. As mentioned previ-

ously, the ZACF closed form solution requires the formation and subsequent inversion of a very
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large matrix. This matrix’s size is a function of the number of zero-aliasing constraints (i.e., the

number of elements in the tail that we constrain to zero) and the DFT size used. In this section,

we explore different methods for reducing the number of these constraints, which in turn makes

the matrices smaller, reducing memory and computational burden. Here, we will focus on the

MACE formulation; however, this approach is relevant to other CF designs as well.

Recall the ZAMACE formulation:

h̄ = D−1B
(
B+D−1B

)−1
k (4.1)

In this formulation, we must form the matrix B+D−1B which, for a D-dimensional application,

is of size (Q+N# −N#
x )× (Q+N# −N#

x ), where

N# =
D∏
d=1

Nd (4.2)

and

N#
x =

D∏
d=1

Nx,d (4.3)

Note that the matrix size is a function of the number of zero-aliasing constraints that we impose,

p = N# − N#
x . Therefore, if we impose fewer constraints, we can make this matrix smaller,

which will require less computations and less memory. There are several ways to do this, which

we explore below.

4.1.1 Method 1: Reducing the DFT Size

The first method that we can employ to reduce the number of constraints is to simply reduce the

DFT size (Nx,d < Nd < 2Nx,d − 1). Doing so means that there is still aliasing due to circular

correlation; however, we have noticed that this aliasing is significantly reduced, leading to very

good results while improving the computational requirements. As noted in the previous chapter
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(see Fig. 3.3), we observed that the unaliased ACE for the zero-aliasing formulation decreases

sharply as zero padding increased. The obtained filter for a small amount of zero padding exhibits

an unaliased ACE that is almost as low as the unaliased ACE of the zero-aliasing filter obtained

with full zero padding. Moreover, we notice that the PCE values on the training set for these

instances are quite good, indicating very sharp peaks and implying that a partially padded zero-

aliasing filter can perform well.

4.1.2 Methods 2-5: Full-Size DFT with Fewer Constraints

The second general method that we employ uses full sized DFTs, i.e. Nd = 2Nx,d − 1. We then

allow for a customized constraint mask, such that we only constrain a portion of the correlation

template. The motivation for doing this is to reduce the energy in the template tail. Recall the 2D

formulation of the ZACF, which employed a selection matrix S defined in Eq. 3.17. In this case

we change the selection matrix to a specialized pattern which constrains a portion of the template

tail. We form matrix S by placing 1 at these constrained pixel locations and placing 0 elsewhere.

We then determine sv as in Eq. 3.18. Then, as before, we form form matrix A+ by selecting the

rows of matrix ΩΦ corresponding to entries in vector sv that are equal to 1. We experiment with

different methods of doing this, and describe each below. We do this to gain insight as to which

part of the tail is important to constrain.

4.1.2.1 Method 2: Full Tail

We illustrate the first two methods in Fig. 4.1 . In Method 2A, we set the spatial coordinates

closest to the training images to zero. In Method 2B, we set the spatial coordinates at the edge

of the template tail to zero. For Method 2A, we never use DFT sizes larger than 2Nx,d − 1, so

if a value of p for Method 2A requires a DFT size larger than 2Nx,d − 1, the DFT size is simply

clipped to size 2Nx,d− 1. Similarly, for Method 2B, in no case do we constrain any of the pixels

within the location of the training image, i.e. pixels 1 to Nx,d are never constrained (note that
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(a) Method 2A (b) Method 2B

Figure 4.1: Method 2: Constraining the inner and outer portions of the tail.

image indexing starts at 1). If we use a value of p > Nd−Nx,d, the number of constraints in that

dimension is simply clipped at Nd − Nx,d. We mention these details because they are relevant

when Nx,1 6= Nx,2.

4.1.2.2 Method 3: Single Tail

Method 3 is very similar to Method 2. In this case, we only constrain the tail in a single di-

mension, i.e. we only constrain the spatial values in the columns (or rows) corresponding to the

training image location. We illustrate the four different ways of doing this in Fig. 4.2.

As before, for Methods 3A and 3C, we never use DFT sizes larger than 2Nx,d − 1, so if a

value of p requires a DFT size larger than 2Nx,d − 1, the DFT size is simply clipped to size

2Nx,d−1. Similarly, for Methods 3B and 3D, in no case do we constrain any of the pixels within

the location of the training image as discussed previously (for values of p > Nd − Nx,d, the

number of constraints is simply clipped to Nd −Nx,d).
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(a) Method 3A (b) Method 3B

(c) Method 3C (d) Method 3D

Figure 4.2: Method 3: Constraining a single tail.
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(a) Method 4A (b) Method 4B

(c) Method 4C (d) Method 4D

Figure 4.3: Method 4: Constraining a widened single tail.

4.1.2.3 Method 4: Widened Single Tail

Method 4 is the same as Method 3, except it uses a full sized (wider) tail. It is illustrated in Fig.

4.3.

4.1.2.4 Method 5: Double Tail

Method 5 essentially combines the constraints in Method 3 but enforces them for the tails in both

dimensions. It is illustrated in Fig. 4.4.
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(a) Method 5A (b) Method 5B

Figure 4.4: Method 5: Constraining a double tail.

4.1.3 Experimental Results

In this section, we compare a standard FDMACE formulation to the reduced-aliasing implemen-

tations described in Methods 1-5. In the case of the FDMACE formulation, we use a DFT size

of min(Nx,d + p, 2Nx,d − 1). We again test on the AT&T/ORL dataset [43] as described in the

previous chapter, using downsampled images of size 28 × 23 and 10-fold cross validation. We

sweep parameter p and show our results in terms of EER.

We compare FDMACE to Methods 1, 2A, and 2B in Fig. 4.5a. Note that Method 1 out-

performs the other methods by a large margin. In addition, the EER is quite low for p ≥ 5,

confirming our previous observations of the trained filter, which exhibited a low ACE and a high

PCE on the train set. Method 2A and 2B actually perform worse than the FDMACE formulation

until p ≥ 22, which is Nd,2 −Nx,2 for these images. This indicates that completely constraining

the tail in one dimension leads to a dramatic increase in performance. We notice a similar drop

off for p ≥ 27, which is Nd,1 −Nx,1. Note that at p = 27, Method 1, 2A, and 2B converge to the

standard ZAMACE. For p = 0, Method 1 and FDMACE are the same. Finally, the FDMACE at

p = 27 is the same as the Method 2A and 2B when there are no constraints (p = 0).

We compare Method 1 to Method 3 in Fig. 4.5b. Note that in this case, we are only con-
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Figure 4.5: EER as a function of parameter p.
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straining spatial values of a single tail. Note that for a small number of constraints (small p ),

the performance is not any better than the FDMACE. However, once p = Nd − Nx,d (i.e. we

fully constrain the entire tail in one dimension), the performance becomes drastically better. This

is shown by the EER drops at p = 22 and p = 27 for Methods 3C/D and 3A/B, respectively.

Note that Method 3B outperforms 3A, and likewise 3D outperforms 3C. This indicates that con-

straining the tip of the tail (the portion farthest from the image location) is more important than

constraining the base of the tail (the portion closest to the image location).

We show Method 4 in Fig. 4.5c. Here, we notice the same trends that were observed for

Method 3. Note that the performance of Method 4 is approximately the same as that of Method

3. This indicates that the added constraints (wider tail) as found in Method 4 does not provide

any benefit.

Finally, we show Method 5 in Fig. 4.5d. Note that the results here largely resemble our obser-

vations for Method 2. Note, however, that Method 5A outperforms Method 2A, and Method 5B

outperforms Method 2B. This indicates that the constraints located in the corner of the constraint

regions for Method 2A and 2B do little to improve performance.

We summarize our observations for Methods 2-5 here:

• When constraining a single template tail, the entire tail should be constrained;

• Constraining the tip of a tail leads to better results than constraining the base of the tail;

• Using a wider tail (Method 3) leads to very little improvement;

• Adding constraints in the corner of the constraint region (opposite the image location) does

not tend to improve performance (compare Method 2 and 5).

This evaluation leads us to the conclusion that, in practice, Method 1 is the most promising

method. We completed a thorough evaluation of Methods 2-5 to demonstrate that, even though

there are many different ways to constrain a portion of the correlation template, these methods

all fall short of Method 1 in terms of recognition performance.
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4.1.4 Computational Considerations

We now perform a computational evaluation on the time required to compute these CFs. For

simplicity, we only consider Methods 1, 2A, and 3A. For each experiment, we train the filter

with 9 training images of size 28× 23. We then vary the pad size, p, and time how long it takes

to compute each CF. We repeat this 20 times for each pad size and report the average results. The

platform for our experiment was a desktop running MATLAB 2011a with Windows 7, an Intel

Core i7-2600 CPU (3.4 GHz), and 16 GB of RAM.

The results of this evaluation are shown in Fig. 4.6a. In this experiment, we used a maximum

DFT size of 55× 45 for Method 1 (i.e., we used Nd = min(Nx,d + p, 2Nx,d− 1) as before). The

DFT size for Methods 2A and 3A are always 55×45. We also show the number of constraints in

Fig. 4.6b. Note that Method 1 and Method 2A have the same number of constraints for a given

p. These results illustrate that the Method 1 CF can be computed considerably faster than both

the other methods and the standard ZACF (equivalent to Method 1 for p ≥ 27). For example,

the ZACF took an average time of 5.41 seconds to compute, whereas the CF using Method 1 and

p = 5 took 0.27 seconds (∼ 20 times faster).

In addition to this, Method 1 is more memory efficient, as it uses smaller DFTs. Because

Method 1 performs better at smaller value of p than other methods, Method 1 effectively requires

fewer constraints than other methods, thus reducing the memory constraints of computing the A

matrix. For example, in Fig. 4.6b, Method 3A has fewer constraints than Method 1 for a given

p. However, Method 1 at p = 5 can achieve better recognition than Method 3A at p ≥ 27. At

these points, Method 1 requires fewer constraints (and therefore less memory) than Method 3A.

We have shown that Method 1 exhibits both the best recognition and computational perfor-

mance. Therefore, Method 1 is the recommended method. From this point forward, we will refer

to Method 1 simply as the RACF.
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Figure 4.6: Comparison of the computational complexity of computing the ZACF using Methods
1, 2A, and 3A. The error bars in (a) indicate the 95% confidence interval. Note that the blue curve
in (b) is hidden behind the red curve.

4.2 Tail Energy Minimization

In the previous section, we introduced RACFs, which focused on reducing the number of zero-

aliasing constraints necessary to compute ZACFs. This in turn reduced the computational and

memory requirements for computing CFs. In this section, we present an alternate formulation

of ZACFs. This formulation completely removes the zero-aliasing constraints and replaces them

with a tail energy minimization term. This results in sparse matrices that allow for faster compu-

tation of CFs. This approach is also beneficial in that it does not require significant reformulation

of the closed-form expressions of existing CF designs. In this section, we use the MACE filter

as an example, but it will become apparent that this method is trivially extended to other CF

designs.

4.2.1 1D Formulation

We first present the formulation in 1D and later extend it to 2D. We refer to this method as Tail

Energy Minimization (TEM) because we replace the hard constraints that force the tail of the
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filter to zero with a term that represents the total energy in the template tail.

Let us assume we have Q training signals (1D) of length Nx samples. We wish to build a

zero-aliasing correlation filter by using a DFT size of N = 2Nx − 1. For the ZACF method we

would introduce N −Nx constraints. However, in this case, we want to minimize the energy in

the tail of the spatial domain template,

min
h

h+Sh (4.4)

In this case, the matrix S is a diagonal matrix of size N × N . The main diagonal is formed

from the vector [ 01×Nx 11×(N−Nx) ]. This matrix serves to “select” the tail portion of the

filter that is to be minimized. Recall that h = F−1
N h̄, where F−1

N is the N × N IDFT matrix.

Substituting this into Eq. 4.4, we obtain

min
h̄

(F−1
N h̄)+SF−1

N h̄

= min
h̄

h̄+(F−1
N )+SF−1

N h̄

= min
h̄

h̄+S̄h̄ (4.5)

where

S̄ = (F−1
N )+SF−1

N (4.6)

To derive the tail energy minimized MACE (TEMMACE) filter, we now minimize the func-

tion
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min
h̄

h̄+Dh̄ + λTEM h̄+S̄h̄

= min
h̄

h̄+Th̄ (4.7)

subject to the constraints (originally presented in Eq. 2.8)

X̄+h̄ = Nu (4.8)

Here, λTEM is a free parameter that controls the tradeoff between minimizing ACE and tail

energy (TE), and

T = D + λTEM S̄ (4.9)

Because this is in the same form as the original MACE formulation, the TEMMACE is given by

h̄ = T−1X̄
(
X̄+T−1X̄

)−1
u (4.10)

4.2.2 2D Formulation

We now adapt this formulation to higher dimensional signals. We demonstrate this for 2D, but

note that similar manipulations can be done for higher dimensional signals.

In 2D, we want to minimize the tail energy for every row and every column in the resulting

filter. To do this, we note the linearity of the DFT. Refer to Fig. 4.7. Observe that the 2D DFT (h̄)

of the spatial domain template h may be computed in two ways: first, by taking the DFT of the

rows and then by taking the DFT of the columns; and second, by taking the DFT of the columns

and then taking the DFT of the rows. Note that the template in the spatial domain has zeros in the

locations y > Nx,1 and x > Nx,2. Note that if we took the DFT first along the second dimension
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Figure 4.7: Demonstration of the linearity of the DFT operation in 2D.

(DFT of each row), the resulting array has zeros in locations y > Nx,1. On the other hand, if we

take the DFT first along the first dimension (DFT of each column), the resulting array has zeros

in the locations x > Nx,2. In both cases, taking the DFT along the opposite direction as the first

step results in the full 2D DFT. We take advantage of these manipulations to separately minimize

the row tail energy (RTE) and column tail energy (CTE). Starting with the 2D DFT, we first take

the IDFT along dimension 1 and then minimize the CTE of vectors h̃ck2
. Second, (again, starting

with the 2D DFT), we take the IDFT along dimension 2 and then minimize the RTE of vectors

h̃rk1
.

We formulate the 2D TEMMACE as follows. First, the tail energy is given by

TE =

N1∑
k1=1

h̃r+k1
Srh̃

r
k1

+

N2∑
k2=1

h̃c+k2
Sch̃

c
k2

(4.11)

Here, h̃rk1
and h̃ck2

are the rows and the columns respectively of the two intermediate-domain

arrays as shown in Fig. 4.7. The matrices Sr and Sc are diagonal matrices given by
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Sr = diag([ 01×Nx,2 11×(N2−Nx,2) ]T ) (4.12)

Sc = diag([ 01×Nx,1 11×(N1−Nx,1) ]T ) (4.13)

Our goal is to express h̃rk1
and h̃ck2

in terms of h̄. Recall that h̄ is a vectorized 2D DFT1 of the

correlation filter H(k, l). We start with the case of the columns of the 2D DFT H(k, l), which

we denote as h̄ck2
. We use a selection matrix to select these columns from the vector h̄. This is

given by

h̄ck2
= Vc

k2
h̄ (4.14)

where the matrix Vc
k2

is given by

Vc
k2

=

[
0N1×(N1(k2−1)) IN1 0N1×(N1N2−N1k2)

]
(4.15)

Note that the vector h̄ck2
isN1×1. Next, we must take the IDFT of each of these vectors to obtain

h̃ck2
,

h̃ck2
= F−1

N1
h̄ck2

= F−1
N1

Vc
k2

h̄ (4.16)

Similarly, we denote the N2 × 1 vector formed from row k1 of the 2D DFT H(k, l) as h̄rk1
.

We use a selection matrix to select these rows from the vector h̄. This is given by

h̄rk1
= Vr

k1
h̄ (4.17)

1We assume column-by-column vectorization (i.e. each column is concatenated).
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where the matrix Vr
k1

is given by

Vr
k1

= circshift(Vr, k1 − 1) (4.18)

where the circshift() operator circularly shifts the matrix Vr to the right by the specified number

of entries. The matrix Vr is given by

Vr =

[
δ1 0N2×N1−1 δ2 0N2×N1−1 · · · δN2 0N2×N1−1

]
(4.19)

where the vector δc is an all zero N2 × 1 vector with a “one” in the cth row. Next, we must take

the IDFT of each of these vectors to obtain h̃rk1
,

h̃rk1
= F−1

N2
h̄rk1

= F−1
N2

Vr
k1

h̄ (4.20)

Next we substitute these expressions for h̃rk1
and h̃ck2

into Eq. 4.11 to obtain

TE =

N1∑
k1=1

h̄+Vr+
k1

(F−1
N2

)+SrF
−1
N2

Vr
k1

h̄ +

N2∑
k2=1

h̄+Vc+
k2

(F−1
N1

)+ScF
−1
N1

Vc
k2

h̄

=

N1∑
k1=1

h̄+Rr
k1

h̄ +

N2∑
k2=1

h̄+Rc
k2

h̄

= h̄+

(
N1∑
k1=1

Rr
k1

+

N2∑
k2=1

Rc
k2

)
h̄

h̄+Rh̄ (4.21)

where

116



Rr
k1

= Vr+
k1

(F−1
N2

)+SrF
−1
N2

Vr
k1

(4.22)

Rc
k2

= Vc+
k2

(F−1
N1

)+ScF
−1
N1

Vc
k2

(4.23)

R =

N1∑
k1=1

Rr
k1

+

N2∑
k2=1

Rc
k2

(4.24)

For the TEMMACE, we minimize the function

min
h̄

h̄+Dh̄ + λTEM h̄+Rh̄

= min
h̄

h̄+Th̄ (4.25)

subject to the constraints (as in the original MACE formulation)

X̄+h̄ = N1N2u (4.26)

Here, λTEM is a free parameter that controls the tradeoff between minimizing ACE and TE, and

T = D + λTEMR (4.27)

The TEMMACE is given by

h̄ = T−1X̄
(
X̄+T−1X̄

)−1
u (4.28)

In this section we derived the TEMMACE filter. It is easy to extend this to other filter types,

which is a major advantage of the TEM formulation. Because most other filters minimize a

quadratic term (ACE, ONV, MSE, etc.), the TEM term is simply combined with this term as

illustrated in the MACE example.
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4.2.3 Implementation Notes

Note that the matrices Sr, Sc, and subsequently the matrices Rc
k2

and Rr
k1

are sparse. This means

that matrix R, while not diagonal, is also sparse. Therefore, we may take advantage in using

sparse matrix programming and storage techniques in implementation. Compared to the original

ZACF formulation, the TEM formulation is faster and more memory efficient, which is important

for implementation.

Note that R may be written as

R = Rr + Rc (4.29)

where Rr =
∑N1

k1=1 Rr
k1

and Rc =
∑N2

k2=1 Rc
k2

. First, we examine matrix Rc, which may be

written as

Rc =

N2∑
k2=1

Rc
k2

=

N2∑
k2=1

Vc+
k2

(F−1
N1

)+ScF
−1
N1

Vc
k2

=

N2∑
k2=1

Vc+
k2

K+
1 K1V

c
k2

=

N2∑
k2=1

Vc+
k2

Z1V
c
k2

(4.30)

where K1 represents the last N1−Nx,1 rows of the matrix F−1
N1

. Note that the matrix Z1 = K+
1 K1

is a N1 × N1 conjugate symmetric and Toeplitz matrix. The operation in Eq. 4.30 replicates

matrix Z1, forming the block diagonal matrix, Rc, which can be written as
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Rc =



Z1 0 · · · 0

0 Z1 · · · 0

0 0
. . . ...

0 0 · · · Z1


= IN2 ⊗ Z1 (4.31)

where IN2 denotes an identity matrix of size N2 and⊗ denotes the Kronecker product. Similarly,

we can write matrix Rr as

Rr =

N1∑
k1=1

Rr
k1

=

N1∑
k1=1

Vr+
k1

(F−1
N2

)+SrF
−1
N2

Vr
k1

=

N1∑
k1=1

Vr+
k1

K+
2 K2V

r
k1

=

N1∑
k1=1

Vr+
k1

Z2V
r
k1

(4.32)

where K2 represents the last N2−Nx,2 rows of the matrix F−1
N2

. Note that the matrix Z2 = K+
2 K2

is a N2 × N2 conjugate symmetric and Toeplitz matrix. The operation in Eq. 4.32 is a 2D

upsampling operation, in which zeros are placed between each entry of the matrix. However,

since the matrix Rr is the sum of N1 upsampling operations, the end result is a multi-diagonal

matrix that is both Toeplitz and conjugate symmetric. We may write matrix Rr as
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Rr =



Z2(1, 1) 0 · · · 0 Z2(1, 2) 0 · · · 0

0 Z2(1, 1) 0
... 0 Z2(1, 2) 0

...
... 0 Z2(1, 1) 0

... 0
. . . 0

0
... 0 Z2(1, 1) 0

... 0 Z2(1, 2)

Z2(2, 1) 0
... 0 Z2(1, 1) 0

... 0

0 Z2(2, 1) 0
... 0 Z2(1, 1)

. . . ...
... 0

. . . 0
... 0

. . . 0

0 · · · 0 Z2(2, 1) 0 · · · 0 Z2(1, 1)


= Z2 ⊗ IN1 (4.33)

where IN1 denotes an identity matrix of size N1. Note that Eq. 4.31 and 4.33 may be used to

quickly generate Rc and Rr, respectively.

We form matrix R as the sum of matrices Rr and Rc. Note that this matrix is not Toeplitz,

but is conjugate symmetric. (The matrix is not Toeplitz because matrix Rc is not Toeplitz.) We

show an example visualization of this matrix in Fig. 4.8. Note that matrix T has the same format

as R, as it effectively adds values along the diagonal. We have been unable to locate a good

solution for inverting this matrix (or solving y = T−1x, where y and x are vectors) quickly by

taking advantage of its structure.

4.2.4 Computational Considerations

In this section, we present a few brief experiments that demonstrate the superiority of TEM CFs

over ZACFs in terms of computational speed. We present additional results in Sections 4.4 and

4.5.1.1.

To demonstrate the TEM vs. ZACF, we once again use the AT&T/ORL Face Dataset [43].

For each experiment, we train the filter with 9 training images of size 28× 23. We repeat this 20

120



500 1000 1500 2000

500

1000

1500

2000

(a) Full Matrix

50 100 150 200 250 300

50

100

150

200

250

300

(b) Closeup, Main Diagonal

Figure 4.8: Visualization of matrix R. In this example, N1 = 55, N2 = 45, which means R is
N1N2 ×N1N2. Note that the blue color represents 0. This particular matrix is 96% sparse.

times and report the average results for both TEM and ZACF filters. We also present the MSE

between the TEM and ZACF templates, after normalizing each to unit energy. For the TEM

formulation, we use λTEM = 100. In general, this parameter affects MSE. We have observed

that λTEM = 100 usually works quite well, however sometimes we get better performance for

some filters with λTEM = 10. In general, selecting this parameter should be done on a case-by-

case basis.

The platform for our experiment was a desktop running MATLAB 2011a with Windows 7,

an Intel Core i7-2600 CPU (3.4 GHz), and 16 GB of RAM. These results are shown in Table

4.1 for several different filter types. Note that for ASEF, the timing difference is quite large; this

is because 9 exact filters must be trained for each ASEF filter. To supplement these results, we

show the ZAMACE, TEMMACE, and the error between the two in Fig. 4.9. Note that these

plots, along with the MSE values in Table 4.1, indicate that the differences between the ZACF

and TEM CFs are minimal.
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Table 4.1: Computational Comparison of of ZACF and TEM CFs

Filter ZACF Time TEM Time MSE
MACE 2.26 s 0.38 s 1.14 e-13
OTSDF 2.37 s 0.39 s 2.92e-10

CCF 2.33 s 0.77 s 4.13e-10
UCF 2.31 s 0.38 s 8.08e-14

MMCF 5.87 s 0.75 s 1.34e-10
ASEF 50.54 s 3.89 s 8.46e-12

MOSSE 2.28 s 0.38 s 6.73e-12
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Figure 4.9: A comparison between ZAMACE and TEMMACE. The squared error plot shows
the squared error between the two templates.
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4.2.5 Reduced-Aliasing TEM

We may combine the idea behind RACFs with the TEM concept to derive so called reduced-

aliasing TEM (RATEM) CFs. This idea is identical to that behind the RACF. A DFT of size

N1 × N2 is used to train the CF, with Nd < 2Nx,d − 1. Then, the energy in the tail of this CF

is minimized as described previously. The actual formulation or RATEM is identical to that of

TEM, except that the DFT size is different. We present additional results for RATEM in Sections

4.4 and 4.5.1.1.

4.3 Proximal Gradient Methods

In the previous sections, we illustrated alternatives to ZACF that yielded closed-form solutions.

However, sometimes implementing these expressions may be impractical from a computational

and memory perspective. An alternative solution is to use an iterative algorithm to solve for the

ZACF. One iterative method to do this is using the proximal gradient descent method [48]. We

have developed this method for both unconstrained and constrained CFs.

In general, a CF design involves a cost function f(h̄) with a corresponding gradient function

∇f(h̄). Standard gradient descent [49] finds an optimal solution h̄opt by choosing an initial

solution, h̄0, and iteratively reduces the cost function f(h̄). Each iteration is computed as a

function of the previous solution,

h̄k+1 = h̄k − tk∇f(h̄k) (4.34)

where tk is the step size at iteration k. However, the standard gradient descent method does not

allow for constraints to be imposed on the filter. To satisfy constraints, we apply the proximal

gradient method [48], which is given by

h̄k+1 = prox
(
h̄k − tk∇f(h̄k)

)
(4.35)
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Algorithm 4.1 Proximal Gradient for Unconstrained Filters
Compute h̄conv (conventional CF solution)
Initialize h̄0 to prox(h̄conv)
repeat

Compute h̄k+1 = prox
(
h̄k − tk∇f(h̄k)

)
until

∣∣f(h̄k+1)− f(h̄k)
∣∣ / ∣∣f(h̄k)

∣∣ < ε
Function prox()

1: Convert filter to 2D
2: Take 2D IDFT
3: Set template tail to zero
4: Take 2D DFT
5: Vectorize filter

Here, the prox() operator is an operation that imposes constraints on the filter. For unconstrained

filters (e.g., ZAMOSSE), the prox() operator (see Fig. 4.10a and Algorithm 4.1) transforms the

filter update h̄k − tk∇f(h̄k) into the space domain and sets the template’s tail to zero. It then

transforms the resulting template back into the frequency domain to obtain h̄k+1.

For the constrained case, the prox() operator contains two steps (see Fig. 4.10b and Algo-

rithm 4.2). First, the filter update h̄k − tk∇f(h̄k) is transformed into the space domain and the

template’s tail is set to zero (as in the unconstrained case). For the second step, we extract the

main portion of the template and vectorize it. We denote this vector as h#
k . Next, we form the

vector h#
k + h∆, convert it to 2D, substitute it back into the full template, and take the DFT to

obtain h̄k. We seek a vector h∆ such that

XT (h#
k + h∆) = u (4.36)

Recall that u is a vector containing the desired peak constraints. Matrix X contains the vectorized

padded training images in the space domain along each column. We want to pick a solution h#
k +

h∆ that satisfies the peak constraints, and that is closest to the current template h#
k . Therefore,

we minimize the L2 norm of h∆, i.e.

min
h∆

hT∆h∆ (4.37)
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(a) Unconstrained Case

(b) Constrained Case

Figure 4.10: Illustration of the proximal step, which is performed in the spatial domain. All
DFTs and IDFTs are in 2D.
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Algorithm 4.2 Proximal Gradient for Constrained Filters
Compute h̄conv (conventional CF solution)
Initialize h̄0 to prox(h̄conv)
repeat

Compute h̄k+1 = prox
(
h̄k − tk∇f(h̄k)

)
until

∣∣f(h̄k+1)− f(h̄k)
∣∣ / ∣∣f(h̄k)

∣∣ < ε
Function prox()

1: Convert filter to 2D
2: Take 2D IDFT
3: Set template tail to zero
4: Extract and vectorize h#

k

5: Compute h∆ = X(XTX)−1(u−XTh#
k )

6: h#
k ← h#

k + h∆

7: Convert h#
k to 2D

8: Reinsert h#
k into template

9: Take 2D DFT
10: Vectorize filter

subject to XTh∆ = u−XTh#
k . To accomplish this, we form the functional

L(h∆,ω) = hT∆h∆ − 2ωT (XTh∆ − (u−XTh#
k )) (4.38)

Taking the gradient of L(h∆,ω) with respect to h∆ and setting to 0, we obtain

2h∆ − 2Xω = 0

h∆ = Xω (4.39)

Substituting this into Eq. 4.36, we obtain

XT (h#
k + Xω) = u

ω = (XTX)−1(u−XTh#
k ) (4.40)
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Finally, substituting this result back into Eq. 4.39 we obtain our solution as

h∆ = X(XTX)−1(u−XTh#
k ) (4.41)

The proximal gradient solution ensures that the zero-aliasing constraints (and peak con-

straints, for constrained filters) are satisfied. This is done in the space domain, rather than form-

ing matrix A (or matrix B, for the constrained case) as in the closed form solution. This is

advantageous because we save on the memory needed to compute and store A (or B) and the

subsequent computational resources needed to solve large systems of equations. The result is a

memory-stable, low complexity solution that allows for efficient and fast computation of ZACFs.

4.4 Computational Results

In this section, we compare the closed-form ZACF formulation to the alternative formulations

which include the closed form solutions RACF, TEM, and RATEM, as well as the numerical

proximal gradient descent method. For ZACF and TEM, the DFT size used is always Nd =

2Nx,d − 1. For the reduced-aliasing methods (RACF and RATEM), we pad with a number of

zeros equal to 10% or 25% of the training image size, and refer to these results as RACF-10%

(RATEM-10%) and RACF-25% (RATEM-25%), respectively. For the proximal gradient descent

method, we implement an accelerated backtracking line search method [48] to compute the step

size tk. We initialize the filter (h̄0) as the conventional filter design subjected to the prox()

operator. We use a stopping condition

∣∣f(h̄k+1)− f(h̄k)
∣∣∣∣f(h̄k)

∣∣ < 10−10 (4.42)

to terminate the optimization. We refer to our implementation as accelerated proximal gradient

descent (APGD).

In this experiment, we train a UOTSDF filter using 9 training images from the AT&T/ORL
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Face Dataset [43]; we vary the resolution and crop the training images so that they are square.

The platform for this experiment was a desktop running MATLAB 2011a with Windows 7, an

Intel Core i7-2600 CPU (3.4 GHz), and 16 GB of RAM. We show the results of our experiment

in Fig. 4.11. We only compute the closed form ZACF solution for a resolution up to 50× 50 as

this is near the memory limit of our machine (similarly, we stop computing the TEM solution for

resolutions greater than 70× 70).

First, note that TEM outperforms ZACF computationally. Note that, while the fastest method

is RACF-10%, we have observed that RACF-25% will perform better from a recognition per-

spective. This also holds true for RATEM-10% and RATEM-25%. However, recognition perfor-

mance is dependent on the image size and the training set, so experimentation is needed before

choosing the amount of padding used for reduced aliasing methods. Note that RACF-10% is

faster than RATEM-10%, whereas RATEM-25% is faster than RACF-25%. The reason for this

behavior is difficult to characterize. Note that this is largely dependent on the platform and the

structure of the matrices that must be inverted in computing the closed form solutions, and, as

such, is difficult to characterize. It is important to note that the complexity of the ZACF, RACF,

TEM, and RATEM methods grow at a rate faster than that of APGD. In addition, these methods

require a large amount of memory for larger pad sizes. Therefore, we prefer APGD (when avail-

able) because it is faster for larger images and is more efficient from a memory perspective. In

the next section, we show recognition performance on the AT&T/ORL dataset using all of the

described methods to illustrate these points further.

4.5 Results

In this section, we present more thorough results on a variety of datasets to illustrate the per-

formance gains realized by ZACFs. We apply them to three types of pattern recognition tasks,

namely face recognition, ATR, and eye localization.
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Figure 4.11: Computational times for filter design comparing RACF and the proximal gradient
method compared to a closed form solution.

4.5.1 Face Recognition

We apply CFs to two different face recognition datasets: the AT&T/ORL Database of Faces [43]

and the face recognition grand challenge (FRGC) dataset [50].

4.5.1.1 AT&T Database of Faces

In the previous chapter, we presented results for the AT&T/ORL Database of Faces using 1/4 scale

images (for computational reasons). Now that we have developed several methods to reduce com-

putational complexity (RACF, TEM, RATEM, and APGD), evaluating filters at full resolution is

now possible. However, computing the closed-form solutions (especially the ZACF formulation)

is still difficult, and takes many hours on high end server machines with large amounts of mem-

ory. Therefore, this dataset is ideal for demonstrating all of the proposed techniques due to the

small size of the dataset. Because of this, we have not done an exhaustive comparison on every

possible set of parameters available to each filter formulation. Instead, we focus on comparing

the filter design techniques themselves.
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We use the same procedure as described in the previous chapter with normalized, zero-mean,

full resolution (112 × 92) images. We use PCE as a score metric. We then vary the detection

threshold to generate ROC curves, yielding the system’s true positive rate and false positive

rate for a given threshold. We compute both EER and rank-1 ID rate to serve as metrics for

performance.

The results of our validation for the OTSDF, UOTSDF, and MMCF filters are shown in

Table 4.2. For each of these filters, we set the tradeoff parameter as λ = 0.9 (recall that T =

λD + (1 − λ)P). We also set λTEM = 100 for TEM filters and use a delta function for the

desired correlation output for MMCF. We show results for two different baseline CFs (using

different DFT sizes). For the second baseline (DFT of size 223 × 183), we train the CF and

crop the 112× 92 upper left section of the template to form the CF template, as performing this

cropping generated the best results. We also train CFs using the closed-form expressions for

ZACF and TEM, and the numerical method APGD. We observe that the ZACF outperforms both

of the baseline CFs. Note that the TEM formulation gives nearly identical performance to that

of ZACF, which indicates that it is an acceptable alternative to ZACF. Similarly, APGD gives

similar performance to both ZACF and TEM.

We demonstrate the reduced aliasing methods in Tables 4.3 and 4.4 for RACF and RATEM,

respectively. In these tables, we have repeated the closed form results for ZACF and TEM, re-

spectively, for convenience. Note that as zero padding increases, performance increases. Also

note that the results for RACF mirror closely those of RATEM, once again indicating that each

of these techniques are essentially equivalent. Therefore, the ZACF/RACF and TEM/RATEM

methods complement each other nicely, as they perform the same from a recognition perfor-

mance. Depending on the system architecture, one may hold a computational advantage over the

other (see again Fig. 4.11). Despite this, we still prefer APGD, as it is the most stable method

and is the most memory efficient, as it does not require large matrices to be generated. From this

point forward, we will typically use the closed form ZACF formulation if the filter size is small

enough; if not, we use APGD to generate the CFs.
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Table 4.2: Comparison of Baseline CFs and ZACF Alternatives on the AT&T/ORL Dataset

Baseline
(DFT

112× 92)

Baseline
(DFT

223× 183)

ZACF
(closed form)

TEM
(closed form)

APGD

OTSDF EER 11.96% 10.89% 7.539% 7.526% 7.654%
Rank-1 ID 73.5% 83.75% 89.5% 89.5% 89.5%

UOTSDF EER 13.25% 11.75% 7.942% 7.884% 7.936%
Rank-1 ID 72.5% 84.25% 88.25% 88.25% 88%

MMCF EER 13.25% 11.73% 8% 8% n/a
Rank-1 ID 72.5% 84.25% 88.5% 88.75% n/a

Table 4.3: Comparison of ZACFs and RACFs on the AT&T/ORL Dataset

ZACF
(closed form)

RACF
(p = 15)

RACF
(p = 20)

RACF
(p = 25)

RACF
(p = 30)

OTSDF EER 7.539% 11.75% 8.449% 7.212% 7.5%
Rank-1 ID 89.5% 70.75% 81% 85.75% 87.75%

UOTSDF EER 7.942% 12.25% 9.25% 8.75% 8.5%
Rank-1 ID 88.25% 72.75% 83% 85.75% 87.5%

MMCF EER 8% 12% 8.930% 8.75% 8.5%
Rank-1 ID 88.5% 73% 83% 86% 87.5%

Table 4.4: Comparison of TEM CFs and RATEM CFs on the AT&T/ORL Dataset

TEM
(closed form)

RATEM
(p = 15)

RATEM
(p = 20)

RATEM
(p = 25)

RATEM
(p = 30)

OTSDF EER 7.526% 11.75% 8.442% 7.186% 7.5%
Rank-1 ID 89.5% 70.75% 81% 85.75% 87.75%

UOTSDF EER 7.884% 12.218% 9.25% 8.75% 8.5%
Rank-1 ID 88.25% 72.75% 83% 85.75% 87.5%

MMCF EER 8% 12% 8.936% 8.75% 8.5%
Rank-1 ID 88.75% 73% 83% 86% 87.5%
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Table 4.5: Comparison of Baseline CFs and ZACFs on the FRGC Dataset
UOTSDF ZAUOTSDF

EER 7.346% 5.017%
Rank-1 ID 86.87% 93.78%

4.5.1.2 FRGC

The FRGC dataset [50] contains face images of resolution 128× 128. We use 410 subjects from

the test portion of the data, removing subjects with less than 8 images per subject. For the data

we use, the number of images from each subject varies from 8 (minimum) to 88 (maximum) with

a mean of 39 images per subject. We form three training and test sets by randomly selecting

25% of each class for training with the remaining 75% used for testing. We then build one CF

per subject and apply every CF to every test image. There are 11, 853 test images and 4, 859, 730

correlations per train/test set. Like the AT&T/ORL dataset, we present our results in terms of

EER and Rank-1 ID rate in Table 4.5. We choose the UOTSDF filter to evaluate this dataset.

Note that the zero-aliasing UOTSDF (ZAUOTSDF) filter (computed via APGD) achieves both

a higher Rank-1 ID and a lower EER than the baseline UOTSDF filter. These results are statis-

tically significant. For example, the EER for the UOTSDF filter has a 95% confidence interval

of ±0.014% and the EER for the ZAUOTSDF filter has a 95% confidence interval of ±0.011%.

Because these confidence intervals are so small, we do not show them for these and the rest of

the results.

4.5.2 ATR Algorithm Development Image Database

We next investigate vehicle recognition (i.e., simultaneous classification and localization) us-

ing a set of infrared images (frames from videos) from the ATR Algorithm Development Image

Database [51]. This database contains infrared videos (resolution 512 × 640) of eight military

vehicles (one per video). We show these eight classes in Fig. 4.12. Note that some of the vehicles

have very similar appearance, making discrimination challenging. In the database, these vehicles
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(a) Pickup (b) SUV (c) BTR70 (d) BRDM2

(e) BMP2 (f) T72 (g) ZSU23-4 (h) 2S3

Figure 4.12: Example images of the different classes of military vehicles.

Figure 4.13: Target “pickup” and background

are driven in a circle with diameter 100 m, and therefore exhibit 360◦ of azimuth rotation. Each

video is 1 minute long, allowing the vehicle to complete at least one full circle.The videos in the

database are taken at multiple ranges during day and night at 30 fps. We use videos collected

during daytime at a range of 1000 m. An example frame is shown in Fig. 4.13. Note that the low

quality frame and the general background makes the recognition task challenging.

We design one CF per vehicle to classify the vehicle in the presence of 360◦ azimuth variation.

We select 20 positive-class images per filter (manually cropped from the corresponding frames,

of size 40×70) and 80 non-overlapping background images as negative class images for training.

We select 200 full frames for testing, which were not a part of the training set. For testing, we
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Table 4.6: CF Recognition without Retraining, ATR Algorithm Development Image Database

Classification Localization Recognition
Base ZA Base ZA Base ZA

MACE 40.0% 51.9% 84.1% 88.9% 36.2% 47.5%
OTSDF 53.6% 62.1% 90.3% 90.3% 52.4% 57.4%
MOSSE 29.7% 32.3% 64.5% 78.1% 26.1% 30.6%
MMCF 51.1% 57.0% 87.7% 90.0% 49.6% 52.6%

correlate the 8 templates with each test image. For each correlation plane, we select the highest

value, compute PCE, and assign the test image to the class that gives the highest PCE. If it is the

correct class, we declare the video as correctly classified. We declare correct localization when

the location of the peak from the true class filter is within 20 and 35 pixels (i.e., half the size of

the template) of the ground truth location in the vertical and horizontal directions, respectively.

Finally, we declare a correct recognition when there is both correct classification and correct

localization.

Table 4.6 shows the average classification, localization, and recognition percentages of both

the conventional CF and ZACF. In these experiments, our baseline CF uses a DFT the size of the

training images, as this yielded the best performance. Dalal and Triggs [52] proposed correlating

the CF template with the full training frames and adding the subsequent false positives to the

training set as negative class training images. The CF is then retrained using this expanded

training set. We show our results after retraining in Table 4.7. We observe that retraining helps

all filters, but especially the MMCF filter, whose constraints allow unlimited number of training

images from two classes. The most important observation is that ZACFs always performs better

than or about the same as traditional CFs in classification, localization, and recognition. Note

that in these experiments, we treat each frame independently of other frames and do not use a

tracker to improve performance. Therefore, the focus is on the performance differences between

the original CF formulation and the ZACF formulation.
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Table 4.7: CF Recognition with Retraining, ATR Algorithm Development Image Database

Classification Localization Recognition
Base ZA Base ZA Base ZA

MACE 46.2% 57.7% 85.1% 89.1% 42.7% 51.9%
OTSDF 59.9% 62.3% 90.7% 90.0% 58.1% 58.1%
MOSSE 31.9% 33.4% 76.5% 84.4% 31.1% 32.0%
MMCF 63.9% 74.3% 95.3% 96.1% 63.2% 73.5%

4.5.3 Eye Localization

We now investigate the use of ZACFs for eye localization in face images, which is an important

task in face, ocular, and iris recognition. In this experiment we consider the task of localizing

the left and right eyes of a detected face. Since a good face detector makes eye localization

overly simple, we make the problem more challenging by introducing errors in face localization

as outlined in [20]. First, we center the faces obtained using the OpenCV face detector [53] to

produce 128× 128 images with the eyes centered at (32.0, 40.0) and (96.0, 40.0). We then apply

a random similarity transform with translation of up to ±4 pixels, scale factor of up to 1.0± 0.1,

and rotations of up to π
16

radians. We used the FERET [54] database, which has about 3400

images of 1204 people. We randomly partitioned the database with 512 images used for training,

675 for parameter selection by cross-validation, and the rest for testing.The CFs are compared

by evaluating the normalized distance defined as follows,

D =

∥∥∥P − P̂∥∥∥
‖Pl − Pr‖

(4.43)

where P is the ground truth location, P̂ is the predicted location, and Pl and Pr are the ground

truth locations of the left and the right eye, respectively. The point D = 0.1 corresponds to

detecting an object that is approximately the size of a human iris.

We train MOSSE and ZAMOSSE filters using 64 × 64 image patches centered at the left

and right eye regions. The resulting CF templates are shown in Fig. 4.14. We evaluate the eye

localization performance of the CF templates by searching over the entire face image i.e., the
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(a) MOSSE (right) (b) MOSSE (left) (c) ZAMOSSE (right) (d) ZAMOSSE (left)

Figure 4.14: Resulting correlation templates for the left and right eyes.
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Figure 4.15: Eye localization performance for MOSSE and ZAMOSSE filters.

scenario where the approximate eye location is not known apriori. We average the results over 5

different runs with random partitions for training and testing and random similarity transforms.

We compare the eye localization performance as a function of D in Fig. 4.15. The filters, while

producing a strong response for the correct eye, are sometimes distracted by the wrong eye or

other parts of the face. This is because the filters have not been designed using the entire face

image. Note that the ZAMOSSE filter provides a higher localization accuracy than the MOSSE

filter. At the operating point D = 0.1, the MOSSE filter has a localization accuracy of 84.14%

and the ZAMOSSE filter has a localization accuracy of 86.39%.

We show example correlation outputs for a test face image in Fig. 4.16. Notice that the

ZAMOSSE filter yields a sharper main correlation peak than that produced by the MOSSE filter.
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(a) Test Face Image

(b) MOSSE (c) ZAMOSSE

(d) MOSSE (e) ZAMOSSE

Figure 4.16: Example correlation outputs with the correct peak marked. The test image is shown
in (a). Correlation planes for the left eye are shown in (b,c) and for the right eye in (d,e).

This sharper peak translates into better localization performance.

4.6 Conclusions and Discussion

In this chapter, we have introduced several formulations for ZACFs that perform better from a

computational perspective. These techniques have allowed for the design of ZACFs using larger

training images. As a result, we were able to train and test ZACFs on a variety of datasets and

have shown that ZACFs outperform conventional CFs. We summarize the contributions of this
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chapter below.

• We introduce RACFs, which use smaller-sized DFTs paired with zero-aliasing constraints

to reduce aliasing substantially. We show that this method outperforms using a full-sized

DFT and constraining only a portion of the filter tail.

• We introduce TEM, which minimizes the energy of the tail of a correlation template dur-

ing the design phase. We extended this idea to 2D and illustrate that training the CF is

substantially faster than the ZACF formulation. In addition, the TEM formulation easily

extends to various CF formulations, which is a key advantage over the ZACF formulation.

• We introduce RATEM, the reduced-aliasing version of TEM, which yields the same filter

as the RACF formulation.

• We extend the proximal gradient method (APGD) to ZACFs to numerically solve for the

CF templates. We have developed this technique for both constrained and unconstrained

CFs.

• We have presented a computational comparison of ZACF, RACF, TEM, RATEM, and

APGD. APGD is the preferred method, as it features low memory usage and computa-

tional complexity.

• We present an evaluation on the AT&T/ORL dataset of ZACF, RACF, TEM, RATEM, and

APGD to show the efficacy of these methods. We show that TEM and RATEM generate

the same results at ZACF and RACF, respectively.

• We present results on face recognition, automatic target recognition, and eye localization

to show that ZACF methods as a whole outperform conventional CF formulations for lo-

calization, classification, and recognition.

In the previous chapters, we have introduced the formulation issue with conventional CF designs.

We initially formulated ZACF as a solution to this problem. However, the computational nature

of ZACFs make them impractical for some applications. The alternate formulations presented in
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this chapter offer additional solutions to the conventional CF formulation problem. In the next

part of this thesis, we explore ways to reduce the computational complexity and memory required

to apply CFs to test data.
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Chapter 5

Overlap-Add and Overlap-Save For

Multidimensional Correlations

In the previous three chapters, we introduced the aliasing issues present in CFs and presented

several solutions to this problem. In this chapter, we focus on a different problem altogether. We

assume we have already designed a CF, and now must apply it to test data in an efficient manner.

Note that the work presented in this chapter is therefore applicable to any filtering operation. We

focus on the the well-known overlap-add (OLA) and overlap-save (OLS) algorithms [1, 42] and

their application to multidimensional correlation.

5.1 Introduction

Correlation and convolution are prevalent techniques in signal processing. Correlation is used

to match two signals to each other, whereas convolution is used to filter a signal. These opera-

tions are often implemented efficiently in the frequency domain, where the operation is reduced

to element-wise multiplication of the DFTs of the two signals. This is a well known technique

in signal processing, but is not always implemented in the vision community for filtering ap-

plications, as shown recently in [55]. While frequency domain correlation and convolution are
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much more efficient than the spatial domain approach (i.e. a sliding window), it can still be very

computation and memory intensive, especially when one signal is very different in size from the

other. In the case of high-dimensional data (e.g., video) the conventional method may be impos-

sible to implement due to memory constraints. For example, CFs have recently been investigated

for the detection of human actions in videos [2, 3, 5, 6]. In this case, the CF is a 3D template

that is compared to a larger 3D array (the test video) by sliding it to all possible locations. This

operation is typically carried out in the frequency domain, but memory constraints can make this

conventional frequency domain approach impossible. Therefore, we look to the OLA and OLS

algorithms to provide a more practical solution.

The OLA and OLS algorithms are well-known signal processing techniques. Recently, re-

search has focused on improvements to these techniques. In [56], real signals are processed

using OLA and OLS by combining consecutive signal sections as the real and imaginary compo-

nents of the input signal to the filter. This improves the runtime speed by approximately a factor

of 2, but results in an additional delay in the output signal. This is a common trick to use for

FFT-based filtering applications, but to simplify our analysis, we will not consider it. In [57],

an alternative version of OLA is proposed that sections both the input signal and the filter. This

is particularly useful for filters with long impulse responses. In [58], the general form of block

digital filtering is generalized to matrix algebra expressions. This analysis is applied to the OLA

and OLS implementations in [59], which focuses on efficient and accurate implementations of

digital filters that have an impulse response longer than the block size. This problem differs from

our application (where the filter is fixed), as we optimize the correlation architecture, not the

filter.

In general, most literature focuses on OLA and OLS applied to only 1D. One exception is

[60], which considers OLA for block matching for images and evaluates the algorithm from a

computational perspective. The work in this thesis differs from [60] in the following ways. First,

we offer a theoretical computational analysis for a generic dimension D for both OLA and OLS,

whereas [60] only offers a theoretical analysis for OLA in 1D. Furthermore, the analysis in [60]
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does not account for several factors in the correlation algorithm complexity. In addition to this,

we offer memory insights for both 2D and 3D applications, whereas [60] does not. Finally, we

provide insights regarding parameter selection for OLA and OLS given the sizes of the filter tem-

plate and the signal, whereas [60] only shows that optimal parameters exist. We have presented

a 2D analysis of OLA and OLS in [61].

In this chapter, we describe the OLA and OLS algorithms. We then derive general expressions

for the computational complexity of both OLA and OLS for a genericD-dimensional signal, and

perform an experimental validation of these expressions. We then offer insight to parameter

selection so as to minimize the computational time. Finally, we discuss the memory required for

each algorithm, and implementation issues for the two and 3D cases.

It should be noted that the computation and memory analysis in this chapter is presented at

a high level and does not consider the intricacies of specific hardware platforms, e.g., central

processing units (CPUs), graphics processing units (GPUs), or field-programmable gate arrays

(FPGAs). It is outside the scope of this thesis to consider specific hardware details, such as

considerations for reading and writing to memory. Nevertheless, the analysis presented here

should give the reader a high-level overview of the tradeoffs surrounding OLA and OLS, and

could serve as a starting point for further, in-depth analysis for particular hardware architectures.

5.2 Description of Algorithms

Both correlation and convolution are similar operations which are used for a wide variety of

applications in signal processing, communications, and pattern recognition. Because our interest

in this thesis is in CFs, from this point forwards we will, without loss of generality, assume we

are performing correlation rather than convolution. We emphasize that our analysis is equally

applicable to convolution operations.

A correlation operation is used to measure the similarity between a D-dimensional signal m

and a D-dimensional template h, which is shorter than m in each dimension. Correlation may
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be expressed as

g(x1, x2, ...xD) = m(x1, x2, ...xD)⊗ h(x1, x2, ...xD)

=
∑
l1

∑
l2

...
∑
lD

m(l1, l2, ...lD)h(l1 + x1, l2 + x2, ...lD + xD) (5.1)

where ⊗ denotes correlation. Note that this can also be written as

g(x1, x2, ...xD) = m(x1, x2, ...xD) ? h(−x1,−x2, ...− xD)

= F−1 {F (m(x1, x2, ...xD))�F∗ (h(x1, x2, ...xD))} (5.2)

where ? denotes convolution, � denotes element-wise multiplication, F and F−1 denote the

DFT and IDFT, respectively, and ∗ denotes complex conjugate. Therefore, correlations may be

efficiently implemented using multidimensional DFTs, using the FFT. This results in a large

speedup over a sliding window approach. However, it is not efficient when the size of h in the

dth dimension, Nh,d is considerably smaller than the size of m in the dth dimension, Nm,d. This

is because both h and m must be zero-padded to a size Nc,d ≥ Nh,d + Nm,d − 1 in the dth

dimension. Typically, it is efficient to use a Fourier transform that is a power of 2, so we would

typically pad both the signal and the template to the size

Nc,d = 2P (Nh,d+Nm,d−1,qd) (5.3)

in the dth dimension, where the function

P (a, q) = x+ q − 1, x = min(N) | 2x ≥ a (5.4)

returns the power of 2 q ≥ 1 steps greater than a. Here, N is the set of natural numbers

{1, 2, 3, ...}. For example, if a = 50, 2P (a,1) = 64 and 2P (a,2) = 128. Therefore, if Nh,d is

very small compared to Nm,d, it must be padded with a large number of zeros before the DFT is
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Table 5.1: Details of OLA and OLS
Cut Range Correlation Range Final Output Range

OLA [kdLd + 1, kdLd + Ld] [1, Nd] [kdLd + 1, kdLd +Nd]
OLS [kdLd + 1− (Nh,d − 1), kdLd + Ld] [Nh,d, Nd] [kdLd + 1, kdLd + Ld]

computed. This DFT is much larger than the original size of the template. This can be inefficient

from both a computational and memory perspective.

We refer to the above method as the conventional method. By contrast, the OLA and OLS

methods have been developed to reduce the computational burden of correlations (or to allow for

real-time processing of time-domain signals). The OLA and OLS methods are summarized in

Table 5.1 and described in the following sections. The index kd denotes the section number in

the dth dimension, and varies from 0 to KOLA,d − 1 or KOLS,d − 1 as appropriate. The cut range

refers to the indices of the input signal (in dimension d) that are processed, and the correlation

range specifies the indices of each output correlation that are assigned to the corresponding final

output range indices.

5.2.1 Overlap-Add

OLA is based on the concept of dividing the input signal m into small, non-overlapping sections,

and computing several correlations with the template h. These correlations are then carefully

overlapped and added together to form the final correlation output.

First, the FFT size Nd for dimension d must be chosen such that Nd > Nh,d. Typically, Nd is

a power of 2, and is set as

Nd = 2P (Nh,d,qd) (5.5)

(Note that selection of the parameters qd will be discussed later). Then, the length of each section

(in dimension d), which we refer to as the cut length, Ld, is determined as
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Ld = Nd + 1−Nh,d (5.6)

This means that sections of the signal measure L1× ...×Ld. Each section is zero padded to size

N1 × ...×Nd. Next, the number of sections in dimension d is computed as

KOLA,d =

⌈
Nm,d

Ld

⌉
(5.7)

This means that the total number of sections will be

K#
OLA =

D∏
d=1

KOLA,d (5.8)

For OLA, the output of the correlation for the kdth section in the dth dimension is assigned

to the output range [kdLd + 1, kdLd +Nd]. However, note that the output from the next iteration

kd+1 will overlap with the output from the iteration kd by Nd − Ld = Nh,d − 1 samples in the

dth dimension. These values are added together (hence the name overlap-add). This process is

repeated for each section until the entire correlation plane is computed.

5.2.2 Overlap-Save

OLS is similar to OLA, except the input signal m is divided into overlapping sections. Portions

of the resulting correlations are then concatenated to form the final correlation output. The FFT

size Nd and the cut length Ld are determined as in OLA. For OLS, however, each input section

overlaps with the previous section. To determine the required number of sections to process, we

find the value for when the iteration after the final iteration (kd = KOLS,d) has a final output start

index (see Table 5.1) greater than the maximum desired correlation index1, Nh,d +Nm,d− 1, i.e.

KOLS,dLd + 1 > Nh,d +Nm,d − 1 (5.9)

1Note that this corresponds to the output of the conventional correlation scheme. In this case, we compute the
full correlation plane, meaning we retain values for which the template only partially overlaps the signal. This is in
contrast to some techiniques that only retain values for fully overlapping correlations (see [60]).
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This equation can be solved such that the number of sections in the dth dimension for the OLS

method is

KOLS,d =

⌈
Nm,d +Nh,d − 2

Ld
+ ∆

⌉
(5.10)

where ∆ is a very small positive number� 1, whose purpose is to make the function round up

when the first term has no fractional component. This means that the total number of sections

will be

K#
OLS =

D∏
d=1

KOLS,d (5.11)

For OLS, only a portion of the output correlation for each section is mapped to the final output

(see Table 5.1). These outputs of consecutive correlations are concatenated to form the final

correlation output; no addition is necessary as there is no overlap.

5.3 Computational Comparison

In this section, we compare the conventional correlation approach to OLA and OLS from a

computational perspective. In this case, we count the number of complex multiplications required

by each algorithm. We present theoretical expressions for generalized D-dimensional signals.

We validate these expressions experimentally in Section 5.4.

We first introduce the function fM(N), which returns the number of complex multiplications

for an N point FFT. For example, for a radix-2 algorithm, fM(N) = N
2
log2N [42]. In this

chapter, we assume a radix-2 algorithm without a loss of generality. Optimized figures for non-

trivial multiplications for several FFT algorithms may be found in [62].
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5.3.1 Conventional

For the conventional approach, in 1D, 3 FFTs are required: one for each of the template, signal,

and the product of the two (inverse FFT, or IFFT). In addition, we must account for the element-

wise multiplication of the FFTs of both the template and the signal. Therefore, for 1D, the

number of complex multiplications is given by

Cconv,1(Nc,1) = 3fM(Nc,1) +Nc,1 (5.12)

In 2D, we must compute multiple FFTs in each dimension. To illustrate this, refer to Fig.

5.1. In this example, we compute the correlation of a signal (Fig. 5.1a) measuring Nm = 10×20

and a template (Fig. 5.1b) measuring Nh = 5 × 10. In this case, Nm,1 + Nh,1 − 1 = 14 and

Nm,2 + Nh,2 − 1 = 29. Using qd = 1, we get Nc,1 = 16 and Nc,2 = 32. Therefore, both the

signal and the template are padded to size 16× 32 (Fig. 5.1 c and d). The first step is to compute

Nc,2 FFTs of size Nc,1 for both the template and the signal (the 1D FFT of each column of the

padded arrays). Next, Nc,1 FFTs of size Nc,2 for both the template and the signal are taken (the

1D FFT of each row). Note that this method is not the most efficient way of computing 2D DFTs

(see Appendix D for more detailed discussion) but it will be used for the purposes of this work.

Next, the 2D DFT of the template and the 2D DFT of the signal are element-wise multiplied

together and the 2D IDFT is computed to generate the output correlation. This can be expressed

mathematically as

Cconv,2(Nc,1, Nc,2) = 3 [Nc,2fM(Nc,1) +Nc,1fM(Nc,2)] +Nc,1Nc,2 (5.13)

Similarly, for a 3D template and signal, the total number of complex multiplications is given

by
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(a) Signal (b) Template

(c) Padded Signal (d) Padded Template

Figure 5.1: Demonstration of 2D correlation using the conventional method. Both the signal and
the template must be padded to size Nc,1 ×Nc,2.

Cconv,3(Nc,1, Nc,2, Nc,3) = 3 [Nc,2Nc,3fM(Nc,1) +Nc,1Nc,3fM(Nc,2) +Nc,1Nc,2fM(Nc,3)]

+Nc,1Nc,2Nc,3 (5.14)

We may generalize these results for D dimensions,

Cconv,D(Nc,d) = 3

[
D∑
d=1

fM(Nc,d)

Nc,d

N#
c

]
+N#

c (5.15)

where N#
c is given by

N#
c =

D∏
d=1

Nc,d (5.16)
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5.3.2 OLA and OLS

The computational requirements for OLA and OLS are similar, except for the number of sections

in each dimension (KOLA,d vs. KOLS,d). Here we simply use the variable Kd with the under-

standing that it is substituted for either KOLA,d or KOLS,d. In our notation below, we use the

subscript OLX to denote either OLA or OLS.

In 1D, one FFT is required for the template and two FFTs are required for each section

(one FFT for the signal section and one IFFT for the inverse transform of the product of the

section DFT and the template DFT). In addition, we must account for each of the element-wise

multiplications of the template DFT and the signal section DFT. Therefore, for 1D, the number

of complex multiplications is given by

COLX,1(N1, K1) = (1 + 2K1)fM(N1) +K1N1 (5.17)

In 2D, we must compute multiple FFTs in each dimension for each section. The number of

FFTs required in one dimension is determined by the size of the section in the opposite dimen-

sion. Similarly, the multiplication of the two FFTs is now for a 2D array of values, for each

section. For 2D, the total number of complex multiplications is given by

COLX,2(N1, N2, K1, K2) = (1 + 2K1K2) [N2fM(N1) +N1fM(N2)] +K1K2N1N2 (5.18)

As in the conventional case, the method by which the 2D DFTs is computed here is not entirely

optimal (see Appendix D for details). However, we will use this method for the purposes of this

chapter. In a similar fashion, for 3D, the total number of complex multiplications is given by
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COLX,3(N1, N2, N3, K1, K2, K3) = (1 + 2K1K2K3) [N2N3fM(N1) +N1N3fM(N2)

+N1N2fM(N3)] +K1K2K3N1N2N3 (5.19)

We may generalize this result for D dimensions

COLX,d(Nd, Kd) =
(
1 + 2K#

) [ D∑
d=1

fM(Nd)

Nd

N#

]
+K#N# (5.20)

where K# is substituted by K#
OLA or K#

OLS , as appropriate, and N# is given by

N# =
D∏
d=1

Nd (5.21)

5.3.3 The OLS Curse of Dimensionality

In this section, we compare OLA to OLS, in terms of complexity. To further simplify expres-

sions, we rewrite Eq. 5.20 as

COLX,d(Nd, Kd) =
(
1 + 2K#

)
αF +K#αM (5.22)

where αF represents the contribution of the FFT operation to the total complexity,

αF =
D∑
d=1

fM(Nd)

Nd

N# (5.23)

and αM represents the contribution of the element-wise multiplications to the total complexity,

αM = N# (5.24)

If we are interested in comparing OLA to OLS, we may determine R, the ratio of the complexity
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of OLS to the complexity of OLA,

R =
COLS,d
COLA,d

=

(
1 + 2K#

OLS

)
αF +K#

OLSαM(
1 + 2K#

OLA

)
αF +K#

OLAαM
(5.25)

A likely scenario is to pre-compute the FFT of the template. This would apply to a scenario where

we are correlating many signals with the same template. If this is the case, we can simplify Eq.

5.25 to

R =
K#
OLS (2αF + αM)

K#
OLA (2αF + αM)

=
K#
OLS

K#
OLA

(5.26)

To understand this ratio, we must first understand how KOLS,d and KOLA,d relate to each

other. We assert that for Nh,d ≥ 2,

KOLS,d ≥ KOLA,d (5.27)

This is not guaranteed for when Nh,d = 1, but this case is rare and of limited usefulness (i.e.

templates are not just one sample long in practice). Therefore, R is always greater than or equal

to 1. More interestingly, though, R can oftentimes in practice take on much higher values. For

example, if KOLA,d = 4 and KOLS,d = 5, R = 1.25 for d = 1, 1.56 for d = 2, and 1.95 for

d = 3. Therefore, while many sources present OLA and OLS as relatively similar algorithms

from a computational complexity perspective [1, 42], we show here that OLS is more complex

than OLA, and becomes even more complex with increasing dimension. In Section 5.4, we

show a case for which R = 8 for d = 3. This results in a runtime that is longer than even the

conventional case.

The difference between OLA and OLS diminishes if we break the input signal into many

sections. However, it is often the case in image and video processing that the number of sections

in each dimension is lower, and, as a result, there is a significant gap between OLA and OLS. Poor

performance for OLS can occur when blindly choosing OLS parameters to perform a correlation.
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Note that the above expression for R only holds when OLA and OLS use the same value of Nd;

it does not hold when comparing OLA and OLS algorithms that use different values for Nd. It is

important to remember that careful selection of Nd (by choosing the proper qd) is important for

both algorithms. We will discuss parameter selection for these algorithms in Section 5.5.

5.4 Experimental Validation

To compare OLA and OLS to the conventional scheme, we implement all three algorithms in

1D, 2D, and 3D. To illustrate this, we used a desktop running MATLAB 2011a with Windows

7, an Intel Core i7-2600 CPU (3.4 GHz), and 16 GB of RAM. Our main goal is to show that the

expressions for complexity presented in Sections 5.3.1 and 5.3.2 can serve as an estimate for the

actual computational complexity of the implemented algorithms.

5.4.1 1D case

In general, an OLA or OLS scheme must segment the signal into sections which are then trans-

formed via FFT. In our MATLAB implementation, we avoided for loops to do this processing,

relying instead on vectorized operations. However, there were two exceptions; for the OLS case,

a for loop was used to partition the input signal, which was necessary because consecutive sec-

tions overlap. For the OLA case, a for loop was used to add overlapping segments together.

This represents a computational overhead that is not accounted for in the equations in the previ-

ous sections.

In Fig. 5.2a, we vary the template length for a fixed signal length Nm = 107, showing the

theoretical number of complex multiplications (Eq. 5.12 and 5.17). Note that OLA and OLS are

approximately the same here, becauseNm is very large and theKOLA−KOLS is small compared

to the magnitude of KOLA or KOLS . We show the results of our experimental runtime in Fig.

5.2b. For the conventional case, we use an FFT size that is one size larger than Nm + Nh − 1
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Figure 5.2: Theoretical and experimental results for each correlation algorithm for the 1D case.
For the plot on the left, note that the OLA curve is difficult to see because it is behind the OLS
curve.

(i.e., qd = 1). In the OLA and OLS case, we set Nd = 2P (Nh,d,qd), with qd = 2. Note that OLA

and OLS in general perform better than the conventional scheme. The experimental results in

general match the theoretical results, except for shorter template lengths, which corresponds to

a very short cut length and a large number of iterations (see Fig. 5.3). In this case, more time

is spent on algorithm overhead (i.e. segmenting the signal and joining the outputs). This is why

the experimental case does not match up with the theoretical case, which only accounts for the

number of complex multiplications needed for the correlation operations. For smaller values of

Nm, this effect is more pronounced, because the correlations necessary are less computationally

intensive than the algorithm overhead.

For our particular implementation, we observed that OLA greatly outperforms OLS. This is

due in part to two reasons: one, OLA requires less iterations and therefore less multiplications;

two, segmenting the input signal for OLA is in general easier to do efficiently, because there

is no overlap. When choosing an OLA or OLS algorithm for correlation, the specific system

parameters should be taken into account, and the overhead required for processing the signals

should not be overlooked. As the correlation computations become larger and more time inten-
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Figure 5.3: Number of iterations (KOLA and KOLS for OLA and OLS, respectively) and cut
length (Ld) for the 1D case. For the plot on the left, note that the OLA curve is difficult to see
because it is behind the OLS curve.

sive, overhead complexity in general is less important, and takes up a much smaller percentage

of the total algorithm runtime.

5.4.2 2D Case

To verify the 2D case, we use an image of size Nm = 1000× 1000, and sweep the template size

from Nh = 20 × 20 to 500 × 500, testing possible template sizes with a step size of 30. We

repeat our experiment 10 times and show the average results. We use qd = 1 for the conventional

case and qd = 2 for OLA and OLS. The theoretical number of complex multiplications for the

conventional, OLA, and OLS schemes are shown in Fig. 5.4. The experimental results are shown

in Fig. 5.5. We note that the experimental results match the theory well. We validate both the-

oretically and experimentally that OLS performs worse than the conventional scheme for larger

template sizes, whereas OLA performs approximately the same or better than the conventional

scheme for all template sizes. Note that this experiment does not necessarily represent the opti-

mal parameters for OLA and OLS, and is intended to validate our theoretical expressions rather

than show that OLA and OLS are better than the conventional scheme.
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Figure 5.4: Theoretical complexity for correlation algorithms using Nm = 1000 × 1000. Units
are number of complex multiplications.
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Figure 5.5: Experimental runtime for correlation algorithms using Nm = 1000×1000. Units are
seconds.
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5.4.3 3D Case

To verify the 3D case, we use a fixed video size of Nm = 240 × 320 × 300. We use a small

video because of memory constraints - the video must be small enough for the conventional

scheme to be able to compute the correlation without saturating the system memory, which would

affect computation speed. We set the template’s dimensions as Nh,1 = Nh,2 and vary Nh,3

independently. The template dimensions are varied from 20 to 140 with a step size of 20. We

repeat our experiment 10 times and average the results. We use qd = 1 for the conventional case

and qd = 2 for OLA and OLS. We compute the theoretical number of complex multiplications

for the conventional, OLA, and OLS schemes and show them in Fig. 5.6. The results of our

experiment are shown in Fig. 5.7. Note that our experimental results follow the theoretical

predictions well. For these figures, we use a piecewise linear color scaling to help highlight the

differences between the conventional scheme and OLA, because the two are very similar to each

other and very different from OLS.

We observe that the conventional scheme performs slightly better than expected. However,

OLA outperforms the conventional scheme for smaller template sizes. Note that while OLA

performs similarly to the conventional scheme, OLS performs much worse. Because OLA and

OLS are using the same value of qd, OLS requires more iterations than OLA, and the curse of

dimensionality is in effect (see Section 5.3.3). For example, a template of size Nh = 120 ×

120 × 120 requires 7.75 × 109 complex multiplications for OLA and 2.033 × 1010 complex

multiplications for OLS, which is 2.62 times as much. In our experiment, OLA took 19.31 s

and OLS took 46.45 s, which is 2.41 times longer. In this case, OLA requires (K1, K2, K3) =

(2, 3, 3) and OLS requires (K1, K2, K3) = (3, 4, 4). If we had precomputed the template DFT,

OLS would take 2.67 times longer for OLS compared to OLA (Eq. 5.26). In our case, the factor

is a little lower because our timing numbers include the time to take the DFT of the template. As

in the 2D case, it is important to realize the purpose of this section is to validate our theoretical

expressions. The parameters used for OLA and OLS here are not necessarily optimal. In the next
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Figure 5.6: Theoretical complexity for correlation algorithms using Nm = 240 × 320 × 300.
Units are number of complex multiplications.
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Figure 5.7: Experimental runtime for correlation algorithms using Nm = 240×320×300. Units
are seconds.

section, we turn our attention to parameter selection for OLA and OLS.

5.5 Parameter Selection

In this section, we discuss parameter selection for OLA and OLS. The primary parameter choice

is the FFT size,Nd, which in general is chosen to be a power of 2 greater thanNh,d. The choice of

Nd in turn affects the value of Ld and Kd, where Kd represents KOLA,d or KOLS,d as appropriate.

In [60], it is argued that there exists an optimal ratio, rd, for which complexity is a minimum,

rd =
Nd

Nh,d

(5.28)
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(note that we have used our own notation for algorithm parameters). It is noted that the number

of iterations, Kd, decreases and the complexity for each iteration increases with increasing r.

This tradeoff means that there is an optimal r̂d. However, we note that Eq. 15 and 17 in [60]

fail to account for both the FFT and IFFT needed to perform each correlation (instead, only one

is accounted for). In addition, [60] does not account for the element-wise multiplications of the

FFTs of the signal section and the template. We show that these element-wise multiplications

should not be ignored, as they account for a significant portion of the complex multiplications

for each correlation operation, particularly for lower values of Nd.

To illustrate this concept, we rewrite αF and αM (originally Eq. 5.23 and 5.24) in terms of

rd
2

αF =
D∑
d=1

fM(rdNh,d)

rdNh,d

r#N#
h (5.29)

αM = r#N#
h (5.30)

where

r# =
D∏
d=1

rd (5.31)

N#
h =

D∏
d=1

Nh,d (5.32)

We may also rewrite Eq. 5.6 as

Ld = Nh,d(rd − 1) + 1 (5.33)

2Note that in our expressions, we correct the forgotten terms in [60] and also generalize to the d-dimensional
case. The expressions in [60] are only for 1D. Furthermore, we do not normalize our expressions by the number of
output correlation values.
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Figure 5.8: Comparison of the magnitudes of the terms in Eq. 5.22.

Notice that both αF and αM increase as any rd increases. On the other hand, as rd increases,

Ld increases which causes KOLA,d (Eq. 5.7) and KOLS,d (Eq. 5.10) to decrease. This is the

fundamental tradeoff between number of iterations and complexity per iteration. As mentioned

previously, [60] did not include the term αM in their expression for computational complexity.

To illustrate how this term affects the computational complexity, we consider the cases for 1D,

2D, and 3D correlations. In the multidimensional case, we assume that Nd is the same for all d,

for simplicity. We plot αM/(αM +αF ) for different dimensions. This term represents the relative

size of αM to the sum of αM and αF , not accounting for the coefficients in Eq. 5.22. As can be

seen in Fig. 5.8, the αM term carries a significant weight for lower-dimensional signals as well

as schemes that use a smaller value of Nd. Therefore, it should be retained in any expression for

complexity. Next, we go through each case (1D, 2D, and 3D) and discuss parameter selection to

achieve optimal performance.

5.5.1 1D Case

Unfortunately, it is not exactly intuitive to optimize the correlation algorithm by tweaking the

values of r (for this and subsequent variables in this section, we drop the subscript d, as all

quantities are in 1D). If we sweep the template size (Nh) and hold the FFT size (N ) constant, we
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Figure 5.9: Theoretical computational complexity for OLA.

are in effect only changing L. A small template size will result in a large L and therefore a small

number of sections,K, which are always processed withN point FFTs. Therefore, for a fixedN ,

the best performance is always achieved for the smallest template size possible, as this minimizes

the number of iterations. The more interesting case is when N changes dynamically with Nh. In

this case, r does change, but it only takes on discrete values, as we require N to be a power of 2.

Therefore, we sweep the template length for a fixed sequence length for different values of q ≥ 1

using Eq. 5.5. The computational complexity for OLA for Nm = 105 is shown in Fig. 5.9a. A

similar result holds for OLS. Notice that using q = 1 results in poor performance, especially as

Nh approaches N (as this happens, the cut length L shrinks to 1 and the number of iterations K

approaches Nm for OLA and Nm + Nh − 1 for OLS. We point out that each q-curve is actually

a cut from a curve for which N is held constant (see Fig. 5.9b). By dynamically changing q as

a function of Nh, we are effectively switching from curve to curve. This is particularly obvious

in the figures for the curves for q = 1 and q = 2, but for q ≥ 3 the method is selecting values

of N greater than those shown in Fig. 5.9b. We observe that a value of q ≥ 2 is acceptable and

provides performance better than the conventional scheme; however a value of q = 3 or 4 tends

to perform the best for the template size ranges shown.
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The above discussion holds true for the particular example we used to illustrate the problem.

However, if the sequence length changes, then the optimal q will change. If q is too large, the FFT

size will approach the size of the FFT used for the conventional approach and we will effectively

no longer be doing OLA or OLS (as the signal will not be divided, but rather processed in one

section). We therefore vary the sequence length and template length simultaneously and report

both the best q and the corresponding speedup factor (compared to the conventional scheme) for

each case. In our evaluation we varied Nh from 20 to 1000 and varied Nm from 2000 to 105. We

present the results for OLA in Fig. 5.10. The results for OLS are visually identical and only vary

slightly (for this particular example), and therefore are not shown.

We find that the best value of q alternates between 3 and 4 for longer signals, while q = 2 is

often optimal for shorter signals. In general, we observe that q = 2 exhibits the same problem

as q = 1, in that the computational complexity rises significantly when Nh approaches a power

of 2 (this can be seen in Fig. 5.9). This effect is not as pronounced for q = 3 or q = 4. In

this experiment, compared to the conventional scheme, the maximum observed speedup factor

for both OLA and OLS was 5.59 and the average speedup factor was 2.39 for OLA and 2.36

for OLS. We noticed that there were several cases in which the best value of q for OLS actually

performed slightly worse than the conventional scheme, whereas the worst-case scenario for

OLA achieved identical performance to the conventional scheme.

5.5.2 Multidimensional Cases

For the 2D case, we consider square images and templates, for simplicity. We vary Nh,1 × Nh,2

from 20 × 20 to 500 × 500, and we vary Nm,1 × Nm,2 from 600 × 600 to 1500 × 1500. In this

case, we must select both N1 and N2 based on Nh,1 and Nh,2, respectively. We do so using Eq.

5.5, where now we have two parameters (q1 and q2) for which all possible combinations must

be considered (i.e., q1 may or may not be equal to q2). For the template and image size ranges

above, we report the best combination of q1 and q2 and the corresponding speedup factor for
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Figure 5.10: The best qd and corresponding speedup factor for OLA.

OLA (Fig. 5.11) and OLS (Fig. 5.12). Note that the best performance for larger templates is

typically achieved for qd values of 2 or 3, with smaller template sizes performing best, in general,

for qd values between 3 and 5.

We repeat this evaluation in 3D. Similar to the 2D case, we vary Nh,1 × Nh,2 × Nh,3 from

20 × 20 × 20 to 500 × 500 × 500, and we vary Nm,1 × Nm,2 × Nm,3 from 600 × 600 × 600

to 1500 × 1500 × 1500. In this case, we now report the best combination of q1, q2, and q3 and

the corresponding speedup factor for OLA (Fig. 5.13) and OLS (Fig. 5.14). Like the 2D case,

we mostly observe good performance for larger templates for qd values of 2 or 3, with smaller

templates performing better for qd values between 3 and 5.

Finally, we present the minimum, mean, and maximum speedup factors in Table 5.2. Note

that for consistency, the numbers for 1D represent the same template and signal size variations

as the 2D and 3D cases (Nh varied from from 20 to 500 and Nm varied from 600 to 1500). Both

OLA and OLS always share the same maximum speedup factor; however, OLS in some cases

(larger template sizes) performs worse than the conventional scheme. This effect is enhanced

for higher dimensions (recall the OLS curse of dimensionality, which still manifests itself to an

extent when choosing optimal algorithm parameters). Therefore, if OLS is used, care should be
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Table 5.2: Comparison of Speedup Factors for Different Dimensions
Min Mean Max

OLA, D = 1 1 1.43 3.41
OLA, D = 2 1 1.67 5.78
OLA, D = 3 1 1.90 9.40
OLS, D = 1 0.59 1.25 3.41
OLS, D = 2 0.33 1.34 5.78
OLS, D = 3 0.17 1.45 9.40

taken to avoid this situation to ensure the speedup factor is larger than 1. We also notice that OLA

always outperforms or performs the same as the conventional scheme. Finally, we notice that the

average and maximum speedup factors increases with dimension, which shows that OLA and

OLS in general are more beneficial for higher-dimensional correlations than lower-dimensional

correlations. To illustrate the benefit of OLA over OLS further, we show the speedup factor of

OLA relative to OLS for 2D and 3D in Fig. 5.15. These plots indicates how many times faster

OLA is than OLS. Note that for all template and signal sizes, OLA is either similar or better than

OLS. The gap between the two is more significant in higher dimensions.

Note that in all cases, there is no single answer regarding how to choose parameters for OLA

and OLS. We have simply illustrated a method by which these parameters may be chosen. For

signal and template sizes outside the ranges shown here, a similar analysis would have to be

conducted.

5.6 Memory Analysis for 1D and 2D Applications

We now turn our attention to the memory requirements for the conventional, OLA, and OLS

methods. In previous literature on OLA and OLS, memory requirements have typically not been

considered. However, with modern correlation methods being applied to high-dimensional data

(e.g. large images or videos), memory considerations are of importance. Because OLA and OLS

process these signals a section at a time, they have a tremendous advantage over the conventional
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Figure 5.11: Parameter selection for 2D OLA.
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Figure 5.12: Parameter selection for 2D OLS.
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Figure 5.13: Parameter selection for 3D OLA.
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Figure 5.14: Parameter selection for 3D OLS.
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Figure 5.15: Speedup factor of OLA compared to OLS. The plots indicate how many times faster
OLA is compared to OLS.

technique. We also highlight an important memory distinction between OLA and OLS, which we

first noted in [61]. In this section, we focus on 2D applications (we also discuss 1D applications,

but they are trivial). We investigate 3D applications in Section 5.7.

In this section and the next, we will present equations that represent the memory required

for different algorithms. In all cases, the memory indicates the number of elements that must be

stored. Each value must be multiplied accordingly by the data type, e.g., for double precision, the

memory (in bytes) would be 8E, where E is an expression for the number of memory elements.

For plots and tables, we have assumed double precision and have converted to common memory

units (1 kB = 1024 B and 1 MB = 1024 kB, etc.).

For all three methods, the most memory-intensive step of the algorithm is the multiplication

in the frequency domain. This is when two complex-valued Fourier transforms are element-wise

multiplied to result in a third complex valued result. We assume in-place multiplications. We

further assume that unneeded variables may be cleared from memory after they are processed

(e.g., the template h may be cleared from memory after we take its DFT).
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5.6.1 Conventional Method

For the conventional approach in 1D, we use an FFT size ofNc. Because there are two transforms

being multiplied, and because the data is complex, the maximum instantaneous memory usage

is 4Nc elements. In 2D, the size of the arrays is now determined by both Nc,1 and Nc,2 such that

the maximum instantaneous memory usage is 4Nc,1Nc,2.

5.6.2 OLA and OLS

Assuming Nd � Nc,d, OLA and OLS offer a significant memory advantage over the conven-

tional approach, especially for higher-dimensional data. OLA and OLS also allow the signal

to be processed gradually as it is collected (e.g., for real-time signal analysis), which is more

practical for a memory perspective. OLS, however, offers a distinct memory advantage over

OLA. This is because OLA requires that a portion of a section’s correlation output to be added to

subsequent correlation outputs. In our analysis, we divide the required memory into two groups:

1. Correlation memory (CM)

2. Storage memory (SM)

CM represents the memory needed for performing correlations for each signal section. SM is

the memory required to save correlation values in memory which must be added to subsequent

correlation outputs which have yet to be computed. Note that OLS only requires CM, whereas

OLA requires CM and SM.

For 1D, both OLA and OLS require 4N1 elements for each frequency domain multiplication

(CM). However, the OLA algorithm must also store Nh,1 − 1 (real) elements (SM) from the

previous correlation result to add to the output of the current correlation.

For 2D, both OLA and OLS require 4N1N2 memory elements for the CM, which comprises

the total required memory. In Fig. 5.16, we compare the CM for OLA and OLS to the con-

ventional scheme’s memory requirement. Here, the image size is 480 × 640 and we sweep the

template sizes from 10× 10 to 470× 630 pixels. Clearly, the CM required for OLA and OLS is
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Figure 5.16: Correlation memory for OLA/OLS compared to memory required for the conven-
tional scheme. The image size here is 480× 640 and units are MB.

considerably smaller than the conventional scheme, especially for smaller template sizes. This

illustrates the tremendous advantage OLA and OLS offer over the conventional scheme.

For OLA, determining the exact SM in 2D is significantly more complicated. A closed-form

expression for SM does not generalize well, and is non-trivial to determine. We use indices k1

and k2 to denote the section index (row and column, respectively). These indices vary from 0 to

K1− 1 and K2− 1, respectively (for notation simplicity, we drop the OLA subscript). The input

image is divided into a K1 × K2 grid of non-overlapping image segments measuring L1 × L2.

Note that the last elements in each row or column may be smaller. As shorthand, we will refer to

the image segment at row k1 and column k2 as the pair (k1, k2).

We have two logical choices on how to process the input image: we may scan in sections left

to right (row-by-row) or we may scan in sections top to bottom (column-by-column). In both

cases, the instantaneous SM is a function of time. To determine what this function is, it is helpful

to illustrate the regions of values that are computed for each iteration. We show the applicable

regions for one 2D correlation operation for a single image segment in Fig. 5.17. In this figure,

the correlation output is of size N1 × N2. The original input segment’s location coincides with

region 1, which is also L1 × L2. The values in this region are added to any overlapping regions
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Figure 5.17: Regions of memory for one output section correlation.

from previous iterations (if applicable), and then may be processed and discarded. For example,

for CFs, this region would be searched for peaks, which would constitute detections. The other

three regions (2, 3, and 4) generated by the section correlation have areas (equivalent to number

of elements) given by

A2 = (Nh,1 − 1)L2 (5.34)

A3 = (Nh,2 − 1)L1 (5.35)

A4 = (Nh,1 − 1)(Nh,2 − 1) (5.36)

Values in these regions must be stored for future iterations. Therefore, the instantaneous expres-

sion for SM will be a function of A2, A3, and A4. As we process the image, some of these stored

values are discarded (because they have been added to a subsequent iteration’s output correlation,

and are no longer needed) or are retained because they will still overlap subsequent iterations’

output correlations.

We now outline the method by which we determine the instantaneous SM for the first method

(row-by-row scanning). Our convention is to denote the SM needed for subsequent algorithm it-

erations. For example, the instantaneous SM for section iteration (0, 0) is the number of elements

that must be stored in memory after computing the first section correlation. Note that for every
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Figure 5.18: The required storage memory after the second iteration.

iteration, the elements in region 1 may be processed and then discarded. They are never needed

for subsequent iterations, as there is never any overlap in these regions in subsequent iterations.

However, these regions will still be shown in the following figures for clarity.

After the first section iteration (0, 0), we must store A2 + A3 + A4 elements in memory (see

Fig. 5.17). The next section iteration (0, 1) processes the section immediately adjacent to the

first section, as shown in Fig. 5.18. In this case, we need to store 2A2 + A3 + A4 elements in

memory. Following from this, the section iteration for (0, k2) (assuming k2 6= K2 − 1), requires

(k2 + 1)A2 + A3 + A4 elements.

The memory required for the last section in the first row is identical to the memory needed

for the last section in any row, provide that the row is not the last row in the image. Formally,

for any section iteration (k1, K2 − 1) where k1 6= K1 − 1, we must store K2A2 + A4 memory

elements (see Fig. 5.19). Notice that we do not need to store the elements from region 3, as they

will not overlap any subsequent iterations. As a special case, if K1 = 1 (i.e. the image has only

one row of sections), then the memory required for processing any section iteration in the first

row is A3 + A4, except for the last section iteration, where the required memory is 0.

Next, we demonstrate the memory usage for subsequent rows. In Fig. 5.20, we show the

memory required for section iteration (1, 0). Comparing this to the previous iteration (Fig. 5.19),

the memory that was used to store region 2 from the section iteration (0, 0) may now be used to

store region 2 from the section iteration (1, 0). However, more memory must be used to store

the values directly to the right of section (1, 0). From Fig. 5.20, note that region 3 from section
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Figure 5.19: The required storage memory after the last section in any row except the last row.

Figure 5.20: The required storage memory after the first section in the second row.

(1, 0) overlaps partially with region 2 from section (0, 1). In fact, this overlap can vary greatly

in appearance depending on the dimensions of regions 2 and 3. However, due to the geometry,

the non-overlapping region (part of region 3 and all of region 4) from section (1, 0) will always

measure L1 × (Nh,2 − 1) = A3. Therefore, section iteration (1, 0) requires K2A2 + A3 + A4

memory elements. In fact, this expression describes the memory requirement for every iteration

for the rest of the image, except the final section in a row (as described previously) or any section

in the final row (to be described next).

For the final row (forK1 > 1), section iteration (K1−1, k2) once again generates a section of

non-overlapping memory equivalent in size to A3 that must be stored for subsequent iterations.

However, region 2 for these sections does not need to be saved, as there are no more rows to be
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processed. Therefore, the instantaneous SM for section (K1 − 1, k2) is given by (K2 − (k2 +

1))A2 + A3 + A4 for when k2 6= K2 − 1. The final case is for section (K1 − 1, K2 − 1), which

requires no storage memory (as it is the last iteration).

We combine these expressions into a single expression for the instantaneous SM, given by

SMr×r(k1, k2) =


0 k1 = K1 − 1, k2 = K2 − 1

[K2(1− δ(k1)) + (k2 + 1)(δ(k1)− I1)]A2

+(1− I2)A3 + A4

else

(5.37)

where

I1 = δ(k1 −K1 + 1) (5.38)

I2 = δ(k2 −K2 + 1) (5.39)

and δ() represents the delta function. Note that I1 is equal to 1 for sections in the last row (k1 =

K1 − 1) and 0 otherwise, and that I2 is equal to 1 for sections in the last column (k2 = K2 − 1)

and 0 otherwise. In our notation, r × r denotes that we are processing the image row-by-row.

Later, we will denote column-by-column processing as c× c.

Assuming3 K1 > 2 and K2 > 2, the maximum SM occurs after computing a correlation

after the first row is processed (k1 > 0, k2 ≥ 0) for any k1 6= K1 − 1 and k2 6= K2 − 1.

(Recall that an example of this situation is shown in Fig. 5.20). The stated conditions simply

exclude the iteration corresponding to the final row and/or column, which require less memory

because the correlation values at these edges will not overlap with any subsequent correlations.
3For cases where K1 or K2 are less than 2, there are different expressions for the maximum memory required.

There are six cases: K1 = K2 = 1; K1 = K2 = 2; K1 = 1, K2 ≥ 2; K1 ≥ 2, K2 = 1; K1 = 2, K2 > 2; and
K1 > 2, K2 = 2. In the analysis presented here, we take these six cases into account. However, we do not present
the equations for each of these six cases for brevity. In most cases in practice, K1 and K2 will be larger than 2.
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The maximum instantaneous SM is given by

max(SMr×r) = K2A2 + A3 + A4

= K2(Nh,1 − 1)L2 + (Nh,2 − 1)L1 + (Nh,1 − 1)(Nh,2 − 1) (5.40)

If we process the image column-by-column instead, we can go through a similar procedure

to determine the instantaneous storage memory, which is given by

SMc×c(k1, k2) =


0 k1 = K1 − 1, k2 = K2 − 1

[K1(1− δ(k2)) + (k1 + 1)(δ(k2)− I2)]A3

+(1− I2)A2 + A4

else

(5.41)

Assuming K1 > 2 and K2 > 2, the maximum memory usage occurs after computing a correla-

tion after the first column is processed (k2 > 0, k1 ≥ 0) for any k1 6= K1 − 1 and k2 6= K2 − 1.

Again, these conditions simply exclude the iteration corresponding to the final row and/or col-

umn. In this case, the maximum storage memory is given by

max(SMc×c) = A2 +K1A3 + A4

= (Nh,1 − 1)L2 +K1(Nh,2 − 1)L1 + (Nh,1 − 1)(Nh,2 − 1) (5.42)

Note that the maximum total memory (TM) required for OLS is given by

TM2D
OLS = 4N1N2 (5.43)

and the maximum TM required for OLA is given by
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TM2D
OLA = 4N1N2 +max(SMr×r) (5.44)

or

TM2D
OLA = 4N1N2 +max(SMc×c) (5.45)

depending on whether row-by-row or column-by-column scanning is used.

5.6.2.1 Row-by-Row vs. Column-by-Column Scanning

To determine whether to use the row-by-row or column-by-column scanning, we can compare

an inequality of Eq. 5.40 and 5.42. We use the row-by-row scanning when

max(SMr×r) < max(SMc×c)

K2A2 + A3 + A4 < A2 +K1A3 + A4 (5.46)

(K2 − 1)A2 < (K1 − 1)A3

(K2 − 1)(Nh,1 − 1)L2 < (K1 − 1)(Nh,2 − 1)L1 (5.47)

and the column-by-column scanning otherwise. If both sides of the inequality in 5.47 are equal,

then either scanning may be used. In the simplest of cases, ifNh,1 = Nh,2 andL1 = L2, then row-

by-row scanning should be used when K2 < K1. By choosing the scanning carefully, memory

usage may be reduced.

To illustrate this, we compute the required memory for OLS and compare it to OLA using

both the row-by-row and column-by-column scanning methods. In addition, we show results for

a dynamic scheme which will choose row-by-row or column-by-column scanning based on the

OLA parameters. We assume a test image of size Nm,1 × Nm,2 and sweep the template sizes

from 10× 10 to (Nm,1 − 10)× (Nm,2 − 10).
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Figure 5.21: Required SM, shown in kB, for the three OLA schemes, using qd = 1. The image
size is 480× 640.

We use an FFT size according to Eq. 5.5, with qd = 1. We compute the additional memory

required by OLA to store correlation values for subsequent iterations (Eq. 5.40 and 5.42). In Fig.

5.21, we show the maximum SM for each scheme for a test image of size 480× 640. Notice that

as the template size gets larger, the memory requirements in general get larger. In both cases, the

dynamic scheme improves memory use by selecting the best scanning direction.

To see this more clearly, we compare OLA to OLS for this case. We compute the ratio of

the OLA SM to the OLS TM (TM2D
OLS). Recall that TM2D

OLS is the same as the CM required

by both algorithms. For example, a factor of 1 means that OLA requires 100% more memory
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Table 5.3: Largest Ratio of SM to CM (qd = 1.)
Resolution Row-by-Row Column-by-Column Dynamic

240× 320
Nh = 128× 16 Nh = 16× 256 Nh = 16× 16

OLS: 64 kB, OLA: 396.5 kB (5.2) OLS: 128 kB, OLA: 636.1 kB (4.0) OLS: 8 kB, OLA: 38 kB (3.8)

480× 640
Nh = 256× 16 Nh = 16× 512 Nh = 16× 16

OLS: 128 kB, OLA: 1433 kB (10.2) OLS: 256 kB, OLA: 2232.3 kB (7.7) OLS: 8 kB, OLA: 66.1 kB (7.3)

480× 720
Nh = 256× 16 Nh = 16× 512 Nh = 16× 16

OLS: 128 kB, OLA: 1592.4 kB (11.4) OLS: 256 kB, OLA: 2232.3 kB (7.7) OLS: 8 kB, OLA: 66.1 kB (7.3)

576× 720
Nh = 512× 16 Nh = 16× 512 Nh = 16× 16

OLS: 256 kB, OLA: 3190.4 kB (11.5) OLS: 256 kB, OLA: 2615.5 kB (9.2) OLS: 8 kB, OLA: 77.4 kB (8.7)

600× 800
Nh = 512× 16 Nh = 16× 512 Nh = 16× 16

OLS: 256 kB, OLA: 3509.8 kB (12.7) OLS: 256 kB, OLA: 2711.3 kB (9.6) OLS: 8 kB, OLA: 80.2 kB (9.0)

720× 1280
Nh = 512× 16 Nh = 16× 1024 Nh = 16× 16

OLS: 256 kB, OLA: 5426 kB (20.2) OLS: 512 kB, OLA: 6386.4 kB (11.5) OLS: 8 kB, OLA: 94.3 kB (10.8)

1080× 1920
Nh = 1024× 16 Nh = 16× 1024 Nh = 16× 16

OLS: 512 kB, OLA: 15977 kB (30.2) OLS: 512 kB, OLA: 9263.6 kB (17.1) OLS: 8 kB, OLA: 136.4 kB (16.1)

than OLS, and equivalently that SM is equal to CM. We show this ratio in Fig. 5.22for all three

methods. In this example, OLA requires a minimum of at least ~19% more memory than OLS

for each method. For the row-by-row scanning, tall and narrow templates require significantly

more SM than CM; for the column-by-column case, short and wide templates require more SM

than CM. The dynamic scheme results in the best performance, reducing the ratio of SM to CM

significantly for many of the templates of these sizes. In Table 5.3, we show the largest ratio

of SM to CM from Fig. 5.22 (in addition to several other common resolutions) and how much

memory is required in these cases. Note that the highest ratio for the dynamic scheme occurs at

very small template sizes, which require very little memory to begin with. Also note that the SM

to CM ratio increases with test image resolution. Finally, note that, in all cases, the highest SM

to CM ratio is the lowest for the dynamic scheme.

It is clear that OLA requires more memory than OLS. However, this drawback can be mini-

mized by paying careful attention to how sections are scanned while processing an input signal.

5.6.2.2 Effect of FFT Size on Memory

Next, we investigate the choice of Nd on memory requirements. A larger Nd will require more

CM and SM. For the conventional scheme, there is no benefit to using qd > 1, as it only hurts
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Figure 5.22: Factor by which OLA storage memory exceeds OLS memory for the three OLA
schemes, using qd = 1. The image size is 480× 640.
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Figure 5.23: The effects of varying qd and the template size. Here, the template is always a
square (Nh,1 = Nh,2) and the image size is 1000× 1000 pixels.

computational performance and increases memory. On the other hand, we demonstrated in Sec-

tion 5.5 that OLA and OLS often perform better for larger values of qd. There is a corresponding

memory tradeoff that comes with this improved computation. Choosing a larger value for qd will

increase FFT size and subsequently increase both CM and SM. In this section, we quantify this.

We illustrate the memory requirements for all three methods in Fig. 5.23. To simplify the

discussion, we restrict Nh,1 = Nh,2 and Nm,1 = Nm,2. Note that this makes the row-by-row and

column-by-column sequencing for OLA generate identical results. We use a test image of size

1000 × 1000, but results are similar for differently-sized images. We sweep the template size

from 10 × 10 to 500 × 500. For OLA and OLS, as the template size grows, N1 and N2 step up

according to qd. For qd = 3 and Nh,d > 256, the OLA and OLS schemes actually converge to the

conventional scheme’s memory usage, as they each contain only one section each. In this case,

OLA requires no storage memory. Otherwise, we note that OLA requires significantly more

memory than OLS.

Finally, we consider the case where N1and N2 are fixed and equal. We maintain the image

size at 1000× 1000 and vary the template sizes from 10× 10 to N1 ×N2 as shown in Fig. 5.24.

We note that small templates require a small amount of SM. As the templates get larger, the SM
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Figure 5.24: The effects of varying Nd and the template size. Here, the template is always a
square (Nh,1 = Nh,2) and the image size is 1000x1000 pixels.

increases. When Nh,d = Nd, OLA requires 3.18, 2.22, and 1.74 times as much memory as OLS

for Nd = 128, Nd = 256, and Nd = 512, respectively.

5.7 Memory Analysis for 3D Applications

We now discuss memory requirements in 3D. We use a video of size Nm,1 × Nm,2 × Nm,3 that

is to be processed by a template of size Nh,1 ×Nh,2 ×Nh,3. We consider two different methods

by which we can do this processing. In the first method, we perform OLA and OLS in all

three dimensions. In the second method, we perform OLA and OLS in only one dimension (the

temporal dimension, d = 3). This method is easier to implement.

Before beginning, we note that the conventional scheme features an instantaneous memory

of 4Nc,1Nc,2Nc,3. For desktop computers, this memory often exceeds the amount of available

RAM for even low resolutions videos and a few hundred frames. Therefore, OLA and OLS are

absolutely essential for processing videos.
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5.7.1 OLA and OLS in All Dimensions

First, we perform OLA and OLS in all three dimensions. We make some assumptions based on

the domain of the application. First, we assume that a group of frames must be read into memory.

We denote this group of frames as a video slice. To simplify our analysis, we divide the required

memory into four groups:

1. Video Slice Memory (VSM)

2. Correlation Memory (CM)

3. Current Slice Storage Memory (CSSM)

4. Future Slice Storage Memory (FSSM)

OLS only requires 1 and 2, whereas OLA requires 1-4. This is because partial correlation values

from each spatio-temporal segment must be stored both for adding to other correlation outputs

from the same video slice (3) and future video slices (4).

For OLS, we must load in N3frames at a time. The memory required to store these frames

(VSM) is

VSMOLS = Nm,1Nm,2N3 (5.48)

This video segment is then divided intoL1×L2×N3 blocks that are transformed viaN1×N2×N3

size FFTs. Therefore, the memory required for one correlation operation (CM) is

CMOLS = 4N1N2N3 = 4N# (5.49)

For OLA, we must load in L3 frames at a time. The memory required to store these frames

(VSM) is

VSMOLA = Nm,1Nm,2L3 (5.50)

Note that this serves as an advantage over OLS, which must store VSMOLS − VSMOLA =

Nm,1Nm,2(N3 − L3) = Nm,1Nm,2(Nh,3 − 1) more memory elements. The video slice segment
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is then divided into a grid of K1 ×K2 non-overlapping blocks of dimension L1 × L2 × L3 that

are transformed via N1 × N2 × N3 size FFTs prior to element-wise multiplication. Note that

CMOLA = CMOLS (see Eq. 5.49).

OLA must store a portion of the outputs for each iteration in memory, so that they may be

added to subsequent outputs. Determining the total storage memory is simplified by computing

the CSSM and the FSSM separately. Fig. 5.25 shows one segment of a 3D correlation output.

As in the 2D case, region 1 is the portion of the correlation output that coincides with the original

L1 × L2 × L3 input segment. Regions 2-8 are output correlation values that will be added to the

outputs of subsequent correlations. The volumes of the regions are given as follows,

V1 = L1L2L3 (5.51)

V2 = (Nh,1 − 1)L2L3 (5.52)

V3 = (Nh,2 − 1)L1L3 (5.53)

V4 = (Nh,1 − 1)(Nh,2 − 1)L3 (5.54)

V5 = L1L2(Nh,3 − 1) (5.55)

V6 = (Nh,1 − 1)(Nh,3 − 1)L2 (5.56)

V7 = (Nh,2 − 1)(Nh,3 − 1)L1 (5.57)

V8 = (Nh,1 − 1)(Nh,2 − 1)(Nh,3 − 1) (5.58)

By categorizing the type of SM, it is clear that elements from regions 2, 3, and 4 contribute

to the CSSM. These values consists of correlation outputs that are added to other correlation

outputs generated from cuts from the current video slice. Correlation elements from regions 5,

6, 7, and 8 contribute to the FSSM. These values consist of correlation outputs that are added to

other correlation outputs generated from cuts from one or more future video slices.
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(a) Dimensions of Regions (b) Expanded View

Figure 5.25: Regions associated with each 3D correlation result.

Determining the CSSM is a problem that is similar to the 2D memory case, with the exception

that the areas are now volumes. Recall that the indices k1 and k2 vary from 0 toK1−1 andK2−1,

respectively. Assuming row-by-row scanning, the instantaneous memory required for the CSSM

is, as a function of k1 and k2,

CSSMr×r(k1, k2) =


0 k1 = K1 − 1, k2 = K2 − 1

[K2(1− δ(k1)) + (k2 + 1)(δ(k1)− I1)]V2

+(1− I2)V3 + V4

else

(5.59)

Note that I1 and I2 were defined in Eq. 5.38 and 5.39, respectively. For column-by-column

scanning, we have

CSSMc×c(k1, k2) =


0 k1 = K1 − 1, k2 = K2 − 1

[K1(1− δ(k2)) + (k1 + 1)(δ(k2)− I2)]V3

+(1− I1)V2 + V4

else

(5.60)
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We next determine the FSSM. This problem is very similar to the CSSM problem. Note that

the FSSM regions are analogous to the CSSM regions, with region 6 being analogous to region

2, region 7 analogous to region 3, and region 8 analogous to region 4. In this case, values in

region 5 must also be stored (whereas values in region 1 were processed and discarded in the

CSSM case). Also, we may not discard any values in the last row or column, as all values from

these regions must be stored to be added to future correlation outputs. To be clear, we illustrate

the process for determining FSSM next.

Once again, we assume row-by-row scanning. Recall that we refer to the video segment at

row k1 and column k2 simply as the pair (k1, k2). Note that we do not include the index k3 here

as this process is the same for each video slice. Our convention is to denote the FSSM needed

for subsequent algorithm iterations. For example, the instantaneous FSSM for section iteration

(0, 0) is the number of elements that must be stored in FSSM after computing the correlation for

section (0, 0).

After the first section iteration (0, 0), the future slice storage memory must store V5 + V6 +

V7 + V8 elements in memory (refer to Fig. 5.25). The next section iteration (0, 1) process the

section immediately to the right of the first section (see Fig. 5.26). After this iteration, we must

store 2V5 + 2V6 + V7 + V8 memory elements in the future slice storage memory. Generalizing,

the amount of FSSM necessary for segment (0, k2) requires k2V5 + k2V6 + V7 + V8 memory

elements. Note that the last section in a row (see Fig. 5.27) requires K2V5 + K2V6 + V7 + V8

memory elements.

Next, we demonstrate FSSM usage for subsequent rows. In Fig. 5.20, we show the memory

required for section iteration (1, 0). Comparing this to the previous iteration (Fig. 5.27), the

memory that was used to store region 6 from the section iteration (0, 0) may now be used to

store region 6 from the section iteration (1, 0). From Fig. 5.28, note that region 7 from section

(1, 0) overlaps partially with region 6 from section (0, 1). In fact, this overlap can vary greatly

in appearance depending on the dimensions of regions 6 and 7. However, due to the geometry,

the non-overlapping region (part of region 7 and all of region 8) from section (1, 0) will always
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Figure 5.26: The required FSSM in the first row after the second iteration.

Figure 5.27: The required FSSM for the section in the first row and last column.

measure L1 × (Nh,2 − 1) × (Nh,3 − 1) = V7. Therefore, section iteration (1, 0) requires (K2 +

1)V5 +K2V6 + 2V7 +V8 memory elements. This expression is similar for the remaining sections

in the second row, with the exception that the V5 coefficient will always grow as new sections are

added to the FSSM.

Unlike the CSSM, the FSSM does not exhibit any special cases for the final row of sections.

This is because every value in regions 5-8 must be stored to be added to future outputs in the next

video slice. We combine the above expressions into a single expression for the instantaneous

memory, given by

FSSMr×r(k1,k2, 1) = (k1K2+k2+1)V5+[K2 + (k2 + 1−K2)δ(k1)]V6+(k1+1)V7+V8 (5.61)

For column-by-column scanning, FSSM is given by
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Figure 5.28: The required storage memory after the first section in the second row.

FSSMc×c(k1,k2, 1) = (k2K1+k1+1)V5+(k2+1)V6+[K1 + (k1 + 1−K1)δ(k2)]V7+V8 (5.62)

Note that the above expression only holds true for the first video slice. In this case, the FSSM

increases monotonically as we process the slice, reaching a maximum after the entire video slice

has been processed. For subsequent slices, the FSSM is constant, and equal to the maximum (and

final) value FSSMr×r(K1− 1, K2− 1, 1) = FSSMc×c(K1− 1, K2− 1, 1) = K1K2V5 +K2V6 +

K1V7 + V8. This is because the FSSM stores correlation values from the slice at k3− 1 when the

slice at k3 > 0 is being processed. This memory is gradually replaced by new correlation values

generated from the slice at k3 that are stored for processing the slice at k3 + 1.

Unlike the FSSM, the CSSM increases (but tends to stay approximately constant) while

processing any video slice. The CSSM periodically decreases at the end of each row and

goes to zero after the last row is processed. To illustrate these trends, we show an example

of the different memory components in Fig. 5.29. In this example, we have a video of size

Nm = 1080 × 1920 × 1000 that is correlated with a template of size Nh = 50 × 50 × 50. We
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Figure 5.29: The memory components involved in OLA and OLS correlations for a video of size
Nm = 1080× 1920× 1000 with a template of size Nh = 50× 50× 50. Note that this is the first
video slice, and as a result the FSSM starts at zero and increases as the slice is processed.

have used qd = 1 in all dimensions, which affects CM, CSSM, and FSSM. To illustrate the effect

of qd, we repeat this situation for values of 1, 2, and 3 for qd and show each type of memory in

Fig. 5.30.

The instantaneous TM required to process the video using OLS is given by

TM3D
OLS = VSMOLS + CMOLS (5.63)

and the instantaneous TM required to process the video using OLA is given by

TM3D
OLA = VSMOLA + CMOLA + CSSMr×r + FSSMr×r (5.64)

for row-by-row processing and

TM3D
OLA = VSMOLA + CMOLA + CSSMc×c + FSSMc×c (5.65)
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Figure 5.30: The effect of qd on CSSM, FSSM, and CM. Note that the x-axis has been normalized
because the number of iterations is different from case to case (less iterations with increasing qd).
Also note that the FSSM represents the behavior for the first video slice; after this, the FSSM is
constant.
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for column-by-column processing. As was pointed out previously, the VSM for OLS is greater

than the VSM for OLA, i.e. VSMOLS−VSMOLA = Nm,1Nm,2(N3−L3) = Nm,1Nm,2(Nh,3−1).

Therefore, we must ask ourselves if there is a situation in which the OLA TM is less than the

OLS TM.

To investigate this, we determine the maximum memory required for OLA (note thatmax(TM3D
OLS) =

TM3D
OLS because the OLS memory does not change as a function of iteration number). Note that

the maximum OLA CSSM (for row-by-row scanning) is given by

max(CSSMr×r) = K2V2 + V3 + V4 (5.66)

which is similar to the 2D case found in Eq. 5.40. Next, the maximum OLA FSSM is given by

max(FSSMr×r) = FSSMr×r(K1 − 1, K2 − 1) = K1K2V5 +K2V6 +K1V7 + V8 (5.67)

The maximum OLA TM is given by

max(TM3D
OLA) = VSMOLA + CMOLA +max(CSSMr×r) +max(FSSMr×r) (5.68)

If OLA were to be better than OLS from a memory perspective, the following condition would

hold
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max(TM3D
OLA) < max(TM3D

OLS)

VSMOLA + CMOLA +max(CSSMr×r) +max(FSSMr×r) < VSMOLS + CMOLS

VSMOLS − VSMOLA > max(FSSMr×r) +max(CSSMr×r)

Nm,1Nm,2(Nh,3 − 1) > max(FSSMr×r) +max(CSSMr×r) (5.69)

Let us examine just the first term of the right hand side. Note that the maximum FSSM memory

describes the entire correlation output that is stored for a future slice. Rather than manipulate

Eq. 5.67, we can simply look at the situation graphically in Fig. 5.31. Note that the maximum

FSSM memory may also be written as

max(FSSMr×r) = [(K1 − 1)L1 +N1] [(K2 − 1)L2 +N2] [Nh,3 − 1] (5.70)

Note that the following always holds true:

(K1 − 1)L1 +N1 ≥ Nm,1 (5.71)

(K2 − 1)L2 +N2 ≥ Nm,2 (5.72)

The equality holds true for Eq. 5.71 when Nh,1 = 1 and for Eq. 5.72 when Nh,2 = 1. Thus

max(FSSMr×r) is in most cases larger than the left hand side of Eq. 5.69. This is without even

including the term CSSM, which is always positive. Thus the condition in Eq. 5.69 is never true,

which means that, despite having a larger VSM, the maximum TM for OLS will always be less

than the maximum TM for OLA. This analysis also applies to column-by-column scanning.
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Figure 5.31: The maximum FSSM for OLA.

5.7.1.1 Effect of FFT Size on Memory

Next, we investigate the choice of Nd on memory requirements. A larger Nd will require more

CM, CSSM, and FSSM. In Fig. 5.32, we plot the effect of qd and template size on memory.

To visualize the memory requirements more easily, we restrict our discussion to only square

shaped template and videos (Nh,1 = Nh,2 = Nh,3 and Nm,1 = Nm,2 = Nm,3). We use a video

measuring 1000 × 1000 × 1000, although the temporal dimension does not matter as the video

is processed in slices. Results are similar for differently-sized videos. We sweep the template

size from 10 × 10 × 10 to 500 × 500 × 500. As the template size grows, N1, N2, and N3 step

up accordingly by powers of two. Note that for Nh,d > 25, the conventional scheme jumps to

256 GB. When qd = 3 and Nh,d > 256, the OLA and OLS schemes converge to the conventional

scheme’s memory usage (256 GB), as they each contain only one section each. In this case, VSM

is zero, and OLA requires no storage memory. This is not shown on the plot to allow for detail

of the other regions. We observe that OLA requires significantly more memory than OLS. This

detail should not be overlooked for memory-critical applications.
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Figure 5.32: The effects of varying qd and the template size. Here, the template is always a
square (Nh,1 = Nh,2 = Nh,3) and the video size is 1000× 1000× 1000 pixels.

Finally, we consider the case where N1, N2, and N3 are fixed and equal. We maintain the

video size at 1000 × 1000 × 1000. In this case, we vary the template sizes from 10 × 10 × 10

to N1 × N2 × N3. For small values of Nh,d, Ld is close in size to Nd. As Nh,d approaches Nd,

Ld approaches 1. This means that the number of sections, Kd, approaches the signal length,

Nm,d. We have plotted max(CSSMr×r), max(FSSMr×r), and CMOLA in Fig. 5.33 as a function

of template size. Note that because the signals are equal in size in each dimension, column-

by-column scanning is identical to row-by-row scanning. Recall that the maximum FSSM has a

spatial area given by [(K1 − 1)L1 +N1] [(K2 − 1)L2 +N2]. Note that the terms (Kd−1)Ld will

oscillate, which causes the FSSM to also oscillate. For example, for Nd = 512, and Nh,d = 179,

the section size will be Ld = 334 and the number of sections will be Kd = dNm,d/Lde = 3.

For a template just one sample larger, Nh,d = 180, the section size will be Ld = 333, which will

cause Kd = 4. In this case, we have 3 sections that have 333 samples (in each dimension) and

one section that has 1 sample. This causes the total size of the FSSM to spike from 1.85 GB to

3.05 GB. Therefore, this represents a very poor choice in parameters. Whenever the number of

sections increases, the result is a spike in the FSSM. We notice a similar spike in memory for the

CSSM. In this case, notice the term K2V2 = K2(Nh,1−1)L2L3 from Eq. 5.66. Since L2 = L3 in

this example, the effective termKdL
2
d will still spike whenKd steps up. However, the product L2

d
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Figure 5.33: The effect of varying Nd and Nh,d on CSSM, FSSM, and CM.

will approach 1 as Nh,d approaches Nd. At the same time, Kd will increase to Nm,d. Therefore,

the entire term will be equal to Nm,d when Nh,d = Nd. This decrease is made evident in the

behavior of the CSSM for this example, which is shown in Fig. 5.33.

In Fig. 5.34, we show the effects of Nh,d and Nd on TM3D
OLA and TM3D

OLS . In general, as the

templates get larger, the storage memory increases with some oscillation (due to the CSSM and

FSSM effects described above). We also notice that as Nd increases, the OLA to OLS memory

ratio increases. This is in contrast to the 2D case, where the opposite trend was noticed. In the

2D case, when Nh,d = Nd, OLA required 3.18, 2.22, and 1.74 times as much memory as OLS
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Figure 5.34: The effects of varying Nd and the template size. Here, the template is always a
square (Nh,1 = Nh,2 = Nh,3) and the video size is 1000 × 1000 × 1000 pixels. The numerical
analysis here confirms that OLA always requires more memory than OLS, despite requiring less
VSM.

for Nd = 128, Nd = 256, and Nd = 512, respectively. In the 3D case, OLA requires 1.25, 1.45,

and 1.63 times as much memory as OLS for Nd = 128, Nd = 256, and Nd = 512, respectively.

5.7.1.2 VSM Considerations

Because the OLA scheme requires an increase in memory from the initial state (in the form of

CSSM and/or FSSM), we consider an optimized implementation that would free up memory

allocated to the VSM as each section is processed. This freed up memory can be used to store

values for the CSSM and FSSM.

To illustrate this concept, refer to Fig. 5.35. The VSM measures Nm,1 ×Nm,2 ×B. Here, B

is the temporal length of the video slice, and is given by

B =


L3 k3 6= K3 − 1

Nm,3 −K3L3 + L3 k3 = K3 − 1

(5.73)

Note that the second half of this expression is the number of inclusive frames in the last video

slice between the start cut length index in Table 5.1 and the last frame of the video. The VSM

is divided into L1 × L2 × B blocks. Spatially, these blocks form a K1 × K2 grid. However,
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Figure 5.35: A visualization of the OLA VSM. Note that the bright blue, yellow, and green
sections represent zero padding that is necessary for the sections at the end of a row or column
to measure L1 × L2.
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the video dimension does not need to be a perfect multiple of the block size (i.e. Nm,1 is not

necessarily a multiple of L1, and Nm,2 is not necessarily a multiple of L2). In these cases, there

is a section of zeros appended to these blocks to make them of size L1×L2×L3 (this is typically

done along with the zero padding that makes the blocks of size N1 × N2 × N3 prior to FFT).

However, note that this zero padding is not part of the VSM, but rather is accounted for by the

CM. In the figure, this zero padding is shown in the bright blue, yellow, and green regions. The

bright blue regions of spatial area α1 are appended to the right of sections in the final column

(k2 = K2 − 1). The yellow regions of spatial area α2 are appended to the bottom of sections

in the final row (k1 = K1 − 1). The spatial area overlap of these regions for the final section

(k1 = K1 − 1, k2 = K2 − 1) is α3. These areas are given by

α1 = L1(K2L2 −Nm,2) (5.74)

α2 = L2(K1L1 −Nm,1) (5.75)

α3 = (K1L1 −Nm,1)(K2L2 −Nm,2) (5.76)

As we process each section of the VSM (light blue), we may remove it from the VSM.

Assuming row-by-row processing, we may express the spatial area of the rows above section

(k1, k2) by the expression k1K2A1 − k1α1. Here, A1 = L1L2. The first term counts the number

of sections (k1K2) in the above rows and the second term subtracts the zero padding at the end of

these rows, which is not part of the VSM. We may also express the spatial area of the current row

by the expression (k2 + 1)A1 − I2α1 − (k2 + 1)I1α2 + I1I2α3. The first term counts the number

of sections (k2 + 1) in the current row. The second terms subtracts the appropriate area for zero

padding if the current section is in the last column. The third term does the same thing for when

the current row is the last row. Finally, the last term re-adds in area α3 if the current section is in

both the final row and final column, as in this case the area α4 would have been subtracted twice.

Recall that the functions I1 and I2 are given in Eq. 5.38 and 5.39.
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We may combine these expressions to determine an expression for the instantaneous opti-

mized OLA VSM,

V̂SM
r×r
OLA(k1, k2) = VSMOLA −B (k1K2A1 − k1α1 + (k2 + 1)A1

−I2α1 − (k2 + 1)I1α2 + I1I2α3)

= VSMOLA −B ((k1K2 + k2 + 1)A1 − (k1 + I2)α1 − (k2 + 1)I1α2 + I1I2α3) (5.77)

Note that the initial VSM, prior to processing section (0, 0), is equal to VSMOLA. As with the

expressions for CSSM and FSSM, V̂SM
r×r
OLA(k1, k2) specifies the VSM after iteration (k1, k2) is

completed. We may do the same analysis for column-by-column processing. In that case, the

instantaneous optimized OLA VSM is given by

V̂SM
c×c
OLA(k1, k2) = VSMOLA −B (k2K1A1 − k2α2 + (k1 + 1)A1

−I1α2 − (k1 + 1)I2α1 + I1I2α3)

= VSMOLA −B ((k2K1 + k1 + 1)A1 − (k2 + I1)α2 − (k1 + 1)I2α1 + I1I2α3) (5.78)

We may implement a more memory-efficient form of OLA by clearing VSM memory that

can then be used for CSSM and FSSM. In this case, the instantaneous OLA TM is given by

T̂M3D
OLA = V̂SM

r×r
OLA + CMOLA + CSSMc×c + FSSMc×c (5.79)

for row-by-row processing and

T̂M3D
OLA = V̂SM

c×c
OLA + CMOLA + CSSMc×c + FSSMc×c (5.80)

for column-by-column processing.
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To illustrate this concept at work, we show the instantaneous memory for several examples

in Fig. 5.36 for both the first video slice and subsequent video slices. Here, the video size is

Nm = 1080 × 1920 × 1000. We show results for template sizes of Nh = 50 × 50 × 50 and

Nh = 200×200×200. Notice in the first case (Nh = 50×50×50), the optimized OLA scheme

outperforms OLS on the first video slice and has a lower average memory usage than OLS in

subsequent slices. However, once the template increases in size (Nh = 200 × 200 × 200), the

optimized OLA scheme does not outperform OLS. Also note that the effects of the CSSM are

more significant in this case.

It should be noted that a similar optimization for OLS could be implemented to minimize

the average memory required for VSM while processing a video slice. However, because of the

overlap between sections, managing this memory becomes considerably more challenging. For

example, we may have to wait until the second row is processed before clearing VSM from the

first row, because the second row may overlap considerably with the first row. For this reason, we

simply point out that the OLS presented thus far can be optimized further to minimize the average

memory use. The takeaway message, however, is that OLA will always requires more maximum

memory than OLS, which is of significant interest for developing correlation and convolution

operations on limited memory platforms.

We also emphasize that we have assumed that full frames must be read into VSM. More

efficiency can be gained (for both OLA and OLS) by only reading smaller portions of frames

into memory at a time (e.g., reading one spatio-temporal video cube into memory at a time).

5.7.1.3 Row-by-Row vs. Column-by-Column Scanning

We previously presented expressions for memory for both row-by-row and column-by-column

scanning. In each of these cases, the maximum FSSM does not change, and is given by Eq.

5.67 or Eq. 5.70. Because of this, we can choose row-by-row scanning or column-by-column

scanning based on the maximum CSSM (because the maximum FSSM does not change). This
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Figure 5.36: Demonstration of improved OLA scheme. Here, memory is saved by clearing
VSM. In all cases, the video is of size Nm = 1080 × 1920 × 1000. The template is of size
Nh = 50 × 50 × 50 for A) and B) and of size Nh = 200 × 200 × 200 for C) and D). In A) and
C), the first video slice is depicted, whereas subsequent slices are depicted in C) and D).
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problem, once again, is analogous to the 2D problem. To determine whether to use the row-by-

row or column-by-column scanning, we can compare the maximum CSSM for each method. We

use row-by-row scanning when

max(CSSMr×r) < max(CSSMc×c)

K2V2 + V3 + V4 < V2 +K1V3 + V4 (5.81)

(K2 − 1)V2 < (K1 − 1)V3

(K2 − 1)(Nh,1 − 1)L2L3 < (K1 − 1)(Nh,2 − 1)L1L3

(K2 − 1)(Nh,1 − 1)L2 < (K1 − 1)(Nh,2 − 1)L1 (5.82)

and the column-by-column scanning otherwise. If both sides of the inequality in 5.82 are equal,

then either scanning may be used. In the simplest of cases, ifNh,1 = Nh,2 andL1 = L2, then row-

by-row scanning should be used when K2 < K1. By choosing the scanning carefully, memory

usage may be reduced.

5.7.2 OLA and OLS in Temporal Dimension Only

In the previous section, we described the application of OLA and OLS in all three dimensions.

In this case, we perform OLA and OLS in only the temporal dimension, d = 3. This paradigm

may be used for when frames must be decompressed and read into memory in their entirety.

For OLS, N3 frames are read into memory, whereas only L3 frames are read into memory for

OLA. In both cases, however, the frames are transformed by a 3D DFT of size Nc,1×Nc,2×N3.

Note that we use Nc,d with qd = 1 for the first two dimensions, as conventional correlation is

performed in these dimensions. Therefore, the total memory elements required for the 3D DFT

of each video section is 2Nc,1Nc,2N3. This is the same memory required for the transformed

template. Therefore, the most memory intensive step (storing the DFTs of both the template and
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Figure 5.37: An evaluation of OLA and OLS in only the temporal dimension for videos. We
show the effects of varying Nd and the template size. Here, the template is always a square
(Nh,1 = Nh,2 = Nh,3) and the video size is 1000× 1000× 1000 pixels.

video prior to element-wise multiplication) gives a maximum instantaneous correlation memory

of 4Nc,1Nc,2N3.

For OLS, no values need to be stored for the next iteration. However, for OLA, we must store

Nc,1Nc,2(Nh,3 − 1) elements that represent correlation outputs that must be added to subsequent

correlation outputs. Therefore, OLS requires a TM of 4Nc,1Nc,2N3, whereas OLA requires a TM

of 4Nc,1Nc,2N3 +Nc,1Nc,2(Nh,3 − 1).

We repeat the evaluations from the previous section and present plots in Fig. 5.37. In the first

evaluation, we vary the template size with different values of qd. Note that OLA and OLS are

only performed in the temporal dimension. Comparing this to Fig. 5.32, we see that performing

OLA/OLS in all three dimensions offers a substantial reduction in memory required compared

to only applying OLA/OLS in the temporal dimension. For example, for a template of size

200 × 200 × 200 and qd = 2, 10.27 GB of memory is needed for OLA in all three dimensions,

whereas 70.22 GB is required for OLA in only the temporal direction. In the second evaluation,

we vary the template size while keeping the DFT size fixed. This result should be compared to

that in Fig. 5.34. Again, we see that it is beneficial to do OLA/OLS in all three dimensions,
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rather than just the temporal dimension. For example, for N = 256 and a template of size

150×150×150, OLA and OLS in all three dimensions require 3.10 GB and 2.41 GB respectively.

OLA and OLS in the temporal dimension only, on the other hand, require 36.66 GB and 32 GB,

respectively.

Clearly, it is best to perform OLA/OLS in all three dimensions, if possible. However, it may

be simpler to implement OLA/OLS in only one dimension, at the expense of requiring additional

memory.

5.8 Conclusions

In this chapter, we have investigated different methods of correlating a template with a signal of

interest. We have demonstrated that OLA and OLS offer significant computational and memory

savings over the conventional scheme. In addition, we have shown that there exists a tradeoff

between computation and memory for OLA and OLS. We summarize the contributions of this

chapter below.

• We presented generalized expressions (for any dimension) for computational complexity

for the conventional, OLA, and OLS schemes.

• We illustrated how OLA performs better than OLS computationally, and how this differ-

ence is amplified for higher dimensions.

• We experimentally validated our expressions for complexity to show that they are realistic

predictors of actual complexity.

• We illustrated how to select OLA and OLS parameters given a template and signal size.

• We illustrated how OLA requires more memory than OLS.

• We described how the scanning direction for OLA can be chosen dynamically to minimize

memory usage.

• We illustrated two methods by which OLA and OLS can be applied to videos. One applies
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OLA and OLS in all three dimensions, while the other applies OLA and OLS in only the

temporal dimension.

• We discussed how memory usage may be reduced by clearing the memory required to

store video frames (VSM).

• For both 2D and 3D, we showed how the template size and DFT size affect the amount of

required memory.

In the earlier chapters, we discussed computational aspects related to the design of CFs. By

investigating the DFT size used to design CFs, we determined a serious formulation issue with

existing CFs. We fixed this formulation issue by introducing ZACFs in Chapter 3 and the related

alternatives in Chapter 4. In this chapter, we discussed the computation and memory issues

related to applying the CF to test data. We have shown that we can greatly reduce the computation

and memory required by using OLA or OLS. While OLA outperforms OLS computationally,

OLS is more efficient from a memory perspective. In the next chapter, we investigate a method

to improve OLA to make it more memory efficient and even more computationally efficient. In

doing this, we intentionally introduce aliasing into our correlations. Therefore, we will borrow

ideas from ZACFs to design CFs that can work in the presence of aliasing.
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Chapter 6

Partial-Aliasing Correlation Filters

In the previous chapter, we introduced OLA and OLS, and showed that OLA is more efficient

computationally, because it in general needs to process fewer signal sections than OLS. How-

ever, OLS holds a significant memory advantage over OLA, because OLS does not need to store

the values of output correlations (from previous input sections) to add them to future correlation

outputs. It is this computation-memory tradeoff that inspired us to develop a block processing

algorithm that attempts to gain both the computational advantages of OLA and the memory ad-

vantages of OLS. To do this, we start with OLA and attempt to not only reduce the memory

requirements, but also to reduce the computational requirements. This is done by using smaller

DFTs. The tradeoff to reducing computation and memory is that we intentionally introduce alias-

ing into the output correlation plane. To counteract this aliasing, we introduce partial-aliasing

CFs (PACFs), which are designed to specifically minimize these aliasing effects. This allows us

to achieve a desired correlation output even in the presence of aliasing. For an example, refer to

Fig. 6.1. Note that a conventional CF output exhibits aliasing effects, whereas the PACF output

resembles the desired output.

In this chapter, we first introduce our new block filtering scheme and the computation and

memory advantages it carries. Then, we introduce a method by which to train CFs specifically

for this filtering scheme. Finally, we demonstrate results on various types of data.
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Figure 6.1: Example outputs from our block filtering scheme that intentionally introduces alias-
ing. A conventional CF will generate an aliased output, whereas the PACF output will generate
an output that closely resembles the desired output. In this example, the correct peak is located
at y = 62, x = 73 and is denoted by a blue arrow. The red arrow indicates a large aliased peak.
Note that this aliased peak is very small in the PACF output. In both plots, the correlation outputs
have been normalized to unity.

6.1 Partial-Aliasing OLA

Because of the computational advantages of OLA, it is a good starting point for developing

an even more efficient block filtering architecture, which we refer to as partial aliasing OLA

(PAOLA). PAOLA is designed to reduce the computational and memory requirements of OLA

while allowing aliasing. In a sense, PAOLA can be thought of as a generalized version of OLA.

Because PAOLA intentionally introduces aliasing into the output correlation, the question is

whether CFs can be designed to minimize this aliasing, given the knowledge of the PAOLA

architecture. The feasibility of this idea depends on our ability to design CFs that exhibit desired

sharp correlation peaks even in the presence of aliasing due to circular correlation. We will turn

our attention to filter design in Section 6.2.

We show the PAOLA architecture for 1D in Fig. 6.2a. Consider a signal xq of length Nx that

is to be correlated with a CF template h of length Nh. In this case, the input signal is divided

into K sections of length L (the last section is zero padded to size L if necessary). Each section
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is then padded by N − L zeros and correlated with the CF template using N -point DFTs. If

N < Nh + L − 1, the correlation result of each section is a circular correlation, and therefore

contains aliasing errors. Otherwise, there is no aliasing, and the scheme is equivalent to OLA.

The resulting outputs of each section are overlapped appropriately and added together (Fig. 6.2b),

generating output ya,q. In our notation, the reason for the subscripts on variables xq and ya,q will

become apparent later.

For OLA, we choose the DFT size N to be larger than the template size Nh. Typically, this

is done by choosing N to be a power of 2 greater than Nh as described in Eq. 5.5. Then, the

cut length L is determined as L = N + 1 − Nh and the number of sections K is determined

from the length of the signal Nm and the length of each section. Finally, the number of complex

multiplications required to compute the correlation is given by (2K + 1)fM(N) + KN . Recall

that an FFT of size N requires fM(N) = N
2
log2N complex multiplications for a radix-2 FFT.

[42].

Regardless of what we use for N , using OLA always will mean that N = L + Nh − 1. This

condition is imposed to ensure that each section correlation generates a linear correlation. For

PAOLA, however, we relax this requirement such that max(L,Nh) ≤ N < L + Nh − 1. Doing

so means that the correlation of each section with the template will be a circular correlation.

However, because N is smaller for PAOLA than it is for OLA, we save on computation and

memory.

To illustrate this idea, consider a signal of length Nm = 1000 and a template of length

Nh = 100. Using OLA, we can pick an FFT size N that is a power of 2 that is q “steps” above

Nh. This choice in N subsequently affects L and K. This is shown for several values of q in

Table 6.1. We also show the resulting number of multiplies required for each choice. Finally, we

show the number of storage elements required for the OLA storage memory. Recall that for 1D,

this is Nh − 1 elements, as this is the amount of overlap between sections.

We repeat the same process for PAOLA and show the numbers in Table 6.1. However, we

no longer have to choose L to avoid circular correlation. Therefore, we can make L larger than
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(a) Processing the signal one section at a time

(b) Combining outputs of each section

Figure 6.2: An illustration of the PAOLA architecture. Like OLA, each non-overlapping section
is processed one at a time
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Table 6.1: A Comparison of OLA and PAOLA
q N L K Number of Multiplications Storage Memory Elements

OLA

1 128 29 35 36,288 99
2 256 157 7 17,152 99
3 512 413 3 17,664 99
4 1024 925 2 27,648 99

PAOLA

1 128
50 20 20,928 78
100 10 10,688 28

2 256
200 5 12,544 56
250 4 10,240 6

3 512 500 2 12,544 12

the corresponding value of L used for OLA. Doing this decreases K, but increases the amount

of aliasing due to circular correlation. Note that L can be chosen as a factor of the signal length

Nm to avoid a partial section shorter than L at the end of the signal. Because L is larger, the

corresponding storage memory (now given by N − L) is smaller.1 Note that we can achieve

much greater efficiency (in terms of computation and memory) by leveraging PAOLA.

Another way to think about PAOLA vs. OLA is to consider a system that has a fixed sec-

tion length L, which means that the number of sections K for a given signal cannot change.

This makes the DFT size the primary factor determining computational complexity. In this case,

PAOLA can use a smaller DFT size than OLA to process each section, which would subse-

quently reduce computation and memory requirements. For more detail on the computational

and memory benefits of PAOLA, see Section 6.1.2.

6.1.1 PAOLA Example

In correlation pattern recognition, circular correlation effects are acceptable provided that the

correlation peak is preserved and is in the correct location. To demonstrate circular correlation

effects generated by the PAOLA architecture, we present an example. In this example, the signal

of interest is a 201-sample chirp signal. In this case, we train a CF using 10 aligned training

1Note that in the OLA case, Nh−1 = N −L. For PAOLA, this equality does not hold because it allows circular
correlation.
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signals. The CF is of length Nh = 201 and is trained using a DFT of size2 N = 201. Note that

we do not use a ZACF for this example.

We set the cut length as L = 201. In Fig. 6.3, we show the test signal, which contains a chirp

that starts at time index 25 and ends at time index 225. An ideal output would be a sharp peak

located at time index 225. We will process this test signal using both OLA (N = L+Nh − 1 =

401) and PAOLA (N = 201).

In Fig. 6.4a, we show the output of PAOLA processing the first section (k = 1, indices 1

to 201). Note that there is an erroneous peak at index 24 (recall that the filter should output a

peak at the end of the chirp instead of the beginning of the chirp). We show the output of OLA

processing the same section in Fig. 6.4b. Note that there is a correct peak at index 225. Note that

if we were take this output and add indices 202 to 401 to indices 1 to 200, we would get the same

thing as the PAOLA output in Fig. 6.4a. Therefore, cutting the chirp into two pieces (the first

half located in section k = 1 and the second half located in section k = 2) has created a false,

aliased peak at index 24. In Fig. 6.4c, we show the output of PAOLA processing section k = 2.

Due to the tail portion of the chirp, we get a small peak located at the correct location, 225. As

before, this output is an aliased version of the OLA output shown in Fig. 6.4d. However, in this

case, the aliased values are small and therefore do not affect the peak much. Finally, we show

the full output for PAOLA in Fig. 6.4e and the full output for OLA in Fig. 6.4f. Note that there

are two peaks for the PAOLA, with the larger of the two peaks being incorrect. For OLA, there

is only one peak at the correct location. This effect is just one of the possible outcomes that we

observe. If the first section that includes the chirp only includes a small part of the chirp, the

erroneous peak will be very low, and the true peak will be higher. In addition, this effect lessens

as the DFT size approaches Nd = 2Nh,d − 1.

To combat these effects, we develop an enhanced technique for CF design. We refer to this

class of filters as PACFs. After developing this scheme, we will test it against baseline filters to

2We will not always use efficient (i.e., a power of 2) DFT sizes in this example, for the purpose of showing the
continuum of performance as the DFT size is varied. In an actual application, the DFT size should be chosen such
that the algorithm of choice (e.g. FFT) is efficient.
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illustrate how performance changes with DFT size.

0 200 400 600 800 1000
−1.5

−1

−0.5

0

0.5

1

1.5
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Figure 6.3: Example signal with a chirp starting at time index 25 and ending at time index 225.

6.1.2 Computation and Memory for PAOLA in Higher Dimensions

Previously, we gave a brief explanation of the benefits of PAOLA in 1D. To be complete, we

present the details of the computational and memory requirements for PAOLA in higher dimen-

sions.

6.1.2.1 Computation

Like OLA and OLS, the number of computations are given by Eq. 5.20, reprinted here for

convenience,

COLX,d(Nd, Kd) =
(
1 + 2K#

) [ D∑
d=1

fM(Nd)

Nd

N#

]
+K#N# (6.1)

The number of sections in dimension d is given by

KPAOLA,d =

⌈
Nm,d

Ld

⌉
(6.2)

as in the OLA case. In Eq. 6.1, K# =
∏D

d=1 KPAOLA,d.
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(a) PAOLA, k = 1
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(b) OLA, k = 1
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(c) PAOLA, k = 2
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(d) OLA, k = 2

100 200 300 400 500 600 700 800 900 1000
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

sample

(e) PAOLA, Complete Output
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(f) OLA, Complete Output

Figure 6.4: Example of circular correlation effects in a PAOLA architecture. See text for details.
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In the previous chapter, we showed that OLA outperformed OLS from a computational per-

spective because it required processing fewer sections. For PAOLA, Ld and Nd are chosen such

that Nd < Ld +Nh,d− 1, whereas OLA requires that Nd = Ld +Nh,d− 1. PAOLA outperforms

OLA via two mechanisms. First, if Ld is held constant, Nd can be chosen to be smaller than the

DFT size used for OLA. Second, if Nd is held constant, the section length Ld for PAOLA can

be longer than that of OLA (this results in processing fewer sections). However, both of these

mechanisms cause increased aliasing due to circular correlation.

6.1.2.2 Memory

PAOLA also requires less memory than that of OLA. In 2D, recall that OLA requires both cor-

relation memory (CM) and storage memory (SM). If we fix Nd, OLA and PAOLA will require

the same CM. However, PAOLA allows us to use a larger Ld. This decreases the SM necessary.

To see this, refer to Fig. 6.5, where we compare the memory regions for OLA and PAOLA. Note

that the number of elements in regions 2, 3, and 4 for OLA are given in Eq. 5.34 through 5.36.

For PAOLA, these areas are given by

A2 = (N1 − L1)L2 (6.3)

A3 = (N2 − L2)L1 (6.4)

A4 = (N1 − L1)(N2 − L2) (6.5)

With these new expressions for A2, A3, and A4, the memory analysis for OLA performed in

Chapter 5 applies to PAOLA as well. Note that as L1 and L2 increase, the SM component of the

total memory decreases. At the limit, L1 = N1 and L2 = N2, and the SM is zero. Therefore,

PAOLA can offer a significant memory advantage over OLA. However, saving this memory

incurs the cost of increased aliasing.

In 6.6, we illustrate the difference between OLA and PAOLA in 3D. The number of elements
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(a) OLA (b) PAOLA

Figure 6.5: Regions of memory for one output section correlation in 2D, OLA vs. PAOLA. Note
that L1 and L2 are different for OLA and PAOLA.

in the volumes 2-8 for OLA are given in Eq. 5.52 through 5.58. For PAOLA, these volumes are

given by

V2 = (N1 − L1)L2L3 (6.6)

V3 = (N2 − L2)L1L3 (6.7)

V4 = (N1 − L1)(N2 − L2)L3 (6.8)

V5 = L1L2(N3 − L3) (6.9)

V6 = (N1 − L1)(N3 − L3)L2 (6.10)

V7 = (N2 − L2)(N3 − L3)L1 (6.11)

V8 = (N1 − L1)(N2 − L2)(N3 − L3) (6.12)

With these new expressions for V2 through V8, the memory analysis for OLA performed in Chap-

ter 5 applies to PAOLA as well. Recall that the memory requirement is a function of CM, video

slice memory (VSM), current slice storage memory (CSSM), and future slice storage memory
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(a) OLA (b) OLA (Expanded)

(c) PAOLA (d) PAOLA (Expanded)

Figure 6.6: Regions of memory for one output section correlation in 3D, OLA vs. PAOLA. Note
that L1, L2, and L3 are different for OLA and PAOLA.
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(FSSM). If Nd is fixed, the CM is the same for OLA and PAOLA. However, CSSM (which is

similar to SM in 2D) decreases. In addition, FSSM decreases because N3 − L3 < Nh,3 − 1 for

PAOLA. Finally, note that VSM for PAOLA is actually larger than it is for OLA. This is because

the cut length L3 is longer, so more frames must be read into memory at once. This is, of course,

a free parameter, and one can always use a smaller value of L3 to reduce VSM and simply reap

the benefits of PAOLA in the other dimensions instead. If we go to the limit (L1 = N1 , L2 = N2,

and L3 = N3), VSM is maximum (and equal to VSM for OLS), but CSSM and FSSM approach

zero.

For both the 2D and 3D cases, the amount of memory saved is dependent on how much

aliasing is considered acceptable. Therefore, we do not explicitly quote figures regarding the

amount of memory saved for PAOLA vs. OLA. It is important to note that PAOLA will, at best,

perform the same as OLS in terms of memory (when Ld = Nd). At worse, PAOLA requires the

same amount of memory as OLA (when Ld = Nd + 1−Nh,d).

6.2 PACF Formulation

Our formulation of PACFs was inspired by [59], which was aimed at the design of frequency-

selective filters (e.g., an ideal band-pass filter) for OLA architectures. The filter inputs in [59]

are modeled as sample realizations of white noise; in our application, the filter inputs are a set of

specific training signals and cannot be modeled as white noise. In addition, filter phase for CFs

is more important [63] than the filter magnitude, i.e., CFs are not frequency-selective filters. In

this section, we will first discuss the typical method used to train a CF. Then, we will explain

the PACF formulation. We use 1D notation to introduce the PACF formulation. We later explain

how it is extended to higher dimensions.

In this section, we use a slightly different notational convention. First, we define ḡ as the

N -point DFT of the time-reversed template h,
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ḡ = FN [flip(h)T 0TN−Nh ]T (6.13)

where the operation flip() flips the CF template3. Recall that FN and F−1
N denote the N × N

DFT and IDFT matrices, respectively. In addition, we will train a baseline CF using Q cropped

signals sq, q = 1, . . . , Q, of length Ns. For example, if we were to train a CF for the chirp found

in Fig. 6.3, each sq would be a Ns = 201 sample chirp. For PACF, we will train using Q signals

xq, q = 1, . . . , Q, of size Nx > Ns. Typically, xq would contain the embedded signal of interest,

sq. We use these longer training signals to account for interactions between each section when

block filtering the signal using PAOLA.

6.2.1 Baseline (MOSSE) Filter

Although we discussed the MOSSE filter and ZAMOSSE filter in Section 3.6.3 and 3.6.4, re-

spectively, we present it here for clarity using the notation that we will use for PACFs. The

MOSSE filter is designed to minimize an error function

e =

Q∑
q=1

∥∥S̄qḡ − ȳd,q
∥∥2

=

Q∑
q=1

(S̄qḡ − ȳd,q)
+(S̄qḡ − ȳd,q) (6.14)

where ȳd,q is the N point DFT of the desired correlation output. Here, S̄q = diag(FNsq) is an

N × N matrix with the N -point DFT of sq along its diagonal The product S̄qḡ represents the

correlation4 of sq with the CF template in the frequency domain. Minimizing Eq. 6.14 with

respect to ḡ yields

3This notation is in place to facilitate implementation. We find that flipping the template prior to DFT (as opposed
to taking the conjugate in the frequency domain) leads to a more straightforward implementation of PAOLA in tools
such as MATLAB.

4This is technically a circular correlation, as the first part of this thesis demonstrates. Zero-aliasing constraints
will ensure that the training process is free from circular correlation effects. In normal filtering methods that avoid
aliasing at test time (e.g. OLA) a filter trained with these constraints will perform better. However, in the PAOLA
case (which does allow aliasing), we found that the traditional MOSSE filter performs slightly better than its zero-
aliasing counterpart, so we use it as the baseline here.
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ḡ = P−1
ss psy (6.15)

where

Pss =

Q∑
q=1

S̄+
q S̄q (6.16)

psy =

Q∑
q=1

S̄+
q ȳd,q (6.17)

This expression is written in matrix-vector notation, but is equivalent to the expression in [21].

Note that this method does not make any assumptions about the structure of the correlation

architecture used to apply the filter (i.e. it does not account for the aliasing effects that are

present in PAOLA).

6.2.2 PACF

We now formulate the PACF, which takes into account the structure of PAOLA. First, we repre-

sent xφq as the φth section (L samples long) of training signal xq. In a similar fashion, yφa,q and

yφd,q represent the φth section of the actual output ya,q and the desired output yd,q, respectively,

and that both are N samples long. Note that yφa,q is not simply the correlation output of one input

section; rather, it is the final summed output of all overlapping sections (see Fig. 6.7). In the

frequency domain, we can formulate the corresponding error metric as follows.
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(a) N = L (b) L < N ≤ 2L

(c) N > 2L

Figure 6.7: Different situations based on the size of the DFT used for block correlation filtering.

e =

Q∑
q=1

K∑
φ=1

∥∥∥ȳφa,q − ȳφd,q

∥∥∥2

=

Q∑
q=1

K∑
φ=1

(ȳφa,q − ȳφd,q)
+(ȳφa,q − ȳφd,q) (6.18)

Note that ȳφa,q = FNyφa,q and ȳφd,q = FNyφd,q. In a similar fashion as before, X̄φ
q = diag(FNxφq )

is an N × N matrix with the N -point DFT of xφq along its diagonal. The frequency domain

representation of the (circular) correlation of section xφq with the CF is then given by X̄φ
q ḡ.

To solve for the optimal CF, we must derive an expression for the actual correlation output
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of section φ, ȳφa,q. First of all, the output correlation section ȳφa,q will, in general, be a function

of more than one input sections as illustrated in Fig. 6.7. Note that if N = L (Fig. 6.7a),

there is no overlap, and output section ȳφa,q only depends on input section x̄φq . In the second case

(L < N ≤ 2L) (Fig. 6.7b), the output section ȳφa,q is a function of the current section x̄φq as well

as both the previous section x̄φ−1
q and the next section x̄φ+1

q . For the last case (N > 2L) (Fig.

6.7c), the output section ȳφa,q is a function of the current section x̄φq as well as multiple previous

and multiple future sections.

Suppose we are processing section φ. Then, we define the amount of overlap for a future (i.e.

φ+ φ
′) or past (i.e. φ− φ′) section as

σ(φ
′
) = max(0, N − φ′

L) (6.19)

where φ′ is a positive integer. This is the same function for both future and past sections because

of symmetry. If the term N − φ′
L is negative, there is no overlap, and the function σ(φ

′
) returns

0. Next, we find the highest value of φ′ in which section φ± φ′ will overlap section φ,

φ
′

max = maxφ
′ | σ(φ

′
) > 0 (6.20)

Note that the last σ(φ
′
) samples of previous sections φ− φ′ overlap with the first σ(φ

′
) samples

of section φ. Similarly, the first σ(φ
′
) samples of future sections φ + φ

′ overlap with the last

σ(φ
′
) samples of section φ. To express this, we define the following N × N matrix ŘN

B , which

selects the first B elements of an N × 1 vector and places them at the end of the output vector,

ŘN
B =

 0(N−B)×B 0(N−B)×(N−B)

IB 0B×(N−B)

 (6.21)

For example, if B = 2 and N = 4, ŘN
B [ 1 2 3 4 ]T = [ 0 0 1 2 ]T . Similarly, we define

the followingN×N matrix R̂N
B , which selects the lastB elements of anN×1 vector and places
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them at the front of the output vector,

R̂N
B =

 0B×(N−B) IB

0(N−B)×(N−B) 0(N−B)×B

 (6.22)

For example, if B = 2 and N = 4, R̂N
B [ 1 2 3 4 ]T = [ 3 4 0 0 ]T . We may now write

the frequency domain expression for output section φ as follows.

ȳφa,q = X̄φ
q ḡ +

φ
′
max∑
φ′=1

FNR̂N
σ(φ′)F

−1
N X̄φ−φ′

q ḡ +

φ
′
max∑
φ′=1

FNŘN
σ(φ′)F

−1
N X̄φ+φ

′

q ḡ

=

X̄φ
q +

φ
′
max∑
φ′=1

FNR̂N
σ(φ′)F

−1
N X̄φ−φ′

q +

φ
′
max∑
φ′=1

FNŘN
σ(φ′)F

−1
N X̄φ+φ

′

q

 ḡ

= Jφq ḡ (6.23)

where

Jφq = X̄φ
q +

φ
′
max∑
φ′=1

(
FNR̂N

σ(φ′)F
−1
N X̄φ−φ′

q + FNŘN
σ(φ′)F

−1
N X̄φ+φ

′

q

)
(6.24)

Note that the above equation does not explicitly account for edge effects at the beginning and the

end of the complete input signal. In such cases we simply assume that Xφ±φ′
q is zero for sections

that do not exist (for example, the first section will not have any preceding sections overlapping

it, regardless of the choice of N , Nh, or L).

Next, we present another design option: the ability to constrain the length of the template.

Here, we use the zero-aliasing constraints developed in [41] to restrict the template length to

Nh ≤ Ns. Doing this will further reduce or eliminate aliasing effects. These constraints force

the last N −Nh elements of g (time domain) to be equal to zero. These constraints are given by
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A+ḡ = 0 (6.25)

where the matrix A+ (Eq. 3.4) is made up of the lastN−Nh rows of F−1
N . We now substitute Eq.

6.23 into the error metric e (Eq. 6.18) and minimize it with respect to ḡ, subject to the constraints

in Eq. 6.25,

min
ḡ

Q∑
q=1

K∑
φ=1

(Jφq ḡ − ȳφd,q)
+(Jφq ḡ − ȳφd,q)− ω

+A+ḡ

min
ḡ

Q∑
q=1

K∑
φ=1

(
ḡ+Jφ+

q Jφq ḡ − ḡ+Jφ+
q ȳφd,q − ȳφ+

d,qJ
φ
q ḡ + ȳφ+

d,q ȳ
φ
d,q

)
− ω+A+ḡ (6.26)

where ω is a Lagrange multiplier vector. If we differentiate this expression with respect to ḡ, and

set it to 0, we obtain

0 =

Q∑
q=1

K∑
φ=1

(
Jφ+
q Jφq ḡ − Jφ+

q ȳφd,q

)
−Aω

(
Q∑
q=1

K∑
φ=1

Jφ+
q Jφq

)
ḡ =

(
Q∑
q=1

K∑
φ=1

Jφ+
q ȳφd,q

)
+ Aω

Pjjḡ = pjy + Aω

ḡ = P−1
jj (pjy + Aω) (6.27)

where
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Pjj =

Q∑
q=1

K∑
φ=1

Jφ+
q Jφq (6.28)

pjy =

Q∑
q=1

K∑
φ=1

Jφ+
q ȳφd,q (6.29)

We assume that Pjj is invertible. We now substitute Eq. 6.27 into Eq. 6.25,

A+P−1
jj (pjy + Aω) = 0

A+P−1
jj Aω = −A+P−1

jj pjy

ω = −
(
A+P−1

jj A
)−1 (

A+P−1
jj pjy

)
(6.30)

Substituting this into Eq. 6.27, we obtain our final solution as

ḡ = P−1
jj pjy −P−1

jj A
(
A+P−1

jj A
)−1 (

A+P−1
jj pjy

)
(6.31)

We can then find the time domain CF template as

h = flip(S̃F−1
N ḡ) (6.32)

where the Nh × N matrix S̃ (defined below) selects the first Nh elements the N × 1 vector g,

(such that S̃g is an Nh × 1 vector),

S̃ =

[
INh 0Nh×N−Nh

]
(6.33)

Note that INh is an Nh ×Nh identity matrix.

Special cases. Note that there are several special cases of the result in Eq. 6.31. If Nh = N , then
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the constraints are not needed, and our solution is simply

ḡ = P−1
jj pjy (6.34)

If we set N = L = Nh, there will be no overlap between adjacent sections. In this case,

Jφq = X̄φ
q , and the expression is greatly reduced to

ḡ = P−1
xxpxy (6.35)

where

Pxx =

Q∑
q=1

K∑
φ=1

X̄φ+
q X̄φ

q (6.36)

is a diagonal matrix containing the sum of the power spectral densities of the signal sections xφq

along its diagonal, and

pxy =

Q∑
q=1

K∑
φ=1

X̄φ+
q FNyφd,q (6.37)

is a vector containing the cross-spectral density of the signal sections xφq and yφd,q.

However, if N = L 6= Nh, we still need to include the constraints, and the optimized filter is

given by

ḡ = P−1
xxpxy −P−1

xxA
(
A+P−1

xxA
)−1 (

A+P−1
xxpxy

)
(6.38)

6.2.3 Extending PACF to Higher Dimensions

We can extend PACF to higher dimensions. To illustrate this, we demonstrate how this works for

the 2D case.

In 2D, we need to account for the overlap of previous and future sections in both the hori-

226



zontal and vertical directions. Suppose we are processing section (φ1, φ2). Here, an index of 1

indicates the vertical dimension and an index of 2 indicates the horizontal direction. Then, we

define the amount of overlap for surrounding sections in both dimensions. We consider sections

above the current section (φ1 − φ
′
1), sections below the current section (φ1 + φ

′
1), sections to the

left of the current section (φ2−φ
′
2), and sections to the right of the current section (φ2 +φ

′
2). The

amount of overlap in each dimension is given by

σ1(φ
′

1) = max(0, N1 − φ
′

1L1) (6.39)

σ2(φ
′

2) = max(0, N2 − φ
′

2L2) (6.40)

where φ′
1 and φ′

2 are positive integers. As in the 1D case, the function for σ1(φ
′
1) is the same for

sections above and below the current section and the function for σ2(φ
′
2) is the same for sections

to the left and to the right of the current section (because of symmetry). As before, if N1 − φ
′
1L1

(or N2 − φ
′
2L2) is negative, there is no overlap, and the function σ1(φ

′
1) (or σ2(φ

′
2)) returns 0.

Next, we find the highest value of φ′
1 (φ′

2) in which section φ1±φ
′
1 (φ2±φ

′
2 ) will overlap section

φ1 (φ2),

φ
′

1,max = maxφ
′

1 | σ1(φ
′

1) > 0 (6.41)

φ
′

2,max = maxφ
′

2 | σ2(φ
′

2) > 0 (6.42)

Note that the last σ1(φ
′
1) rows of sections φ1 − φ

′
1 (above the current section) overlap with the

first σ1(φ
′
1) rows of section φ1, and the first σ1(φ

′
1) rows of sections φ1 + φ

′
1 (below the current

section) overlap with the last σ1(φ
′
1) rows of section φ1. Similarly, the last σ2(φ

′
2) columns of

sections φ2−φ
′
2 (to the left of the current section) overlap with the first σ2(φ

′
2) columns of section

φ2, and the first σ2(φ
′
2) columns of sections φ2 + φ

′
2 (to the right of the current section) overlap
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with the last σ2(φ
′
2) columns of section φ2. We illustrate the eight different cases of overlap

that can occur in 2D in Fig. 6.8. Note that in cases 1, 3, 6, and 8, the overlap is partial in both

dimensions.

Like the 1D case, we must now write expressions for the output of section (φ1, φ2), ȳφ1,φ2
a,q . In

this case, each output is a function of the current section (φ1, φ2) and the sections surrounding it.

In our notation, X̄a,b
q represents a diagonal matrix with the vectorized 2D DFT of section (a, b)

along the diagonal. We can write the actual output of each section as5

ȳφ1,φ2
a,q =

φ
′
1,max∑

φ
′
1=−φ′1,max

φ
′
2,max∑

φ
′
2=−φ′2,max

FN1×N2R̃
N1×N2

φ
′
1,φ

′
2

F−1
N1×N2

X̄φ1+φ
′
1,φ2+φ

′
2

q ḡ

= Jφ1,φ2
q ḡ (6.43)

where

Jφ1,φ2
q =

φ
′
1,max∑

φ
′
1=−φ′1,max

φ
′
2,max∑

φ
′
2=−φ′2,max

FN1×N2R̃
N1×N2

φ
′
1,φ

′
2

F−1
N1×N2

X̄φ1+φ
′
1,φ2+φ

′
2

q (6.44)

Note that FN1×N2is an N1N2 ×N1N2 matrix that computes the vectorized 2D DFT of an image

that is padded to sizeN1×N2 and then vectorized. Similarly, F−1
N1×N2

is anN1N2×N1N2 matrix

that computes the vectorized 2D IDFT of a vectorized 2D DFT. For clarity, note that

ḡ = FN1×N2g (6.45)

g = F−1
N1×N2

ḡ (6.46)

5Note that in this equation, we have abused notation slightly. While we have defined φ
′

1 and φ
′

2 as positive
integers, we include the sign in their value here to more succinctly express sections to the left of or above the current
section.
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(a) Case 1 (b) Case 2 (c) Case 3

(d) Case 4 (e) Case 5

(f) Case 6 (g) Case 7 (h) Case 8

Figure 6.8: Eight different cases for which sections can overlap in 2D PAOLA.
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Using previous notation, F−1
N1×N2

= ΩΦ, where Ω and Φ are given by Eq. 3.15 and 3.12. Also

note that

FN1×N2 = N1N2(F−1
N1×N2

)∗ (6.47)

Finally, we define the 2D selection matrix R̃N1×N2

φ
′
1,φ

′
2

. This is an N1N2 ×N1N2 matrix that selects

a portion of an adjacent section and shifts it so that it overlaps appropriately with the current

section. First, when φ′
1 = φ

′
2 = 0, R̃N1×N2

φ
′
1,φ

′
2

is equal to the N1N2×N1N2 identity matrix (IN1N2),

and the product FN1×N2R̃
N1×N2
0,0 F−1

N1×N2
X̄φ1,φ2
q ḡ simplifies to X̄φ1,φ2

q ḡ, which is the output cor-

relation of the current section. For surrounding sections (cases other than φ′
1 = φ

′
2 = 0), the

definition of R̃N1×N2

φ
′
1,φ

′
2

is significantly more complex, and is presented in Appendix E, along with

examples of how this selection matrix works.

At this point, the problem follows the same path as that in the 1D case. In this case, we

minimize

min
ḡ

Q∑
q=1

K1∑
φ1=1

K2∑
φ2=1

(Jφ1,φ2
q ḡ − ȳφ1,φ2

d,q )+(Jφ1,φ2
q ḡ − ȳφ1,φ2

d,q )− ω+A+ḡ (6.48)

where A is formed in a similar fashion for 2D constraints as outlined in Section 3.2. Note that

these constraints, however, may be slightly different from the zero-aliasing constraints if we are

building a template that is smaller than the object of interest. After solving this optimization

problem, the 2D PACF is given by the expression in Eq. 6.31 for overlap cases with constraints,

Eq. 6.34 for overlap cases with no constraints (N1 = Nh,1 and N2 = Nh,2), Eq. 6.35 for when

there is no overlap and no constraints (N1 = L1 = Nh,1 and N2 = L2 = Nh,2), and Eq. 6.38 for

no overlap cases with constraints (N1 = L1 6= Nh,1 and N2 = L2 6= Nh,2). In these expressions,

Pjj , pjy, Pxx, and pxy are given by
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Pjj =

Q∑
q=1

K1∑
φ1=1

K2∑
φ2=1

Jφ1,φ2+
q Jφ1,φ2

q (6.49)

pjy =

Q∑
q=1

K1∑
φ1=1

K2∑
φ2=1

Jφ1,φ2+
q ȳφ1,φ2

d,q (6.50)

Pxx =

Q∑
q=1

K1∑
φ1=1

K2∑
φ2=1

X̄φ1,φ2+
q X̄φ1,φ2

q (6.51)

pxy =

Q∑
q=1

K1∑
φ1=1

K2∑
φ2=1

X̄φ1,φ2+
q FN1×N2y

φ
d,q (6.52)

6.3 Experiments

To demonstrate PACFs, we conduct a variety of experiments on 1D and 2D synthetic data.

6.3.1 1D Chirp Detection

First, we demonstrate PACFs in 1D. We generate a 1D dataset of chirp signals. We consider nine

chirp signals:

• LC1: Linear chirp, 0 to 30 Hz;

• LC2: Linear chirp, 0 to 40 Hz;

• LC3: Linear chirp, 0 to 50 Hz;

• QC1: Quadratic chirp, 0 to 30 Hz;

• QC2: Quadratic chirp, 0 to 40 Hz;

• QC3: Quadratic chirp, 0 to 50 Hz;

• CC1: Concave chirp, 0 to 30 Hz;

• CC2: Concave chirp, 0 to 40 Hz;

• CC3: Concave chirp, 0 to 50 Hz.
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(a) LC1 (b) LC2 (c) LC3

(d) QC1 (e) QC2 (f) QC3

(g) CC1 (h) CC2 (i) CC3

Figure 6.9: Spectrograms of chirps in the nine class chirp dataset.

These chirp signals are all sampled at a sampling rate of Fs = 100 Hz and are 2.01 seconds in

duration (Ns = 201 samples each). Spectrograms of each chirp are shown in Fig. 6.9.

For each class, we train the PACF using Q = 10 training signals xq of length Nx = 1000

(10 seconds). Each of the training signals contains a single, randomly delayed chirp (such that

the chirp is fully contained within the Nx samples) with additive white Gaussian noise (AWGN)

of zero mean and variance 0.0225 (signal to noise ratio, SNR ~ 13.7 dB). We train the MOSSE

filter from a second set of aligned training signals sq (of length Ns) which are the cropped and
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aligned chirps extracted from the signals xq.

We generate P = 500 testing signals (of lengthNx) for each class (4500 test signals total) in a

similar fashion to the training set, except with AWGN of variance 0.225 (SNR ~ 3.7 dB). We then

apply the CFs to the test signals using the PAOLA architecture. We sweep the DFT size and fix

the cut length at L = Ns. For the PACF and MOSSE filters6 we use a template length Nh = Ns.

However, the power of the PACF formulation includes the ability to change the template size,

i.e. we can solve for a template such that Nh < Ns. Therefore, we try two methods. First, we set

Nh = N + 1 −Ns, denoted PACF v1; second, we set Nh = min(Ns, 2(N + 1 −Ns)), denoted

PACF v2. PACF v1 corresponds to no aliasing, but the template is considerably smaller than the

size of the chirps for small values of N . PACF v2 allows some aliasing by using a template that

is approximately two times as long as PACF v1.

We generate ROC curves for each class by varying the threshold for detection. For each

threshold, a correct detection must be of the correct class and location (within ±5 samples of

a ground truth). Otherwise, it is a false alarm. To obtain a single score for the recognition

performance, we integrate the ROC curve from 0 to 1 false alarms per second (FA/s), denoting

this quantity as P1. We repeat the above experiment 20 times and then average the results over

all experiments and filters. Our results are shown in Fig. 6.10, which also shows the time

(experimental) needed to compute a correlation at a given N using PAOLA.

Note that the PACF method outperforms the MOSSE filter when aliasing due to circular

correlation is significant (lower values of N ). As N increases (and aliasing decreases), the two

methods converge to perfect performance in terms of chirp detection. Also note that, for small

values of N , PACF v1 and PACF v2 perform poorly (due to using a very small template size).

However, as the template size gets larger (with increasing N ), performance exceeds that of the

standard PACF method that uses Nh = Ns.

Note that PACF, PACF v1, and PACF v2 offer three examples of the design space of PACFs.

One one end of the spectrum, we have PACF, which uses a large template size (equal in size to the

6The MOSSE does not use any constraints and is simply cropped to this length.
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Figure 6.10: Performance score on the 1D chirp dataset, for the PACF and MOSSE filters, as a
function of N , the DFT size. Note that the best possible score is 1. The timing curve shows the
95% confidence intervals of our computational evaluation.

training chirps, Nh = Ns) and features the most aliasing due to circular correlation. On the other

end of the spectrum, we have PACF v1, which uses a smaller template size which forces circular

correlation to zero. In the middle, we have PACF v2, which allows some aliasing by choosing a

template size between PACF v1 and PACF. Although we have not proven that PACF v2 uses the

best possible choice of parameters, we have shown that this method, which is a balance between

PACF and PACF v1, has led to superior detection performance for most DFT sizes. Furthermore,

to the best of our knowledge, this is the first time that a CF has been trained such that is shorter

than the training signal size. This type of template design was never possible in the frequency

domain until we introduced zero-aliasing constraints in [41].

This example also illustrates a key benefit of PACFs. Assuming L is fixed, we could useN =

401 to completely avoid aliasing. This is, however, a prime number and inefficient; therefore,

we would typically choose a larger N (likely N = 512). With PACFs, however, we could

use N = 256 and achieve a recognition score of P1 = 0.9981 using PACF v2. According to

our experiments, this would be 1.56 times faster than using a N = 512, and would be more

memory efficient as well. These savings are even more important for 2D and 3D applications.

This underscores the primary motivation of PACFs - to reduce the DFT size required to compute

correlations.
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Figure 6.11: Example performance on a test signal using PAOLA (N = 256).
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We show correlation outputs on test signals in Fig. 6.11. In this case, we show an input test

signal with chirp QC2 (quadratic chirp, 0-40 Hz). The red box denotes the location of the chirp.

We show normalized correlation outputs for MOSSE, PACF, PACF v1, and PACF v2. Note that

the desired output is a peak at t = 709. The MOSSE output features severe aliasing effects,

including a larger (aliased) peak at t = 453. The PACF reduces these effects, but PACF v1 and

PACF v2 (which use Nh = 56 and Nh = 112, respectively) nearly eliminate them, leading to the

best performance.

6.3.2 2D Shape Detection

In this experiment, we verify the performance of PACF in 2D. We generate ten different shapes

which serve as our classes, and show these in Fig. 6.12. These shapes are all Ns,1 × Ns,2 =

16× 16 pixels. We choose this smaller size for computational reasons (the matrix Pjj is of size

N1N2 ×N1N2).

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j)

Figure 6.12: Classes for 2D PACF verification experiments.

We model the 2D experiment after the 1D chirp experiment. Here, we build Q = 10 training

images xq per class using Nx,1 × Nx,2 = 80 × 80. We randomly shift the target such that it is

completely contained within each 80 × 80 pixel image. We then use AWGN of zero mean and

variance 0.0225. We train the PACF using xq and the MOSSE filter using a second set of aligned

training images sq (of size Ns,1 × Ns,2) which are the cropped and aligned symbols extracted

from xq.
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For testing the filters, we set the PAOLA section size at L1×L2 = 16× 16 and we sweep the

DFT size N1 ×N2 from 16× 16 to 32× 32. We generate P = 150 test images per class and use

AWGN of zero mean and variance 0.225. For comparison, we show a training and testing image

in Fig. 6.13.
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(b) Test Image

Figure 6.13: Training and testing image examples for the 2D PACF example.

As in the 1D case we use a template size of Nh,1 × Nh,2 = Ns,1 × Ns,2 for the MOSSE

and PACF filters. However, the power of the PACF formulation includes the ability to change the

template size. Once again, we implement PACF v1 (Nh,1×Nh,2 = N1 +1−Ns,1×N2 +1−Ns,2)

and PACF v2 (Nh,1×Nh,2 = min(Ns,1, 2(N1 +1−Ns,1))×min(Ns,2, 2(N2 +1−Ns,2))). Recall

that PACF v2 allows some aliasing but PACF v1 allows no aliasing.

We generate ROC curves for each class by varying the threshold for detection. For each

threshold, a correct detection must be of the correct class and location (within ±5 samples in

each dimension of a ground truth). Otherwise, it is a false alarm. To obtain a single score for the

recognition performance, we integrate the ROC curve from 0 to 1 false alarms per image (FA/i),

denoting this quantity as P1. We repeat the above experiment 8 times and then average the results

over all experiments and filters. Our results are shown in Fig. 6.14.

In the 2D case, we note that the PACF once again outperforms the MOSSE filter. However,
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Figure 6.14: Performance score on the 2D shape dataset, for the PACF and MOSSE filters, as a
function of N , the DFT size. Note that the best possible score is 1.

we find that PACF v1 in the case does not perform well, which indicates that the advantage of

training templates smaller than the target in 2D is diminished compared to the 1D case. For

PACF v2, we achieve slightly better performance than PACF for DFT sizes greater than or equal

to 20 × 20. However, there is not a noticeable improvement like what was observed in the 1D

case.

We next turn our attention to a few variations of PACF. First, we note that training a PACF in

2D is computationally complex. Most of the complexity is in forming matrix Pjj . This matrix

is a function of Jφ1,φ2
q (Eq. 6.44), which is computed for every section in the training image.

For this experiment, this is 25 sections per training image. Because iterating over every section

is time consuming, we instead train a PACF using only sections that contain the target. This is

usually four sections per training image. Therefore, we can greatly reduce the training time. To

see the effect this has on the filter performance, we repeat the previous experiment 6 times and

average the results for the MOSSE, PACF, and PACF lite, where PACF lite denotes the reduced

training PACF. The results are shown in Fig. 6.15. Note that by removing sections that do not

contain the target, we reduce performance slightly, but PACF lite still outperforms MOSSE. We

speculate that training over the entire image adds some noise tolerance to the PACF filter, which

accounts for the gap between PACF and PACF lite. Indeed, we generally noticed that PACF
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Figure 6.15: Performance score on the 2D shape dataset, for the PACF and MOSSE filters, as a
function of N , the DFT size. Note that the best possible score is 1.

exhibited broader peaks than PACF lite, which is typically true of filters that are designed to be

more noise tolerant.

We investigate the effect of training set size for both MOSSE and PACF. We repeat the previ-

ous experiment 6 times, except this time we use Q = 10, Q = 35, and Q = 100 training images.

We present the results in Fig. 6.16. Note that the biggest jump in performance is found going

from 10 to 35 training images. PACF especially benefits from more training images for smaller

values of N , when aliasing is greatest.

Finally, we present example correlation outputs for both MOSSE and PACF in Fig. 6.17.

These outputs illustrate several ways in which PACF leads to better performance. First, in Fig.

6.17a and b, the target is located at y = 62, x = 73. In both cases, the highest peak is located

at the correct location. In the MOSSE case, there is significant aliasing present, including an

aliased peak. In the PACF case, however, the aliasing is greatly reduced, leading to a single

peak. Note that this is one reason why PACF outperforms MOSSE when using common metrics

such as PCE or PSR. In Fig. 6.17c and d, the the target is located at y = 58, x = 57. In this

case, the MOSSE filter exhibits severe aliasing, and the highest peak is not at the correct location.

The PACF, on the other hand, features a peak in the correct location and low sidelobes around it.

Finally, in Fig. 6.17e and f, we show a situation in which PACF is unable to completely suppress
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Figure 6.16: Performance score on the 2D shape dataset, for the PACF and MOSSE filters, as a
function of N , the DFT size. Note that the best possible score is 1.

the aliasing. In this example, the target is located at y = 72, x = 65. In the MOSSE case, the

aliased peak is larger than the authentic peak. However, for the PACF case, the correct peak is

larger than the aliased peak. Therefore, we see that PACF can outperform MOSSE even if it does

not completely eliminate aliasing.

6.4 Conclusions

In this chapter, we have demonstrated, for the first time, a method to train CFs for a block filtering

architecture that intentionally allows aliasing. This signifies a departure from the conventional

way of thinking about how CFs should be trained. We have shown that CFs trained in this manner

can still perform well, despite operating in the presence of aliasing. We summarize below the

contributions in this chapter.

• We presented PAOLA, which is a generalized version of OLA.

• We showed how PAOLA uses less memory and requires less computations than OLA, at

the expense of introducing aliasing into the output signal.

• We presented analytical expressions for computation and memory requirements for PAOLA.
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Figure 6.17: Example correlation peaks for MOSSE and PACF. In all cases, a blue arrow indi-
cates the correct peak, whereas a red arrow indicates an incorrect peak.
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• We have introduced PACFs, which offer a method to train CFs while taking into account

the aliasing that results from the PAOLA architecture.

• We have extended the PACF formulation to 2D.

• We have shown better performance using PACF compared to a baseline CF when detecting

chirp signals in 1D.

• We have illustrated that it is possible to train CF templates that are shorter than the training

signals to reduce aliasing. These templates can achieve good recognition performance. To

the best of our knowledge, our method is the first ever to train a CF template that is smaller

than the training signals. This is made possible by zero-aliasing constraints.

• We have shown better performance using PACF compared to a baseline CF when detecting

shapes in 2D.

• We have discussed the effects of train set size and training methods on PACF performance.

The ideas in this chapter lie at the crossroads of several ideas presented in this thesis. In the

previous chapter, we focused on reducing the computation and memory required to apply a CF

to a signal. In this chapter, we take this idea to the next step by developing a new training

method that intentionally allows aliasing in order to achieve better computational and memory

performance. By leveraging ideas from ZACFs, we developed PACFs, which perform well in

the presence of aliasing. In the next chapter, we summarize the contributions of this thesis and

present directions for future research.
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Chapter 7

Conclusions and Future Work

In this thesis, we introduced several new designs for CFs that, for the first time, take into ac-

count the aliasing effects caused by the DFT. First, we focused on the aliasing effects that are

a result of using DFTs to compute the CF. The element-wise multiplication of two DFTs in the

frequency domain corresponds to a circular correlation in the time/space domain. In previous CF

research, this circular correlation was assumed to be roughly equivalent to a linear correlation.

In this thesis, we presented a solution to this long-standing problem by introducing zero-aliasing

CFs (ZACFs), which offer a design that accurately reflects a linear correlation. We have shown

that ZACFs outperform traditional CFs on a variety of datasets. In addition, we present several

alternatives to ZACFs that are more computationally tractable.

Next, we investigated the computational and memory requirements necessary for applying

CFs to multidimensional data. By conducting a thorough analysis of the overlap-add (OLA)

and overlap-save (OLS) algorithms, we have shown that OLA offers a significant computational

advantage, whereas OLS offers a significant memory advantage. This analysis prompted us

to develop partial-aliasing OLA (PAOLA), which outperforms OLA in terms of computation

and memory, at the expense of introducing aliasing into the correlation output. We introduced

partial-aliasing CFs (PACFs), which are designed to explicitly minimize this intentional aliasing

and produce sharp peaks in situations in which conventional CFs fail.
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In this chapter we summarize the main contributions of this thesis. We then draw key con-

clusions and outline possible directions for future work.

7.1 Contributions

• Aliasing issues in CF designs: We illustrated the aliasing issues that are present in con-

ventional CF formulations. We did this in two different ways. First, we showed that using

different DFT sizes while designing CFs leads to different templates. These templates per-

form best when the DFT size at training is the same as the DFT size at testing. However, if

the DFT size changes, performance suffers considerably. Second, we showed that the rep-

resentation of correlation itself in conventional CF designs is in fact a circular correlation.

Because CFs are applied to test data using linear correlation, the conventional CF formu-

lation is inconsistent with the original intention to use CFs under the paradigm of linear

correlation. Because of this, designed CFs are not optimal. Furthermore, we debunked

a common assumption that padding training images with more zeros solves this circular

correlation issue.

• Introduction of ZACFs: We introduced a new class of CFs, known as ZACFs, that in-

troduce zero-aliasing constraints into the CF design methodology. These constraints force

the tail of the CF template to zero, which means that the element-wise multiplication of

the CF and DFTs of the padded training images corresponds to a linear correlation. This

step makes the CF design consistent with how it is applied to test data. In addition, the

ZACF yields a CF template that better satisfies the original optimization criteria, which we

demonstrated explicitly with the MACE filter.

• Extension of ZACFs to popular filter designs: We extended the ZACF framework to

many existing constrained, unconstrained, and inequality constrained CF designs. In doing

this, we produced closed-form solutions for the zero-aliasing versions of many popular CF
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designs.

• Alternatives to ZACFs: Acknowledging that computing the closed-form ZACFs can be

computationally intensive, we have introduced several different alternatives to ZACFs.

First, the reduced-aliasing CF (RACF) leverages a smaller DFT size in tandem with zero-

aliasing constraints to reduce aliasing but not completely eliminate it. We have also de-

veloped an alternate CF design method, known as tail-energy minimization (TEM), that

minimizes the energy of the CF template’s tail, rather than constraining it to zero as the

ZACF does. The benefit of this method is that it does not require reformulation of existing

CF designs. We also developed reduced-aliasing TEM (RATEM), which mirrors RACF in

the same way that TEM mirrors ZACF. Finally, we investigated an accelerated proximal

gradient descent (APGD) method to numerically compute ZACF templates.

• Numerical results for ZACFs: We showed numerically that ZACFs outperform conven-

tional CFs for a variety of applications, including face recognition, automatic target recog-

nition, and eye localization. We have also presented results comparing both the speed and

recognition performance of RACF, TEM, RATEM, and APGD, which illustrates that these

methods are suitable replacements for ZACFs. APGD is our preferred method, as it is very

fast and memory efficient.

• Comparison of OLA and OLS: We performed a detailed analysis of the OLA and OLS

filtering algorithms for multidimensional applications. We presented theoretical expres-

sions for computational complexity which we validated experimentally. In performing this

analysis, we showed that OLA offers a computational advantage over OLS, which is am-

plified in higher dimensions. We also showed how parameter selection may be used to

minimize the computational complexity for each algorithm. While OLA outperforms OLS

computationally, we showed that OLS offers a distinct memory advantage over OLA. We

characterized this by developing theoretical expressions for the amount of memory needed

for each algorithm. We performed this memory analysis for both 2D and 3D and offer in-
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sight into various design considerations such as scanning direction and various high-level

memory management techniques.

• Development and analysis of PAOLA: We illustrated a third block filtering technique,

known as PAOLA, which is based on OLA but offers reduced computational and memory

requirements. The drawback is that this scheme introduces aliasing due to circular corre-

lation in the output correlations. Acknowledging this, we analyzed the computational and

memory requirements of PAOLA.

• Introduction of PACFs: Using the PAOLA filtering architecture, we introduced a new

class of CFs known as PACFs. Unlike conventional CFs, the PACF design formulation

takes into account the details of the filtering architecture, including the section size and the

DFT size. It then explicitly minimizes the aliasing effects due to circular correlation by tak-

ing into account the DFT size and the amount of overlap between output sections. We have

presented PACF formulations for both 1D and 2D applications, and have demonstrated that

PACFs outperform conventional CFs when aliasing is present for several different applica-

tions.

• CF template size: Using PACFs, we showed, for the first time, that it is possible to train

CF templates that are smaller than the target. This was done to reduce the amount of

aliasing present in the correlation outputs. However, the ability to control the size of the

CF template is a significant contribution to CF theory and may be used in different ways

in the future.

7.2 Conclusions

The work presented in this thesis for the first time focuses on the aliasing effects present in

both the design and application of CFs. For many years, CF designs did not account for the

aliasing effects caused by the DFT. We have shown that these aliasing effects are significant,
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and cannot be ignored. We have eliminated aliasing during training through the ZACF. We have

taken advantage of aliasing during the application of CFs through the PACF. Together, the ZACF

and PACF formulations offer new and exciting insights to CF theory.

All applications that use CFs can benefit tremendously by adopting zero-aliasing constraints.

While we have not tried ZACFs for every application there is, we have seen strong evidence that

performance almost always is improved by using ZACFs instead of CFs. This means that there

are a wealth of applications that can benefit from the contributions of this thesis.

The computational complexity of applying CFs is often an overlooked topic in the field of

CFs. Typically, correlation is performed in the frequency domain using what we call the “con-

ventional” technique. This thesis offers important insight to improving computation and memory

requirements for the application of CFs, to a level of detail not found in other works. This infor-

mation is an important contribution to the field of CFs, and should be invaluable to anyone who

wishes to implement correlation or convolution as fast as possible for a given template and test

signal.

Our development of PACFs opens the door to an entirely new class of CFs that are designed

to work in the presence of aliasing. Throughout all of CF theory, the assumption was always

that the CFs were applied to test data in a very specific manner, namely that linear correlation

was always used. If we intentionally alias the output using DFTs of inadequate sizes, we create

a “problem” under the conventional way of thinking about CFs. However, PACFs show how we

can explicitly take this aliasing into account and design CFs that work with aliasing. We have

only shown the tip of the iceberg; there are certainly many more ideas that may spring forth from

the ideas behind PACF.

7.3 Future Directions

There are many exciting ideas that may come from this PhD thesis. Here, we discuss some of

these ideas.
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Future Work for ZACFs

• In this thesis, we developed a proximal gradient numerical method for computing con-

strained and unconstrained CFs. This method, in general, is preferred to the closed-form

techniques, which require a large amount of memory due to the formation of large matrices.

Therefore, one possible area for future work is to extend this proximal gradient technique

to more advanced CFs, such as the MMCF, which uses inequality peak constraints instead

of equality peak constraints (constrained CFs) or no peak constraints (unconstrained CFs).

• We have presented a number of computational improvements for ZACF in this thesis.

However, more work should be done to further speed up the training time for these CFs.

For instance, there may be more efficient ways to compute TEM CFs by taking advantage

of the structure of the matrices in the formulation.

• In this thesis, we have not discussed any methods by which to train ZACFs iteratively. For

example, if we train a ZACF with Q training images, we may want to later update the

resulting template with additional training images as they become available. The question

here is the development of a method to update the existing ZACF template efficiently.

• We have extended ZACFs to many different types of CFs. However, there are more CFs

that our ideas may be applied to. Vector correlation filters [35] or biometric key binding

methods [28] are two examples.

• The ideas in ZACFs may also be used to eliminate aliasing in other frequency-domain

filtering techniques, such as convolutional sparse coding [40]. In that work, the authors ac-

knowledge aliasing due to circular convolution, but rely on heuristics to attempt to reduce

this aliasing. Our zero-aliasing methods can potentially be useful in that work.

• One direct result of our work on ZACFs is the masked correlation filter (MCF). We have

developed this as a new method of training CFs based on ZACFs. While it has not been

included in this thesis, we feel that this development can revolutionize CFs for recognition.

The idea is that a CF of any shape can be trained by leveraging a modified form of zero-
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aliasing constraints. Instead of simply constraining the tail of the CF template to zero,

we can constrain various regions (in addition to the tail) to zero. This means that a CF

of any shape may be built. The formulation of this problem is quite straightforward, and

only involves changing the selection matrix S given in Eq. 3.17. We illustrate this using

two examples. First, we train a CF template to ignore a particular portion of the training

images in Fig. 7.1. This example uses images from the AR Face Dataset [64]. Next, we

demonstrate how a non-rectangular CF may be trained using MCF in Fig. 7.2. In this case,

the template is shaped like a “T” to capture the subject’s ocular region in addition to the

nose and mouth. This example uses images from the FRGC dataset [50].

Future Work for OLA and OLS

• In this thesis, we have focused on a high-level analysis of the computation and memory

required for the OLA and OLS algorithms. We have found that these expressions translate

well to experimental results using MATLAB code. However, this work can be extended by

developing an optimized code package written in C (or a similar programming language)

as a package for researchers to take advantage of this work to speed up correlations and

convolutions in everyday signal processing work.

• In practice, the speed and memory requirements of OLA and OLS will be highly depen-

dent on the hardware configuration used to compute correlations. While this is not our

area of expertise, both algorithms may be highly optimized given a particular hardware

configuration, e.g. different CPUs or GPUs. In addition, FPGA implementation may be

considered.

Future Work for PACFs

• In this thesis, we have presented the general idea behind PACFs. While we have noted

that reducing the number of training sections has dramatically improved computation time

of the PACF, much more work may be done to focus on reducing the computational re-
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Figure 7.1: An example application of MCF. Three training images are used to build both a
ZACF and MCF. Note that the ZACF only constrains the tail, whereas the MCF constrains the
tail and the ocular region, which is occluded by sunglasses in the training images. This results
in a CF template with a non-standard shape, as it is forced to zero in the occular region. More
research is needed to see if recognition performance can be improved by using this method. In
these plots, we show the absolute value of the CF templates.
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Figure 7.2: A second example application of MCF. Three training images are used to build both
a ZACF and MCF. Note that the ZACF only constrains the tail, whereas the MCF constrains the
tail and the forces a template that is “T” shaped. More research is needed to see if recognition
performance can be improved by using this method. In these plots, we show the absolute value
of the CF templates.
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quirements for computing PACFs. Unlike ZACFs, the difficulty in training PACF is not

only related to the constraints placed on the optimization, but also the large quantity of

adjacent section shifts that must be computed to solve for the PACF. Therefore, a method

to approximate the PACF may be helpful to reduce training time.

• We have only used a cost function for PACFs that is similar to MOSSE (e.g., minimizing

the MSE between the actual correlation output and the desired correlation output). There

are other cost functions that may be modified under the general PACF framework. For

example, other metrics, such as ONV or ACE may be minimized, and peak equality or

inequality constraints may be adopted.

• One goal of future work is to apply PACFs to more realistic data and applications, such as

ATR in large images, where a computational/memory improvement can be very important.

Right now, one major hurdle to this work is the computational limitations of PACFs, which

restrict us to working with small targets and images.

• One direct result of our work on PACFs is another new way of thinking about CF design.

In the case of PACF, we demonstrated that it is possible to train CF templates that are

smaller than the training signals and achieve good performance. In this case, we did this

to reduce the aliasing in each section’s output correlation. However, outside of the PACF

construct, one can use constraints to build CFs that are smaller than the training images.

This, of course, can be combined with the MCF idea, as well. In general, reducing the

size of the CF template can offer a significant computational improvement, as the size of

the CF template will affect the parameters used for filtering architectures such as OLA

and OLS. Although not discussed here, we have also extended this idea to build templates

that are larger than the training signals. A larger template could potentially help to reduce

sidelobes around correlation peaks and improve recognition performance.
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Appendix A

Here, we show that the matrix Rq is symmetric and Toeplitz. Rq is an Nh×Nh matrix, in which

the element for row k and column l is given by

Rq(k, l) =

Nh−1∑
n=−(Nx−1)

xq(k − n)x∗q(l − n) (A.1)

To see why it is symmetric, consider Rq(a, b) and Rq(b, a):

Rq(a, b) =

Nh−1∑
n=−(Nx−1)

xq(a− n)x∗q(b− n) (A.2)

Rq(b, a) =

Nh−1∑
n=−(Nx−1)

xq(b− n)x∗q(a− n) (A.3)

By comparing Eq. A.2 and Eq. A.3, we can see that matrix Rq is conjugate symmetric. For real

signals (as is usually the case) Rq is symmetric. To see why the matrix is Toeplitz, consider the

fact that we can describe any diagonal in the matrix by the equation

l = k ± c (A.4)

where c = 0, . . . , Nh − 1. Note that c denotes the number of diagonals away from the main

diagonal. For example, the main diagonal is described with c = 0 (l = k), with k varying from

0 to Nh − 1. Diagonals below the main diagonal are described by taking the negative sign in Eq.
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A.4, with k varying from c to Nh− 1. Diagonals above the main diagonal are described with the

positive sign in Eq. A.4, with k varying from 0 to Nh − 1− c. We can substitute this expression

for l into Eq. A.1 and obtain

Rq(k, k ± c) =

Nh−1∑
n=−(Nx−1)

xq(k − n)x∗q(k ± c− n) (A.5)

We can think of this as taking two copies of xq (one conjugated), flipping them, and shifting

one by k units to the right and the other (the conjugate) by k ± c units to the right. The two

signals are then multiplied and summed over the time indices (−(Nx−1), Nh−1) as found in Eq.

A.5. This is illustrated in Figure A.1. Note that the red shaded region represents the limits of the

summation. The matrix Rq is Toeplitz if the result of Eq. A.5 is the same for all values of k for

each diagonal. Note that k varies as described above, depending on the diagonal.

• For the main diagonal (c = 0), shown in Figure A.1a, note that the result of Eq. A.5 will

always be the same, because the entirety of both signals x∗q(k − n) and xq(k − n) always

fall in the range over which the sum is computed, regardless of k.

• For off-diagonal elements below the main diagonal (sign of c is negative), shown in Figure

A.1b, x∗q(k − c − n) is shifted by c units to the left relative to xq(k − n). Although the

lower limit of x∗q(k − c− n) may be outside of the range of the summation, the overlap of

the signals, given by the limits (−(Nx − 1) + k, k − c), is always within the range of the

summation. Therefore, regardless of the value of k, the result of Eq. A.5 will always be

the same. Therefore every diagonal below the main diagonal will be equal.

• For the off-diagonal elements above the main diagonal (sign of c is positive), shown in

Figure A.1c, x∗q(k+ c−n) is shifted by c units to the right relative to xq(k−n). Although

the upper limit of x∗q(k+ c−n) may be outside of the range of the summation, the overlap

of the signals, given by the limits (−(Nx − 1) + k + c, k), is always within the range of

the summation. Therefore, regardless of the value of k, the result of Eq. A.5 will always

be the same. Therefore every diagonal above the main diagonal will be equal.
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Given the above, the matrix Rq will always be Toeplitz. This will be useful, because several

efficient matrix inversion algorithms exist for Toeplitz matrices.

(a) Main Diagonal

(b) Diagonal Below the Main Diagonal

(c) Diagonal Above the Main Diagonal

Figure A.1: Illustration of summations for matrix Rq.
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Appendix B

To gain insight as to why the conventional FDMACE filter yields non-zero values for the en-

tire template, we investigate the FDMACE filter solution and illustrate how it is similar to the

ECPSDF. We first present the ECPSDF [8]. The ECPSDF is generally designed in the space

domain. First, it seeks a CF template h such that the inner product of the set of training signals

and the template is equal to a constant, i.e.,

XTh = u (B.1)

where X is a Nx ×Q matrix whose columns represent the training signals in the space domain,

and u is a Nx × 1 vector corresponding to the desired peak constraints. Note that we have used

1D notation here for simplicity. Because this constraint alone is an under-determined system, the

CF template is assumed to be a linear combination of the training images, i.e.,

h = Xa (B.2)

where the Q × 1 vector a is a vector of weights. To solve for a, we substitute Eq. B.2 into Eq.

B.1, obtaining
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XTXa = u

a = (XTX)−1u (B.3)

Substituting Eq. B.3 into Eq. B.2 yields the ECPSDF,

h = X(XTX)−1u (B.4)

The ECPSDF may be given equivalently in the frequency domain as

h̄ECPSDF,X̄ = NX̄(X̄+X̄)−1u (B.5)

where N is the DFT size and the columns of X̄ contain the DFTs of the training signals.

Now let us recall the FDMACE formulation as given in Eq. 2.9,

h̄ = ND−1X̄
(
X̄+D−1X̄

)−1
u (B.6)

Following the same procedure as [65], we can show that the FDMACE may be interpreted as an

ECPSDF for when the training signals and the test signals are pre-whitened using the transform

D−1/2. Because D is diagonal and positive definite (all elements are real and positive numbers),

the FDMACE may be expressed as

h̄ = ND−1/2D−1/2X̄
(
X̄+D−1/2D−1/2X̄

)−1
u

h̄ = ND−1/2Ȳ
(
Ȳ+Ȳ

)−1
u

h̄ = D−1/2h̄ECPSDF,Ȳ (B.7)
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where

h̄ECPSDF,Ȳ = NȲ
(
Ȳ+Ȳ

)−1
u (B.8)

and

Ȳ = D−1/2X̄ (B.9)

Note that h̄ECPSDF,Ȳ is the ECPSDF trained on the whitened training images, Ȳ. The extra

D−1/2 term in Eq. B.7 can be interpreted as the whitening operation for the test images. To

see why, consider the following. Each value in a test signal’s correlation output is given by the

inner product of the CF template and the corresponding test chip (the region of the test signal

corresponding to the location of the correlation value). Because inner products are preserved in

the frequency domain, the output correlation value (for test chip z) is given by

yz = h̄+z̄ (B.10)

where z̄ is the DFT of the test chipz. For the FDMACE filter, this may be rewritten as

yz =
(
D−1/2h̄ECPSDF,Ȳ

)+
z̄

= h̄+
ECPSDF,Ȳ

D−1/2z̄ (B.11)

where the term D−1/2z̄ corresponds to the whitened test chip. In practice, of course, each test

chip is not explicitly whitened; rather, the whitening matrix D−1/2 is included in the FDMACE

filter itself.

With this interpretation of FDMACE, we can see why the FDMACE template is non-zero

by examining the whitened training signals Ȳ and h̄ECPSDF,Ȳ, which is a linear combination
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of the whitened training images. In Fig. B.1 we show 3 training images of size Nx,1 × Nx,2 =

28×23 for an FDMACE filter. We then show the whitened versions of these training images (we

transform the columns of Ȳ back to the space domain). Note that the tails of these images no

longer contain zeros. Because the FDMACE can be interpreted as a linear combination of these

whitened training images, we can see why the tail of the FDMACE template is non-zero. It is

for this reason that we must explicitly constrain the tail of the template to zero in our ZAMACE

formulation.
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5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

50

55 −4

−3

−2

−1

0

1

2

3

(h) FDMACE, h̄

Figure B.1: Demonstration of how the FDMACE formulation is essentially an ECPSDF using
whitened train and test images. First, we show three training images that are padded prior to
training the CF (a-c). Next, we show the whitened versions of these padded images (d-f). Note
that the tail of these images are no longer zero. Finally, we show h̄ECPSDF,Ȳ and the FDMACE,
h̄ in g and h, respectively.
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Appendix C

Here we show why the matrix K = B+D−1B is symmetric, positive definite, and real.

Symmetry Here we must show that K+ = K. Note that we may write

K+ =
(
B+D−1B

)+

= B+(D−1)+B

= B+D−1B (C.1)

because the matrix D is real. Therefore, K+ = K.

Positive Definite Here, we show that the matrix K is positive definite. To be positive definite,

the condition

x+Kx > 0 (C.2)

must hold for any vector x. This may be rewritten as
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x+B+D−1Bx > 0

y+D−1y > 0 (C.3)

where

y = Bx (C.4)

Note that, for any y 6= 0, the expression y+D−1y > 0 always is true, because the matrix D

is itself positive definite (it is a diagonal matrix consisting of all real and positive numbers).

Therefore, we must only show that y = Bx is never equal to the zero vector, for any input vector

x 6= 0. In other words, if

Bx = 0 (C.5)

then y+D−1y = 0. However, note that (in one dimension) the matrix B is of size N × p + Q,

where N is the dimension of the DFT, and p < N is the number of zero-aliasing constraints, and

Q is the number of training images. Note that in this case, the columns of matrix B are formed

from the conjugates of the rows of the inverse DFT matrix F−1
N , which are orthogonal, as well as

the DFTs of Q training signals, which we assume are independent. Therefore, the matrix B is of

rank p + Q, and the columns of B are therefore linearly independent. Therefore, equation C.5

can never be true. As a result, y is never the zero vector, and matrix K is positive definite.

Real Here we assume that we are processing real training signals. Recall that B = [ X̄ A ].

Observe that the matrix may be written as

264



K =

 X̄+

A+

D−1[ X̄ A ]

=

 X̄+D−1X̄ X̄+D−1A

A+D−1X̄ A+D−1A

 (C.6)

We aim to show that each of these four submatrices are real. First, note that diagonal matrix D

contains the average power spectrum of the training images. Note that this power spectrum is

real and symmetric. Mathematically, this can be written as

D(k, k) = D(N − k,N − k) (C.7)

where k is an index variable. This means that the diagonal of matrix D−1 is also real and sym-

metric. Next note that we may write

X̄ = FNX (C.8)

where X is a N ×Q matrix whose columns contain the N -length padded training signals in the

time domain. Note that the columns of X̄ are each conjugate symmetric. Mathematically, if

vector x̄i represents the ith column of X̄, we can write

x̄i(k) = x̄∗i (N − k) (C.9)

Let us start with matrix X̄+D−1X̄. Note that the ith column of matrix D−1X̄ contain the

element-wise multiplication (D−1x̄i ) of the diagonal of of D−1 (which is real and symmetric)

with the vector x̄i, which is conjugate symmetric. Therefore, D−1x̄i is a conjugate symmetric

vector as well. Next, we can rewrite the matrix as
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X̄+D−1X̄ = X+F+
ND−1X̄ (C.10)

Note that the N -point IDFT matrix is given by 1
N

F+
N . Therefore, the ith column of matrix

F+
ND−1X̄ contains the (scaled) IDFT of the conjugate symmetric vector D−1x̄i. By the prop-

erties of the DFT, this is a real signal. Because matrix X is real, matrix X̄+D−1X̄ must be

real.

A similar method may be used to show that the other submatrices are real. First, note that

A+ is the last N −Nx rows of the N ×N IDFT matrix F−1
N . This means A is the last N −Nx

columns of FN , which we denote A = FN−Nx . While FN−Nx is not an actual DFT operation,

it shares properties with FN . Namely, F+
N−Nxz is always real if z is a vector that is conjugate

symmetric. Therefore, we can show that A+D−1X̄ is real by writing it as

A+D−1X̄ = F+
N−NxD

−1X̄ (C.11)

As before, the columns of D−1X̄ are conjugate symmetric and therefore A+D−1X̄ is real.

For matrices X̄+D−1A = X+F+
ND−1FN−Nx and A+D−1A = F+

N−NxD
−1FN−Nx , note

that the columns of FN−Nx are conjugate symmetric. This means that the columns of matrix

Z = D−1FN−Nx are also conjugate symmetric. The transformations F+
NZ and F+

N−NxZ yield

real values. Therefore, both X̄+D−1A and A+D−1A are real. Because all four submatrices are

real, K is also real.

Note that if D is replaced with T = D + λP, all of these proofs still hold, as P is the power

spectral density of the noise model, and is also real and symmetric.
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Appendix D

For all three correlation methods (conventional, OLA, and OLS), multidimensional correlation

can be optimized by taking advantage of the zero padding required when computing multidimen-

sional DFTs. Rather than zero-padding the signal in all dimensions prior to taking FFTs in each

dimension (as was assumed previously), one can dynamically change the ordering of each FFT

operation to reduce the number of required multiplications.

To illustrate this idea, we use the conventional case as an example (see Fig. D.1). In this

example, we use the same template and signal as was shown in Fig. 5.1. We again show the

signal and template in Fig. D.1a and b, respectively. We show the original padding method

in Fig. D.1 c and d. With these padded signals, note that it is not necessary to take the DFT of

columns (or rows) that are all zero (as the result will be zero). The question, therefore, is whether

to take the FFT in the vertical direction first or the horizontal direction first. For example, it

would be more optimal to not zero pad in the horizontal direction before taking the FFT of each

column (see Figure D.1 e and f) or to not zero pad in the vertical direction before taking the FFT

of each row (see Figure D.1 g and h). Because the DFT is linear, either method is acceptable

(order does not matter). It is also possible to use a different ordering for the signal than that

used for the template. In the 2D case, there are two possible ways to compute the 2D DFT of

the template and the signal; therefore, there are 4 total ways to perform the correlation, each of

which will result in a different number of multiplies. To avoid this ambiguity, we will use the

original padding method (Figure D.1 c and d), zero padding in all dimensions prior to computing
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FFTs. This simplification in effect represents the worst-case scenario, a sort of upper limit on

the computational complexity. Despite this, we provide an analysis of the alternative padding

methods in this section.

To illustrate this idea, we present a generalized notation. Consider a signal x of size Nx,1 ×

· · · × Nx,D. Suppose we want to take an FFT of size Q1 × · · · × QD. Next, assume that the

order in which we take the FFT is given by Ox = {d1, . . . , dD}, where dp ∈ {1, . . . , D}. Note

that dp 6= dp′ for p 6= p′ (i.e. Ox cannot have repeat entries). For example, if D = 3 and

Ox = {2, 1, 3}, the FFT would first be taken along the second dimension, followed by the first

dimension and finally the third dimension. Note that the possible sets of Ox are the permutations

of the integers from 1 to D, which is given by D!.

To quantify the number of computations required under this formulation, we must determine

the number of computations needed for the FFTs along each dimension. First, we compute the

FFTs along dimension d1. In this case, we would pad the signal along dimension d1 such that

the new size is Qd1 . The size in the other dimensions are still Nx,d |d6=d1 . Therefore, the total

required computations for the FFTs along dimension d1 is given by

Cd1 =

[
D∏
γ=2

Nx,dγ

]
fM(Qd1) (D.1)

Next, we must pad the signal with zeros along dimension d2. Prior to the FFT, the signal measures

Nx,d for dimensions d 6= d1 and d 6= d2 and Qdλ for dimensions dλ where λ = 1 and λ = 2.

Therefore, the total required computations for the FFTs along dimension d2 is given by

Cd2 =

[
Qd1

D∏
γ=3

Nx,dγ

]
fM(Qd2) (D.2)

We continue in this manner through all dimensions. For the last dimension (dD), the signal is

padded along the final dimension such that it now measures Q1 × · · · ×QD. Therefore, the total

required computations for the FFTs along dimension dD is given by

CdD =

[
D−1∏
λ=1

Qdλ

]
fM(QdD) (D.3)

We may generalize these expressions as the number of computations required for the FFT along
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(a) Signal (b) Template

(c) Padded Signal (d) Padded Template

(e) Signal, Vertical Padding (f) Template, Vertical Padding

(g) Signal, Horizontal Padding (h) Template, Horizontal Padding

Figure D.1: Demonstration of 2D correlation using different methods for padding the signal and
the template.
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dimension dp,

Cdp =

[
p−1∏
λ=1

Qdλ

][
D∏

γ=p+1

Nx,dγ

]
fM(Qdp) (D.4)

The total complexity of the D-dimensional FFT of signal x is given by

CFFT (Ox) =
D∑
p=1

Cdp (D.5)

When computing correlations, note that the IFFT operation (after the element-wise multiplication

step) is always the same. At this point in time, both the D dimensional DFTs of both the signal

and the template are of the same dimension in the frequency domain (Q1×· · ·×QD). Therefore,

the complexity of the IFFT operation is given by

CIFFT (Qd) =
D∑
d=1

fM(Qd)

Qd

Q# (D.6)

where

Q# =
D∏
d=1

Qd (D.7)

Now, we may express the overall complexity of the conventional, OLA, and OLS schemes

in terms of these optimized multidimensional FFTs. Note that the optimal FFT order Oh for the

template may not be the same as the optimal FFT order Om for the signal. For the conventional

case, we may express the complexity as (compare to equation 5.15)

Ĉconv,D(Nc,d, Oh, Om) = min
Oh

CFFT (Oh) + min
Om

CFFT (Om) + CIFFT (Nc,d) +N#
c (D.8)

where the FFT size Qd is Nc,d.

For OLA and OLS, the complexity is given by (compare to equation 5.20)
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ĈOLX,d(Nd, Kd, Oh, Os) = min
Oh

CFFT (Oh)+

[
K1−1∑
k1=0

· · ·
KD−1∑
kD=0

min
Os

CFFT (Os)

]
+K#CIFFT (Nd)+K

#N#

(D.9)

Here, the first term accounts for the DFT of the filter. The second term accounts for the DFT of

each section. Note that we express this as D nested sums. The size of each section is in general

a function of the section number. Typically, sections are of size L1×· · ·× · · ·LD, but sections at

the end of rows or columns are often smaller (hence our notation). A truly optimized scheme will

account for this size difference when computing the DFTs. The third term accounts for the K#

IFFTs (one for each section). Finally, the last term accounts for the element-wise multiplication

between the filter and each section.

We have included this discussion for the sake of completeness. However, note that in Chapter

5, we represent the complexity of multidimensional DFTs as was described in Sections 5.3.1 and

5.3.2.
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Appendix E

Here, we define matrix R̃N1×N2

φ
′
1,φ

′
2

for the different cases depicted in Fig. 6.8. Depending on the

case (sign of φ′
1 and φ′

2 in Eq. 6.43), R̃N1×N2

φ
′
1,φ

′
2

will take on a different value. For the sake of

notational simplicity, we denote the amount of overlap in each dimension as

M1 = σ1(|φ′

1|) (E.1)

M2 = σ2(|φ′

2|) (E.2)

Recall that we indicate an a× b matrix of all zeros as 0a×b and an a× a identity matrix as Ia.

• Case 1 and Case 4 (φ′
1 ≤ 0, φ′

2 < 0) and Case 8 (φ′
1 > 0, φ′

2 > 0)

For Case 1 and 4, we shift the values in the lower right corner of the input to the upper left

corner of the output. First, we define the submatrices

Sm0 = 0N1N2×N1N2−N1M2 (E.3)

Sm1 = 0N1N2×N1−M1 (E.4)

Sm2 =

 IM1

0N1N2−M1×M1

 (E.5)
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We then define

Sb0(u) =

[
Sm1 CS(Sm2, uN1, 0)

]
(E.6)

where the CS(Z, u, v) operation is a circular shift of matrix Z u units down and v units to

the right. Then, we have

R̃N1×N2

φ
′
1,φ

′
2

= [ Sm0 Sb0(0) Sb0(1) · · · Sb0(M2 − 1) ] (E.7)

For Case 8 only, we have

R̃N1×N2

φ
′
1,φ

′
2

= [ Sm0 Sb0(0) Sb0(1) · · · Sb0(N1M2 − 1) ]T (E.8)

because of symmetry.

• Case 2 (φ′
1 < 0, φ′

2 = 0)

Here, we shift the values in the last M1 rows of the input to the top M1 rows of the output.

We define the submatrices

Sm3 =

 0M1×N1−M1 IM1 0M1×N1N2−N1

0N1−M1×N1N2

 (E.9)

We then define

Sb1(v) = CS(Sm3, 0, vN1) (E.10)

Then, we have
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R̃N1×N2

φ
′
1,φ

′
2

=



Sb1(0)

Sb1(1)

...

Sb1(N2 − 1)


(E.11)

• Case 3 and Case 5 (φ′
1 ≤ 0, φ′

2 > 0) and Case 6 (φ′
1 > 0, φ′

2 < 0)

For Case 3 and 5, we shift the values in the lower left corner of the input to the upper right

corner of the output. First, we define the submatrices

Sm4 = 0N1M2×N1−M1 (E.12)

Sm5 =

 IM1

0N1M2−M1×M1

 (E.13)

Sm6 = 0N1(N2−M2)×N1N2 (E.14)

Sm7 = 0N1M2×N1(N2−M2) (E.15)

We then define

Sb2(u) =

[
Sm4 CS(Sm5, uN1, 0)

]
(E.16)

Then, we have

R̃N1×N2

φ
′
1,φ

′
2

=

 Sm6

Sb2(0) Sb2(1) · · · Sb2(M2 − 1) Sm7

 (E.17)
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For Case 6 only, we have

R̃N1×N2

φ
′
1,φ

′
2

=

 Sm6

Sb2(0) Sb2(1) · · · Sb2(M2 − 1) Sm7


T

(E.18)

because of symmetry.

• Case 7 (φ′
1 > 0, φ′

2 = 0)

Here, we shift the values in the first M1 rows of the input to the last M1 rows of the output.

We define the submatrices

Sm8 =

 0N1−M1×N1N2

IM1 0M1×N1N2−M1

 (E.19)

We then define

Sb3(v) = CS(Sm8, 0, vN1) (E.20)

Then, we have

R̃N1×N2

φ
′
1,φ

′
2

=



Sb3(0)

Sb3(1)

...

Sb3(N2 − 1)


(E.21)

Examples Here, we illustrate how the selection matrix R̃N1×N2

φ
′
1,φ

′
2

works for each of the cases

shown in Fig. 6.8. Note that R̃N1×N2

φ
′
1,φ

′
2

operates on a vectorized array. As an example, we will use

the 5× 4 array
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W =



1 6 11 16

2 7 12 17

3 8 13 18

4 9 14 19

5 10 15 20


(E.22)

This is vectorized column-by-column as

w = vect(W) =

[
1 2 3 4 5 6 · · · 10 · · · 20

]T
(E.23)

Where we denote the vectorization operation as vect(). We also define the unvectorization oper-

ation as unvect(), i.e. W = unvect(w).

• Case 1

In this case, we shift the values in matrix W from the lower right hand corner to the upper

left hand corner of the output matrix. For example, if the amount of overlap is (3, 2), this

results in

unvect(R̃N1×N2

φ
′
1,φ

′
2

w) =



13 18 0 0

14 19 0 0

15 20 0 0

0 0 0 0

0 0 0 0


(E.24)

• Case 2

In this case, we shift the values in the last rows of matrix W to the first rows of the output

matrix. For example, if the amount of vertical overlap is 3, this results in
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unvect(R̃N1×N2

φ
′
1,φ

′
2

w) =



3 8 13 18

4 9 14 19

5 10 15 20

0 0 0 0

0 0 0 0


(E.25)

• Case 3

In this case, we shift the values in matrix W from the lower left hand corner to the upper

right hand corner of the output matrix. For example, if the amount of overlap is (3, 2), this

results in

unvect(R̃N1×N2

φ
′
1,φ

′
2

w) =



0 0 3 8

0 0 4 9

0 0 5 10

0 0 0 0

0 0 0 0


(E.26)

• Case 4

In this case, we shift the values in the right most columns of matrix W to the left most

columns of the output matrix. For example, if the amount of overlap in the horizontal di-

rection is 2, this results in

unvect(R̃N1×N2

φ
′
1,φ

′
2

w) =



11 16 0 0

12 17 0 0

13 18 0 0

14 19 0 0

15 20 0 0


(E.27)
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• Case 5

In this case, we shift the values in the left most columns of matrix W to the right most

columns of the output matrix. For example, if the amount of overlap in the horizontal di-

rection is 2, this results in

unvect(R̃N1×N2

φ
′
1,φ

′
2

w) =



0 0 1 6

0 0 2 7

0 0 3 8

0 0 4 9

0 0 5 10


(E.28)

• Case 6

In this case, we shift the values in a matrix W from the upper right hand corner to the

lower left hand corner of the output matrix. For example, if the amount of overlap is (3, 2),

this is accomplished as

unvect(R̃N1×N2

φ
′
1,φ

′
2

w) =



0 0 0 0

0 0 0 0

11 16 0 0

12 17 0 0

13 18 0 0


(E.29)

• Case 7

In this case, we shift the values in the first rows of matrix W to the last rows of the output

matrix. For example, if the amount of vertical overlap is 3, this results in
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unvect(R̃N1×N2

φ
′
1,φ

′
2

w) =



0 0 0 0

0 0 0 0

1 6 11 16

2 7 12 17

3 8 13 18


(E.30)

• Case 8

In this case, we shift the values in a matrix W from the upper left hand corner to the lower

right hand corner of the output matrix. For example, if the amount of overlap is (3, 2), this

is accomplished as

unvect(R̃N1×N2

φ
′
1,φ

′
2

w) =



0 0 0 0

0 0 0 0

0 0 1 6

0 0 2 7

0 0 3 8


(E.31)
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