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Abstract

Mobile robots are increasingly being deployed in the real world in response to a heightened
demand for applications such as transportation, delivery and inspection. The motion planning
systems for these robots are expected to have consistent performance across the wide range of
scenarios that they encounter. While state-of-the-art planners, with provable worst-case guar-
antees, can be employed to solve these planning problems, their finite time performance varies
across scenarios. This thesis proposes that the planning module for a robot must adapt its search
strategy to the distribution of planning problems encountered to achieve real-time performance.
We address three principal challenges of this problem.

Firstly, we show that even when the planning problem distribution is fixed, designing a non-
adaptive planner can be challenging as the performance of planning strategies fluctuates with
small changes in the environment. We characterize the existence of complementary strategies
and propose to hedge our bets by executing a diverse ensemble of planners.

Secondly, when the distribution is varying, we require a meta-planner that can automatically
select such an ensemble from a library of black-box planners. We show that greedily training
a list of predictors to focus on failure cases leads to an effective meta-planner. For situations
where we have no training data, we show that we can learn an ensemble on-the-fly by adopting
algorithms from online paging theory.

Thirdly, in the interest of efficiency, we require a white-box planner that directly adapts its
search strategy during a planning cycle. We propose an efficient procedure for training adaptive
search heuristics in a data-driven imitation learning framework. We also draw a novel connection
to Bayesian active learning, and propose algorithms to adaptively evaluate edges of a graph.

Our approach leads to the synthesis of a robust real-time planning module that allows a UAV
to navigate seamlessly across environments and speed-regimes. We evaluate our framework on
a spectrum of planning problems and show closed-loop results on 3 UAV platforms - a full-scale
autonomous helicopter, a large scale hexarotor and a small quadrotor. While the thesis was
motivated by mobile robots, we have shown that the individual algorithms are broadly applicable
to other problem domains such as informative path planning and manipulation planning. We also
establish novel connections between the disparate fields of motion planning and active learning,
imitation learning and online paging which opens doors to several new research problems.
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1
Introduction

Motion planning, the task of computing collision-free motions for a robotic system from a start
to a goal configuration, has a rich and varied history [LaValle, 2006]. Up until now, the bulk
of the prominent research has focused on the development of tractable planning algorithms
with provable worst-case performance guarantees such as computational complexity [Canny,
1988a], probabilistic completeness [LaValle, 1998] or asymptotic optimality [Karaman and Fraz-
zoli, 2011]. In contrast, analysis of the finite time performance of these algorithms has received
considerably less attention.

While such questions are motivated primarily by practical robotic applications, the answers
in fact point to something more fundamental. Hsu et al. [1999a] show that, even for the sim-
plest instance of the path planning problem, the likelihood of finding a path in a fixed time
budget depends intricately on the connectivity of the free space. Hence factors that affect the
connectivity, such as obstacle configurations or robot dynamics, are likely to have a huge influ-
ence on the finite time planning performance. Up until now, the characterization of the expected
performance of these algorithms on real-world planning problems has been limited due to the
lack of standardized datasets or robotic platforms. However, recent advances in affordable sen-
sors and actuators have enabled mass deployment of robots that navigate, interact and collect
real data. This motivates us to examine new algorithmic questions such as: “How can we design
planning algorithms that, subject to on-board computation constraints, maximize their expected
performance on the actual distribution of problems that a robot encounters?”

1.1 Motivational examples and applications

The astounding advancement of robot autonomy has enabled mobile robots to break out of
contrived laboratory settings and be deployed in the real world. While the field of self-driving
autonomous cars has already breached the consumer market, research in the field of unmanned
aerial vehicles (UAVs) that explore [Scaramuzza et al., 2014, Shen et al., 2012], inspect [Yoder and

1
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(a) (b) (c)
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Figure 1.1: A spectrum of environments in which an autonomous helicopter has to operate. Each environment
corresponds to a planning problem that favours particular search strategies. (a) Operations over tree lines favors
a smooth trajectory optimization approach that is careful to respect glide slope limits while keeping the vehicle
collision-free. (b) When avoiding mountains, random sampling methods that power through free space and focus
search around the obstacles are effective. (c) When flying in Manhattan environments where obstacles spread out,
search on a lattice with small edges is more likely to find collision-free paths.

Scherer, 2016] and deliver cargos [Choudhury et al., 2014, Whalley et al., 2014] shows that these
will soon follow suit. A unifying theme is that as these mobile robots discover the world on-the-
fly, they have to react in real-time to keep the system safe. Hence the finite time performance
of such planning systems is of utmost importance. We show with supporting examples and
applications that ensuring consistent planning performance is challenging. While we restrict our
scope to mobile robots, the ideas discussed here are broadly applicable to other domains where
real-time planning is critical.

1.1.1 Mobile robots navigating in varying scenarios

As mobile robot systems increasingly operate outdoors in the real world, the scenarios en-
countered by the robot vary widely and have a significant impact on its navigation performance.
Consider the example of an autonomous helicopter designed for cargo delivery [Choudhury et al.,
2014]. In order for it to complete its required tasks, it has to fly a wide range of speeds and
stay close to the ground as it navigates through partially known environments. Fig. 1.1 shows a
spectrum of different scenarios that it encounters - high speed GPS denied navigation in moun-
tains or low speed maneuvering in dense urban canyons. Not all scenarios are always equally
likely - the distribution over scenarios is dictated by the specifics of the mission that the robot
has to execute. As the nature of the planning problems for these scenarios differ significantly,
it is challenging for a planning algorithm to have consistent real-time performance during the
mission. It is also impractical for a human designer to continue tuning algorithm parameters at
the onset of every mission.
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(a) (b)
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Figure 1.2: Comparison of the path planning problem in two different UAV (a) Small quadrotor: Given the
attitude limits, thrust to weight ratio and low speed of operation (4 m/s), the controller for such systems can
track arbitrary paths. The sensor range is small (20 m) so the UAV only senses smaller number of obstacles but
has to react quickly (10 Hz). (b) Large helicopter: Due to bank and pitch constraints and high speed of operation
(50 m/s), the controller can only track paths satisfying some curvature constraints. The sensor range is large
(1000 m) so the UAV can sense more obstacles but has a longer reaction time (1 Hz)

1.1.2 Re-using planning software across robot platforms

Advancements in research on UAVs over the last few years have resulted in a range of platforms
such as autonomous helicopters [Choudhury et al., 2014, Whalley et al., 2014], autonomous
gliders [Otte et al., 2016, Warren et al., 2015] and UAVs of different sizes flying at varying
speeds [Dubey et al., 2017, Mohta et al., 2018]. A standard approach to planning trajectories
for such platforms is first to plan a path and then assign a speed profile such that a controller
can track it. While these platforms have very different dynamics models, they share a lot of
similarities from the perspective of the path planning module. The path planning problem al-
ways requires computing a 3D path with varying types of path constraints depending on the
dynamics. Hence, this allows planning software to be re-used across platforms. This is a very at-
tractive prospect from software design and verification perspective and potentially saves months
of repeated development time. However, as illustrated in Fig. 1.2, the real-time performance
of different planning algorithms vary as the path constraints and the complexity of the world
varies. It is challenging and time-consuming to tune parameters or choose appropriate search
strategies for every different platform.

1.1.3 Real-time planning for unconventional dynamical systems

Many applications such as the emergency landing of UAVs [Meuleau et al., 2009] or planning for
hybrid VTOL [Ozdemir et al., 2014] require planning trajectories that satisfy rather unconven-
tional dynamics constraints. Consider the situation in Fig. 1.3(a) where an UAV damages one
of the ailerons mid-flight and has to land. However, the system can only make left turns. Inter-
estingly, many planning algorithms are perfectly equipped to deal with such instances as long
as the dynamics can be specified as a differential equation with constraints on state and action.
The original RRT paper [LaValle, 1998] provides an example of planning with a left-turn-only
car as shown in Fig. 1.3(b). Because RRTs are probabilistically complete, given enough time,
they will find a path if it exists. However, real-time planning implies that there isn’t enough time



4 Introduction

(a) (b)

Emergency landing of UAV 
which can only turn left

Figure 1.3: (a) The motion planner has to quickly plan a landing for a UAV whose right wing is damaged
mid-flight. As a result, the UAV can only turn left. (b) Planning algorithms are equipped to deal with such
unconventional dynamics as shown in this classic RRT example from LaValle [1998] where a car can only turn
left. Because RRTs are probabilistically complete, given enough time they will be able to find a feasible plan if
it exists. However, the tree explores a lot of configurations in this process. In the emergency landing setting, a
planner does not have the time budget to do so.

for the system to explore all possible configurations. Moreover, it is difficult to apply any type of
human intuition for these unconventional systems to improve real-time planning performance.

1.2 Why does a motion planning system need to adapt?

The need for a motion planning system to be cognizant of the nature of the planning prob-
lems can be attributed to the inherent hardness of the real-time planning problem. The factors
contributing to the hardness can be distilled into three major categories

(a)

Dynamic 
No Fly  
Zones

Limited 
Sensor Range

Partially Known 
Environment

No dynamically feasible  
collision free trajectory

Asymptotic Optimality 
does not imply 
finite-time 
performance

(b) (c)

Need  
focussed 
search

Figure 1.4: Factors contributing to the hardness of motion planning for mobile robots. (a) Limited sensing range
and dynamic no-fly-zones (NFZs) requires fast re-planning (b) Dynamic constraints imply that even if there is
a collision-free configuration space path, it does not mean a feasible trajectory exists in the same homotopy. (c)
The real-time performance of the planning algorithm outweighs any asymptotic guarantees it might have.

1. Partially known world: The full environment through which the robot is navigating is
not known apriori and must be perceived with on-board sensors. Fig. 1.4(a) depicts the
environment from the perspective of an autonomous helicopter. The limited sensing range
in conjunction with unforeseen no-fly-zones (NFZs) forces the system to react immediately
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Figure 1.5: An adaptive planner, broadly speaking, classifies the environment into whether a search strategy
would be effective or not. The search strategy shown here creates a search graph on the surface of obstacles. This
is effective in environments with convex clusters of obstacles. However, in environments with highly non-convex
obstacles, this search strategy would be ineffective.

and deviate significantly from its nominal plan. In addition, the system must continually
re-plan to account for the ever-changing nature of its partial knowledge.

2. Kinodynamic planning in high-dimensional state space: Mobile robots are dynam-
ical systems with actuator limits [Murray et al., 1995] and can even be underactuated [Koo
et al., 2001]. Motion planning for such systems requires defining a kinodynamic problem in
the state space of the robot which is high dimensional (Chapter 13.2.1 in LaValle [2006]).
For many systems, the planning problem is nonholonomic [Laumond et al., 1998] and
constrains the range of feasible motions the robot can execute [Kelly and Nagy, 2003].
Fig. 1.4(b) highlights the severity of the issue where a collision-free path might not imply
the presence of a dynamically feasible trajectory around it.

3. Real-time constraints with limited computation budget: Since the robot is required
to constantly re-plan, it is subjected to a hard time constraint to compute a feasible plan
to follow using limited on-board computation. Since mobile robots have significant drift,
i.e. cannot stop in place, the motion planner does not have the flexibility of elongating
this time budget. However, as Fig. 1.4(c) illustrates, simply requiring a feasible plan to be
produced in this time period is insufficient. A plan of sufficient solution quality is required
to ensure mission success.

For the reasons stated above, it is very hard to engineer a “one size fits all” motion planner
that has consistent real-time performance across all planning problems. On the other hand, if
we were to make strong assumptions about the underlying structure of the planning problem, it
would become easier to design a motion planner that meets performance requirements whenever
the assumptions hold true. For example, Fig. 1.5 depicts a motion planner that focuses its
search graph to lie only on the surface of obstacles. It assumes that the planning problem is
such that such a graph would require minimal collision checking effort to arrive at a solution.
For instance, this holds true in certain environments with convex obstacles. Such “precision
planners” are brittle - they produce high quality solutions where such assumptions hold true
but there are a large number of planning problems where they are unable to even find a feasible
plan. In many cases, it might not even be possible for a human engineer to ascertain when these
assumptions fail to hold. This implies that designs along the lines of a “rule of thumb” decision
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tree will not scale and will eventually be rendered ineffective.
Hence, this thesis departs from the paradigm of a human engineered über motion planner

and advocates the ability of a motion planning system to be adaptive. Borrowing the notion
of adaptivity from Oreizy et al. [1999], we define an adaptive motion planner as a module
that focuses its search strategy according to the likelihood of its success on a distribution of
planning problems it expects to encounter. This broad definition is intended to subsume any
motion planning system that reconfigures itself in response to a change in distribution without
requiring a human to re-design it. This could mean using context about the planning problem
to select planning strategies as shown in Fig. 1.5. This could also mean a planning system that
performs inference during the search process and adapts its search accordingly.

We hypothesize that adaptation is key to bridging the gap between “brittle precision plan-
ners”, that work well only in certain situations, and a robust planning system, that consistently
produces high quality plans over a range of environments :

The thesis proposes that in order for a motion planner to consistently meet the
real-time kinodynamic planning performance requirements of a mobile robot, it must
adapt its search strategy to the distribution of planning problems the robot encounters.

To address this problem in depth, this thesis focuses on the area of motion planning for
UAVs. We do not explicitly worry about planning properties such as worst-case complexity
and asymptotic optimality, but instead analyze the empirical real-time performance of planning
modules. We focus on robotic systems that are likely to encounter a significant variation in
the distribution of planning problems. In this regime, we operate under the assumption that
a single static motion planning module is unlikely to have satisfactory performance. We will
define adaptation as a process of making predictions using context extracted from the planning
problem or using inference made by the performance of the algorithm itself during the search
process.

1.3 Problem characterization

We break down the problem into 3 principle challenges arranged in order of increasing levels of
adaptivity expected from the planning system

Challenge 1. Fixed distribution - Design a non-adaptive motion planner

We start off by considering the challenge of designing a motion planning system that meets
performance requirements for a fixed distribution of planning problems known to a human
engineer at design time, as illustrated in Fig. 1.6. Although this challenge is restrictive in terms
of scope, it is still relevant as it cannot trivially be solved by an arbitrary candidate motion
planner. This challenge has two aspects to it.

Firstly, we wish to investigate a framework for systematically designing planners that can
exploit structure present in planning problems in order to have good real-time performance.
In contrast to conventional motion planning research, this complementary line of inquiry seeks
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Domain Information

Planning Problem Distribution

Motion 
Planner

Human Designer

+

Designer adjusts design 
based on planner performance

Figure 1.6: Overview of a non-adaptive motion planner. The human designer has access to both domain in-
formation - kinds of planning problems which in turn depend on vehicle dynamics and environment types -
and distribution over planning problems. The objective is to design a motion planner that meets performance
requirements for this known fixed distribution of planning problems.

to understand the inverse mapping from planning problems to suitable search strategies. This
framework can be far more limited in scope than that proposed by LaValle [2006] which focuses
more on a universal grammar for planning algorithms. On the other hand we wish to think about
algorithms more seamlessly than the UAV planning taxonomies created by Kendoul [2012] and
Goerzen et al. [2010].

Secondly, it also requires addressing the strategies one can use when expected performance
is not met by the planning system.

Challenge 2. Varying distribution - Design a black-box adaptive motion planner

We next consider the challenge that the distribution of planning problems can vary with
different missions. This happens because the robot might operate in a new environment, a new
speed regime or with changed dynamics. Unlike Challenge 1, the system cannot be redesigned.

Planning Problem Distribution

Motion 
Planner

Human Designer

Meta 
PlannerDomain Information

+

Planner 1

Planner 2

Planner N

...

Library of  
Black Box  
Planners

Designer appends 
any potentially 

‘good’ planner to 
library

Figure 1.7: Overview of a black-box adaptive motion planner. The human designer has access only to domain
information. This is used to create a library of black-box planners. The objective is to design a meta-planner that
takes as input the planning problem distribution and selects a black-box planner from the library.

We first consider the paradigm in which a planner is treated as a black-box atomic operation
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- no amount of intervention or inference is allowed during the search process. We assume, for
simplicity, that we have a library of such black-box planners designed by the human using
domain information. As Fig. 1.7 illustrates, black-box adaptation involves designing a meta-
planner that effectively schedules these black-box planners. The meta-planner is free to use
whatever information it needs to make such a decision such as context extracted from the
planning problem or performance information of planners at previous time steps.

The black-box paradigm is attractive in how it decouples the problem of adaptation from
planner design. The planner design question becomes - “What makes a good library of black-box
planners?”. The adaptation question becomes - “Given a set of black-box planners, how can
we train a meta-planner to maximize performance on a given distribution of planning problems?”

Challenge 3. Varying distribution + computational efficiency - Design a white-box adaptive
motion planner

Planning Problem Distribution

Motion 
Planner

Human Designer

Domain Information
+

Algorithm

White Box Planner

Learnt Policy

One time design 
of white-box 
planner with 
tunable policy

Figure 1.8: Overview of a white-box adaptive motion planner. The human designer has access only to domain
information - the support of planning problems. He creates a white-box adaptive planner - a customized search
strategy with one adaptive element. The adaptive element is a policy that makes certain decisions during search
- such as collision check or act as a heuristic or sample states. The objective is to train this policy on the target
planning problem distribution to maximize performance of the planner.

There are a couple of issues with the black-box paradigm. Firstly, it is restrictive. It does
not allow any sort of intervention during a planning cycle. Often a lot of inference can be made
about the planning problem in the intermediate stages of search. Based on this information, the
planning algorithm itself can choose to adapt its search strategy.

This leads to the second issue - it is computationally inefficient. It invests time in extracting
context from the planning problem before making a decision. In contrast, a white-box paradigm
would allow it to make the most out of its planning effort.

White-box adaptation involves designing a policy to directly alter the search strategy used
by the planning algorithm as shown in Fig. 1.8. The role of the human designer is to design the
framework of the planning algorithm and the legal set of decisions the policy can make. Having
created this framework, the adaptation question becomes - “How can we train such a policy to
maximize performance on a given distribution of planning problems?”
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Table 1.1: Mapping from challenges to chapters

Challenges Chapters

Challenge 1: Designing Chapter 3: Planning Algorithms that Exploit Structure
effective planning modules Chapter 4: A Diverse Ensemble of Expert Planners
Challenge 2: Learning for Chapter 5: Adaptive Ensembles of Expert Planners
black-box meta-planners Chapter 6: Online Exception Planners
Challenge 3: Learning for Chapter 7: Data-driven Planning via Imitation Learning
white-box adaptive planners Chapter 8: Bayesian Active Edge Evaluation

1.4 Outline of approach

This dissertation develops an approach to motion planning for mobile robots that answers each of
these three challenges. Table 1.1 shows a mapping of challenges to chapters. Chapter 2 presents
some relevant notation, taxonomies and briefly reviews related work on this topic. The following
chapters then present the core component of the thesis and is grouped into four parts:

1. Part I: We begin by laying the foundation for discussions on the need for planning algo-
rithm to exploit the underlying structure of the environment in Chapter 3. We propose
a framework for assembling planning algorithms to do so and show 3 concrete real-world
examples - RABIT* [Choudhury et al., 2016a], SPARTAN-Lite [Nuske et al., 2015] and
RRT*-AR [Choudhury et al., 2013]. We also theoretically analyze the special case of plan-
ning in a Poisson forest [Choudhury et al., 2015b].
In Chapter 4, we address Challenge 1 - designing a high performance module for a fixed
problem distribution. We show the inherent difficulty in designing a single threaded plan-
ning module and instead advocate for using an ensemble of expert planners [Choudhury
et al., 2014]. We provide evidence for the efficacy of this framework with real world exper-
iments on an autonomous helicopter.

2. Part II: We carry over the insights from the previous chapter to address Challenge 2
- adaptively selecting planners from a library of black-box planners. In Chapter 5, we
present training procedures for meta-planners that predict a list of planners [Choudhury
et al., 2015a, Tallavajhula et al., 2016]. We present results on various planning datasets
and show closed loop evaluation of planning onboard two distinct UAV platforms.
In Chapter 6, we address problems that may arise due to train / test mismatch. We propose
an online exception planning framework and draw novel connections to the setting of online
paging.

3. Part III: The black-box paradigm does not harness the full potential of planning since
planners are treated as atomic operations. We address Challenge 3 by showing two distinct
ways to interleave planning and inference. In Chapter 7, we formulate this as a problem
of sequential decision making under uncertainty where at a given iteration a planning
policy must map the state of the search to a planning action. We present a novel data-
driven imitation learning framework to efficiently train planning policies by imitating a
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Table 1.2: Connections made in this thesis between sub-problems in planning and machine learning

Motion Planning Machine Learning

Selecting an ensemble of planners List prediction for cost sensitive classification
Online library of exception planners Online paging

Learning a search policy Sequential decision making
Learning an edge evaluation policy Bayesian active learning

clairvoyant oracle - an oracle that at train time has full knowledge about the world map and
can compute optimal decisions [Choudhury et al., 2017a]. We present results on problems
from two important domains that rely on partial information based policies - informative
path planning [Choudhury et al., 2017d,e] and search based motion planning [Bhardwaj
et al., 2017].
In Chapter 8, we examine the orthogonal problem of deciding which edge to evaluate in a
graph. We show that this can be framed as a Bayesian active learning problem where edges
are actively chosen to reduce uncertainty about the validity of paths [Choudhury et al.,
2017b,f]. We present a novel framework to compute near-optimal policies and evaluate
it on various datasets of motion planning problems for mobile robot, manipulators and
autonomous helicopters.

4. Part IV: In this final part, we shed light on how these adaptive planning algorithms are
used in practice. We present a unified planning architecture in Chapter 9 that we use across
UAV platforms. We present results showing how adaptation not only helps a particular
UAV solve different types of problems, but also aids in using the same underlying planning
software across UAV platforms.

We conclude in Chapter 10 with a summary of the presented work, vital lessons learned and
potential future directions.

1.5 Summary of contributions

We summarize the primary contributions of this dissertation. Table 1.2 shows the novel connec-
tions we draw between problems in planning and well studied problems in machine learning.

1. Adaptation to different planning problems: Training procedure for a meta-planner to se-
lect an ensemble of planners from a library to maximize expected performance over a
distribution of planning problems.

2. Online adaptation to handle failures: The LRU algorithm for creating a dynamic library
of exception planners online.

3. Synthesizing planning policies with good finite time performance: Training procedures for
informative path planning (QvalAgg) and heuristic search policies (SaIL) using imitation
learning.
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4. Synthesizing collision checking policies with good finite time performance: The BiSECt
and DiRECt algorithm for evaluating edges on an expensive graph.

5. Generalization across platforms: Experimental evaluation of the above algorithms on var-
ious datasets with a focus on planning problems encountered by UAVs.

1.6 Review of experimental platforms

(a) (b) (c)

Figure 1.9: We present results from evaluation of planning onboard 3 UAV platforms (a) A full-scale helicopter
(b) A large hexarotor (c) A small quadrotor

We consider a number of motion planning instances across three UAV platforms. Each of
these platforms vary in scale, sensing capabilities and present unique challenges. We show that
an adaptive planning module improves performance in each of these systems. Each chapter
evaluates the algorithms on datasets from these applications, along with results from closed
loop evaluation. Chapter 9 describes the planning architecture deployed on these systems in
more detail and summarizes statistics of flight tests.

1. Full-scale helicopter(Fig. 1.9(a)): The helicopter can travel at speeds of upto 60m/s. The
dynamics of the system is heavily constrained. It is equipped with a Riegl laser scanner
with a range of 1200m.

2. Large-scale hexarotor(Fig. 1.9(b)): The UAV is a DJI-M600. It can fly at speeds of upto
10m/s. It is equipped with 2 VLP-16 lasers with a range of 100 m.

3. Small-scale quadrotor(Fig. 1.9(c)): The UAV is a DJI-M100. It can fly at speeds of upto
5m/s. It is equipped with a spinning Hokyuo laser with a range of 15 m.





2
Background

In this chapter, we introduce the preliminary definitions and terminology that will setup the
infrastructure for remaining discussions in this thesis. In Section 2.1, we define formally what
we mean by a planning problem for a mobile robot. Section 2.2 talks about a distribution over
planning problem distribution that a mobile robot encounters. Section 2.4 presents a taxonomy of
terms that are used throughout this work and disambiguates amongst them. Finally, Section 2.5
presents a broad collection of related work.

Prior to discussing the planning problem in the upcoming section, we provide a terse de-
scription for the motion planning pipeline for a mobile robot. The mobile robot, equipped with
a range limited sensor, is moving in an environment. At a given planning cycle, the motion
planning module is invoked to plan a dynamically feasible collision free path to a goal point.
This path is then sent to the control system of the robot which takes a step along the path. The
robot receives measurements from the sensor, which it uses to update its belief about the world.
This cycle is repeated. We will discuss this in more detail later in Chapter 9.

2.1 The planning problem

We formally define the kinodynamic motion planning problem that we wish to solve. Let X ⊂ Rd

be the state space and U ⊂ Rm be the control space of the system. Let the dynamics of the
system be ẋ(t) = f (x(t), u(t)), where x(t) ∈ X and u(t) ∈ U .

The objective of a motion planning system is to compute a trajectory - a function mapping
from time to state and control values. Let the domain of the trajectory be [0, tf ]. Let x :
[0, tf ] → X be a state trajectory and u : [0, tf ] → U be a control trajectory. We define a
trajectory σ ∈ Σ as a concatenation of state and control trajectory σ(t) = {x(t), u(t)}, where Σ
is the set of all non-trivial trajectories.

We now define a feasible trajectory. The trajectory is constrained to be dynamically feasible,
to lie in free space and to lie in valid regimes of operation. We categorize these constraints into

13
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3 classes - a set of equality constraints F(σ(t)) = 0, a set of inequality constraints H(σ(t)) ≤ 0
and a valid regime σ(t) ∈ Σvalid. In addition to this the trajectory also has to satisfy boundary
constraints, i.e., σ(0) ∈ Σstart and σ(tf ) ∈ Σgoal.

Let J : Σ → [0, Jmax] be a cost functional that measures solution quality by penalizing
traversal time and proximity to unsafe regions. The cost function is capped at a user specified
threshold Jmax. We also follow the convention that an empty solution has a cost of J (∅) = Jmax.

The planning problem is then defined as the following constrained optimization problem

Problem 1 (Kinodynamic Planning). The kinodynamic planning problem is then formally de-
fined as the search for the trajectory, σ∗, that minimizes a given cost function, while satisfying
boundary and trajectory wide constraints

min
σ∈Σ

J(σ)

s.t σ(0) ∈ Σstart

σ(tf ) ∈ Σgoal

F(σ(t)) = 0
H(σ(t)) ≤ 0
σ(t) ∈ Σvalid

∀t ∈ [0, tf ]

(2.1)

Appendix A specifies the details for an autonomous helicopter.
We will now define what we mean by real-time kinodynamic planning. Let Γ be a planning

problem. We define a motion planner, P as an operator that takes a planning problem as input
and produces a trajectory as output, i.e., σ = P (Γ).

Definition 2.1 (Real-time Kinodynamic Planning). A real-time kinodynamic planning algorithm
is an operator that can run for a time budget of at most T . If a planner is unable to find a
feasible, collision free trajectory within this time budget, it returns an empty trajectory σ = ∅.
Hence the cost of the output of the planner operator is always defined, i.e. J (P (Γ)) ∈ [0, Jmax]
for all planning problems Γ.

2.2 A distribution over planning problems

We represent the distribution over planning problems P (Γ) using a database of finite samples.
This can be done in one of two ways.

In the first paradigm, we assume we have a complex generative distribution that we can
sample worlds from. The robot’s start and goal is kept invariant, while worlds are sampled from.
This process is repeated N times to get a database of {Γ}Ni=1 problems.

In the second paradigm, we assume we have a database of saved maps on which we want
the robot to perform missions. The start and goal locations are sampled from a user designed
distribution to create a database of {Γ}Ni=1 problems.

It is important to note that in theory P (Γ) depends on the sequence of planners used by the
robot to navigate the map. Hence this distribution is non i.i.d. However, for the scope of this
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Figure 2.1: Expensive edge evaluation on a state lattice. Evaluating an edge requires stepping through states on
the edge and evaluating if the vehicle is clear of obstacles.

work, we circumvent this issue by collecting data using an oracle planner that always produces
high solution quality trajectories.

We define performance of a motion planner on a distribution of planning problems as the
expected cost of trajectories returned by the planner. Given a planner P and a planning problem

distribution P (Γ), the performance of the planner is EΓ∼P (Γ) [J (P (Γ))] ≈
N∑
i=1

J (P (Γi)).

2.3 What dominates planning time?

For many planning applications, the main computational bottleneck in motion planning is col-
lision checking an edge. For manipulators, collision checking typically involves computing inter-
sections between a triangular mesh model of the manipulator as well as models of the objects in
the environment. The more articulated the robot, the more complex the mesh model, and the
more computationally expensive the collision check. This has been independently observed in
many papers [Dellin and Srinivasa, 2016, Pan et al., 2012].

In UAVs, we observe this to be particularly true for nonholonomic path planning on a state
lattice. Examples of such problems are shown in Section 7.7 and Section 8.7.1. A simple il-
lustration is shown in Fig. 2.1. For such problems, the number of vertices are not very large.
However, on account of dynamic constraints, the edges of such graphs are long sequences of
states. To evaluate if an edge is valid, the collision checker has to iterate through every state in
the sequence. To evaluate if a state is valid, it has to collision check the geometry of the robot
with the representation of the world (or ensure the robot is sufficiently clear of obstacles). Since
this representation is being constructed onboard the robot as it senses the world, it cannot be
pre-processed to make this process efficient. While there are techniques such as occupancy maps
to speed up this step, computing a more sophisticated obstacle proximity metric such as time
to collision (refer to Appendix A) requires iterating through the grid several times for an edge.
Hence, the edge evaluation time dominates time consumed by other operations in the search.
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Figure 2.2: A taxonomy for adaptive motion planning

This motivates us to formulate the problem of minimizing edge evaluation in Chapter 7 and
Chapter 8.

2.4 Taxonomy

In this section, we differentiate between a set of terms that we will use through out the document.
These terms refer to different kinds of adaptivity of motion planners. Fig. 2.2 presents a taxonomy
of these terms.

Definition 2.2 (Adaptive vs Non-adaptive Motion Planner). Any motion planning system that
automatically adapts to a new planning problem distribution P (Γ) without the need of inter-
vention by a human designer is defined to be adaptive. In the absence of this property, the
system is non-adaptive.

Definition 2.3 (Black-box vs White-box Adaptive Motion Planner). A black-box paradigm treats
the motion planning operation as an atomic unit where intervention is not possible. Hence,
in this paradigm, once a decision by a meta-planner is made to invoke a planning algorithm,
that algorithm must be executed to completion. A white-box adaptive planner adapts its search
strategy during the search process itself. Fig. 2.3 shows an overview of both paradigms.

Note that the black-box planner has a dedicated two step approach of extracting context and
then making a decision. Contrast this to a white-box planner where the policy keeps updating
itself with the outcomes of decisions made by the search strategy. Hence, although such a policy
might not be as straightforward to train, it is computationally efficient.

Definition 2.4 (Static vs Dynamic Black-box Motion Planner). In the static paradigm, the meta-
planner makes a single decision given a planning problem distribution. In the dynamic paradigm,
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its decision making policy. The adaptive element here is the policy that looks at the history of decisions made
and outcomes received in order to make the next decision. (b) In the black-box paradigm, the motion planner
dedicates an amount of its resource to extract context. This information is then used by a meta-planner to select
a black-box planner which is then executed.
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Figure 2.4: Static vs dynamic motion planner paradigm. (a) In the static paradigm, the meta-planner selects a
motion planner that remains fixed for all time steps (b) In the dynamic paradigm, the meta-planner may select
a different motion planner at every time step. This decision maybe based on the context extracted from the
planning problem at a given time step. Optionally, the results from previous time-steps may also be used to make
the decision.

the meta-planner may change its decision with time steps as shown in Fig. 2.4. Note that the
dynamic paradigm does not just imply that a meta-planner decision changes with context. The
decisions maybe influenced by the outcomes of previous decisions for planning problems at
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Figure 2.5: Overview of the related work covered in this section and the intersection to which the thesis belongs.

previous time-steps.

Definition 2.5 (Offline vs Online Adaptive Motion Planner). In the offline paradigm, the distribu-
tion over planning problem is known apriori. Hence policies can be trained on this distribution
and simply be executed at test time. In the online paradigm, the distribution is not known and
may not even be i.i.d.

Definition 2.6 (General Purpose Planners vs Precision Planners). General Purpose Planners are
expert planners that do reasonably well on a large number of planning problems but do not
necessarily have the best performance (lowest solution cost) on a bulk of these problems. Ex-
amples are conventional uniform sampling based planners, low-dispersion grids, etc. Precision
planners are expert planners that have high performance on a small number of problems, but
fail catastrophically on most. Examples are local trrajectory optimizer, shooting methods, etc.

2.5 Related work

Since this thesis delves into various topics in motion planning and machine learning, the relevant
work spans many areas. In this section, we briefly discuss related work belonging to three most
relevant themes as shown in Fig. 2.5. Firstly, we look at some diverse attempts to adapt plan-
ning algorithms to exploit problem structure and improve performance. Secondly, we delve into
nonholonomic planning, its inherent hardness and efforts to solve it approximately in real-time.
Finally, we look at relevant work on applying machine learning techniques to improve planning
performance.

We also provide additional background material in Chapter 5, 6, 7 and 8 which are useful
for understanding the proposed problem formulations and algorithms.

2.5.1 Exploiting planning problem structure

Substantial work exists on improving the solution quality of sampling-based planners by ex-
ploiting domain knowledge about the planning problem. This include adaptations to search
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techniques, local optimization methods, and hybrid searches.
Many adaptations exist to the Rapidly exploring Random Tree (RRT) search procedure.

Urmson and Simmons [2003] use a heuristic to bias sample generation in an RRT while Fer-
guson and Stentz [2006] use a series of independent RRTs in their Anytime RRTs algorithm.
Jaillet et al. [2010] combine RRT with stochastic optimization techniques in their Transition-
based RRT (T-RRT) algorithm, while Rickert et al. [2008] attempt to balance exploration and
exploitation through gradient information in their Exploring/Exploiting Tree (EET) algorithm.
Though these techniques are effective, their asymptotic optimality is limited by the underlying
RRT. Karaman and Frazzoli [2011] incrementally rewire the RRT graph using random geometric
graph (RGG) theory to achieve asymptotic optimality in their algorithm, Asymptotically opti-
mal RRT (RRT*). Recent work has focused on improving the convergence rate of asymptotically
optimal planners.

Alterovitz et al. [2011], Akgun and Stilman [2011], and Nasir et al. [2013] all use path-
biased sampling in their algorithms. This increases the likelihood of sampling near the current
solution and the convergence to a local optimum, but results in a nonuniform distribution that
can decrease the likelihood of finding solutions in other homotopy classes. Gammell et al. [2014]
improve convergence for problems seeking to minimize path length by directly sampling a (upper-
bound) heuristic in their Informed RRT* algorithm. Although this has linear convergence to the
optimum in the absence of obstacles, the presence of obstacles in practical problems prevents the
subproblem from shrinking indefinitely. Arslan and Tsiotras [2013] use dynamic programming
Bellman [1954] and Lifelong Planning A* (LPA*) techniques Koenig et al. [2004] in their RRT#

algorithm to improve RRT* rewiring. This improves convergence but does not directly focus the
search.

Janson et al. [2015b] use a marching method on a set of samples in their Fast Marching
Tree (FMT*) algorithm. The search expands outward from the start in order of increasing cost-
to-come; however, it is not anytime and must be restarted if more samples are needed to find a
solution. Salzman and Halperin [2015] extend FMT* to quasi-anytime performance with their
Motion Planning Using Lower Bounds (MPLB) algorithm. Denser sets of samples are searched
using lower-bounding estimates of the solution cost through states, with improved solutions
being found only when a search finishes. They state that this can be done efficiently by reusing
information, but they do not provide specific methods to do so. Gammell et al. [2015] combine
incremental graph-search techniques with RGG theory in their Batch Informed Trees (BIT*)
algorithm to create an anytime asymptotically optimal search that checks potential solutions in
order of estimated cost. This is done efficiently by using heuristics to search batches of samples.

Local optimization methods focus on improving an initial suboptimal path towards a local
optimum. All these methods can be used to post-process results from global searches and some
can be used to solve a problem directly. While optimization can occasionally switch between
topologically close classes, these methods are generally limited to the homotopy class of the
initial path.

Basic techniques seek to simplify the initial path by removing redundant states through path
pruning or path shortcutting [Berchtold and Glavina, 1994, Geraerts and Overmars, 2007, Hauser
and Ng-Thow-Hing, 2010, Hsu et al., 1999b, Sekhavat et al., 1998]. Path pruning iteratively
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improves a discrete path by considering new connections between existing vertices, while path
shortcutting performs a similar procedure but also considers interpolating edges to create new
vertices. In both, when a feasible connection is found the path is simplified by using it and
removing the intermediate vertices.

More advanced techniques seek to optimize an initial path, independent of its feasibility, by
exploiting additional information about the problem domain (e.g., cost gradients). These can
be used independent of a global search; however, they may become stuck in the local optima of
nonconvex cost functions.

Zucker [2009] use gradient methods to optimize an initial solution in their Covariant Hamil-
tonian Optimization for Motion Planning (CHOMP) algorithm. Kalakrishnan et al. [2011] use
stochastic methods to replace analytical gradients in their Stochastic Trajectory Optimization
for Motion Planning (STOMP) algorithm. These techniques associate a cost to obstacles and
perform optimization of an unconstrained cost function. This allows for the rapid discovery of
local optima, but does not guarantee that the path will be feasible (i.e., collision-free). Schul-
man et al. [2013] perform optimization constrained by obstacle avoidance in their trajectory
optimization (TrajOpt) algorithm; however, it is still susceptible to local optima.

Hybrid search techniques combine the results of multiple, possibly different, search algorithms
into a solution that is better than that of the individual inputs. Basic techniques combine the
results of completed searches [Luna et al., 2013, Raveh et al., 2011]. This allows for a wide
variety of methods as inputs, including both global and local techniques, but keeps each search
independent. This means information discovered by one search is not shared with others, a
limitation that is especially problematic in domains with difficult-to-sample features such as
narrow passages.

Otte and Correll [2013] use a parallel hybrid method in their Coupled Forest of Random En-
grafting Search Trees (C-FOREST) algorithm. Demonstrated with RRT*, the algorithm shares
information between multiple sampling-based planners using heuristics and rejection sampling.
Compared to other parallel algorithms [Ichnowski and Alterovitz, 2012], this results in a super-
linear speedup in computation time; however, they only use global searches and it is unclear
how to incorporate local searches into the algorithm.

Hence we conclude that the efficacy of these improvements is dependent on the planning
problem structure and that mapping is not straightforward to predict.

2.5.2 nonholonomic motion planning

A substantial body of work has looked at tractable approximate algorithms to solving non-
holonomic motion planning problems encountered by mobile robots. Solutions can be broadly
categorized as creating lattices by intelligently discretizing state and control inputs, relaxing the
problem and post-processing or randomly sampling in control space.

The term nonholonomic path planning was introduced by Laumond [1986] to describe the
problem of motion planning for wheeled mobile robots (refer to Laumond [1998], Li and Canny
[1993] for an overview). Curvature bounded path planning in presence of obstacles was proved
to be NP-Hard [Reif and Wang, 1997]. Approximation algorithms for finding such paths were
proposed by Jacobs and Canny [1989] with exact results obtained only for obstacles with bounded
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curvature [Boissonnat and Lazard, 1996]. These early works provide a glimpse into the inherent
hardness of the problem and the need for good approximations to get high quality real-time
solutions.

There has been substantial work that look at the problem in absence of obstacles. This is
known as the boundary value problem, i.e., finding a steering input to drive the system from one
configuration to another. For curvature bounded systems, analytical solutions were obtained by
Dubins [Dubins, 1957] and Reeds and Shepp [1990]. Continuous curvature systems were analyzed
by Fraichard and Ahuactzin [2001], Fraichard and Scheuer [2004], Scheuer and Laugier [1998].
In general however, the boundary value problem can be expensive to solve. Kelly and Nagy
[2003] proposed using curvature polynomials to parameterize the trajectory which they solve for
numerically.

One class of approach have been the use of a state lattice as proposed by Pivtoraiko et al.
[2009]. This is a lattice where edges between vertices are solved for offline using BVP solvers.
These edges are called motion primitives. This acts as a wall of separation between the vehicle
dynamics that create the graph and algorithms that can search the graph. This has been used
to great success by Dolgov et al. [2010], Heng et al. [2011], Hwangbo et al. [2007], Likhachev and
Ferguson [2009], Lindemann and LaValle [2006], MacAllister et al. [2013]. However, this process
does require a fair bit of engineering in terms of lattice design, selecting a resolution, selecting
a search method. These methods do not naturally adapt to changing dynamics or changing
environment although progress has been made in this area by Howard [2009b].

A general solution to such problems would ultimately require planning with the dynamics
as opposed to a contrived decoupled search. While the original RRT algorithm required a local
planner to connect states, the Expansive Space Tree (EST) method introduced shortly after by
Hsu et al. [1999a] planned by directly forward integrating random control inputs. However, this
method does require careful parameter selection and quality cannot be assured. Recently, the
Stable Sparse RRT (SST) method Li et al. [2015] was developed providing almost sure asymptotic
convergence to an approximately optimal solution without requiring a local planner. Another
method, Generalized Label Correcting [Paden and Frazzoli, 2016] was developed recently with
further improvements. While this remains an active area of research, these methods are still
quite a bit away from solving nonholonomic problems in real-time.

Hence we conclude that nonholonomic problems can only be approximately solved, the qual-
ity of the solution heavily dependent on the type of approximation applied. Moreover, the approx-
imation is influenced by the dynamics of the robot and the environment in which its operating
in.

2.5.3 Machine learning in motion planning

There is no clear consensus on when, where and how machine learning methods should be
integrated into motion planning pipelines. We refer to Otte [2009] for a brief discussion of this
dilemma. A plethora of work exists on learning models to process raw sensor measurements and
predict control actions, but we do not focus on such techniques. A lot of works exists also on
learning from demonstrations, but we work in a paradigm where we assume that the planning
problem is well defined. Hence we focus on related work that has applied machine learning
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techniques in prediction of parameters used by motion planning methods.
Jetchev and Toussaint [2013] was an early work on predicting seeds for trajectory planning.

Cost regression and classification were implemented, without the formalism of loss-sensitive
classification. Their results show that cost regression is a more difficult task. Dragan et al. [2011]
predicted the usefulness of end-effector goals for trajectory planning on a manipulator. Some
heuristics in their procedures are explained when a surrogate loss is used to derive algorithms.
Both Jetchev and Toussaint [2013] and Dragan et al. [2011] predicted a single element. While a
stronger predictor class Π was suggested to increase performance, a list was not. ConseqOpt
for list prediction appeared in Dey et al. [2013]. The algorithm was presented along with a
theoretical guarantee. A follow up to ConseqOpt by Ross et al. [2013] considered list prediction
in a different setting. It was shown that when trained online, with data streaming in, a single
predictor for predicting a list works well. Zucker Zucker [2009] generates a ‘behavior library’
of optimized trajectories and predicts the best trajectory given a query. Berenson et al. [2012]
generates a library of past plans and uses a heuristic to select one that can be repaired easily
to solve a new environment. Pan et al. [2014] predicts if a seed trajectory will be successful for
local optimization. Poffald et al. [2014] uses a library of motion primitives and predicts the best
primitive that can be adapated for a new environment. Wzorek et al. [2010] predicts a motion
planning strategy, from a library, that can be applied to repair a plan. Palmieri and Arras [2015]
learns a distance metric for an RRT to predict the nearest neighbour. In conclusion, these work
fall under the category of a black-box adaptive motion planner (Definition 2.3) where a decision
is made and explicit feedback about its success is used to refine the decision.

There is a body of work in using machine learning techniques to divide the C-space into
regions and select different planning strategies to apply to these regions. One of the earliest
approaches in this area was presented by Morales et al. [2005]. Rodriguez et al. [2008] classifies
regions based on the entropy of samples and uses this to refine sampling. Kurniawati and Hsu
[2008] and Hsu et al. [2005] present adaptive hybrid sampling strategies for PRM methods. Tang
et al. [2006] guide RRT methods based on an ensemble of metrics. Zucker et al. [2008] formulated
an adaptive workspace biased sampling technique as a policy optimization problem and use the
REINFORCE algorithm to solve it. Baldwin and Newman [2010] learn how to bias RRTs from
experience. Burns and Brock [2005b] formulate a utility criteria for guiding sampling. Burns
[2007] surveys approaches that guide sampling by exploiting structure. Diankov and Kuffner
[2007] uses statistical techniques to decide which node of a tree to sample around. Dalibard and
Laumond [2011] use PCA techniques to analyze the nature of free space to guide sampling. Pan
et al. [2012] use instance based learning to model free-space. Choudhury et al. [2016b] also model
free-space and use this to reason about the pareto optimal surface of configuration space beliefs.
A recent work by Ichter et al. [2017] learns a generative model to sample from states likely to
belong to the optimal path. They learn this using a conditional variational auto-encoder. In
conclusion, this work falls under the category of an adaptive white-box planner (Definition 2.3)
where a learning method models the nature of C-space to guide the search.

Howard [2009a] has extensively analyzed the role of adaptation in model predictive trajectory
generation for mobile robots. An adaptive search space is presented that exploits environmental
information to maintain feasibility and locally optimize the mapping between nodes and states.
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Napoli et al. [2018] builds on this approach by learning models that predict possible improvement
on optimizing maneuvers in state lattices. Knepper and Mason [2012] shows how structure in
the environment can be exploited to adapt path sampling in search.

There is a large scope for applying machine learning techniques in heuristics for motion
planning. This topic falls under the umbrella of machine learning for general purpose planning
as reviewed by Jiménez et al. [2012]. Yoon et al. [2006, 2008] proposed using ordinary least
squares regression to learn the difference between actual distance to go and estimate given by
FF-Heuristic [Hoffmann and Nebel, 2001]. Xu et al. [2007, 2009, 2010] improve upon this in a
beam-search framework. They learn a discriminative model to rank top successors to include
in the beam search. Arfaee et al. [2011] learned heuristics by iteratively improving on prior
heuristics. ús Virseda et al. [2013] learn combination of heuristic values that most accurately
predicts the cost-to-go. Wilt and Ruml [2015] build heuristics for greedy search using a Kendall
rank coefficient. Thayer et al. [2011] address the problem of online heuristic learning during
search. Garrett et al. [2016] frame heuristic learning as a ranking problem.

A relevant class of work falls under the framework of multi-heuristic A* by Aine et al.
[2016] where multiple heuristics are combined in a round robin fashion sharing information
while preserving optimality guarantees. Narayanan et al. [2015] improve this framework with
uncalibrated heuristics. Islam et al. [2015] uses this framework to dynamically add heuristics to
aid planning. Phillips et al. [2015] investigates efficient approaches of scheduling heuristics in this
framework. Aine et al. [2015] show how this framework allows one to leverage experience. Aine
and Likhachev [2016] generalizes this framework further to show how a portfolio of planning
methods can be share information. In conclusion, this body of work falls under the category of
an adaptive white-box planner (Definition 2.3) where multiple policies are acting in conjunction
to guide the search. The advantage of this framework is two-fold: the retention of guarantees of
A* and the ability for multiple strategies to share information. However, learning such policies
is complicated by a super-modular sharing effect and is a topic for further research.

We also highlight a couple of interesting relevant approaches. Learning from experi-
ence [Ratliff et al., 2009b]) while primarily used for imitating human demonstrations, is an
interesting tool for functional optimization. It would be interesting to adapt such methods for
learning relaxations of the original motion planning problem that can be used as heuristics.
Reinforcement planning [Zucker and Bagnell, 2012]) is similar in spirit where a low dimensional
cost function which is used to plan a path that is followed by a controller. Policy gradient tech-
niques are used to solve this problem. Learning dimensional descent [Vernaza and Lee, 2011] is a
technique to learn a descent direction that causes the greatest variation in cost. Finally, a rather
simple way of incorporating experience is dumping previous paths in a pool that heuristics can
use to speed up search [Phillips et al., 2012]. Learning which paths to keep and how to adapt
such paths is an interesting direction for research.
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3
Planning Algorithms that Exploit Structure

This chapter provides a good entry point into the problem of adaptive motion planning. Before
we can ask how or why planning systems must adapt, we need to better understand how the
performance of a planning algorithm depends on the “structure of the problem”. We define this
structure to mean the configuration of obstacles in the environment as well as the reachability of
the robot. By picking apart the mechanics of a planning algorithm, we see that the underlying
implicit graph plays a major role in determining the finite time performance of these algorithms.
Since Challenge 1 requires us to design good planners for different problem distributions, we
develop some insight on how one may go about “exploiting this structure” by designing strategies
to encode domain knowledge and prior experience about where the solution might lie.

Instead of working with the kinodynamic motion planning problem in Problem 1, we focus on
a simple subproblem - the optimal path planning problem. This allows us to focus our thoughts
on the geometry and the connectivity of the free configuration space, without having to worry
about dynamic feasibility or speed. We will return to the original problem in Chapter 4 and
show that the insights we develop here easily carry over.

We begin with a gentle start to the problem in Section 3.1 where we review the seminal
analysis of expansive spaces first presented by Hsu et al. [1999a]. We then define the optimal
path planning problem in Section 3.2. We describe a framework in Section 3.3 that aids in the
design process of path planning algorithms by exploiting the particular structure of different
problems. We consolidate this framework with 3 different novel planning algorithms. Section 3.4
presents a hybrid local global search, RABIT* [Choudhury et al., 2016a], that exploits the
presence of difficult to sample homotopy classes. Section 3.5 presents a 3D visibility graph
search, SPARTAN-Lite [Nuske et al., 2015], that exploits the geodesic properties of a path
in an environment with sparse obstacle clusters. Section 3.6 presents a reachability informed
graph search, RRT*-AR [Choudhury et al., 2013], exploits the reachability volume of a system
to prune away infeasible edges to accelerate search. Finally, Section 3.7 presents a theoretical
perspective on the relation between the distribution of obstacles in an environment and the
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Figure 3.1: “The narrow passage”: a classic example from Hsu et al. [1999a]. A configuration space whose
connectivity is difficult to capture via random sampling due to the presence of a long and narrow passage.
Randomly sampled roadmaps end up having multiple connected components instead of one.

planning resolution that can guarantee the existence of a solution.

3.1 A gentle start

Path planning is a fundamental problem in robotics [Latombe, 1991]. Given the geometry of
a robot and obstacles, a path planner is required to generate a collision-free path between an
initial and a goal configuration. Reif [1979] showed that a complete planner, i.e. a planner that
finds a path if one exists and indicates none otherwise, will take time exponential in the number
of degrees of freedom. Since then, a plethora of approximation based strategies have arisen that
have shown good empirical performance.

However, the finite time performance of these strategies have been found to vary significantly
on varying the configuration of obstacles. This has led to a situation where there is no clear
consensus on what is the best planning strategy to employ. In this section, we wish to shed some
light on the question:

How is the finite time performance of a planning approach affected by the configu-
ration of obstacles?

We examine this question in the context of sampling based planning. We review the seminal
analysis of Hsu et al. [1999a] that answers this question by crisply characterizing the nature of
the configuration space. We then use the framework to examine the role statistical methods can
play in planning.

3.1.1 The shape of free space

We now introduce a few simple notations that will help us characterize the shape of the space in
which we plan. We follow Hsu et al. [1999a] and analyze the geometric path planning problem.
The configuration (or state) of the robot specifies its position and orientation with respect to
a fixed world frame. Let X be the configuration space, i.e. the set of all such configurations. A
subset of these configurations, O ⊂ X are in collision with obstacles, and Xfree = X \ O is the
resulting free space.

We are examining a class of sampling based roadmap planners. They typically construct a
roadmap graph G = (V, E) to approximate the connectivity of Xfree. Configurations are sampled
uniformly at random from X, checked if they are free and retained in V as milestones. An edge
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Figure 3.2: (a) Illustration of expansive space characterization with α, β. The narrow passage must have one of
these parameters to be small. (b) If we push α to 1, β drops to 0. (c) We cannot drive β to 1. We can at most
drive it to c < 1 at which points α becomes 0

is created between two milestones if the straight line joining them lies entirely in Xfree. The
roadmap graph is then queried with a start xstart and goal xgoal configuration. The hope is that
since the roadmap is approximating the connectivity of the free space, if a path exists between
(xstart,xgoal) that lies in Xfree, then there also exists a path in G.

Narrow passages in Xfree (illustrated in Fig. 3.1 pose a significant difficulty to such planners
because the probability of picking random milestones that are connected by straight lines through
such passages is small. For the example in Fig. 3.1, if we fail to sample a pair of such milestones,
the roadmap G will contain two connected components, one in each globe, and will not reflect
the connectivity of Xfree which has one connected component.

We now try to mathematically capture this phenomenon by characterizing the free space
Xfree using 3 numbers α, β, ε. For any subset S ⊆ Xfree, let µ(S) denote the volume of the set.
For convenience assume µ(Xfree) = 1. Two configurations are visible if they are connected by a
straight line in Xfree. We will also for simplicity assume Xfree has only one connected component
(the analysis holds for multiple).

Let V (x) ⊆ Xfree denote the region visible from a configuration x ∈ Xfree. Given a set
S ⊆ Xfree and β ∈ (0, 1), we define the Lookout(S) to be the set of points in S that can see at
least β fraction of the complement of S.

Lookout(S) = {x ∈ S | µ(V (x) \ S) ≥ β × µ(Xfree \ S)} (3.1)

We are now ready to characterize a space.
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Definition 3.1 (Expansive Space). Let α, β, ε be constants in (0, 1). The free space Xfree is
(α, β, ε)-expansive if

1. Sufficient visibility: For every point x ∈ Xfree, µ(V (x)) ≥ ε

2. Sufficient lookout: For any subset S ⊆ Xfree, µ(Lookout(S)) ≥ α× µ(S)

The intuition is that α and β correspond to volume of points that can contribute to new
visibility regions. Say we sample a set of points M which have a combined visibility region S.
A large α, β implies that it will be easy to find points (because of large α) that will expand the
visibility significantly (because of large β). This will “expand” S till it covers the whole space,
and we have enough information to solve the problem.

We now examine the narrow passage once again and try to characterize its α and β as shown
in Fig. 3.2. We can take S to be one globe of the free space Xfree. Then there is a very small
portion of S that can see a large portion of its compliment. This implies either one of α or β
has to be small. If we take β to be large enough, α will eventually have to be 0 because of the
narrow passage.

3.1.2 What makes a narrow passage difficult?

We now ask the question - “How does a small α, β increase planning difficulty?” We will answer
this question by linking the connectivity of the free space to the connectivity of the roadmap.

We begin by defining the linking sequence of a point x ∈ Xfree. The linking sequence is a
sequence that monotonically increase the cumulative visibility region of the previous points in
the sequence

Definition 3.2 (Linking Sequence). The linking sequence of a point x ∈ Xfree is a sequence of
points x0 = x,x1,x2, . . . and a sequence of sets V0 = V (x0), V1, V2, · · · ⊆ Xfree such that for all
i ≥ 1, xi ∈ Lookout(Vi−1) and Vi = Vi−1 ∪ V (xi). The sets are the cumulative visibility volume.
The points are cascaded lookouts.

We now will state two lemmas. Lemma 3.1 states that any set of randomly sampled config-
urations is likely to have a linking sequence of a given length for any point. Lemma 3.2 states
that the cumulative visibility volume monotonically increases.

Lemma 3.1 (Linking Sequences are Likely). Suppose that a set M of n milestones is chosen
independently and uniformly at random from the free space Xfree. Let s = 1

αε . Given any
milestone x ∈M , there exists a linking sequence in M of length t for p with probability at least
1− se−

n−t−1
s

Proof. Refer to Hsu et al. [1999a]

Lemma 3.2 (Cumulative Visibility Volume Monotonically Increases). Let vt = µ(Vt) be the volume
of the tth set Vt determined by the linking sequence x0,x1,x2, . . . for a point x ∈ Xfree. Then
vt ≥ 1− e−βt

Proof. Refer to Hsu et al. [1999a]
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Figure 3.3: (a) Addition of intermediate points (or bottlenecks) (b) These implicitly results in decomposition
into expansive components which explains why a connected roadmap becomes more likely.

We now state the main theorem which is a consequence of the two lemmas. As milestones
are sampled, any two milestones are likely to have increasingly longer linking sequence with
increasingly larger cumulative visibility volume. Eventually the volumes will intersect and the
two milestones will be connected.

Theorem 3.3 (Roadmap Connectivity). Let γ ∈ (0, 1) be a constant. Suppose a set S of 2n
milestones, for n =

⌈
8

log( 8
εαγ

)
εα + 3

β + 2
⌉
, is chosen independently and uniformly at random from

the free space Xfree. Then with probability at least 1− γ, the roadmap is a connected graph.

Proof. Refer to Hsu et al. [1999a]

Note that as α, β, ε get larger, the space becomes more expansive and the number of mile-
stones required decreases in inverse proportion. Conversely, as α or β become small, the number
of samples required increase significantly. This implies that when run for a finite time budget,
uniform sampling based approaches would not be able to find the path passing through the
passage.

3.1.3 How can learning play a role?

Fortunately, the analysis does not stop at this negative result. Hsu et al. [1999a] point out
that for some problems the location of narrow passages is obvious to the human user. If he
were to insert some interim points x1, . . . ,xn, the planner simply has to find paths connecting
consecutive points. The notion of expansive spaces is useful in explaining what points would be
useful and why.

We re-examine the narrow passage problem in Fig. 3.3. By specifying the intermediate points,
the user increases the likelihood that sampled points in the passage will likely be link to the
connected component of the roadmap belonging to at least one of the milestones. This will enable
all connected components to eventually link up to one another resulting in a fully connected
roadmap.

The underlying explanation is that by specifying the points, we effectively decompose Xfree
into a number of expansive components K0,K1, . . . ,Km which can be possibly overlapping. Each
of this expansive components corresponds to a αi, βi, εi. These values will be much larger than
the original space because none of these components themselves contain a narrow passage. Note
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that we are not explicitly decomposing the Xfree. Also note that expansive space decomposition
is much more relaxed than decomposing into convex cells.

Hsu et al. [1999a] end on a note that is very pertinent to this discussion

“An open problem is, of course, to generate these intermediate points automatically.
It would not only relieve the user of the burden of specifying intermediate points,
but also help in situations where narrow passages are not obvious to the user. This
problem may not have an efficient general solution, but maybe solvable in some
specific planning environments”

We expand on this point and look to answer the question of whether we need statistical
approaches, and if so what should we look to learn. We build up our insight through a series of
question answers

Q 1. How can we generalize the notion of these “intermediate points”?

Let us begin by examining the necessary properties of the intermediate points. They appear
to be at the junction of two expansive components Ki and Ki+1. However, the union of these
components is not an expansive component. Hence these points are actually bottlenecks - loca-
tions through which paths connecting two components have to pass. The necessary criteria can
be stated as

Definition 3.3 (Bottleneck points). A bottleneck point xb must belong to 2 components xb ∈ K1
and xb ∈ K2 which are (α1, β1, ε1)-expansive and (α2, β2, ε2)-expansive respectively such that

1. Both components are expansive i.e. α1, β1, α2, β2 > τ

2. The union of the components K12 = K1 ∪ K2 is less expansive, i.e. α12, β12 ≤ τ .

Q 2. Can we algorithmically compute bottleneck points? Given a candidate, can we judge its
utility?

It is indeed very computationally expensive to ascertain whether a given point is a bottleneck.
This involves determining the two expansive components, which in theory could be as difficult
as finding a path joining start and goal.

Even if we were given a candidate point, it might be the case that path joining the start and
goal query does not pass through the bottleneck. There would be no way of knowing this apriori
to planning. The only way to judge the utility would be to plan with the point and evaluate if
indeed it helped reduce planning time.

Q 3. Can we use statistical techniques to obtain these bottleneck points?

Since we know that bottleneck points are locations through which paths joining start and
goal queries must pass through always, this certainly points to the fact that we can use clustering
techniques to determine suitable bottleneck points. We can collect a database of problems, solve
these problems offline, collect the solutions and cluster the configurations. To generalize to
different problems, we can consider extracting some local context about the point and learning
a model. This can then be used in test time to sweep over the space and generate these points.
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We can also use domain knowledge to create a library of planning strategies, each using
different bottleneck points. We can then look to learn a mapping from planning problem to
strategy.

3.2 The optimal path planning problem

We now define the optimal path planning problem that we wish to solve as an interim step
to addressing the kinodynamic motion planning problem (Problem 1). The overall aim is to
compute a path from start to goal that minimizes an objective while remaining in collision free
space and satisfying bounds on its derivatives.

Let X ⊆ Rn be the state space of the planning problem, O ⊂ X be the states in collision
with obstacles, and Xfree = X \O be the resulting set of permissible states. Let xstart ∈ Xfree be
the initial state and Xgoal ⊂ Xfree be the set of desired goal states. Let ξ : [0, 1]→ X be a path
which is defined as a function that maps an index τ ∈ [0, 1] to a state x ∈ X. A set of inequality
constraints is imposed on the path and its derivatives q (ξ) ≤ 0. Hence, we are restricted to
search in the space of feasible paths denoted by Ξ.

Problem 2 (Optimal Path Planning). The optimal planning problem is then formally defined as
the search for the path, ξ∗, that minimizes a given cost function, c : Ξ→ R≥0, while connecting
xstart to xgoal ∈ Xgoal through free space,

ξ∗ = arg min
ξ∈Ξ

{c (ξ) | ξ (0) = xstart, ξ (1) ∈ Xgoal,

∀τ ∈ [0, 1] , ξ (τ) ∈ Xfree} ,
(3.2)

where R≥0 is the set of non-negative real numbers.

Note that the efficacy of the design decision to reduce the original kinodynamic motion
planning problem in Problem 1 to the path planning problem in Problem 2 is dependent on the
post-processing module that will assign a time profile to the path followed by possible filtering /
smoothing steps. Moreover, there maybe several such reductions that work well. In the interest
of clarity, we defer reasoning about such choices to a later time in Chapter 4 and shift our focus
on techniques to effectively solve optimal path planning problems once they have been defined.

3.3 A framework for systematically assembling planning algorithms

Having defined the path planning problem in Problem 2, we wish to systematically reason about
choosing a planning algorithm that is likely to meet performance requirements. The space of
candidate algorithms is very large and intractable to search over. Even if one were to choose
between two candidate planning algorithms, there isn’t a clear one to one mapping to allow a
fair comparison. The lack of such a mapping stems from the inherent hybrid nature of planning
algorithms - they consist of algorithmic operations interleaved with domain dependent decision
making.

A comprehensive framework for reasoning about a vast number of incremental planning
algorithms was proposed by LaValle [2006] (Section 14.3.4). While such a framework is indeed
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very expressive, we follow a simpler framework prescribed by Pearl [1984] (Section 2.3.1). Broadly
speaking, a planning algorithm is an operation that converts an implicit state-space graph to an
explicit search tree. We define these two components as follows:

Definition 3.4 (Implicit State-Space Graph). Let G = 〈Xsamples, Near, Steer〉 be an implicit state-
space graph which is represented as a tuple with the following elements:

Candidate States: A set of candidate states Xsamples ⊂ X which serve as the vertices
of the graph.

Near Function: A function Near (v) that returns the set of near states Xsucc ⊆
Xsamples given a vertex v. Note that this function can be an algorithmic operation
that can take the state of the search as input to allow more flexibility. This function
can also specify if successor or predecessor states thus expressing a directed nature
of the graph.

Steer Function: A steering function Steer (x,y) returns a dynamically feasible path ξ
joining x and y. For instances where such a boundary value problem (BVP) cannot
be efficiently solved, this framework is not suitable and the reader is referred to
approaches such as Hsu et al. [2002], Li et al. [2015], Paden and Frazzoli [2016].

Definition 3.5 (Explicit Search Tree). We define T = (V, E) to be an explicit tree with a set of
vertices, V ⊂ Xfree, and edges, E = {(v,w)} for some v, w ∈ V. Given a tree T , the path from
start state xstart to a vertex v is given by ξT (v). Hence the cost of a solution computed by the
search procedure is c (ξT (xgoal)).

We now have the required components to define an incremental planning algorithms as
follows:

Definition 3.6 (Incremental Planning Algorithms). An incremental planning algorithm at iteration
k interleaves the following two steps

1. Incremental Search
T k+1 = Search

(
Gk, T k

)
2. Incremental Graph Update

Gk+1 = Update
(
Gk, T k+1

)
Thus an incremental planning algorithm traces out the following sequence over iterations(

T 0,G0
)
→ T 1 → G1 → . . .Gb−1 → T b (3.3)

Having defined these components, we can now begin to have a systematic approach to assem-
bling planning algorithms by selection of an implicit state-space graph G and a search procedure
Search. We present examples from planning literature for both options, highlighting their ap-
plicability, and show how several state of the art planning algorithms can be viewed from this
perspective.
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3.3.1 Examples of implicit state-space graph

Example 3.1 (Random Geometric Graphs (RGG)). Randomly sampling states x uniformly
from the state space X, first popularized in motion planning by LaValle [1998], has retained its
importance over the years primarily due to its implementation ease. A randomly drawn sequence
enjoys the property of being probably dense, which allowed sampling based approaches such as
RRT to eventual discover feasible solutions to hard high dimensional problems. Its recent surge
in popularity, however, can be attributed to the connections made to random geometric graphs
(RGG) (Penrose [2003]) in seminal work by Karaman and Frazzoli [2010, 2011]. We first define
what we mean by an RGG in this context

Xsamples : States are sampled uniformly randomly x ∼ U(x)

Near : The Near (v) returns states from Xsamples depending on their geometric location with
respect to v. There are two categories - either the functions returns its nearest neighbours (a
k-nearest graph [Xue and Kumar, 2004]), or all neighbours within a specified distance (a r-disc
graph [Gilbert, 1961]).

Steer : The steer function Steer is required to solve a BVP online (due to states being randomly
drawn).

RGG theory provides probabilistic relations between the number and distribution of samples
Xsamples, the parameters of Near and asymptotic connectivity properties [Muthukrishnan and
Pandurangan, 2005, Penrose, 2003]). Karaman and Frazzoli [2011] showed conditions under
which such graph asymptotically capture the optimal solution.

While the asymptotic properties are attractive, one may wonder if these graphs contain
acceptable solutions if executed for a finite time. This is indeed the case when the free space
Xfree is well connected. In such situations, the connectivity nature of RGG results in graphs that
are able to successfully “shortcut” through free space. Even in cases where only certain sections
of Xfree enjoy connectivity, biasing the sampling distribution to contain vertices in such areas
allow RGGs to be very effective in practice and express paths relatively free of discretization
artifacts. In general, finite time performance of such graphs is a topic of active research [Dobson
and Bekris, 2013]. �

Example 3.2 (Low Dispersion / Discrepancy Graphs). An alternative to random sampling is
to optimize a criteria called dispersion [Niederreiter, 1978]. A low dispersion sampling implies
a guarantee on the coverage of the state space X. Dispersion generalizes the notion of grid reso-
lution. An incrementally updating low dispersion graph can be interpreted as an incrementally
densifying grid. The components are :

Xsamples : States are created by discretizing each dimension of X.

Near : The Near (v) returns adjacent states to v which is well defined given the regular nature
of the graph. The connectivity can be manually chosen to define the expressiveness of the graph.

Steer : Since the graph has spatial symmetry, the BVPs to compute dynamically feasible edges
can be computed as offline primitives.
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A Sukharev Grid [Sukharev, 1971] or a state lattice [Barraquand and Latombe, 1991] are
examples of low dispersion graphs. Such graphs work well in environments where obstacles are
spread out in the space. Such configurations reduce the usefulness of RGG which can no longer
“shortcut” through free space effectively. However, low discrepancy methods have well spread
out points making local connections, thus allowing them to have better connectivity.

In some situations, having axis aligned grids can hurt - for instance, a gap in a wall of
obstacle might not have an edge present in it. Discrepancy becomes a metric of choice in such
situations [Niederreiter, 1978]. Dispersion serves as a lower bound for discrepancy. The Halton
sequence [Halton, 1960] is an example of a low discrepancy sampling. Janson et al. [2015a]
showed properties that the Near must satisfy to provide optimality guarantees in finite time.

While low dispersion sampling methods are superior to sampling from uniform distributions,
they make an assumption that the planning space is an unit cube. Achieving this effect over
arbitrary volumes is hard, hence making these techniques difficult to use as is. �

The previous two examples are fairly problem agnostic. We now take a look at a more domain
specific family of implicit state-space graphs.

Example 3.3 (Geodesic Approximating Graphs). The ideal implicit graph would be one that
captures the optimal path and very little else such that a search procedure might efficiently
uncover it. For certain problems, such as 2D holonomic path planning with polygonal obstacles,
the visibility graph would be such a graph. In general, we would like the implicit graph to
approximate the geodesic, i.e., the optimal path between our query points is likely to lie on it.
This is akin to “biasing” sampling to pick good states and edges that have some likelihood of
advancing search. The components of such a graph can be described in a general sense as follows

Xsamples : A set of states that are likely candidates for being part of the optimal path (such as
lying tangential to the surface of obstacles)

Near : This function returns candidates that are likely to be connected if they are to be part of
an optimal path. For example, in the case of visibility graphs, edges which are not tangential
cannot be part of the optimal path and hence will not be contained in the graph.

Steer : This can remain standard such as using a BVP solver.

Approaches that bias sampling in “promising areas” [Diankov and Kuffner, 2007, Kiesel
et al., 2012, Palmieri et al., 2016] fall into this category. Hence this is a useful tool to exploit
problem structure. Such implicit graph tend to have a high variance in their performance -
on problems where the assumptions are met, they produce high quality solutions in real-time,
however may fail catastrophically in situations where they are not met.

�

3.3.2 Examples of Search procedures

Example 3.4 (Incremental Informed Search). Pearl [1984] (Section 2.3.1) describes a basic
structure for informed search. An informed search is a systematic procedure for visiting vertices
in the implicit graph in order of promising nature, and assigning them a parent each. A slight



3.3. A framework for systematically assembling planning algorithms 37

modification to this framework allows this procedure to be incremental as described in Algorithm
1.

Algorithm 1: InformedSearch (G, T )
1 Q ← T ;
2 while Q 6= ∅ do
3 vm ← BestInQueue (Q) , Q −←− vm;
4 if vm = xgoal then
5 break;
6 for wm ∈ Near (vm, T ∪ G) do
7 if (vm,wm) /∈ T then
8 if gT (vm) + c ((vm,wm)) < gT (wm) then
9 T −←− {(v,wm) ∈ T };

10 T +←− (vm,wm);
11 if wm /∈ Q then
12 Q +←− wm;

13 return T ;

The algorithm proceeds as follows. The current search tree is entered in a priority queue
(Line 1). Then the following process loops till the queue is empty. The most promising vertex
in the queue is popped (Line 3). As long as this is not the goal vertex (Line 4), potential outgo-
ing connections are considered (Line 6) and optimal parent assigned (Line 10). The algorithm
enjoys nice guarantees such as optimality as long as the queue sorting condition satisfies certain
properties. Incremental informed search can be implemented efficiently under the framework of
life long planning [Koenig et al., 2004]. Lazy edge evaluations also improve performance [Cohen
et al., 2015, Dellin, 2016, Gammell et al., 2015]).

This search method can be used to exploit problem structure by changing the heuristic that
drives the search in Line 3. For a full exposition on heuristics, their nature and how they can be
designed for a problem, refer to Pearl [1984]. �

Example 3.5 (Local Policy Iteration). While the systematic search in Algorithm 1 enjoys
properties such as optimality, it requires re-evaluating all vertices that are likely to have a
better path from the start at each iteration. This can scale as the number of vertices increase. A
thing to note is that since the Search procedure isn’t required to have the optimal solution with
respect to the graph it has seen at an interim stage. A procedure that asymptotically approaches
this would suffice.

Local policy iteration is one such procedure. Whenever this incremental Search procedure
is invoked, it examines new samples added to the implicit graph and updates the search tree
directly affected by these samples. The observation that this procedure is a local policy iteration
was made by Arslan and Tsiotras [2016].

Algorithm 2 describes the procedure. The new sample is obtained (Line 1) and assigned the
locally best parent (Line 2-4). The local vertices in the search tree are re-wired subsequently
(Line 5-8).



38 Planning Algorithms that Exploit Structure

Algorithm 2: LocalPolicyIteration (G, T )
1 xm ← GetSample (G);
2 Xnear ← Near (xm, T );
3 vm ← arg min

v∈Xnear

gT (v) + c ((v,xm));

4 T +←− (vm,xm);
5 for v ∈ Xnear do
6 if gT (xm) + c ((xm,v)) < gT (v) then
7 T −←− {(x,v) ∈ T };
8 T +←− (xm,v);

9 return T ;

A variant of the above procedure is to update the values of the entire search tree. This would
be performing value iteration. Arslan and Tsiotras [2013] compute this via Gauss-Seidel step.
This search procedure also allows the flexibility of choosing if a sample is “promising” enough
to perform a local update [Arslan and Tsiotras, 2015]. �

3.3.3 Assembling planning algorithms

We will now show how various implicit state graphs G, and incremental search functions Search
can be combined to produce planning algorithms. Table 3.1 shows a handful of planning algo-
rithms from recent literature as a sum of such components.

We present 3 specific algorithms in Section 3.4, 3.5 and 3.6 that assemble planning algorithms
to exploit a particular structure.

Table 3.1: Planning algorithms as sum of components

Planning Algorithm Implicit Graph (G) Incremental Search (Search)

RRT* [Karaman and Frazzoli, 2010] Random geometric graphs Local policy iteration
RRT# [Arslan and Tsiotras, 2013] Random geometric graphs Local policy iteration

with Gauss-Seidel relaxation
InformedRRT* [Gammell et al., 2014] Random geometric graphs Local policy iteration

with informed samples
FMT* [Janson et al., 2015b] Random geometric graphs Single-pass informed search
BIT* [Gammell et al., 2015] Random geometric graphs Incremental informed search

with informed samples with lazy edge evaluation
gPRM [Janson et al., 2015a] Low discrepancy sampling Single-pass informed search

using Halton sequences
hRRT [Urmson and Simmons, 2003] Random graph biased around Local policy iteration

promising leafs of search tree
RA* [Diankov and Kuffner, 2007] / Random graph biased around Incremental informed search
SBA* [Persson and Sharf, 2014] promising leafs of search tree
LBT-RRT [Salzman and Halperin, 2015] Random geometric graph Local policy iteration

with edges filtering criteria
State Lattice [Pivtoraiko et al., 2009] Multi-resolution lattice Incremental informed search

with feasible motion primitives with down-sizing heuristic
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3.4 Example algorithm 1: Hybrid local global search (RABIT*)

Consider the application where a helicopter is required to fly through a mountainous terrain as
shown in Fig. 3.4(a). In addition to this, there are no fly zones that may dynamically appear to
designate the presence of radio towers or power-lines that the system must also stay clear of. On
examining the corresponding path planning problem, shown in Fig. 3.4(b), we see the presence
of “difficult-to-sample” homotopy classes. On the other hand, the solution to such a problem
may not be uncovered by a pure local search approach.

Start

No Fly  
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Goal
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(a) (b)

Figure 3.4: An instance of planning problems containing difficult to sample homotopy classes (a) A helicopter
flying in the mountains with no fly zones appearing dynamically (b) The corresponding planning problem shows
that an effective implicit graph for this problem requires edges to “bend” around obstacles. This is because these
regions are difficult to sample to discover a collision free edge.
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Figure 3.5: An illustration of how the RABIT* algorithm uses a local optimizer to exploit obstacle information
and improve a global search. (a) The informed search evaluates the potential edge from xi to xk first as it could
provide a better solution than an edge from xi to xj . (b) The search optionally invokes the local optimizer in
the Steer (xi,xk). (c) This process repeats to create a hybrid search tree where some of the edges are locally
optimized.

We present a hybrid planning algorithm, Regionally Accelerated BIT* (RABIT*) [Choud-
hury et al., 2016a], that integrates the benefits of both methods into a single search. A key
insight is that applying local optimization to a subset of edges likely to improve the solution
avoids the prohibitive cost of optimizing every edge in a global search. This is made possible by
Batch Informed Trees (BIT*) [Gammell et al., 2015], an informed global technique that orders
its search by potential solution quality. In our algorithm, we extend BIT* by using optimization
to exploit local domain information and find alternative connections for edges in collision and
accelerate the search. This improves search performance in problems with difficult-to-sample
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homotopy classes (e.g., narrow passages) while maintaining almost-sure asymptotic convergence
to the global optimum.

RABIT* can be understood from the viewpoint of our framework as follows.

Implicit Graph (G): The underlying implicit graph is an informed random geometric
graph (as used in BIT* [Gammell et al., 2015]) with one critical modification. The steer
function, Steer (x,y) can optionally invoke a local optimization method - in this case
CHOMP [Ratliff et al., 2009a].

Incremental Search (Search): The search method is an informed incremental search using
lazy edge evaluation (as used in BIT*). The algorithm uses a heuristic rule to detect if an
edge is in a potential bad local minima to reason about whether to invoke the optimization
option in the steer function as shown in Fig. 3.5.

RRT* Informed RRT* BIT* RABIT*

(a)
Cost: Inf Cost: Inf Cost: 1.67 Cost: 1.57

(b) (c) (d)

Figure 3.6: The results after 0.2 seconds of RRT*, Informed RRT*, BIT*, and RABIT* on a random R2 world.
Note how RABIT* uses local information to find a path through the optimum narrow gap with fewer samples
than BIT*, as well as how the path bends around obstacles.

To systemically evaluate RABIT*, it was run on randomly generated worlds in R2 (shown
in Fig. 3.6) and R8 (shown in Fig. 3.7(a),(b)). The worlds consisted of a (hyper)cube of width 2
divided in half by a wall with 10 narrow gaps. The world also contained random axis-aligned (hy-
per)rectangular obstacles such that at most one third of the environment was obstructed. This
allowed us to randomly generate challenging planning problems that had an optimal solution
passing through a difficult-to-sample narrow passage. RABIT* was compared to publicly avail-
able Open Motion Planning Library (OMPL) implementations of RRT, RRT-Connect, RRT*,
Informed RRT*, and BIT*. To quantify the results, we calculate the time for each algorithm
to reach 90% of its final value. In R2, RABIT* takes 0.215s compared to BIT*’s 0.179s. In
R8, RABIT* takes 0.262s compared to BIT*’s 0.471s. These results show that in R2 RABIT*
performs similarly to BIT*; however, that in R8 RABIT* finds better solutions faster on these
problems with difficult-to-sample homotopy classes.

To evaluate RABIT* on real planning problems, it was run on a recorded flight mission of
an autonomous helicopter. The autonomous helicopter operates at speeds of up to 50 m/s in
challenging environments that may contain difficult-to-sample features such as valleys. Plans
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must obey the dynamic and power constraints of the vehicle (including climb-rate limits) and
completely avoid obstacles, a planning problem that is difficult to solve in real-time.
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Figure 3.7: The results from representative worlds in R8 and on real data from autonomous helicopter exper-
iments show the efficacy of RABIT* in converging quickly to a high quality solution. For the chosen random
worlds, (a) shows the percentage of the 100 trials solved versus run time, while (b) shows the median solution cost
versus run time. (c) The results of a planning problem encountered during flight tests of an autonomous helicopter
in Mesa, Arizona from a start (green dot) to a goal located 4.91 kilometres away (red dot). Examples of inevitable
collision states (red cones) and useful states (green cones) are shown on evidence map to illustrate the difficulty
of navigating the through the valley. RABIT* is able to use edges proposed by a local optimizer to find a path
through the valley (green, 5.0 kilometres), which BIT* is unable to navigate the valley (blue, 6.17 kilometres) and
CHOMP finds an infeasible local optima.

Sensor data collected from test flights over Mesa, Arizona were used to propose a planning
problem around mountains (Fig. 3.7(c)). This problem is challenging because the helicopter’s
constraints create a large number of states from which no collision-free path can be found
(inevitable collision states). These states reduce the connectivity of the free space and increase
the inherently difficult problem of sampling a valid path through the narrow valley.

This problem was used to compare the ability of BIT*, CHOMP, and RABIT* to plan for
a vehicle with restrictive constraints given limited computation time (2 seconds). These results
demonstrate how RABIT* combines the benefits of global and local techniques. CHOMP uses
cost-gradient information but can become stuck in poor local minima when optimizing long
paths, failing to find a feasible solution. BIT* almost-surely converges asymptotically to the
global optimum but has difficulty sampling the valley in the available time, finding a path that
goes around the mountain (6.17 kilometres). RABIT* uses the local optimizer on short paths to
help find narrow passages and a global search to avoid infeasible local minima, finding a path
through the valley (5.0 kilometres).

Hybrid search can have much greater benefit for problems other than geometric planning,
such as planning on vector fields [Pereira et al., 2016].
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3.5 Example algorithm 2: 3D sparse visibility graph (SPARTAN-Lite)

Consider the scenario of a micro aerial vehicle (MAV) flying in outdoor unstructured environment
as shown in Fig. 3.8. Such environments have obstacle clusters, such as trees or buildings that
the robot is required to fly around without significant deviations. It is desirable for the optimal
path to “bend” smoothly around obstacles as it joins start and goal states.

TREE
ROBOT

GOAL

START

TREE

SPARSE OBSTACLE
CLUSTERS

(a) (b) (c)

Figure 3.8: Planning problems encountered by a micro aerial vehicle (MAV) flying outdoors (a) The MAV is
expected to fly around trees that occur in clusters (b) A close up of the MAV avoiding a tree (c) The robot’s
perspective shows a cluster of obstacles. It creates a sparse graph (blue) that bends around obstacles and contains
a high quality solution (green) that can be uncovered easily
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Figure 3.9: Illustration of SPARTAN-Lite algorithm (a) An example of the sparse tangential network created by
SPARTAN-Lite. Only the incoming edges for expanded vertices are shown in blue. (b) The tangent filter projects
edges on the plane containing the normal to the obstacle surface. It only allows outgoing edges that bend towards
obstacle upto a threshold. (c) The planar filter projects edges on the plane perpendicular to the normal and allows
outgoing edges that have a bounded deviation

We present an approach, SPARTAN-Lite [Nuske et al., 2015], to approximate 3D visibility
graphs which are NP-Hard in general [Canny, 1988b]. Leveraging incremental approaches to
calculate distance fields from occupancy grids [Lau et al., 2010], we spawn vertices on a manifold
on the surface of obstacles [Cover et al., 2013]. Exploiting properties of geodesics on smooth
manifolds, only edges that are likely to be part of the optimal path are allowed creating a sparse
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tangential network as shown in Fig. 3.9(a).

Table 3: Complexity analysis for SPARTAN-lite

Procedure Complexity
Addition to Queue N log N
Tangential Check N2

Collision Check
p

3|G|⇠(⇢)N2

Analytic Cost Calculations ⇠(⇢)N2

Queue Update ⇠(⇢)N2 log N
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SPARTANLite Path
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Figure 10: (a) SPARTAN computes a higher quality path in a smaller time period than RRT*. The envi-
ronment is an occupancy map from a scanned bridge coloured by height above ground (pink cells are low z
and light blue cells are high z [grayscale: dark is low z, light is high z]). SPARTAN solution is shown in solid
thick red - it has acceptable path quality and is computed within 0.55s. SPARTAN-lite computes the same
path in 0.38s. RRT* solution after 0.55s is shown in thick dotted blue - the path is of poor quality with large
angular deviations. The RRT* path after 400s is shown in solid thin green - the quality of the path is not
significantly di↵erent from SPARTAN. (b) SPARTAN-lite maintains a sparse graph even in a complicated
environment. Then environment is a poisson forest of cylinder obstacles whose surface is densely sampled.

7 Experiments

We validate our method in a set of experiments, beginning with controlled simulations executed within maps
of artificially engineered examples and real-world data. We continue with results from autonomous flights
over rivers, and waterways, and we also present open loop comparison with a human operator on real-world
data.

7.1 Motion Planning Simulation Experiments

The objective of the first set of experiments was to compare SPARTAN to a state of the art motion planner
on the planning problems that are likely to occur for river exploration. Given the requirement of producing
a smooth 3D path, a generic RRT* was chosen for comparison. A recorded laser scan of an environment

Table 4: Comparison for 116 planning problems chosen on an environment constructed from laser scans of
an outdoor environment

Algorithm Success Average Cost Average Time (s)
SPARTAN 100% 2878(±950) 0.071(±0.087)

RRT* 76.72% 3472(±1240) 0.102(±0.003)
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SPARTAN 100% 2878(±950) 0.071(±0.087)

RRT* 76.72% 3472(±1240) 0.102(±0.003)
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SPARTANLite

Figure 3.10: SPARTAN-Lite outperforms RRT* (a) A simulated forest with random trees where the robot has
to plan around obstacles. The SPARTAN-Lite graph is shown (b) Computation times and solution costs for both
algorithms

SPARTAN-Lite can be understood from our framework as follows:

Implicit Graph (G): The underlying implicit graph is an approximate visibility graph.
The set of vertices are spawned on the surface of obstacles during the expansion step of
incremental distance transforms operating on the occupancy grid. The successor function
Near (v) returns vertices such that the joining edge is likely to be part of the optimal path
(i.e. be a geodesic). Hence a set of filters are applied to remove edges from the otherwise
fully connected graph. The first such filter is a tangent filter that only allows edges that
bend around obstacles while being tangential as shown in Fig. 3.9(b). The second filter is
a spatial filter that restricts the deviation between incoming and outgoing edges passing
through a vertex.

Incremental Search (Search): The search method is a single pass informed search.

3.1.3 Example Algorithm 2: 3D Visibility Graph Search (SPARTAN-Lite)

Blurb: A sparse visiblity graph.

Motivation: Quadrotor flying through outdoor areas. Sparse obstacle clusters.

Implicit graph: Samples located on the wavefront, steer straight line. However successor function
mimics geodesic.

Search: A*

Results: SPARTLAN-lite v/s SPARTAN v/s RRT*

Table 3.2: Stats

Statistic Value

Planning Time (s) 0.175(±0.199)
Vertex Computation (s) 0.785(±0.661)
Total Distance (m) 1744.8
Speed (m/s) 1.395(±0.431)
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(a) (b) (c)

Figure 3.11: (a)An autonomous outdoor flight stress testing the motion planner. The robot explored an area
of 1.7 km from takeoff to touchdown. SPARTAN-Lite was able to produce collision free paths while the system
flew at an average speed of 1.4 m/s (b) A particular planning instance during the autonomous stress test run.
SPARTAN-Lite plans through a clearing in the trees. The search graph is relatively sparse compared to the
number of potential edges. (c) Statistics from the run
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Proofs and implementation details can be found in Nuske et al. [2015]. We evaluated
SPARTAN-Lite in a random world to emulate a forest like environment as shown in Fig. 3.10.
SPARTAN-Lite outperforms RRT* due to its sparse graphs. We also stress tested SPARTAN-Lite
in real outdoor experiments where it kept the robot collision free the entire time as shown in
Fig. 3.11.

3.6 Example algorithm 3: Reachability informed random graph (RRT*-AR)

Consider the scenario of motion planning for an autonomous helicopter whose engine has failed
as shown in Fig. 3.12. The helicopter enters a phase known as autorotation where it has to
fly along a profile that preserves its kinetic energy which can be traded off near the ground
to cushion its landing. In this phase, the reachability of the vehicle is severely restrictive and
filters out the set of allowable edges that can exist. A search approach that is agnostic to this
structure would waste a considerable amount of times considering edges that are not likely to
be dynamically feasible.

Forward Reachable Set

Sensor Range

(a) (b)

LZ1LZ2

Figure 3.12: Planning problems encountered by an autonomous helicopter whose engine has failed and must
land safely (a) Since the helicopter cannot hover in place, it must immediately plan to land. As the world is only
partially known, it must plan for contingencies simultaneusly (b) The problem is hard given the limited range of
the sensor and the restriction imposed by the reachability volume of the vehicle

We present an algorithm, RRT*-AR [Choudhury et al., 2013, 2014] that conducts a random
graph search with modifications to ensure plans are found quickly to multiple goal points. We
wish to highlight one key aspect of this algorithm - the modification to the nearest neighbour
function. The function is “informed” by the reachability of the vehicle to return states that
are likely to be connected by the BVP. Note that this is merely empirical - for a theoretical
treatment of the issue, refer to work done by Karaman and Frazzoli [2013].

RRT*-AR can be understood from our framework as follows

Implicit Graph (G): The underlying implicit graph is a random geometric graph. The
Near (v) is modified to return a different set for predecessors or successors as illustrated in
Fig. 3.13(b),(c). For predecessors, it “shifts” the NN ball in the direction of the backward
reachability set XBRS to return the set Xback

near . Similarly, for successors, it “shifts” the NN
ball in the direction of the forward reachability set XFRS to return the set X front

near .
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Figure 3.13: Illustration of the Near (v) of RRT*-AR. (a) The Near (v) for a nominal RGG performs a symmetric
lookup (b) In RRT*-AR, while computing the set of predecessors, the NN ball is shifted to cover a larger area of
the backward reachable set (c) Similarly, while computing successors, the NN ball is shifted towards the forward
reachable set.

Incremental Search (Search): The search method is an informed incremental search using
lazy edge evaluation (as used in BIT* [Gammell et al., 2015]). This is the local policy
iteration, with speedups enabled by using approximations.

For proofs and implementation details, refer to Choudhury et al. [2013]. RRT*-AR was eval-
uated on a synthetic dataset of planning problems by simulating engine failure in a mountainous
region to create 3318 problems. It was compared to RRT* algorithm which does not modify the
Near (v) function. Fig. 3.14(a) shows RRT*-AR is able to compute the initial path faster and
have faster convergence. Fig. 3.14(b) compares the solution quality of the two algorithms at
different times during the search, thus showing the efficiency of RRT*-AR.
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Figure 3.3: illustration
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Figure 3.4: algorithm

3.1.4 Example Algorithm 3: Reachability Informed Random Graph Search
(RRT*-AR)

Blurb: A RGG graph where NEAR operation is modified to incoroporate reachability.

Motivation: Autorotating helicopter

Implicit graph:

Table 3.2: Comparison on 3318 planning problems

Algorithm Cost Cost Time to
t = 0.6s t = 1.0s cost = 1.1

RRT* 1.97(±1.28) 1.60(±0.86) 4.40(±1.28)
RRT*-AR 1.65(±1.03) 1.37(±0.61) 2.62(±1.07)
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(b)

Figure 3.14: Comparison of RRT*-AR with RRT* on a dataset of 3318 challenging problems. (a) Plot of the
mean normalized solution cost of the two algorithms (b) A table of the mean and standard deviation of normalized
cost at key instances during the search

3.7 Theoretical limits of planning resolution

We briefly summarize our work on understanding the theoretical Limits of speed and resolution
for kinodynamic planning in a Poisson forest originally presented in Choudhury et al. [2015b]
with further derivations in Choudhury [2015].
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There has been an extensive amount of work in developing planning algorithms that perform
a discrete search on a state lattice [Dolgov et al., 2010, Heng et al., 2011, Hwangbo et al.,
2007, Likhachev and Ferguson, 2009, Lindemann and LaValle, 2006, MacAllister et al., 2013,
Pivtoraiko et al., 2009]. The success of planning algorithms in practice depends on two key
factors. Firstly, what is the maximum speed at which a collision free trajectory is guaranteed to
exist with a high probability? If the robot violates this speed limit, there is a non-zero probability
that it will encounter situations where a collision free trajectory does not exist, irrespective of the
planning algorithm being used. Secondly, if the robot is operating below the speed limit, what
is the minimum planning resolution of an algorithm such that it can compute a collision free
trajectory? This controls the trade-off between time complexity and the success of the planning
algorithm. The answer to both of these questions is fundamentally linked to the dynamics of the
robot and the density of obstacles in the environment.

Figure 3.15: Robot dynamics affect maximum speed and minimum planning resolution. The less conservative
dynamics of the quadrotor allow for a higher speed as well as planning with a coarser resolution while still ensuring
collision free motion.

Karaman and Frazzoli [2012a] solved the problem of the theoretical speed limit of a system
with single integrator dynamics flying in a Poisson forest. They show that the system undergoes
a phase transition - that above a critical speed there exists no infinite collision-free trajectory
with probability 1, while below this speed a path exists almost surely. By mapping the lattice
obtained from the single integrator dynamics to a regular lattice, they use known results from
discrete percolation theory [Bollobas and Riordan, 2006, Grimmett, 1999, Sahini and Sahimi,
1994] to compute bounds on the speed. They also show that the success of a planning algorithm
for a system with nonlinear dynamics undergoes a phase transition using arguments based on
k-independent bond percolation [Karaman and Frazzoli, 2012b]. However, they were unable to
show how one may compute explicit bounds for such problems because of the lack of usable
results in k-independent percolation theory.

In Choudhury et al. [2015b], we analyze both problems under a single framework and provide
expressions for the speed limit and resolution limit as a function of robot dynamics and obstacle
density. The major milestones of our approach are
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1. We show that solutions to both problems are equivalent to solving bond percolation on
a directed asymmetric hexagonal lattice. Any variation in the problem, robot dynamics
or obstacle density corresponds to different edge probabilities on the hexagonal lattice as
shown in Fig. 3.16.

In Choudhury et al. [37], we analyze both problems under a single framework and provide expres-
sions for the speed limit and resolution limit as a function of robot dynamics and obstacle density.
The major milestones of our approach are

1. We show that solutions to both problems are equivalent to solving bond percolation on a
directed asymmetric hexagonal lattice. Any variation in the problem, robot dynamics or
obstacle density corresponds to different edge probabilities on the hexagonal lattice as shown
in Fig. 3.13.
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Figure 3.13: Equivalence of state lattice with a directed asymmetric hexagonal lattice. (a) Adjacent vertices in a state
lattice along with the swaths of edges. Different zones correspond to regions of overlap of the swath. (b) An equivalent
hexagonal lattice which maps zones of the swath to edges on the lattice (c) The open cluster of a state lattice in the
presence of a Poisson obstacle field (d) The open cluster of the hexagonal lattice that is equivalent to the state lattice.

Under the assumption of an ergodic distribution of obstacles, the edge probabilities of pa and
pb are independent and depend on areas Z1, Z2, Z3 as follows

pa = e�⇢(Z1+Z2)

pb = e�⇢Z3
(3.3)

2. Since standard percolation theory lacks analysis of such a lattice, we map the hexagonal
lattice to a discrete time Markov chain An on the collection of finite subsets of integers. This
is illustrated in Fig. 3.14a. The two parameters in the chain are 0  p  q  1. Given An,
the events x 2 An+1 are conditionally independent and

P (x 2 An+1|An) =

8
><
>:

q if |An \ {x, x + 1}| = 2

p if |An \ {x, x + 1}| = 1

0 if |An \ {x, x + 1}| = 0

(3.4)

We apply the following theorem of the survival of the Markov chain from Liggett Liggett
[122].
Theorem 3.1. If the parameters p and q satisfy the inequalities

1

2
< p  1, 4p(1 � p)  q  1

then the Markov chain An satisfies P(8n : An 6= ;) > 0

38

Figure 3.16: Equivalence of state lattice with a directed asymmetric hexagonal lattice. (a) Adjacent vertices
in a state lattice along with the swaths of edges. Different zones correspond to regions of overlap of the swath.
(b) An equivalent hexagonal lattice which maps zones of the swath to edges on the lattice (c) The open cluster
of a state lattice in the presence of a Poisson obstacle field (d) The open cluster of the hexagonal lattice that is
equivalent to the state lattice.

Under the assumption of an ergodic distribution of obstacles, the edge probabilities of pa
and pb are independent and depend on areas Z1, Z2, Z3 as follows

pa = e−ρ(Z1+Z2)

pb = e−ρZ3
(3.4)

2. Since standard percolation theory lacks analysis of such a lattice, we map the hexagonal
lattice to a discrete time Markov chain An on the collection of finite subsets of integers.
This is illustrated in Fig. 3.17(a). The two parameters in the chain are 0 ≤ p ≤ q ≤ 1.
Given An, the events x ∈ An+1 are conditionally independent and

P (x ∈ An+1|An) =


q if |An ∩ {x, x+ 1}| = 2
p if |An ∩ {x, x+ 1}| = 1
0 if |An ∩ {x, x+ 1}| = 0

(3.5)

We apply the following theorem of the survival of the Markov chain from Liggett [1995].

Theorem 3.4. If the parameters p and q satisfy the inequalities

1
2 < p ≤ 1, 4p(1− p) ≤ q ≤ 1

then the Markov chain An satisfies P(∀n : An 6= ∅) > 0

3. The result can be applied to derive an upper bound for the critical probability for the di-
rected asymmetric hexagonal lattice bond percolation. Fig. 3.17(b) illustrates the mapping
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3 Speed Limit with Unconstrained Planning Resolution

Show pb goes to 1. Reduction to oriented bond percolation on Z2 (triangular) lattice.
Results for general dynamics, single integrator, dubins vehicle.
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1.4 Problem 1: Speed limit with unconstrained planning resolution
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Figure 3.14: (a) Illustration of the Markov chain defined in (3.4) as a collection of subsets of integers on the number
line. At time slice n, the set An is shown by elements in the rectangle. The transition probabilities of elements with
a neighbour in An is shown as q while elements with one neighbour is shown as p. (b) The hexagonal lattice is
represented as the Markov chain. Each vertex is assigned an integer to map to the integer line. A vertex is contained
in An if there exists an open path from the origin to it.

3. The result can be applied to derive an upper bound for the critical probability for the directed
asymmetric hexagonal lattice bond percolation. Fig. 3.14b illustrates the mapping of the
hexagonal lattice to a Markov chain.

p = papb

q = 2papb � pap
2
b

(3.5)

According to Theorem 3.1, the conditions on pa and pb for percolation, C(pa, pb)  0, are
as follows

0  pa  1

0  pb  1

1

2
< papb  1

papb(2 � pb)  1

pb � 4papb + 2  0

(3.6)

As long as the inequalities C(pa, pb)  0 in (3.6) are true, the lattice will almost surely have
an infinite open cluster.

4. As a result, we provide a solution framework that takes as input the robot dynamics and the
obstacle density and returns the speed and resolution limit. Our framework is not only able
to recover the results in [95], but provide results for problems which [97] could not provide
explicit answers to.
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Figure 3.17: (a) Illustration of the Markov chain defined in (3.5) as a collection of subsets of integers on the
number line. At time slice n, the set An is shown by elements in the rectangle. The transition probabilities of
elements with a neighbour in An is shown as q while elements with one neighbour is shown as p. (b) The hexagonal
lattice is represented as the Markov chain. Each vertex is assigned an integer to map to the integer line. A vertex
is contained in An if there exists an open path from the origin to it.

of the hexagonal lattice to a Markov chain.

p = papb

q = 2papb − pap2
b

(3.6)

According to Theorem 3.4, the conditions on pa and pb for percolation, C(pa, pb) ≤ 0, are
as follows

0 ≤ pa ≤ 1
0 ≤ pb ≤ 1

1
2 < papb ≤ 1

papb(2− pb) ≤ 1
pb − 4papb + 2 ≤ 0

(3.7)

As long as the inequalities C(pa, pb) ≤ 0 in (3.7) are true, the lattice will almost surely
have an infinite open cluster.

4. As a result, we provide a solution framework that takes as input the robot dynamics and
the obstacle density and returns the speed and resolution limit. Our framework is not
only able to recover the results in Karaman and Frazzoli [2012a], but provide results for
problems which Karaman and Frazzoli [2012b] could not provide explicit answers to.
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3.8 Discussion

In this section, we made a step towards addressing Challenge 1 by asking the question - “how can
we go about designing path planning algorithms that exploit problem structure?”. To answer this
question, we began by reviewing analysis of a classic problem in motion planning - the narrow
passage. We presented a framework where a planning algorithm is assembled by an implicit
graph G and an incremental search procedure Search. We provided examples for each of these
components, demonstrating how to systematically incorporate knowledge about the problem
structure into this design to boost performance. We examined 3 diverse applications where this
technique was applied to design a planning algorithm that met performance standards. We also
discussed a theoretical perspective of how planning resolution is linked to obstacle density in
the environment.

The framework of decomposing a planning algorithm to G and Search allows us to have better
clarity on what it means to “exploit structure”. In the 3 examples algorithms we discussed, we
interpreted it to have some knowledge about the optimal path ξ∗ to Problem!2. This knowledge
is in the form of - what are the likely vertices which might belong to ξ∗, what are the likely
edges that might belong to ξ∗ or even more generally - what lower dimensional manifold might
ξ∗ belong to.

If this were the case, one may wonder - can we learn a G automatically to exploit structure?
We feel, given the number of classes to which G, can belong - this would be a very hard space
to search over. Ichter et al. [2017] takes a significant stride in this direction by training a varia-
tional auto-encoder to learn a generative model to approximate the stationary distribution that
solutions belong to. However, it is unclear how much information such a model needs to extract
from the world at test time. Vernaza and Lee [2011] are able to learn a manifold where ξ∗ might
lie - however the class of problems belongs to a restrictive set of holonomic planning problems.
Hence, as we will see in Chapter 5, a tractable alternative is to allow a human designer to create
a library of G and pose the question as selecting a G from the library.

The Search function plays a complementary role to G. In many cases it is agnostic to the
problem, and decisions are made purely on tradeoff between desired solution quality and com-
putation budget. However, there are situations where this function needs careful consideration.
These are cases where G is large in size and / or may have a high degree. Such situations allow
Search to be guided by heuristics. The problem of learning heuristics is much more well defined
that learning G. The heuristics inherently act as a selector function - selecting from a discrete
set of decisions that the Search function reasons about at a given iteration. As we will see in
Chapter 7, one can learn this selector function to allow the search to explore different parts of
G to find ξ∗.

We close the discussion by talking about planning with explicit graphs as an alternate to
implicit graphs. An explicit graph G = (V, E) explicitly stores the vertices and edges before
planning commences, even though the graph is unevaluated. It has also been known as planning
with roadmaps in literature [Kavraki et al., 1996]. In some ways, this paradigm is more restrictive
(we can always convert an implicit graph to explicit graph first and then start planning). This
is because the graph itself remains fixed from one planning problem to the next - the query
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and the valid status of edges change. However, explicit graphs offer a powerful capability - we
can explicitly model the likelihood of edges in the graph being valid without having to use any
feature extraction methods. Each edge has an unique integer id - hence we can simply model
the configuration space in the space of these ids. This paradigm is attractive as its is completely
domain agnostic. As we will see in Chapter 8, we can use this information to compute policies
that judiciously decides which edge to evaluate.



4
A Diverse Ensemble of Expert Planners

We return to Challenge 1 which requires us to design a motion planning system that solves real-
time kinodynamic planning problems for a fixed distribution of planning problems. In Chapter 3,
we presented a framework to design planning algorithms that can exploit the structure of the
optimal path planning problem. In this section, we will show how these path planners can be
used to address the kinodynamic planning problem. We introduce in Section 4.2 the term expert
planner to describe a framework that takes as input the original kinodynamic planning problem,
creates a surrogate path planning problem, invokes a path planning algorithm and then projects
the solution to a dynamically feasible trajectory.

When designing an expert planner for a problem distribution, we encounter a fork in the
road. On one hand, we can design general purpose planners that have acceptable performance on
a large set of problems, but achieve near-optimal quality on a small fraction of those problems.
On the other hand, we have precision planners that are primed to work really well on a small set
of problems, but completely fail on problems outside this set. We characterize this in Section 4.3.
We argue in Section 4.4 that even though we would ideally like to design a strategy to pick an
appropriate precision planner for a problem, predicting the performance of such planners is hard
as the performance fluctuates with small changes in the environment. Hence we advocate to hedge
our bets with an ensemble of expert planners. We offer justification behind the decision to run
diverse expert planners in parallel in Section 4.5. We state an algorithm to greedily construct this
ensemble to maximize performance on a distribution of planning problems. Section 4.6 presents
a case study of experiments performed with the ensemble on a full scale autonomous helicopter.
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4.1 The planner design challenge

We return to the original planning problem formulation described in Problem 1 and re-state it
here for convenience

min
σ

J(σ)

s.t σ(0) ∈ Σstart

σ(tf ) ∈ Σgoal

F(σ(t)) = 0
H(σ(t)) ≤ 0
σ(t) ∈ Σvalid

∀t ∈ [0, tf ]

(4.1)

Note that this differs from the optimal path planning problem Problem 2) stated in Section
3.2 due to the added presence of temporal dimension.

Let Γ ∈ Ω be a planning problem and P (Γ) be a distribution over planning problem. We
now state the problem formulation for Challenge 1.

Problem 3 (Non-adaptive Planner Design). Design a motion planning system, P, that takes as
input a planning problem Γ and outputs a trajectory σ, to minimize its expected cost on a
distribution of planning problems P (Γ), i.e.

EΓ∼P (Γ) [J (P (Γ))] (4.2)

4.2 What is an expert planner?

The planning problem in Problem 1 is a high dimensional kinodynamic planning problem which
is required to be solved in real-time (≈ 1 Hz). Although this is an active area of research with
methods such as Kinodynamic RRT* [Webb and van den Berg, 2013] and SST [Li et al., 2015]
pushing the state of the art, it is impractical to apply such methods to the full problem.

We follow guidelines presented by Laumond et al. [1998] and LaValle [2006] and decouple
the approach into path planning and trajectory planning. However, we observe that there are
multiple ways to achieve this decoupling - the success and failures of which depends on not just
the dynamics of the system, but varies with planning problems. For example, Laumond et al.
[1998] describe a curvature rate constrained system being treated as a Dubin’s car [Dubins, 1957]
to plan a path, following by a “smoothing” method such that a feasible time indexing can be
applied. However, planning with the Dubin’s car model might not always be a suitable relaxation.
In some cases, planning with a smoothness constraint, or even unconstrained planning - followed
by the “smoothing” method and time profile assignment can provide acceptable performance.
We first present a framework to allow this flexibility and give examples of different relaxations
being suitable in different context.

In this paper, we propose the framework of an expert planner to solve the planning problem
in Problem 1. An expert planner defines a mapping from the original problem to a surrogate low
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Figure 4.1: Overview of an expert planner.

dimension path planning problem, solves this efficiently using a base planning algorithm, and
projects the solution back into the full space to form a trajectory. The term “expert” is borrowed
from Blum [1998] to denote that the different modules in the expert planner framework are not
independently chosen at random but instead carefully assembled by an expert.

Fig. 4.1 shows an overview of an expert planner. It consists of 3 main modules.

1. Surrogate Problem Λ: The expert planner first maps the high dimensional problem Γpp, J

to a low dimensional surrogate path planning problem Λ (Problem 2) with the expectation
that a solution to the surrogate problem can be processed to produce a candidate solution
to the original problem. The surrogate problem is a tuple Λ =

(
S,xs,xg, J̃ , F̃ , H̃, Ξ̃valid

)
where S is the search space, (xs,xg) is the pair of start and goal states, J̃ is the objective
and

(
F̃ , H̃, Ξ̃valid

)
are the constraints.

2. Base Planning Algorithm O(.): The expert planner invokes a base planning algorithm to
solve the surrogate problem as discussed in Section 3.3. This base planner is an operator
O (Λ, θ) that maps the surrogate problem Λ and base planner parameters θ to a path ξ(τ).
A path is defined as a functional mapping ξ : [0, 1]→ S.

3. Projection to Original Space: The expert planner finally projects the path ξ(τ) to a
trajectory σ(t) in the original space. This is done in a two step process. Firstly, a ve-
locity profile is assigned to the path using a prior velocity profile vprof . The operator
FitVelProf(ξ(τ), vprof) maps the path ξ(τ) and the route guide vprof to a velocity profile
v(τ). Secondly, a dynamics projection filter operator DPF(s, ξ(τ), v(τ)) is used to map an
infeasible path to a dynamically feasible trajectory. Description of this step is provided in
Appendix B.

An expert planner satisfies the following contract - it takes as input the planning problem
Γpp and the objective function J , and produces as output either a feasible trajectory σ (that



54 A Diverse Ensemble of Expert Planners

satisfies F(σ) = 0,H(σ) ≤ 0) or an empty solution ∅. Hence the output can directly be used
without the need for any kind of post-processing.

Appendix C shows how a spectrum of expert planners can be created for motion planning
for general UAVs. The key thing to note is that the elements of the surrogate problem Λ have
to be chosen jointly to create sensible problems that can be solved efficiently. This is why these
choices are hard to automate and require an expert. However, each class does have several free
parameters which dictate the effectiveness of the approach. This hybrid nature of the expert
planner space makes it difficult to apply black-box methods naively to obtain good parameters.

4.3 General purpose planners versus precision planners

We are now ready to address Challenge 1 in its entirety. It is now realized as follows - given a
distribution of planning problems P (Γ), design an expert planner P that has high performance,
i.e., that sufficiently minimizes expected cost EΓ∼P (Γ) [J (P (Γ))].

Let us start by considering the example application shown in Fig. 4.2(a). A 2D helicopter
is flying in an environment with 4 convex obstacles of different width and height. It always has
to navigate to a goal point in front of it. The system has dynamics constraint in terms of how
much the robot can roll. For simplicity, assume that the system is flying at a constant speed.
For such a problem, a reasonable choice for any expert planner would be to plan with the state
space S : (x, y, ψ), J̃ being the path length and the constraints corresponding to a Dubins car
model [Dubins, 1957].

We now come to the choice of base planning algorithm O(.). Since the obstacles are convex
and spaced apart, the free space is likely to have good connectivity. This incentivizes selecting
sampling based approaches. Choosing a conventional sampling based planner that does not
require many tuning parameters (such as Informed RRT* [Gammell et al., 2014]) should suffice.
Since such planners make little assumptions about the problem (other than the connectivity
assumption), they are indeed very general purpose.

However, we may encounter a problem occasionally that has a clump of obstacles in the
middle as shown in Fig. 4.2(b). We see that our general purpose planner samples the whole
space and finds a path that circumvents the cluster. It is unable to find a good path since it
lies in a difficult to sample homotopy class. Given the dynamics constraints of the system, the
measure of paths that pass through the gap is indeed very small.

We can solve this problem by designing an alternate base planning algorithm. We can keep
all other components same, but simply change the sampling scheme to focus on a tunnel around
the start and goal. Note that we are injecting domain knowledge that the path must lie in this
volume. The algorithm, by focusing the samples is eventually able to power through the gap
and reach the goal. Note that such a base planning algorithm is precisely designed to solve such
problems and will be unable to return any solution at all to problems where no feasible path
exists in this volume.

We now broaden this observation to define two categories of expert planners: general purpose
planners and precision planners. General purpose planners are those that work reasonably well on
a large number of problems, but are generally unable to find the optimal path on any problem
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(a)

(b) (c)

General purpose planner samples 
everywhere, finds a high cost solution

Precision planner focuses sampling, 
finds a low cost solution

Samples from planning problem distribution

Figure 4.2: Designing expert planners for a planning problem distribution. (a) An example planning problem
distribution encountered by a UAV. There are 4 convex objects occurring in various configurations. Since the
space appears to have good connectivity, one expects general purpose sampling based planners to do well. (b)
The general purpose planner samples everywhere and is not able to sample in the right homotopy class within
the time budget. (c) One can design a precision planner that focuses its sampling in the yellow volume and hence
is able to eventually find an edge through the gap and reach the goal.

(within the prescribed time budget). Examples are algorithms such as RRT* [Karaman and
Frazzoli, 2011], BIT* [Gammell et al., 2015], RRT-Connect [Kuffner and LaValle, 2000], A*
on state lattice [Likhachev and Ferguson, 2009], etc. Precision planners are those that finds
near-optimal solutions on a small number of problems but fail to produce any solution on most
problems. Examples are approaches using local trajectory optimization [Ratliff et al., 2009a,
Schulman et al., 2013], shooting methods [Bryson and Ho, 1975] or custom samplers as illustrated
just now.

We can try to formalize this. Let Ω be the support of the planning problem distribution. We
define the normalized score of a planner as

V (P,Γ) = Jmax − J (P (Γ))
Jmax − Jmin

Every planner P corresponds to a score function defined on the domain Ω, where the range
of the function is bounded [0, 1]. For randomized planners, this function will be noisy - in such
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Figure 4.3: The score profiles of general purpose planners in comparison to precision planners. (a) General
purpose planners have a larger support but a small fraction of that is withing the 1− ε band. Precision planners
have a smaller support but almost all of it is in the band (b) The different planners visualized in the α, β space.

cases, consider the mean of the function. Let µ(.) be the volume.
Given a tolerance parameter ε ∈ [0, 1], we can choose to represent a planner P with two

normalized terms α and β.

1. Let α ∈ [0, 1] be the fraction of problems where the score is > ε, i.e.

α = µ({Γ ∈ Ω | V (P,Γ) > ε})
µ(Ω) (4.3)

This represents the fraction of problems where the planner has an acceptable solution.

2. Amongst the problems where the score is > ε, let β ∈ [0, 1] be the fraction of problems
where the score is ≥ 1− ε, i.e.

β = µ({Γ ∈ Ω | V (P,Γ) ≥ 1− ε})
µ({Γ ∈ Ω | V (P,Γ) > ε}) (4.4)

This represents the fraction of problems where the planner is near-optimal.

We can now define planners based on these numbers.

Definition 4.1 (General Purpose Planners). Planners that have high α but low β, i.e. solve most
problems but have low solution quality on all but a small fraction.

Definition 4.2 (Precision Planners). Planners that have low α but high β, i.e. solves some prob-
lems but has high solution quality on most problems it can solve.

This is illustrated in Fig. 4.3. Note that if a planner has high α and β, it implies that the
planning problem support is too small for one planner to solve most problems well. On the other
hand„ if both α and β is low, the planner has poor performance through out and should be
abandoned.

We show a more real-world example in the context of an autonomous helicopter operating in
a canyon as shown in Fig. 4.4. Given the topology of the environment present in the distribution
of planning problems, one might conclude that an expert planner using a smooth optimization
method, CHOMP1 (Appendix C), to be a good candidate. This is motivated by presence of good
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(a) (b)

Smooth optimization (CHOMP) 
works well most  

of the time

Occasional poor local minimum due  
          to bad initialization

Biased random graph search (RRT*-Tunnel) 
still finds solution

Figure 4.4: Mertis and pitfalls of precision planners. (a) A smooth optimization approach about an initial guess,
CHOMP1 (Appendix C) acts as a precision planner by dedicating its planning effort to search around the initial
guess. This works remarkably well in many cases and outperforms other general purpose planners. (b) However,
there are cases when this planner fails catastrophically. In such a scenario, a relatively more general purpose
planner, RRT*Tunnel1 (Appendix C), is still able to find an acceptable solution.

local minima around the nominal path between start and goal as shown in Fig. 4.4(a). However,
the planning problem contains examples such as Fig. 4.4(b) where this expert planner fails to
find any feasible path. This is due to poor initialization of the algorithm. Here the CHOMP1 planner
plays the role of a precision planner that makes strong assumptions about the environment to
boost performance but fails disastrously when those assumptions do not hold.

Contrast this to an expert planner using a biased random graph search approach,
RRT*Tunnel1 (Appendix C), which focuses sampling in a volume around the nominal path.
The general performance of this algorithm is not comparable to CHOMP1 owing to it spending its
planning effort collision-checking areas that are almost always occupied by obstacles. However,
RRT*-Tunnel is more likely to find a solution as shown in Fig. 4.4(b).

4.4 Difficulty in performance prediction of precision planners

Since we have established that there is no universally effective planner, how do we go about
designing a planning system to solve Challenge 1. One approach is along the lines of “examine
the problem, select an approach to execute, feed the output to another process and continue”.
This would be a single-threaded sequential planning strategy. This is a common convention
followed by planning systems. It is resource efficient in the sense that the problem is processed
to identify a good precision planner to execute and then all the resources are fed to that module.

However, such approaches usually run into a problem. Any single threaded planning module
must be able to reasonably predict the performance of precision planners given a problem.
Consider the scenario shown in Fig. 4.5. The slightest change in the environment dramatically
alters the behaviour of a precision planner. This is due to the fact that, in the presence of dynamic
constraints, small changes in the workspace can invalidate an entire homotopy of paths. Precision
planners that focus on that homotopy go from always finding the best path to not finding a path
at all. Under such uncertainty, allowing for redundancies at the expense of potentially additional
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Figure 4.5: Difficulty in predicting the performance of a precision planner. (a) Planner 1 focuses its search in
a volume and is able to compute a high quality solution. Planner 2, which does not focus its search, finds a
solution of much lower quality. (b) The slightest shift in obstacles now makes it impossible for Planner 1 to find
a solution given the dynamics constraints. Planner 2 still finds reasonable solutions. The difference between these
two environments is too small for a context to pick up.

planning effort has significant payoff.
There are some auxiliary reasons as well for not pursuing a single-threaded strategy

1. Non-monotonic effects of composing planners: There is no guaranteed monotonicity in
adding modules to an expert planner. E.g - adding a complex initialization procedure
for a trajectory optimizer could degrade performance in scenarios where a straight-line
initialization would have worked had the entire effort been dedicated to it.

2. Difficulty in automation: Hybridization is a difficult process to automate. Even if one were
to accept the non-monotonic nature of adding modules, composition of different strategies
might not always be straight forward.

4.5 Ensemble of diverse expert planners

We advocate the use of an ensemble of expert planners. This is illustrated in Fig. 4.6. At a given
decision step, the planning problem is provided to an ensemble of planners running in parallel.
Each planner is independent of another. The plans are provided to a trajectory selector that
takes the best of the solutions and sends it out.

At the expense of redundant planning effort, this architecture enjoys several benefits such as

1. Monotonic effect of adding planners: Adding a planner always helps. This rests on the
assumption of independence, i.e. each planner runs on its own thread, has an individual
assignment of memory and resources that it does not have to share.

2. Submodular effect of adding planners: Adding a planner has diminishing returns. This
incentivizes a natural stopping criteria, or budget for the ensemble. This, in conjunction
with the monotonic property, also provides strong guarantees for greedily selecting planners
as will be discussed in Section 5.5.1.

3. Ease in automation: The architecture allows different and mutually incompatible expert
planners to be used in conjunction, thus allowing automatic selection of an ensemble.
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Figure 4.6: Ensemble of expert planners. Each expert planner computes a trajectory and the best one is sent to
the robot.

Algorithm 3: Greedy Design of Ensemble
1 Sample planning problem dataset {Γi}Ni=1 from P (Γ);
2 E ← ∅;
3 Initialize ε to a small value;
4 Initialize D with {Γi}Ni=1 ;
5 while |E| is less than a budget do
6 Design expert planner P∗ to solve as many problems in D ; . Solve implies V (P,Γ) > ε
7 Add expert planner P∗ to ensemble, E ← E ∪ P∗;
8 Increase ε;
9 Copy unsolved problems from {Γi} to D ; . Unsolved implies no planner in ensemble solves

10 return E ;

We now describe an approach to solving Challenge 1 using a simple greedy procedure as
described in Algorithm 3. Let E be an ensemble of expert planners that we wish to design. We
iteratively inspect the dataset of planning problems that have not been solved to an acceptable
performance threshold. We then design a planner that makes a best effort to solve these problems.
We increase ε. We update the unsolved dataset and repeat.

Let us examine the implication of this design principle by looking at Fig. 4.7. Since we sample
{Γi}Ni=1 from P (Γ), we only have to reason about the performance of planners uniformly on this
set. Since ε is small initially, we will be incentivized to design a general purpose planner with
high α. As we increase ε, we will progressively require planners to have higher β. The attractive
aspect of this algorithm is that it becomes progressively easier to design expert planners P∗
as the planning problems database shrinks. This design principle effectively forces designing
planners to chase down modes of the planning problem distribution. At the same time, we are
not forced to think about the solution cost of the planners explicitly - it implicitly defines the
set of unsolved problems that we focus on.



60 A Diverse Ensemble of Expert Planners
Pl

an
ne

r s
co

re

Sampled dataset 
✏

{�i}

Pl
an

ne
r s

co
re

✏
✏

Pl
an

ne
r s

co
re

✏
✏

Sampled dataset {�i}

✏

Sampled dataset {�i}
Pl

an
ne

r s
co

re

✏
✏
✏

Sampled dataset {�i}

✏

Planner 1 Planner 2

Planner 3
Planner 4

Unsolved 
problems

Figure 4.7: Greedy design of ensemble using Algorithm 3.

(a) (b)

Mountains

Tree lines

Figure 4.8: Different planning problem distributions for an autonomous helicopter (a) Missions in Quantico, VA,
where obstacles are towers, trees and no fly zones (b) Missions in Mesa, AZ, where obstacles are mountains and
no fly zones.

4.6 Case Study: Autonomous helicopter

We now show a case study for ensemble design and results on an autonomous full scale helicopter.
Details regarding the dynamics and expert planners are described in Appendix A and C.

4.6.1 Planning Problem Distribution in Quantico, VA

We first consider a set of planning problem distributions where the helicopter had to operate in
Quantico, Virginia. The planning problem distribution P (Γ) consists of relatively obstacle-free
space. Obstacles present in the environment consists of towers and trees as shown in Fig. 4.8(a).
The planning problems also contained no-fly zones appearing dynamically.

We apply technique in Algorithm 3 to create an ensemble of planners. The first planner P in
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Figure 4.9: Different planning problems encountered during operation in Quantico, VA. (a) Perspective from the
helicopter where the robot must avoid a tree while it comes down to a landing site (b) The system uses CHOMP1

to optimize a trajectory to avoid the tree-line (c) The system also maneuvers around no-fly-zones.

the ensemble is a planner that has a good performance on most problems. Since most problems
were amenable to local optimization, we created an expert planner CHOMP1 (Appendix C) that
used a Dubins visibility graph technique to compute an initial guess which was optimized using
covariant gradient descent. This was useful in solving most planning problems with no-fly zones
and trees as shown in Fig. 4.9. This serves as a good general purpose planner.

We prune out all solved problems in the dataset. We are left with problems where CHOMP1

violated glide slope constraints and hence could not find a feasible solution. An example of such
a scenario is shown in Fig. 4.10(b). We designed a new expert planner CHOMP2 to run in parallel.
CHOMP2 is a modification of CHOMP1 to always enforce constraints at every step at the expense of
slower run-times and occasional inability to find solutions. The results of CHOMP2 are shown in
Fig. 4.10.

Landing Site

Tree lineTree

Landing Site

(a) (b) (c)

Figure 4.10: Unsolved problems by CHOMP1 which are solved by CHOMP2 (a) A tree on approach which is detected
late in the approach stage (b) CHOMP2 avoids the tree by optimizing over it but respecting glide slope constraints
(c) CHOMP2 solves other outlier problems as well
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4.6.2 Planning Problem Distribution in Mesa, AZ

We now show the sensitivity of the expert planners in a different set of missions. Consider the
planning problem distribution P (Γ) in a set of mission runs in Mesa, AZ. Here the obstacles
present consists of mountains in conjunction with dynamic no-fly zones.

We again apply the technique of Algorithm 3 to create an ensemble of planners. The first
planner P was chosen as CHOMP1 as it still worked reasonably well for most cases and was
not required to be modified. On pruning out problems, we end up with problems involving
mountains where CHOMP1 failed due to reasons of poor local minima around the initial trajectory.
We designed an expert planner RRT*Tunnel1 (Appendix C) that is a random graph search
with a customized workspace sampling technique biased to be in a volume around the nominal
trajectory.

Fig. 4.11 shows a scenario where the helicopter autonomously avoided a mountain. CHOMP1

produces high quality trajectory while RRT*Tunnel1 fails to find a good trajectory but solves it
none the less.

Iteration 8

Iteration 1

Mountain

RRT* Tree

RRT* Path
Mountain

(a) (b) (c)

Figure 4.11: CHOMP1 enables avoidance of a mountain enroute (a) A cockpit view of the scenario (b) The iterations
of CHOMP1 to smoothly optimize a path (c) RRT*Tunnel1 is unable to match the solution quality of CHOMP1, but
solves the problem as well.

However, there were situations where the reverse happened as shown in Fig. 4.12 where
CHOMP1 fails and RRT*Tunnel1 succeeds.

4.7 Conclusion and discussion

In this Chapter, we presented an expert planner framework to solve the kinodynamic planning
problem specified in Problem 2. This is a framework that takes as input the original problem,
creates a surrogate path planning problem, invokes an appropriate path planning algorithm
from Chapter 3, projects the solution to a high dimensional trajectory. Having created this
framework, we returned to Challenge 1. We showed on one hand, we can design general purpose
planners that have acceptable performance on a large set of problems, but achieve near-optimal
quality on a small fraction of those problems. On the other hand, we have precision planners
that are primed to work really well on a small set of problems, but completely fail on problems
outside this set. We argued against the single hierarchical planning framework of encoding a
complex set of rules to pick a planning strategy due to 2 main reasons - unpredictable effect
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Figure 4.12: RRT*Tunnel1 is able to find solutions where CHOMP1 fails. (a) A scenario where the helicopter has
to fly between a mountain and a no fly zone (b) This scenario creates a bad local minima where the gradient
due to the presence of the mountain conflicts with the no fly zone. CHOMP1 is unable to find a feasible path (c)
RRT*Tunnel1, which does not use the gradient information, samples the gap and is able to find a solution.

of design decisions and difficulty in automation. We instead advocated for hedging one’s bets
with an ensemble of expert planners. We discussed the properties that this framework enjoys
- monotonicity, submodularity and ease in automation. We presented an approach to greedily
construct this ensemble. Finally, we conduct a case study for an autonomous helicopter where
we demonstrate how an ensemble was designed in practice.

The monotonicity and submodularity aspects of the ensemble are particularly attractive
for a number of reasons. These properties allow greedy ensemble selection approaches to have
guarantees, which will be exploited later in Chapter 5. The greedy selection logic has the side-
effect that as more and more planners are added, the set of unsolved problems starts to decrease
- thus making it easier to focus on them. The ensemble framework also allows one to deal with
unsolved problems easily - create a planner to handle this exception case and add it to the
ensemble. We will explore this in Chapter 6.

The explicit characterization of planners as general purpose and precision, while not directly
used, is helpful when reasoning about the question of - “How much information do we need
to compute a good ensemble?”. One one hand, if we only have a library of precision planners,
the combined coverage of the ensemble would be very less. This incentivizes investing a lot of
resources in context extraction. On the other hand, if we have general purpose planners in the
library, we would be better off spending more resources executing planners than to judiciously
determine which planners to execute.

Finally, we want to revisit the premonitions of designing a single hierarchical framework for
a planning system. Having a single planner is certainly efficient in terms of using information
from collision checking. However, one concern is that allocating planning effort into deliberating
about which planning strategy to use might be detrimental compared to having used the strategy
throughout. This trade-off will be formally tackled in Chapter 7 to create planners that adapt
their search with increasing information about the problem.
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5
Adaptive Ensembles of Expert Planners

In the previous Chapter, we addressed Challenge 1 - designing a good non-adaptive planner for
a fixed problem distribution. We proposed a framework for designing an ensemble of planners.
In this Chapter, we proceed to address Challenge 2 - dealing with varying distributions. Since
it is not possible to manually change the ensemble, we need an automatic way of generating
such ensembles. We propose to learn a meta-planner that can select from a library of black-box
expert planners.

We begin by motivating the need for such a meta-planner in Section 5.1. We next present
some pertinent relevant work in Section 5.2. We formulate the problem in Section 5.3. Before
discussing the learning section, we spend some time offering various practical and algorithmic
procedures for generating a library of expert planners in Section 5.4. We present algorithms to
select a static ensemble in Section 5.5. A static ensemble meta-planner selects a fixed ensemble
for a planning problem distribution. We show that this can be done efficiently without having
to execute all planners using a lazy greedy algorithm. This algorithm requires trained priors on
planner performance.

We then discuss the conditions that drive the need for a dynamic ensemble. A static ensemble
suffices when general purpose planners - planners that do reasonably well on a large number
of problems - have sufficient performance. When precision planners - planners that have high
performance on some problems and fail catastrophically in others - are required to be selected, the
ensemble cannot remain static. It needs to change for different planning problems. In Section 5.6,
we present a framework to train a list of contextual predictors to select an ensemble using context
from the planning problem. We show how the problem is a loss-sensitive classification which
has better empirical performance than learning priors on planners. We present experimental
evaluations in Section 5.7 for both the static and dynamic ensemble selection method on a
wide range of planning problem datasets. Finally, we present flight test results for closed loop
evaluation of an adaptive ensemble on two UAV platforms in Section 5.8.

67
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Figure 5.1: The black-box adaptive planning framework. The human designer has access only to domain informa-
tion with which he creates a library of planners. These planners are black-box - the content of the planners is not
visible to any other module, hence granting the designer full freedom. The objective is to design a meta-planner
that takes as input the planning problem distribution and selects an ensemble of planners from the library.

5.1 Introduction

The problem of designing a real-time motion planning system for an application is a challenging
one. A plethora of motion planning techniques exist to approach the problem [LaValle, 2006].
Many of these methods are endowed with worst case guarantees such as completeness [Canny,
1988a] or asymptotic optimality [Karaman and Frazzoli, 2011]. However, when run for a finite
time budget, the efficacy of such approaches depends heavily on the underlying structure of
the environment in which the robot operates - i.e. the configuration of obstacles, dynamics of
the robot and typical start / goal queries. The problem is further exacerbated when robots are
required to operate across environments, i.e. when the performance of the planning strategies
fluctuate during an episode.

Machine learning approaches offer the ability to adapt motion planning algorithms to a spe-
cific environment. An attractive paradigm for integrating learning in planning is the framework
of black-box planner selection. In this setting, we assume we have a library of planning strategies
- these could be different algorithms, or different parameters of the same algorithm. Given an
environment, we want to predict which element to use. The learner treats each of the library
elements as a black-box, i.e. no assumption is made about the contents of the algorithm. Hence,
this allows the human designer full flexibility in employing any approach in the library. An
illustration of this framework is shown in Fig. 5.1.

The objective is to find a learning procedure that has good prediction performance, i.e, how
well can the learnt procedure predict the best element in the library? Machine learning pro-
cedures provide guarantees on expected performance, which is the average performance over a
probability distribution of environments. A predictor trained on this distribution has interesting
behavior. It predicts the correct element on most environments, but has extremely low per-
formance on environments which are infrequent. This is particularly unsatisfactory for motion
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planning, which demands good prediction performance on all environments. This motivates us
to examine the following question:

Can we design a meta-planner, that selects planners from a library of candidate
planners, such that it has good performance on most environments?

5.1.1 Motivation

Outdoors: High speed / Sparse obstacles Indoors: Low speed / Clutter

(a) (b)

Figure 5.2: Different classes of planning problems encountered by an UAV in a cargo delivery application (a)
When flying outdoors at high speeds, the planning problem requires finding smooth feasible paths that bend
around an obstacle blocking the goal. (b) When flying indoors at low speeds, the environment has a lot of
obstacles. While dynamics is not as important, the planner has to search the whole space to find a feasible path
to goal.

Consider the problem of a UAV carrying out a cargo delivery operation. Such systems are
required to fly repeatedly from outdoors to indoors. The configuration of obstacles vary a lot
across these environments as shown in Fig. 5.2. In outdoor environments, the number of obstacles
is sparse. However, since the robot is flying at a higher speed, the dynamics are more restrictive.
Hence trajectory optimization approaches that search for smooth solutions about an initial
straight line guess are better suited for these planning problems. In indoor environments. the
space is much more densely filled. However, the robot is flying at a lower speed where dynamics
is not a concern. Global sampling based approaches are able to find paths quickly and hence are
most suited.

Such an application requires a meta-planner that can select from a library of approaches
based on context extracted from the problem. Context here can be specified as the speed of the
vehicle and density of obstacles at different locations. Interestingly, a small amount of context
is sufficient for the meta-planner to identify a good set of planners to attempt on the problem.
The meta-planner is not required to know all obstacle configurations in the environment.
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Figure 5.3: Training predictors to greedily focus on unsolved problems. On the left, we see that a predictor
that maps a planning problem to planners in a library acts as a filter. The mapping results in the problem being
solved or remaining unsolved. When a list of predictors are being trained to predict planners in an ensemble, each
predictor should greedily focus on the unsolved problems of the previous predictors in the list.

5.1.2 Key ideas

Questions pertaining to the worst-case performance of predictors fall in the realm of learning
theory. However, in this work, we do not follow this line of analysis. We instead advocate for a
procedure that leverages a powerful attribute of motion planning - algorithms can be executed in
parallel to solve the problem, each solution can be evaluated using a crisp objective function and
the best solution can be returned. This in turn implies that the meta-planner is not burdened to
commit to a single prediction - it can make a list of predictions. Since only the best prediction
is relevant, the meta-planner is incentivized to hedge its bets and choose a diverse ensemble of
planners.

To predict a diverse ensemble of planners, we propose a meta-planner consisting of a list of
selector policies - given a planning problem, each policy predicts a planner for a particular slot
in the ensemble. The key insight is that these policies can be trained efficiently using a greedy
procedure - each subsequent policy in the list is trained on the failure case of the preceding
policies. Intuitively, these policies act as filters. The first policy in the list is able to successfully
solve a majority of the problems, thus passing down harder problems for the second policy to
examine. The second policy only focuses on classifying these hard problems and so on. The
intuition is that by focusing on the hard problems, the task of finding a dividing hyperplane
becomes easier as depicted in Fig. 5.3. We will support these intuitions with mathematical
justification to learn effective meta-planners.

The approach of employing list prediction in motion planning can be viewed as a form of data-
driven redundancies. Redundancies are key to ensuring robust behaviours. One can interpret the
learning rule as a way of designing redundancies by examining the correlated failures of different
planning approaches from data. We also extend the idea of using data to the problem of what
makes a good library of planners. We show how the framework of online set-cover leads to a
practically useful algorithm for building a library of planners.
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5.1.3 Contributions

Our contributions are as follows:

1. We cast the problem of dynamically selecting an ensemble of planners as list prediction. We
derive a training procedure for list prediction in the framework of loss-sensitive multi-class
classification (Section 5.6).

2. We examine the special case of predicting a static ensemble and propose a lazy evalua-
tion based approach that does not require re-evaluating planners on new training data
(Section 5.5).

3. We cast the problem of designing a library of planners as an online set-cover problem and
derive an efficient algorithm (Section 5.4).

4. We extensively evaluate the approach on a spectrum of planning problems involving seed
prediction for trajectory optimization, heuristic selection for 4D arm planning, and planner
selection for autonomous helicopters. We show that list prediction outperforms single item
prediction (Section 5.7).

5. We present extensive closed-loop evaluation of our framework on UAVs. The adaptive
planning system improved the performance of the planning system from < 50% to 95.56%,
thus enabling the UAV to fly robustly for hours across varying environment, speeds and
problem difficulties (Section 5.8).

5.2 Background

5.2.1 Option prediction in planning

There has been a body of work in employing machine learning techniques to predict options
in planning. Jetchev and Toussaint [2013] was an early work on predicting seeds for trajectory
planning. Cost regression and classification were implemented, without the formalism of loss-
sensitive classification. Their results show that cost regression is a more difficult task. Dragan
et al. [2011] predicted the usefulness of end-effector goals for trajectory planning on a manipu-
lator. Some heuristics in their procedures are explained when a surrogate loss is used to derive
algorithms. Zucker [2009] generated a ‘behavior library’ of optimized trajectories and predicted
the best trajectory given a query. Berenson et al. [2012] generated a library of past plans and
used a heuristic to select one that can be repaired easily to solve a new environment. Pan et al.
[2014] predicted if a seed trajectory will be successful for local optimization. Poffald et al. [2014]
used a library of motion primitives and predicted the best primitive that can be adapted for
a new environment. Wzorek et al. [2010] predicted a motion planning strategy, from a library,
that can be applied to repair a plan. Palmieri and Arras [2015] learned to select the nearest
neighbour from a candidate set of neighbours in an RRT method to improve the likelihood of
connection.
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5.2.2 List prediction

List prediction requires predicting a list of items that are diverse and relevant. Radlinski et al.
[2008] examine the problem of recommending a diverse set of news articles to increase the chance
that a user would like at least one article. The notion of diminishing returns due to redundancy
is captured formally in the framework of submodularity [Krause and Golovin, 2012]. While
exact submodular function optimization is intractable, greedy selection is known to have strong
near-optimal performance guarantees.

There exists a host of method that decompose list prediction to a sequence of easier learning
tasks that attempt to mimic the greedy strategy [Dey et al., 2013, Radlinski et al., 2008, Streeter
and Golovin, 2009]. Dey et al. [2013] propose an algorithm ConseqOpt to reduce the list pre-
diction problem to stacked sequential cost-sensitive classification. Each problem aims to predict
an element in the library to maximize the expected marginal utility. The attractive aspect of
this approach is that it offers a guarantee with respect to the class of all possible sequence of pre-
dictors, which is quite expressive. However, this comes at the expense of being less data-efficient
than methods that make make realizability assumptions such as [Raman et al., 2012, Yue and
Guestrin, 2011]. Ross et al. [2013] considered list prediction in a different setting where a single
predictor is trained to predict a list. They derive a learning rule for such a policy and leverage
the data efficiency of using a single learner.

5.3 Problem formulation

We build on the framework of designing an ensemble of expert planners that we presented in
Chapter 4. Let Γ ∈ Ω denote a planning problem that the expert planner takes as input. Let
P (Γ) be the distribution over planning problems encountered by the robot.

We wish to train a meta-planner to select black-box planners from a library. Let L = {Pi}|L|i=1
be a finite library of expert planners. By abuse of notation, let J (Γ,P) ∈ [0, Jmax] be the cost
of a trajectory when applying planner P on problem Γ. Infeasible trajectories are assigned a
cost of Jmax. The expected performance of a planner P on a distribution P (Γ) over planning
problems is EP (Γ) [J (Γ,P)].

Let E ⊆ L be an ensemble of expert planners of budget |E| = B. The expected performance
of the ensemble is EP (Γ)

[
min
Pi∈E

J (Γ,Pi)
]
.

Let π be the meta-planner. The output of this meta-planner is an E . The meta-planner can
be either static or dynamic in nature. A static ensemble meta-planner outputs a fixed ensemble
for a planning problem distribution. A dynamic ensemble meta-planner can output an ensemble
that may change with planning problem Γ.

Let f be a feature vector representing context about planning problem Γ. The meta-planner
is a policy that may use this context in selecting an ensemble. We now define the problem as
follows

Problem 4 (Ensemble selecting meta-planner). The meta-planner design problem is formally
defined as training a policy π(Γ,L) to select and ensemble from a library of planners L on the
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distribution of planning problems P (Γ) to optimize the following

minEP (Γ)

[
min
Pi∈π(Γ)

J (Γ,Pi)
]

(5.1)

5.4 Constructing a library of expert planners

In this section, we discuss different approaches of creating a good library of expert planners.
We start with practical approaches and then use intuitions and insights to formalize the library
creation process.

Let us recall the process of creating expert planners that we discussed in Chapter 4. We
discussed in Section 4.2 the space of possible expert planners, its hybrid nature and difficulty in
searching over this space. However, the problem of creating a good library of expert planners is
considerably simpler. This is due to the fact that the objective is no longer to map individual
planning problems to effective planners, but instead to ensure the library has good coverage, i.e.
for every conceivable problem, there exists at least one effective planner in the library.

We start by examining the information available to us at the time of library creation. It is
impractical to create a library of expert planners for all possible applications. Instead, the human
engineer is given vital domain information to aid in library creation process. This comprises
vehicle dynamics, expected velocity regimes of operation and example environments of operation.
Formally speaking, the human engineer has access to the support Ω of all possible distributions
P (Γ). Hence a good library is one that covers as many problems in Ω.

5.4.1 Approach 1: Combine general purpose planners with precision planners

We first present a practical approach to constructing a library. We populate the library with
planners that use general purpose planning algorithms with different parameter sets. This library
is then executed on a database of problems uniformly sampled from Ω. The failure cases are
manually inspected. Using techniques presented in Chapter 3, we design precision planners to
solve these problems. These planners exploit some structure in the failure cases to come up with
sampling schemes / heuristic / initial seeds to solve these problems. We can greedily design
precision planners to solve as much of the failure cases as possible. Appendix C describes the
library of planners designed for general UAVs using this pragmatic approach.

5.4.2 Approach 2: Greedy planner creation by hard negative mining

We present a more automatic approach for library creation using insights derived from Approach
1. One can think of the process of collecting failure cases and using it to refine the library as
hard negative mining. We can formalize this process as follows. We start with an empty library
L = ∅. We iteratively sample problems from Ω. If no element in the library is able to solve the
problem Γi, we invoke an oracle to create a library element P that can solve at least Γi. This
process is repeated to build up the library. As elements are added to the library, the coverage
of the library increases. The negative mining process searches for harder and harder problems
that the library has not yet solved.
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Algorithm 4: Greedy Randomized Rounding (Ω,F)
1 Initialize L = ∅;
2 Initialize planner membership variable xp = 1

M
;

3 for i = 1, . . . , N do
4 Receive planning problem Γi from Ω;
5 if L can not solve Γi then
6 R← ∅;
7 for p = 1, . . . , |F| do
8 if Pp can solve Γi then
9 R← R∪ p;

10 while
∑

r∈R xp < 1 do
11 xr = 2xr, ∀r ∈ R;
12 for r = 1, . . . ,R do
13 Add Pr to L with probability ∆xr logN

1−xr logN ;

14 return L;

We used this approach to create a library of trajectory optimization planners in Tallavajhula
and Choudhury [2015]. In this case, the library is composed of different seed trajectories that the
optimizer initializes from. When no seed in the library can solve a problem, a more expensive
global planner is invoked to solve the problem. The solution of this planner is then used the
seed.

5.4.3 Approach 3: Library selection as online set-cover

Approach 2, while being effective, results in an algorithm that has no performance guarantees.
As a result, it can populate the library with many elements while having poor coverage. It also
does not allow a principled way to incorporate an existing library of general purpose planners.

We want a framework where we have the following properties:

1. We cannot evaluate all candidate planners on all possible problems in Ω. Hence we need a
framework that streams problems from Ω, maintains an existing library and only evaluates
all candidate planners if no element in the library can solve the problem.

2. We want to minimize the size of the library to reduce computation during the training
process for the meta-planner

We cast the problem of library selection as online set-cover. We are given a set of N planning
problems Ω = Γ1, . . . ,Γn. We have a family of M candidate planners F = P1, . . . ,Pm. We want
to construct a library L ⊂ F by selecting planners from the family. The cost of selecting a
planner is 1.

Each planner in the family Pi ∈ F solves a set of planning problems in Ω, i.e. on executing
the planner on these problems, the solution cost is below a threshold Jthresh. Hence each element
of the family corresponds to a subset of Ω. A cover is a collection of such sets such that their
union is Ω. We want to find a cover with minimum cost which is known to be a NP-hard problem.
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We specifically examine the online variant where planning problems arrive one by one and
have to be covered immediately. Additionally, once a planner is selected in the library, it cannot
be removed. The online variant is more apt in our case as we do not wish to explicitly evaluate
all planners on all problems, i.e. the membership function of planners to problems is not known
upfront. It can be incrementally discovered by querying planners with problems.

We adopt the greedy algorithm with randomized rounding to solve this problem [Buchbinder
et al., 2009]. The algorithm is derived by mapping the set-cover problem as a linear program.
Every time a new problem arrives, this linear program needs to be re-solved. One can show
that a near-optimal greedy algorithm exists to efficiently solve this. Since the set selection is a
integer problem, one can use a monotone randomized rounding scheme to project the greedy
solution into the integer domain. We refer the reader to Buchbinder et al. [2009] for details on
the derivation of the algorithm.

Algorithm 4 describes our approach of incrementally building the library L. We maintain
a membership vector xi for every planner Pi ∈ F . This membership is initialized to 1

M . At
iteration i, we receive a planning problem Γi. If the existing library cannot solve this problem,
we cycle through other planners in the family F . We create a relevant set R of planners that can
solve the problem. The membership variables of this relevant set is doubled till the sum exceeds
1. Planners from the relevant set are added to the library with probability ∆xr logN

1−xr logN , where ∆xr
is the change in membership during the doubling process.

This algorithm possesses the following performance guarantee

Theorem 5.1 (Near-optimality of Greedy Randomized Rounding). Let L∗ be the library size com-
puted by the optimal algorithm. Then the expected library size |L| computed by the greedy
randomized rounding algorithm is

E [|L|] ≤ (logN logM)L∗ (5.2)

5.5 Predicting a static ensemble

A static ensemble meta-planner takes as input a planning problem distribution P (Γ) and outputs
a fixed ensemble E at every decision step. The motivation for a static ensemble is design simplicity
and easier verification. For now, we will assume that there exists a static ensemble of expert
planners that will match our desired performance requirement. We will discuss later in Section
5.6 when this might not be the case.

There are two paradigms in which this can be addressed - one where the library is sufficiently
small such that all the planners in the library can be evaluated on all planning problems in the
database. Another where the library is very large and a lazy approach is required to choose
which planner to evaluate on the database.

5.5.1 Greedy selection of a static ensemble

We now formulate the ensemble selection problem when all planners in the library can be
evaluated on the planning problem database. This will make the abstract Problem 4 concrete
by requiring the policy π to be a static ensemble E .
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We define the notion of loss of predicting a planner Pi ∈ L as a relative cost.

l (Γ,Pi) = J (Γ,Pi)−min
P∈L

J (Γ,P) (5.3)

The risk R is defined as an expected loss

R (Pi) = EP (Γ) [l (Γ,Pi)] (5.4)

Let E ⊆ L be an ensemble of expert planners of budget |E| = B. Thus loss of an ensemble is

l (Γ, E) = min
Pi∈E

J (Γ,Pi)−min
P∈L

J (Γ,P) (5.5)

The risk is R (E) = EP (Γ) [l (Γ, E)]. The objective can be stated as minimizing an empirical risk

R̂ (E) = 1
N

N∑
i=1

l (Γi, E)

E∗ = arg min
E⊆L

R̂ (E)
(5.6)

The optimization problem in (5.6) is a combinatorial optimization problem known to be NP-
Hard problem [Krause and Golovin, 2012]. Fortunately the minimization of linear combination
on min() functions is equivalent to maximization of a submodular function [Krause and Golovin,
2012]. This allows greedy strategies to have strong guarantees.

Algorithm 5: Greedy Selection of a Static Ensemble (P (Γ),L)
1 Sample planning problem dataset {Γi}Ni=1 from P (Γ);
2 Evaluate all planners P ∈ L on {Γi}Ni=1 to compute a cost matrix J ∈ RN×|L|;
3 E ← ∅;
4 while |E| < B do
5 Using J, select P∗ ← arg min

P∈L\E
R̂ (E ∪ P);

6 E ← E ∪ P∗

7 return E ;

Algorithm 5 describes the greedy ensemble selection which iteratively picks the planner that
minimizes the combined risk the most. Line 1 samples a dataset of planning problems {Γi}Ni=1
from the distribution P (Γ). Line 2 applies each planner P ∈ L on the dataset {Γi}Ni=1 to create
a cost matrix J ∈ RN×|L|. Then line 5 is iteratively repeated to compute the planner that
minimizes the cumulative risk computed from J and is appended to the selected ensemble E .

This greedy strategy enjoys the following guarantee due to properties of maximization of
monotonic submodular functions

Theorem 5.2 (Near-optimality of Greedy Algorithm). Let E∗ be the optimal ensemble that mini-
mizes empirical risk given the cost matrix J. Let Lmax be the maximum loss of any element on
any problem, i.e. Lmax = maxΓ,Pi l (Γ,Pi). The ensemble Egreedy constructed by Algorithm 5 has
the following performance guarantee

R̂ (Egreedy) ≤
(

1− 1
e

)
R̂ (E∗) + Lmax

e
(5.7)
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Proof. We construct a non-negative monotone submodular function defined on a set of planners

F (E) = Lmax − R̂ (E) (5.8)

This is non-negative because R̂ (E) ≤ Lmax by definition. Monotonicity and sub-modularity
are straight forward to verify since this is a negative of a min() function. The greedy algorithm
has the following property [Krause and Golovin, 2012]

F (E) ≥
(

1− 1
e

)
F (E∗)

Lmax − R̂ (E) ≥
(

1− 1
e

)(
Lmax − R̂ (E∗)

)
R̂ (Egreedy) ≤

(
1− 1

e

)
R̂ (E∗) + Lmax

e

(5.9)

5.5.2 Lazy greedy selection using learnt priors

We now examine the scenario where the library L can be very large. In this scenario, evaluating
all planners in the library every time the target distribution changes might not be tractable. We
can avail of the side information obtained from planning problem in the form of context. This
context can be used to train priors that predict the performance of a planner. This prior can be
used to decide which planners to evaluate.

Algorithm 6: Lazy Greedy Selection of a Static Ensemble(P (Γ),L, π)
1 Sample planning problem dataset {Γi}Ni=1 from P (Γ);
2 Compute feature projections {fi}Ni=1 for each problem;
3 Using {fi}Ni=1, compute estimated cost matrix J̃ ∈ RN×|L|;
4 E ← ∅;
5 while |E| < B do
6 Using J̃, select P∗ ← arg min

P∈L\E
R̂ (E ∪ P);

7 Evaluate P∗ on {Γi}Ni=1 and update J̃;
8 if P∗ still best then
9 E ← E ∪ P∗;

10 return E ;

Algorithm 6 presents a lazy greedy selection approach using learnt priors. During the time
of library creation, a model π is trained to predict the performance of a planner given context
f . Details about how this is done is covered in Section 5.7. It is understood that this prediction
might be noisy. Hence this prediction is not purely used for selection. Instead this prior is used
to create an estimated cost matrix J̃ as shown in Line 4. The algorithm iteratively calls Line 6
to compute the best planner that minimizes risk. This planner is then evaluated on the dataset
in Line 7 to update the cost matrix J̃. If the evaluation retains the ranking order among the
planners, it is added to the ensemble.
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An important concern is that the priors are trained on a different distribution than P (Γ).
This implies that there will be an error in the estimated cost matrix J̃ with the actual cost
matrix J. However, we can still bound the errors due to this mismatch to provide a guarantee
for the lazy greedy algorithm.

Theorem 5.3 (Near-optimality of Lazy Greedy Algorithm). Let εi be the prediction error of the
marginal gain using the prior for slot i. Let Lmax be the maximum loss of any element on any
problem, i.e. Lmax = maxΓ,Pi l (Γ,Pi). The ensemble Egreedy constructed by Algorithm 6 has the
following performance guarantee

R̂ (Egreedy) ≤
(

1− 1
e

)
R̂ (E∗) + Lmax

e
+

B∑
i=1

εi (5.10)

Proof. We construct a non-negative monotone submodular function defined on a set of planners

F (E) = Lmax − R̂ (E) (5.11)

Streeter and Golovin [2009] bounds the performance of a noisy greedy algorithm that makes
an additive error of εi at every iteration as follows

F (E) ≥
(

1− 1
e

)
F (E∗)−

B∑
i=1

εi (5.12)

Combining (5.11) and (5.12) we have the proof.

5.6 Predicting a dynamic ensemble

In Section 5.5, we discussed the procedure of computing a static ensemble meta-planner. This
served as an adaptive analogue of manually designing an ensemble as discussed in Chapter 4.
However, there are certain situations where a static ensemble does not meet a desired perfor-
mance criteria.

Consider the situation where the library of expert planners are all trajectory optimization
algorithms with different initial seed trajectories. It is unlikely that there exist a static ensemble
of such algorithms that could perform well on a target distribution of planning problems. In such
a situation, conditioning on the slightest amount of context would help narrow down choices.
Hence, we are motivated to use context extracted from the planning problem to choose an
ensemble.

To understand this more generally, let us revisit the discussion between precision planners
and general purpose planners that we started in Chapter 4. As the planners become more and
more precise to achieve desired solution qualities, such as trajectory optimization algorithms or
algorithms that focus the implicit graph in a particular volume, the need for having a dynamic
ensemble becomes stronger. As we will see in the experiment evaluation (Section 5.7), there are
many such applications where this becomes a necessity.

A dynamic ensemble meta-planner takes as input a planning problem distribution P (Γ) and
outputs an ensemble E that can vary from decision step to decision step. A straight-forward way
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to achieve this is to compute a policy that maps from the space of context f extracted from a
planning problem Γ to the the space of ensembles as shown in Fig. 5.4. Before we delve into
predicting ensembles from a context, we introduce the notion of a policy that predicts a single
planner from a given context.

Expert Planner 1

Expert Planner i

Expert Planner |L|

...

...

Library of  
Expert Planners

L

Feature  
Extractor

ExtractFeature(.)

List Prediction 
(Budget B)
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Input Problem
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Planner Ensemble 
Creator

L
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f

Ensemble of 
Expert Planners 

(Budget B)
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Expert Planner B

Expert Planner i

...

...

E

Figure 5.4: Framework for dynamic ensemble predictor. The input is the planning problem and a library of
planners. The module extracts context, and asks a list of predictors to predict B expert planners.

5.6.1 Predicting a single planner from context

Let π ∈ Π be a predictor that maps a planning problem Γ to a planner in the library Pi ∈ L.
The loss of a predictor is

l (Γ, π) = J (Γ, π)−min
P∈L

J (Γ,P) (5.13)

The risk R is defined as an expected loss. An optimal predictor π∗ minimizes this risk as
follows

R (π) = EP (Γ) [l (Γ, π)]
π∗ = arg min

π∈Π
R (π) (5.14)

Observe that predicting one of |L| planners given planning problem Γ is like classifying Γ into
one of L classes. So π is a multiclass classifier. The ‘correct’ class is the minimum loss element,
but misclassification losses differ. Specifically, finding π is a case of loss-sensitive multiclass
classification1.

The loss l is non-convex, which makes it difficult to directly minimize the empirical risk. The
solution approach detailed in Ávila Pires et al. [2013], which we follow, is to replace l with a

1Called cost-sensitive classification in the learning literature. Since we use costs to refer to element costs, we
use the term loss-sensitive classification.
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convex function, known as the surrogate loss. This is a well-known procedure in learning. To recall
the simple case of binary classification, the 0− 1 loss is also non-convex. Binary classification is
solved by replacing the loss with a convex surrogate. The step here can be thought of as a more
general version of using surrogates. As per the analysis in Ávila Pires et al. [2013], minimizing
the convex surrogate risk implies minimizing the true risk. Using the surrogate requires the
predictor π to be defined in terms of a scoring function. Let s(Γ,P) ∈ R be a function which
assigns a score to a planner in the library P for the planning problem Γ. The predictor then
picks the element with the highest score

π(Γ) = arg max
j
s(Γ,Pj) (5.15)

Risk will be minimized in terms of the scoring function s, and therefore π. The predictor
space Π also depends on the space of scoring functions. For any environment, the scores are
required to be centered over the library elements. Intuitively, this means that the scores are
required to be well-behaved. Otherwise, we would be free to assign arbitrarily high scores to
low-loss elements, or arbitrarily low scores to high-loss elements. This constraint is expressed as

|L|∑
j=1

s(Γ,Pj) = 0, ∀Γ (5.16)

The last ingredient is ψ(t) ∈ R, a convex function of t. The surrogate loss is then defined as

lψ(Γ, s) =
|L|∑
j=1

l(Γ,Pj)ψ(s(Γ,Pj)) (5.17)

Note that the scores s(Γ,P) don’t enter the loss lψ directly, but through the convex func-
tion ψ. The surrogate loss is large when either the true loss l(Γ,Pj) is large, or ψ(s(Γ,Pj)) is
large. Intuitively, minimizing this loss encourages high scores to be assigned to the low-loss ele-
ments. The empirical surrogate risk is defined in terms of the surrogate loss. With the following
shorthand: lij = l(Γi,Pj), sij = s(Γi,Pj), the transformed optimization problem is

R̂ψ(s) = 1
N

N∑
i=1

|L|∑
j=1

lijψ(sij) (5.18a)

s = arg min
s̃

R̂ψ(s̃) (5.18b)

We detail the choices of the convex surrogate ψ(t), scorer s(Γ,P), and the optimization
scheme in Tallavajhula and Choudhury [2015].

5.6.2 Predicting an ensemble from context

We frame the problem of predicting an ensemble of planners from context in the framework
of list prediction using a list of single planner predictors - one for each slot in the ensemble.
An algorithm for list prediction, ConseqOpt, was presented by Dey et al. [2013]. We broadly
follow their treatment. Instead of a single predictor, we now want to find a list of predictors.
The length of the list, or budget B, is fixed and decided by computational resources. The list of
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predictors is denoted by 〈π1 : πB〉. The loss in (5.13) is extended to take a list of predictors as
argument

l
(
〈π1 : πB〉

)
= min

πk∈〈π1 : πB〉
J
(
Γ, πk (Γ)

)
−min
P∈L

J (Γ,P) (5.19)

The risk of a list of predictors is the expected loss R
(
〈π1 : πB〉

)
= EP (Γ)

[
l
(
Γ, 〈π1 : πB〉

)]
.

The increased power of a list of predictors over a single predictor may seem to be offset by the
difficult task of finding the optimal list. The optimal list requires a search over all lists of length
B

〈π1∗ : πB∗〉 = arg min
〈π1 : πB〉∈ΠB

R
(
〈π1 : πB〉

)
(5.20)

However, the risk is a monotone supermodular function. Refer to Krause and Golovin [2012]
and Dey et al. [2013] for details regarding such functions. The implication of this property is
that there exists a simple algorithm for finding a near-optimal list: greedy selection. Selecting
the first predictor π1 is exactly the minimization in (5.14). The second predictor is selected
as π2 = min

π̃∈Π
R(〈π1, π̃〉), or minimizing the risk after fixing the predictor at the first level. In

general, the greedy procedure is

Rk (π) = R
(
〈π1 : πk−1, π〉

)
πk = arg min

π∈Π
Rk (π) , k = 1: B

(5.21)

We refer to Rk (π) as the risk at level k. It is a function of 〈π1 : πk−1〉. We also use the
shorthand lkij = l(Γi, 〈π1 : πk−1,Pj〉) for the losses at the level k. They calculate the loss of
planner Pj , given the list of predictors 〈π1 : πk−1〉. For example, if one of the earlier predictors
has already predicted the lowest loss element for planning problem Γi, then it does not matter
which element is predicted at level k, and all the marginal losses will be zero, lkij = 0 ∀j. We again
use the convex relaxation, optimizing the empirical surrogate risks at each level. The predictor
πk is defined in terms of a scoring function sk at that level

R̂kψ(s) = 1
N

N∑
i=1

L∑
j=1

lkijψ(sij) (5.22a)

sk = arg min
s̃
Rkψ(s̃) (5.22b)

πk(Γ) = arg max
j
sk(Γ,Pj), k = 1: B (5.22c)

We close this section with an observation about the risks. If Ω is the space of environments,
let Ω|¬1 be the space of environments where loss is non-zero under π1. Equivalently, Ω|¬1 is
the space of unsolved environments at level 2. More generally, Ω|¬1: ¬(k − 1) is the space
of environments where loss is nonzero under the list 〈π1 : , πk−1〉, or the space of unsolved
environments at level k. Then

R(〈π1 : πk−1, π〉) =
∫

Ω
l(Γ, 〈π1 : πk−1, π〉)p(Γ)dΓ

=
∫

Ω|¬1: ¬(k−1)
l(Γ, 〈π1 : πk−1, π〉)p(Γ)dΓ
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Algorithm 7: List Prediction for Dynamic Ensemble
1 Sample planning problem dataset {Γi}Ni=1 from P (Γ);
2 Compute feature projections {fi}Ni=1 for each problem;
3 Evaluate all planners P ∈ L on {Γi}Ni=1 to compute a cost matrix J ∈ RN×|L|;
4 Create loss matrix L from J;
5 for k ∈ {1, . . . , B} do
6 Train a predictor πk to do loss sensitive classification using features {fi}Ni=1 and loss matrix L;
7 Use the trained predictor πk to update loss matrix L;
8 return 〈π1 : πB〉;

It is only the space of unsolved environments that appear in the risk at level k. The environments
already correctly classified are of no concern.

In other words, the predictors are trained sequentially. Importantly, they focus on different
planning problems. The second predictor will focus on the planning problems where the first
predictor had low performance. The third will focus on planning problems where the first two
had low performance, and so on.

5.7 Experimental evaluation

In this section, we present empirical evaluations of both static and dynamic ensemble meta-
planners. We choose a spectrum of planning applications such as selecting from a library of
initial seeds for trajectory optimization, a library of heuristics for 4D arm planning and a library
of planners for UAV path planning. These results serve as concrete realizations of Challenge 2 in
different settings and demonstrates the distinct advantage of an adaptive meta-planner schedul-
ing effective black-box planners. In addition, the results also provide insight into the nature of
planning problems and how they affect the selection of the ensemble. Our implementation is
open sourced (https://bitbucket.org/sanjiban/list_prediction_motion_planning).

5.7.1 Dynamic ensemble

We evaluate the dynamic ensemble meta-planner presented in Algorithm 7 on 4 planning problem
datasets, each obtained from different applications, as shown in Fig. 5.5. The dataset details are
presented in Fig. 5.5(a). Empirical risks for all applications are shown in Fig. 5.5(b). We observe
that the risk of a list is significantly lower than the risk of a single element, irrespective of the
application. In addition, the risk is lower when using the hinge surrogate loss compared to the
square surrogate loss. Fig. 5.5(c - f) shows sample lists predicted for each application.

We will go through each of these applications, explain the motivation and analyze the results.
For further details about dataset collection, context extraction and learner parameters, we refer
the reader to Tallavajhula and Choudhury [2015].

https://bitbucket.org/sanjiban/list_prediction_motion_planning
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therefore CHOMP has a difficult time finding a valid trajectory
using this initial seed.

(a) The default straight-line initialization of CHOMP is marked
in orange. Notice this initial seed goes straight through the
obstacle and causes CHOMP to fail to find a collision-free
trajectory.

(b) The initialization seed for CHOMP found using CONSE-
QOPT is marked in orange. Using this initial seed CHOMP is
able to find a collision free path that also has a relatively short
execution time.

Fig. 2: CHOMP initialization trajectories generated as control
actions for CONSEQOPT. Blue lines trace the end effector path
of each trajectory in the library. Orange lines in each image
trace the initialization seed generated by the default straight-
line approach and by CONSEQOPT, respectively.

In our results we use a small number (1�3) of slots in our
sequence to ensure the overhead of ordering and evaluating the
library is small. When CHOMP fails to find a collision-free
trajectory for multiple initializations seeds, one can always

fall back on slow but complete planners. Thus the contextual
control sequence’s role is to quickly evaluate a few good
options and choose the initialization trajectory that will result
in the minimum execution time. We note that in our experi-
ments, the overhead of ordering and evaluating the library is
negligible as we rely on a fast predictor and features computed
as part of the trajectory optimization, and by choosing a
small sequence length we can effectively compute a motion
plan with expected planning time under 0.5s. We can solve
most manipulation problems that arise in our manipulation
research very quickly, falling back to initializing the trajectory
optimization with a complete motion planner only in the most
difficult of circumstances.

For each initialization trajectory, we calculate 17 simple
feature values which populate a row of the feature matrix Xi.
7 During training time, we evaluate each initialization seed
in our library on all environments in the training set, and
use their performance and features to train each regressor ¬i
in CONSEQOPT. At test time, we simply run Algorithm 2
without the training step to produce Y¬1,...,¬N as the sequence
of initialization seeds to be evaluated. Note that while the
first regressor uses only the 17 basic features, the subsequent
regressors also include the difference in feature values between
the remaining actions and the actions chosen by the previous
regressors. These difference features improve the algorithm’s
ability to consider trajectory diversity in the chosen actions.

We compare CONSEQOPT with two methods of ranking the
initialization library: a random ordering of the actions, and an
ordering by sorting the output of the first regressor. Sorting by
the first regressor is functionally the same as maximizing the
absolute benefit rather than the marginal benefit at each slot.
We compare the number of CHOMP failures as well as the
average execution time of the final trajectory. For execution
time, we assume the robot can be actuated at 1 rad/second for
each joint and use the shortest trajectory generated using the
N seeds ranked by CONSEQOPT as the performance. If we
fail to find a collision free trajectory and need to fall back to
a complete planner (RRT [15] plus trajectory optimization),
we apply a maximum execution time penalty of 40 seconds
due to the longer computation time and resulting trajectory.

The results over 212 test environments are summarized
in Figure 3. With only simple straight line initialization,
CHOMP is unable to find a collision free trajectory in 162/212
environments, with a resulting average execution time of 33.4s.
While a single regressor (N = 1) can reduce the number of
CHOMP failures from 162 to 79 and the average execution
time from 33.4s to 18.2s, when we extend the sequence
length, CONSEQOPT is able to reduce both metrics faster
than a ranking by sorting the output of the first regressor.
This is because for N > 1, CONSEQOPT chooses a primitive

7Length of trajectory in joint space; length of trajectory in task space, the
xyz values of the end effector position at the exploration point (3 values), the
distance field values used by CHOMP at the quarter points of the trajectory
(3 values), joint values of the first 4 joints at both the exploration point (4
values) and the target pose (4 values), and whether the initialization seed is
in the same left/right kinematic arm configuration as the target pose.
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TABLE II: Seed Trajectory Prediction for 2D Point Robot

List Size Hinge Loss Square Loss

Single Element 0.1073 0.1106
3 Elements 0.0715 0.0721

TABLE III: Seed Trajectory Prediction for 7D Manipulator

List Size Hinge Loss Square Loss

Single Element 15.454 13.013
3 Elements 3.6085 3.6799

TABLE IV: Heuristic Prediction

List Size Hinge Loss Square Loss

Single Element 0.0976 0.0933
3 Elements 0.0325 0.0360

TABLE V: Planner Prediction

List Size Hinge Loss Square Loss

Single Element 0.2222 0.2281
3 Elements 0.0222 0.0281

Fig. 4: Test predictions for Section V-A. The environment on the left is
solved by the level 1 predictor (red) which predicts an initial seed that goes
around the obstacles on optimization. On the other hand, the environment
on the right is solved only by level 3. The optimal trajectory passes through
a narrow gap with a kink while there are many local minima surrounding
this trajectory. Level 1 (red) makes a naive prediction that gets stuck cutting
across obstacles. Level 2 (blue) comes closer to solving it but chooses a
wrong homotopy class. Level 3 (green) solves the environment by predicting
a seed which is optimized into the narrow gap.

4) Costs c(x, ⇠): The element ⇠ is used as a heuristic input
to MHA*. MHA* plans on a lattice created by discretizing
each joint space 12 times. c(x, ⇠) is set to be the number
of states expanded when using ⇠ (a maximum of 10000
expansions are allowed). The cost is scaled from 0 to 10.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: Under p(x), environments frequently have a
sufficient gap between the two blocks for the arm to pass
through. The predictor at the first level predicts attractor
states corresponding to simple arm ‘tucking’ configurations.
Environments in which the blocks are close together, leading
to a narrow gap, are infrequent. These environments require
a complicated ‘tucking’ attractor state. The subsequent pre-
dictors solve such environments, as seen in Figure 5.

C. Planner Prediction in Adaptive Motion Planning

1) Motivation: The effectiveness of a planning algorithm
to plan a trajectory in an environment within a time constraint
depends on the configuration of obstacles. The notion of

a list of planners to create a planner ensemble has shown
promising results [8].

2) Environment x and distribution p(x): The objective
is to the plan the motion of a 2D point robot from start
to goal. The environment x consists of circular obstacles.
p(x) is such that the positions and radii of the obstacles are
sampled uniformly. See Figure 6.

3) Element ⇠ and library L: Each element is a sam-
pling based motion planning algorithm. A library of such
algorithms is generated by varying tree growing strategies,
sampling strategies and heuristics.

4) Costs c(x, ⇠): The planner ⇠ is used to plan a trajectory
within a time constraint of 0.05s. c(x, ⇠) is set to be equal
to the path length of the solution. The cost is affinely
transformed to [0, 20]. If no feasible path was found, c(x, ⇠)
is set to 20.

5) Features �: Features �(x) are computed on the envi-
ronment only. The optimization problem for this case is (16).
� is a vector of Histogram of Gradients on the image of the
environment.

6) Results: The first predictor predicts planners such as
BIT*, RRT-Connect and Informed-RRT*. These planners
don’t make strong assumptions about structure in the en-
vironment, which results in good performance over a wide
range of environments. Environments with structure are
infrequent under p(x). We observe that subsequent predictors
predict planners which exploit structure. See Figure 6.

VI. RELATED WORK

With a formulation for list prediction in place, we can
discuss related work in a common language. Jetchev and
Toussaint [9] was an early work on predicting seeds for
trajectory planning. Cost regression, which we defined as
directly regressing from features to costs, and classification
were implemented. Classification was found to perform
better. Our work uses the formalism of loss-sensitive clas-
sification to arrive at both regression and classification. In
IV-B, we also reason about cost regression being a more
difficult task than classification. Dragan et al. [10] predicted
the usefulness of end-effector goals for trajectory planning
on a manipulator. Their work was not limited to using a
library of elements. However, we offer justifications for
some heuristics they considered. For example, [10] used
a threshold on costs to focus on relevant environments in
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a seed which is optimized into the narrow gap.
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TABLE I: Application Details

Application Library Length L List Budget B Feature Dimension d Train Data N Validation Data Test Data

Seed Prediction 2D 39 3 73 700 200 100
Seed Prediction 7D 30 3 17 310 112 100
Heuristic Prediction 101 3 1620 675 193 96
Planner Prediction 100 3 1764 579 166 82

Empirical risks for all applications are in Tables II-V. We
observe that the risk of a list is significantly lower than the
risk of a single element, irrespective of the application. In
addition, the risk is lower when using the hinge surrogate
loss compared to the square surrogate loss. Each subsection
is accompanied by figures showing sample lists predicted for
the application.

A. Seed Prediction for Trajectory Optimization of 2D Point
Robot

1) Motivation: For the problem of planning a trajectory
from a start to goal configuration, local trajectory optimiza-
tion is an approach where an initial seed joining the start
to goal is optimized. While these methods are fast, their
solution quality is heavily dependent on the initial seed.
Often these methods converge to a bad local minimum
around the initial seed, e.g, passing through the middle of
obstacles. The effectiveness of a seed is not known apriori.
A computationally expensive approach is to optimize every
element in a library of seed trajectories. List prediction can
be used instead to predict a small set of elements.

2) Environment x and distribution p(x): We consider a
point robot in a 2D environment. The environment x consists
of square obstacles generated from a uniform random distri-
bution p(x), see Figure 3. The start and goal configuration
are fixed for all environments.

3) Element ⇠ and library L: An element is a seed trajec-
tory that connects the start to the goal. The library L consists
of diverse trajectories that are optimal on environments
drawn from p(x).

4) Costs c(x, ⇠): A seed ⇠ is used as an input to a local
optimizer in environment x. The cost of a trajectory is the
sum of a smoothness term and an obstacle proximity term.
CHOMP [4] was used as the local optimizer. c(x, ⇠) is the
cost of the trajectory that results after the seed ⇠ is optimized.

5) Features �: Features �(x, ⇠) are computed on a pair
of environment and seed. The optimization problem for this
case is (15). � is a vector containing information about
downsampled gradients around ⇠ and in a local region around
it.

6) Results: The distribution p(x) places large probability
mass on environments where obstacles are clustered. The
predictor at the first level predicts simple seeds that go
around these clusters. But there are environments which
require the optimal seed to be in a complicated homotopy
class. These are infrequent under p(x), so they are ignored
by the first predictor. Subsequent predictors focus on these
environments, making customized predictions. Figures 3
and 4 make this point with specific examples.

Fig. 3: Training phase for Section V-A. The objective is to optimize a trajec-
tory from start to goal (cyan dots) in an obstacle field (grayscale image). The
examples shown are problems solved by predictors at different levels and the
trajectories shown are post-optimization. The level 1 predictor (red) learns
a simple classification rule to solve a large number of problems—it predicts
seeds that simply go around a cluster of obstacles to achieve the lowest cost.
The level 2 predictor (blue) focusses on and solves environments that level 1
did not solve. It learns to predict seeds in better homotopy classes. The level
3 predictor (green) focusses on corner cases, e.g the two instances shown
have the optimal trajectory passing through a narrow gap that is surrounded
by local minima. The level 3 predictor learns seeds that are optimized into
this narrow gap.

B. Heuristic Prediction in Search Based Planning

1) Motivation: Heuristics are essential to improving the
runtime performance of search based planning. Recent ap-
proaches such as MHA* [5] create a framework that allows
the use of an inadmissible heuristic as long as it is anchored
by weighted A*. MHA* allows heuristics to have a lot of
flexibility and effectively act as modules that expand promis-
ing states only. Given a library of inadmissible heuristics, list
prediction can be used to predict a small subset of heuristics.

2) Environment x and distribution p(x): The objective is
to the plan the motion of a 4 link arm from start to goal.
The environment x consists of two rectangular blocks, one
above and one below the arm. p(x) is such that the horizontal
positions of the blocks are uniformly random. See Figure 5.

3) Element ⇠ and library L: An element is an inad-
missible heuristic. A heuristic is an exponential kernel on
a chosen state, called an ‘attractor state’. The heuristic
penalizes arm states away from the attractor state 2. A library
of heuristics is generated by randomly sampling attractor
states. We also add an element to the library corresponding
to no heuristic—MHA* reverts to weighted A*.

2The kernel is defined only in 3 out of the 4 dimensions, i.e, the function
is invariant to the base joint.

Figure 5.5: Evaluation of dynamic ensemble meta-planner on a spectrum of motion planner applications -
Choosing seed trajectory for 2D trajectory optimization, 7D trajectory optimization, heuristic prediction for
4D arm planning and planner prediction for 2D system. (a) Details about the dataset for each application (b)
Illustrations of the 4 applications and the average loss of the meta-planner for different ensemble sizes and
surrogate losses (c) Training phase - the examples shown are problems solved by predictors at different levels
and the trajectories shown are post-optimization. (d) Test phase - the environment on the left is easily solved by
the level 1 predictor (red) while the environment on the right is solved only by level 3 predictor (right). (e) The
predictor at level 3 predicts a heuristic (green) that tucks the arm in a non-trivial configuration that allows it to
pass through the gap. (f) The predictor at level 3 predicts RRT*-Tunnel, as it concentrates sampling in a tunnel
around the initial straightline solution, and finds a path through the gap in the wall.
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Seed prediction for trajectory optimization of 2D point robot

For the problem of planning a trajectory from a start to a goal configuration, local trajectory
optimization is an approach where an initial seed joining the start to goal is optimized. While
these methods are fast, their solution quality is heavily dependent on the initial seed. A library
of initial seeds is created, where the cost of a seed is the cost of the trajectory after optimizing
the seed using an optimizer, CHOMP [Ratliff et al., 2009a]. The environment consists of square
obstacles generated from a uniform random distribution. The distribution places large probabil-
ity mass on environments where obstacles are clustered. The predictor at the first level predicts
simple seeds that go around these clusters. But there are environments which require the optimal
seed to be in a complicated homotopy class. These are infrequent, so they are ignored by the first
predictor. Subsequent predictors focus on these environments, making customized predictions.
Fig. 5.5(c),(d) make this point with specific examples.

Seed prediction for trajectory optimization of 7D robot arm

This is same as 2D seed prediction except in higher dimensions. The dataset used is obtained
from Dey et al. [2013].

Heuristic prediction for 4D arm planning

Heuristics are essential to improving the runtime performance of search based planning. Recent
approaches such as MHA* [Aine et al., 2016] create a framework that allows the use of an
inadmissible heuristic as long as it is anchored by weighted A*. An element is an inadmissible
heuristic. A heuristic is an exponential kernel on a chosen state, called an ‘attractor state’.
The heuristic penalizes arm states away from the attractor state. The objective is to the plan
the motion of a 4 link arm from start to goal. The environment consists of two rectangular
blocks, one above and one below the arm. The cost is the number of expansions done by the
search. Environments frequently have a sufficient gap between the two blocks for the arm to
pass through. The predictor at the first level predicts attractor states corresponding to simple
arm tucking configurations. Environments in which the blocks are close together, leading to a
narrow gap, are infrequent. These environments require a complicated tucking attractor state.
The subsequent predictors solve such environments, as seen in Fig. 5.5(e).

Planner prediction for 2D planning

A library of planners is created by trying different algorithms and different parameters. The
cost is the quality of the solution after a planning time budget. The objective is to the plan the
motion of a 2D point robot from start to goal. The environment consists of circular obstacles.
The distribution is such that the positions and radii of the obstacles are sampled uniformly.
The first predictor predicts planners such as BIT*, RRT-Connect and Informed-RRT*. These
planners do not make strong assumptions about structure in the environment, which results in
good performance over a wide range of environments. Environments with structure are infrequent
under the distribution. We observe that subsequent predictors predict planners which exploit
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structure as shown in Fig. 5.5(f).

Random 
No Fly Zones

Start

Goal

Table 3.2: Perf

Expert Planner Failure Cost Cost
Fraction (overall) (if success)

RRT*Uniform
1 0.786 0.890 0.487

RRT*Workspace
1 0.213 0.364 0.193

RRT*Workspace
2 0.181 0.332 0.185

RRT*Tunnel
1 0.167 0.256 0.107

RRT*Tunnel
2 0.391 0.432 0.068

BIT*
1 0.707 0.881 0.596

BIT*
2 0.948 0.981 0.636

RRTConnect1 0.186 0.876 0.848
T-RRT1 0.248 0.744 0.660
T-RRT2 0.235 0.732 0.650
LBT-RRT1 0.925 0.963 0.506
LBT-RRT2 0.941 0.970 0.496
InformedRRT*

1 0.996 0.996 0.000
STRIDE1 0.668 0.893 0.677
EST1 0.352 0.854 0.775
FixedDescent1 0.694 0.743 0.161
FixedDescent2 0.946 0.964 0.339
FixedDescent3 0.973 0.973 0.009
FixedDescent4 0.983 0.983 0.000
FixedDescent5 0.987 0.992 0.403
LatPrim1 0.223 0.448 0.289
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Table 3.3: Perf

Learner Ensemble Ensemble
Budget = 1 Budget = 3

Hinge Loss + Linear 0.104 0.035
Square Loss + Linear 0.120 0.055
Unweighted Loss + Random Forest 0.101 0.021
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(a)

(b)

(c) (d)

RRT*Tunnel1 fails 
due to aggressive  

sampling
RRT*Tunnel2 succeeds 

as less aggressive

Figure 5.6: Evaluation of dynamic ensemble selection on a dataset of planning problems encountered by an
autonomous helicopter (a) The dataset is collected by randomly placing no fly zones and a goal point at a horizon
(b) The 21 planners used in the experiment (refer to Appendix C) for details. The statistics of the planner on
the dataset are fraction of times they fail, their average cost, and the average conditional cost. (c) Performance
of different models for learning an ensemble with 1 and 3 elements (d) A scenario where the first predictor selects
RRT*Tunnel1 which fails to solve the problem due to sampling too aggressively. The second predictor selects
RRT*Tunnel2 which is able to solve the problem.

Planner prediction for autonomous helicopter planning

We now evaluate the dynamic ensemble selection approach on a dataset of planning problems
encountered by an autonomous helicopter. The difference between the dataset collected for
the static ensemble evaluation is that the planning problems are harder, requiring avoidance
maneuvers in x,y, and z. The speed of the vehicle is higher, thus making curvature constraints
more relevant. For this dataset, a static ensemble does not suffice. First a library of expert
planners is created as shown in Fig. 5.6(b). Refer to Appendix C for details. A database of
1000 planning problems are created by placing 5 random no fly zones in a stretch of 2km as
shown in Fig. 5.6(a). As we can see from Fig. 5.6(c), the dynamic ensemble brings down the risk
dramatically from dynamically selecting a single planner. We also note that we had to resort to
a more powerful model class, random forest, to drive the risk down to tolerable thresholds.
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5.7.2 Static ensemble

We present evaluation of the lazy greedy selection procedure of a static ensemble presented in
Algorithm 6. Before delving into the results we introduce a transformation applied to the problem
to aid the learning process. Instead of regressing from context f to cost J , we introduce two
metrics - feasibility and performance. Feasibility is a binary classification of whether a planner
can solve a planning problem. Performance is a number in the range [0, 1] that indicates the
suboptimality of the solution produced by a planner conditioned on whether it could solve the
problem. It is computed as V = e−J/η , where η is a normalization constant. Thus for each
planner, learning a prior consists of learning a classification model to feasibility and a regression
model to performance. The metric score is then a product of feasibility and performance. The
rationale for applying this transformation is that the feasibility function is often easier to learn
that regressing to cost directly. Additionally, the performance function is also easier than the
cost as only the examples where a feasible solution was found by the planner are examined.

We first evaluate on a small representative dataset of 2D planning problems with holonomic
constraints as presented in Fig. 5.7. The planning problem distribution is a mixture distribution
from 4 underlying distributions - Forest, Baffle, Gate and Corridor as shown in Fig. 5.7(a).
Each of these distributions correspond to spatial arrangement of obstacles to favour different
search strategies. We design 4 expert planners - CHOMP, RRT*-Tunnel, RRT* and RRT*-
Obs - the details of which are specified in Fig. 5.7(b). These planners are selected to have
orthogonal performance, i.e., each one dominates in at least one kind of environment. The
context is represented by a feature vector of histogram of gradients at different resolutions. The
learnt priors use a chi-square kernel on this feature space. Fig. 5.7(b) shows the accuracy of
the prior on predicting feasibility and MSE of the prior in predicting performance. Fig. 5.7(c)
shows the ensemble selection procedure applied on two target distributions. The predicted static
ensembles also match the best ensemble arrived at using brute force combinatorial search. This
result shows that the lazy greedy search is able to adapt to any target distribution to pick a
combination of diverse planners.

We next evaluate the performance of the algorithm on a dataset of planning problems for
an autonomous helicopter. First a library of expert planners is created (Fig. 5.8(f)). A dataset
of 10000 planning problems is created by permutations and combinations of various scenarios
that may favor one planning approach over another. Fig. 5.8(a) shows some samples from this
dataset. The features used here are - coarse connectivity of workspace and a local dense distance
field gradient. The priors are learnt using a random forest classification and regression. The
two target planning problem distributions we wish to test are “Forest” and “City”. There is a
further categorization of “Known” (where the full environment is accessible Fig. 5.8(b),(c)) and
“Unknown” (where the environment is incrementally revealed, Fig. 5.8(d),(e)).

To clearly illustrate the ensemble selection process, Fig. 5.8(f) shows every step. Along with
the priors, the actual value on evaluation is shown in brackets. In this case, RRT*-Tunnel
and CHOMP were selected as the two planners. The lazy evaluation corrects for error in the
estimation of the performance of CHOMP. The reason these two planners performed well is
because the optimal solution was always within a tunnel of the initial guess and the cost function
was usually convex around the initial guess. For the city application, we see in Fig. 5.8(g) that
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Figure 5.7: Evaluation of lazy greedy static ensemble selection on a representative dataset. (a) The 4 category of
planning problems and their properties (b) The 4 planners, their performance on these problems and the accuracy
of the learnt priors (c) The ensemble selection process that uses the learnt priors to adapt to 2 target distributions.
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Known
Space

PCL
Hits

PCL
Misses

Plan

(b)

(f)

(a)Table 3.2: Ensemble selection for known forest application

Planners Iteration 1 Iteration 2 Iteration 3
Prior (Eval) Prior (Eval) Prior (Eval)

A* 0.694 0.694 0.003
CHOMP 0.989 (0.681) 0.681 0.021 (0.069)
RRT* 0.700 0.700 0
RRT*Tunnel 0.983 0.983 (0.848) -
RRT*-Obs 0.483 0.483 0
RRT 0.540 0.540 0
Lazy-RRT 0.563 0.563 0
RRTConnect 0.510 0.510 0
LBTRRT 0.638 0.638 0.006
T-RRT 0.533 0.533 0
EST 0.529 0.529 0
PDST 0.588 0.588 0
KPIECE 0.491 0.491 0
BKPIECE 0.772 0.772 0
LBKPIECE 0.491 0.491 0
STRIDE 0.482 0.482 0
SPARS 0.342 0.342 0
SPARS2 0.330 0.330 0
SBL 0.456 0.456 0.002
PSBL 0.458 0.458 0.004

Ensemble
Slot 1 RRT*-Tunnel RRT*-Tunnel
Slot 2 CHOMP

Table 3.3: Ensemble v/s individual performance for different applications

Criteria Ensemble Ensemble Total
Slot 1 Slot 2 Score

Planner(Score) Planner(Score)

Known Forest RRT*Tunnel(0.85) CHOMP(0.68) 0.92
Unknown Forest RRT*Tunnel(0.72) CHOMP(0.51) 0.85
Known City A*(0.68) RRT*Tunnel(0.59) 0.78
Unknown City RRT*Tunnel(0.80) CHOMP(0.54) 0.88
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(c)

(d) (e)

(g)

Figure 5.8: Evaluation of lazy greedy ensemble selection method on dataset collected for planning for an
autonomous helicopter (a) A training dataset is created from planning problems belonging to different classes.
Each distribution focuses on a particular strength / weakness that planners have. (b) Samples of the distance
field from planning problem belonging to “known” category. The red regions are the obstacles and upto the green
expansion (50m) is considered to be in collision. “Known Forest” has obstacles uniformly sampled using a Poisson
distribution. (c) “Known City” has obstacles arranged in the form of a city block (d) “Unknown” category limits
what the robot can see. The point cloud hits and misses correspond to seen obstacles and maximum range returns
respectively. As far as the robot can see there is only a front row of obstacles (e) The RRT*-Tunnel is easily
able to plan through the first row and is unaware of the other obstacles - thus producing a high quality path (f)
Ensemble selection process for “Known Forest” (g) Performance of the selected ensemble v/s individual planners
for different application.
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A* and RRT*-Tunnel were chosen. This is because this environment required reasoning in a
global sense, discretization effects were acceptable and on occasion when the solution happened
to lie near the initial guess, the RRT*-Tunnel was the only algorithm able to sample densely
enough to get a solution.

For “unknown” environments, the forest results remained unchanged but the city results
were completely changed. Since the city is incrementally revealed to the robot, it is for the most
part easier, even convex around the initial guess on many occasions. This makes the use of A*
wasteful when much higher quality solutions free of discretization effects can be obtained. The
ensemble selection system is automatically able to leverage this assumption.

5.8 Closed-loop evaluation of dynamic ensemble on different UAV platforms

We evaluate the dynamic ensemble framework described in Section 5.6 on two distinct UAV
platforms.

5.8.1 Evaluation on a large scale hexarotor

We first train a dynamic ensemble for planning onboard a large scale hexarotor. The motivation
for this application was to ensure robust long term autonomy. The objective was to deploy this
UAV in an area with obstacles as shown in Fig 5.9(a) and have it execute as many Monte-carlo
missions as possible. Each such mission consists of 4− 5 waypoints chosen quasi-randomly. The
hexarotor takes off, follows the mission, touches down and repeats. The hexacopter is shown in
Fig 5.9(c) - it is a DJI M600 with two Velodyne VLP-16 which has a 100m range.

We present flight test results where the adaptive planner enabled the UAV to perform 45
missions for around 151 minutes of flight time as shown in Fig 5.9(b). It covered a total distance
of over 15 km reaching top speeds of 10 m/s. The adaptive planning system was successful
95.56% of the time dramatically improving on the performance of a single hand designed planner
(< 50%).

Before we describe the flight test result, we shed some light on the training process. A
training database of 1000 problems is collected by randomly sampling start and goal points
on a hand designed map (resembling the testing area) as shown in Fig 5.9. We use a library
of 8 planners from the list of expert planners in Appendix C. We use 4 general purpose plan-
ners - RRT*Tunnel1, RRT*Tunnel2, BIT*1 and InformedRRT*1. We use 4 precision planners -
SingleDetour1, SingleDetour2, DoubleDetour1 and DoubleDetour2. The feature vector we ex-
tracted from each problem is 10 dimension containing terms such as distance between start/goal,
density of obstacles at various locations, etc. More details on this can be found in Appendix D.
We follow the list prediction framework as described in Section 5.6. The ensemble size is set to
2. The list prediction reduces risk to 0.08 from 0.20.

We see some interesting datapoints in the collected dataset that confirms some of the intu-
itions discussed in Chapter 4 about general purpose and precision planners. Fig 5.10(d) shows
a datapoint where both classes of planners are able to have comparable performance. Note how
planners such as BIT*1 or RRT*Tunnel1 search a large space to find a connection, while the
precision planner DoubleDetour2 sweeps laterally to find a gap. Fig 5.10(e) shows a scenario
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(a)

(b) (c)

Total Time Total Distance Top speed Missions Planner success

151.9 min 15.833 km 10 m/s 45 95.56% (improvement over 
<50% for baseline system)

(d)

Figure 5.9: Evaluation of adaptive ensemble on a large hexarotor. The purpose of the system is to do long
term autonomy. (a) The UAV is flying missions in an area where there are obstacles such as pylons and shipping
containers (b) The UAV executes Monte-carlo missions where it repeatedly takes off and lands at different areas
(c) The hexarotor is a DJI-M600 with two VLP-16 (d) Summary of the flight test

where such precision planners would completely fail. RRT*Tunnel1 has to plan to climb, then
finds a maneuver through a gap that reaches the goal. None of the other planners finds a solu-
tion. Fig 5.10(f) shows an opposite scenario where general purpose planners fail to find a path.
As can be seen from the attempts by RRT*Tunnel1, the goal point is critically near an obstacle,
and the tree is unable to sample a point that can connect to the goal. The precision planner
DoubleDetour1 is precisely primed to solve such scenarios by finding the violation point and
sampling perpendicular to it till a path is found.

We now analyze a 13 minute segment from the flight test as shown in Fig 5.11. The adaptive
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Figure 5.10: Details for training the adaptive ensemble meta-planner that was executed during the flight test.

ensemble cycling through different planners at different timesteps is shown in Fig 5.11(a). A
zoomed in version is shown in Fig 5.11(b)(c). Interestingly, RRT*Tunnel2 is never selected as
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Ensemble: single_detour_1, double_detour_1 

(e)

Figure 5.11: Analysis of adaptation of the planner during the flight test. The meta-planner switches between
different planners. The active planner are shown by the blue dot.

it was not found to ever dominate another planner during training. Fig 5.11(d) shows a situa-
tion where the UAV is asked to circle around a pylon which flying at 10 m/s. Both BIT*1 and
SingleDetour1 find a solution that smoothly avoids the pylon with sufficient clearance. On the
other hand, Fig 5.11(e) shows a corner case where the goal point is very close to an obstacle. As
mentioned before, this creates difficulty for general purpose planners. No general purpose plan-
ners are selected for this problem. SingleDetour1 and DoubleDetour1, both precision planners
are selected and are able to find a solution.

5.8.2 Evaluation on a small scale quadrotor

We also train a dynamic ensemble for planning onboard a small scale quadrotor. The UAV is
tasked with flying missions that involve operating in multiple speed-regimes and navigating in
diverse environments as shown in Fig. 5.12 (a). The quadrotor is shown in shown in Fig 5.9(b) -
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Figure 5.12: Closed loop evaluation on a small quadrotor. (a) Diverse environments in which quadrotor (shown
in (b)) operates. (c) Training dataset (d) Library of expert planners

it is a DJI M100 with a spinning Hokyuo laser which has a 15m range. This short range implied
the vehicle had to react very quickly to plan around obstacles.

We first describe the training process. We create a family of parametric distribution of
environments to simulate the planning problem distribution we want the UAV to operate in.
These problems cover the range of high speed and low speed operations. The obstacles arise from
two categories - no-fly-zones and terrain. No-fly-zones arise due to presence of other aircrafts,
regions in the world where the UAV is not allowed to pass through, etc. Terrain obstacles are
trees, hills or ridges. Fig 5.9(c) shows a representative sample from each class of problem. A
training database of 6000 problems is collected by randomly 1000 problems from each class.

We use a library of 13 planners from the list of expert planners in Appendix C. We use
6 general purpose planners which operate at high speed - RRT*Tunnel1, RRT*Tunnel2, BIT*1,
InformedRRT*1, A*1, A*2. We use 3 general purpose planners which operate at low speed - BIT*3,
A*3, A*4. We use 4 precision planners - SingleDetour1, SingleDetour2, DoubleDetour1 and
DoubleDetour2. The feature vector we extracted from each problem is 17 dimensional containing
density of obstacles at various locations. More details on this can be found in Appendix D. We
follow the list prediction framework as described in Section 5.6. The ensemble size is set to 2.
The list prediction reduces risk to 0.09 from 0.22.

We now analyze a test run from the flight test as shown in Fig 5.13(a). The mission requires
the UAV to avoid a mound at high speed and trees at a lower speed. Fig 5.13(b) shows the UAV
avoiding both obstacles. Fig 5.13(c) shows the instant where the UAV has to avoid the mound.
The ensemble selected is DoubleDetour1 and RRT*Tunnel1. Both these planners are able to find
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Fly around mound (higher speed,  
curvature constraints, more clearance)

Fly around trees (lower speed,  
unconstrained, less clearance)

Ensemble: double_detour_1,  
               rrtstar_tunnel_1

Ensemble: astar_3,  
                 bitstar_3

(a) (b)

(c) (d)

Figure 5.13: (a) Test scenario with two distinct obstacle classes (shown in (b)) which result in different ensembles
being selected ((c) and (d)).

a path that bends around the mound. Fig 5.13(d) shows the instant where the UAV has to avoid
trees. The ensemble selected is A*3, BIT*3. This is because the UAV is in a cul-de-sac and close
to obstacles.

5.9 Discussion and future work

In this Chapter, we took steps towards addressing Challenge 2. Building on the ensemble of
expert planners framework in Chapter 4, we formulate the problem as design of meta-planners
to select an ensemble from a library of expert planners. We first discuss a static ensemble meta-
planner - where a fixed ensemble is selected for a distribution of planning problems. A static
ensemble suffices in cases where there are general purpose planners that can have sufficient
performance on a wide range of planning problems. We discussed two settings for the static en-
semble meta-planner - first where all planners can be evaluated and the second where the library
size is too large. While the former case can be efficiently solved with a straightforward greedy
approach, we showed how the latter can be tackled by learning priors on the performance of the
planners using context from the problem. We then discussed the need for a dynamic ensemble
meta-planner where the library consists of precision planners that have high performance on a
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small support of problems. We approached this problem by learning a list of predictors that map
context extracted from the problem to a planner. Finally, we presented experimental evaluation
on a spectrum of motion planning applications along with datasets of planning problems faced
by an autonomous helicopter.

We return to the observation made about the accuracy versus complexity tradeoff of context
extraction. We observed that models such as graph kernels, which create a coarse graph and
matches statistics about all pairs shortest path, have surprisingly high accuracy in modeling
planner performance. However, they perform a large amount of computation in terms of collision
checking the world and planning using that information. This leads us to ask the question - “why
can’t planners themselves be used as feature extractors?”. This can be interpreted in two ways.
Firstly, in the black-box paradigm, we know that planning problems are not i.i.d but have
a correlation between consecutive time steps. Hence performance of a planner at time step t

contains a rich source of information at time step t + 1. Secondly, in the white-box paradigm,
as planner proceeds to collision check the environment, it can do inference about the world to
adapt its search strategy. This idea is pursued in Chapter 7 and Chapter 8.

We also want to point out the difference between learning priors on planner performance
versus classification of which planner to use. The former is a harder problem that is likely to incur
higher empirical risk. The latter is an easier problem. However, the problem with classification is
that on addition of a new element to the library, the entire process must be repeated. A middle
ground between the two frameworks would be an useful area to explore.

We saw that the problems that a predictor i focused on where problems where predictors
1, . . . , i− 1 failed to solve. We wonder - what should be done with problems that all predictors
fail to solve. Even if the predictors are very powerful, we cannot guarantee this situation will
not arise. How should this be handled from a systems perspective? We will address this question
in Chapter 6.





6
Online Exception Planners

In Chapter 5, we discussed approaches for training predictors to select planners from a library.
A pertinent question is - what happens when the predicted planner fails to find a path? This
can happen because the failure problem at test time might have rarely occurred in the training
database. However, at test time, once the robot fails to solve a problem it continues to experience
the same problem at the next time step. This phenomenon arises from the fact that the problem
distribution is indeed not i.i.d. Additionally, it might also happen that no planner in the library
is able to solve the current problem - hence iterating through all planners in the library is not
fruitful.

In this Chapter, we view the problem in a different light - exception handling. The failure
event is viewed as an exception. In such an event the robot may slow down and come to a stop.
While it waits, it may ask a more computationally expensive oracle for a planner to specifically
solve the failure problem. The oracle can take as long as it likes and returns a planner which
the robot executes. However, should the robot encounter the same problem again, we would like
it to invoke the computed planner. If the environment consists of only a handful pathological
failure scenarios that recur, we envision the robot dynamically constructing an exception planner
library to deal with such scenarios. We show that the online learning framework of online paging
offers an elegant way to reason about this problem.

Section 6.1 introduces the problem with a motivating example. Section 6.2 provides a brief
background on library construction in robot path planning. Section 6.3 formalizes the exception
planner library construction problem in the framework of online paging. Section 6.4 describes the
online algorithm. We present some empirical evaluations on different environments in Section 6.5
and conclude with future directions in Section 6.6.
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Planner 1
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Figure 6.1: Online exception planners. (a) UAV navigating in the world encounters a difficult problem. Neither
planner in its library is able to solve the problem and it has to come to a hover (b) It queries an oracle with the
problem. Oracle takes some time and returns an exception planner that can at least solve this exception problem.
(c) Next time the UAV encounters a similar problem, the exception planner is able to solve and the UAV does
not have to stop.

6.1 Introduction

We begin with a simple example. Consider the scenario shown in Fig. 6.1 where we have a UAV
navigating in an environment. The robot is equipped with a library of planners. We assume that
the planners are computationally cheap to execute, hence the robot can afford to execute all of
them at each time step.

The robot encounters a situation where it has to navigate between two trees as shown in
Fig. 6.1(a). Unfortunately, neither of the two planners in its library is able to solve this problem.
This forces the robot to execute an emergency stop. The robot then queries an oracle - in this
case assume a human designer - with the planning problem that it was not able to solve. The
human designer takes some processing time (which is fine since the robot has come to a stop)
and comes back with a planner that can solve the problem. The robot accepts this planner into
its library. The next time it encounters a similar problem - such as flying between two telephone
poles - this new planner is able to solve the problem and the robot no longer has to come to a
stop.

We call the event of stopping and querying the oracle an exception event. This is because this
event disrupts the normal operation of the robot. The planner created by the oracle is called an
exception planner. Since this planner is created online during the robot’s operation, it is called
an online exception planner.

The role of the online exception planner is to ensure that if the same problem is repeated
twice, the robot does not have to stop. However, the robot cannot keep collecting exception
planners - the library has a fixed budget due to computation constraints. Hence, with every new
exception, old planners have to be removed. The robot has to judiciously decide which planners
to keep, and which to throw away. It has to do this while making minimal assumptions about
how planning problems arrive. This motivates us to ask the following question
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How can we maintain a fixed library of exception planners without having to call the
oracle repeatedly?

We show that this framework can indeed generalize to many different settings. We highlight
two such instances. The simplest setting is that of receding horizon planning with a trajectory
library [Green and Kelly , 2007]. Each planner is simply equivalent to checking a trajectory for
validity. The oracle corresponds to checking a dense “mother set” [Dey et al., 2013] and returning
the minimum cost trajectory. We use this setting in our experiments since it is easier to verify
the behaviour of the library selection algorithm and compare against state-of-the-art baselines.

A more complex real-world setting is where there already exists an adaptive motion planning
module. As alluded to in Section 2.2, the distribution of problems encountered is non i.i.d
and unlikely to match the collected database. This can result in a situation where the robot
encounters a difficult problem, and on failing to solve it, continues to experience the problem.
Hence, even if the problem was infrequent in the training distribution, it becomes prominent in
the test distribution.

In such a setting, when the robot encounters an exception event, i.e. the adaptive planning
module is unable to solve the problem, it queries a library of exception planners. These exception
planners are computationally cheap planners which can be trajectory lookups or a trajectory
optimization algorithm with different initial seed. If none of the exception planners solve the
problem, the UAV stops and invokes a computationally expensive global optimizer. The global
optimizer returns a solution which is then added to the library. We want to minimize the number
of times the UAV stops, while keeping the library size fixed and making no assumptions about
the planning problem distribution.

Our key insight is that this problem can be cast in the paradigm of online paging [Sleator and
Tarjan, 1985]. Online paging deals with the problem of deciding which pages to keep in a cache
such that the number of cache misses are minimized. Hence the page requests are equivalent
to arrival of planning problems, the cache is equivalent to the library of planners. Retrieving a
page from the slow memory to the cache is equivalent to querying the oracle for a planner.

This equivalence allows us to import algorithms from online paging which have proven guar-
antees. We empirically evaluate these algorithms on receding horizon planning problems using a
trajectory library and show that they work quite well in practice. Interestingly, they outperform
traditionally used approaches for designing trajectory libraries using diversity measures. These
results create a bridge between the two disparate fields and lead to interesting future directions.

6.2 Background

In this Chapter, we discuss how to dynamically create a library of planners online. The problem
of creating a library of candidate maneuvers or trajectories has been well studied in the domain
of grasp selection for manipulation [Berenson et al., 2007, Goldfeder et al., 2009] and receding
horizon model predictive control [Green and Kelly , 2007]. Such libraries use efficient techniques
to discretize the continuous action space so as to guarantee task performance and satisfy strict
computational budget constraints. At runtime, the elements of the library are evaluated until
success is achieved. Hence, the performance depends on the runtime content of library.
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One of the state-of-the-art methods for selecting such a library for receding horizon planning
is by Green and Kelly [2007]. They pose the problem of selecting a small library from a “mother-
set” of discretized control space trajectories. The procedure iteratively constructs the library
by selecting trajectories that minimize dispersion in trajectory space by using the Haussdorf
distance metric. Here the dispersion criteria is used as a surrogate for survivability [Erickson
and LaValle, 2009] by ensuring paths are sufficiently diverse.

Arora et al. [2015] create a more direct definition for survivability - the complement of the
joint probability of the library being in collision with a point obstacle sampled uniformly at
random. They show that this objective is monotone submodular and can be maximized with
greedy trajectory selection.

Since both of these methods are not data-driven, the library content do not adapt to the
distribution of obstacles the robot actually encounters. This can lead to artifacts where even
randomly optimizing such criteria can lead to better performance [Knepper and Mason, 2009].
Dey et al. [2012] cast the problem of library selection in the online learning framework to
adapt the library according to the obstacle distribution encountered. They use algorithms that
minimize regret, i.e. the difference between the choice made by the online algorithm and the
best choice in hindsight.

All of these methods assume a “mother-set” is available to make a selection. In this Chapter,
we remove this assumption. We too frame our problem in the online learning setup, but focus
on problems which are analyzed through competitive ratio - the worst case ratio between the
online learner’s performance and the optimal offline algorithm.

6.3 Problem formulation

We begin by stating the online paging framework. We will subsequently describe the online
exception planner formulation in a similar style so as to show the equivalence.

6.3.1 Online paging

Consider a two-level memory divided into pages of fixed uniform size. There is a slow memory
that can hold N pages. There is a fast memory (a cache) that can only hold k < N of the pages
at a time. Page requests arrive online, one request per time step. If the page request pt at time
t is already in the cache, zero cost is incurred. If pt is not in the cache, it needs to be brought
in. If the cache is full, one of the k pages must be evicted. This incurs a unit cost. This event is
known as a cache miss (also a page fault).

We note that this stated model corresponds to the demand paging paradigm where a page
is not moved out of the fast memory unless room is needed for a newly demanded page.

Let A be an online algorithm. Let z be a page request sequence. Let cost(A, z) be the number
of cache misses incurred by A on the sequence z.

We now define a metric for assessing A - the competitive ratio. The competitive ratio of A
is its worst case performance to an offline optimal algorithm OPT which has full knowledge of



6.3. Problem formulation 101

the sequence z up front:

max
z

cost(A, z)
cost(OPT, z) (6.1)

An online algorithm A is deemed better than B iff it has a competitive ratio closer to 1.
Note that no assumption is made on the sequence of page requests z.

6.3.2 Online exception planner selection

The robot is navigating using a library L of planners Pi ∈ L. Each of these planners are deemed
to be computationally inexpensive. Hence the robot can afford to execute all of them and pick
the best solution.

At time t, the robot encounters a planning problem Γt. It executes all planners in the library.
Let the cost of the solution on executing a planner Pi on Γt be J (Γt,Pi). It selects the best plan
computed by the library which has a cost minPi∈L J (Γt,Pi).

If the best solution cost is above a threshold Jmax, then the solution is deemed unsafe. This
leads to an exception event. The robot comes to a stop. It then queries an oracle O with the
failure problem Γt. The oracle returns an exception planner Pt = O(Γt) that can solve the
problem, i.e. J (Γt,Pt) ≤ Jmax. The robot has to choose how to update the library with this
planner, while keeping the library size fixed at k. This event incurs a cost of 1. We wish to
minimize the cumulative cost due to exception.

We now show how this problem is equivalent to the online paging problem. A planner Pi
corresponds to a page pi. The library L corresponds to the cache, both of whose size is limited
to k. A planning problem Γt is said to be solved by a planner Pi if J (Γt,Pi) ≤ Jmax. We can
interpret a Γt as a “request” for any planner belonging to this set. Hence planning problem Γt
is equivalent to a page request.

The oracle O returns a planner Pt = O(Γt) such that J (Γt,Pt) ≤ Jmax. In other words,
it returns a planner that belongs to the set of planners that can satisfy the request Γt. To
hypothetically construct the slow memory of N pages, we assume the oracle is omniscient and
pre-computes exception planners for all problems that arrive. Hence N is the size of the sequence.
Now the oracle’s job is simply to retrieve the planner corresponding to the requested problem.
We will see that the oracle does not actually have to compute all these exception planners -
the online paging algorithms will only invoke the oracle during a cache miss while still being
competitive w.r.t to this omniscient set.

This brings us to the question: What is the offline optimal algorithm OPT? Before we answer
that, we point out that the paging problem assumes that the requests are for unique pages.
However, in our problem, multiple planners can solve a planning problem. We can overcome this
problem by making things harder for the offline optimal algorithm. Given a planning problem,
the offline algorithm has to select a planner (from the set of N planners computed by the
omniscient oracle) that will result in the solution with minimum cost. On the other hand, the
online algorithms are free to satisfy the request with any planner that results in a solution cost
less than Jmax. Hence the competitive ratio of a online paging algorithm carries over to this
framework - the flexibility to choose any planner that satisfies the threshold Jmax implies the
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Algorithm 8: LRU (Ω,O)
1 Initialize L with k planners (can be random);
2 Initialize usage time ti = 0 for all Pi ∈ L;
3 for t = 1, . . . , |Γ| do
4 Receive planning problem Γi from sequence Ω;
5 Select best planner from library Ps = arg min

Pi∈L
J (Γt,Pi);

6 if J (Γt,Ps) ≤ Jmax then
7 Set usage time of selected planner ts = t

8 else
9 Invoke oracle to get an exception planner P∗ = O(Γt) ;

10 Find least recently used planner PLRU = arg min
Pi∈L

ti ;

11 L ← L \ PLRU ;
12 L ← L ∪ P∗ ;

13 return L;

online algorithm can only do better.
We also note that we do not model the effect on choosing planner Pt on the sequence of

planning problems the robot will encounter from t + 1 onwards. Since the paging framework
makes no assumptions on the sequence, it is applicable to our setting.

6.4 Online paging: The Least Recently Used algorithm

A popularly used algorithm in paging / caching is the Least Recently Used (LRU) algorithm.
On a cache miss, the algorithm evicts the page whose most recent request is as far back in
the past as possible. The motivation for this algorithm arises from the Furthest-in-the-Future
(FIF) algorithm. FIF is an offline algorithm which always evicts the page that will be requested
furthest in the future. Belady [1966] showed this to be the optimal algorithm. LRU attempts to
simulate this using the past as a predictor for the future.

Algorithm 8 describes the LRU algorithm in the context of online exception planners. We
begin with a library chosen at random (one can also start with an empty library and invoke the
oracle the first k timesteps). We will deal with a planning problem sequence Ω. For each planner
in the library Pi, we maintain a usage time ti. At time t, we receive problem Γt from Ω. All
planners in the library are evaluated and the best planner Ps is selected. If the solution cost of
this planner is less than Jmax, this planner is selected and the usage time is updated ts = t. If
not, an exception occurs ( a cache miss ) and the oracle is invoked to get a planner P∗. We evict
the least recently used planner from the library, i.e. with smallest ti.

LRU has some desirable performance guarantees.

Theorem 6.1 (Upper Bound for LRU). The competitive ratio of the LRU algorithm at most k,
the size of the library.

Proof. Refer to Sleator and Tarjan [1985]

Interestingly, no deterministic algorithm can have a better competitive ratio
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Figure 6.2: Receding horizon planning on two kinds of environments. A robot equipped with a library of paths
navigates from a global start to a global goal point. The robot only uses a small path of information to evaluate
paths (as shown in the right). The paths are coloured from brown (high cost) to blue (low cost). By repeatedly
following a fraction of the least cost path at each time step, the robot is eventually able to reach the goal (shown
by the green trace on the left).

Theorem 6.2 (Lower Bound for Deterministic Algorithms). Every deterministic paging algorithm
has competitive ratio at least k.

Proof. Refer to Sleator and Tarjan [1985]

6.5 Experiments

We empirically evaluate our approach on the simple setting of receding horizon planning with
path sets [Green and Kelly , 2007]. This is a well examined paradigm and there exists good
baseline approaches for us to compare against.

Fig. 6.2 shows the setup. We have a robot navigating in an environment with a library of
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10 paths. The cost of a path is a linear combination of the length, proximity to obstacles and
distance of terminal point from a goal point. At each time step, the robot evaluates each path
and picks the best one. It then moves a fraction of the path forward, senses new obstacles and
re-evaluates the path set. Hence the term receding horizon planning. In this setting, the oracle
is equivalent to a brute force search algorithm that goes through a larger set of 100 paths and
returns the best path. The assumption is that the robot has only enough onboard computation
budget to evaluate 10 paths. We also assume there always exists a path in the larger set that
solves the problem.

We evaluate our approach on two datasets - a sparse forest Fig. 6.2(a) and a maze like
environment Fig. 6.2(b). We evaluate on 100 instances of such problems. The evaluation is done
back to back, i.e. the library from one problem is carried over to the next. We evaluate different
paging algorithms in terms of the number of times the oracle had to be invoked.

We compare LRU against a set of baseline online paging algorithms.

1. First-in, First-out (FIFO): Replace the page that has been in memory the longest.

2. Last-in, First-out (LIFO): Replace the page most recently moved to cache.

3. Least Frequently Used (LFU): Replace the page that has been accessed the least.

We additionally compare against a baseline method for generating path sets that are diverse.
The Green Kelly (GK) pathset selects paths that minimize dispersion using the Haussdorf
metric [Green and Kelly , 2007]. This method is using some domain knowledge of what makes
a good path - something that our algorithms do not have access to.

Fig. 6.3 shows the performance of all algorithms on both datasets. The graphs show the cumu-
lative cache misses with time. Fig. 6.3(a) shows that LRU outperforms all baselines. Fig. 6.3(b)
shows LRU outperforms all but one baseline - the GK pathset. Interestingly, the GK pathset
performs poorly on the first problem.

To gain some more insight, we plotted the pathsets of LRU and GK for both datasets.
Fig. 6.3(c) shows the GK pathset (which is dataset independent). This set is diverse with paths
spreading out as much as possible. Fig. 6.3(d) shows the LRU pathset on the forest example.
There is a stark difference between the two. The LRU pathset are much more forward facing
than the GK pathset. This is because the pathset is data-driven and most probably the forest
examples do not require hard turns as the ones in the GK pathset.

On the other hand, the LRU pathset for the maze environment shown in Fig. 6.3(e) looks
much more similar to the GK pathset. This is because the maze environment requires sharp
turns from one corridor to another, hence requiring such paths. In summary, LRU is able to
adapt to different environments which non-adaptive approaches like GK pathset are unable to
do.

6.6 Discussion and future directions

We addressed the problem of dynamically maintaining a library of exception planners - planners
created on-the-fly to deal with failure scenarios - such that the number of exception events are
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Figure 6.3: Comparison of different algorithms on two different datasets (a) On the Forest dataset, our method
performs the best while the non-adaptive baseline (GK) has the second worst performance. (b) On the Maze
dataset, our method perfroms second best while GK performs the best (c) The GK pathset mostly has paths that
make sharp turns at different curvatures. This explains why it has poor performance in the Forest dataset - it
is unable to navigate through the fine gaps between obstacles. (d) The adaptive LRU pathset (at the end of the
trials) has different paths that all point forward. This pathset has adapted to the forest environment to find gaps
between obstacles (e) The adaptive LRU pathset in the Maze environment looks much different. This pathset has
adapted to find the turns required in the maze. It somewhat resembles the GK pathset which explains why the
GK pathset succeeds in the Maze dataset.

minimized. We showed that this problem is equivalent to the online paging problem where a
cache of pages must be maintained to minimize cache misses. We adopted an online algorithm,
Least Recently Used, to solve this problem with good performance guarantees. We validated our
approach on the simple setting of receding horizon planning with path sets in different environ-
ments. Our approach outperformed state-of-the-art baseline approaches for path set generation.

We now discuss some insights and directions for future work.

Q 1 (Paging with Request Sets). Instead of a unique page request, can we extend the framework
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to a set of requests?

The equivalence to online paging required a caveat - we had to assume that we are competing
with an offline algorithm that assigns a unique planner for a planning problem. However, there
are many planners which can solve a given planning problem. An interesting future direction
would be to relax this assumption. A promising way forward would be to formulate the problem
of requesting a set of pages as done in Epstein et al. [2009]. Here a set of requests are made and
if any one is satisfied, a cache miss is avoided.

Q 2 (Models of Data in Planning). What sort of data model explains the empirical success of
LRU?

A long standing explanation for the success of LRU in paging has been that real data exhibits
locality - recent requests are likely to be requested soon. However, it is possible to make more
concrete claims. For example, Borodin et al. [1995] proposed access graphs as a natural way to
capture locality of reference in page request sequences. An access graph is a graph where every
node is a page. Consecutive requests can only be made if they are neighbours in the graph. On
such models, one can show that LRU has better competitive ratio than FIFO. It would be an
interesting future direction to explore the nature of data models in planning and to see if that
explains the empirical success of certain path set creating algorithms.



Part III

White-box Adaptive Planners





7
Data-driven Planning via Imitation Learning

In previous Chapters, we worked with black-box planners which followed a two step strategy of
extracting context from the problem and selecting which expert planner to invoke. We argued
in Chapter 5 that this was computationally inefficient as the effort spent in extracting more and
more meaningful context was not used by the planners themselves. This motivates us to address
Challenge 3 which requires the design of a white-box planner that adapts its search strategies
as it gain information about the planning problem.

We motivate the utility of a white-box adaptive planner in Section 7.1 in the context of two
different domains - informative path planning and heuristic search based planning. We provide
background on both domains in Section 7.2 and define the nature of the policy that we wish
to train. We then map both problems to a common POMDP framework in Section 7.3. We
draw a novel connection to imitation learning of clairvoyant oracles to solve such problems in
Section 7.4. We show how one can train efficient policies using this connection in Section 7.5. We
extensively evaluate the approach in both domains in Section 7.6 and Section 7.7. We summarize
and discuss potential future directions in Section 7.8.

7.1 Introduction

Robot planning is the process of selecting a sequence of actions that optimize for a task spe-
cific objective. For instance, the objective for a navigation task would be to find collision free
paths, while the objective for an exploration task would be to map unknown areas. The optimal
solutions to such tasks are heavily influenced by the implicit structure in the environment, i.e.
the configuration of objects in the world. State-of-the-art planning approaches, however, do not
exploit this structure, thereby expending valuable effort searching the action space instead of
focusing on potentially good actions. This motivates us to examine the following question:

How can we enable planners to adapt their search strategies by inferring good actions
in an efficient manner using only the information uncovered by the search up until
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that time?
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Figure 7.1: Sequential decision making in informative path planning and search based planning. The implicit
structure of the environment affects the performance of policies in both tasks. (a) The effectiveness of a policy
to gather information depends on the distribution of worlds. (left) When the distribution corresponds to a scene
containing ladders, the learnt policy executes a helical motion around parts of the ladder already observed as
it is unlikely that there is information elsewhere. (right) When the distribution corresponds to a scene from a
construction site, the learnt policy executes a large sweeping motion as information is likely to be dispersed.
(b) A learnt heuristic policy adapts to different obstacle configurations to minimize search effort. All schematics
show the evolution of a search algorithm as the expansion of a search wavefront (expanded(white), invalid(black),
unexpanded(grey)) from start (green) to goal (blue). A commonly used inflated Euclidean heuristic cannot adapt
to different environments, e.g it gets stuck in bugtraps. On the other hand, the learnt policy is able to infer the
presence of a bug trap when trained on such a distribution and switch to greedy behaviour when trained on other
distributions.



7.1. Introduction 111

7.1.1 Motivation

We look at two domains - informative path planning and search based planning. We briefly delve
into these motivations and make the case for data-driven approaches in both.

Informative path planning

We consider the following information gathering problem - given a hidden world map, sampled
from a prior distribution, the goal is to successively visit sensing locations such that the amount
of relevant information uncovered is maximized while not exceeding a specified fuel budget.
Consider a robot equipped with a sensor (RGBD camera) that needs to generate a map of an
unknown environment. It is given a prior distribution about the geometry of the world, but has
no other information. This geometry could include very diverse settings. First it can include a
world where there is only one ladder, but the form of the ladder must be explored, which is a
very dense setting. Second, it could include a sparse setting with spatially distributed objects,
such as a construction site.

The important task for the robot is to now try to infer which type of environment it is in
based on the history of measurements, and thus plan an efficient trajectory. At every time step,
the robot visits a sensing location and receives a sensor measurement (e.g. depth image) that
has some amount of information utility (e.g. surface coverage of objects with point cloud). As
opposed to naive lawnmower-coverage patterns, it will be more efficient if the robot could use
a policy that maps the history of locations visited and measurements received to decide which
location to visit next such that it maximizes the amount of information gathered in the finite
amount of battery time available.

The ability of such a learnt policy to gather information efficiently depends on the prior
distribution of worlds in which the robot has been shown how to navigate optimally. Fig. 7.1(a)
(left) shows an efficient learnt policy for inspecting a ladder, which executes a helical motion
around parts of the ladder already observed to efficiently uncover new parts without searching
naively. This is efficient because given the prior distribution the robot learns that information
is likely to be geometrically concentrated in a particular volume given its initial observations
of parts of the ladder. Similarly, Fig. 7.1(a) (right) shows an effective policy for exploring con-
struction sites by executing large sweeping motions. Here again the robot learns from prior
experience that wide, sweeping motions are efficient since it has learnt that information is likely
to be dispersed in such scenarios. We wish to arrive at an efficient procedure for training such
a policy.

Search based planning

Search based motion planning offers a comprehensive framework for reasoning about a vast
number of motion planning algorithms [LaValle, 2006]. In this framework, an algorithm grows a
search tree of feasible robot motions from a start configuration towards a goal [Pearl, 1984]. This
is done in an incremental fashion by first selecting a leaf node of the tree, expanding this node
by computing outgoing edges, checking each edge for validity and finally updating the tree with
potentially new leaf nodes. It is useful to visualize this search process as a wavefront of expanded
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nodes that grows from the start outwards till it finds the goal as illustrated in Fig. 7.1(b). In
order to ensure real-time performance, heuristics are employed to guide the search.

While state-of-the-art methods propose different relaxation-based [Dolgov et al., 2008,
Likhachev and Ferguson, 2009] and learning-based approaches [Paden et al., 2017] to computing
heuristics as estimates of distance to goal, they run into a much more fundamental limitation -
a small estimation error can lead to a large search wavefront. Minimizing the estimation error
does not necessarily minimize search effort.

Instead, we focus on the latter objective of designing heuristics that explicitly reduce search
effort in the interest of real-time performance. Our key insight is that heuristics should adapt
during search - as the search progresses, they should actively infer the structure of the valid
configuration space, and focus the search on potentially good areas. Moreover, we want to
learn this behaviour from data - changing the data distribution should change the heuristic
automatically. Consider the example shown in Fig. 7.1(b). When a heuristic is trained on a
world with ‘bug traps’, it learns to recognize when the search is trapped and circumvent it. On
the other hand, when it is trained on a world with narrow gaps, it learns a greedy behaviour
that drives the search to the goal.

7.1.2 Key idea

It is natural to think of both these problems as a Partially Observable Markov Decision Process
(POMDP). However the POMDP is defined on a belief over possible world maps, which is very
large in size rendering even the most efficient of online POMDP solvers impractical.

Our key insight is that if the policies could fully observe and process the world map during
decision making, they could quite easily disambiguate good actions from bad ones. This motivates
us to frame the problem of learning a planning policy as a novel data-driven imitation [Ross and
Bagnell, 2014] of a clairvoyant oracle. During the training process, the oracle has full knowledge
about the world map (hence clairvoyant) and selects actions that maximize cumulative rewards.
The policy is then trained to imitate these actions as best as it can using partial knowledge from
the current history of actions and observations. As a result of our novel formulation, we are
able to sidestep a number of challenging issues in POMDPs like explicitly computing posterior
distribution over worlds and planning in belief space.

We empirically show that training such policies using imitation learning of clairvoyant oracles
leads to much faster convergence and robustness to poor local minima than training policies
via model free policy improvement. We leverage the fact that such oracles can be efficiently
computed for our domains once the source of uncertainty is removed. We show in our analysis
that imitation of such clairvoyant oracles during training is equivalent to being competitive
with a hallucinating oracle at test time, i.e. an oracle that implicitly maintains a posterior over
world maps and selects the best action at every time step. This offers some valuable insight
behind the success of this approach as well as instances where such an approach would lead to
a near-optimal policy.
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7.1.3 Contributions

Our contributions are as follows:

1. We motivate the need to learn a planning policy that adapts to the environment in which
the robot operates. We examine two domains - informative path planning and search based
planning. We examine both problems through the lens of sequential decision making under
uncertainty (Section 7.2).

2. We present a novel mapping of both these problems to a common POMDP framework
(Section 7.3).

3. We propose a novel framework for training such POMDP policies via imitation learning of
a clairvoyant oracle. We analyze the implications of imitating such an oracle (Section 7.4).

4. We present training procedures that deal with the non i.i.d distribution of states induced by
the policy itself along with performance guarantees. We present concrete instances of the
algorithm for both problem domains. We also show that for a certain class of informative
path planning problems, policies trained in this fashion possess near-optimality properties
(Section 7.5).

5. We extensively evaluate the approach on both problem domains. In each domain, we
evaluate on a spectrum of environments and show that policies outperform state-of-the-
art approaches by exhibiting adaptive behaviours. We also demonstrate the impact of this
framework on real world problems by presenting flight test results from a UAV (Section 7.6
and Section 7.7).

7.2 Background

7.2.1 Informative path planning

We now present a framework for informative path planning where the objective is to visit maxi-
mally informative sensing locations subjected to time and travel constraints. We use this frame-
work to pose the problem of computing a information gathering policy for a given distribution
over worlds and briefly discuss prior work on this topic.

Framework

We now introduce a framework and set of notations to express the IPP problems of interest.
The specific implementation details of the problem are described in detail in [Choudhury et al.,
2017a].

We have a robot that is constrained to move on a graph G = (V, E) where V is the set of
nodes corresponding to all sensing locations. The start node is vs. Let ξ = (v1, v2, . . . , vp) be a
sequence of connected nodes (a path) such that v1 = vs. Let Ξ be the set of all such paths.

Let φ ∈ M be the world map in which the robot operates. The world map is usually
represented in practice as a binary grid map where grid cells are either occupied or free. We
assume that the world map is fixed during an episode.
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Figure 7.2: The informative path planning problem. Given a world map φ, the robot plans a path ξ which visits
a node vi ∈ V and receives measurement yi, such that utility (information gathered) F (ξ, φ) is maximized. Here
the utility is the cardinality of all the cells uncovered (green), which is a union of the cells uncovered at each
location (and hence a set cover function)

Let y ∈ Y be a measurement received by the robot. Let H : V ×M→ Y be a measurement
function. When the robot is at node v in a world map φ, the measurement y received by the
robot is y = H (v, φ). The measurement function is defined by a sensor model, e.g. a range
limited sensor. A measurement is obtained by projecting the sensor model on the sensing node
v and ray-casting to determine the surfaces of the underlying world φ that intersect with the
sensor rays.

The objective of the robot is to move on the graph and maximize utility. Let F : 2V ×M→
R≥0 be a utility function. For a path ξ and a world map φ, F (ξ, φ) assigns a utility to executing
the path on the world. The utility of a measurement from a node is usually the amount of surface
of the world covered by it. In such an instance, the function does not depend on the sequence of
vertices in the path, i.e. is a set function. For simplicity, we assume that the measurement and
utility function is deterministic.

As the robot moves on the graph, the travel cost is captured by the cost function T : Ξ×M→
R≥0. For a path ξ and a world map φ, Jξφ assigns a travel cost for executing the path on the
world. In a practical setting, the total number of timesteps is bounded by T and the travel cost
is bounded by B. Fig. 7.2 shows an illustration of the framework.

We are now ready to define the informative path planning problems. There are two axes of
variations

1. Constraint on the motion of the robot

2. Observability of the world map

The first axis arises from whether the robot is subject to any travel constraints. For problems
such as sensor placement, the agent is free to select any sequence of nodes and the travel cost
between nodes is 0. For such situations, the graph is also fully connected to permit any sequence.
For problems involving physical movements, the agent is constrained by a budget on the travel
cost. Additionally, the graph may also not be fully connected.
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The second axis arises from different task specifications which result in the world map being
observable or being hidden. We categorize the problems on this axis to aid future discussions on
imitating clairvoyant oracles in Section 7.5.

Problems with known world maps

For the first two variants, the world map φ is known and can be evaluated while computing a
path ξ.

Problem 5 (Known-Unc: Known World Map; Unconstrained Travel Cost). Given a world map
φ, a fully connected graph G and a time horizon T , find a path ξ that maximizes utility

arg max
ξ∈Ξ

F (ξ, φ)

s.t. |ξ| ≤ T + 1
(7.1)

In the case where the utility function is a set function, Problem 5 is a set function maximiza-
tion problem which in general can be NP-Hard [Krause and Golovin, 2012]). Such problems occur
commonly in the sensor placement problem [Krause et al., 2008]. However, in many instances
the utility function can be shown to posses the powerful property of monotone submodularity.
This property implies the following

1. Monotonic improvement: The value of the utility can only increase on adding nodes, i.e.

F (V1 ∪ V2, φ) ≥ F (V1, φ)

for all V1,V2 ⊆ V

2. Diminishing returns: The gain in adding a set of nodes diminshes

F (V1 ∪ V3, φ)−F (V3, φ) ≤F (V1 ∪ V2, φ)
−F (V2, φ)

for all V1,V2,V3 ⊆ V where V2 ⊆ V3.

For such functions, it has been shown that a greedy algorithm achieves near-optimality [Krause
and Guestrin, 2007, Krause et al., 2008].

Problem 6 (Known-Con: Known World Map; Constrained Travel Cost). Given a world map φ,
a time horizon T and a travel cost budget B, find a path ξ that maximizes utility

arg max
ξ∈Ξ

F (ξ, φ)

s.t. T (ξ, φ) ≤ B
|ξ| ≤ T + 1

(7.2)

Problem 6 introduces a routing constraint (due to T ) for which greedy approaches can per-
form arbitrarily poorly. Such problems occur when a physical system has to travel between nodes.
Chekuri and Pal [2005], Singh et al. [2007] propose a quasi-polynomial time recursive greedy
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approach to solving this problem. Iyer and Bilmes [2013] solve a related problem (submodular
knapsack constraints) using an iterative greedy approach which is generalized by Zhang and
Vorobeychik [2016]. Yu et al. [2014] propose a mixed integer approach to solve a related corre-
lated orienteering problem. Hollinger and Sukhatme [2013] propose a sampling based approach.
Arora and Scherer [2017] use an efficient TSP with a random sampling approach.

Problems with hidden world maps

We now consider the setting where the world map φ is hidden. Given a prior distribution P (φ),
it can be inferred only via the measurements yi received as the robot visits nodes vi. Hence,
instead of solving for a fixed path, we compute a policy that maps history of measurements
received and nodes visited to decide which node to visit.

Problem 7 (Hidden-Unc: Hidden World Map; Unconstrained Travel Cost). Given a distribution
of world maps, P (φ), a fully connected graph G, a time horizon T , find a policy that at time
t, maps the history of nodes visited {vi}ti=1 and measurements received {yi}ti=1 to compute the
next node vt+1 to visit at time t+ 1, such that the expected utility is maximized.

Such a problem occurs for sensor placement where sensors can optionally fail [Golovin and
Krause, 2011]. Due to the hidden world map φ, it is not straight forward to apply the approaches
of Problem Known-Unc- we have to reason both about P (φ | {vi}ti=1, {yi}ti=1) and how the
function will evolve. However, in some instances the utility function F has an additional property
of adaptive submodularity [Golovin and Krause, 2011]. This is an extension of the submodularity
property where the gain of the function is measured in expectation over the conditional distribu-
tion over world maps P (φ | {vi}ti=1, {yi}ti=1). Under such situations, applying greedy strategies
to Problem 7 has near-optimality guarantees [Chen et al., 2015b, 2016b, Golovin et al., 2010,
Javdani et al., 2013, 2014b] ). However, these strategies require explicitly sampling from the
posterior distribution over φ which make it intractable to apply for our setting.

Problem 8 (Hidden-Con: Hidden World Map; Constrained Travel Cost). Given a distribution of
world maps, P (φ), a time horizon T , and a travel cost budget B, find a policy that at time t,
maps the history of nodes visited {vi}ti=1 and measurements received {yi}ti=1 to compute the
next node vt+1 to visit at time t+ 1, such that the expected utility is maximized.

Such problems crop up in a wide number of areas such as sensor planning for 3D surface
reconstruction [Isler et al., 2016] and indoor mapping with UAVs [Charrow et al., 2015, Nelson
and Michael, 2015]. Problem 8 does not enjoy the adaptive submodularity property due to
the introduction of travel constraints. Hollinger et al. [2011, 2012] propose a heuristic based
approach to select a subset of informative nodes and perform minimum cost tours. Singh et al.
[2009] replan every step using a non-adaptive information path planning algorithm. Inspired
by adaptive TSP approaches by Gupta et al. [2010], Lim et al. [2015, 2016] propose recursive
coverage algorithms to learn policy trees. However, such methods cannot scale well to large
state and observation spaces. Heng et al. [2015] make a modular approximation of the objective
function. Isler et al. [2016] survey a broad number of myopic information gain based heuristics
that work well in practice but have no formal guarantees.



7.2. Background 117

7.2.2 Search based planning

We now present a framework for search based planning where the objective is to find a feasible
path from start to goal while minimizing search effort. We use this framework to pose the
problem of learning the optimal heuristic for a given distribution over worlds and briefly discuss
prior work on this topic.

Framework

We consider the problem of search on a graph, G = (V, E), where vertices V represent robot
configurations and edges E represent potentially valid movements of the robot between these
configurations. Given a pair of start and goal vertices, (vs, vg) ∈ V, the objective is to compute
a path ξ ⊆ E - a connected sequence of valid edges. The implicit graph G can be compactly
represented by (vs, vg) and a successor function Succ(v) which returns a list of outgoing edges
and child vertices for a vertex v ∈ V. Hence a graph G is constructed during search by repeatedly
expanding vertices using Succ(v). Let φ ∈ M be a representation of the world that is used to
ascertain the validity of an edge. An edge e ∈ E is checked for validity by invoking an evalu-
ation function Eval(e, φ) which is an expensive operation and may require complex geometric
intersection operations [Dellin and Srinivasa, 2016].

Algorithm 9 defines a general search based planning algorithm Search which takes as input
the tuple 〈vs, vg, Succ, Eval, φ, Select〉 and returns a valid path ξ. To ensure systematic search,
the algorithm maintains the following lists - an open list O ⊂ V of candidate vertices to be
expanded and a closed list C ⊂ V of vertices which have already been expanded. It also retains an
additional invalid list I ⊂ E of edges found to be in collision. These 3 lists together represent the
complete information available to the algorithm at any given point of time. At a given iteration,
the algorithm uses this information to select a vertex v ∈ O to expand by invoking Select(O).
It then expands v by invoking Succ(v) and checking validity of edges using Eval(e, φ) to get a
set of valid successor vertices Vsucc as well as invalid edges Einv. The lists are then updated and
the process repeated till the goal vertex vg is uncovered. Fig. 7.3 illustrates this framework.

The optimal heuristic problem

In this work, we focus on the feasible path problem and ignore the optimality of the path.
Although this is a restrictive setting, quickly finding the feasible path is a very important problem
in robotics. Efficient feasible path planners such as RRT-Connect [Kuffner and LaValle, 2000]
has proven highly effective in high dimensional motion planning applications such as robotic arm
planning [LaValle, 2006] and mobile robot planning [Laumond et al., 1998]. Hence we ignore the
traversal cost of an edge and deal with unweighted graphs. We defer discussions on how to relax
this restriction to Section 7.8.

We view a heuristic policy as a selection function (Algorithm 9, Line 3) that selects a vertex
v from the open list O. The objective of the policy is to minimize the number of expansions until
the search terminates. Note that the evolution of the open listO depends on the underlying world
map φ which is hidden. Given a prior distribution over world maps P (φ), it can be inferred only
via the outcome of the expansion operation (Vsucc, Einv). The history of outcomes is captured by



118 Data-driven Planning via Imitation Learning

World Map
(�)

Goal (vg)(vs)Start

Open List
(O)

(C)

(I)

Closed List

Invalid List

Figure 7.3: The search based planning problem. Given a world map φ, the agent has to guide a search tree from
start vs to goal vg by expanding vertices. At any given iteration, the open list O represents the set of candidate
vertices that can be expanded. The closed list C represents the set of vertices already expanded. The invalid list
represents the set of edges that were found to be in collision with the world. The status of every other vertex is
unknown. The search continues till the goal belongs to the open list, i.e. a feasible path to goal has been found.

Algorithm 9: Search〈vs, vg, Succ, Eval, φ, Select〉
1 O ← vs, C ← ∅, I ← ∅ ;
2 while vg /∈ O do
3 v ← Select(O) ;
4 (Vsucc, Einv)← Expand(v, Succ, Eval, φ) ;
5 O ← O ∪ Vsucc, C ← C ∪ v, I ← I ∪ Einv;
6 return Path (vs, vg) ;

the state of the search, i.e. the combination of the 3 lists {O, C, I}.

Problem 9 (Opt-Heur). Given a distribution of world maps, P (φ), find a heuristic policy that
at time t, maps the state of the search {Ot, Ct, It} to select a vertex vt ∈ Ot to expand, such
that the expected number of expansions till termination is minimized.

The problem of heuristic design has a lot of historical significance. A common theme is “Op-
timism Under Uncertainty”. A spectrum of techniques exist to manually design good heuristics
by relaxing the problem to obtain guarantees with respect to optimality and search effort [Pearl,
1984]. To get practical performance, these heuristics are inflated, as has been the case in the ap-
plications in mobile robot planning [Likhachev and Ferguson, 2009]. However, being optimistic
under uncertainty is not a foolproof approach and could be disastrous in terms of search efforts
depending on the environment (See Fig 2.5, LaValle [2006]).

Learning heuristics falls under machine learning for general purpose planning [Jiménez et al.,
2012]. Yoon et al. [2006] propose using regression to learn residuals over FF-Heuristic [Hoffmann
and Nebel, 2001]. Xu et al. [2007, 2009, 2010] improve upon this in a beam-search framework.
Arfaee et al. [2011] iteratively improve heuristics. ús Virseda et al. [2013] learn combination of
heuristic to estimate cost-to-go. Kendall rank coefficient is used to learn open list ranking [Gar-
rett et al., 2016, Wilt and Ruml, 2015]. Thayer et al. [2011] learn heuristics online during search.
Paden et al. [2017] learn admissible heuristics as S.O.S problems. However, these methods do
not address minimization of search effort and also ignore the non i.i.d nature of the problem.
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7.2.3 Partially observable Markov decision process

POMDPs [Kaelbling et al., 1998] provide a rich framework for sequential decision making un-
der uncertainty. However, solving a POMDP is often intractable - finite horizon POMDPs are
PSPACE-complete [Papadimitriou and Tsitsiklis, 1987] and infinite horizon POMDPs are un-
decidable [Madani et al., 2003]. Despite this challenge, the field has forged on and produced a
vast amount of work by investigating effective approximations and analyzing the structure of
the optimal solution. We refer the reader to [Ross et al., 2008] for a concise survey of modern
approaches.

There are two main approaches to POMDP planning: offline policy computation and online
search. In offline planning, the agent computes before hand a policy by considering all possible
scenarios and executes the policy based on the observation received. Athough offline methods
have shown success in planning near-optimal policies in several domains [Kurniawati et al., 2008,
Smith and Simmons, 2012, Spaan and Vlassis, 2005], they are difficult to scale up due to the
exponential number of future scenarios that must be considered.

Online methods interleave planning and execution. The agent plans with the current be-
lief, executes the action and updates the belief. Monte-carlo sampling methods explicitly main-
tain probability over states and plan via monte-carlo roll-outs [Asmuth and Littman, 2011,
McAllester and Singh, 1999]. This limits scalability since belief update can take time. In con-
trast, POMCP [Silver and Veness, 2010] maintains a set of particles to represent belief and
employ UCT methods to plan with these particles. This allows the method to scale up for larger
state spaces.

However, the disadvantage of purely online methods is that they require a lot of search
effort online and can lead to poor performance due to evaluation on a small number of particles.
Somani et al. [2013] present a state-of-the-art algorithm DESPOT that combines the best aspects
of many algorithms. First it uses determinized sampling techniques to ensure that the branching
factor of the tree is bounded [Kearns et al., 2000, Ng and Jordan, 2000]. Secondly, it uses offline
precomputed policies to roll-out from a vertex, thus lower bounding its value. Finally, it tries to
regularize the search by weighing the utility of a node to be robust against the fact that a finite
number of samples is being used.

The methods we have talked about explicitly models the belief. For large scale POMDPs, this
might be an issue. Model free approaches and representation learning offer attractive alternatives.
Model free policy improvement has been successfully used to solve POMDPs [Li et al., 2009,
Liu et al., 2013]. Predictive state representations [Boots et al., 2011, Littman and Sutton, 2002]
that minimize prediction loss of future observations offer more compact representations than
maintaining belief. There also has been a lot of success in employing deep learning to learn
powerful representations [Hausknecht and Stone, 2015, Karkus et al., 2017].

7.2.4 Reinforcement learning and imitation learning

Reinforcement Learning (RL) [Sutton and Barto, 1998] especially deep RL has dramatically
advanced the capabilities of sequential decision making in high dimensional spaces such as con-
trols [Duan et al., 2016], video games [Silver et al., 2016] and strategy games [Silver et al., 2016].
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Several conventional supervised learning tasks are now being solved using deep RL to achieve
higher performance [Li et al., 2016, Ranzato et al., 2015]. In sequential decision making, the
prediction of a learner is dependent on the history of previous outcomes. Deep RL algorithms
are able to train such predictors by reasoning about the future accumulated cost in a principle
manner.

We refer the reader to Kober et al. [2013] for a concise survey on RL and to Arulkumaran
et al. [2017] for a survey on deep RL. Training such policies can be classified into two ap-
proaches - either value function-based approach, where a value function for an action is learnt,
or policy search, where a policy is directly learnt. The value function methods can themselves
be categorized in two categories - model-free algorithms and model-based algorithms.

Model-free methods are computationally cheap but ignore the dynamics of the world thus
requiring a lot of samples. Q-learning [Watkins and Dayan, 1992] is a representative algorithm
for estimating the long-term expected return for executing an action from a given state. When
the number of state action pairs are too large in number to track each uniquely, a function
approximator is required to estimate the value. Deep Q-learning [Mnih et al., 2015, Wang et al.,
2016] addresses such a need by employing a neural-network as a function approximator and
learning these network weights. However, the process of using the same network to generate
both target values and update Q-values results in oscillations. Hence a number of remedies are
required to maintain stability such as having a buffer of experience, a separate target network
and an adaptive learning rate. These are indicative of the underlying sample inefficiency problem
of a model-free approach.

Model-based methods such as R-Max [Brafman and Tennenholtz, 2002] learn a model of the
world which is then used to plan for actions. While such methods are sample efficient, they require
a lot of exploration to learn the model. Even in the case when the model of the environment
is known, solving for the optimal policy might be computationally expensive for large spaces.
Policy search approaches are commonly used where its easier to parameterize a policy than learn
a value function [Peters and Schaal, 2006], however such approaches are sensitive to initialization
and can lead to poor local minima.

In contrast with RL methods, imitation learning (IL) algorithms [Chang et al., 2015, Daumé
et al., 2009, Ross and Bagnell, 2014, Venkatraman et al., 2014] reduce the sequential prediction
problem to supervised learning by leveraging the fact that, for many tasks, at training time
we usually have a (near) optimal cost-to-go oracle. This oracle can either come from a human
expert guiding the robot [Abbeel and Ng, 2004] or from ground truth data as in natural language
processing [Chang et al., 2015]. The existence of such oracles can be exploited to alleviate learning
by trial and error - imitation of an oracle can significantly speed up learning. A traditional
approach to using such oracles is to learn a policy or value function from a pre-collected dataset
of oracle demonstrations [Finn et al., 2016, Ratliff et al., 2009b, Ziebart et al., 2008]. A problem
with these methods is that they require training and test data to be sampled from the same
distribution which is difficult in practice. In contrast, interactive approaches to data collection
and training has been shown to overcome stability issues and works well empirically [Ross and
Bagnell, 2014, Ross et al., 2011, Sun et al., 2017]. Furthermore, these approaches lead to strong
performance through a reduction to no-regret online learning.
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Recent approaches have also employed imitation of clairvoyant oracles, that has access to
more information than the learner during training, to improve reinforcement learning as they
offer better sample efficiency and safety. Kahn et al. [2017], Zhang et al. [2016] train policies that
map current observation to action by extending guided policy search [Levine and Koltun, 2013]
for imitation of model predictive control oracles. Tamar et al. [2016] consider a cost-shaping
approach for short horizon MPC by offline imitation of long horizon MPC which is closest to
our work. Gupta et al. [2017] develop a holistic mapping and planner framework trained using
feedback from optimal plans on a graph.

Sun et al. [2017] also theoretically analyze the question of why imitation learning aids in
reinforcement learning. They develop a comprehensive theoretical study of IL on discrete MDPs
and construct scenarios to show that IL achieves better sample efficiency than any RL algorithm.
Concretely, they conclude that one can expect at least a polynomial gap ad a possible exponential
gap in regret between IL and RL when one has access to unbiased estimates of the optimal policy
during training.

7.3 Problem formulation

7.3.1 POMDPs

A discrete-time finite horizon POMDP is defined by the tuple (X,A,Ω, R,O, Z, T ) where

• X is a set of states

• A is a set of actions

• Ω is a set of state transition probabilities

• R : X ×A is the reward function

• O is the set of observations

• Z is a set of conditional observation probabilities

• T is the time horizon

At each time period, the environment is in some state s ∈ X which cannot be directly
observed. The initial state is sampled from a distribution P (s). The agent takes an action
a ∈ A which causes the environment to transition to state s′ ∈ X with probability Ω (s, a, s′) =
P (st+1 = s′|st = s, at = a). The agent receives a reward R (s, a). On reaching the new state s′,
it receives an observation o ∈ O according to the probability Z (s′, a, o) = P (ot+1 = o|st+1 =
s′, at = a).

A history ψ ∈ Ψ is a sequence of actions and observations ψt = {< o1 >,< a1, o2 >, . . . , <

at−1, ot >}. Note that the initial history ψt =< o1 > is simply the observation at the initial
timestep. The history ψt captures all information required to express the belief over state. The
belief P (st+1|ψt+1) can be computed recursively applying Bayes’ rule

η Z (st+1, at, ot+1)
∑
st∈X

Ω (st, at, st+1)P (st|ψt)
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where η is a normalization constant.
The history can then also be used to compute an update P (ψt+1|ψt, at):∑

st∈X

∑
st+1∈X

P (st|ψt)Ω (st, at, st+1)Z (st+1, at, ot+1)

The agent’s action selection behaviour can be explained by a policy π(ψt) ∈ Π that maps
history ψt to action at.

Let the state and history distribution induced by a policy π after t timesteps be P (s, ψ|π, t).
The value of a policy π is the expected cumulative reward for executing π for T timesteps on
the induced state and history distribution

J (π) =
T∑
t=1

Est,ψt∼P (s,ψ|π,t) [R (st, π(ψt))] (7.3)

The optimal policy maximizes the expected cumulative reward, i.e π∗ ∈ arg max
π∈Π

J (π).

Given a starting history ψ, let P (s′, ψ′|ψ, π, i) be the induced state history distribution after
i timesteps. The value of executing a policy π for t time steps from a history ψ is the expected
cumulative reward:

Ṽ π
t (ψ) =

t∑
i=1

Esi,ψi∼P (s′,ψ′|ψ,π,i) [R (si, π(ψi))] (7.4)

The state-action value function Q̃πt (ψt, at) is defined as the expected sum of one-step-reward
and value-to-go:

Q̃πt (ψ, a) =Es∼P (s|ψ) [R (s, a)] +

Eψ′∼P (ψ′|ψ,a)
[
Ṽ π
t−1(ψ′)

] (7.5)

7.3.2 Mapping informative path planning to POMDPs

We now map IPP problems Hidden-Unc and Hidden-Con to a POMDP. The state is defined to
contain all information that is required to define the reward, observation and transition functions.
Let the state be the set of nodes visited and the underlying world, st = {v1, . . . , vt, φ}. At the
start of an episode, a world is sampled from a prior distribution φ ∼ P (φ) along with a graph
G ∼ P (G). The initial state is assigned by setting s1 = {v1, φ}. Note that the state st is partially
observable due to the hidden world map φ.

We define the action at = vt+1 to be the next node to visit. We are now ready to map the
utility and travel cost to the reward function definition. Given the agent is in state st and has
executed at, we can extract the path ξ = (v1, v2, . . . , vt+1) and the underlying world φ. Hence we
can compute the utility function F (ξ, φ). We can also compute the travel cost function T (ξ, φ).

Before we define the reward function, we note that for Problem Hidden-Con not all actions
are feasible at all times due to connectivity of the graph and constraints due to travel cost.
Hence we can define a feasible set of actions Afeas (s) ⊂ A for a state as follows

Afeas (s) = {a | a ∈ A, (vt, vt+1) ∈ E , T (ξ, φ) ≤ B} (7.6)

For Problem Hidden-Unc, let Afeas (s) = A.
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Since the objective is to maximize the cumulative reward function, we define the reward to
be proportional to the marginal utility of visiting a node. Given a node v ∈ V, a path ξ and
world φ, the marginal gain of the utility function F is ∆F (v | ξ, φ) = F (ξ ∪ {v}, φ)− F (ξ, φ).
The one-step-reward function, R (s, a), is defined as the marginal gain of the utility function.
Additionally, the reward is set to −∞ whenever an infeasible action is selected. Hence:

R (s, a) = .

∆F (a | ξ, φ) if a ∈ Afeas (s)
−∞ otherwise

(7.7)

The state transition function, Ω (s, a, s′), is defined as the deterministic function which sets
vt+1 = at. We define the observation to be the measurement ot = yt and the observation model
Z to be a deterministic function ot = H (vt, φ).

Note that the history ψt, the sequence of actions and observations, is captured in the sequence
of nodes visited {vi}ti=1 and measurements received {yi}ti=1. In our implementation, we encode
this information in an occupancy map. The information gathering policy π(ψt) maps this history
to an action at, the sensing location to visit.

7.3.3 Mapping search based planning to POMDPs

We now map the problem of computing a heuristic policy to a POMDP setting. Let the state
be the open list and the underlying world, st = {Ot, φ}. At the start of an episode, a world
is sampled from a prior distribution φ ∼ P (φ) along with a start state vs. The initial state is
assigned by setting s1 = {vs, φ}. Note that the state st is partially observable due to the hidden
world map φ.

We define the action at as the vertex v ∈ Ot that is to be expanded by the search. The
state transition function, Ω (s, a, s′), is defined as the deterministic function which sets Ot+1 by
querying Expand(v, Succ, Eval, φ). The one-step-reward function, R (s, a), is defined as −1 for
every (st, at) until the goal is added to the open list. Additionally, the reward is set to −∞
whenever an infeasible action is selected. Hence:

R (s, a) = .


−∞ if a /∈ O
0 if vg ∈ O
−1 otherwise

(7.8)

We define the observation to be the successor nodes and invalid edges, i.e. ot =
{Vsucc, Einv} and the observation model Z to be a deterministic function (Vsucc, Einv) =
Expand(v, Succ, Eval, φ).

Note that the history, the sequence of actions and observations, is contained in the informa-
tion present in the concatenation of all lists, i.e ψt = {O, C, I}. The heuristic is a policy π(ψt)
that maps this history to an action at, the vertex to expand.

Note that it is more natural to think of this problem as minimizing a one-step-cost than
maximizing a reward. Hence when we subsequently refer to this problem instance, we refer to
the cost c(s, a) = −R (s, a) and the cost-to-go Q̃πt (ψ, a). This only results in a change from
maximization to minimization.
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7.3.4 What makes these POMDPs intractable?

A natural question to ask if these problems can be solved by state-of-the-art POMDP solvers
such as POMCP [Silver and Veness, 2010] or DESPOT [Somani et al., 2013]. While such solvers
are very effective at scaling up and solving large scale POMDPs, there are a few reasons why
there are not immediately applicable to our problem.

Firstly, these methods require a lot of online effort. In the case of search based planning, the
effort required to plan in belief space defeats the purpose of a heuristic all together. In the case
of informative path planning, the observation space is very large and belief updates would be
time consuming.

Secondly, since both methods employ a particle filter based approach to tracking plausible
world maps, they both are susceptible to a realizability problem. Its unlikely that there will be
a world map particle that will explain all observations. That being said, the world maps can
explain local correlations in observations. For example, when planning indoors the world maps
can explain correlations in observations made at intersection of corridors. Hence, we would like
to generalize across these local submaps.

7.4 Imitation of clairvoyant oracles

A possible approach is to employ model free Q-learning [Mnih et al., 2015] by featurizing the
history ψt and collecting on-policy data. However, given the size of Ψ, this may require a large
number of samples. Another strategy is to parameterize the policy class and employ policy
improvement [Peters and Schaal, 2006] techniques. However, such techniques when applied to
POMDP settings may lead to poor local minima due to poor initialization. Imitation learn-
ing [Ross and Bagnell, 2010] offers a more effective strategy than reinforcement learning in
scenarios where there exist good policies for the original problem, however these policies cannot
be executed online (e.g due to computational complexity) hence requiring imitation via an offline
training phase. In this section, we extend this principle and show how imitation of clairvoyant
oracles enables efficient learning of POMDP policies.

7.4.1 Imitation learning

We now formally define imitation learning as applied to our setting. Given a policy π, we define
the distribution of histories P (ψ|π) induced by it (termed as roll-in). Let L (ψ, π) be a loss
function that captures how well policy π imitates an oracle. Our goal is to find a policy π̂ which
minimizes the expected loss as follows.

π̂ = arg min
π∈Π

Eψ∼P (ψ|π) [L (ψ, π)] (7.9)

This is a non-i.i.d supervised learning problem. Ross et al. [2011] propose ForwardTrain-
ing to train a non-stationary policy (one policy π̂t for each timestep), where each policy π̂t
can be trained on distributions induced by previous policies (π̂1, . . . , π̂t−1). While this solves
the problem exactly, it is impractical given a different policy is needed for each timestep. For
training a single policy, Ross et al. [2011] show how such problems can be reduced to no-regret



7.4. Imitation of clairvoyant oracles 125

online learning using dataset aggregation (DAgger). The loss function they consider L is a
mis-classification loss with respect to what the expert demonstrated. Ross and Bagnell [2014]
extend the approach to the reinforcement learning setting where L is the reward-to-go of an
oracle reference policy by aggregating values to imitate (AggreVaTe).

7.4.2 Solving POMDP via imitation of a clairvoyant oracle

To examine the applicability of imitation learning in the POMDP framework, we compare the
loss function (7.9) to the action value function (7.5). We see that a good candidate loss function
L (ψ, π) should incentivize maximization of Q̃πT−t+1(ψ, π(ψ)). A suitable approximation of the
optimal value function Q̃π∗T−t+1 that can be computed at train time would suffice. However, we
cannot resort to oracles that explicitly reasoning about the belief over states P (st|ψt), let alone
planning in this belief space due to tractability issues.

In this work, we leverage the fact that for our problem domains, we have access to the true
state st at train time. This allows us to define oracles that are clairvoyant - that can observe
the state at training time and plan actions using this information.

Definition 7.1 (Clairvoyant Oracle). A clairvoyant oracle πOR(s) is a policy that maps state s to
action a with an aim to maximize the cumulative reward of the underlying MDP (X,A,Ω, R, T ).

The oracle policy defines an equivalent action value function defined on the state as follows

QπOR
t (s, a) = R (s, a) + Es′∼P (s′|s,a)

[
V πOR
t−1 (s′)

]
(7.10)

Our approach is to imitate the oracle during training. This implies that we train a policy π̂
by solving the following optimization problem

π̂ = arg max
π∈Π

E t∼U(1:T ),
st,ψt∼P (s,ψ|π,t)

[
QπOR
T−t+1(st, π(ψt))

]
(7.11)

While we will define training procedures to concretely realize (7.11) later in Section 7.5,
we offer some intuition behind this approach. Since the oracle πOR knows the state s, it has
appropriate information to assign a value to an action a. The policy π̂ attempts to imitate this
action from the partial information content present in its history ψ. Due to this realization
error, the policy π̂ visits a different state, updates the history, and queries the oracle for the best
action. Hence while the learnt policy can make mistakes in the beginning of an episode, with
time it gets better at imitating the oracle.

7.4.3 Analysis using a hallucinating oracle

The learnt policy imitates a clairvoyant oracle that has access to more information (state s
compared to history ψ). This results in a large realizability error which is due to two terms -
firstly the information mismatch between s and ψ, and secondly the expressiveness of feature
space. This realizability error can be hard to bound making it difficult to apply the performance
guarantee analysis of Ross and Bagnell [2014]. It is also not desirable to obtain a performance
bound with respect to the clairvoyant oracle J (πOR).
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To alleviate the information mismatch, we take an alternate approach to analyzing the learner
by introducing a purely hypothetical construct - a hallucinating oracle.

Definition 7.2 (Hallucinating Oracle). A hallucinating oracle π̃OR computes the instantaneous
posterior distribution over state P (s|ψ) and returns the expected clairvoyant oracle action value.

Q̃π̃OR
T−t+1(ψ, a) = Es∼P (s|ψ)

[
QπOR
T−t+1(s, a)

]
(7.12)

We show that by imitating a clairvoyant oracle, the learner effectively imitates the corre-
sponding hallucinating oracle

Lemma 7.1. The offline imitation of clairvoyant oracle (7.11) is equivalent to online imitation
of a hallucinating oracle as shown

π̂ = arg max
π∈Π

E t∼U(1:T ),
ψt∼P (ψ|π,t)

[
Q̃π̃OR
T−t+1(ψt, π(ψt))

]
Proof. Refer to Choudhury et al. [2017a].

Note that a hallucinating oracle uses the same information content as the learnt policy. Hence
the realization error is purely due to the expressiveness of the feature space. The empirical risk
of imitating the hallucinating oracle will be significantly lower than the risk of imitating the
clairvoyant oracle.

Lemma 7.1 now allows us to express the performance of the learner with respect to a hallu-
cinating oracle. This brings us to the key question - how good is a hallucinating oracle? Upon
examining (7.12) we see that this oracle is equivalent to the well known QMDP policy first pro-
posed by Littman et al. [1995]. The QMDP policy ignores observations and finds the QMDP(s, a)
values of the underlying MDP. It then estimates the action value by taking an expectation on
the current belief over states P (s|ψ). This estimate amounts to assuming that any uncertainty
in the agent’s current belief state will be gone after the next action. Thus, the action where
long-term reward from all states (weighed by the probability) is largest will be the one chosen.

Littman et al. [1995] points out that policies based on this approach are remarkably effective.
This has been verified by other works such as Koval et al. [2014] and Javdani et al. [2015]. This
naturally leads to the question of why we cannot directly apply QMDP to our problem. The
QMDP approach requires explicitly sampling from the posterior over states online - a step that
we cannot tractably compute as discussed in Section 7.3.4. However, by imitating clairvoyant
oracles, we implicitly obtain such a behaviour.

Imitation of clairvoyant oracles has been shown to be effective in other domains such as
receding horizon control via imitating MPC methods that have full information [Kahn et al.,
2017]. Sun et al. [2017] show how the partially observable acrobot can be solved by imitation of
oracles having full state. Karkus et al. [2017] introduce imitation of QMDP in a deep learning
architecture to train POMDP policies end to end.

The connection with a hallucinating oracle also provides valuable insight into potential failure
situations. Littman et al. [1995] point out that policies based on this approach will not take
actions to gain information. We discuss such situations in Section 7.8.
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Figure 7.4: Overview of the two approaches for training policies. (a) ForwardTraining is used to train a
non-stationary policy, i.e a sequence of policies π̂1, . . . , π̂T at each time-step. To train a policy at time-step t, a
state s is sampled from initial distribution P (s). The policies π̂1, . . . , π̂t−1 are then used to roll-in to get (st, ψt).
The oracle is queried to get QπOR

T−t+1(st, at) which is then used to update the dataset and train policy π̂t. (b)
AggreVaTe is used to train a stationary policy. The training process is iterative where dataset collection is
interleaved with learning. At iteration i, a mixture policy πmix,i is used to roll-in to get (st, ψt). The oracle is
queried to get QπOR

T−t+1(st, at). The data is then aggregated to the whole dataset which is used to update the entire
policy π̂i.

7.5 Approach

7.5.1 Algorithms

We introduced imitation learning and its applicability to POMDPs in Section 7.4. We now
present a set of algorithms to concretely realize the process. The overall idea is as follows - we
are training a policy π̂(ψ) that maps features extracted from the history ψ to an action a. The
training objective is to imitate a clairvoyant oracle that has access to the corresponding full
state s. In order to define concrete algorithms, we need to reason about two classes of policies -
non-stationary and stationary.

Non-stationary policy

For the non-stationary case, we have a policy for each timestep π̂1, . . . , π̂T . The motivation
for adopting such a policy class is that the problems arising from the non i.i.d distribution
immediately disappears. Such a policy class can be trained using the ForwardTraining al-
gorithm [Ross et al., 2011] which sequentially trains each policy on the distribution of features
induced from the previous set of policies. Hence the training problem for each policy at timestep
t is reduced to supervised learning.

Algorithm 10 describes the ForwardTraining procedure to train the non-stationary policy.
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Algorithm 10: ForwardTraining (Non-stationary policy)
1 for t = 1 to T do
2 Initialize Dt ← ∅ ;
3 for j = 1 to m do
4 Sample initial state s1 from dataset P (s);
5 Execute policy π̂1, . . . , π̂t−1 to reach (st, ψt). ;
6 Execute any action at ∈ A. ;
7 Collect value to go QπOR

j = QπOR
T−t+1(st, at) ;

8 Dt ← Dt ∪ {ψt, at, QπOR
j } ;

9 Train cost-sensitive classifier π̂t on Dt ;
10 return Set of policies for each time step π̂1, . . . , π̂T .;

The policies are trained in a sequential manner. At each time-step t, the previously trained
policies π̂1, . . . , π̂t−1 are used to create a dataset of ψt by rolling-in (Lines 1–5). For each such
datapoint ψt, there is a corresponding state st. A random action at is sampled and the oracle is
queried for the cost-to-go QπOR

T−t+1(st, at) (Line 7). This is then added to the dataset Dt which is
used to train the policy π̂t. This is illustrated in Fig. 7.4.

We can state the following property about the training process

Theorem 7.2. ForwardTraining has the following guarantee

J (π̂) ≥ J (π̃OR)− 2T
√
A εclass + Tεor

where εclass is the regression error of the learner and εor is the local oracle suboptimality.

Proof. Refer to Choudhury et al. [2017a].

However, there are several drawbacks to using a non-stationary policy. Firstly, it is imprac-
tical to have a different policy for each time-step as it scales with T . While this might be a
reasonable approach when T is small (e.g. sequence classification problems [Cohen and Car-
valho, 2005]), in our applications T can be fairly large. Secondly, and more importantly, each
policy operates on data for only that time-step, thus preventing generalizations across timesteps.
Each policy sees only DT fraction of the training data. This leads to a high empirical risk.

Stationary policy

A single stationary policy π̂ enjoys the benefit of learning on data across all timesteps. However,
the non i.i.d data distribution implies the procedure of data collection and training cannot be
decoupled - the learner must be involved in the data collection process. Ross and Bagnell [2014]
show that such policies can be trained by reducing the propblem to a no-regret online learning
setting. They present an algorithm, AggreVaTe that trains the policy in an interactive fashion
where data is collected by a mixture policy of the learner and the oracle, the data is then
aggregated and the learner is trained on this aggregated data. This process is repeated.

Algorithm 11 describes the AggreVaTe procedure to train the stationary policy. To over-
come the non i.i.d distribution issue, the algorithm interleaves data-collection with learning and
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Algorithm 11: AggreVaTe (Stationary policy)
1 Initialize D ← ∅, π̂1 to any policy in Π ;
2 for i = 1 to N do
3 Initialize sub-dataset Di ← ∅ ;
4 Let roll-in policy be πmix,i = βiπOR + (1− βi)π̂i−1 ;
5 Collect m data points as follows: ;
6 for j = 1 to m do
7 Sample initial state s1 from dataset P (s) ;
8 Sample uniformly t ∈ {1, 2, . . . , T} ;
9 Execute πmix,i up to time t− 1 to reach (st, ψt) ;

10 Execute any action at ∈ A ;
11 Collect value-to-go QπOR

j = QπOR
T−t+1(st, at) ;

12 Di ← Di ∪ {ψt, at, t, QπOR
j } ;

13 Aggregate datasets: D ← D
⋃
Di ;

14 Train cost-sensitive classifier π̂i+1 on D ;
15 return best π̂i on validation;

iteratively trains a set of policies (π̂1, π̂2, . . . , π̂N ). Note that these iterations are not to be con-
fused with time steps - they are simply learning iterations. A policy π̂i is valid for all timesteps.
At iteration i, data is collected by rolling-in with a mixture of the learner and the oracle policy
(Lines 1–9). The mixing fraction is chosen to be βi = (1− α)i−1. Mixing implies flipping a coin
with bias βi and executing the oracle if heads comes up. A random action at is sampled and the
oracle is queried for the cost-to-go QπOR

T−t+1(st, at) (Line 11).
The key step is to ensure that data is aggregated. The motivation for doing so arises from

the fact that we want the learner to do well on the distribution it induces. Ross and Bagnell
[2014] show that this can be posed as the mixture of learners (π̂1, π̂2, . . . , π̂N ) doing well on the
induced loss sequences li(π) at every iteration. If we were to treat each iteration as a game in
an online adversarial learning setting, this would be equivalent to having bounded regret with
respect to the best policy in hindsight on the loss sequence (l1, l2, . . . , lN ). The strategy of dataset
aggregation is an instance of follow the leader and hence has bounded regret. Hence, data is
appended to the original dataset and used to train an updated learner π̂i+1 (Lines 13–14).

AggreVaTe can be shown to have the following guarantee

Theorem 7.3. N iterations of AggreVaTe, collecting m regression examples per iteration
guarantees that with probability at least 1− δ

J (π̂) ≥J (π̃OR)

− 2T
√
|A|

(
εclass + εreg +O

(√
log 1/δ/Nm

))
−O

(
R T log T

N

)
+ Tεor

where εclass is the empirical regression regret of the best regressor in the regression class on
the aggregated dataset, εreg is the empirical online learning average regret on the sequence of
training examples, R is the range of oracle action value and εor is the local oracle suboptimality.
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Proof. Refer to Choudhury et al. [2017a].

7.5.2 Application to informative path planning
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Figure 7.5: An overview of QvalAgg in IPP where a learner π̂ is trained to imitate a clairvoyant oracle πOR.
There are 4 key steps. Step 1: A world map φ is sampled from database representing P (φ). Step 2: A mixture
policy πmix, of the learner and oracle is used to roll-in on φ to a timestep t to get history ψt. Step 3: A random
action at is chosen and (ψt, at) is featurized as ft. Step 4: A clairvoyant oracle πOR is given full access to world
map φ to compute the cumulative reward to go QπOR . The pair (ft, QπOR ) is added to data to update the learner.
This process is repeated to train a sequence of learners.

We now consider the applicability of Algorithm 10 and Algorithm 11 for learning a policy to
plan informative paths. We refer to the mapping of the IPP problem to a POMDP defined in
Section 7.3.2. We first need to define a clairvoyant oracle in this context. Recall that the state
st = {v1, . . . , vt, φ} is the set of nodes visited and the underlying world. A clairvoyant oracle
takes a state action pair (st, at) as input and computes a value. Depending on whether we are
solving Problem Hidden-Unc or Hidden-Con, we explore two different kinds of oracles:

1. Clairvoyant One-step-reward

2. Clairvoyant Reward-to-go

Solving Hidden-Unc by imitating clairvoyant one-step-reward

We first define a Clairvoyant One-step-reward oracle in the IPP framework.

Definition 7.3 (Clairvoyant One-step-reward). A Clairvoyant One-step-reward returns an action
value QπOR

t (s, a) = R (s, a) that considers only the one-step-reward. In the context of Hidden-
Unc, it uses the world map φ, the curent path {v1, . . . , vt}, the next node to visit vt+1 = at to
compute the value QOR(φ, {v1, . . . , vt}, vt+1) as the marginal gain in utility, i.e.

∆F (vt+1 | {v1, . . . , vt}, φ)

To motive the use of Clairvoyant One-step-reward, we refer to the discussion on the structure
of the Problem Hidden-Unc in Section 7.2. We assume that the utility function is adaptive
monotone submodular - it has the property of montonicity and diminishing returns under the
belief over world maps. This property implies the following
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1. Adaptive Monotonicity: The expected value of the utility can only increase on adding a
node, i.e.

Eφ∼P (φ|ψ) [∆F (v | Vψ, φ)] ≥ 0

for all v ∈ V, where ψ = {vi}pi=1, {yi}
p
i=1, and Vψ = {vi}pi=1.

2. Adaptive Submodularity: The expected gain in adding a node diminshes as more nodes are
visited, i.e.

Eφ∼P (φ|ψ) [∆F (v | Vψ, φ)] ≥
Eφ∼P (φ|ψ′)

[
∆F

(
v | Vψ′ , φ

)]
for all v ∈ V, where ψ ⊆ ψ′ (history ψ is contained in history ψ′)

For such functions, Golovin and Krause [2011] show that greedily selecting vertices to visit
is near-optimal. We use this property to show that the Clairvoyant One-step-reward induces a
one-step-oracle which is equivalent to the greedy policy and hence near optimal. This implies
the following Lemma

Theorem 7.4. N iterations of AggreVaTe with Clairvoyant one-step-reward collecting m re-
gression examples per iteration guarantees that with probability at least 1− δ

J (π̂) ≥
(

1− 1
e

)
J (π∗)

− 2T
√
|A|

(
εclass + εreg +O

(√
log 1/δ/Nm

))
−O

(
R T log T

N

)
where εclass is the empirical regression regret of the best regressor in the regression class on
the aggregated dataset, εreg is the empirical online learning average regret on the sequence of
training examples, R is the maximum range of one-step-reward.

Proof. Refer to Choudhury et al. [2017a].

We will shown in Section 7.6 that such policies are remarkably effective. An added benefit of
imitating the Clairvoyant One-step-reward is that the empirical classification loss εclass is lower
since only the expected one-step-reward of an action needs to be learnt.

Solving Hidden-Con by imitating clairvoyant reward-to-go

Unfortunately, Problem Hidden-Con does not posses the adaptive-submodular property of
Hidden-Unc due to the introduction of the travel cost. Hence imitating the one-step-reward is
no longer appropriate. We define the Clairvoyant Reward-to-go oracle for this problem class

Definition 7.4 (Clairvoyant Reward-to-go). A Clairvoyant Reward-to-go returns an action value
QπOR
t (s, a) that corresponds to the cumulative reward obtained by executing a and then following

the oracle policy πOR. In the context of Hidden-Con, it uses the world map φ, the current path
{v1, . . . , vt}, the next node to visit vt+1 = at to solve the problem Known-Con and compute
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a future sequence of nodes {vt+2, . . . , vT }. This provides the value QOR(φ, {v1, . . . , vt}, vt+1) as
the marginal gain

∆F ({vt+1, . . . , vT } | {v1, . . . , vt}, φ)

The corresponding oracle policy πOR is obtained by following the computed path.

Note that solving Known-Con is NP-Hard and even the best approximation algorithms
require some computation time. Hence the calls to the oracle must be minimized.

Training and testing procedure

We now present concrete algorithms to realize the training procedure. Given the two axes of
variation - problem and policy type - we have four possible algorithms

1. RewardFT: Imitate one-step-reward using non-stationary policy by ForwardTraining
(Algorithm 10)

2. QvalFT: Imitate reward-to-go using non-stationary policy by ForwardTraining (Al-
gorithm 10)

3. RewardAgg: Imitate one-step-reward using stationary policy by AggreVaTe (Algo-
rithm 11)

4. QvalAgg: Imitate reward-to-go using stationary policy by AggreVaTe (Algorithm 11)

Table. 7.1 shows the algorithm mapping.

Table 7.1: Mapping from problem and policy type to algorithm

Policy
Problem Hidden-Unc Hidden-Con

Non-stationary policy RewardFT QvalFT
Stationary policy RewardAgg QvalAgg

For completeness, we concretely define the training procedure for QvalAgg in Algorithm 12.
The procedure for the remaining three algorithms can be inferred from this. The algorithm
iteratively trains a sequence of policies (π̂1, π̂2, . . . , π̂N ). At every iteration i, the algorithm
conducts m episodes. In every episode a different world map φ and start vertex (vs) is sampled
from a database. The roll-in is conducted with a mixture policy πmix,i which blends the learner’s
current policy, π̂i−1 and the oracle’s policy, πOR using blending parameter βi. The blending is
done in an episodic fashion, with probability βi the Clairvoyant Reward-to-go oracle is invoked
to compute a path which is followed. With probability 1−βi, the learner is invoked for the whole
episode. In a given episode, the roll-in is conducted to a timestep t which is uniformly sampled.
At the end of the roll-in, we have a path {v1, . . . , vt} and a history ψt. A random action at ∈ A
is sampled which defines the next vertex to visit vt+1 = at. The Clairvoyant Reward-to-go oracle
is invoked with the world φ and the path already travelled {v1, . . . , vt}, vt+1}. It then invokes a
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Algorithm 12: QvalAgg
1 Initialize D ← ∅, π̂1 to any policy in Π ;
2 for i = 1 to N do
3 Initialize sub-dataset Di ← ∅;
4 Let roll-in policy be πmix,i = βiπOR + (1− βi)π̂i ;
5 Collect m data points as follows: ;
6 for j = 1 to m do
7 Sample world φ from dataset P (s) ;
8 Sample start node vs for P (vs) ;
9 Sample uniformly t ∈ {1, 2, . . . , T} ;

10 Execute πmix,i up to time t− 1 to get path {v1, . . . , vt} and history ψt ;
11 Sample a random action at ∈ A as the next vertex to visit vt+1 = at ;
12 Invoke Clairvoyant Reward-to-go oracle to get QπOR

j = QOR{φ, {v1, . . . , vt}, vt+1}. ;
13 Di ← Di ∪ {ψt, at, t, QπOR

j } ;

14 Aggregate datasets: D ← D
⋃
Di ;

15 Train cost-sensitive classifier π̂i+1 on D ;
16 return best π̂i on validation

solver to Hidden-Con to complete the path and return the reward to go QπOR
j . This history

action pair (ψt, at) is projected to a feature space along with label QπOR
j . The data is aggregated

to the dataset which is eventually used to train policy π̂i+1. Fig. 7.5 illustrates this approach.

7.5.3 Application to search based planning

add {ft, Q
⇡OR} to data

Sample a world �

from database P (�)

Roll-in with policy ⇡mix

to get history  t

Execute a random action at

and featurize ( t, at) as ft

Roll out with oracle ⇡OR

at

Figure 7.6: An overview of SaIL in search based planning where a learner π̂ is trained to imitate a clairvoyant
oracle πOR. There are 4 key steps. Step 1: A world map φ is sampled from database representing P (φ) along
with start goal pair (vs, vg). Step 2: A mixture policy πmix, of the learner and oracle is used to roll-in on φ to a
timestep t to get history ψt which is the combination of open list, closed list and invalid edges. Step 3: A random
vertex at from the open list is chosen and (ψt, at) is featurized as ft. Step 4: A clairvoyant oracle πOR is given
full access to world map φ to compute the cumulative cost to go QπOR . The pair (ft, QπOR ) is added to data to
update the learner. This process is repeated to train a sequence of learners.

We now consider the applicability of Algorithm 11 for heuristic learning in search based
planning. Unlike the IPP problem domain, there is no incentive to use a non-stationary policy
or imitate Clairvoyant One-step-rewards. Hence we only consider training a stationary policy
imitating Clairvoyant Reward-to-go.
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Algorithm 13: SaIL (P (φ), P (vs, vg), k)
1 Initialize D ← ∅, π̂1 to any policy in Π ;
2 for i = 1 to N do
3 Initialize sub dataset Di ← ∅ ;
4 Collect mk data points as follows: ;
5 for j = 1 to m do
6 Sample world map φ ∼ P (φ) ;
7 Sample (vs, vg) ∼ P (vs, vg) ;
8 Invoke clairvoyant oracle planner to compute QπOR (φ, v) ∀ v ∈ V;
9 Sample uniformly k timesteps {t1, t2, . . . , tk} where each ti ∈ {1, . . . , T} ;

10 Rollout search with πmix,i = βiπOR + (1− βi)π̂i ;
11 At each t ∈ {t1, t2, . . . , tk} pick a random action at to get (ψt, v) ;
12 Query oracle for QOR (φ, at) ;
13 Di ← Di ∪ {ψt, at, t, QOR (φ, at)} ;
14 Aggregate datasets: D ← D

⋃
Di ;

15 Train cost-sensitive classifier π̂i+1 on D ;
16 return best π̂i on validation

We first need to define a clairvoyant oracle for this problem. Given access to the world map
φ, the oracle has to solve for the optimal number of expansions to reach the goal. This allows
us to define a clairvoyant oracle planner that employs a backward Dijkstra’s algorithm, which
given a world φ and a goal vertex vg plans for the optimal path from every v ∈ V using dynamic
programming.

Definition 7.5 (Clairvoyant Oracle Planner). Given full access to the state s, which contains the
open list O and world φ, and a goal vg, the oracle planner encodes the cost-to-go from any
vertex v ∈ V as the function QπOR

t (s, a) which implicitly defines an oracle policy, πOR(s) =
arg min
v∈O

QπOR
t (s, a).

The clairvoyant oracle planner provides a look-up table QOR (φ, v) for the optimal cost-to-go
from any vertex irrespective of the current state of the search.

A key distinction between this oracle and the one defined for an IPP problem in Section 7.5.2
is that we are able to efficiently get the cost-to-go value for all states by dynamic programming
- we do not need to repeatedly invoke the oracle. We exploit this fact by extracting multiple
labels from an episode even though the oracle is invoked only once. Additionally, this allows us a
better roll-in procedure where the oracle and learner are interleaved. We adapt the AggreVaTe
framework to present an algorithm, Search as Imitation Learning (SaIL).

Algorithm 13, describes the SaIL framework which iteratively trains a sequence of policies
(π̂1, π̂2, . . . , π̂N ). For training the learner, we collect a dataset D as follows - At every iteration i,
the agent executed m different searches (Algorithm 9). For every search, a different world φ and
the pair (vs, vg) is sampled from a database. The agent then rolls-out a search with a mixture
policy πmix,i which blends the learner’s current policy, π̂i and the oracle’s policy, πOR using
blending parameter βi. During the search execution, at every timestep in a set of k uniformly
sampled timesteps, we select a random action from the set of feasible actions and collect a
datapoint {ψt, at, t, QOR (φ, at)}. The policy πmix,i is rolled out till the end of the episode and
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Dataset Sample World Maps Problem RewardAgg 
/ QvalAgg

Average  
Entropy

Occlusion 
Aware

Unobserved 
Voxels

Rear Side 
Voxels

Rear Side 
Entropy

Concentrated 
Parallel Lines 

(2D)

HIDDEN-UNC 

HIDDEN-CON

(0.42,0.45) 
(0.18, 0.27)

(0.20, 0.22) 
(0.16, 0.20)

(0.06, 0.09) 
(0.07, 0.09)

(0.20, 0.25) 
(0.14, 0.18)

(0.36, 0.41) 
(0.19, 0.24)

(0.30, 0.34) 
(0.21, 0.26)

Distributed 
Blocks (2D)

HIDDEN-UNC 

HIDDEN-CON

(0.37,0.41) 
(0.20, 0.26)

(0.26, 0.30) 
(0.21, 0.26)

(0.11, 0.16) 
(0.11, 0.16)

(0.22, 0.29) 
(0.15, 0.20)

(0.22, 0.29) 
(0.15, 0.18)

(0.24, 0.28) 
(0.16, 0.19)

Poisson Forest of 
Circular Discs 

(2D)

HIDDEN-UNC 

HIDDEN-CON

(0.58, 0.61) 
(0.54, 0.59)

(0.59, 0.62) 
(0.54, 0.59)

(0.49, 0.53) 
(0.42, 0.46)

(0.39, 0.45) 
(0.34, 0.41)

(0.53, 0.55) 
(0.37, 0.43)

(0.42, 0.47) 
(0.39, 0.44)

Tabular World of 
Rectilinear 
Blocks (2D)

HIDDEN-UNC 

HIDDEN-CON

(0.43, 0.53) 
(0.27, 0.33)

(0.31, 0.35) 
(0.26, 0.29)

(0.20, 0.26) 
(0.18, 0.23)

(0.28, 0.35) 
(0.21, 0.28)

(0.35, 0.44) 
(0.18, 0.24)

(0.25, 0.31) 
(0.21, 0.27)

Bookshelves and 
Tables (3D)

HIDDEN-UNC 

HIDDEN-CON

(0.14, 0.31) 
(0.05, 0.24)

(0.01, 0.04) 
(0.01, 0.04)

(0.01, 0.04) 
(0.01, 0.04)

(0.01, 0.04) 
(0.01, 0.04)

(0.01, 0.22) 
(0.01, 0.22)

(0.01, 0.19) 
(0.01, 0.19)

Cluttered 
Construction Site 

(3D)

HIDDEN-UNC 

HIDDEN-CON

(0.14, 0.20) 
(0.08, 0.12)

(0.01, 0.12) 
(0.01, 0.12)

(0.01, 0.09) 
(0.01, 0.09)

(0.01, 0.09) 
(0.01, 0.09)

(0.01, 0.11) 
(0.01, 0.11)

(0.01, 0.10) 
(0.01, 0.10)

Office Desk and 
Chairs (3D)

HIDDEN-UNC 

HIDDEN-CON

(0.69, 0.80) 
(0.55, 0.72)

(0.46, 0.59) 
(0.46, 0.59)

(0.51, 0.63) 
(0.48, 0.63)

(0.51, 0.63) 
(0.48, 0.63)

(0.59, 0.67) 
(0.43, 0.52)

(0.61, 0.72) 
(0.41, 0.53)

Figure 7.7: Results for Problems Hidden-Unc and Hidden-Con on a spectrum of 2D and 3D exploration
problems. The train size is 100 and test size is 10. Numbers are the confidence bounds (for 95% CI) of cumulative
reward at the final time step. Algorithm with the highest median performance is emphasized in bold.

all the collected data is aggregated with dataset D. At the end of N iterations, the algorithm
returns the best performing policy on a set of held-out validation environment or alternatively,
a mixture of (π̂1, π̂2, . . . , π̂N ). Fig. 7.6 illustrates the SaIL framework.

Note that while the oracle is invoked once per φ, we obtain k datapoints - this is critical for
speeding up training. We also note that even though the time complexity of Select is O (|Ot|)
at timestep t, SaIL can have better overall complexity if it can achieve a squared reduction in
number of expansions compared to uninformed search as discussed more in Choudhury et al.
[2017a].

7.6 Experiments on informative path planning

In this section, we extensively evaluate our approach on a set of 2D and 3D informative path
planning problems across a spectrum of synthetic and real world environments. We examine
a class of informative path planning problem where a robot, equipped with a range limited
sensor, possibly constrained by time and fuel resources, is tasked with 3D reconstruction of
structures in the world. We choose a variety of environments to highlight the importance of
adaptive behaviours for information gathering. Our implementation is open sourced for both
MATLAB and C++ (https://bitbucket.org/sanjiban/matlab_learning_info_gain). For
details on the problem, baseline heuristics, dataset and other learning details, we refer the reader
to Choudhury et al. [2017a]

https://bitbucket.org/sanjiban/matlab_learning_info_gain
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7.6.1 Analysis of results

Fig. 7.7 shows the utility of all algorithms on various synthetic datasets. The two numbers
are lower and upper 95% confidence intervals of the episodic utility of each algorithm. The
best performance on each dataset is highlighted. For Problem Hidden-Unc, RewardAgg is
employed along with baseline heuristics. For Problem Hidden-Con, QvalAgg is employed with
baseline heuristic augmented with motion penalization. The train size is 100 and test size is 10.
We present a set of observations to interpret these results.

O 1. The learnt policy from RewardAgg/ QvalAgg has a consistently competitive
performance across all datasets.

Fig. 7.7 shows the performance of all algorithms on a set of 2D and 3D datasets. We see
that out of the 10 datasets, the learners perform better than any heuristic on 8. On 2 of the
datasets, the Average Entropy heuristic outperforms the learner by a small margin. On examining
the datasets, we see that the unknown space exploration behaviour of Average Entropy results
in good performance in environments that either lack spatial correlation or contain objects
distributed in the environment.

O 2. The performance of heuristics vary widely across datasets, however, the performance
of the learner is robust.

We can see that the relative ranking of Average Entropy and Rear Side Voxel interchanges
from Dataset 1 to 2. This motivates the need for adaptive policies that assign different utility
to unknown cells conditioned on the environment in which the robot is operating. The learner’s
policy on the other hand adapts to different environments and hence maintains a consistently
good performance. Interestingly, it also outperforms the heuristic pointwise across datasets,
which is indicative of the fact that the adaptation happens during exploration as well.

O 3. The performance margin of RewardAgg in Problem Hidden-Unc as compared to
heuristics is much larger than that of QvalAgg in Problem Hidden-Con

This is seen to be especially true in Dataset 1, 2 and 4. As conjectured in Section 7.5.2,
this can be attributed to two reasons. Firstly, the near-optimality guarantee in Theorem 7.4 of
imitating a Clairvoyant one-step-reward bounds the performance of the learner. Secondly, the
empirical regression regret of imitating one step reward values will be much lower than trying
to estimate the action values using features from the history ψt, i.e. it is easier to predict the
immediate utility of going to a sensing location than trying to predict the future utility.

O 4. The performance of Average Entropy in the Poisson Forest dataset is at par with
the learner.

The Poisson Forest dataset is created by sampling circles in the environment from a spatial
Poisson distribution where the density of the forest is specified. The lack of spatial correlation,
implies it is equally likely to find objects anywhere in the world - an assumption that Average
Entropy optimizes.
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7.6.2 Case study A: Adaptation to different environments

We created a set of 2D exploration problems to gain a better understanding of the learnt policies
and baseline heuristics. We did this both for Problem Hidden-Unc (Fig. 7.8) and Hidden-Con
(Fig. 7.9). The dataset comprises of 2D binary world maps, uniformly distributed nodes and a
simulated laser. The problem details are T = 30 and |A| = 300. The cost budget for Hidden-
Con is B = 2500. The train size is 100, test size is 100. RewardAgg and QvalAgg is executed
for 10 iterations.

Dataset 1: Parallel lines

We first examined Problem Hidden-Unc. Fig. 7.8 (a) shows a dataset created by applying
random affine transformations to a pair of parallel lines. This dataset is representative of in-
formation being concentrated in an area in the environment, e.g. powerline inspection. Fig. 7.8
(c) shows a comparison of RewardAgg, RewardFT with baseline heuristics. While Rear Side
Voxel outperforms Average Entropy, RewardAgg outperforms both. Fig. 7.8 (e) shows progress
of each. Average Entropy explores the whole world without focusing, Rear Side Voxel exploits
early while RewardAgg trades off exploration and exploitation.

The same trend can be observed in Problem Hidden-Con. Fig. 7.9 (c) shows a comparison
of QvalAgg with baseline heuristics. The heuristic Rear Side Voxel performs the best, while
QvalAgg is able to match the heuristic. Fig. 7.9 (e) shows progress of QvalAgg along with
two relevant heuristics - Rear Side Voxel and Average Entropy. Rear Side Voxel takes small steps
focusing on exploiting viewpoints along the already observed area. Average Entropy aggressively
visits the unexplored area which is mainly free space. QvalAgg initially explores the world but
on seeing parts of the lines reverts to exploiting the area around it.

Dataset 2: Distributed blocks

We first examined Problem Hidden-Unc. Fig. 7.8 (b) shows a dataset created by randomly
distributing rectangular blocks around the periphery of the map. This dataset is representative
of information being distributed around. Fig. 7.8 (d) shows that Rear Side Voxel saturates early,
Average Entropy eventually overtaking it while RewardAgg outperforms all. Fig. 7.8 (f) shows
that Rear Side Voxel gets stuck exploiting an island of information. Average Entropy takes
broader sweeps of the area thus gaining more information about the world. QvalAgg shows a
non-trivial behavior exploiting one island before moving to another.

The same trend can be observed in Problem Hidden-Con. Fig. 7.9 (d) shows that the
heuristic Average Entropy performs the best, while QvalAgg is able to match the heuristic.
Rear Side Voxel saturates early on and performs worse. Fig. 7.9 (f) shows a similar trend as
Fig. 7.8 (f).

7.6.3 Case study B: Train on synthetic, test on real

To show the practical impact of our framework, we show a scenario where a policy is trained
on synthetic data and tested on a real dataset. Fig. 7.10 (a) shows some sample worlds created
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Figure 7.8: Case study of Problem Hidden-Unc using RewardAgg, RewardFT and baseline heuristics. Two
different datasets of 2D exploration are considered - (a) dataset 1 (parallel lines) and (b) dataset 2 (distributed
blocks). Problem details are: T = 30, |A| = 300, 100 train and 100 test maps. A sample test instance is shown
along with a plot of cumulative reward with time steps for different policies is shown in (c) and (d). The error
bars show 95% confidence intervals. (e) and (f) show snapshots of the execution at time steps 7, 15 and 30.
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Figure 7.9: Case study of Problem Hidden-Unc usingQvalAgg with baseline heuristics on a 2D exploration
problem on 2 different datasets - dataset 1 (concentrated information) and dataset 2 (distributed information).
The problem details are: T = 30, B = 2500, |A| = 300, 100 train and 100 test maps. A sample test instance
is shown along with a plot of cumulative reward with time steps for different policies is shown in (c) and (d)
The error bars show 95% confidence intervals Snapshots of execution of QvalAgg, Rear Side Voxel and Average
Entropy are shown for (e) dataset 1 and (f) dataset 2. The snapshots show the evidence grid at time steps 7, 15
and 30.
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Figure 7.10: Comparison of QvalAgg with baseline heuristics on a 3D exploration problem where training is
done on simulated world maps and testing is done on a real dataset of an office workspace. The problem details
are: T = 10, B = 12, |A| = 50. (a) Samples from 100 simulated worlds resembling an office workspace created in
Gazebo. (b) Real dataset collected by Sturm et al. [2012] using a RGBD camera. (c) Plot of cumulative reward
with time steps for QvalAgg and baseline heuristics on the real dataset. (d) The 3D model of the real office
workspace formed by cumulating measurements from all poses. (e) Snapshots of execution of Occlusion Aware
heuristic at time steps 1, 3, 5, 9. (f) Snapshots of execution of QvalAgg heuristic at time steps 1, 3, 5, 9.

in Gazebo to represent an office desk environment on which QvalAgg is trained. Fig. 7.10 (b)
shows a dataset of an office desk collected by TUM Computer Vision Group Sturm et al. [2012].
The dataset is parsed to create a pair of pose and registered point cloud which can then be used
to evaluate different algorithms. Fig. 7.10 (c) shows that QvalAgg outperforms all heuristics.
Fig. 7.10 (f) shows how QvalAgg learns a desk exploring policy by circumnavigating around
the desk. This shows the powerful generalization capabilities of the approach. In contrast, the
best heuristic Occlusion Aware gets stuck in a local minima(Fig. 7.10 (e))

7.6.4 Case study C: Policy search vs imitation learning

We compared our approach to a baseline approach of policy search. We picked the problem
setting Hidden-Unc, the dataset ‘Concentrated Parallel Lines’ and the trained policy using
RewardAgg. We created a parametrized policy which was linear on the space of the information
gain heuristics. The policy, parameterized by θ ∈ R6, assigns at time t to each vertex v, picks
the action with the highest score as follows

arg max
vt∈V

θTIG (vt)

We train such a policy using a black-box sample efficient policy search method, Covariance
Matrix Adaptation Evolution Strategy (CMAES) [Hansen, 2016]. CMAES is allowed 1000 roll-
outs, the same number of calls to oracle as RewardAgg (Note that CMAES actually has access
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Figure 7.11: (a) Comparison of RewardAgg with CEM policy search. Both algorithms are given access to
the same amount of data. The final policy from CEM and the best validation policy of RewardAgg are then
executed on a test dataset. RewardAgg outperforms CEM not only overall but pointwise at each timestep.
(b) Comparison of RewardAgg with ForwardTraining. Each policy in ForwardTraining is trained with a
dataset size of 500. RewardAgg is trained with 100 samples per iteration for 10 iteration. The performance of
both policies on test dataset is shown. RewardAgg surpasses ForwardTraining at the 4th iteration and never
drops below. At iteration 5 the single policy of RewardAgg has the same dataset size as each policy of the 10
policies of ForwardTraining. However the single policy still outperforms the nonstationary policy.

to more information as they are full rollouts compared to single reward calls in RewardAgg).
Fig. 7.11(a) shows comparison between the final policy trained by CMAES and the best policy
on validation trained by RewardAgg on a held out test dataset. We see that RewardAgg
outperforms CMAES not only on the cumulative reward by also at each time step. This confirms
our hypothesis that model free policy improvement is slow to converge on account of sample
inefficiency. It should be noted that the CMAES policy outperforms all the baseline heuristics
as expected.

7.6.5 Case study D: ForwardTraining vs AggreVaTe

We compared the training framework of ForwardTraining, which trains a different policy for
every time-step with AggreVaTe that trains a single policy across all time steps. We wished to
examine the following question - ‘How much data does a the single AggreVaTe policy need to
be competitive with ForwardTraining?’. We picked the problem setting Hidden-Unc and the
dataset ‘Concentrated Parallel Lines’. We trained ForwardTraining where each policy πt is
given 500 datapoints (hence for episode length T = 30, a total of 15, 000 datapoints are used). We
trained RewardAgg where each iteration has 100 datapoints, and the the number of iterations
is 10. Hence the RewardAgg policy matches the same datasize as ForwardTraining at itera-
tion 5. Fig. 7.11(b) shows a comparison between ForwardTraining and RewardAgg. We see
that RewardAgg outperforms ForwardTraining by iteration 4, following which the perfor-
mance converges and oscillates at values above ForwardTraining. Interestingly, at iteration 5
RewardAgg outperforms ForwardTraining even though each policy in ForwardTraining
has access to the same dataset size as RewardAgg. We conjecture that this might be because
of the generalization effect across time-steps - ForwardTraining might be over-fitting as it
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Dataset Sample Worlds SAIL SL CEM QL hEUC hMAN A* MHA*
Alternating Gaps 0.039 0.432 0.042 1.000 1.000 1.000 1.000 1.000

Single Bugtrap 0.158 0.214 0.057 1.000 0.184 0.192 1.000 0.286

Shifting Gaps 0.104 0.464 1.000 1.000 0.506 0.589 1.000 0.804

Forest 0.036 0.043 0.048 0.121 0.041 0.043 1.000 0.075

Bugtrap+Forest 0.147 0.384 0.182 1.000 0.410 0.337 1.000 0.467

Gaps+Forest 0.221 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Mazes 0.103 0.238 0.479 0.399 0.185 0.171 1.000 0.279

Multiple Bugtraps 0.479 0.480 1.000 0.835 0.648 0.617 1.000 0.876

Figure 7.12: Normalized cost of baselines on different environments (best in bold). The cost corresponds to
average expansions on a test set of planning problems normalized between [200, 5000] (max possible: 40000).
Planning parameters are - map size: 200× 200,Ttrain = 1100, Ttest = 20000. Data sizes are: train(200), test(100),
validation(70). NONAMEparameters are - k : 50, β0 = 0.7. NONAME, CEM and QL are run forN : 15 iterations.
SL uses m : 600.

reasons about timesteps individually.

7.7 Experiments on search based planning

In this section, we extensively evaluate our approach on a set of search based planning prob-
lems for 2D planning on synthetic problems and more realistic 4D nonholonomic path planning
problems encountered by UAVs flying at various speed regimes. We choose a wide variety of
world distributions ranging from simple and intuitive environments, chosen to highlight the im-
portance of exploiting environment structure in motion planning, to complex, heterogeneous
environments for analyzing scalability and robustness. We also present closed loop results on a
UAV flying outdoors at high speeds.

Our implementation is open sourced (https://goo.gl/YXkQAC ). For details on the problem,
baseline approaches, dataset and other learning details, we refer the reader to Choudhury et al.
[2017a].

7.7.1 Analysis of results

Fig. 7.12 shows the normalized evaluation cost of all algorithms on various datasets. Snapshots
of planning with different heuristics are shown in Fig. 7.13 and Fig. 7.14 (a). Convergence of
different learning algorithms are shown in Fig. 7.14 (b). We present a set of key observations to
summarize these results.

O 1. SaIL has a consistently competitive performance across all datasets.
Fig. 7.12 shows that SaIL learns a better search policy than any other baseline across all but

one environments. It maintains performance from homogeneous to heterogeneous environments.
O 2. SaIL has faster convergence than all learning baselines.

Fig. 7.14 (b) shows that on the ‘Forest’ dataset, SaIL converges by 6th iteration, while CEM

https://goo.gl/YXkQAC
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Figure 7.13: Evolution of search frontier (expanded(blue), invalid(black), unexpanded(white)) of SaIL compared
with final snapshot of supervised learning (SL) and hEUC across all environments. SaIL expands far less states.

takes 12 and QL does not converge. SaIL also converges quickly (by the 8th iteration) across
datasets.

O 3. SaIL is able to detect and escape local minima.
A classic case in motion planning is the bugtrap (Fig. 7.1 (b) ) which traps a greedy search in

a local minimum. Fig. 7.13 (a) and Fig. 7.13 (f) shows that when trained on such distributions,
SaIL is able to detect these artifacts and smartly escape them by exploring in different directions.

O 4. SaIL is able to exploit the relative configuration of obstacles and environment struc-
ture.

In a maze world with rectilinear hallways (Fig. 7.13 (e)), SaIL learns to quickly find a wall
and then concentrate the search along the axes. In Fig. 7.13 (d), SaIL focuses only on regions
where there is a high probability of a gap and skids along obstacles otherwise.
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Figure 7.14: (a) SaIL learns to adapt to different environment distributions by directing search to areas where
it expects to find gaps. Note SaIL does not have information about the entire environment, only the explored
part. (b) On the ‘Forest’ dataset, SaIL converges faster that CEM and QL to a good policy. SaIL also converges
consistently to a good policy across environments ‘Gaps’, ‘Gaps+Forest’, ‘Maze.’

7.7.2 Case study A: Adaptive behaviour of SaIL

We take a closer look at the behaviour of SaIL in response to a change in the distribution of
worlds that it is being trained on P (φ). Consider the scenario illustrated in Fig. 7.14 (a). We
create two datasets. Both datasets have a wall in the middle of the environment, with a gap in
the wall. For dataset 1, the gap can occur uniformly randomly along the y-axis. For dataset 2,
the gap either occurs with 70% probability at the bottom and 30% probability at the top.

For dataset 1, SaIL learns to approach the centre of the environment first and then search
along the wall till it finds a gap. This is in response to the fact that the gap can occur any-
where and hence this is a cost efficient strategy. Contrast this to a greedy search that get stuck
expanding states near the top of the wall.

For dataset 2, SaIL learns to approach the bottom of the environment first and then search
along the wall. This is in response to the gaps occurring at the bottom of the wall. The greedy
search is non responsive to the change in distribution and gets stuck expanding states near the
top again.

7.7.3 Case study B: Helicopter path planning

An important application of heuristic learning is to speed up high dimension search. An ap-
plication of particular relevance to us is an autonomous helicopter [Choudhury et al., 2014]. A
class of environment in which the helicopter has to plan in is a canyon like environment. Since
the system moves at a speed of 30m/s, it has to produce a plan in real-time (within 200ms)
otherwise it risks reaching states from which collision is inevitable.

We use SaIL to learn a heuristic that guides search in such environments. We collect a
dataset by generating canyons using a parametric distribution as showing in Fig. 7.15 (a). A
lattice is created. As a baseline, we run A* with Dubins distance as the heuristic on this problem.
As shown in Fig. 7.15 (b), this ends up expanding a large number of vertices (2531). This is
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(a) (b)

(c) (d)

Figure 7.15: Experiments on path planning for an autonomous helicopter in a canyon environment. The envi-
ronment is motivated from planning challenges as described in Choudhury et al. [2014]. (a) Dataset of canyon-like
environments generated by a parametric distribution. (b) The search tree from A* with Dubins distance heuristic
on a test environment. The start point is shown by the axes. The expanded edges are shown in yellow. The planned
path is shown in green. A* expands 2531 vertices and takes 7000ms. (c) The search tree for greedy search with
Dubins distance heuristic. It expands 142 vertices and takes 500ms. Note that most of the wasted expansions are
where the tree tries to search through the canyon wall (d) SaIL expands only 18 vertices and takes 100ms. It
hugs the canyon wall till it reaches the goal.

because the Dubins distance is not the optimal cost to do. The under-estimation of this heuristic
results in a large number of vertices being expanded and hence a long planning time (7000ms).

We also run a greedy search using the Dubins distance as a heuristic. We see that for these
kind of environments, greedy search performs pretty good - the number of vertices expanded
is 142 and planning time is 500ms. However, the greedy search expends search effort trying to
search for a tunnel through the canyon.

SaIL has much better performance than either of these baselines. It is able to learn a
heuristic that expands only 18 vertices with a search time of 100ms. The features used by SaIL
are minimalistic and are described in Choudhury et al. [2017a]. Among those features are the
Dubins distance to the goal and the direction vector to the nearest obstacle. By examining the
search tree produced by SaIL, we observe that it learns a trade-off between following the Dubins
distance heuristic and not expanding states that are pointing into the canyon wall (as such states
would not result in a feasible path eventually).



146 Data-driven Planning via Imitation Learning

7.7.4 Case study C: Quadrotor path planning

We also applied this approach to a real quadrotor which has to navigate in an environment at
high speed 5m/s while avoiding no fly zones. No fly zones can result from areas that a UAV
cannot fly over because of risks to property or from other vehicles in the area. These no fly zones
can be arbitrary in complexity thus creating artifacts such as a maze as shown in Fig 7.16.

We create a dataset of such mazes by means of a parametric distribution as shown in Fig 7.16
(a). We give a time budget of 1000ms for planners to solve the problem. A* with Dubins heuristic
is unable to solve the problem in the time limit as shown in Fig 7.16 (b). This is because the
Dubins distance vastly under-estimates the distance to the goal in this environment. A* expands
1910 states before being terminated.

Greedy search with Dubins heuristic is able to find a path after 661 expansions within the
time budget (in 400ms). The remaining time is spent relaxing the path found. The greedy
behaviour is beneficial in this environment because it results in a wall following like behaviour.
However, the algorithm wastes search effort expanding states perpendicular to the wall which
would lead to inevitable collision.

SaIL outperforms both algorithms by finding a path in 180 expansions (in 120ms). The
remaining time is spent relaxing the path. As can be seen for the search graph, it focuses on
expanding paths perpendicular to the wall. It learns to not expand vertices that point into the
wall since the oracle shows the cost to go of such nodes to be ∞.

We also evaluated SaIL on board a DJI M100 quadrotor equipped with a TX2 computer.
We created a synthetic maze with no fly zones and commanded the robot to fly through it
(Fig 7.16 (e-f) ). SaIL is able to find a path expanding a sparse number of vertices. As the
robot follows the path, the algorithm is able to consistently replan and find a path consistently
without expanding too many states (Fig 7.16 (g) ).

7.8 Discussion and future work

We presented a novel data-driven imitation learning framework to learning planning policies.
Our approach trains a policy to imitate a clairvoyant oracle that has full information about
the world and can compute optimal planning decisions. We examined two problem domains -
informative path planning and search based planning. We evaluated our approach in both these
domains and showed that the learnt policy can outperform state-of-the-art approaches. We now
discuss a set of relevant questions and directions for future work.

Q 1 (Applicability of Framework). When does this framework lead to good policies? What are
some failure cases?

MDP framework provides an elegant way of posing problems where the complete state of
the problem space is known. The value of an action for a given state in an MDP is given by
equation 7.13.

Qπt (s, a) = R (s, a) + Es′∼P (s′|s,a)
[
V π
t−1(s′)

]
(7.13)
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(a) (b)

(c) (d)

(e) (f)

(g)
Time: 0 sec Time: 7 sec Time: 19 sec

Figure 7.16: Experiments on path planning for a real quadrotor flying at high speed 5m/s while avoiding no fly
zones that represent a maze like scenario. (a) A dataset of mazes created from a parametric distribution (b) The
search graph of A* on the environment. It expands 1910 states in the 1000ms time budget without finding a path
(c) The greedy search with Dubins distance expands 661 vertices and takes 400ms. The remaining time is used
to relax the path shown in green. (d) SaIL outperforms both and finds a path by expanding only 180 vertices in
120ms. (e) The DJI M100 used for our experiments (f) An experiment where SaIL is running onboard the robot.
A set of no fly zones is created and the robot has to fly through it. The robot view and onboard imagery is shown
(g) A time lapse of the search tree as the robot replans while performing the mission. We can see that the search
tree remains sparse through out and SaIL is always able to find a path.
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(a) (b)

Figure 7.17: The robot in a dark room problem. The robot is uncertain about the location of a door and the
only way to collapse that uncertainty is to pull a light switch. (a) A clairvoyant oracle is not incentivized to flip
the switch and hence the robot does not learn to collapse uncertainty (b) The optimal POMDP policy would be
to flip the switch and then head for the door.

V π
t (s) =

T∑
i=t

Est∼P (si|π,i,s) [R (si, π(si))] (7.14)

The optimal MDP policy maximizes the expected cumulative reward, i.e π∗(st) ∈
arg max
π∈Π

V π
t (st).

However, there are 2 major challenges that POMDP solvers face-

• Computing the expectation over the state space. Since the state space of most of the
problems worth solving is large, computing an expectation over such state space needs a
large number, making it expensive to evaluate online.

• Keep track of evolving uncertainty about the state space over the planning horizon.

Our approach solves the first challenge through data driven techniques - the MDP solvers
are used over sampled MDP problems to train a policy on the expected distribution of problems.
The hallucinating oracle is similar in nature to a QMDP algorithm [Littman et al., 1995], an
effective approximate solution to POMDPs, which takes the best action on the current posterior.
However, while QMDP requires maintaining an explicit posterior, our framework does not.
QMDP has been shown to be very successful where explicit information gathering behaviour is
not required [Javdani et al., 2015, Koval et al., 2014] - the belief collapses irrespective of the
action. Hence this optimization assumes a fixed belief and does not account for evolving belief
over time, (which is challenge 2 for POMDP’s). This implies there is no motivation for the MDP
solver and hence the learnt policy to change the belief.

These kind of methods work quite well in POMDP problems where the required changes in
belief can be attained by actions that are rewarding as well. This is very apt in the problem we
address - as the set of actions are constrained to candidate nodes in the open list, no single action
is very informative. It suffices to expand the best node under the current belief and continue to
update the belief as the open list evolves. And there exists no action that is not rewarding while
reducing the uncertainty. We note that this is not true for all learning in planning paradigms.
For example, when learning to collision check [Choudhury et al., 2017b], a policy that actively
reduces uncertainty about the world is effective.
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To illustrate the failure case, we present a simple scenario as shown in Fig 7.17. We have
a ‘trapped robot’ whose task is to escape from a room, i.e. it gets a reward for escaping and
penalization for staying in the room. The room is dark, i.e. the robot cannot observe the location
of the door. It can perform actions such as moving in the room. It can also perform an action of
flicking on the light switch. On performing such an action, it receives an observation containing
the location of the door. An optimal POMDP policy would always choose this action, collapse
uncertainty about the door location and subsequently head straight for the door. However,
imitation of clairvoyant oracles do not provide such behaviours. The oracle, at training, always
guides the robot towards the door to maximize reward and is not incentivized to flip the light
switch. The policy learns a blind search pattern which takes a long time to find the door.

For such POMDP problems, one way forward would be to incentivize the oracle at train time
to reduce the uncertainty as suggested by the POMDP-lite approach [Chen et al., 2016a]. While
POMDP-lite quantifies uncertainty reduction as L1-norm of the belief change, this can be hard
to compute for the space of world maps. Using approximations to this belief change would be
an interesting direction of future work.

Q 2 (Anytime Search). How can we incorporate solution cost in addition to search effort in this
framework?

While our framework ignores the cost of a solution, we note that finding feasible solutions
quickly is the core motivation of a number of high dimensional planning problems which have
historically resorted to sampling based approaches [Kuffner and LaValle, 2000]. Hence, one can
apply our framework to such problems to produce potentially faster solutions. We also note that
when planning on locally connected lattices for geometric planning problems, minimizing the
number of expansions generally leads to near-optimal solutions (unit cost for each valid edge).

However, if we really cared about near optimal solutions, the framework of Multi-heuristic
A* (MHA*) [Aine et al., 2016] can be easily adopted. In such a framework, any heuristic func-
tion [Narayanan et al., 2015] can be used in tandem with an anchored search which uses an
inflated admissible heuristic. Hence we can simply replace our Search function with MHA*.

The bi-objective criteria of solution cost and search effort is best reasoned about in
the paradigm of anytime planning. In this paradigm, an algorithm traces out the pareto-
frontier [Choudhury et al., 2016b] - finds a feasible solution quickly and iteratively improves
it. In this paradigm, SaIL trains a heuristic that displays a behaviour we would expect in the
first iteration. A direction of future work would be to learn anytime heuristics that minimize
search effort initially to and solution cost eventually.

Q 3 (Learning to Sample). Can we generalize this framework to sampling based planners?

The SaIL framework defines Search in a very general way - the underlying implicit graph
can also be a tree and the expansion operation can be a local steering operation akin to the
framework of EST [Hsu et al., 1999b]. The oracle design is an open question - a plausible oracle is
growing a backward tree from the goal and using a k-NN value function approximator. Another
paradigm to consider is when the Expand operation is a call to a sampler. For example, the
framework in Randomized A* (RA*) [Diankov and Kuffner, 2007] proceeds by selecting a node
of the search tree using some criteria and sampling around it.
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Recently, Ichter et al. [2017] proposed a framework for learning sampling distributions from
optimal paths during training by using a conditional variational auto-encoder (CVAE). However,
in this framework sampling and planning are decoupled, i.e. the sampling policy learns a good
stationary distribution from which samples are generated and provided to the planner. Hence
the planner does not adapt during the planning cycle. Such a stationary distribution can be very
hard to learn as directly predicting the optimal path requires conditioning on a lot of information
about the environment.

SaIL can be extended to learn sampling policies that address this problem. The CVAE can
condition on the state of the search (similar to the feature vector used by SaIL). The labels
can be obtained by a backward tree from the goal grown during training. The iterative learning
process of SaIL will ensure that the CVAE is trained on the distribution of search state actually
encountered rather than simply using the optimal path.



8
Bayesian Active Edge Evaluation

Previously, in Chapter 7, we formulated learning planning policies as sequential decision making.
We wanted to learn policies that inferred the utility of a decision based on the history of decisions
and actions. We showed how such policies can be effectively trained via imitation learning
of clairvoyant oracles. The approach was tractable as it did not require explicitly modelling
uncertainty about the world. However, the policies we learnt were passive - they did not actively
choose decisions to reduce uncertainty about the world, which in turn would aid them in imitating
the oracles.

In this Chapter, we examine learning policies that actively infer the underlying structure of
the valid configuration space during planning in order to find solutions with minimal effort. To
make the problem tractable, we investigate planning on explicit graphs and model uncertainty
as function of edges on the graph. We motivate the problem of actively evaluating edges in
Section 8.1. We provide some background in Section 8.2. We then describe the formal problem
in Section 8.3 and show how its equivalent to the Bayesian active learning paradigm of decision
region determination. We describe an active learning algorithm, DiRECt, that solves the prob-
lem in Section 8.4. We also analyze a special case where edges are indpendent random variables
and describe an algorithm, BiSECt, to solve it in Section 8.5. We present our approach on
combining these two algorithms to solve the edge evaluation problem in Section 8.6. We exten-
sively evaluate our approach on a number of datasets in Section 8.7. We summarize and discuss
potential future directions in Section 8.8.

8.1 Introduction

A widely-used approach for solving robot motion-planning problems is the construction of
graphs, where vertices represent robot configurations and edges represent potentially valid move-
ments of the robot between these configurations. The main computational bottleneck is collision
checking which is manifested as expensive edge evaluations. For example, in robot arm plan-
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(a)

Correlated  
edges due 
to a table

Figure 7: Visualization of the first of three articulated motion planning problems in which the HERB robot must move its right
arm from the start configuration (pictured) to any of seven grasp configurations for a mug. Shown is the progression of the
Alternate selector on one of the randomly generated roadmaps; approximately 2% of the 7D roadmap is shown in gray by
projecting onto the space of end-effector positions.

This form is derived from simplifying the induced geomet-
ric series; note that if exp(�wab)  Zba, the value Z 0

xy is
infinite. One can also derive the inverse: given values Z 0,
calculate the values Z if an edge were removed.

This incremental formulation of (7) allows for the corre-
sponding score p(e) for edges to be updated efficiently dur-
ing each iteration of LazySP as the wlazy value for edges
chosen for evaluation are updated. In fact, if the values Z
are stored in a square matrix, the update for all pairs after an
edge weight change consists of a single vector outer product.

5 Experiments
We compared the seven edge selectors on three classes of
shortest path problems. The average number of edges evalu-
ated by each, as well as timing results from our implementa-
tions, are shown in Figure 8. In each case, the estimate was
chosen so that west  w, so that all runs produced optimal
paths. The experimental results serve primarily to illustrate
that the A* and LWA* algorithms (i.e. Expand and Forward)
are not optimally edge-efficient, but they also expose dif-
ferences in behavior and prompt future research directions.
All experiments were conducted using an open-source im-
plementation.1 Motion planning results were implemented
using OMPL (Şucan, Moll, and Kavraki 2012).

Random partially-connected graphs. We tested on a set
of 1000 randomly-generated undirected graphs with |V | =
100, with each pair of vertices sharing an edge with prob-
ability 0.05. Edges have an independent 0.5 probability of
having infinite weight, else the weight is uniformly dis-
tributed on [1, 2]; the estimated weight was unity for all
edges. For the WeightSamp selector, we drew 1000 w sam-
ples at each iteration from the above edge weight distribu-
tion. For the Partition selector, we used � = 2.

Roadmap graphs on the unit square. We considered
roadmap graphs formed via the first 100 points of the (2, 3)-
Halton sequence on the unit square with a connection radius
of 0.15, with 30 pairs of start and goal vertices chosen ran-
domly. The edge weight function was derived from 30 sam-
pled obstacle fields consisting of 10 randomly placed axis-

1https://github.com/personalrobotics/lemur

aligned boxes with dimensions uniform on [0.1, 0.3], with
each edge having infinite weight on collision, and weight
equal to its Euclidean length otherwise. One of the resulting
900 example problems is shown in Figure 2. For the Weight-
Samp selector, we drew 1000 w samples with a naı̈ve edge
weight distribution with each having an independent 0.1 col-
lision probability. For the Partition selector, we used � = 21.

Roadmap graphs for robot arm motion planning. We
considered roadmap graphs in the configuration space corre-
sponding to the 7-DOF right arm of the HERB home robot
(Srinivasa et al. 2012) across three motion planning prob-
lems inspired by a table clearing scenario (see Figure 7). The
problems consisted of first moving from the robot’s home
configuration to one of 7 feasible grasp configurations for
a mug (pictured), second transferring the mug to one of 72
feasible configurations with the mug above the blue bin, and
third returning to the home configuration. Each problem was
solved independently. This common scenario spans various
numbers of starts/goals and allows a comparison w.r.t. diffi-
culty at different problem stages as discussed later.

For each problem, 50 random graphs were constructed by
applying a random offset to the 7D Halton sequence with
N = 1000, with additional vertices for each problem start
and goal configuration. We used an edge connection radius
of 3 radians, resulting |E| ranging from 23404 to 28109.
Each edge took infinite weight on collision, and weight
equal to its Euclidean length otherwise. For the WeightSamp
selector, we drew 1000 w samples with a naı̈ve edge weight
distribution in which each edge had an independent 0.1 prob-
ability of collision. For the Partition selector, we used � = 3.

6 Discussion
The first observation that is evident from the experimen-
tal results is that lazy evaluation – whether using Forward
(LWA*) or one of the other selectors – grossly outperforms
Expand (A*). The relative penalty that Expand incurs by
evaluating all edges from each expanded vertex is a func-
tion of the graph’s branching factor.

Since the Forward and Reverse selectors are simply mir-
rors of each other, they exhibit similar performance averaged
across the PartConn and UnitSquare problem classes, which

(b)

Correlated  
edges due  

to wires and 
guide towers

Figure 8.1: Real world planning problems where edges are correlated. In such cases, we can infer the structure
of the world from outcomes of edge evaluations. (a) The presence of a table in robotic arm planning correlates
neighbouring edges (courtesy Dellin and Srinivasa [2016]). (b) The presence of wires and guide-towers in helicopter
planning correlates corresponding edges.

ning [Dellin et al., 2016] (Fig. 8.1(a)), evaluation requires expensive geometric intersection com-
putations. In autonomous helicopter planning [Choudhury et al., 2014] (Fig. 8.1(b)), evaluation
requires expensive reachability volume verification of the closed loop system. State-of-the-art
planning algorithms [Dellin and Srinivasa, 2016] deal with expensive evaluation by resorting
to laziness - they first compute a set of unevaluated paths quickly, and then evaluate them
sequentially until a valid path is found.

However, these methods do not reason about the utility of an edge. Edges are not alike in
value - some are important, others are informative. Important edges have a lot of good paths
flowing through them. Informative edges, on being evaluated, affect the likelihood of other
neighboring edges being valid. Hence, we wish to characterize and leverage this utility to do
more than passive laziness. This motivates us to ask the question

Can we enable planners to actively probe edges in the graph in order to quickly find
feasible paths?

8.1.1 Motivating examples

We explore two problem settings - planning in environments with varying implicit structure and
search on generalized binomial graphs. We describe scenarios where these settings arise naturally
and make the case for active edge evaluation approaches in both.

Planning in structured environments

Consider the problem of planning for a robot arm doing a pick and place task on a cluttered
table top as shown in Fig. 8.1 (a). The presence of a table in the robot arm workspace implicitly
correlates edges in front of the robot. Similarly consider the problem of an autonomous helicopter
flying over terrain with hills and power-lines as shown in Fig. 8.1 (b). The presence of power-lines
implicitly correlates a horizontal strip of edges near the ground.
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Figure 8.2: Planning on Generalized Binomial Graphs (GBG) where each edge has an independent probability
of being valid. (a) A scenario where a UAV has to fly either through a window or around the wall. We consider
a simple graph with 5 edges and 3 likely paths. To determine if an edge is valid or not, we have to do expensive
collision checking. However we can guess the likelihood easily with a simpler model (b) The likelihood of each
of these edges. The edge evaluation policy must reason about these likelihoods as well as how many paths flow
through the edge.

The underlying observation for these problems is that edges in a graph are implicitly cor-
related. Evaluating such edges provides valuable information about the feasibility likelihood of
other edges which in turn can be used to infer the feasibility likelihood of a path.

Lets take a closer look at the arm planning problem in Fig. 8.1 (a). If two edges passing
through the front of the robot is invalid, the planner should infer all edges between them are
likely to be invalid. It should then evaluate paths on either flank and leave the central edges
untouched. We wish to compute such a policy that judiciously chooses edges to evaluate by
reasoning about likely worlds in which the robot operates.

Search on generalized binomial graphs

There are situations where we only have independent likelihoods of an edge being valid. This
can be due to insufficient data for capturing correlations between edges. This can also arise from
assumptions about the world due to imperfect sensing. A third possibility is that we can use a
simpler and cheaper model of the world to get these probabilities, and evaluating the true status
of edges requires expensive computations. Graphs where each edge has an independent likelihood
of being valid is known as a Generalized Binominal Graph (GBG) [Frieze and Karoński, 2015].

Consider such a scenario where an UAV is flying in an urban environment as shown in
Fig. 8.2(a). Evaluating each edge requires precisely checking the geometry of the UAV, inflated
by execution uncertainty with a high fidelity model of the world (a point cloud). On the other
hand, we can easily obtain likelihoods of each edge being valid by using a coarse model of the
world and assuming a point robot. Hence we have the GBG shown in Fig. 8.2(b).

Which edge should we evaluate? One candidate edge has two paths passing through it. Hence
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if its valid, it increases the chances of finding at least one valid path. However, since that edge
passes through a window, it is likely to be invalid and may result in a wasted evaluation. On the
other hand, we have an edge that belongs to only one path but is likely to be valid. We want a
principled way to reason about this trade-off. In other words, we want to actively decide which
edge to evaluate to increase the likelihood of a path being feasible.

8.1.2 Key ideas

Our key insight is that this problem is equivalent to the Bayesian active learning problem of
decision region determination (DRD) [Chen et al., 2015a, Javdani et al., 2014a] - given a set
of tests (edges), hypotheses (worlds), and regions (potential paths), the objective is to select a
sequence of tests that drive uncertainty into a single decision region. The DRD problem has one
important distinction from the general active learning problem [Dasgupta, 2004] - we only need
to know enough about the world to ascertain if a path is feasible.

To solve the DRD problem in our context, we need to address two issues:

(a) Enumeration of all possible worlds.

(b) Solving the DRD problem in general is NP-hard [Javdani et al., 2014a].

Fortunately, Chen et al. [2015a] provide an algorithm, DiRECt, to address (b) by maximizing
an objective function that satisfies adaptive submodularity [Golovin and Krause, 2011] - a natural
diminishing returns property that endows greedy policies with near-optimality guarantees.

However, DiRECt requires (a) to be solved, i.e. requires an exhaustive training database of
worlds. Since DiRECt operates on a realizability assumption, it can easily terminate without
finding a solution when the test world is not in its training database. Explicitly enumerating all
possible worlds is impractical even as an offline operation - a graph with E edges can induce
O
(
2E
)
possible worlds.1

We address (a) by examining the DRD problem when edges are independent. We proposed
an efficient near-optimal algorithm BiSECt that has linear complexity O (E). BiSECt reasons
about the exhaustive set of worlds without ever explicitly enumerating them by leveraging the
independence assumption.

Our key idea is to combine the two approaches. We sample a finite database of worlds and
apply DiRECt offline on this database to compute a decision tree of edges to evaluate. At test
time we execute the tree. When we reach a leaf node, we have either solved the problem or we
have narrowed the problem down to a set of ‘tail worlds’ outside of DiRECt’s domain, i.e. low
probability worlds that do not appear in the sampled database. We then run BiSECt, which
implicitly reasons about this set of ‘tail worlds’, and accept the performance loss due to the
independence assumption.

8.1.3 Contributions

We make the following contributions:
1A typical graph, |E| : 10000, will need 210000 bits of storage!
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1. We show an equivalence between the optimal edge evaluation problem and the decision
region determination problem (Section 8.3).

2. We develop BiSECt, a near-optimal algorithm for the special case of Bernoulli tests, which
selects tests in O (E) instead of O

(
2E
)
(Section 8.5).

3. We propose a framework to combine two DRD algorithms, DiRECt and BiSECt, that
near-optimally solves the decision region problem, overcomes issues pertaining to finite
databases and can be executed efficiently online (Section 8.6).

4. We demonstrate the efficacy of our approach on a spectrum of planning problems for
mobile robots, manipulators, autonomous full-scale helicopters (Section 8.7).

8.2 Background

8.2.1 Lazy edge evaluation

The computational bottleneck in motion planning varies with problem domain and that has led
to a plethora of planning techniques [LaValle, 2006]. When vertex expansions are a bottleneck,
A* [Hart et al., 1968] is optimally efficient while techniques such as partial expansions [Yoshizumi
et al., 2000] address graph searches with large branching factors. However, we examine the
problem class that is of particular importance in robotics - expensive edge evaluation. This is
primarily because evaluation is performed by querying an underlying representation of the world
that is built online and requires expensive geometric intersection computation.

The problem class we examine, that of expensive edge evaluation, has inspired a variety of
‘lazy’ approaches. The LazyPRM algorithm [Bohlin and Kavraki, 2000] only evaluates edges on
the shortest path while FuzzyPRM [Nielsen and Kavraki, 2000] evaluates paths that minimize
probability of collision. The Lazy Weighted A* (LWA*) algorithm [Cohen et al., 2015] delays edge
evaluation in A* search and is reflected in similar techniques for randomized search [Choudhury
et al., 2016a, Gammell et al., 2015, Hauser, 2015]. An approach most similar in style to ours
is the LazyShortestPath (LazySP) framework [Dellin and Srinivasa, 2016] which examines the
problem of which edges to evaluate on the shortest path. Instead of the finding the shortest
path, our framework aims to efficiently identify a feasible path in a library of ‘good’ paths. The
Anytime Edge Evaluation (AEE*) framework [Narayanan and Likhachev, 2017] also deals with
a similar problem however it makes an independent edge assumption. Finally, there is a lot of
work on modelling belief over configuration spaces [Burns and Brock, 2005a, Choudhury et al.,
2016b, Huh and Lee, 2016, Pan et al., 2012]. Using such models in DRD would be interesting
future work.

8.2.2 Bayesian active learning

We draw a novel connection between motion planning and optimal test selection which
has a wide-spread application in medical diagnosis [Kononenko, 2001] and experiment de-
sign [Chaloner and Verdinelli, 1995]. Optimizing the ideal metric, decision theoretic value of
information [Howard, 1966], is known to be NPPP complete [Krause and Guestrin, 2009]. For
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hypothesis identification (known as the Optimal Decision Tree (ODT) problem), Generalized
Binary Search (GBS) [Dasgupta, 2004] provides a near-optimal policy. For disjoint region iden-
tification (known as the Equivalence Class Determination (ECD) problem), EC2 [Golovin et al.,
2010] provides a near-optimal policy. When regions overlap (known as the Decision Region De-
termination (DRD) problem), HEC [Javdani et al., 2014a] provides a near-optimal policy. The
DiRECt algorithm [Chen et al., 2015a], a computationally more efficient alternative to HEC,
forms the basis of our approach.

8.3 Problem formulation

We introduce the problem for identifying feasible paths. We show equivalence with Bayesian
active learning. We also examine a special case of independent edges which will be useful in the
approach.

8.3.1 The Feasible Path Identification problem

Let G = (V, E) be an explicit graph that consists of a set of vertices V and edges E . Given a pair
of start and goal vertices, (vs, vg) ∈ V, a search algorithm computes a path ξ ⊆ E - a connected
sequence of valid edges.

The search is performed on an underlying world φ which corresponds to a particular config-
uration of obstacles. To ascertain the validity of an edge e, the algorithm queries the world φ

which returns a binary outcome - valid (1) or invalid (0). We address applications where edge
evaluation is expensive, i.e., the computational cost c(e) of evaluating an edge is significantly
higher than regular search operations [Dellin and Srinivasa, 2016].

Note that the search algorithm is free to evaluate any edge e ∈ E . This is made possible since
we have an explicit graph as opposed to the implicit graph considered in Section 7.2.2 where
edges are created dynamically during the search process. Using an explicit graph allows us to
easily leverage a prior on the distribution over worlds P (φ). We represent this prior as a set of
outcome vectors Φ = {φ1, . . . , φn} sampled from P (φ), where φi ∈ {0, 1}E . This set Φ can easily
be used to compute the likelihood of an edge e being valid as well as the posterior likelihood
conditioned on the outcome of other edges.

We make a simplification to the problem - from that of search to that of identification.
Instead of searching G online for a path, we frame the problem as identifying a valid path
from a library of ‘good’ candidate paths Ξ = (ξ1, ξ2, . . . , ξm). The candidate set of paths Ξ is
constructed offline, while being cognizant of P (φ), and can be verified to ensure that all paths
have acceptable solution quality when valid.

We are now ready to define the Feasible Path Identification problem. We wish to design an
adaptive edge selector Select(φ) which is a decision tree that operates on a world φ, selects an
edge for evaluation and branches on its outcome. By abuse of notation, we define the total cost
of edge evaluation for such a selector on a world φ to be c(Select(φ)).

Problem 10 (Feasible Path Identification (Feas-Path)). Given a distribution of worlds, P (φ),
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Figure 8.3: Equivalence between the feasible path identification problem and the decision region determination
problem. A plausible world is equivalent to hypothesis (as shown by the blue dots in the lower row). A path ξi is
equivalent to a region Ri over valid hypotheses where the path is feasible. A collision check is equivalent to a test
whose outcome is valid (green) or invalid (red). Tests eliminate hypotheses and the algorithm terminates when
uncertainty is pushed into a region (R1) and the corresponding path (ξ1) is determined to be valid.

find an edge selector Select(φ) that minimizes the expected cost required to find a valid path.

min Eφ∈P (φ) [c(Select(φ))] s.t ∀φ,∃ξi ∈ Ξ : P (ξi | Select, φ) = 1 (8.1)

8.3.2 The Decision Region Determination problem

We will now define the Bayesian active learning problem of Decision Region Determination while
highlighting equivalence with the feasible path identification problem. Let H = {h1, . . . , hn} be
a set of “hypotheses”, each of which is analogous to a world. We have a prior distribution
P (h) on this set. A “test” t ∈ T is performed by querying a corresponding edge e ∈ E for
evaluation, which returns a binary outcome x ∈ {0, 1} denoting if an edge is valid or not. Thus
each hypothesis can be considered a function, h : T → {0, 1}, mapping tests to corresponding
outcomes. The cost of performing a test is c(t). A path ξi ∈ Ξ corresponds to a set of worlds
on which that path is valid. Hence each path ξi ∈ Ξ corresponds to a “decision region” Ri ⊆ H
over the space of hypotheses. Let {Ri}mi=1 be the set of “decision regions” corresponding to Ξ.

For a set of tests A ⊆ T that are performed, let the observed outcome vector be denoted by
xA. Let the version space H(xA) be the set of hypotheses consistent with outcome vector xA,
i.e. H(xA) = {h ∈ H | ∀t ∈ A, h(t) = xA(t)}.

We define a policy π as a mapping from the current outcome vector xA to the next test to
select. A policy terminates when at least one region is valid, or all regions are invalid. Let h
be the underlying world on which it is evaluated. Denote the outcome vector of a policy π as
xA (π, h). The expected cost of a policy π is c(π) = Eh∼P (h) [c(xA (π, h)] where c(xA) is the cost
of all tests t ∈ A.

Problem 11 (Decision Region Determination (DRD)). Given a distribution of hypotheses, P (h),
the objective is to compute a policy with minimum expected cost that ensures at least one region
is valid, i.e.

π∗ ∈ arg min
π

c(π) s.t ∀h,∃Rd : P (Rd | xA (π, h)) = 1 (8.2)
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Note that we can cast Problem Feas-Path to Problem DRD by setting E = T and Ξ =
{Ri}mi=1. That is, driving uncertainty into a region is equivalent to identification of a valid
path (Fig. 8.3). This casting enables us to leverage efficient algorithms with near-optimality
guarantees for motion planning.

8.3.3 Special case: The DRD problem with Independent Bernoulli Tests

We now examine the special case scenario where we are planning on a Generalized Binomial
Graph (GBG) [Frieze and Karoński, 2015]. In this scenario, the edges in the graph are inde-
pendent Bernoulli random variables. Generally, edges in this graph are correlated, due to the
implicit structure of the world. However, in many situations, measuring such correlations is chal-
lenging, particularly when there is insufficient data. Assuming independent edges is a common
simplification [Burns and Brock, 2005a, Choudhury et al., 2016b, Dellin and Srinivasa, 2016,
LaValle, 2006, Narayanan and Likhachev, 2017].

Similar to Section 8.3.2, we can define an equivalent problem - the Decision Region Determi-
nation problem with Independent Bernoulli Tests. We define a set of tests T = {1, . . . , n}, where
the outcome of each test is a Bernoulli random variableXt ∈ {0, 1}, P (Xt = xt) = θxtt (1−θt)1−xt .
We define a set of hypotheses h ∈ H, where each is an outcome vector h ∈ {0, 1}T mapping all
tests t ∈ T to outcomes h(t). We define a set of regions {Ri}mi=1, each of which is a subset of
tests R ⊆ T . A region is determined to be valid if all tests in that region evaluate to true, which
has probability P (R) =

∏
t∈R

P (Xt = 1).

We define a policy π as a mapping from observation vector xA to tests. A policy terminates
when it shows that at least one region is valid, or all regions are invalid. Let xT ∈ {0, 1}T be
the ground truth - the outcome vector for all tests. Denote the observation vector of a policy π
given ground truth xT as xA (π,xT ). The expected cost of a policy π is c(π) = ExT [c(xA (π,xT )]
where c(xA) is the cost of all tests t ∈ A.

Problem 12 (Decision Region Determination with Independent Bernoulli Tests (Bern-DRD)).
Given a Bernoulli distribution on ground truth xT , P (h), the objective is to compute a policy
with minimum expected cost that ensures at least one region is valid, i.e.

π∗ ∈ arg min
π

c(π) s.t ∀xT ,∃Rd : P (Rd | xA (π,xT )) = 1 (8.3)

8.4 The Decision Region Edge Cutting algorithm (DiRECt)

In order to solve Problem DRD, we adopt the framework of Decision Region Edge Cutting
(DiRECt) [Chen et al., 2015a]. The intuition behind the method is as follows - as tests are
performed, hypotheses inconsistent with test outcomes are pruned away. Hence, tests should be
incentivized to push the probability mass over hypotheses into a region as fast as possible. Chen
et al. [2015a] derive a surrogate objective function that not only provides such an incentive,
but also exhibits the property of adaptive submodularity [Golovin and Krause, 2011] - greedily
maximizing such an objective results in a near-optimal policy.

DiRECt uses a key result from Golovin et al. [2010] who address the Equivalence Class
Determination (ECD) problem - a special case of the DRD problem (8.2) when regions are
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disjoint. Let {R1, . . . ,Rm} be a set of disjoint regions, i.e, Ri ∩Rj = 0 for i 6= j. Golovin et al.
[2010] provide an efficient yet near-optimal approach for solving ECD in their EC2 algorithm.
The EC2 algorithm defines a graph GEC = (VEC, EEC) where the nodes are hypotheses and edges
are between hypotheses in different decision regions EEC = ∪i 6=j {{h, h′} | h ∈ Ri, h′ ∈ Rj}.
The weight of an edge is defined as w({h, h′}) = P (h)P (h′). An edge is said to be ‘cut’ by an
observation if either hypothesis is inconsistent with the observation. Hence a test t with outcome
xt is said to cut a set of edges EEC(xt) = {{h, h′} | h(t) 6= xt ∨ h′(t) 6= xt}. The aim is to cut
all edges by performing test while minimizing cost.

EC2 employs a weight function over regions, wEC({Ri}) =
∑
i 6=j

P (Ri)P (Rj). Naively, com-

puting the total edge weight requires enumerating all pairs of regions. However, we can compute
this efficiently in linear complexity as wEC({Ri}) = 1

2

(
(
∑
i
P (Ri))2 −

∑
i
P (Ri)2

)
. EC2 defines

an objective function fEC(xA) that measures the ratio of the original weight of subregions Ri
and the weight of pruned subregions Ri ∩H(xA), i.e.

fEC(xA) = 1− wEC({Ri} ∩ H(xA))
wEC({Ri})

(8.4)

EC2 uses the fact that fEC(xA) is adaptive submodular [Golovin and Krause, 2011]
to define a greedy algorithm. Let the expected marginal gain of a test be ∆fEC (t | x) =
Ext

[
fEC(xA∪{t})− fEC(xA) | xA

]
. EC2 greedily selects a test t∗ ∈ arg max

t

∆fEC (t | xA)
c(t) .

ECD1 ECD2DRD

R1 R2 R1 R2

Figure 8.4: The DRD problem split into ‘one region versus all’ ECD problems by the DiRECt algorithm

We now return to the general DRD problem where regions are not disjoint. DiRECt reduces
the DRD problem with m regions to m instances of the ECD problem. Each ECD problem is
a ‘one region versus all’. ECD problem i is defined over the following disjoint regions: the first
region is Ri and the remaining regions are singletons containing only one hypothesis h /∈ Ri.
The EC2 objective corresponding to this problem is f rEC(xA). The key idea is that solving any
one ECD problem solves the DRD problem. The DiRECt algorithm then combines them in a
Noisy-OR formulation by defining the following combined objective

fDRD(xA) = 1−
m∏
r=1

(1− f rEC(xA)) (8.5)

DiRECt uses the fact that fDRD(xA) is also adaptive submodular to greedily select a test
t∗ ∈ arg max

t

∆fDRD (t | xA)
c(t) .
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We state the near optimality property of DiRECt and refer the reader to Chen et al. [2015a]
for proofs and other associated lemmas.

Theorem 8.1 (Near Optimality of DiRECt). Letm be the number of regions, phmin the minimum
prior probability of any hypothesis, πDRD be the greedy policy and π∗ with the optimal policy.
We have

c(πDRD) ≤ c(π∗)(2m log 1
phmin

+ 1) (8.6)

8.5 The Bernoulli Subregion Edge Cutting algorithm (BiSECt)

We now address Problem Bern-DRD. We follow the framework of Decision Region Edge Cutting
(DiRECt) [Chen et al., 2015a] by creating separate sub-problems for each region, and combining
them. For each sub-problem, we provide a modification to EC2 which is simpler to compute
when the distribution over hypotheses is non-uniform, while providing the same guarantees.
Unfortunately, naively applying this method requires O

(
2T
)
computation per sub-problem. For

the special case of independent Bernoulli tests, we present a more efficient Bernoulli Subregion
Edge Cutting (BiSECt) algorithm, which computes each subproblem in O (T ) time. We briefly
review the algorithm and refer the reader to Choudhury et al. [2017c] for details.

8.5.1 A simple subproblem: One region versus all

Region R

Hypothesis where  
region is valid

Hypothesis for which 
region is invalid (Subregion S1) S2

S3

S4

Edges involving

Edges involving

�
h 2 RH�

(h 2 RH), (h 2 RH)

(h 2 RH), (h 2 RH)

(h 2 RH)

Figure 8.5: The ‘one region versus all’ ECD problem. The region RH is shown as a circle encompassing a set
of consistent hypothesis h (green dots). Hypothesis for which the region is not valid lie outside the circle (dots
in colors other than green). The objective is to compute an efficient policy to either force the probability mass in
the region RH or determine the unique hypothesis h ∈ RH.

We will now define a simple subproblem whose solution will help in addressing the Bern-
DRD problem. We define the ‘one region versus all’ subproblem as follows - given a single region,
the objective is to either push the entire probability mass of the version space on a region or
collapse it on a single relevant hypothesis. We view a region R as a version space RH ⊆ H
consistent with its constituent tests. We define this subproblem over a set of disjoint subregions
Si. Let the hypotheses in the target region RH be S1.

We refer to hypothesis regionRH as subregion S1 as shown in Fig.8.5. Every other hypothesis
h ∈ RH is defined as its own subregion Si. Determining which subregion is valid falls under the
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framework of Equivalence Class Determination (ECD), (a special case of the DRD problem)
and can be solved efficiently by the EC2 algorithm (Golovin et al. [2010]).

The EC2 algorithm

As described in Section 8.4, the EC2 algorithm [Golovin et al., 2010] solves this problem by creat-
ing a graph cut problem. It defines a graph G = (VEC, EEC) where the nodes are hypotheses and
edges are between hypotheses in different decision regions EEC = ∪i 6=j {{h, h′} | h ∈ Si, h′ ∈ Sj}.
The weight of an edge is defined as w({h, h′}) = P (h)P (h′). The weight function over sub-regions
is:

w[Golovin et al., 2010]({Si}) =
∑
i 6=j

P (Si)P (Sj) (8.7)

When hypotheses have uniform weight, this can be computed efficiently for the ‘one region versus
all’ subproblem. Let P (S1) =

∑
i>1

P (Si):

w[Golovin et al., 2010]({Si}) = P (S1)P (S1) + P (S1)
(
P (S1)− 1

|H|

)
(8.8)

EC2 defines an objective function fEC(xA) that measures the weight of edges cut. This is
the difference between the original weight of subregions Si and the weight of pruned subregions
Si ∩H(xA), i.e. fEC(xA) = w[Golovin et al., 2010]({Si})− w[Golovin et al., 2010]({Si} ∩ H(xA)).

EC2 uses the fact that fEC(xA) is adaptive submodular (Golovin and Krause [2011])
to define a greedy algorithm. Let the expected marginal gain of a test be ∆fEC (t | x) =
Ext

[
fEC(xA∪{t})− fEC(xA) | xA

]
. EC2 greedily selects a test t∗ ∈ arg max

t

∆fEC (t | xA)
c(t) .

An alternative to EC2 on the ‘one region versus all’ problem

For non-uniform prior the quantity (8.8) is more difficult to compute. We modify this objective
slightly, adding self-edges on subregions Si, i > 1 as shown in Fig. 8.5, enabling more efficient
computation while still maintaining the same guarantees:

wEC({Si}) = P (S1)(
∑
i 6=1

P (Si)) + (
∑
i 6=1

P (Si))(
∑
j≥i

P (Sj))

= P (S1)P (S1) + P (S1)2

= P (RH)P (RH) + P (RH)P (RH)

= P (RH)(P (RH) + P (RH))

= 1−
∏
i∈R

θi

(8.9)
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Similarly we can compute wEC({Si} ∩ HR(xA))

wEC({Si} ∩ HR(xA))
= P (S1 ∩HR(xA))P (S1 ∩HR(xA)) + P (S1 ∩HR(xA))2

= P (R∩HR(xA))P (R∩HR(xA)) + P (R∩HR(xA))P (R∩HR(xA))
= P (R∩HR(xA))(P (R∩HR(xA)) + P (R∩HR(xA)))

=

1−
∏

i∈(R∩A)
I (Xi = 1)

∏
j∈(R\A)

θj

 ∏
k∈R∩A

θ
xA(k)
k (1− θk)1−xA(k)

2

(8.10)

Using (8.9) and (8.10) we can express fEC(xA) =

= 1− wEC({Si} ∩ HR(xA))
wEC({Si})

= 1−

(
1−

∏
i∈(R∩A)

I (Xi = 1)
∏

j∈(R\A)
θj

)( ∏
k∈R∩A

θ
xA(k)
k (1− θk)1−xA(k)

)2

1−
∏
i∈R

θi

(8.11)

Lemma 8.2. The expression fEC(xA) is strongly adaptive monotone and adaptive submodular.

Proof. See Choudhury et al. [2017c]

Improvement in runtime from exponential to linear

For non-uniform priors, computing (8.7) is difficult. The naive approach is to compute all hy-
pothesis and assign them to correct subregions and then compute the weights. This has a runtime
of a runtime of O

(
2T
)
. However, our expression (8.11) can be computed in O (T ). This is be-

cause of the simplifications induced by the independent bernoulli assumption. Since we have to
repeat this computation every iteration of the algorithm, we can reduce this to O (1) through

memoization. If we memoize
(

1−
∏

i∈(R∩A)
I (Xi = 1)

∏
j∈(R\A)

θj

)
, we can incrementally update

it every time a test t is evaluated. We also need to memoize
( ∏
k∈R∩A

θ
xA(k)
k (1− θk)1−xA(k)

)2

and update it incrementally.

8.5.2 Solving the original DRD problem using BiSECt

We now return to the Problem Bern-DRD where we have multiple regions {R1, . . . ,Rm} that
can overlap and the goal is to push the probability into one such region. Similar to DiRECt
(Chen et al. [2015a]), we apply BiSECt to solve the problem. We can now evaluate the DRD
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objective in (8.5) using (8.11)

fDRD(xA)

= 1−
m∏
r=1

(1− f rEC(xA))

= 1−
m∏
r=1



(
1−

∏
i∈(Rr∩A)

I (Xi = 1)
∏

j∈(Rr\A)
θj

)( ∏
k∈Rr∩A

θ
xA(k)
k (1− θk)1−xA(k)

)2

1−
∏
i∈Rr

θi


(8.12)

The vanilla version of BiSECt selects from candidate tests Tcand that contains only tests
belonging to active regions that have not already been evaluated

Tcand =
{

m⋃
i=1
{Ri | P (Ri|xA) > 0}

}
\ A (8.13)

We now examine the BiSECt test selection rule which can be simplified as

t∗ ∈ arg max
t∈Tcand

∆fDRD (t | xA)
c(t)

∈ arg max
t∈Tcand

Ext
[
fDRD(xA∪{t})− fDRD(xA) | xA

]
c(t)

∈ arg max
t∈Tcand

1
c(t)Ext

 m∏
r=1

1−
∏

i∈(Rr∩A)
I (Xi = 1)

∏
j∈(Rr\A)

θj


−

 m∏
r=1

1−
∏

i∈(Rr∩A∪t)
I (Xi = 1)

∏
j∈(Rr\A∪t)

θj

 (θxtt (1− θt)1−xt)
2
m∑
k=1

I(t∈Rk)


(8.14)

Theorem 8.3. Let m be the number of regions, phmin the minimum prior probability of any
hypothesis, πDRD be the greedy policy and π∗ with the optimal policy. Then c(πDRD) ≤
c(π∗)(2m log 1

phmin
+ 1).

Proof. See Choudhury et al. [2017c]

We now discuss the complexity of computing the marginal gain at each iteration. We have to
cycle through n tests. For each tests, we only have to cycle through regions which it impacts. Let
η be the maximum number of regions that any test belongs to. For every region, we need to do
an O(1) operation of calculating the change in probability. Hence the complexity is O(nη). Note
that this can be faster in practice by leveraging lazy methods in adaptive submodular problems
(Golovin and Krause [2011]).
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Figure 8.6: The overall approach framework. A training database is created by randomly sampling worlds from
a generative model, collision checking the edge of the graph on each such world and creating a library of paths.
The algorithm DiRECt is invoked to compute a decision tree offline. Each node of the tree contains the index
of the edge to evaluate and branches on the outcome. The leaf node i of the tree correspond either to a feasible
path existing or the number of consistent worlds dropping below a threshold fraction η. In the latter case, the
bias vector θi is stored. At test time, the tree is executed till a leaf node i is reached. If the problem is unsolved
at that point, the BiSECt algorithm is invoked with θi as bias term.

8.5.3 Adaptively constraining test selection to most likely region

We observe in our experiments that the surrogate (8.12) suffers from a slow convergence problem
- fDRD(xA) takes a long time to converge to 1 when greedily optimized. This can be attributed
to the curvature of the function. To alleviate the convergence problem, we introduce an alternate
candidate selection function that assigns to Tcand the set of all tests that belong to the most
likely region TmaxP. We hence forth denote the constraint as MaxProbReg. It is evaluated as
follows

TmaxP =
{

arg max
Ri=(R1,R2,...,Rm)

P (Ri|xA)
}
\ A (8.15)

Applying the constraint in (8.15) leads to a dramatic improvement for any test selection
policy which we explore theoretically and empirically in Choudhury et al. [2017c].

The complexity reduces since we only have to visit states belonging to the most probable
path. Finding the most probable path is an O(m) operation. Let l be the maximum number
of tests in a region. Hence the complexity of gain calculation is O(lη). The total complexity is
O(lη +m).

8.6 Approach

8.6.1 Overview

Fig. 8.6 shows an overview of our approach. We sample a finite database of worlds to create
a training dataset. We employ a greedy yet near-optimal algorithm DiRECt [Chen et al.,
2015a] to solve the DRD problem. DiRECt chooses decisions to prune of inconsistent worlds
from the database till it can ascertain if a path is valid. The decisions of DiRECt can be
compactly stored in the form of a decision tree which is computed offline. At test time, the
tree is executed till the leaf node is reached. At this point, either the problem is solved or the
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Algorithm 14: DiRECt (Hact,R,X, c)
1 for t ∈ T do
2 ∆(t)← 0;
3 for xt ∈ {0, 1} do
4 Hcond ← {h ∈ Hact | X(h, t) = xt} ; . Prune hyp
5 p← |Hcond|

|Hact|
; . Probability of outcome

6 ∆(t)← ∆(t) + p GainDRD(Hcond,R);

7 ∆(t)← ∆(t)
c(t) ;

8 return arg max
t∈T

∆(t);

Algorithm 15: GainDRD (H′,R)
1 v ← 1;
2 for i ∈ {1, . . . ,m} do
3 v ← v

(
WeightEC(H′,R,i)
WeightEC(H,R,i)

)
; . Gain from each ECD

4 return v;

Algorithm 16: WeightEC (H′,R, i)
1 a←

∑
h∈H′

R(h, i) ; . Number of hyp in region

2 b← |H| − a ; . Remaining hyp
3 return 1

2|H|2
(
(a+ b)2 − a2 − b

)

fraction of consistent worlds drops below a threshold η, i.e. it is likely that the test world is
not in the database. In the latter case, we invoke another DRD algorithm, BiSECt. BiSECt
implicitly reasons about the exhaustive set of O(2E) worlds and does this efficiently by assuming
edges are independent. BiSECt is invoked with a bias vector of edge likelihoods θ computed
from the remaining consistent worlds in DiRECt. The combined behaviour of the framework
is as follows - the tree makes a set of evaluations to quickly collapse the posterior on to a set of
candidate paths, while BiSECt completes the episode being guided by the obtained posterior.
We describe each component of the framework in the remaining subsections.

8.6.2 Creating an offline decision tree using DiRECt

We now provide a pseudo-code for the DiRECt algorithm described in Section 8.4. Algorithm 14
describes the DiRECt policy.Hact is the set of active hypotheses which have remained consistent
so far with test outcomes. R ∈ Rn×m is a binary membership matrix where R(h, r) = 1 if h ∈ Rr.
X ∈ Rn×|T | is the test outcome matrix where X(h, t) = h(t). c ∈ R|T |×1 is a vector of test costs.
Algorithm 14 computes the expected gain for each test by computingHcond, the set of hypotheses
conditioned on test outcomes, and picks the best test. Algorithm 15 computes the DRD gain for
Hcond by taking a product of individual ECD gains. Algorithm 16 calculates the weight of the
ith ECD problem. The computational complexity of Algorithm 14 is O (|T |mn). Speedups can
be obtained by lazily evaluating gains and using graph coloring to reduce the number of ECD
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Algorithm 17: BiSECt ({Ri}mi=1 ,θ,A)
1 while (@Ri, P (Ri|xA) = 1) and (∃Ri, P (Ri|xA) > 0) do
2 Tcand ← SelectCandTestSet(xA) ; . Using either (8.13) or (8.15)
3 t∗ ← SelectTest(Tcand, θ,xA) ; . Using (8.14)
4 A ← A∪ t∗;
5 xt∗ ← Evaluate(t∗) ; . Observe outcome for selected test

problems [Chen et al., 2015a].
DiRECt needs access to the entire training database which can be prohibitive at runtime

for storage and computational reasons. We circumvent this problem by computing a decision
tree offline using DiRECt and storing it. The nodes of the tree encode which edge to evaluate.
The tree branches on the outcome of the evaluation. Note that the depth of the tree is bounded
by log2(n) as all leaf nodes must be consistent with the training database. The size is further
bounded by the fact that the tree terminates on a leaf node when the uncertainty has been
pushed onto one region.

8.6.3 Executing BiSECt from the leaf node

As discussed in Section 8.1, it is impractical to have a database large enough to encompass all
possible worlds that can arise at test time. Hence, if we reach the leaf node of the tree and the
problem is still unsolved, we need to execute an online algorithm that can run to completion by
reasoning over the exhaustive set of worlds. We use BiSECt as described in Algorithm. 17.

BiSECt needs as input a bias vector which corresponds to the independent likelihood of an
edge being free. Since DiRECt has made a set of decisions to collapse the posterior, albeit on
a finite database, we wish to use this to inform BiSECt. We do this by growing the DiRECt
decision tree only till the version space Hη drops below a fraction η of consistent worlds, i.e.
|Hη| ≤ η |H|. This is then used to create a bias vector θ with a mixture term to ensure non-zero
support for all plausible worlds. The bias term for a test t is

θ(t) = α
1
|Hη|

∑
h∈Hη

X(h, t) + (1− α) 0.5 (8.16)

Using θ leads to a more informed BiSECt as compared to directly invoking BiSECt from the
beginning using a bias vector computed from the training database.

8.7 Experiments

We evaluated our approach on a collection of datasets spanning a spectrum of motion plan-
ning applications that range from simplistic yet insightful 2D problems to more realistic high
dimension problems as encountered by a helicopter or a robot arm (Fig. 8.7). The autonomous
helicopter dataset in particular is our target application.

A typical dataset is constructed as follows. The robot dynamics information is used to create
an explicit graph G = (V, E) and a start and goal vertex. A dataset of n worlds is sampled from
a designed generative model. Each edge is evaluated on each world to create a test outcome
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Figure 1: The feasible path identification problem (a) The explicit graph contains dynamically feasible
maneuvers [29] for a UAV flying fast, with a set candidate paths. The map shows the distribution of edge validity
for the graph. (b) Given a distribution over edges, our algorithm checks an edge, marks it as invalid (red) or
valid (green), and updates its belief. We continue until a feasible path is identified as free. We aim to minimize
the number of expensive edge evaluations.

computations. In UAV path planning [9], evaluation must be done online with limited computational
resources (Fig. 1).

State of the art planning algorithms [11] first compute a set of unevaluated paths quickly, and then
evaluate them sequentially to find a valid path. Oftentimes, candidate paths share common edges.
Hence, evaluation of a small number of edges can provide information about the validity of many
candidate paths simultaneously. Methods that check paths sequentially, however, do not reason about
these common edges.

This leads us naturally to the feasible path identification problem - given a library of candidate
paths, identify a valid path while minimizing the cost of edge evaluations. We assume access to a
prior distribution over edge validity, which encodes how obstacles are distributed in the environment
(Fig. 1(a)). As we evaluate edges and observe outcomes, the uncertainty of a candidate path collapses.

Our first key insight is that this problem is equivalent to decision region determination (DRD) [20, 5])
- given a set of tests (edges), hypotheses (validity of edges), and regions (paths), the objective is to
drive uncertainty into a single decision region. This linking enables us to leverage existing methods
in Bayesian active learning for robotic motion planning.

Chen et al. [5] provide a method to solve this problem by maximizing an objective function that
satisfies adaptive submodularity [16] - a natural diminishing returns property that endows greedy
policies with near-optimality guarantees. Unfortunately, naively applying this algorithm requires
O

�
2E

�
computation to select an edge to evaluate, where E is the number of edges in all paths.

We define the Bern-DRD problem, which leverages additional structure in robotic motion planning
by assuming edges are independent Bernoulli random variables 1, and regions correspond to sets of
edges evaluating to true. We propose Bernoulli Subregion Edge Cutting (BISECT), which provides
a greedy policy to select candidate edges in O (E). We prove our surrogate objective also satisfies
adaptive submodularity [16], and provides the same bounds as Chen et al. [5] while being more
efficient to compute.

We make the following contributions:

1. We show a novel equivalence between feasible path identification and the DRD problem,
linking motion planning to Bayesian active learning.

2. We develop BISECT, a near-optimal algorithm for the special case of Bernoulli tests, which
selects tests in O (E) instead of O

�
2E

�
.

3. We demonstrate the efficacy of our algorithm on a spectrum of planning problems for mobile
robots, manipulators, and real flight data collected from a full scale helicopter.

1Generally, edges in this graph are correlated, as edges in collision are likely to have neighbours in collision.
Unfortunately, even measuring this correlation is challenging, especially in the high-dimensional non-linear
configuration space of robot arms. Assuming independent edges is a common simplification [24, 26, 7, 2, 11]

2

Start

Goal

(c)(b)(a)
Figure 11: 7D arm planning dataset (a) Snapshot of the manipulator for planning with a table (b) Snapshot
of manipulator planning with an object (c) The explicit graph shown as straight line connections between end
effector locations (also subsampled 50%). The start and goal end effector locations are also shown. Edges in
collision are removed.

6.5 Dataset 5: 7D Arm Planning

6.5.1 Motivation

An important application for efficient edge evaluations is planning for a 7D arm. Edge evaluation
is expensive geometric intersection operations are required to be performed to ascertain validity. A
detailed motivation is provided in Dellin and Srinivasa [11]. Efficient collision checking would allow
such systems to plan quickly while performing tasks such as picking up and placing objects from
one tray to another. One can additionally assume an unknown agent present in the workspace. Such
problems would benefit from reasoning using priors on edge validity.

6.5.2 Construction

A random geometric graph with 7052 vertices and 16643 edges is created (as described in Dellin and
Srinivasa [11]). Edges in self-collision are prune apriori. We create 2 datasets to simulate pick and
place tasks in a kitchen like environment. The start and goal from all problem is from one end-effector
position to another. The first dataset - Table - comprises simply of a table at random offsets from
the robot. The location of the table invalidates large number of edges. The second dataset - Clutter -
comprises of an object and table at random offsets from the robot. In all datasets, a random subset
corresponding to 0.3 fraction of free edges are ‘flipped’, i.e. made to be in collision. This creates the
effect of random disturbances in the environment. Paths are created in a similar way as Section 6.3.
We set m ⇡ 200 for all datasets. Fig. 11 shows an illustration of the problems.

6.5.3 Analysis

Table 2 shows results across datasets. In both the unconstrained and MAXPROBREG setting, BISECT
significantly outperforms other algorithms. MAXTALLY in the MAXPROBREG is the next best
performing policy. This suggests that the dataset might lead to bottleneck edges - edges through
which many paths pass through that can be in collision. Further analysis reveals, this artifact occurs
due to the random disturbance. MAXTALLY is able to verify quickly if such bottleneck edges are in
collision, and if so remove a lot of candidate paths from consideration.

6.6 Autonomous Helicopter Wire Avoidance

We now evaluate our algorithms on experimental data from a full scale helicopter. The helicopter is
equipped with a laser scanner that scans the world to build a model of obstacles and free space. The
system is required to plan around detected obstacles as it performs various missions.

A particularly difficult problem is dealing with wires as the system comes in to land. The system
has limitations on how fast it can ascend / descend. Hence it has to not only react fast, but determine
which direction to move so as to feasibly land. Fig. 12 shows the scenario. In this domain, edge
evaluation is expensive because given an edge, it must be checked at a high resolution to ensure it is
as sufficient distance from an obstacle.

Fig. 12 (b) shos how BISECT evaluates informative edges to identify a feasible path. This algorithm
uses priors collected in simulation of wire like environments.

16

(a) (b)

Figure 8.7: In addition to 2D planning, we also collect data sets of (a) Nonholonomic planning on state lattice
for UAVs (b) 7D robot arm planning

matrix X ∈ Rn×|T |. A library of paths is created by solving for k−shortest paths on the dataset
and sub-sampling it to maintain a size of m. This is then used to create a binary membership
matrix R ∈ Rn×m encoding the validity of a path on a world. 10% of the data is used for test,
remainder for training. The algorithms work with these abstract representations and do not need
access to application specific details.

Our primary baseline is BiSECt [Choudhury et al., 2017b] which treats each edge as in-
dependent Bernoulli random variables (i.e. averages X along each column to use as bias). We
additionally use high performing baselines from Choudhury et al. [2017b] which were competi-
tive with BiSECt, i.e the MaxProbReg version of MaxTally, SetCover and MVoI. We
add to this the LazySP algorithm [Dellin and Srinivasa, 2016] which operates on the original
graph G. We also introduce a new algorithm LazySPSet which is restricted to the library of
paths Ξ.

Our implementation is open sourced for MATLAB (https://github.com/sanjibac/
matlab_learning_collision_checking). For details on the problem, baselines, dataset and
other learning details, we refer the reader to Choudhury et al. [2017b].

8.7.1 Analysis of results

Fig. 8.9 shows the evaluation cost of all algorithms on various datasets normalized w.r.t DiRECt
+BiSECt. The two numbers are lower and upper 95% confidence intervals - hence it conveys
how much fractionally poorer algorithms are w.r.t our approach. The best performance on each
dataset is highlighted. Fig. 8.9 shows a comparison of algorithms on certain datasets. We present
a set of observations to interpret these results.

O 1. DiRECt +BiSECt has a consistently competitive performance across all datasets.
Fig. 8.9 shows on 17 datasets, DiRECt is at par with the best - on 8 of those it is exclusively

the best.
O 2. DiRECt is more effective on environments with spatial correlation.

Fig. 8.8 shows that datasets such as TwoWall, MovingWall, Maze and Baffle are more struc-

https://github.com/sanjibac/matlab_learning_collision_checking
https://github.com/sanjibac/matlab_learning_collision_checking
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Figure 8.8: Comparison of LazySP, LazySPSet, BiSECt and DiRECt +BiSECt on a selection of datasets.
4 samples from each dataset is shown. The final performance of all algorithms on a test problem is shown: valid
edges checked (green) and invalid edges checked (red).

tured. For example in the Maze dataset, there are 5 hallways with one interconnecting passage.
DiRECt is able to locate this passage with a few checks and has better performance than
BiSECt which assumes independence between edges. On the other hand the Forest dataset
has less spatial correlation and BiSECt performs comparably (has an upper margin of 0.20).
Similar phenomemnon was observed in 7D arm planning between Clutter (less correlation) and
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TABLE I: Normalized cost (with respect to our approach) of different algorithms on different datasets (lower and upper bounds of 95% C.I.)

LAZYSP LAZYSPSET MAXTALLY SETCOVER MVOI BISECT DIRECT +
BISECT

2D Geometric Planning: Variation across environments
Forest (10.90, 18.48) (1.84, 3.02) (0.17, 0.40) (0.14, 0.51) (0.30, 0.55) (0.014, 0.20) (0.00, 0.00)
OneWall (7.47, 16.01) (0.30, 0.71) (0.00, 0.30) (0.08, 0.34) (0.09, 0.36) (�0.06, 0.22) (0.00, 0.00)
TwoWall (21.54, 26.68) (0.00, 0.21) (0.20, 0.92) (0.12, 0.58) (0.31, 0.56) (0.00, 0.53) (0.00, 0.00)
MovingWall (1.33, 3.01) (1.00, 1.54) (0.43, 1.17) (0.35, 0.91) (�0.03, 0.57) (0.11, 0.92) (0.00, 0.00)
Baffle (7.86, 11.26) (2.30, 3.83) (0.33, 1.06) (0.36, 0.74) (0.26, 0.89) (0.11, 0.55) (0.00, 0.00)
Maze (14.39, 19.66) (1.16, 1.81) (0.12, 0.34) (0.00, 0.17) (0.41, 0.87) (0.44, 0.76) (0.00, 0.00)
Bugtrap (7.40, 8.57) (2.74, 3.53) (0.51, 0.84) (�0.12, 0.54) (�0.12, 0.53) (0.43, 0.91) (0.00, 0.00)

2D Geometric Planning (Baffle): Variation across path library size
m : 200 (8.67, 11.20) (1.73, 2.34) (0.32, 0.73) (0.38, 0.89) (0.47, 1.17) (�0.03, 0.58) (0.00, 0.00)
m : 977 (7.20, 10.10) (1.35, 2.92) (0.24.0.38) (0.31, 0.63) (0.20, 0.79) (0.03, 0.34) (0.00, 0.00)

SE(2) Nonholonomic Path Planning: Variation across environments
OneWall (2.22, 4.18) (0.15, 0.57) (0.16, 0.48) (�0.11, 0.07) (0.00, 0.28) (�0.07, 0.12) (0.00, 0.00)
MovingWall (�0.14, 0.23) (�0.14, 0.15) (0.24, 0.49) (0.13, 0.41) (0.000.36) (0.10, 0.54) (0.00, 0.00)
Baffle (7.74, 10.48) (2.88, 4.81) (1.86, 3.21) (1.35, 2.32) (0.70, 1.47) (1.14, 1.70) (0.00, 0.00)
Bugtrap (3.75, 6.51) (2.27, 4.69) (0.22, 0.52) (0.05, 0.43) (0.26, 0.55) (0.12, 0.44) (0.00, 0.00)

Autonomous Helicopter Path Planning: Variation across environments
Wires (17.42, 75.85) (1.15, 3.08) (0.55, 0.96) (0.00, 0.25) (�0.08, 0.08) (0.08, 0.23) (0.00, 0.00)
Canyon (0.73, 1.27) (1.41, 2.00) (0.15, 0.52) (0.07, 0.40) (0.43, 0.72) (0.06, 0.47) (0.00, 0.00)

7D Arm Planning: Variation across environments
Clutter (0.49, 1.08) (0.09, 0.57) (�0.04, 0.05) (0.00, 0.13) (0.10, 0.32) (0.00, 0.10) (0.00, 0.00)
Table+Clutter (0.94, 1.84) (�0.22, 0.17) (0.06, 0.51) (0.05, 0.27) (0.11, 0.46) (0.06, 0.36) (0.00, 0.00)

that the tree terminates on a leaf node when the uncertainty
has been pushed onto one region.

D. Executing BISECT from the leaf node

As discussed in Section I, it is impractical to have a database
large enough to encompass all possible worlds that can arise
at test time. Hence, if we reach the leaf node of the tree
and the problem is still unsolved, we need to execute an
online algorithm that can run to completion by reasoning
over the exhaustive set of worlds. We use the Bernoulli
Subregion Edge Cutting (BISECT) algorithm [8] as our online
algorithm. BISECT addresses the DRD problem under the
assumption that test outcomes are independent Bernoulli
random variables. It leverages this assumption to reduce
computational complexity from O

�
2E

�
to O (E) and hence

can be easily executed online.

BISECT needs as input a bias vector which corresponds to the
independent likelihood of an edge being free. Since DIRECT
has made a set of decisions to collapse the posterior, albeit
on a finite database, we wish to use this to inform BISECT.
We do this by growing the DIRECT decision tree only till
the version space H⌘ drops below a fraction ⌘ of consistent
worlds, i.e. |H⌘|  ⌘ |H|. This is then used to create a bias
vector ✓ with a mixture term to ensure non-zero support for
all plausible worlds. The bias term for a test t is

✓(t) = ↵
1

|H⌘|
X

h2H⌘

X(h, t) + (1 � ↵) 0.5 (4)

Using ✓ leads to a more informed BISECT as compared to
directly invoking BISECT from the beginning using a bias
vector computed from the training database.

V. EXPERIMENTS

A. Dataset construction

We evaluated our approach on a collection of datasets spanning
a spectrum of motion planning applications that range from
simplistic yet insightful 2D problems to more realistic high
dimension problems as encountered by a helicopter or a
robot arm. The autonomous helicopter dataset in particular
is our target application. A typical dataset is constructed as
follows. The robot dynamics information is used to create
an explicit graph G = (V, E) and a start and goal vertex. A
dataset of n worlds is sampled from a designed generative
model. Each edge is evaluated on each world to create a
test outcome matrix X 2 Rn⇥|T |. A library of paths is
created by solving for k�shortest paths on the dataset and
sub-sampling it to maintain a size of m. This is then used
to create a binary membership matrix R 2 Rn⇥m encoding
the validity of a path on a world. 10% of the data is used for
test, remainder for training. The algorithms work with these
abstract representations and do not need access to application
specific details. Refer to Choudhury et al. [8] for more details
on dataset construction. 2

B. Baseline algorithms

Our primary baseline is BISECT [8] which treats each edge
as independent Bernoulli random variables (i.e. averages X
along each column to use as bias). We additionally use high
performing baselines from Choudhury et al. [8] which were
competitive with BISECT, i.e the MAXPROBREG version

2Typical values used are n : 1000, m : 500. We plan to provide a link to
open source code and datasets for the camera ready version.

Figure 8.9: Normalized cost (with respect to our approach) of different algorithms on different datasets (lower
and upper bounds of 95% C.I.)
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Figure 8.10: (a) Mean and variance of edge evaluation cost of DiRECt +BiSECt with increasing training size.
(b) The average failure (to indentify a feasible path) rate when only using DiRECt (without BiSECt).

Table+Clutter (more correlation) datasets.
O 3. DiRECt +BiSECt improves in performance with more data.

Fig. 8.10(a) shows that both mean and variance reduce as the size of the dataset is increased.
This is not only due to DiRECt having better realizability, but also due to BiSECt having a
more accurate bias term.

O 4. BiSECt is essential as a post-processing step
We defined an algorithm, DiRECtonly that runs DiRECt to completion and randomly

returns a path from the consistent set of paths, i.e. the a path DiRECt believes should be
feasible. Fig. 8.10(b) shows the failure rate of DiRECtonly with training size, i.e. the returned
path being infeasible. The plot shows the failure does not go to zero. BiSECt is essential to
reason about the remaining paths and in which order to check edges to ascertain which path is



170 Bayesian Active Edge Evaluation

Figure 8.11: DiRECt performs edges evaluation to collapse the uncertainty about the validity of a path. (a)
An example from the Baffle dataset for SE(2) nonholonomic path planning. Here two walls occur in a pair forcing
the path to maneuver through the gap. The prior shows only a general location where obstacles are likely to
occur. After 2 checks, DiRECt is able to locate the gap. The resultant posterior allows BiSECt to finish off
the episode. (b) A realistic example from the Wires dataset for autonomous helicopter path planning. Here the
helicopter is flying over a terrain that may have powerlines. The terrain also has natural obstacles such as hills.
Presence of other aircrafts and no-fly zones also require avoidance. The prior shows a band of low likelihood region
that corresponds to the presence of the wires. After 2 checks, DiRECt is able to infer the location of obstacles
on either flank. The resultant posterior allows BiSECt to focus on the centre region and find a path.

free.

8.7.2 Case study A: Roles played by DiRECt and BiSECt

We take a closer look at the Baffle dataset for SE(2) path planning as shown in Fig. 8.11(a).
The combination of the narrow gap between two walls and the curvature constraint of the robot
makes this a challenging problem as shown by the performance of baseline LazySP in Fig. 8.8(e).
Also note that BiSECt too struggles on this problem. Returning back to Fig. 8.11(a), we see
that the prior over edge validity is not informative enough for BiSECt to find the gap. As
DiRECt proceeds to collision check edges, it is quickly able to localize the gap between the two
walls. Interestingly, it is relatively uncertain about the actual vertical location of the wall - this
is reflective of DiRECt judiciously reducing uncertainty only enough to make a region valid
(i.e to know if a candidate path would be feasible). The posterior is much more informative for
BiSECt which is able to easily find a feasible path.

8.7.3 Case study B: Autonomous helicopter avoiding power-lines

We now closely examine planning problems encountered by an autonomous helicopter which is
our target application. The helicopter navigates in a receding horizon fashion(for details refer to
Chapter 9). It is equipped with a laser scanner that scans the world to build a model of obstacles
and free space. The system is required to plan around detected obstacles as it performs various
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Powerlines

(a) (b)

(c) (d)

Graph

LAZYSP checks 45 edges BISECT checks 13 edges

Figure 8.12: Application of active edge evaluation policies on real flight test data from an autonomous helicopter.
(a) The world is sensed by the onboard laser and modelled as an occupancy grid. Since wires are thin structures,
they are detected fairly late. (b) The camera view from onboard the helicopter. (c) LazySP evaluates 45 edges
till it finds a feasible path. This is because it does not leverage any prior on the edge validity (d) Our approach
(BiSECt) checks only 13 edges till it finds a feasible path.

missions. A particularly difficult problem is dealing with power-lines as the system comes in to
land. The system has limitations on how fast it can ascend / descend. As a result, it does not
suffice to simply move up as the planner must ensure that the system can reach the goal point.

We hand design a parametric distribution to simulate different configurations of power-lines
along with other commonly occuring obstacles like no-fly-zones (see Fig. 8.8(f)). A close up of a
situation is shown in Fig. 8.11(b) along with a visualization of edge likelihood.

We first evaluate our approach in a simulated situation shown in Fig. 8.11(b). We have a
helicopter flying in a terrain with hills on either side and power-line in the middle. There are
also no-fly-zones which correspond to unsafe areas such as radio towers, other aircrafts, etc.
The environment has an implicit structure due the the power-lines, and the presence of hills
that invalidate a large number of edges simultaneously. As DiRECt proceeds to collision check
edges, it is quickly able to ascertain presence of hills in the two flanks and a gap in the centre.
BiSECt uses this posterior to focus along the centre and find a path. In comparison LazySP
evaluates much more edges as shown in Fig. 8.8(f).

We also evaluate our approach on real flight data collected from a full scale autonomous
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helicopter. The situation is simpler in comparison to our previously simulated example. Fig. 8.12
shows the scenario. There are power-lines that are detected fairly late, so the planner has to
ascertain how to both ascend and maneuver laterally to safely avoid obstacle. LazySP evaluates
a lot of edges that intersect with the wire. BiSECt evaluates a small number of edges till it
finds a feasible path.

8.8 Discussion and future work

We addressed the problem of identification of a feasible path from a library while minimizing
the expected cost of edge evaluation given priors on the likelihood of edge validity. We showed
that this problem is equivalent to the Bayesian active learning paradigm of Decision Region
Determination (DRD) where the goal is to select tests (edges) that drive uncertainty into a
single decision region (a valid path). We presented an algorithm DiRECt that efficiently solves
the DRD problem. We developed a new algorithm BiSECt that solves the DRD problem under
the special assumption of independent tests. We proposed an approach that combines these two
algorithms, DiRECt and BiSECt, to efficiently solve our original problem. We validated our
approach on a spectrum of problems against state of the art heuristics and showed that it has
a consistent performance across datasets. These results demonstrate the efficacy of leveraging
prior data to significantly reduce collision checking effort.

We now discuss some insights and directions for future work.

Q 1 (Generalization to All Paths). Can we reason about set of all paths without explicitly enu-
merating them?

Consider the DRD problem on the set of all simple paths. Explicitly reasoning about such
a set is expensive as the size of the set can be exponential in the number of edges in the
graph. An alternate method is to directly reason about the utility of an edge conditioned on
the distribution over all possible paths implicitly. This would involve a set of approximations
such as the probability of a path P (ξ) being valid is the product of the constituent edges ei
being valid. The goal would be to use this approximation to express the objective in (8.5) in
terms of the probability of each edge. Dellin and Srinivasa [2016] examine a special case of this
problem under some restrictive assumptions. They show that if one assumes a fully connected
bi-directional graph, where validity of edge is proportional to edge weight, the partition function
can be computed and updated exactly. It would be interesting to investigate if this idea can be
applied in our framework.

An alternate technique to reasoning about all paths is by replacing the fixed library with
a planner that generates a set of candidate paths Ξ. This can be framed as a two player game
where the objective of the policy π is to find a feasible path in the set. The objective of the
planner is to come up with a set of paths such that at least one is likely to be feasible. It would
be interesting to see if the guarantees in our framework can be extended to this procedure of
decoupling path library generation from verification.

Q 2 (Incorporate Solution Quality). What is an optimal policy for identifying the shortest path
in a set of candidate paths?
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This is a fundamental question that requires contrasting the decision region determination
problem with a new problem - the decision region elimination (DRE) problem. The DRE problem
follows the same notation as our framework with a key difference in the objective

π∗ ∈ arg min
π

c(π) s.t ∀h,∀Rd : P (Rd | xA (π, h)) = 0 (8.17)

This can be shown to be equivalent to the stochastic set cover problem for which a greedy
algorithm can be shown to have a log(n) near-optimality bound.

The decision region elimination problem plays a key role in verifying if a path is the shortest
by requiring all shorter paths to be eliminated. This can be used to derive an algorithm for
obtaining the shortest path in a set. For example consider the following strategy: We start
with the P shortest paths in the library and invoked the DRE problem. When the library is
eliminated, we consider the next P paths and repeat. This process terminates when we reach a
set when the DRE algorithm terminates without eliminating the set (say on the k+1 iterations).

The downside to such a strategy is that it can be myopic in comparison to a policy that in
hindsight could have eliminated all Pk paths. On the other hand, even though the DRD policy
is not incentivized to identify the optimal solution, if can efficiently identify a feasible path from
a set which is useful is compressing the upper bound on the length of the shortest path.

This motivates us to frame the shortest path identification in the following manner. Let L(Ri)
be the length of the path ξi corresponding to Ri. We wish to find a policy

π∗ ∈ arg min
π

c(π) s.t ∀h,∃Rd : P (Rd | xA (π, h)) = 1 ,

∀Ri , L(Ri) ≥ L(Rd) : P (Ri | xA (π, h)) = 0
(8.18)

A possible direction would be to combine the attributes of DRD and DRE to arrive at a
solution for (8.18).

Q 3 (Dealing with Data Starvation). Can we leverage machine learning oracles that can predict
a set of plausible worlds?

There has been a significant advancement in the area of using deep generative models such as
Generative Adversarial Networks [Radford et al., 2015] and Variational AutoEncoders [Walker
et al., 2016]. These tools have enjoyed a lot of success in the computer vision community in
being able to generate plausible high dimensional vectors such as images. One can leverage such
tools in planning for predicting plausible worlds.

We wish to train oracles that can predict a set of plausible worlds {φ1, . . . , φn}. Our frame-
work can use this set online as the set of hypothesis. Furthermore, the oracles can be trained to
produce such worlds conditioned on the outcome of the edge evaluations. This would alleviate
the data starvation issue and allow the edge evaluation to perpetually reason about possible
worlds in rolling buffer fashion.
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Bridging Theory and Practice





9
A Unified Planning Architecture for UAVs

In the previous chapters, we focused mainly on the algorithmic aspects of adaptive motion
planning. In this chapter, we cast the spotlight on the problem of how to implement an adaptive
planning system in practice. We examine a class of general UAV applications where the system
is required to visit a sequence of waypoints, potentially spaced out across long distances. Such
applications require the system to fly across different environments while operating at different
speed regimes. We propose a general trajectory planning architecture for UAVs dealing with
such problems. The architecture is based on a decoupling scheme that enables us to solve such
planning problems tractably in real-time. A key component of the architecture is the adaptive
planning module - this allows us to use the same library of planning algorithms across all UAV
classes. We present results on 3 different UAV classes and show how the architecture seamlessly
adapts to different planning problem distribution encountered by these systems.

9.1 Introduction

Unmanned rotor-craft have a high demand in applications such as cargo delivery, emergency
rescue operations and surveillance due to their dexterity in operating in close vicinity to ground.
Such applications typically require the UAV to visit a sequence of waypoints that may stretch
across large distances and different environments. Such operations also involve flying at varying
speed regimes, varying proximity to obstacles and repeatedly landing / taking off from unpre-
pared sites. Hence, from a motion planning perspective, this problem has several challenging
aspects.

The first challenge arises from the varying dynamic constraints encountered by UAVs. The
commercial success of such systems depends heavily on their ability to produce high-performance
flight profiles that optimize time while strictly adhering to constraints imposed by the control
system, flight dynamics and performance charts [Prouty, 1995]. In conjunction with these re-
quirements, these systems must be cognizant to the effect of wind on flight profile [McGee et al.,
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2005, Seleck et al., 2013, Techy, 2011]. The dynamic constraints restricts the reachability of the
system, i.e. limits the set of feasible trajectories the vehicle can execute. The reachability plays
a critical role when the UAV has to avoid obstacles or plan maneuvers to fly through waypoints.

The second challenge arises from the fact that the robot has to guarantee safety while flying
through partially known environments. Guaranteeing safety implies planning trajectories that
satisfy safety constraints for an infinite time horizon. Hence the partial known aspect makes
providing such guarantees challenging. Conservative approaches are inefficient since the missions
require the vehicle to proceed as fast as possible. Unlike unmanned ground vehicles, coming to
a stop is often not a safe option since rotorcrafts with a high payload have to move to stay
airborne.

The final challenge arises from the fact that we wish to generalize across UAV classes.
In other words, we want our planning software to transfer across domains without having to
re-engineer the motion planners. This is challenging because different UAVs imply different
dynamics constraints, different proximity to obstacles and different planning horizons. Even if
planning algorithms are parametrized to deal with these variations, tuning such parameters is
time consuming.

We present a general trajectory planning architecture for UAVs that deals with these chal-
lenges. Our approach is based on a novel 3 stage decoupling scheme - a global nominal trajectory
planner, a local trajectory planner for avoiding obstacles and a safety checking executive mod-
ule to guarantee safety. Each of these modules operate at different resolutions, different time
scales and examine complimentary aspects of the problem. The global planner is responsible
for producing a nominal trajectory that has guarantees with respect to the overall mission such
as ensuring the vehicle can stay in a designated safe flight corridor, respect speed limits along
segments and can feasibly transition between corridors in presence of wind. It is computationally
expensive and is invoked once per mission. The local planner is responsible for locally repairing
the trajectory to avoid sensed obstacles. This runs periodically (∼ 1 Hz) to ensure obstacles are
avoided shortly after they are sensed.

Finally, an executive module ensures safety for an infinite time horizon by only executing
trajectories that have at least one evasive maneuver. An evasive maneuver is a set of safe states
for an infinite time horizon (typically a loiter pattern that strictly lies in space identified as
free by the sensor). The executive module is tasked with the job of checking if such maneuvers
exist, and if not either slowing down the trajectory or in the worst case executing the evasive
maneuver. The executive module reasons within the sensor horizon range and runs at the highest
frequency (∼ 10 Hz).

9.2 Problem formulation

We now present the trajectory planning problem that we wish to address. The overall block
diagram for the system is shown in Fig. 9.1. We first describe the input and output to the
trajectory planner module. We then describe the constraints and objective of the planner.
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Figure 9.1: Overview of the input and output to the trajectory planner. The input is a mission. The first
component of a mission is a route as shown in the top left figure. The route comprises of waypoints (black stars)
and safety corridors (blue rectangles). The input mission also consists of the vehicle state, dynamic constraint
and a representation of the world as an occupancy map (botton left figure). The output of the module is a
trajectory. The top right figure shows such a trajectory (green) avoiding obstacles such as NFZs (red cylinder).
The trajectories is also ensured to be guaranteed safe by verifying the existence of evasive maneuvers (orange
segments).

9.2.1 Input and output

The input to the trajectory planner is a mission that fully specifies the intended behaviour and
constraints of the system. This mission is typically created by a ground control operator but
also can be generated autonomously by a mission planner. It consists of 4 main components:

1. Route: A route is a sequence of 3D waypoints that represents the locations that the system
has to visit. Associated with each pair of waypoints is a desired speed and margins for
a flight corridor (left, right, up, down). Hence, these numbers define a sequence of safe
flight corridor that the system has to stay in, as well desired speeds that the system
should achieve. It is not required for the system to actually fly through the waypoints.
By controlling the width of the flight corridors, the vehicle can be restricted in a specified
airspace - a critical requirement for UAVs. On the other hand, the corridor may contain
obstacles such as terrain, other aircrafts or no-fly-zones that the system has to avoid. An
illustration of a route is shown in Fig. 9.2

2. Vehicle state: This represents the current configuration of the system (pose and velocity)
which serves as the initial boundary value for the trajectory planner. This is either the
current pose of the system or the reference pose being tracked by the controller. It is
expected that the trajectory planner returns a path that is constrained to pass through
this state. Location on the trajectory the helicopter is tracking + pose. we plan from here

3. Dynamics constraints: This is a set of equality and inequality constraints that the tra-
jectory must satisfy. These constraints are a combination of the actuator limits of the
control system (e.g. maximum acceleration, maximum roll rate), constraints derived from
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Figure 9.2: Illustrations of route constraints. (a) A route which defines a set of 3 safe corridors (yellow rect-
angles) corr1, corr2, corr3. A feasible trajectory σ(t) must lie inside all corridors. (b) A route also defines ve-
locity constraints along the segments. The air speed of the trajectory va(t) must not exceed constraint velocities
vseg,1, vseg,2, vseg,3.

performance charts (e.g. torque limits, height-velocity limits) and constraints due to envi-
ronmental factors (e.g wind).

4. Obstacle map: This is a map of the world that is being constructed online by the perception
system. The trajectory is expected to stay clear of terrain obstacles by sufficient clearance.

The output of the planner is a time parameterized trajectory σ(t) = {x(t), y(t), z(t), ψ(t)}.
The domain of the trajectory is [0, tf ]. This trajectory is sent to the control system as reference.
We represent the trajectory as a spline, i.e. a sequence of polynomials. We choose the order to
be 5 to ensure that it is sufficiently differentiable for the controller to obtain feed-forward terms.

9.2.2 Constraints

The trajectory σ(t) computed by the planner has to satisfy a set of equality constraints F (σ) = 0,
inequality constraints H (σ) ≤ 0 and lie in valid space σ(t) ∈ Σvalid. We briefly describe the
different categories of constraints and refer the reader to Appendix A for formal definitions.

1. Dynamics constraints: We will abstract these as Fdyn (σ) = 0 and Hdyn (σ) ≤ 0. These
constraints correspond to ensuring that the trajectory satisfy a set of differential equa-
tions (a unicycle model), that derivatives are bounded (e.g. velocity, bank angle) and the
configuration of the robot is within acceptable regimes according to specified performance
charts (e.g. ż(t) is bounded according to torque limits).

2. Route constraints: We will abstract these as Froute (σ) = 0 and Hroute (σ) ≤ 0. These
correspond to ensuring the trajectory satisfies boundary constraints and stays within the
flight corridor.

3. Safety constraints: We will abstract these as σ(t) ∈ Σvalid. This corresponds to the trajec-
tory being sufficiently clear of obstacles and no-fly-zones.
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9.2.3 Objective

The objective function J(σ) that the planner tries to minimize is the total traversal time, i.e
J(σ) = tf

9.2.4 Trajectory planning problem

Combining these constraints and objective, we have the following the trajectory planning prob-
lem

Problem 13 (Trajectory Planning Problem). The trajectory planning problem is then formally
defined as the search for the trajectory, σ∗, that minimizes a given cost function, while satisfying
boundary and trajectory wide constraints

min
σ∈Σ

J(σ)

s.t σ(0) = s

σ(tf ) = g

F(σ) = 0
H(σ) ≤ 0

σ(t) ∈ Σvalid

∀t ∈ [0, tf ]

(9.1)

9.3 Trajectory planning architecture

We now present an overview of our approach. The key idea is to decompose the overall problem
into 3 cascaded sub-problems, each of which can be solved in a tractable fashion. Each of
these sub-problems operate at different resolutions, different time-periods and focus on different
aspects of the optimization problem.

Fig. 9.3 illustrates the 3 stage decomposition. We highlight each stage of the decomposition,
explaining the rationale along the way

1. Route guide trajectory : The first sub-problem involves processing the entire route and
dynamics constraints and solving for a global trajectory which we call the route-guide. This
is the most computationally expensive operation as it has to reason about the mission as
a whole and compute not only an overall shape that is feasible but also a velocity profile.
However, since this procedure has to be done once a mission, it is given a time budget
of 20 seconds to compute such a trajectory. Existence of a solution implies that under
nominal conditions, the mission is feasible. In other words, if there were no obstacles or
no-fly-zones, the ideal trajectory to execute would be this trajectory.

2. Receding horizon trajectory : The second sub-problem is concerned with obstacle and no-
fly-zone avoidance. Since avoidance must be done in real-time, such a module has to run at
a higher frequency ( 1 Hz). Hence such a module only computes a trajectory up to a finite
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Figure 9.3: The 3 stage decomposition of the trajectory planning problem. The decomposition is illustrated for
an autonomous helicopter application. The first stage takes as input the entire route and dynamics constraints
and computes a route guide trajectory σrg(t). The trajectory is ensured to be dynamically feasible and lie in the
safe flight corridor. The second stage takes as input the route guide trajectory and obstacle constraints and repairs
the trajectory locally upto a finite horizon to produce σhor(t). The horizon is typically a few kilometers. The final
stage takes as input the computed trajectory and ensures that it is guaranteed to be safe. It does this by ensuring
that there exists an evasive maneuver that lies in known free space. It then appends this evasive maneuver and to
the end of the trajectory to produce a safe trajectory σsafe(t). Since the system re-plans, the evasive maneuver is
never really executed unless the motion planner enters a scenario where it is unable to replan for a feasible path.

horizon to alleviate computational burden. The horizon is set to be double the sensor range
to ensure that the system only reasons about obstacles that it has seen and no-fly-zones
in the vicinity. Under nominal situations the receding horizon trajectory simply imitates
the route guide trajectory. When obstacles appear, this trajectory avoids obstacles within
the horizon while eventually connecting back to the route guide trajectory.

3. Guaranteed safe trajectory: The third sub-problem is concerned with guaranteeing safety.
As the robot flies in a partially known world, it discovers obstacles on the fly. Even though
the previous sub-problem is tasked with computing avoidance maneuvers, it is often the
case that no such maneuvers exist. Hence, a safety module has to ensure that robot can
perpetually exist in a set of states that will never be in collision. Safety can be guaranteed
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Figure 9.4: The trajectory planner block diagram. It consists of 3 main modules - the planning state machine,
the trajectory planning algorithm and the trajectory executive.

by checking if an evasive maneuver can be attached to the planned trajectory. The evasive
maneuver is a trajectory that can perpetually keep the robot in known free space. Hence
this module has to reason at the sensor range, but must do so at a much higher frequency
( 10 Hz).

Each of these 3 decompositions are handled by 3 modules in the trajectory planner. The
block-diagram of our trajectory planning architecture is shown in Fig. 9.4. We will now briefly
describe these modules.

9.3.1 Module 1: Planning state machine

The role of the state machine is to process the input mission and create a planning problem
for the trajectory planning module to solve. It does so by invoking two sub-modules - the route
guide generator and the planning problem creator.

Route guide generator

A route guide is a complete trajectory from start to goal of the mission that respects the dynamics
constraints and the route constraints. Under nominal conditions, i.e. in the absence of obstacles
or no-fly-zones, this trajectory is the optimal desired trajectory we wish to follow. Computing the
route guide is the first step in our decoupling based approach. Once the route guide is computed,
the trajectory planning modules need only be concerned with following the route-guide as closely
as possible. Fig. 9.3 shows an example of a route guide trajectory generated from a mission.
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The route guide is computed by a route guide generator once per mission. This implies that
the route guide generator can take much longer than a normal trajectory planner (up to 20 s).
However, computing a route guide is a difficult non-convex multi-scale optimization problem.
We will discuss how we solve such an optimization problem in Section 9.4.

Planning Problem Generator

A planning problem is a complete list of specifications sent to the trajectory planning module.
It is defined by the following tuple Γpp = (s, g,F ,H,Σvalid, σrg). We describe each component
briefly

1. s - The start pose and velocity that the trajectory must satisfy

2. g - The terminal touchdown point (set of touchdown points) coming from the mission
specification

3. F and H - The set of equality and inequality constraints as defined in Section 9.2.

4. Σvalid - The set of valid states.

5. σrg - The route guide trajectory

The planning problem generator prepares this tuple and sends it along to the trajectory
planning algorithm.

9.3.2 Module 2: Trajectory planning algorithm

The trajectory planning algorithm module takes a planning problem as input. It then tries to
follow the route guide trajectory upto a horizon. If such a solution violates safety constraints,
it tries to compute a feasible trajectory upto the finite horizon that satisfies all constraints
including safety constraints such as obstacle avoidance and no-fly-zone avoidance. Fig. 9.3 shows
an example of a receding horizon trajectory σhor.

This module consists of two sub-modules: receding horizon problem generator which generates
receding horizon problems and receding horizon planning which is tasked with computing the
trajectory.

Receding horizon problem generator

This sub-module takes the whole planning problem as input and decides a horizon to plan to.
It then uses this horizon to splice the route guide trajectory. This spliced route guide trajectory
is then used to create a new receding horizon planning problem. Algorithm 18 describes this
process.

Receding horizon planning

This submodule takes as input the receding horizon planning problem and produces a trajectory
till the horizon. The general approach is as follows: the module computes a nominal trajectory
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Algorithm 18: CreateRHPP(Γpp, thor)
1 (s, g,F ,H,Σvalid, σrg)← Unpack (Γpp);
2 tproj ← Project (s, σrg);
3 t+hor ← Propagate (σrg, tproj, δhor);
4 if t+hor ≥ min (thor + εhor, tf (σrg)) then
5 thor ← t+hor;
6 σ+

rg ← Chop (σrg, tproj, thor);
7 Γrhpp ←

(
s, g,F ,H,Σvalid, σ

+
rg
)
;

8 return (Γrhpp, thor);

σnom(t) that follows the route guide. If such a trajectory satisfies all constraints (including safety),
it is selected as a solution. If σnom(t) is invalid, trajectory planning algorithms are invoked.

The approach to solving such problems is the adaptive ensemble approach described in
Chapter 5. The goal of the planning algorithms is to plan minimal time paths to the horizon
point while satisfying constraints. A trajectory selector then selects the best trajectory returned
by the ensemble. Algorithm 19 illustrates the trajectory selection algorithm.

Algorithm 19: TrajectorySelector(Γrhpp, σnom,Σens, σsol)
1 (s, g,F ,H,Σvalid, σrg)← Unpack (Γrhpp);
2 if F (σnom) = 0 and H (σnom) ≤ 0 then
3 σsol ← σnom;
4 else
5 Σens ← Σens

⋃
σsol;

6 Σ+
ens ← FilterIllegal (Σens,Γrhpp);

7 σsol ← arg min
σ∈Σ+

ens

J (σ) s.t F (σ) = 0,H (σ) ≤ 0;

8 return σsol;

9.3.3 Module 3: Trajectory executive

The role of this module is to guarantee safety of the system. It does so by taking as input the finite
horizon trajectory computed by the planning algorithm and checking whether it is a guaranteed
safe trajectory. It does so by ensuring that there exists an evasive (or emergency) maneuver
that originates from the trajectory. An evasive maneuver is an infinite horizon trajectory that
lies in the known free state space. Usually such trajectories are loiter patterns (for helicopters)
or hover commands (for quadrotors). Fig. 9.3 shows a guaranteed safe trajectory σsafe(t). It
initially is identical to σhor(t), but as it approaches the sensor horizon, it diverges to form a
loiter pattern. Note that as long as the planner keeps re-planning safe trajectories, the system
will never execute the evasive maneuver portion of the trajectory. At this junction, a pertinent
concern is whether such a method of decoupling leads to deadlocks. To answer this question, we
examine the interaction between nested stages.

1. Deadlock between route guide and finite horizon trajectory: The only scenario when a
deadlock can potentially occur is when an obstacle appears such that no finite horizon
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trajectory exists. We overcome this scenario by ensuring that the goal point on the route
guide is always in a feasible location sufficiently far away from obstacles. Hence as long as
the flight corridors are wide enough, the trajectory planners should be able to find a path.

2. Deadlock between finite horizon trajectory and guaranteed safe trajectory: The only scenario
where a deadlock occurs is where the trajectory planner produces a solution to which no
evasive maneuvers can be attached. The executive alleviates the situation by slowing down
the trajectory. If that does not resolve the deadlock, the system enters the evasive maneuver
and the sensor keeps on scanning and increasing the known free space. This increases the
chance of the planned trajectory being verified to be safe.

9.4 Global planning via route guide generation
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Figure 9.5: Overview of the route guide generation algorithm. The algorithm takes as input a route - a set of
waypoints (red star), a set of flight corridors (yellow rectangle). It also takes as input dynamic constraints and a
wind vector. It then solves for a feasible time optimal trajectory with a four stage decomposition. Phase A solves
for a path in ground frame. Phase B solves for limits on the airspeed at certain keyframes. Phase C solves for an
airpseed that satisfies these limits. Phase D combines the path and velocity profile to find a trajectory in ground
frame.

We briefly describe the procedure for creating a route guide trajectory. The route guide
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trajectory is concerned with satisfying the dynamics constraints and the route constraints while
ignoring the obstacle and safety constraints. Hence the trimmed down optimization problem is
as follows

min
σ

J(σ)

s.t σ(0) = s

σ(tf ) = g

Froute(σ) = 0
Hroute(σ) ≤ 0
Fdyn(σ) = 0
Hdyn(σ) ≤ 0

(9.2)

A challenging aspect of this problem is the interplay between the route constraints and the
dynamic constraints that depend on the wind. Consider the problems faced when planning in a
moving reference frame. Planning a dynamically feasible path in this frame results in a drifting
ground frame path that might violate the safe flight corridor. On the other hand, if planning is
done in the ground frame, the dynamics constraints are no longer stationary and varies along
the path. In addition to wind, the other main challenges are satisfying nonholonomic constraints
due to vehicle dynamics and scaling to large distances. This results in a complex multi-resolution
non-convex planning problem.

To make the solution-search tractable, we decouple the optimization problem into a path
optimization and a velocity profile optimization [Bobrow et al., 1985, Choset, 2005, hwan Jeon
et al., 2013]). The optimization approach, summarized in Fig 9.5 proceeds in 4 stages:

1. Phase A: Path Optimization. This phase solves for a path that is guaranteed to be feasible
(in terms of dynamics and route constraints) for a range of constrained velocity profiles.
The path is parameterized as a sequence of sections which are either straight lines or
arcs. The optimizer solves for each section i independently along with a corresponding Vi,
such that the section is feasible for any velocity profile limited by Vi. In the interest of
time-optimality, the objective of this optimizer is to maximize the velocity limit Vi while
keeping the total arclength of the section small.

2. Phase B: Velocity Optimization. This phase optimizes velocity at specific control points
at the end of the sections to minimize time. By ignoring jerk constraints at this stage
and assuming a trapezoidal velocity profile, we are able to solve this optimization very
efficiently.

3. Phase C: Velocity Spline Fitting. This phase solves for smooth velocity splines that intro-
duce jerk limits.

4. Phase D: Ground Frame Trajectory Repair. This phase combines the path from Phase A
with the velocity profile from Phase C to yield the final ground frame trajectory.

We refer the reader to Dugar et al. [2017a] and Dugar et al. [2017b] for details on this
approach.



188 A Unified Planning Architecture for UAVs

9.5 Local planning via an adaptive ensemble

9.5.1 Overview

The goal of the receding horizon trajectory planning algorithm is to solve the original trajectory
planning problem defined in Problem 9.1 upto a finite horizon. The horizon is then receded
and the module requested to replan. To alleviate myopic shortcomings due to reasoning in a
finite horizon, the planner is tasked with trying to follow the route guide closely. Hence in the
absence of obstacles, the trajectory planning algorithm employs a nominal planning approach
that minimizes deviation from the route guide trajectory.

When the nominal trajectory is infeasible, the planner has to compute an avoidance maneu-
ver. To solve such avoidance maneuvers tractably in real-time, we employ the expert planner
approach described in Chapter 4. This allows us to import the black-box adaptive planner
framework from Chapter 5.

9.5.2 Solving nominal planning problems

We define the nominal planning problem as minimizing the deviation from the route guide
trajectory upto a horizon. This can be expressed as the following optimization problem.

min
σ

∫ tf

0
||σ(t)− σrg(t)|| dt

s.t s = (σ(0), σ̇(0), σ̈(0))
||σ(tf )− σrg(tf (σrg)||2 ≤ εtol

Fdyn(σ) = 0
Hdyn(σ) ≤ 0

(9.3)

This optimization problem can be solved by the dynamics projection operator as described
in Appendix B.

9.5.3 Solving avoidance planning problems

When the solution to the nominal planning problem (9.3) violates safety constraints, an avoid-
ance planning problem is created. For these problems, it is no longer beneficial to minimize
deviation from the route guide. Instead the planners are asked to compute time optimal tra-
jectories to shortcut to the finite horizon goal as fast as possible. This leads to the following
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optimization problem.

min
σ

J(σ(t))

s.t s = (σ(0), σ̇(0), σ̈(0))
||σ(tf )− g||2 ≤ εtol

F(σ) = 0
H(σ) ≤ 0

σ(t) ∈ Σvalid

∀t ∈ [0, tf ]

(9.4)

The problem described in (9.4) now follows the template of the kinodynamic planning prob-
lem described in Chapter 4, (4.1). This allows us to employ the ensemble of expert planner
approach.

We use the exact framework described in Chapter 5. We have a library of expert planners
for UAVs which remains the same irrespective of the UAV platform. The dynamics projection
filter that is applied to project a path into a feasible trajectory changes with different UAVs in
order to respect the dynamics. The meta-planner extracts context such as the speed at which
the system is moving, the density of obstacles at various locations to decide which ensemble to
choose. Details on the library of planners are described in Appendix C. Details on the feature
extraction is described in Appendix D.

9.6 Guaranteeing safety via trajectory executive

We briefly describe the verification process for ensuring a trajectory is guaranteed safe. A trajec-
tory is deemed to be guaranteed safe if there exists at least one evasive / emergency maneuver
that can be executed from the trajectory. An evasive maneuver is a trajectory that is safe for
an infinite time horizon. To satisfy this criteria, the evasive maneuver must completely come
to a stop inside known free space. It can also enter a periodic motion (such as a fixed loiter
pattern) inside the space. The known free space is constructed online as the sensor scans the
world. Hence, safety must be checked for online.

The trajectory executive module has a sub-module - the evasive maneuver library. The
library comprises of a diverse set of evasive maneuvers. The details for constructing such a set
is described in Arora et al. [2015]. If the library is queried with an input candidate trajectory, it
cycles through the maneuvers, and attempts to find a connection point to the main trajectory
such that the maneuver lies in known free space. It tries to find the connection point as far in
the future as possible.

The other submodule in the executive is the safety checker which is illustrated in Fig. 9.6.
The safety checker is tasked with the decision making aspect of the executive. It takes as input
a candidate trajectory from the trajectory planning module. It queries the library to find a
maneuver for the trajectory. If such a maneuver exists, the trajectory is deemed safe. The
maneuver is stitched to the trajectory and the new trajectory is sent to the controller. This is
to ensure that if the planning module were to suddenly terminate, the vehicle does not execute
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Figure 9.6: The executive ensures trajectories are guaranteed safe. (a) The motion planner sends a planned
trajectory to the executive (b) The safety checker queries an emergency maneuver library to ensure maneuvers
exist from the trajectory that lie entirely in known free space. The maneuver is attached to the trajectory and
the guaranteed safe trajectory is passed to the control system (c) Eventually the safety checker encounters a case
where the library is unable to find a maneuver for the trajectory (d) The safety checker tries to slow down the
vehicle until the library is successful. If not, the safety checker reverts to the previous guaranteed safe trajectory.

an unsafe motion.
If the library was unable to find a maneuver, the safety checker tries to slow down the

trajectory and re-query the library. Often, this is successful since slowing down the system allows
it to make sharper turns and find loiter patterns that are in known free space. In the event that
the candidate trajectory cannot be transformed to be guaranteed safe, the executive reverts to the
previous safe trajectory which should exist by construction. If the planner is unable to produce a
feasible trajectory on re-planning, the system eventually executes the evasive maneuver portion
of the trajectory.

9.7 Flight test summary

The primary application that we focused on was autonomous cargo delivery by a full scale
helicopter [Choudhury et al., 2014]. The goal of the project was to develop a complete autonomy
system that enabled the system to fly long missions from take-off to touchdown, avoid obstacles,
fly smoothly like a pilot and ensure safety at all times. The trajectory architecture evolved to
satisfy these diverse set of needs. We additionally validated this architecture on two other systems
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Full-scale helicopter Large hexarotor Small quadrotor
Flight hours > 700 hours > 6 hours > 6 hours

Top speed 60 m/s 10 m/s 5 m/s

Max distance flown 
in 1 mission > 48 km >1 km > 0.5 km

Sensing horizon  ≈1000 m ≈100 m ≈ 15 m
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Figure 9.7: Summary of evaluation of planning architecture on 3 distinct UAVs

- a large hexarotor, and a small quadrotor - to show the generalizability of the architecture and
planners. Fig. 9.7 provides a summary of the flight tests.

We now highlight results to shed a spotlight on the contribution of different elements of the
architecture.

9.7.1 Case study A: Obstacle avoidance in different environments

Fig. 9.8 shows a sample of the different kinds of environments the planning algorithm had to
operate in. Each of these scenarios favoured different expert planners, thus justifying the need
for an ensemble of planners.

Fig. 9.8(a) shows a scenario where the UAV had to fly between a no-fly-zone and a mountain.
This created a narrow gap which was solved by RRT*Tunnel1. Fig. 9.8(b) shows a scenario where
the helicopter has to fly around a tower with sufficient clearance. CHOMP1 is able to solve this
problem by smoothly optimizing the trajectory around the tower. Fig. 9.8(c) shows planning
in an urban environment. A*1 does well on this problem since long edges will generally be in
collision. Fig. 9.8(d) shows the UAV avoiding a power-line. This was solved by a precision planner
SingleDetour3, which samples points vertically around the wire to find a path.

9.7.2 Case study B: Scaling to long missions

Fig. 9.9 shows how the system can scale to a long mission. The shown mission is 48km long. There
were occasional no-fly-zones along the way invalidating the route. Because of the decoupling
scheme of our architecture, the system was able to solve the mission. The global route guide
reasoned about velocity profiles at different legs of the mission and computed a route guide. The
planners subsequently followed the route guide whilst avoiding any no fly zones that cropped
up. It is important to note that in absence of the decoupling, solving this mission in one shot
would have been computationally intractable.
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Figure 9.8: Obstacle avoidance in different environment (a) Mountains (b) Tower (c) Urban (d) Power-lines.

9.7.3 Case study C: Interaction between safety and planning

Fig. 9.10 shows how the system guarantees safety when the motion planner is unable to solve
the problem. Fig. 9.10 (a) shows the evasive maneuver library. Fig. 9.10 (b) shows the planned
trajectory by the motion planner (blue). The safety checker is able to find multiple evasive
maneuvers (orange). Moreover, it attaches an evasive maneuver at the end of the trajectory to
ensure its guaranteed safe. Fig. 9.10 (c) A popup no-fly-zone appears very near the vehicle. The
planner is unable to compute a path. As a result the system eventually executes the evasive
maneuver part of the current trajectory. (d) The evasive maneuver moves the system to a state



9.7. Flight test summary 193

Figure 9.9: Executing a mission 48 km long. The helicopter is also able to avoid obstacles along the way.

from where the planner can find a solution.

9.7.4 Case study D: Generalization across vehicles

Fig. 9.11 shows that the same planning library generalizes across the 3 UAVs on which we tested.
The things that changed from system to system are the following

1. The dynamics model and constraints vary

2. The clearance from obstacle vary

3. The route guide generation remains the same as it takes the constraints as input

4. In the expert planner architecture, the DPF changes from smaller vehicles to the helicopter.
However, the planner library specified in Appendix C.

5. The feature extraction changes from system to system

Hence we are able to make significant progress towards our goal of data-driven planning by
keeping the underlying software layer same, but training new meta-planners for different UAVs
/ applications.
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Figure 9.10: Guaranteed safe architecture in operation (a) Evasive maneuver library (b) The planner plans a
nominal trajectory which is checked to be safe (c) A no-fly-zone appears, and the safety system rejects the old
plan. System eventually executes the evasive maneuver (d) Planner recovers and nominal behaviour resumes.
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Figure 9.11: Generalization of the same planning software to multiple vehicles.
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Conclusion

This thesis argues for the proposition that a motion planning system for a mobile robot needs
to adapt to the distribution of problems the robot actually encounters to find good solutions
within a fixed time budget. The proposed approach builds upon a key observation that planners
can employ different search strategies that prioritize searching different regions of the solution
space to find such solutions quickly. However, the mapping from the configuration of obstacles in
the environment to the effectiveness of a search strategy is not known and can be quite complex.
Learning can play an important role here. This thesis presents a framework for learning such
mappings. We present results where the proposed framework not only outperforms baseline
non-adaptive systems on a wide range of planning datasets, but also enables UAVs to navigate
robustly for long durations across different problem instances.

We begin by summarizing the arguments, the algorithmic contributions and the findings in
Section 10.1. We present future avenues for research in Section 10.2 that build on the novel
connections and observations that this thesis makes.Finally, we offer some concluding remarks
in Section 10.3.

10.1 Summary and contributions

To address the problem of adaptive motion planning, this thesis proposes examining three prin-
ciple challenges. These challenges are arranged in order of increasing adaptivity. We propose a
collection of frameworks and algorithms to address each of these challenges. Finally, we also sum-
marize how the developed algorithms work in practice as part of an overall planning architecture
for UAVs. Fig. 10.1 shows how the developed algorithms can be unified in a framework.

10.1.1 Challenge 1: Designing effective planning modules

Challenge 1 considers the design of a motion planning system that meets performance require-
ments for a fixed distribution of planning problems known to a human engineer at design time.

195
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Figure 10.1: A unified framework for adaptive motion planning that uses all algorithms developed in this
thesis. We start with a planning problem database. This database can be used to train heuristic search policies
(Chapter 7). We can also train edge evaluation policies that operate on a roadmap (Chapter 8). We can train
both these policies on subsets of the planning problem database to get different planners. These trained planners
can be collected to form a library of expert planners. The human designer can also choose to populate the library
with hand-designed planners using techniques described in Chapter 4. We can now train a meta-planner that
maps context extracted from the problem to select from the library of planners using techniques described in
Chapter 5. Each planner in the ensemble computes a plan. A trajectory selector selects the best plan. If none of
the planners solves the problem, the selector queries a library of exception planner to solve the problem. Such a
library is created on the fly by querying an oracle for a solution everytime none of the selected planners or library
can solve the problem. This is done using techniques presented in Chapter 6.

In contrast to conventional motion planning research which analyzes the worst case complex-
ity of different planning strategies, this complementary line of inquiry seeks to understand the
inverse mapping from planning problems to suitable planning strategies.

In Chapter 3, we approached this problem by proposing a framework for assembling path
planning algorithms. We showed how we can design implicit graphs to contain edges in regions
where we expect a good solution to be found.

In Chapter 4, we employed such a framework to compile an expert planner for a distribution
of planning problems. We showed how one can end up with two complimentary planner designs
- a general purpose planner that performs reasonably on a lot of problems or a precision planner
that performs near-optimally on a small number of problems. We found it hard to design a single
threaded planning module on account of the unpredictability of the performance of precision
planners. This motivated us to hedge our bests and design an ensemble of expert planners. We
proposed a greedy planner design strategy to create an effective ensemble containing planners
from both classes.
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10.1.2 Challenge 2: Learning for black-box meta-planners

Challenge 2 considers the case when the distribution of planning problems can vary with different
missions. The human designer cannot redesign the planning system - the module must exhibit
some form of adaptation. To alleviate the burden on the learning component, we assume the
learner has access to a good library of planners. To generalize the framework, we assume each
of these planners are black-box atomic operations that map a problem to a solution. This
challenge requires learning a meta-planner that can select planners from this library to maximize
performance on the distribution of problems encountered.

In Chapter 5, we proposed a framework to train a meta-planner to select an ensemble from a
library of black-box planners. We proposed a lazy greedy algorithm that leverages trained priors
on planner performance to select a static ensemble for a distribution without evaluating every
planner. However, there are scenarios where a static ensemble does not suffice. For such settings,
we present a framework to greedily train a list of contextual predictors to select an ensemble.
We show that such a procedure not only has theoretical guarantees, but leads to an intuitive
procedure where each predictor focuses on solving failure cases of the preceding predictors.

In Chapter 6, we examine the online setting where we want a meta-planner to dynamically
construct a library of black-box planners created on-the-fly. Such planners are created when
an exception event occurs - an event where the motion planner fails to find a solution, the
robot comes to a stop and an offline oracle provides an exception planner to solve the problem.
We show that the problem of deciding which exception planner to retain is equivalent to the
problem of online paging. We adopt a popular algorithm from online paging, Least Recently
Used (LRU), to solve the problem. This framework can be used in conjunction with any motion
planning system to systematically minimize the number of failure events.

10.1.3 Challenge 3: Learning for white-box adaptive planners

The black-box paradigm is restrictive - no amount of intervention or adaptation is allowed once
a planner is selected. It is also computationally expensive - the meaningful context extracted
from the problem is not used during planning. Challenge 3 requires the design of a white-box
planner that adapts its search strategies as it gain information about the planning problem.

In Chapter 7, we addressed the problem of learning planning policies that map the sequence
of decisions and outcomes to decide the next action. We showed that such problems result in
large scale POMPDs. We propose a framework to efficiently train such policies via imitation
learning of clairvoyant oracles. These are oracles that at train time have full access to the world
and can play a good sequence of actions. We evaluate this approach on two domains - learning
policies for informative path planning and learning heuristic policies for search based planning.

In Chapter 8, we addressed the problem of learning policies for adaptively evaluating edges
on an expensive graph. Contrary to search heuristics, such policies have much more freedom
to actively gain information. We show how this problem is equivalent to the Bayesian active
learning paradigm of Decision Region Determination (DRD) where the goal is to select tests
(edges) that drive uncertainty into a single decision region (a valid path). We derived efficient
near-optimal algorithms, DiRECt and BiSECt to solve our problem under various setting.
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Finally, in Chapter 9 we describe the overall planning architecture. We present a novel
decomposition of a planning problem into low fiedlity route guide trajectory computation, mid
fidelity receding horizon trajectory planning and high fidelity safety planning. We present results
from 3 distinct UAV platforms where this architecture was evaluated.

10.2 Future directions

The intersection of statistical approaches and motion planning is rich with open problems. We
survey a few promising directions that not only investigate improving planning performance but
also more meta level questions such as when and how to plan.

10.2.1 Learning good roadmaps

We observed a common phenomenon while trying to learn a heuristic policy as well as a collision
checking policy - it is impossible to learn a “perfect” policy that only evaluates the optimal
path and nothing else. This is not surprising - both policies operate only on uncovered partial
information. Hence they do not have enough information about the world to identify the optimal
path at the very onset. However, we empirically observe that such policies eventually uncover
enough information to substantially prune the solution space and narrow down the solution to
one of several choices. This suggests that it is possible to probe the environment at the very
onset and extract enough information to compute a good roadmap. A good roadmap is one
that is very likely to contain the optimal (or bounded sub-optimal) solution while being very
sparse. If such a roadmap is found, any non-adaptive planning algorithm can be employed to
search the roadmap - the sparsity of the roadmap implies that in the worst case all edges can
be checked within the computation budget. This suggests the possibility of a clean division of
labour between planning and learning - the learning module proposes a roadmap which the
planning module searches.

A gateway to the problem is to formulate a criterion for a good roadmap. Consider the
following simple problem setting. We have a dense roadmap Gdense = (V, E). We also have a
database of planning problems Ω = Γ1, . . . ,Γn. Let J(G,Γi) be the cost of the optimal path in
any roadmap G when evaluated on problem Γi. We now wish to frame the problem as a roadmap
subset selection problem. We wish to find the sparsest roadmap G ⊆ Gdense that is a subset of
the dense roadmap such that it contains a (1 + ε) optimal path w.r.t to the dense roadmap.
The size of a roadmap |G| = |E| is the number of edges. This can be framed as the following set
selection problem

arg min
G⊆Gdense

|G|

J(G,Γi) ≤ (1 + ε)J(Gdense,Γi)
∀ i = 1, . . . , n

(10.1)

We can approach the problem in (10.1) by processing each problem Γi and producing Ξi -
the set of all (1+ε) paths for the problem. Now (10.1) is equivalent to selecting edges from Gdense
until at least one path from each path set Ξi is covered. While this is indeed a combinatorially
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(a) (b)

Start Goal Start Goal

Non-adaptive  
roadmap does  

not focus 
on likely paths

Adaptive  
roadmap is  

sparse but has 
likely paths

Figure 10.2: (a) A non-adaptive roadmap is agnostic to the problem instance. Hence it has to be very dense in
order to ensure completeness. In this case, despite being dense the roadmap does not have a path that is feasible.
(b) An adaptive roadmap that extracts a mild amount of context from the problem to focus edges in certain
regions. By coarsely sampling the workspace, it only contains paths passing through the gap and circumnavigating
obstacles. Note that it does not directly have to predict the optimal path. It has to simply identify a set of good
candidate paths.

hard problem, we can construct surrogate objective functions that incentivize selecting edges
that belong to a lot of these candidate paths (in the same manner as in Chapter 8). If such
objective functions can be shown to be submodular, greedy maximization is near-optimal.

The shortcoming of the formulation in (10.1) is that it tries to find a static roadmap that
covers all problems. There might not be a sparse enough roadmap that achieves this. However,
we can extract some context from the problem and use it to generate a roadmap. Fig. 10.2
illustrates the desired policy that maps extracted context to a roadmap. Note that it roughly
identifies a set of paths that are likely to contain a good solution. Actual identification of the
optimal path requires evaluation of the roadmap.

How can we learn such a policy? One approach is to design a policy to select edges from
a dense roadmap Gdense. At every iteration i, the policy can take as input the context around
an edge and output a {0, 1} decision on whether to accept that edge. It can optionally also
take as input its past decisions. The policy is invoked till a sufficient budget on roadmap size
is reached. Alternatively, one can also learn a generative model from context to roadmap in a
similar spirit to Ichter et al. [2017]. The roadmap learning problem might be easier since the
policy is not burdened with predicting the optimal path but a set of good paths. We also note
that such a policy must operate within some constraints. It can only extract a minimal amount of
context from the problem, otherwise, the roadmap generation effort would exceed the roadmap
evaluation effort.
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(a) (b) (c)

Samples on either flank Densify around first gap pair  Densify around second gap

Figure 10.3: Learning anytime planning via incremental densification. (a) Learner tries to find a feasible solution
initially. Hence samples are spread out on either flank of the obstacles. (b) Once an initial solution is found, the
sampler densifies around the first pair of gaps to improve the solution. (c) In the final stages, the sampler completely
focuses on the final gap to get the optimal solution.

10.2.2 Learning anytime policies in planning

Our formulation for learning heuristic or collision checking policies posed the problem as finding
a feasible path while incurring minimal search effort. What we observe in practice is that such
policies can find paths very quickly, thus having sufficient computational budget left over. We
would like such policies to use the remaining budget to continue to refine the solution quality.
Hence we consider the anytime planning paradigm.

Key to achieving anytime performance is the property of incremental densification [Choud-
hury et al., 2017h]. It is best understood in the context of sampling configurations. This property
is the ability of a sampler to begin by coarsely spreading out samples and with time concen-
trate these samples around the optimal solution. Janson et al. [2015a] showed that a class of
deterministic sampling schemes are endowed with this property. They examined the case where
samples were created by low dispersion deterministic sequence (for details refer to Section 3.3.1)
and showed that the length of the shortest path computed on a r−disk roadmap can be bounded
with respect to the optimal solution. An alternate approach to densification has been pursued
by Gammell et al. [2014]. They showed that a solution length at a given time step can be used
to restrict the volume of configuration space that can possibly improve solution cost. Sampling
within this volume increases the likelihood of finding a better path which in turns shrink the
volume.

Both of these approaches fail to reason about the distribution of obstacles in the world. Hence
they tend to waste samples by placing them in areas where no solution is likely to exist. This
is where learning can play an important role. We can learn a policy to sample in areas where a
better solution is likely to exist. Such a policy must learn a trade-off between the likelihood of
a path and the solution quality of a path. Fig. 10.3 illustrates the desired behaviour of such a
sampler.
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t t+1 t+2

Search  
region Planner A 

fails
Planner B 

fails
Planner C 
succeeds

Search  
region 
shifted

Search  
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shifted

Figure 10.4: Planning problems are correlated temporally. A meta-planner can exploit this correlation. At
time-step t, it invokes a planner that fails to find a solution. Hence at time-step t+1, it invokes a different planner
with a different search region. Failure at both these time-steps is used to select a planner with a different search
region at time-step t+ 2. This planner solves the problem.

A promising avenue of future work would be to build upon the formulation of pareto-optimal
planning by Choudhury et al. [2017g]. Given a dense roadmap Gdense, and a belief over the
configuration space, one can map every path ξ to two criteria - path length L(ξ) and collision
measure M(ξ). The pareto-optimal set is the set of paths that dominate in one criteria or the
other. Hence we would want to train a policy to map the belief over the configuration space to
a subgraph that contains members from this set. As the planner searches with this subgraph,
and updates its belief over the space, we would expect the policy to densify around potentially
optimal solutions.

An alternate, albeit equally promising avenue would be to pursue anytime prediction from
a purely learning perspective. Grubb and Bagnell [2012] formulates the problem of anytime
prediction - given a set of predictors, a computation cost for each predictor and a budget, select
a set of predictors such that their weighted sum minimizes risk. It would be interesting to import
this idea into a path planning setup. Each predictor probes the environment a certain amount
and predicts a path. We can define a loss function as the cost of the path. Hence an anytime
prediction would correspond to finding better and better paths as more context is extracted
from the problem.

10.2.3 Planners as feature extractors

We discussed in Chapter 5 about the accuracy versus complexity trade-off of in context extrac-
tion. This motivated the shift from black-box to white-box paradigm. However, there is another
paradigm to consider - using the performance of the planners as sources of information.

We now pay attention to the fact that the planning problem distribution is actually a data
stream of planning problems that a robot encounters as its moving in the environment as shown
in Fig. 10.4. If certain black-box planners were to perform poorly at a given decision step t, it
would provide valuable information in deciding what approaches to invoke at subsequent time
steps. An architecture for such a meta-planner was discussed in Definition 2.3 in Section 2.4.

Formally speaking, we have a library L of planners. At time step t, context ft is extracted
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(a) (b) (c)

Plan computed by  
clairvoyant oracle

Information gathering policy learns to  
scan the environment till plan matches oracle’s

Figure 10.5: Learning to gather enough information to plan correctly. (a) At train time, we have full access to
the world map. We can query a clairvoyant oracle to plan a path to the goal. (b) We then simulate the sensor
model and observe the planned path with partial information. We see the planned path varies vastly from the
one computed by the oracle. (c) The learner plans sensing actions till the plans match (at least in the sensing
horizon).

from the planning problem. This is then used by a policy π to predict an ensemble Et. We receive
as feedback a cost vector Jt. Now consider, the fact that we wish to include past performance
in the context. We can choose a window K of past data to consider. Then we get an appended
feature vector f̃ =

[
fTt Et Jt . . . Et−K Jt−K

]
. This appended context can be used to train

the list prediction as presented in Section 5.6. Since this is a richer policy class, we expect better
performance.

However, it is no longer the case that greedily minimizing loss is the correct approach. This is
because there maybe informative planners - planners that would help subsequent list predictors
to make better decisions. If these informative planners do not have low risk, they will not be
selected by the greedy method. The dynamic ensemble should balance exploitation - minimizing
current loss - with exploration - providing information to aid prediction at future time steps.

The above exploration-exploitation problem is complicated due to the presence of context
f and a complex policy class π. However, we have two insights that we can use to attack the
problem. Firstly, we have a good reference policy π that we can train to be purely exploitative.
We can do this iteratively by training a policy, use it to make predictions on the training dataset
and then use that data to update the appended feature vector f̃ and re-train. Our objective is
to perform at least as well as this policy. Methods such as ‘Learning to Search Better Than Your
Teacher’ [Chang et al., 2015] address similar problems of policy improvement given a reference
policy. Secondly, we have an ensemble where elements can be executed in parallel. Hence, one can
assign one element to do pure exploration while the remaining elements exploit. This luxury is
not available in the single prediction paradigm and might result in a simplified training process.

10.2.4 Active perception for planning

The trajectory planning architecture that we present in Chapter 9 belongs to a class of receding
horizon planning approach. For such approaches, the robot plans a path with the partial infor-
mation gathered so far, moves a fraction along the path, updates the world model and replans.
A common practice is to employ “optimism in the face of uncertainty”, i.e. to assume unknown
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regions of the world are actually valid.
This can have dangerous consequences. Consider the example shown in Fig. 10.5. By assum-

ing that unknown space is in fact free, the UAV risks planning paths that will inevitably lead
to collisions. However, we note that the UAV does not have to have complete knowledge of the
world. It simply needs enough knowledge to choose the same motions it would have chosen had
it know the world entirely.

Consider learning a information gathering policy π. The objective of this policy is to learn
enough information about the world so as to make sure that the receding horizon planning
system does not execute bad actions. An approach to training such policies will be to build
on ideas introduced in Chapter 7 on the imitation of clairvoyant oracles. During training, we
have access to the full world map and can invoke oracles to plan complete paths. We can then
train policies to plan minimal sensing actions enough information about the world such that the
receding horizon planner outputs a similar path (at least within the sensing range). Such policies
might be incentivized to optimally gather information to invalidate the currently planned path.

A related direction of future work would be to plan using multiple hypotheses (as suggested by
Dey [2015]) of the world generated from the partial information. The recent success of approaches
such as Generative Adversarial Networks [Radford et al., 2015] indicate that such models would
be made available from the perception community. If we were to plan using such models, for
every plausible world, we would have a different path. Our objective would be to then sense
enough locations such that we are left with consensus on one path being feasible. This problem
has the same structure as the Bayesian active learning framework presented in Chapter 8. Hence,
we can consider adopting those algorithms to compute active sensing policies.

10.2.5 Motion planners as powerful policy classes

Motion planning is not an end in itself. Almost always it is used to generate a policy that enables
a robot to acheive a task. The performance on this task is what we actually are concerned about.
Hence we set up the motion planning problem such that good planning performance implies good
task performance. Can we learn how to plan to achieve good task performance?

This question has been heavily examined in the context of inverse reinforcement learn-
ing [Ratliff et al., 2009b, Ziebart et al., 2008] where a cost function is learnt from demonstration.
However this assumes that we have access to demonstrated trajectories that we wish to emulate.
The setting of reinforcement planning as defined by Zucker and Bagnell [2012] is much closer
to what we aim for. In such a setting, a planner uses a cost function to generate a plan which
is tracked by a low level control policy. We want to learn a cost function that generates good
policies.

Viewing motion planners as a powerful policy class is indeed an attractive idea. Such policies
generalize well to new scenarios, have more interpretability and can demonstrate long term
intent. Zucker and Bagnell [2012] do make some assumptions such as the existence of a planner
that can optimally solve the problem. A promising research direction would be to relax such
assumptions. Perhaps a goal to aim for is to learn objectives that not only succeed on the task
but are easily amenable to optimization.
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10.3 Concluding remarks

We conclude this thesis with a discussion of frequently asked questions and lessons learned.

Q 1 (TLDR). “I have a robot that may or may not be a UAV. How should I apply this thesis?”

We try to briefly summarize the steps one should follow when deciding whether to adopt
some of the ideas presented in this thesis:

Step 1: We first need to figure out if the robot needs to invoke a motion planner. Does the robot
perform a task that requires it to plan motions? Is the objective function and constraint
set known? Does the robot have sufficient information at runtime to solve this planning
problem? If not, does it suffice for the robot to plan with partial information and re-plan
as it learns more about the world? If the answer to all these questions is yes, we have a
problem that requires a plan to be computed. Any module that computes a good plan has
a good performance on the original task. Hence from this step onwards, we shall only be
reasoning about the planning problem.

Step 2: We now need to figure out if a single planner suffices. Is there a real-time constraint? Is the
problem high dimensional (at least > 3)? Is it expensive to evaluate a candidate solution?
Are there multiple plausible planning strategies that can solve the problem? Does there
exist a single hand-engineered planner that performs reasonably well for all problems in
the problem space? If no, we need a design principle to construct an effective planning
module.

Step 3: We now need to figure out the problem distribution. Is there a high fidelity simulator
that can simulate the kind of problems the robot is expected to encounter? If not, is
it possible to manually collect datasets by operating the robot? Is the distribution of
planning problems varying, i.e. obstacle configuration, start goal combinations, constraint
or objective function? If no, then the planner does not need to be adaptive. We are in the
setting of Chapter 4 where we need to design an ensemble of expert planners. Else the
planner needs to be adaptive, and we proceed to the next step.

Step 4: We need an adaptive planning system. Can we create a library of planners for our problem?
Can we collect datasets and evaluate this library offline? Can we extract features from the
problem? If so, we have the capability to design a meta-planner that can select from a
library. We can start with a static ensemble and if that does not suffice proceed to a
dynamic ensemble. Refer to Chapter 5.

Step 5: When the robot fails at test time, can we ensure the robot executes a contingency? Can
we come up with a procedure to solve the failure problem (by possibly invoking a compu-
tationally expensive solver or requesting human assistance)? Can we store such solutions
and apply it should the robot encounter a similar situation? If so, deciding which solutions
to keep and which to discard is addressed in Chapter 6.
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Step 6: Finally, we investigate if we need better planning algorithms? Do we have a good implicit
graph/tree based method but are in need of search/expansion heuristics? Do we have a
roadmap but are unsure which edges to evaluate? If so, we should refer to Chapter 7 and
Chapter 8.

Q 2 (Dataset Construction). What are some considerations when creating a planning dataset?

A common practice when evaluating the efficacy of planning algorithms is to either design
a good canonical problem (e.g. a narrow passage) or select a compelling problem instance (e.g.
hard manipulation problem [Schulman et al., 2013]). However, this work differs in the sense that
we deal with a dataset of problems that represent a distribution that the robot encounters.

In the initial phases of our research, creating such datasets were problematic. While we
had single instances of problems we wanted to solve (e.g. planning in a Manhattan world),
we did not have a database of such problems. The most pragmatic option was to hand design
parametric distribution classes that could generate such worlds. A single random seed is sufficient
to represent such a world, hence reproducibility becomes easy. When we sampled a database of
problems, we encountered two types of problems. Firstly, there were many problems for which
no solution exists. Automatically detecting and pruning out such examples is tricky - a simple
solution was to run RRT-Connect for a given time-period until a solution was found. Secondly,
there were many problems that were trivial, i.e. the straight line solution from start to goal was
free. These too had to be pruned out.

When we had a sufficiently flexible simulator, it was possible to collect data from it. We load
a map from a database (it also suffices to have a single map), select start and goal locations (such
that they are not in collision) and compute a feasible plan offline assuming the map is known.
We then have the robot execute the path while incrementally sensing the map. We serialize the
planning problems by storing the current grid. When collecting data in this fashion, we found
that the robot does not encounter enough “hard” problems. This is because the offline computed
plan avoids obstacles from much earlier on and does not guide the robot into difficult situations.
A way to circumvent this issue is to come up with a “noisy agent” - the robot follows the plan
with ε probability otherwise executes random motions. This seemed to populate the database
with harder problems.

Q 3 (Averaging over Worlds). How do we deal with high variance in planner performance?

We observed that often the cost of a planner on a database has a high variance. This variance
persists even if we normalize the cost with problem-specific constants. Our solution was to
switch to using confidence intervals to report our results. These confidence intervals are based
on quantiles and do not make any assumptions about the underlying distribution.

The usual answer to high variance is that the data is insufficient. But based on visual inspec-
tion, we conjecture that the planner performance for such databases might be fundamentally
multi-modal. An important topic of future research is to lineate methods of comparing such
distributions. For example, if we are particularly risk-averse, we may consider comparing the
CVaR (Conditional Value at Risk) [Uryasev, 2000] of two planning algorithms.

Q 4 (Planning-as-Inference or Inference-as-Planning). Is there a clear division of roles?
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We were driven to the topic of adaptive motion planning based on a concrete need - we
wanted a motion planning module that had consistently good performance. We were initially
quite clear on the separation of labour between learning and planning - we had a library of good
planners and wanted a meta-planner to be able to select from it. As we switched to investigating
adaptation within a planning cycle, we realized the two were actually much closer. Once we began
viewing the planning operations as sequential decision making, we realized that there were much
richer problems than that of supervised learning. A planner is effectively doing inference - based
on the history of decisions and outcomes, it is choosing good decisions that will enable it to
find feasible/optimal paths quickly. This naturally leads to subproblems in active learning or
POMDPs.

Interestingly, this equivalence goes both ways. For certain inference problems in a structure
prediction setting, especially in continuous output space, planning algorithms can be quite useful.
If we can identify an objective function on the output space, a planner is very effective at being
able to systematically search over candidate outputs. Of course such problems are doubly hard
than adaptive motion planning - one has to simultaneously learn good objective functions as
well as pair them with good search strategies. Nevertheless, we expect some of the insights in
this thesis to carry over to these completely new problem settings.
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A
Planning Problem for UAVs

We present details on the planning problems for different UAV applications. The constraints for
the autonomous helicopter and for quadrotors vary slightly. We present a joint framework and
highlight these differences in a case by case basis.

A.1 Dynamics constraints

We now define the dynamics constraints Fdyn (σ) = 0 and Hdyn (σ) ≤ 0. Vehicles such as the
quadrotor and the hexarotor have a uniform set of dynamic constraints at all speeds. The full
scale helicopter has different constraints for low speed and high speed.

A.1.1 Low speed constraints

The system is modelled as a composition of single and double integrator systems. x(t), y(t), z(t)
are all independent double integrator models. ψ(t) is a single integrator

|ẋ(t)| ≤ vmax

|ẏ(t)| ≤ vmax

|ż(t)| ≤ vz,max

|ẍ(t)| ≤ amax

|ÿ(t)| ≤ amax

|z̈(t)| ≤ az,max

|...x (t)| ≤ jmax

|
...
y (t)| ≤ jmax

|...z (t)| ≤ jz,max∣∣∣ψ̇(t)
∣∣∣ ≤ ψ̇max

(A.1)
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A.1.2 High speed constraints

These set of constraints are applicable only for the full scale helicopter when the speed is above
a critical threshold,

∣∣∣∣∣∣ẋ(t) ẏ(t) ż(t)
∣∣∣∣∣∣

2
≥ vcrit. We model the system as a fixed wing model

moving in airframe. Let the airframe be A and groundframe be W. Let va(t) be the airspeed
trajectory. Let φa(t) be the airspeed roll trajectory. Let ψa(t) be the airspeed roll trajectory.

ψ̇a(t) = g tanφa(t)
va(t)

ẋa(t) = va(t) cosψa(t)
ẏa(t) = va(t) sinψa(t)


Dynamics in
Airframe (A.2)

ẋ(t) = ẋa(t) + vw cos (ψw − ψa)
ẏ(t) = ẏa(t) + vw sin (ψw − ψa)

ψ(t) = tan−1
(
ẏ(t)
ẋ(t)

)


Airframe to
Groundframe (A.3)

|va(t)| ≤ vmax

|v̇a(t)| ≤ amax

|v̈a(t)| ≤ jmax

|φa(t)| ≤ φmax∣∣∣φ̇a(t)∣∣∣ ≤ φ̇max∣∣∣φ̈a(t)∣∣∣ ≤ φ̈max

|z(t)| ≤ vz,max

|ż(t)| ≤ az,max

|z̈(t)| ≤ jz,max



Dynamics
Constraints

(A.4)

In addition to the dynamics constraints, there are some additional constraints that arise
from performance charts for a helicopter.

Height-velocity chart

Fig. A.1(a) illustrates the constraint. The constraint correponds to areas in the state space of
the system which are deemed unsafe - areas from where recovery is not possible in the event of
engine failure. It corresponds to a set of regions that the height about ground z(t) and airspeed
va(t) cannot enter.

Torque limits chart

Fig. A.1(b) shows the torque chart. The torque drawn from the motor depends on the airspeed
va(t) and the climbrate −ż(t). The total torque cannot exceed 100%. Hence for a given airspeed,
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Sample Cruise or Level Flight Problem
Determine torque setting for cruise or level flight using 
Figure 7-4. Use the following conditions:

Pressure Altitude............................................... 8,000 feet

Outside Air Temperature...................................... +15 °C

A. Indicated Airspeed........................................80 knots

B. Maximum Gross Weight................................5,000 lb

With this chart, first confirm that it is for a pressure altitude 
of 8,000 feet with an OAT of 15°. Begin on the left side 
at 80 knots indicated airspeed (point A) and move right to 
maximum gross weight of 5,000 lb (point B). From that point, 
proceed down to the torque reading for level flight, which 
is 74 percent torque (point C). This torque setting is used 
in the next problem to add or subtract cruise/descent torque 
percentage from cruise flight.

Sample Climb Problem
Determine climb/descent torque percentage using Figure 7-5. 
Use the following conditions:

A. Rate of Climb or Descent . . . . . . . . . . . . . . 500 fpm

B. Maximum Gross Weight  . . . . . . . . . . . . . . . 5,000                          lb

With this chart, first locate a 500 fpm rate of climb or descent 
(point A), and then move to the right to a maximum gross 
weight of 5,000 lb (point B). From that point, proceed down 
to the torque percentage, which is 15 percent torque (point C). 
For climb or descent, 15 percent torque should be added/
subtracted from the 74 percent torque needed for level flight.  
For example, if the numbers were to be used for a climb 
torque, the pilot would adjust torque settings to 89 percent 
for optimal climb performance.

Chapter Summary
This chapter discussed the factors affecting performance: 
density altitude, weight, and wind. Five sample problems 
were also given with performance charts to calculate 
different flight conditions and determine the performance 
of the helicopter. 
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Sample Cruise or Level Flight Problem
Determine torque setting for cruise or level flight using 
Figure 7-4. Use the following conditions:

Pressure Altitude............................................... 8,000 feet

Outside Air Temperature...................................... +15 °C

A. Indicated Airspeed........................................80 knots

B. Maximum Gross Weight................................5,000 lb

With this chart, first confirm that it is for a pressure altitude 
of 8,000 feet with an OAT of 15°. Begin on the left side 
at 80 knots indicated airspeed (point A) and move right to 
maximum gross weight of 5,000 lb (point B). From that point, 
proceed down to the torque reading for level flight, which 
is 74 percent torque (point C). This torque setting is used 
in the next problem to add or subtract cruise/descent torque 
percentage from cruise flight.

Sample Climb Problem
Determine climb/descent torque percentage using Figure 7-5. 
Use the following conditions:

A. Rate of Climb or Descent . . . . . . . . . . . . . . 500 fpm

B. Maximum Gross Weight  . . . . . . . . . . . . . . . 5,000                          lb

With this chart, first locate a 500 fpm rate of climb or descent 
(point A), and then move to the right to a maximum gross 
weight of 5,000 lb (point B). From that point, proceed down 
to the torque percentage, which is 15 percent torque (point C). 
For climb or descent, 15 percent torque should be added/
subtracted from the 74 percent torque needed for level flight.  
For example, if the numbers were to be used for a climb 
torque, the pilot would adjust torque settings to 89 percent 
for optimal climb performance.

Chapter Summary
This chapter discussed the factors affecting performance: 
density altitude, weight, and wind. Five sample problems 
were also given with performance charts to calculate 
different flight conditions and determine the performance 
of the helicopter. 
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Figure A.1: Dynamics constraints from performance charts of a helicopter. (a) The height-velocity chart (b)
The torque limits chart (c) The autorotation limits chart

the climbrate is limited and this dictates if the system can avoid obstacles by flying over them
or it has to fly around them.

Autorotation limits chart

Fig. A.1(c) shows the descent rate and airspeed combination that leads to autorotation - a
condition where the engine load is 0. This is undesirable. Hence this imposes a constraint on
va(t) and ż(t).

A.2 Route constraints

We now define the route constraints Froute (σ) = 0 and Hroute (σ) ≤ 0. We will now define
constraints imposed by the route specification. Let wpi ∈ R3 be a 3D waypoint. The route is a set
of n waypoints {wpi}

n
i=1. The waypoints define n−1 segments. Each segement is associated with

a flight corridor. The function corri(σ(t)) → {0, 1} is an indicator function to specify whether
a point in the trajectory lies inside a flight corridor. Each flight corridor is also associated with
a velocity limit vseg,i.

The constraints are as follows
n−1∑
i=0

corri(σ(t)) > 0

corri(σ(t))va(t) ≤ vseg,i ∀i ∈ {1, . . . , n− 1}
(A.5)

A.3 Safety constraints

We now describe the safety constraints σ(t) ∈ Σvalid. They are due to obstacles and no-fly-zones
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Algorithm 20: ttc (σ(t))
1 tmin ←∞;
2 for pobs ∈ Pobs do
3 p←

[
xσ(t) yσ(t) zσ(t)

]T ;
4 v←

[
ẋσ(t) ẏσ(t) żσ(t)

]T , vxy ←
[
v(1) v(2)

]T , vz ←
[
||vxy||2 v(3)

]T ;
5 d← (pobs − p), dxy ←

[
d(1) d(2)

]T , dz ←
[
||dxy||2 d(3)

]T ;
6 ∆xy ←

dT
xyvxy

||dxy||2||vxy||2
, ∆z ← dT

z vz
||dz||2||vz||2

;

7 tttc,obs ←

min

tttc,max,

(
||d||2
||v||2

)
︸ ︷︷ ︸

time

(
1 + ηxy

2 max (0,∆xy,max −∆xy)2
)

︸ ︷︷ ︸
inflation due to head-on collision

(
1 + ηz

2 max (0,∆z,max −∆z)2
)

︸ ︷︷ ︸
inflation due to vertical collision

;

8 if tttc,obs ≤ tmin then
9 tmin ← tttc,obs;

10 return tmin;

A.3.1 Obstacle constraints

The convention for specifying such constraints is usually that the trajectory must be clear of
obstacles by a certain distance. However, we use a different constraint formulation, time to
collision. This is a constraint that scale with velocity and also depends on the velocity vector
direction. It tries to model how far away in temporal space is an obstacle.

Lets talk about the representation offered to us by the perception system. The perception
system internally stores Pobs - the set of all occupied positions under its current belief. It offers
a function obs (p) = I (p ∈ Pobs) to say if a position is in an obstacle or not.

It also offers a distance function dobs (p) = min
pobs∈Pobs

||p− pobs||2 and pobs (p) =

arg min
pobs∈Pobs

||p− pobs||2
We now define a time to collision function ttc (σ(t)) in Algorithm 20. We enforce a constraint

where ttc (σ(t)) ≥ tcoll,min.

A.3.2 No Fly Zones

A No Fly Zone (NFZ) is a volume in airspace defined by the human operator where it is unsafe
for the UAV to enter. NFZs can be published at any point of time triggered by reasons such
as the presence of other aircrafts, threats to the UAV or local weather disturbances. Avoiding
an NFZ is a hard constraint. We do make the assumption that NFZs will be published in a
reasonable time frame such that the UAV can avoid it. We define an NFZ as a 2D polygon
with a lower and upper height. Each point along a trajectory is checked to see if it is inside this
volume.



B
Dynamics Projection Filter

The DPF [Choudhury and Scherer, 2015] accepts an infeasible trajectory (workspace trajetory)
as input, uses a controller to track this trajectory and the outputs the configuration trajectory
traced out by the system. To provide guarantees about the output, the first component required
is a control-Lyapunov function (CLF) that stabilizes around a feasible workspace trajectory.
Since the controller can observe all states, has a perfect model and is free from any disturbance,
approaches such as feedback linearization and backstepping can be applied [Jung and Tsiotras,
2008, Lapierre et al., 2007, Micaelli et al., 1993].

Let the workspace trajectory be ξ : [0, 1] → Rw. A control-Lyapunov stabilized trajectory
firstly requires the existence of a feedback control u = K(x, ξ, τ) where x ∈ Rd is the configu-
ration space coordinate of the robot, τ is the index of the workspace trajectory. It also requires
the definition of index dynamics τ̇ = Γ(x, ξ, τ). Careful selection of these functions can ensure
a function V (x, ξ, τ) to satisfy the Lyapunov criteria when ξ is dynamically feasible. If x ∈ Xξ

implies perfect tracking, the Lyapunov criteria is V (x, .) > 0, V̇ (x, .) < 0, ∀x ∈ X \ Xξ and
V (x, .) = 0,∀x ∈ Xξ (globally asymptotic stable version).

A further local exponential stability is also required, i.e,∣∣∣∣dV (., τ)
dτ

∣∣∣∣ > αV (., τ), α > 0, V (.) < Vmax.

where the rate of exponential stability α determines how fast convergence occurs. This property
will be used to guarantee decay properties of the CLF. We used the an extension of the controller
presented in Jung and Tsiotras [2008]

The output x(t) = DPF(ξ) is given by[
x(t)
τ(t)

]
=
[
x(0)

0

]
+

t∫
0

[
f(x(t),K(x(t), ξ, τ(t)))

Γ(x(t), ξ, τ(t))

]
dt (B.1)

In the scope of this work, we consider ξ to be approximated by a set of workspace samples
at equal discretization ∆τ : ξ ≈ (q1, q2, . . . , qn)T ∈ Rn×w, with q0 and qn+1 the fixed starting
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and ending points of the trajectory. This will facilitate concrete expressions on bounds that are
parameterization dependent. However, the method remains valid for other parameterizations,
such as splines.

Under the assumption that the linear segments between waypoints are dynamically feasible
(there exists u ∈ U which allows perfect tracking) , the Lyapunov function V (.) converges in
the straight line portion of ξ. However, at every waypoint it increases by ∆V > 0 because of
the angle change at the waypoint. The more jagged ξ is the more the cumulative effect of ∆V
will be. The maximum V (.) at anytime determines how much deviation x(.) has from ξ. We
first establish that under certain assumptions about V (.), a bounded Lyapunov value implies a
bounded intersegment deviation.

Theorem B.1 (Bounded Intersegment Deviation). Given a desired bound on the Lyapunov func-
tion V (x, ξ, τ) ≤ Vmax,∀x, τ ∈ DPF(ξ), the intersegment deviation is also bounded, i.e.(

1 + (qi − qi−1)T(qi − qi+1)
‖qi − qi−1‖ ‖qi − qi+1‖

)
≤ ρmax.



C
Library of Expert Planners for UAVs

We now provide details on the hand-designed library of expert planners used across all 3 plat-
forms - full scale helicopter, large hexarotor and small quadrotor. We organize these expert
planners into different classes. Each of these classes define a surrogate problem and a class of
planning algorithms that can efficiently solve problems in this class.

As discussed in Chapter 4, the parameters of the surrogate state space has to derived from
dynamic constraints of the UAV. For a full scale helicopter, limits on the roll angle and velocity
are used to choose the curvature constraint that a path planner must satisfy. For a quadrotor,
limits on the acceleration is used to choose the curvature limits.

C.1 Sampling-based approaches on a curvature constrained state space

Table C.1: Surrogate problem on curvature constrained state space

Space Start / Goal Objective Constraints

S = P ◦ SO(2)
ξ[0, 1] 7→ (x, y, z, ψ)

xs = (sx, sy, sz, sψ)
xg = (gx, gy, gz, gψ)

J̃ (ξ) =
∫ 1

0

∣∣∣∣∣∣ξ̇(τ)
∣∣∣∣∣∣ dτ F̃ : ψ = tan−1

(
ẏ
ẋ

)
H̃ : ẋÿ−ẏẍ

(ẋ2+ẏ2)3/2 ≤ κmax
ż√
ẋ2+ẏ2

≤ γmax

Ξ̃valid : nfz (x, y, z) = 0
ttc(x, y, z) ≥ tcoll,min

Table C.1 shows the surrogate problem. We now specify different sampling strategies which
can be used to create different expert planners as mentioned in Table C.2.

1. Uniform Let U(Vol) denote an uninform probability distribution over volume Vol. Let
Cuboid (pmin,pmax) be the volume of the cuboid denoting the valid workspace where pmin
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and pmax are the corners.

2. Workspace This sampling scheme is specific to the RRT* algorithm. The overview of this
sampling strategy is that a 3D workspace point (x, y, z) is sampled leaving the dimension
ψ as a free variable. Among the set of near neighbours, the best parent to this workspace
point is computed. The ψ value is then the resulting value by steering the parent towards
this configuration.

3. Tunnel

This sampling scheme is specific to the RRT* algorithm. This extends the Workspace
sampling strategy by sampling workspace points in a tunnel around a nominal 3D path
(usually the analytic Dubins path joining xs and xg). The tunnel radius is specified by
δtunn.

Table C.2: Library of expert sampling based planner for curvature constrained state space

Name Algorithm Sampler Parameters

RRT*Uniform1 RRT* Uniform Radius (γ) : 3.0
RRT*Workspace1 RRT* Workspace Radius (γ) : 3.0
RRT*Workspace2 RRT* Workspace Radius (γ) : 1.0
RRT*Tunnel1 RRT* Tunnel Radius (γ) : 3.0,Tunnel (δtunn) : 1

κmax
RRT*Tunnel2 RRT* Tunnel Radius (γ) = 3.0,Tunnel (δtunn) : 1

3κmax
BIT*1 BIT* Uniform Radius (γ) = 3.0,Batch : 300
BIT*2 BIT* Uniform Radius (γ) = 3.0,Batch : 500
RRTConnect1 RRTConnect Uniform
RRTConnect2 RRTConnect Tunnel Tunnel (δtunn) : 1

κmax
T-RRT1 T-RRT Uniform Temperature (T ) : 2.0,Frontier (ρ) : 0.1
T-RRT2 T-RRT Uniform Temperature (T ) : 10.0,Frontier (ρ) : 0.1
LBT-RRT1 LBT-RRT Uniform Approximation (ε) : 0.40
LBT-RRT2 LBT-RRT Uniform Approximation (ε) : 0.04
InformedRRT*1 Informed RRT* Uniform Radius (γ) : 3.0
STRIDE1 STRIDE Uniform
EST1 EST Uniform
EST2 EST Tunnel Tunnel (δtunn) : 1

κmax

C.2 Sampling-based approaches on a holonomic 3D state space

Table C.3 shows the surrogate problem. The heading ψ can be computed as ψ = tan−1
(
ẏ
ẋ

)
once

the path is computed. We now specify different expert planners in Table. C.4.
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Table C.3: Surrogate problem on 3D state space

Space Start / Goal Objective Constraints

S = P
ξ[0, 1] 7→ (x, y, z)

xs = (sx, sy, sz)
xg = (gx, gy, gz, )

J̃ (ξ) =
∫ 1

0

∣∣∣∣∣∣ξ̇(τ)
∣∣∣∣∣∣ dτ Ξ̃valid : nfz (x, y, z) = 0

ttc(x, y, z) ≥ tcoll,min

Table C.4: Library of expert sampling based planner for 3D holonomic state space

Name Algorithm Sampler Parameters

BIT*3 BIT* Uniform Radius (γ) = 3.0,Batch : 300
RRTConnect3 RRTConnect Uniform

Table C.5: Surrogate problem on space of smooth trajectories

Space Start / Goal Objective Constraints

S = P
ξ[0, 1] 7→ (x, y, z)

xs = (sx, sy, sz)
xg = (gx, gy, gz)

J̃ (ξ) =
∫ 1

0

(
λ
∣∣∣∣∣∣ξ̇(τ)

∣∣∣∣∣∣2
2

+
1
2 (ttcmax − ttc (ξ(τ)))2

∣∣∣∣∣∣ξ̇(τ)
∣∣∣∣∣∣) dτ

H̃ : ż√
ẋ2+ẏ2

≤ γmax

C.3 Trajectory Optimization Approaches on the Space of Smooth Trajectories

Table C.5 shows how a surrogate trajectory optimization problem can be created. We created two
such expert planners CHOMP1, which ignores the glidelsope constraint H̃ and CHOMP2 which solves
a constrained optimization problem. Both these planners use covariant gradient descent [Ratliff
et al., 2009a] to solve the optimization problem.

C.4 Discrete search on a graph of dynamically feasible motion primitives

Table C.6: Surrogate problem on a graph of dynamically feasible motion primitives

Space Start / Goal Objective Constraints

S : G = (V,E)
ξ = (e1, e2, . . . , el)

xs = ProjOnGraph(s,G)
xg = ProjOnGraph(g,G)

J̃ (ξ) =
l∑

i=1
|ei| F̃ : corr (ei) = 1

nfz (ei) = 0
H̃ : ttc (ei) ≥ tcoll,min

Table C.6 shows the surrogate problem. Since the planners are discrete search based, the
algorithms only deal with the graph. The resolution and primitives of the graph however encode
the dynamic constraints. We use two kinds of graphs, ones with primitives constant curvature
and others with primitives as straight lines. The former graph is also 4D while the latter is 3D.
For the latter, the heading ψ can be computed as ψ = tan−1

(
ẏ
ẋ

)
once the path is computed. We

now specify the different expert planners n Table. C.7. All of these planners employ weighted
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A* heuristic search.

Table C.7: Library of expert discrete search based planners

Name Space Primitives Heuristic

A*1 S = P ◦ SO(2) ±π
2 constant curvature arcs Dubins, Inflation: 1.0

A*2 S = P ◦ SO(2) ±π
4 constant curvature arcs Dubins, Inflation: 10.0

A*3 S = P straight line, 5m resolution Euclidean, Inflation: 1.0
A*4 S = P straight line, 1m resolution Euclidean, Inflation: 10.0

C.5 Hand-designed precision planners

Finally, this last group of planners are designed to overfit to certain planning problems. They
are created based on inspecting commonly occurring problems and designing custom sampling
strategies / brute force path enumeration strategies.

C.5.1 Sampling detour points

This class of planners use the curvature constrained state space defined in Table C.1. They also
use the RRT* algorithm to plan. However, they use a highly customized sampling strategy which
belongs to one of two categories:

1. SingleDetour: In this sampling strategy, we first find a violation point p. To find this, we
step through points along the line joining start to the goal till a point p is found to be
in collision with obstacles. We then create a surface perpendicular to the direction of the
line at this point p. The samples are constrained to lie on this surface. This is equivalent
to finding a “detour point”. Depending on the width of the surface (expressed as fraction
of 1

κmax
) we have two planners - SingleDetour1 (width: 1

κmax
) and SingleDetour2 (width:

1
3κmax

).

2. DoubleDetour: This is similar to SingleDetour except we find two violation points p1
and p2 - one from start to goal and one in the reverse direction. Hence two surfaces are
created to constrain sampling. We also create two such planners. DoubleDetour1 uses a
width: 1

κmax
and samples uniformly in heading space. DoubleDetour2 uses a width: 1

κmax
but uses Workspace sampling.

C.5.2 Fixed descent direction

In this method, we collect a set of problems which none of the planners in the library were
able to solve. We then solve such problems by running an RRT* method for a long time (100s).
The solutions of all these problems are collected. All these solutions are then discretized to 50
waypoints. They are then concatenated to create a matrix M with dimensions n × 50 where n
is the number of trajectories (one matrix for each dimension). We apply principle component



C.5. Hand-designed precision planners 219

analysis to extract a set of principle axis for this matrix. These directions represent motions along
with a trajectory has to descend to recover the paths. The five principle directions then give rise
to planners FixedDescent1, FixedDescent2, FixedDescent3, FixedDescent4, FixedDescent5.

C.5.3 Brute force path search

The final precision planner that we create is doing a brute force path search by perturbing the
path laterally to create a planner LatPrim1.





D
Feature Extraction for Black-box Planners

D.1 Features and learners used for experiments in Section 5.7

The feature vector f is representative of context extracted from a planning problem. Policies to
select an ensemble are defined on the space of contexts. Hence the context f must be able to
capture sufficient statistics to characterize the performance of planners. In this section, we will
define different context extractors used and the shortcomings of each such approach.

Coarse global bitmap Coarse global gradients Dense local gradients

Workspace sampled at coarse 
resolution 

Approximates global connectivity of 

Distance map sampled at coarse 
resolution 

More detailed global obstacle 

Distance map sampled densely around start 
goal line 

Encodes local convexity information
Figure D.1: Different feature extractors (a) Coarse bitmap created by sampling workspace at lattice points (b)
Coarse gradients obtained by sampling a distance field function at lattice points. (c) Dense gradients by sampling
points from a dense lattice focused about the straight line joining start and goal.

1. Bitmap: A workspace lattice is created at a fixed resolution, rotated and translated between
start and goal locations. At each location of the lattice, a check is performed to see if the
point is in collision or not. There exist two variants - coarse and dense. Coarse implies the
lattice has a lower resolution but covers a larger area. Dense implies a higher resolution
but the lattice is focuses in a volume around the straight line joining start and goal.

2. Gradients: While the bitmap only provided a binary signal, a distance field gradient pro-
vides more information. At every query point, the direction and distance to the nearest
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obstacle is obtained. This also has coarse and dense fidelities.

3. Graph: A connectivity graph can provide information about connectedness of space. This
is similar to the bitmap lattice except each edge is checked for collision. Hence this is more
expensive to compute.

4. Pyramid: The bitmap can be used as input to a spatial pyramid [Lazebnik et al., 2006].
This can serve as a multi-resolution source of bitmap information.

5. Histogram of Gradients (HOG): The gradients can be used as input to a histogram binning
technique [Dalal and Triggs, 2005].

Once projected to this feature space, a variety of options exist to train learners to classify /
regress to required metrics. Below are the models that we experimented with

1. Linear : This is the simplest model to train with convex optimization objective however
has a high bias in practice.

2. Random forest: Proposed by Breiman [2001], these are popular for their robustness despite
limited guarantees.

3. Intersection kernel: One can also resort to kernel methods. This kernel sum the element
wise minimum of two feature vectors.

4. Chisquare kernel: It normalizes the squared difference between two feature vectors by their
sum.

5. Graph kernel: A graph kernel [Vishwanathan et al., 2010] takes as input two adjacency
matrix and computes shortest paths on them and compares statistic. While this is the
slowest kernel function to compute, it is able to capture connectivity information.

Fig. D.2 shows a comparison of different feature representations with learning methods. The
task was to predict whether expert planners could solve a planning problem. The planners and
the dataset werer referred to in Section 5.7. We wish to highlight 3 combination of feature
extractions and learning methods that had sufficient performance while being diverse

1. Gradient features with kernel methods are powerful The combination of (HOG Coarse +
ChiSquare kernel) had the best accuracy among all combinations. Examination of this
combination revealed that HOG was able to effectively encode artifacts such as passages,
cul-de-sacs or walls - all of which dictate the effectiveness of a planning algorithm. In
particular, the gradient information was particularly useful in predicting presence of bad
local minima which affect the performance of trajectory optimization methods.

2. Bitmap features with random forests are easy to compute The attractiveness of the bitmap
approach is that it requires the existence of a IsValid() function. This is far more general
than requiring a gradient to the nearest invalid region. However, since this is an admittedly
less informative feature space, a more powerful model is required. Random forest are one
such example. Effectively - they are an ensemble of decision trees which use the bitmap
information to remember failure cases.
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Features Learner CHOMP RRT*-Tunnel RRT* RRT*-Obs
HOG Dense Linear 0.055 0.227 0.049 0.131
HOG Coarse Linear 0.100 0.171 0.057 0.178
Pyramid Dense Linear 0.203 0.411 0.149 0.278
Pyramid Coarse Linear 0.503 0.777 0.681 0.688
HOG Dense Random Forest 0.086 0.214 0.065 0.156
HOG Coarse Random Forest 0.072 0.171 0.060 0.151
Pyramid Dense Random Forest 0.089 0.232 0.066 0.153
Pyramid Coarse Random Forest 0.065 0.172 0.058 0.132
HOG Dense ChiSquare Kernel 0.063 0.228 0.053 0.130
HOG  Coarse ChiSquare Kernel 0.058 0.158 0.053 0.130
Pyramid Dense Intersection Kernel 0.108 0.230 0.053 0.130
Pyramid Coarse ChiSquare Kernel 0.088 0.243 0.100 0.245
Coarse Graph Graph Kernel 0.170 0.214 0.053 0.130

Figure D.2: Comparison of learners and feature extractors

3. Graph kernels effectively perform planning A surprising result is the effectiveness of graph
kernels methods. These methods first require computing a coarse connectivity graph on
the environment. These graphs are then fed to a kernel function. An example function is
the shortest path kernel - it computes the shortest path between all pairs of vertices and
then computes a similarity between the two graphs using the statistics of these paths (such
as length).

We found that even with a coarse adjacency graph, the accuracy was sufficiently high.
However, computing this kernel is expensive. Not only that, the kernel method is invoking
a planning algorithm itself. This observation motivates us to think along the lines of a
white-box planner where planning algorithms themselves contribute to creating a feature
vector.

D.2 Features and learners used for closed-loop evaluation in Section 5.8

For the closed loop evaluation, since problems were simpler than the experiments, we decided
to use a lower dimension context vector. We used a variant of the Bitmap feature extractor. We
first divided the workspace into stripes. A stripe is a volume that runs either longitudinally or
laterally. We divide the workspace into 7 longitudinal stripes and 5 lateral stripes. For each of
these stripes, we uniformly randomly sample points and evaluate if these points are in collision
or not. Hence we estimate the density of invalid space in each of these volumes. We then create
a volume around start and goal and estimate the density there. This adds 2 more dimensions.
We also add the normalized distance between start and goal as well as a unit vector. This gives
us a total of 16 dimensions. We use a random forest learner.
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