
Advanced Optimization Strategies for

Periodic Adsorption Processes

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Chemical Engineering

Sree Rama Raju Vetukuri

B.Tech., Chemical Engg., J.N.T.U Hyderabad

M.Tech., Chemical Engg., Indian Institute of Technology Madras

M.Ch.E., Chemical Engg., Carnegie Mellon University, Pittsburgh, PA

Carnegie Mellon University

Pittsburgh, PA

January, 2011

Acknowledgement

I feel very privileged to have worked with my advisor, Prof. Larry Biegler. I owe a great

debt of gratitude for his guidance, support and patience during the last four years. I

am always amazed at the depth and the breadth of his knowledge in a large variety of

technical areas and it was a pleasure to build on his extraordinary know-how in the areas

of dynamic simulation and optimization. I would also like to thank Prof. Andrea Walther

for her valuable comments and suggestions in the development of this work.

I would also like to thank the other members of my thesis committee: Prof. Ig-

nacio Grossmann, Prof. Nick Sahinidis and Prof. Shlomo Ta’asan for their valuable

advices, suggestions and time. The financial support from National Energy Technological

Laboratory (NETL) is gratefully acknowledged. I thank all the faculty and staff in the

Department of Chemical Engineering at CMU for making the four years memorable. In

addition, the presence of many visitors to the group during my time here have made it a

stimulating place, especially Euclides and Prof. Sachin Patwardhan.

I want to thank all my fellow graduate students and my friends for making grad life

enjoyable. Thanks to Ravi for being a nice room-mate (and for the delicious food); Anshul

for helping me with PSA optimization studies and for his company during lunch; Parag,

Shweta, Mohit and Ram for all the get-togethers and pot-lucks; Manav and Gaurav for

all the fun we had in the first year; Sekhar for his regular phone conversations; Jim for

ii

his constant help and for regular converations on optimization; Kexin for helping me with

the interior point code; and for all the other friends who have helped me in some way or

the other in this thesis.

This thesis would not have been possible without the unconditional love and support

from my parents, my aunt, my in-laws, my sister and my brother-in-law. I will be forever

indebted to each one of them for helping me become what I am today. Finally, thanks

to my wife Deepika. I will always think of the period I spent at CMU as the time where

I met the most special person in my life. Deepika’s love and patience during this project

have kept me going, especially during the most difficult times.

iii

Abstract

Periodic Adsorption Processes (PAPs) have gained increasing commercial importance as

an energy-efficient separation technique over the past two decades. Based on fluid-solid

interactions, these systems never reach steady state. Instead they operate at cyclic steady

state, where the bed conditions at the beginning of the cycle match with those at the end

of the cycle. Nevertheless, optimization of these processes remains particularly challeng-

ing, because cyclic operation leads to dense Jacobians, whose computation dominates

the overall cost of the optimization strategy. In order to efficiently handle these Ja-

cobians during optimization and reduce the computation time, this work presents new

composite step trust-region algorithms based on sequential quadratic programming and

interior point methods for the solution of minimization problems with both nonlinear

equality and inequality constraints. Instead of forming and factoring the dense constraint

Jacobian, these algorithms approximate the Jacobian of equality constraints with a spe-

cialized quasi-Newton method. Hence, they are well suited to solve optimization problems

related to PAPs. In addition to allowing inexactness of the Jacobian and its null-space

representation, the algorithm also provides exact second order information in the form

of Hessian-vector products to improve the convergence rate. The resulting approach

also combines automatic differentiation and more sophisticated integration algorithms to

evaluate the direct sensitivity and adjoint sensitivity equations. Numerical performance

iv

results on small scale PAP problems and CUTEr problems show significant reduction in

computation time.

Furthermore, we propose a systematic methodology to design PSA cycles using a

superstructure based approach. The superstructure is rich enough to predict a number

of different PSA operating steps, and their optimal sequence is obtained by solving an

optimal control problem. PSA is a potential technology for pre-combustion CO2 capture

because of low operating costs and high performance. We utilize the superstructure

approach to synthesize PSA cycles for this purpose which can separate both H2 and

CO2 at high purity and operate with a low power consumption of 86 kWh/tonne of CO2

captured.

v

Contents

Acknowledgement ii

Abstract iv

Contents vi

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Overview of PAPs . 2

1.2 Computational Challenges . 5

1.3 Research Problem Statement . 7

1.4 Thesis Outline . 8

2 Background for PAP Optimization 9

2.1 Optimization Problem . 10

2.2 Simultaneous Strategy . 12

2.3 Sequential Strategy . 13

2.4 Approaches for the Solution of NLP Problem 15

CONTENTS vi

CONTENTS

2.4.1 Byrd-Omojokun Algorithm . 20

2.5 Byrd-Omojokun Algorithm for Dense Jacobians 23

2.6 Concluding Remarks . 24

3 Sensitivity Equations for Gradient Evaluations 25

3.1 Requirements of Gradient based NLP Algorithms 26

3.2 Forward Sensitivity Equations . 27

3.3 First Order Adjoint Sensitivities . 28

3.4 Jacobian-vector and Hessian-vector Products 30

3.4.1 Jacobian-vector products, Av and AT w 30

3.4.2 Hessian-vector products, Bv . 32

3.5 Concluding Remarks . 34

4 SQP Trust-Region Algorithm

with Inexact Jacobians 35

4.1 Optimization Strategy . 36

4.1.1 Handling General Inequalities and Bounds 38

4.1.2 Solution Strategy . 40

4.2 Jacobian Approximation via TR1 Update 42

4.3 Equality Constrained Optimization . 43

4.3.1 The Normal Subproblem . 45

4.3.2 The Tangential Subproblem . 47

4.4 Treatment of Bounds . 51

4.5 Calculation of Lagrange multipliers . 53

4.6 Update of Penalty Parameter and TR Radius 54

CONTENTS vii

CONTENTS

4.7 Termination Criteria . 55

4.8 Overall Optimization Algorithm . 56

4.9 Implementation and Numerical Results . 57

4.9.1 Dynamic Optimization Problems 58

4.9.1.1 Case Study 1: SMB Process 59

4.9.1.2 Case Study 2: VSA Process 66

4.10 Concluding Remarks . 70

5 Interior Point Trust-Region Algorithm with

Inexact Jacobians 72

5.1 Introduction . 73

5.2 Notation and Assumptions . 75

5.3 A Jacobian-free Trust-Region Method . 80

5.3.1 The Normal Subproblem . 80

5.3.2 The Tangential Subproblem . 84

5.3.3 The Trust-Region Algorithm . 89

5.4 Well-posedness of Algorithm 5.3.3 . 91

5.5 Convergence Analysis . 93

5.6 Convergence of the Barrier Algorithm . 97

5.7 Numerical Results . 98

5.8 Concluding Remarks . 100

6 PSA Superstructure for

Pre-combustion CO2 Capture 102

6.1 Introduction . 103

CONTENTS viii

CONTENTS

6.2 PSA Superstructure . 105

6.3 Optimization Problem . 108

6.4 PSA model and Solution Strategies . 109

6.4.1 Model Equations . 109

6.4.2 Solution Methodology . 110

6.5 Case Studies . 114

6.5.1 Case I: Cycle synthesis to maximize CO2 recovery 115

6.5.2 Case II: Cycle synthesis to minimize power consumption 118

6.6 Concluding Remarks . 122

7 Conclusions and Future Work 124

7.1 Thesis Summary and Contributions . 125

7.2 Directions for Future Work . 127

Bibliography 130

CONTENTS ix

List of Tables

4.1 Optimization results for equality constrained SMB problem with orthogo-

nal null space: discrete derivatives . 62

4.2 Optimization results for equality constrained SMB problem with orthogo-

nal null space . 63

4.3 Optimization results for equality constrained SMB problem with coordinate

basis . 63

4.4 Optimization results for general constrained SMB problem with coordinate

basis . 65

4.5 Boundary conditions for the PSA cycle . 69

4.6 Optimization results for the VSA problem with coordinate basis 70

4.7 Optimization variables and objective at the solution of the VSA problem . 70

5.1 Optimization details for CUTEr problems 101

6.1 PSA Model Equations [3] . 111

6.2 Case I: Optimization results . 118

6.3 Case II: Optimization results . 122

LIST OF TABLES x

List of Figures

1.1 Adsorption and desorption steps . 3

1.2 Change in equilibrium loading with pressure (Tads < Tdes) 4

2.1 Schematic of the sequential approach to dynamic optimization 14

2.2 Sparsity plot of constraint Jacobian . 15

2.3 Example of inconsistent constraints . 17

2.4 Example of relaxed constraints becoming consistent 19

2.5 Byrd-Omojokun Composite Step . 21

4.1 Steihaug CG algorithm: Handling convex/non-convex QP 48

4.2 Computation of tangential step for exact and inexact null space represen-

tations . 50

4.3 SMB Process . 59

4.4 VSA Process . 66

4.5 O2 mole fraction profiles of the adsorption step at the solution 71

6.1 A 2-bed PSA Superstructure [3] . 106

6.2 Discretization of control variable . 113

6.3 Case I: Optimal control profiles . 116

LIST OF FIGURES xi

LIST OF FIGURES

6.4 Case I: Optimal configuration . 117

6.5 Case I: Gas-phase CO2 concentration profiles of CoB 117

6.6 Case I: Purity-recovery trade-off curve . 118

6.7 Case II: Optimal control profiles . 119

6.8 Case II: Optimal configuration . 120

6.9 Case II: Gas-phase CO2 concentration profiles of CoB 121

6.10 Case II: Purity-power consumption trade-off curve 123

LIST OF FIGURES xii

Chapter 1

Introduction

Synopsis

The main motivation of this thesis arises due to the optimization problems related to Pe-

riodic Adsorption Processes (PAPs). PAPs have gained increasing commercial acceptance

as an efficient separation technique for a wide range of applications. With increasing in-

dustrial applications, there is significant interest for an efficient modeling, simulation and

optimization strategy for PAPs. However, despite a vast growth in the practical applica-

tion of PAPs, the design and optimization of PAPs still largely remains computationally

challenging. This chapter gives an overview of PAPs and highlights the computational

challenges of the resulting optimization problems. The structure of the thesis is presented

in the final section of this chapter.

Chapter 1. Introduction 1

1.1 Overview of PAPs

1.1 Overview of PAPs

Periodic adsorption processes have recently been gaining increasing commercial accep-

tance as energy efficient alternatives to other gas separation techniques such as cryogenic

distillation. Much progress has already been achieved in improving their performance

with respect to both the process economics and the attainable recovery or purity of the

products [56].

These processes consist of vessels or beds packed with a solid sorbent. The adsorbent

is brought in contact with a multi-component feed mixture and the separation of the

components is based on the difference in the affinity towards the adsorbent particles.

The selectivity between the components to be separated in a PAP process is governed

by differences in either adsorption equilibrium or adsorption rates. Typical PAP process

involves two important steps [55] as shown in Figure 1.1: (1) adsorption, during which

the components with higher affinity towards the adsorbent gets adsorbed and the less

strongly adsorbed species passes through the adsorbed bed and is recovered as the raffinate

product. This step is stopped before the bed gets totally saturated; (2) desorption, during

which the strongly adsorbed species is removed as the extract product, thus regenerating

the adsorbent for reuse in the next cycle. Typical means of regenerating the adsorbent

(Figure 1.2) are:

1. Pressure Swing Adsorption (PSA) process: reducing the partial pressure of the

adsorbate in the gas phase.

2. Temperature Swing Adsorption (TSA) process: increasing the temperature in the

adsorbent.

3. Composition Swing Adsorption (CSA) process: alter the composition of the fluid

Chapter 1. Introduction 2

1.1 Overview of PAPs

phase so as to control the direction of adsorption.

Figure 1.1: Adsorption and desorption steps

All these processes are collectively known as periodic adsorption processes. Figure 1.2

shows the useful capacity of the adsorbent which is the difference in loading between

two points, corresponding to the adsorption and regeneration pressures. Besides the

adsorption and desorption steps, industrial PAPs operate with a wide variety of steps

and also with multiple beds in order to enhance the product purity or recovery and the

process performance with respect to the operating costs. Industrial applications of PAPs

include vacuum swing adsorption (VSA) to separate oxygen from air, pressure swing

adsorption (PSA) to separate hydrogen from hydrocarbons and simulated moving bed

chromatography (SMB) to separate enantiomers (e.g., glucose and fructose) in the liquid

phase.

Unlike most processes, e.g. distillation which operates at steady state conditions,

PAPs operate under periodic transient conditions with each bed repeatedly undergoing a

Chapter 1. Introduction 3

1.1 Overview of PAPs

Figure 1.2: Change in equilibrium loading with pressure (Tads < Tdes)

sequence of steps. Because of the periodic operation, these processes reach a cyclic steady

state (CSS), where the concentration profiles change dynamically and the profiles at the

beginning of each cycle match with those at the end of the cycle. PAPs are practically at

CSS for most of their useful operation. Consequently, it is the CSS that determines their

technical and economic performance.

The theoretical modeling of PAP systems has been extensively studied to gain a clear

understanding of this rather complex process. From the mathematical point of view,

periodic adsorption processes can be classified as distributed parameter systems in which

properties vary with respect to space dimensions as well as time. Such systems can be

described by partial differential equations expressing the physical laws of conservation

of mass, energy, and momentum. Additionally, these models may also involve algebraic

relations such as equilibrium isotherms and other relationships between variables, such

as equations of state and fluid property correlations. Thus, periodic adsorption processes

are overall characterized by mixed systems of partial differential and algebraic equations

Chapter 1. Introduction 4

1.2 Computational Challenges

(PDAEs) in space and time with varying initial and boundary conditions that define the

various steps in the process. An exhaustive summary of the bed models in literature

is given in Ruthven [56], Nikolic̀ et al. [49] and Kumar et al. [44]. These models differ

mainly in the form of the mass transfer rate, the form of the equilibrium isotherm, thermal

effects and pressure drop through the bed. These models offer a realistic representation of

industrial processes as well as a good compromise between accurate and efficient solutions

and can adequately account for all the factors that affect the process performance.

1.2 Computational Challenges

With increasing industrial applications, there is significant interest for an efficient model-

ing, simulation and optimization strategy for PAPs. Despite a vast growth in the practical

application of PAPs, the design and optimization of PAPs still largely remains an experi-

mental effort for several reasons [63]. Firstly, the computational effort required to solve the

stiff hyperbolic PDE systems with solution profiles represented by steep adsorption fronts

is usually quite expensive and hence time-consuming. Secondly, multi-adsorbent layers,

non-isothermal effects and stringent product specifications result in high non-linearities

and ill-conditioned matrices which lead to the failure of numerical solvers. Most impor-

tantly, the CSS operation yields dense constraint Jacobians, where the time required for

the computation of the Jacobian and its factorization dominates the overall optimization

process. As a result, the design and optimization of PAP systems presents a significant

computational challenge to current optimization methods [9].

Several studies in literature have attempted to optimize the PAP systems. Most

of them can be classified either as Black Box or Equation-Oriented approaches. In the

Black Box approach, for every experiment the optimizer selects a set of decision variables.

Chapter 1. Introduction 5

1.2 Computational Challenges

Based on these variables, the bed models are executed until the periodic operation (CSS)

is reached. At the end of the runs, the values of objective function and constraints are

returned to the optimizer. For instance, Webley [77] uses response surface methodology

for this task. The Black Box approach is robust and capable of dealing with very detailed

and complicated models. However, since it requires CSS convergence for every single set

of decision variables and hundreds of experiments are usually needed, it is extremely time

consuming.

On the other hand, Nilchan and Pantelides [50] implement an equation-based approach

using gPROMS [2]. The optimizer, CSS condition and bed equations are all put in the

same framework and the convergence task is borne by the nonlinear equation solver within

gPROMS. This approach is efficient for simple models. However, non-differentiable terms

and steep fronts from more complex bed equations can often lead to failure of the Newton

solver. This was also observed in [42].

In order to reduce the computational effort and improve the accuracy associated with

the temporal integration, Jiang et al. [38] proposed a simultaneous tailored approach for

PSA processes. This approach was shown to be more efficient, reliable and accurate for

PSA optimization. In this approach, an SQP solver [10] searches for both the optimal

operating parameters and concentration profiles simultaneously. Kawajiri et al. [41] and

Toumi et al. [68] applied this approach to SMB processes. However, this efficient approach

can still be time consuming for large scale systems because of the large set of sensitivity

equations that have to be integrated to form the constraint Jacobian. Both these works

report that more than 95% of the CPU time was spent by the integrator in forming and

factoring the dense constraint Jacobians. Hence, the efficient handling of the constraint

Jacobian is essential to evaluate a proposed design, to analyze a process for safety, for

Chapter 1. Introduction 6

1.3 Research Problem Statement

controllability and operability, debottlenecking and retrofitting existing units, and for

optimization of new design or existing installations, which is the main objective of this

thesis. In this thesis, we focus on developing new cost-efficient and robust optimization

methods that overcome the shortcomings of the above approaches.

1.3 Research Problem Statement

Although there have been many sophisticated optimization strategies that have been

developed and applied for design and operation of PAP systems, these methods have

limitations with respect to convergence, computation time and problem size. Even the

most efficient and reliable simultaneous tailored approach [38] for the optimization of

moderately sized PAP problems suffers from large computation times arising from the

direct sensitivity calculations required to form the constraint Jacobian.

In order to overcome these limitations, this thesis focuses on developing faster algo-

rithms that do not require explicit calculation of the Jacobian through sensitivity calcu-

lations. To avoid the bottleneck of sensitivity calculations adjoint approaches are consid-

ered and new robust optimization algorithms based on trust-region sequential quadratic

programming (SQP) and interior point methods are developed, implemented and tested

on PAP applications, which have been shown to be efficient and reliable with desirable

convergence properties.

This dissertation also focuses on developing a systematic framework to develop novel

PSA cycles for pre-combustion CO2 capture. We present an optimization-based frame-

work to generate optimal PSA cycles from a 2-bed PSA superstructure. Different PSA

operating steps are realized by varying the time-dependent control variables that define

the interconnections between the beds. An optimal sequence of operating steps is obtained

Chapter 1. Introduction 7

1.4 Thesis Outline

by solving an optimal control problem.

1.4 Thesis Outline

To address the challenges outlined in Section 1.2, this study develops novel optimization

algorithms for the solution of optimization problems with dense constraint Jacobians.

This thesis is divided into seven chapters:

Chapter 2 presents the general dynamic optimization problem formulation of PAPs.

The solution strategies for solving the optimization problem are described. Finally, an

overview of approaches for the solution of NLP problem is given.

Chapter 3 describes the cost-efficient and accurate sensitivity methods which have

been implemented in this thesis to compute the exact Jacobian-vector and Hessian-vector

products required by the NLP subproblem.

Chapter 4 proposes an inexact trust region SQP algorithm based on Byrd-Omojokun

approach. The performance of the algorithm is tested on equality and bound constrained

optimization problems for simulated moving bed and vacuum swing adsorption systems.

In Chapter 5, an inexact interior point trust-region algorithm is developed and an-

alyzed for the solution of minimization problems with nonlinear inequality constraints.

Numerical performance of the algorithm is evaluated on small numerical examples.

Chapter 6 introduces a novel two-bed PSA superstructure to determine optimal PSA

configurations for pre-combustion CO2 capture. Solution strategy to solve the PDAE-

constrained problem is then discussed. The superstructure approach is illustrated for two

different case studies of pre-combustion CO2 capture.

Chapter 7 summarizes the research and explores future directions for algorithmic im-

provement and PSA superstructure.

Chapter 1. Introduction 8

Chapter 2

Background for PAP Optimization

Synopsis

In this chapter we present the general dynamic optimization problem formulation of PAP

applications. Efficient solution procedures are required to solve these optimization prob-

lems which are often time-consuming and difficult to solve. Two commonly used method-

ologies, namely, the simultaneous and sequential methods are discussed and compared.

Furthermore, an overview of approaches for the solution of nonlinear programming prob-

lem is given.

Chapter 2. Background for PAP Optimization 9

2.1 Optimization Problem

2.1 Optimization Problem

The general PDE constrained optimization problem of PAPs can be expressed as,

min
y,p

f(z(x̃, tf), p) (2.1a)

s.t. F (
∂z(x̃, t)

∂t
,
∂z(x̃, t)

∂x̃
, z(x̃, t), t, p) = 0 t ∈ (t0, tf] (2.1b)

z(x̃, t0) = y(x̃) (2.1c)

z(x̃0, t) = yB(t) (2.1d)

w(z(x̃, tf), p)) ≤ 0 (2.1e)

css(y(x̃), p) ≡ y(x̃) − z(tf , x̃, p) = 0 (2.1f)

ymin ≤ y(x̃), pL ≤ p ≤ pU (2.1g)

Here, F (.) is an implicit partial differential equation model with initial and boundary

conditions given by (2.1c) and (2.1d) respectively; z(t) are the state variables, that include

concentration, loading, temperature etc.; y are the initial conditions for the differential

state variables, z(t). These initial conditions are decision variables in the optimization

problem along with the design variables, p ∈ R
np , that include flow rates, valve constants,

bed dimensions, step times etc.; the vector w corresponds to the design constraints that

can include purity or pressure specifications; css are the CSS conditions which enforce

that the bed conditions at the beginning of the cycle match with those at the end of

the cycle, tf ; f is the objective function which can be minimizing power consumption

or maximizing recovery/profit etc. Typical applications of optimization are cycle design,

parameter estimation of adsorbent properties, optimization of operating conditions and

online optimization.

Chapter 2. Background for PAP Optimization 10

2.1 Optimization Problem

The partial differential equations (2.1) in the above optimization problem can be easily

transformed into a set of differential equations by discretizing in the spatial domain(s) us-

ing method of lines [58]. The discretization schemes can vary from simple finite difference

methods (e.g., backward or central difference) to more accurate finite volume methods

with flux limiter schemes [46]. The latter scheme is used especially in PSA optimization

studies [38] in order to capture the steep adsorption fronts by avoiding numerical smearing

and physically unrealistic oscillations. Using the method of lines, the equations in (2.1)

are discretized and the following optimization problem is formulated:

min
y,p

f(zi, tf), p) (2.2a)

s.t. F (zi(t), dzi/dt, p, t) = 0 (2.2b)

zi(t0) = y (2.2c)

zi(t) = yB(t) (2.2d)

w(zi(tf), p) ≤ 0 (2.2e)

css(y, p) ≡ y − zi(tf , p) = 0 (2.2f)

ymin ≤ y, pL ≤ p ≤ pU (2.2g)

where the subscript i indicates the discretized spatial node. The above discretized op-

timization problem (2.2) is a dynamic optimization problem with nz differential state

variables. It is important to note that initial conditions y are also optimization variables

in the above problem, therefore, the optimization problem is at least of size nz variables.

Since PAPs work with multi-component feed mixtures and multiple beds, the resulting

optimization problems can be large-scale problems of size O(102 − 105).

There have been many techniques proposed to solve dynamic optimization problems.

Chapter 2. Background for PAP Optimization 11

2.2 Simultaneous Strategy

In indirect approaches, the necessary condition of optimality, which is given as a set of

algebraic differential equations, is solved [12]. However, treatment of boundary conditions

and finding the switching of control variables to handle inequality constraints can be very

difficult for large scale problems.

On the other hand, in direct approaches, a nonlinear programming (NLP) solver is

applied to the problem directly. In the next section, two techniques of direct approaches,

namely, simultaneous and sequential strategies, are discussed.

2.2 Simultaneous Strategy

The direct simultaneous approach is also referred to as the Direct Transcription approach

[8], the complete discretization approach, or the all-at-once approach. Direct transcrip-

tion of a dynamic optimization problem refers to the procedure of approximating the

infinite dimensional problem by a finite dimensional one, which is then solved using a

Nonlinear Programming (NLP) solver tailored to large scale problems [8]. In a dynamic

optimization problem with differential equations, this approach typically approximates

the equations using an appropriate discretization using, for example, an implicit Runge-

Kutta method with high order accuracy and stability properties [40]. These methods

directly couple the solution of the DAE system with the optimization problem; the DAE

system is solved only once, at the optimal point, and therefore can avoid intermediate

solutions that may not exist or may require excessive computational effort. This approach

generates many equality constraints containing the discretized state equation with almost

block-diagonal Jacobian matrix, exploited by sparse linear algebra packages. In PSA op-

timization studies, Agarwal et al. [3, 4] applied simultaneous approaches to small-scale

PAP applications. However, these problems have steep moving fronts and large differences

Chapter 2. Background for PAP Optimization 12

2.3 Sequential Strategy

in timescales, which require too many finite elements resulting in a very large optimization

problem and thus may make the simultaneous approach intractable with current methods

for optimization of PAP applications.

2.3 Sequential Strategy

In order to overcome the drawbacks of simultaneous approach, in this thesis we use the

sequential strategy to solve dynamic optimization problems of PAP applications. In the

sequential strategy (also known as control vector parameterization) [70], (2.2) is solved by

decomposing it into three components as seen in Figure 2.1: (a) an Initial Value Problem

(IVP) which requires numerical solution of the discretized dynamic model to evaluate the

state profiles as well as objective and constraint functions from a given set of inputs y

and p, (b) a sensitivity component which evaluates first and second order derivatives for

the constraint and objective function, and (c) an NLP solver, which accepts function and

derivative information from the first two components and updates the values of the input

variables y and p. In a gradient based approach, function and derivative evaluations are

obtained by combined solution of the IVP and related sensitivity components. In this

way, the sequential approach decouples the solution of the optimization problem from

solution of the embedded dynamic system, thus exploiting full advantage of state-of-the-

art integration and NLP tools. Because of this decoupling, the resulting NLP problem is

relatively smaller in size in terms of the optimization variables, y and p compared to the

simultaneous approach. Moreover, each iteration is a feasible solution to the differential

equations, hence functions are more likely to be well behaved. Furthermore, the stiffness

of the differential equations is taken care of by the integrator, and no longer implies ill-

conditioning in the resulting NLPs, which is quite important in the optimization of PAP

Chapter 2. Background for PAP Optimization 13

2.3 Sequential Strategy

systems.

Figure 2.1: Schematic of the sequential approach to dynamic optimization

Gradients of the objective function with respect to the optimization variables are

calculated either from direct sensitivity equations of the DAE system or by integration

of the adjoint equations. Several efficient codes have been developed for both sensitivity

methods [47]. However, the main bottleneck to using this approach for optimization

of PAPs is the evaluation of direct sensitivities to obtain the dense constraint Jacobian

and Hessian required by the NLP subproblem. For example, the evaluation of an exact

Jacobian given by

A =
[

Inz
−

∂z(tf)

∂y

... −
∂z(tf)

∂p

]

(2.3)

requires integration of O(nz(nz +np)) sensitivities. Furthermore since the PAP differential

equations are highly nonlinear, sensitivities with respect to the initial conditions of DAEs

are mostly non-zeros. As a result, the integration of large set of sensitivity equations result

in dense constraint Jacobians. The sparsity plot of constraint Jacobian for a simple PSA

cycle is shown in Figure 2.2 where the red dots correspond to the non-zeroes. Moreover for

accurate Hessian information that leads to rapidly converging iterative procedures [28],

O(nz(nz + np)
2) sensitivity equations have to be solved. Hence, the computational cost

Chapter 2. Background for PAP Optimization 14

2.4 Approaches for the Solution of NLP Problem

Figure 2.2: Sparsity plot of constraint Jacobian

per NLP iteration is very high [71].

Instead, for this work we consider a novel nonlinear programming algorithm for the

sequential approach which overcomes the drawback of large computational times for Jaco-

bian and Hessian evaluations. Here, the NLP algorithm works with exact Jacobian-vector

and Hessian-vector products rather than forming and factorizing the dense Jacobian and

Hessian matrices at every NLP iteration. These matrix-vector products can be evaluated

accurately and efficiently by exploiting the direct/adjoint sensitivity equations and Au-

tomatic Differentiation. The derivation and formulation of these sensitivity systems to

evaluate the matrix-vector products is explained in detail in Chapter 3.

2.4 Approaches for the Solution of NLP Problem

A general form of NLP can be described as

min
x

f(x)

s.t. c(x) = 0 (2.4)

xL ≤ x ≤ xU

Chapter 2. Background for PAP Optimization 15

2.4 Approaches for the Solution of NLP Problem

where the objective function f : R
n → R and the nonlinear equality constraints c : R

n →

R
m with m ≤ n are assumed to be sufficiently smooth and at least twice differentiable

functions in x. Problems with general inequality constraints “d(x) ≤ 0” can be reformu-

lated in the above form by introducing slack variables.

In PAP optimization problems, the degrees of freedom, (n−m) are often fewer than the

total number of variables, n. For such problems with few degrees of freedom, specialized

reduced Hessian SQP methods have been developed. These methods are often general

purpose and often approximate second-order information by quasi-Newton positive defi-

nite matrices [10, 17]. These methods rely upon line-searches for global convergence. For

difficult NLPs, though, these algorithms are inadequate in that they suffer from line-search

failures, converge to saddle points, or have slow progress towards a local solution. Trust-

region methods [23] have been derived to overcome these drawbacks. This dissertation

focuses on NLP algorithms based on trust region methods, because of several attrac-

tive properties: they control the quality of steps even in the presence of ill-conditioned

Hessians and Jacobians, and do not require that the reduced Hessian matrix be positive

definite.

For the sake of explanation, we consider equality constrained optimization problems,

i.e. we ignore bounds in (2.4). Trust region based successive quadratic programming

(SQP) algorithms repeatedly solve the following quadratic program for the kth iteration

min
d

∇xf(xk)
⊤d + 1

2
d⊤B(xk)d (2.5a)

s.t. c(xk) + A(xk)d = 0 (2.5b)

||d|| ≤ ∆k (2.5c)

Chapter 2. Background for PAP Optimization 16

2.4 Approaches for the Solution of NLP Problem

to compute a new step dk for a given iterate xk, trust region radius ∆k and Lagrange

multipliers, λk. Here d ∈ R
n; the exact matrix of the dense constraint gradients at xk is

given by,

A(xk) = (∇c1(xk), ...,∇cm(xk))
T ∈ R

m×n

and B(xk) is the exact Hessian of the Lagrange function defined by

L(x, λ) = f(x) + λT c(x) (2.6)

Notice that if xk is far from satisfying one or more of the linearized constraints in (2.5)

and ∆k is small, then the set of constraints may be inconsistent; i.e., there may be no

feasible points in the subproblems. This is illustrated in Figure 2.3, a problem in two

dimensions and one linear constraint. Clearly, there is no step from xk that stays within

the spherical trust region constraint and satisfies the linear constraint.

Figure 2.3: Example of inconsistent constraints

Many different ways have been proposed for applying a trust region constraint in

a manner that does not generate inconsistent subproblems. Fletcher [27] proposed to

Chapter 2. Background for PAP Optimization 17

2.4 Approaches for the Solution of NLP Problem

put the linearized equality constraints (2.5b) into the objective (2.5a) in the form of a

penalty term, leaving only the trust region constraint (2.5c), thus replacing (2.5) with the

subproblem

min
d

νk(∇xf(xk)
⊤d + 1

2
d⊤B(xk)d) + ‖c(xk) + A(xk)d‖1

||d||∞ ≤ ∆k

The l∞ norm has the advantage of easily incorporating inequality bound constraints into

the subproblem, but the disadvantage of making the exact solution of the subproblem

combinatorial. Also, the l1 term is not continuous at points of feasibility, so that the

solution of the subproblem requires reformulation or nonsmooth optimization techniques.

Conn, Gould and Toint [21] follow the same approach but instead use the augmented

Lagrangian function, solving the subproblems of the form

min
x

f(x) + λ̂T c(x) + 1
2µk

c(x)T c(x)

||x− xk||∞ ≤ ∆k

The objective function is now smooth and can be minimized by standard optimization

techniques. However, the trust region constraint still has the combinatorial l∞ norm and

hence not suitable for large problems. The commercial software product LANCELOT

[22] is a successful implementation of this approach.

The other general approach for overcoming inconsistency is to relax the linearized

equality constraints when necessary to allow feasible subproblem solutions. This idea is

illustrated in Figure 2.4 for the simple problem considered in Figure 2.3. If an appropriate

vector πk is chosen for this problem and the linear equality constraint is changed to

Chapter 2. Background for PAP Optimization 18

2.4 Approaches for the Solution of NLP Problem

Figure 2.4: Example of relaxed constraints becoming consistent

A(xk)d + ck = πk (shown as the dashed line), then the relaxed constraint falls inside the

trust region constraint. Thus, the new subproblem

min
d

∇xf(xk)
⊤d + 1

2
d⊤B(xk)d (2.8a)

s.t. c(xk) + A(xk)d = πk (2.8b)

||d||2 ≤ ∆k (2.8c)

admits solutions d that lie on the relaxed constraint (2.8b). Both Vardi [69] and Byrd,

Schnabel and Schultz [14] proposed subproblem formulation (2.8), and both selected πk =

−αkck for some αk ∈ [0, 1). Byrd, Schnabel and Schultz [14] solve (2.8) by decomposing

the step d into two parts that can be solved separately. They write d = αknk + Z(xk)pZ ,

where nk = −A(xk)
T (A(xk)A(xk)

T)−1ck and u solves the reduced subproblem

min
pZ∈Rn−m

(∇xf(xk) + αkB(xk)nk)
⊤Z(xk)pZ + 1

2
p⊤ZZ(xk)

T B(xk)Z(xk)pZ (2.9a)

||Z(xk)pZ ||2 ≤
√

∆2
k − αk‖nk‖2 (2.9b)

Chapter 2. Background for PAP Optimization 19

2.4 Approaches for the Solution of NLP Problem

which results from substitution of the formula for d into (2.8). Zk is null space matrix such

that A(xk)Z(xk) = 0. The main difficulty of this algorithm is choosing αk intelligently.

The choice of αk strongly influences algorithm performance because it determines the

relative sizes of ‖nk‖ and ‖ZkpZ‖, and hence controls whether d tends more to satisfy

constraint feasibility or to minimize the objective function.

2.4.1 Byrd-Omojokun Algorithm

The formulation of Byrd and Omojokun [52] is used to make the constraints (2.5) con-

sistent. They first compute a step n that satisfies a certain relaxation of the linearized

equality constraints defined by the subproblem

min
n∈Rn

‖ c(xk) + A(xk)n ‖2, s.t. ‖ n ‖2≤ ζ∆k (2.10)

where ζ ∈ (0, 1). Problem (2.10) is called the normal subproblem, and its solution nk is

called the normal step at xk. Now the original subproblem (2.5) is reformulated as

min
d

∇xf(xk)
⊤d + 1

2
d⊤B(xk)d (2.11a)

s.t. A(xk)d = A(xk)nk (2.11b)

||d||2 ≤ ∆k (2.11c)

The new formulation is obviously consistent because the choice d = nk satisfies both

the constraints (2.11b)-(2.11c). An interesting feature of this formulation is that when

m = n, i.e., when the problem reduces to that of finding the root of a system of nonlin-

ear equations, then only the normal subproblem remains, and now the Byrd-Omojokun

method coincides with the well-known Levenberg-Marquardt method. The normal step

Chapter 2. Background for PAP Optimization 20

2.4 Approaches for the Solution of NLP Problem

Figure 2.5: Byrd-Omojokun Composite Step

n is restricted to lie in the range space of A(xk)
T , and the other part of d is confined to

the null space spanned by the matrix Z(xk); thus d = n + Z(xk)pZ . Substituting d into

(2.11), results in

min
pZ∈Rn−m

(∇xf(xk) + Bknk)
⊤Z(xk)pZ + 1

2
p⊤ZZ(xk)

T B(xk)Z(xk)pZ (2.12a)

||Z(xk)pZ||2 ≤
√

∆2
k − ‖nk‖2 (2.12b)

This is called the tangential subproblem, and the component Z(xk)pZ found from it is

called the tangential step at xk. Figure 2.5 illustrates the normal and tangential steps for

a simple problem with two unknowns and one nonlinear equality constraint. The dashed

elliptical lines represent level curves of the objective f(x) with the minimum in the lower

right part of the picture. The solid line is the equality constraint, and the broken circle is

Chapter 2. Background for PAP Optimization 21

2.4 Approaches for the Solution of NLP Problem

the trust region constraint. The null manifold is shown as a dotted line through the point

xk, and the normal step runs perpendicular to it. This same manifold translated to the

point xk + nk defines the possible set of tangential steps, as shown by the lower dotted

line. The final step d in this case reaches all the way to the trust region constraint.

The NLP algorithms developed in this thesis are based on the efficient Byrd-Omojokun

method because it breaks the original equality constrained problem (2.5) into two smaller,

simpler subproblems, each with a single trust region constraint, and because its per-

formance does not hinge on extraneous algorithm parameters. The outline of Byrd-

Omojokun algorithm is given below

Algorithm 2.4.1. General Description of Byrd-Omojokun Algorithm

Constant ǫ > 0

Initialization: Choose any x0 and ∆0

LOOP, starting with k = 0

1. Compute ck, ∇fk and A(xk)

2. Compute Lagrange multipliers λk

3. IF ‖∇fk − A(xk)λk‖∞ < ǫ AND ‖ck‖∞ < ǫ THEN STOP

4. Solve the normal problem (2.10) for nk

5. Compute Z(xk) such that A(xk)Z(xk) = 0

6. Compute Hessian, B(xk) or an approximation to it

7. Solve the tangential subproblem (2.12) for pZ(xk)

8. Compute the overall step, dk = nk + Z(xk)pZ(xk)

Chapter 2. Background for PAP Optimization 22

2.5 Byrd-Omojokun Algorithm for Dense Jacobians

9. Update trust-region radius

10. CONTINUE, after incrementing k

Implementations of the Byrd-Omojokun approach for equality constrained NLPs are

described in [45] and reviewed extensively in [23] and [51]. Moreover, [5, 19, 16] uses a

related approach that deals with handling inequality constraints and/or bounds.

2.5 Byrd-Omojokun Algorithm for Dense Jacobians

In this dissertation we show how the Byrd-Omojokun algorithm is tailored to handle

dense constraint Jacobians. As mentioned in the previous section, the normal subproblem

requires the solution of a linear solution of the form

A(xk)A(xk)
T v = b

where A(x) is exact matrix of constraint gradient at x. Furthermore, a representation

Z(x) of null space of A(x) is needed frequently for the computation of the next step. For

these reasons, the explicit forming and factoring of the constraint Jacobian A(x) provides

an efficient step calculation if A(x) is sparse and well structured, see, e.g.,[5]. However,

this approach may result in very time-consuming computations, especially if the Jaco-

bian of the constraints is dense or unstructured, for example, in the case of optimization

problems related to PAP applications. In such problems, the run-time needed for opti-

mization process is dominated significantly by the computation of the dense Jacobian and

its factorization. In order to circumvent these dense calculations, we present in this the-

sis a specialized Byrd-Omojokun trust-region algorithm that does not require the exact

evaluation of the constraint Jacobian.

Chapter 2. Background for PAP Optimization 23

2.6 Concluding Remarks

2.6 Concluding Remarks

A general dynamic optimization problem of periodic adsorption processes is presented.

Both the simultaneous and sequential approaches are briefly described. It is shown that

sequential approach is preferred over simultaneous approach for the optimization of PAPs.

However, the main bottleneck to using this approach is the evaluation of direct sensitivities

to obtain the dense constraint Jacobian and Hessian required by the NLP subproblem.

This issue is addressed in the next chapter which describes the computation of Jacobian-

vector and Hessian-vector products using adjoint sensitivities.

An overview of approaches for solving the NLP subproblem based on trust-region SQP

methods is presented. Byrd-Omojokun method is known to be efficient because it breaks

the original equality constrained problem into two smaller and simpler subproblems. In

this thesis, the Byrd-Omojokun algorithm is tailored to handle dense constraint Jacobians

and the specialized algorithm works with exact second order information in the form of

Hessian-vector products.

Chapter 2. Background for PAP Optimization 24

Chapter 3

Sensitivity Equations for Gradient

Evaluations

Synopsis

The sequential approach for numerical solution of dynamic optimization problems requires

sensitivity information with respect to hundreds of optimization variables. Inexpensive

calculation of sensitivities is particularly important in PAP applications because the sys-

tems of interest are typically modeled with 102 − 105 equations. The NLP algorithms

developed in this thesis work with exact Jacobian-vector and Hessian-vector products

instead of full Jacobian and Hessian. This chapter describes the cost-efficient and accu-

rate sensitivity methods which have been implemented in this thesis to compute these

matrix-vector products required by the NLP subproblem.

Chapter 3. Sensitivity Equations for Gradient Evaluations 25

3.1 Requirements of Gradient based NLP Algorithms

3.1 Requirements of Gradient based NLP Algorithms

For the solution of generally constrained NLP subproblem in (2.2) (Figure 2.1) SQP and

interior point methods have proven to be mostly efficient. Both methods require the

gradients of the objective function and the gradients of the constraint Jacobian with

respect to the unknowns p̃⊤ = [y⊤ p⊤] ∈ R
nz+np. In case of (2.2), these are

df(z(tf , p))

dp̃
,

dw(z(tf , p)

dp̃
,

dcss(z(tf , p)

dp̃
(3.1)

Furthermore, these methods require an approximation of the Hessian of the Lagrangian

(2.6) with respect to p̃:

Lpp(p, λ) =
d2L(p̃, λ)

dp̃2
(3.2)

Optimization algorithms show an improved robustness and less iterations, if the exact

Hessian instead of an approximation is employed, as shown by Vassiliadis et al. [71].

However, computation of full Hessian requires integrating O(nz(nz + np)
2) sensitivity

equations which is computationally expensive. Vassiliadis et al. use second-order forward

sensitivity equations to obtain the Hessian and therefore have the drawback of a large

computational effort. The number of iterations decreases, but the overall computational

time increases. This issue is dealt in the Section 3.4.2.

In this work, we use “differentiate then discretize” strategy as opposed to the “dis-

cretize then differentiate”. Optimization approaches are frequently called discretize-then-

differentiate methods when using the discrete derivatives provided for example by Auto-

matic Differentiation (AD) and optimize-then-differentiate methods when the derivatives

are based on the continuous formulation. Our “differentiate then discretize” approach uses

Automatic Differentiation (AD) to construct the relevant system of equations required by

Chapter 3. Sensitivity Equations for Gradient Evaluations 26

3.2 Forward Sensitivity Equations

the integration subroutines rather than discretizing the state system before applying AD

directly. In this way, we avoid the differentiation of a large and complex integration code

with corrector iterations and error control, and we exploit efficient integration procedures

for the sensitivity system and this strategy results in accurate derivatives.

Forward sensitivity and adjoint equations are the two options for gradient evaluation

based on continuous derivative formulation. All the sensitivity equations in this chapter

are derived for the PAP optimization problems as in (2.2). We start by considering an

ordinary differential equation (ODE) model:

z′ ≡
dz

dt
= F̃ (z, p), t ∈ (t0, tf] z(t0) = y (3.3)

Now we show how the first-order derivatives i.e., gradient of objective function and the

gradient of constraint Jacobians are computed using the direct and adjoint sensitivities.

3.2 Forward Sensitivity Equations

The direct sensitivity equations are obtained by differentiating the original model equa-

tions (3.3) with respect to the parameters, y and p. Defining, sp(t) = ∂z(t)
∂p

and sy(t) =

∂z(t)
∂y

, formal differentiation of the differential equations results in,

ṡy = F̃zsy sy(t0) = Inz
(3.4a)

ṡp = F̃zsp + F̃p sp(t0) = 0 (3.4b)

Chapter 3. Sensitivity Equations for Gradient Evaluations 27

3.3 First Order Adjoint Sensitivities

where

F̃y =

∂F̃1

∂z1
. . . ∂F̃1

∂znz

...
. . .

...

∂F̃nz

∂z1
. . . ∂F̃nz

∂znz

F̃p =

∂F̃1

∂p1
. . . ∂F̃1

∂pnp

...
. . .

...

∂F̃nz

∂p1
. . .

∂F̃np

∂pnp

The sensitivity equations (3.4) depend on states z(t) and can be solved simultaneously

with the state system in (3.3). The structure of the linear sensitivity equations has been

exploited in DAE/ODE solvers by using methods like staggered-corrector techniques since

the state and the direct sensitivity system share the same Jacobian, F̃y [26, 47].

In this work, we consider the direct sensitivity equations to evaluate the exact Jacobian

of constraints given by

A ≡ ▽cT
ss =

[

Inz
−

∂z(tf)

∂y

... −
∂z(tf)

∂p

]

(3.5)

which requires integrating O(nz(nz +np)) differential equations. This can be prohibitively

time consuming, particularly, for large problems. For example, optimization of 5-bed 11-

step PSA process with 1000 state variables [39] took 2 CPU h to form each Jacobian matrix

at every iteration on a 2.4 GHz processor using forward sensitivities. Consequently, they

must be adapted to reduce computational cost.

3.3 First Order Adjoint Sensitivities

We demonstrate the application of the adjoint sensitivity analysis with a point-form func-

tional ϕ̃(z(tf), p̃) in order to determine the gradient of objective function i.e., ϕ̃ ≡ f

dϕ̃(z(tf , p̃))

dp̃
(3.6)

Chapter 3. Sensitivity Equations for Gradient Evaluations 28

3.3 First Order Adjoint Sensitivities

Instead of using the chain rule, the gradients are computed by introducing the so-called

adjoint variables λ̃(t) ∈ R
nz (Cao et al. [18]). The adjoint variables are computed by the

integration of the first-order adjoint equations:

˙̃
λT + λ̃T F̃z = 0 t ∈ [t0, tf]

λ̃T (tf) = ϕ̃z(tf)

(3.7)

The gradients are computed by the formula

∂ϕ̃

∂y
= ϕ̃y(tf) + λ̃(t0) (3.8)

and

∂ϕ̃

∂p
= ϕ̃p(tf) +

∫ tf

t0

λ̃T F̃pdt (3.9)

The adjoint method is preferred when there is a single functional and many parameters

because only one adjoint system is solved compared to nz + np direct sensitivity systems.

The implementation of the adjoint sensitivity method consists of three major steps. First,

solve the original different equations (3.3) forward till final time, tf . Second, at tf we

compute the initial conditions of the adjoint system (3.7). Finally, we solve the adjoint

system backward to the start point, and calculate the gradients (3.8)-(3.9). The backward

integration of the adjoint equations requires the information of state formation, z(t) which

have to be stored during the forward integration phase. Efficient integration codes [59]

employ check-pointing schemes to balance between storage space and execution time.

Chapter 3. Sensitivity Equations for Gradient Evaluations 29

3.4 Jacobian-vector and Hessian-vector Products

3.4 Jacobian-vector and Hessian-vector Products

As pointed out in the previous chapter, the optimization algorithms developed in this

thesis avoid forming the computationally expensive constraint Jacobian by working with

Jacobian-vector products. Moreover, the NLP algorithms work with exact second-order

information in the form of Hessian-vector products. The forward sensitivity equation for

exact Jacobian evaluation (3.4) depends on the number of parameters, (nz+np) in the state

equations. Since, the initial conditions are also parameters in the optimization problems

related to PAPs, the parameter space in these problems is usually large. Hence, evaluating

the matrix-vector products using direct sensitivities is computationally expensive. To

evaluate the matrix-vector products, we solve sensitivity systems for a given direction

in the parameter space so that the dependence on the number of parameters can be

significantly reduced.

3.4.1 Jacobian-vector products, Av and ATw

Let, v = [vy
... vp]

T , vy ∈ R
nz and vp ∈ R

np be the direction along which the sensi-

tivities have to be solved. The direction, v can appear in the NLP step-computation as

in,

yk+1 = yk + αvy pk+1 = pk + αvp (3.10)

where α is the step size along search directions.

Jacobian-vector product, Av:

The equations used in evaluating the Jacobian-vector product, Av are given by directional

Chapter 3. Sensitivity Equations for Gradient Evaluations 30

3.4 Jacobian-vector and Hessian-vector Products

first order sensitivities for the state system (3.3),

ṡ = F̃zs + F̃pvp s(t0) = yp̃v = vy (3.11)

where s(t) = ∂z(t)
∂p̃

v ≡ zp̃v ∈ R
nz . The Jacobian-vector product, Av given by

Av = vy −
∂z(tf)

∂y
vy −

∂z(tf)

∂p
vp

= vy − zp̃(tf)v

= vy − s(tf) (3.12)

is computed by integrating both the state equations (3.3) and directional forward sen-

sitivity equations (3.11) simultaneously forward in time. It is important to note that

directional forward sensitivity equations are of size nz which is equal to the number of

states in the model.

vector-Jacobian product, AT w:

The vector-Jacobian products is computed using the first-order adjoint sensitivities (3.7)

with the point-form functional chosen as,

ϕ̃(z(tf), p̃) = wT (y − z(tf)) (3.13)

where w ∈ R
m. The forward integration of the state equation (3.3) followed by the

backward integration of (3.7) with the integrals (3.8)-(3.9) updated on the way results in

the vector-Jacobian product.

Chapter 3. Sensitivity Equations for Gradient Evaluations 31

3.4 Jacobian-vector and Hessian-vector Products

3.4.2 Hessian-vector products, Bv

Exact second-order derivative information in the form of Hessian-vector product is com-

puted using the directional second order adjoint sensitivities [53]. The second-order ad-

joint equations are obtained by differentiating the first-order adjoint equations with re-

spect to p̃:

˙̃
λp̃ + F̃ T

z λ̃p̃ + λ̃T (F̃zp̃ + F̃zzzp̃) = 0 t ∈ [t0, tf] (3.14)

λ̃p̃(tf) = ϕ̃zz(tf)zp̃(tf) + ϕ̃zp̃(tf) (3.15)

Instead of solving an nz × np system of ODEs in (3.14), we can post-multiply it by a

direction vector v ∈ R
ny+np to obtain the directional second-order adjoint sensitivities

(dSOA)

˙̃
λp̃v + F̃ T

z λ̃p̃v + λ̃T (F̃zp̃v + F̃zzzp̃v) = 0 t ∈ [t0, tf] (3.16)

λ̃p̃v(tf) = ϕ̃zz(tf)zp̃(tf)v + ϕ̃zp̃(tf)v (3.17)

Now by defining µ ≡ λp̃v, the dSOA equations become

µ̇ + F̃ T
z µ + λ̃T (F̃zp̃v + F̃zzs) = 0 t ∈ [t0, tf] (3.18)

µ(tf) = ϕ̃zz(tf)s(tf) + ϕ̃zp̃(tf)v (3.19)

where s ≡ zp̃v is obtained by solving the directional version of the first order forward

sensitivity equations (3.11). The directional second order derivative of ϕ̃(p̃) is obtained

Chapter 3. Sensitivity Equations for Gradient Evaluations 32

3.4 Jacobian-vector and Hessian-vector Products

from

∂2ϕ̃

∂p̃2
v = ϕ̃p̃p̃(tf)v + ϕ̃p̃z̃(tf)s(tf) + [(λ̃⊤zp̃p̃v + z⊤p̃ µ]t=t0

+

∫ tf

t0

F̃⊤
p̃ µ + λ̃⊤(F̃p̃p̃v + F̃p̃zs)dt (3.20)

For Hessian-vector product evaluation, the point-form function, ϕ̃ is chosen as the product

of Lagrange function (for example, (2.6)) and an arbitrary vector, v. The advantage of

using this kind of a formulation is that the directional direct sensitivity systems (3.11),

first-order adjoint sensitivities (3.7) and the directional second-order adjoint sensitivities

are all of dimension nz and are weakly dependent on the number of parameters nz + np.

Moreover, the cost ratio to compute an Hessian-vector product compared to a simulation

is just between 2 to 4 and the obtained derivatives are more accurate than finite-difference

methods.

The formulations of the RHS of sensitivity, adjoint and the quadrature systems con-

tain several vector-matrix, matrix-vector, vector-matrix-vector products i.e. F̃zs + F̃pvp,

λT F̃z, λ̃T F̃p, F̃ T
z λ̃p̃ + λ̃T (F̃zp̃ + F̃zzzp̃), F̃z etc. These terms should be calculated accurately

and efficiently for accurate and cheap sensitivities. Automatic differentiation (AD) allows

the computation of exact derivatives for functions given as computer programs [31]. AD

is applied to calculate the above products of derivative matrices and vectors since the

corresponding computational effort is bounded above by a small multiple of the computa-

tional effort to evaluate the function itself. Also, since the model equations (3.3) and the

directional direct sensitivity equations (3.11) are initial value problems and the first order

adjoint (3.7) and dSOA (3.18) systems are terminal value problems, an IVP Sensitivity

solver with forward and backward integration capability is required.

Chapter 3. Sensitivity Equations for Gradient Evaluations 33

3.5 Concluding Remarks

Implementation Overview

The embedded dynamic system in (3.3) is integrated forward in time along with directional

first order sensitivity equations (3.11) and z(t) and s(t) are stored at checkpoints in time.

Then the final values for both the adjoint systems (3.7) and (3.18) are calculated. The

first order adjoints equations (3.7) are integrated backward in time along with directional

second order adjoint equations (3.18) with the desired integrals (3.20) updated on the

way to compute the gradients.

3.5 Concluding Remarks

We present a continuous derivative formulation to compute the necessary derivative in-

formation required by the NLP subproblem. Efficient directional forward and adjoint

equations are discussed to compute accurate Jacobian-vector and Hessian-vector prod-

ucts. The methodology relies heavily on automatic differentiation, since AD is the only

reliable and efficient technology for evaluation of the RHS of the sensitivity systems.

Given that we can compute accurate and efficient Jacobian-vector and Hessian-vector

products, the next two chapters focus on the novel nonlinear programming algorithms de-

veloped in this work for handling dense constraint Jacobians. In order to efficiently handle

these Jacobians during optimization and reduce the computation time, this work presents

new composite step trust-region algorithms for the solution of minimization problems with

both nonlinear equality and inequality constraints. Furthermore, numerical performance

results for these algorithms are presented.

Chapter 3. Sensitivity Equations for Gradient Evaluations 34

Chapter 4

SQP Trust-Region Algorithm

with Inexact Jacobians

Synopsis

This chapter presents a new SQP trust-region algorithm for the solution of minimization

problems with both nonlinear equality and inequality constraints. Instead of forming

and factoring the dense constraint Jacobian, this algorithm approximates the Jacobian of

equality constraints with a specialized quasi-Newton method. Hence it is well suited to

solve PAP optimization problems. In addition to allowing inexactness of the Jacobian and

its null-space representation, this algorithm also provides exact Hessian-vector products

to improve the convergence rate. A five-fold reduction in computation is demonstrated

with this approach for two PAP optimization problems.

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

35

4.1 Optimization Strategy

4.1 Optimization Strategy

We discuss a trust region based sequential quadratic programming (SQP) algorithm that

forms the basis of this chapter. This algorithm is formulated for the solution of NLP

problems of the form

min
{x1,x2}

f(x1, x2)

s.t. c(x1, x2) = 0 (4.1)

xL
1 ≤ x1 ≤ xU

1

where the objective function f : R
n → R and the nonlinear equality constraints c : R

n →

R
m with m ≤ n are assumed to be sufficiently smooth and at least twice differentiable

functions in xT = [xT
1 , xT

2]. with x1 ∈ R
n−m. Note that only bounds on x1 are considered

in this work, and, as will be seen later, this allows us to take advantage of robust and

efficient trust region-based optimization methods. Section 4.1.1 describes a work around

to handle general inequality constraints and bounds.

For the majority of the trust-region SQP algorithms, the computation of the next

iterate requires the solution of a linear system of the form

A(xk)A(xk)⊤v = b

where

A(x) = (∇c1(x),,∇cm(x))⊤ ∈ R
m×n

is the exact matrix of constraint gradient at x. Furthermore, a representation Z(x) of null

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

36

4.1 Optimization Strategy

space of A(x) is needed frequently for the computation of the next step. For these reasons,

the explicit forming and factoring of the constraint Jacobian A(x) provides an efficient

step calculation if A(x) is sparse and well structured, see, e.g.,[5]. As an alternative, one

may use iterative system solves up to a certain accuracy, for example, Krylov subspace

[15] or multigrid methods, for efficient step computation in each iteration. However,

these iterative methods assume that the Jacobian can be obtained at low cost and focus

only on the efficient solution of the linear system. However, this approach may result

in very time-consuming computations, especially if the Jacobian of the constraints is

dense or unstructured, for example, in the case of optimization problems related to PAP

applications. In such problems, the run-time needed for optimization process is dominated

significantly by the computation of the dense Jacobian and its factorization. For example,

optimization of a 5-bed 11-step PSA process with 1000 state variables [39] using a reduced

Hessian SQP approach [10] took almost 200 CPU h to converge and the computation of

a single Jacobian took 2 h which was calculated from the direct sensitivity approach

applied to the PDAE system. In short, the current NLP algorithms are prohibitively time

consuming and memory intensive for the optimization of PAP problems with only a few

hundred variables. Therefore, the bottleneck to efficient calculations is the evaluation

of direct sensitivities to obtain the dense Jacobian matrix. In order to circumvent these

dense calculations, we present a class of trust-region SQP algorithms that does not require

the exact evaluation of the constraint Jacobian or an iterative solution of a linear system

with a system matrix that involves the constraint Jacobian.

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

37

4.1 Optimization Strategy

4.1.1 Handling General Inequalities and Bounds

We now consider the reformulation of (2.2) to (4.1) and carefully choose the inequality

constraints and bounds on variables y and p. First, we note that without bounds on

the state variables, y ≥ ymin the DAE model may not be solvable over the course of the

optimization (e.g. if the states are negative). However, since these bounds are unlikely to

be active at the solution, we do not enforce them explicitly as variable bounds, but treat

them with a simple constraint aggregation approach. Our constraint aggregation method

uses the KS function [11] to lump all the bound constraints into a simple composite

function given by

KS(y, ρ) = ymin −
1

ρ
ln

(
∑

i

exp(−ρ(yi − ymin))

)

≥ 0 (4.2)

where ymin is the lower bound of yi which keeps exp(−ρ(yi−ymin)) ≤ 1 and the KS function

well-behaved. For active bounds, yi becomes active, yi → ymin, exp(−ρ(yi − ymin)) → 1

and these terms dominate in the KS function. Otherwise as ρ approaches infinity, we have

exp(−ρ(yi − ymin)) ≈ 0 for yi ≫ ymin.

With the KS function added to the inequality constraints, the NLP from (2.2), with

DAEs solved implicitly for z(t), is now given by:

min
{p,y}

f(p, y)

s.t. h(p, y) = 0 (4.3)

g(p, y) ≤ 0

pL ≤ p ≤ pU

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

38

4.1 Optimization Strategy

which we convert to (4.1) by adding slack variables to the inequalities (e.g. purity and

recovery constraints, KS function), i.e.,

g(p, y) + ŝ = 0 (4.4)

with non-negative bounds on the slack variables, ŝ. The augmented set of equality con-

straints now includes the original set of equality constraints, h, and (4.4).

Finally, special care has to be taken on the bounds of the slack variables ŝ since only

(n − m) decision variables can be bounded in (4.1). Here we choose a subset of decision

variables, p̄, that would normally be used to solve the equations of a design specification

problem, which arises frequently in the modeling of PAPs. For example, a valve constant

can be chosen for a pressure specification, or adjustment of a flow can be used to meet a

purity specification. This design problem is posed as,

h(p̄, y) = 0

g(p̄, y) + ŝ = 0 (4.5)

and it is expected that the Jacobian of these equations is always nonsingular with respect

to y and p̄. In this way, we can bound the rest of the free variables, p̂ and the slack

variables, ŝ. The variables and constraints in problem (4.3) are now reassigned to conform

to problem (4.1) with

x1 :=

p̂

ŝ

 , x2 :=

y

p̄

 and c =

h

g + ŝ

 . (4.6)

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

39

4.1 Optimization Strategy

4.1.2 Solution Strategy

Problem (4.1) is solved by a successive quadratic programming (SQP) trust-region algo-

rithm that repeatedly solves the following quadratic program for the kth iteration:

min
d

∇xf(xk)⊤d + 1
2
d⊤B(xk)d

s.t. c(xk) + A(xk)d = 0

xL
1 ≤ xk

1 + d1 ≤ xU
1 (4.7)

||d|| ≤ ∆k

in order to compute a new step dk = [dT
1 , dT

2]T for a given iterate xk, trust region radius

∆k and Lagrange multipliers, λk. Here the exact matrix of the dense constraint gradients

at xk is given by,

A(xk) = (∇c1(x
k), ...,∇cm(xk))T ∈ R

m×n

and B(xk) is the exact Hessian of the Lagrange function defined by

L(x, λ) = f(x) + λT c(x) (4.8)

Furthermore, ||.|| denotes the Euclidean norm ||.||2. Since problem (4.7) may not have a

feasible solution, we follow a composite step approach proposed by Byrd and Omojokun

[52]. For efficient step computation of dynamic optimization problems, the proposed algo-

rithm exploits direct sensitivity equations and/or adjoint sensitivity equations to evaluate

the products of exact Jacobian A(x) and a given vector v, A(x)v and A(x)T v and the

product of exact Hessian B(x) and a given vector v, B(x)v . Efficient computation of

these matrix-vector products can also be computed by applying Automatic Differentiation

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

40

4.1 Optimization Strategy

(AD). However, the repeated computation of the full matrix, A(x), which requires many

Jacobian-vector products, may be prohibitively time consuming. The nonlinear program-

ming algorithm presented in this work uses exact Jacobian-vector and vector-Jacobian

products and avoids forming the full Jacobian matrix. Instead of forming the full Jaco-

bian matrix, A(xk) is approximated using a specialized quasi-Newton method. Also, in

order to improve the convergence rate the algorithm uses exact Hessian-vector products.

Exhaustive literature on composite step trust region methods that employ exact deriva-

tive information can be found in [23]. Effects of inexact derivative information on the

global convergence is studied in [15, 35] where the analysis is focused on inexactness aris-

ing due to iterative system solves. However, the inexactness in this work arises due to

the Jacobian approximation using a quasi-Newton update. The convergence analysis and

performance results focusing on equality constrained optimization problems are presented

in [74, 75]. In this work, we extend the algorithm to general nonlinear programming prob-

lems with both equality and inequality constraints of the form (4.1).

We now consider an algorithm for solving the nonlinear programming problem of

the form (4.1) which does not require construction of the exact Jacobian A(x). The

chapter is divided into two parts. In the first part, we will be focus on the inexact trust

region algorithm for solving nonlinear equality constrained optimization problems i.e. we

ignore bounds in (4.1). In the second part, we extend the inexact algorithm for the

nonlinear equality constrained optimization problems to general nonlinearly constrained

optimization problem of the from (4.1). Numerical performance results for both the

algorithms are presented thereafter.

We use the following notation for the rest of the chapter. Let Ak be the approximation

of the exact Jacobian, A(xk) for each iteration k. We suppose that an approximation

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

41

4.2 Jacobian Approximation via TR1 Update

Zk ∈ R
n×(n−m) of an exact null space basis Z(xk) can be constructed from the approximate

Jacobian Ak such that AkZk = 0 and A(xk)Z(xk) = 0.

4.2 Jacobian Approximation via TR1 Update

For PDAE-constrained optimization problems, the Jacobian of constraints is obtained by

either numerical differentiation or analytical methods such as direct sensitivity equations.

However, both approaches may result in very time-consuming computations, especially

if the Jacobian of constraints is dense and unstructured. In order to avoid forming the

dense Jacobian at very step, we apply the two-sided rank one (TR1) update to generate

an approximation Ak of the exact constraint Jacobian, A(xk) as proposed in [33]. The

TR1 update is defined by,

Ak+1 = Ak +
(qk − Akδk)(µ

T
k − σT

k Ak)

(µT
k − σT

k Ak)δk

(4.9)

where,

qk ≡ c(xk + δk) − c(xk), µT
k ≡ ∇xL

T (xk + δk, λ
k + σk) −∇xL

T (xk + δk, λ
k)

σk ≡ λk+1 − λk ∈ R
m δk = xk+1 − xk

One important feature of this update is that it is possible to reconstruct the exact Jaco-

bian, A(xk) with at most m TR1 updates for a fixed iterate xk [75]. The matrix vector

product, Akδk and the vector matrix product, σT
k Ak in the rank-one term of (4.9) can

be computed efficiently and accurately using sensitivities and Automatic Differentiation.

Also, the update uses the information of the objective function at the current iteration,

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

42

4.3 Equality Constrained Optimization

xk unlike other quasi-Newton Jacobian updates.

Factorization of a dense matrix Ak has an algebraic complexity of O(nm2) operations

in general. The optimization algorithm requires solution of linear systems that involve

the dense matrix Ak at every step. Instead of factorizing Ak at every optimization step,

it is better to factorize Ak only once at the beginning of the optimization procedure and

maintain a factorized null space representation Zk of the approximated derivative infor-

mation during the whole optimization procedure with just an O(mn) cost of operations

[34, 65].

4.3 Equality Constrained Optimization

The proposed SQP algorithm uses a trust-region globalization method to force conver-

gence from distant starting points. Trust region SQP methods have several attractive

properties because they control the quality of steps even in the presence of ill-conditioned

Hessians and Jacobians, and do not require that the reduced Hessian matrix be positive

definite. The use of the trust region constraint in (4.7): ||d|| ≤ ∆k guarantees boundedness

of the computed step dk.

A globally convergent SQP algorithm usually defines a merit function, φ(x; ν) which

determines how accurately the model problem approximates the original problem at the

new point xk + dk, and allows a decision to accept or reject the computed step dk to be

made. The proposed algorithm uses the non-differentiable l2 merit function

φ(x; ν) = f(x) + ν||c(x)|| (4.10)

with the penalty parameter ν > 0. The merit function is approximated at xk + dk using

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

43

4.3 Equality Constrained Optimization

the same approximation that determines the model problem from the original problem.

In our case, a model of φ around the current iterate xk is given by

mk(d) = f(xk) + ∇f(xk)T d +
1

2
dT B(xk)d + νk ‖ c(xk) + A(xk)d ‖ (4.11)

Then with aredk(d) defined by

aredk(d) = φ(xk; νk) − φ(xk + d; νk) (4.12)

as the actual reduction in the merit function caused by a step dk, and predk(d) defined

by,

predk(d) = mk(0) − mk(d) (4.13)

= −∇f(xk)T d −
1

2
dT B(xk)d

︸ ︷︷ ︸

term1

+ νk(‖ c(xk) ‖ − ‖ c(xk) + A(xk)d ‖)
︸ ︷︷ ︸

term2

as the predicted reduction in the model of the merit function caused by a step dk, the

model is said to be accurate enough if

aredk(d)

predk(d)
≥ η, where 0 < η ≤ 1 (4.14)

Note that predk(d) is positive for a nonzero step dk and the sufficient decrease in merit

function is obtained if condition (4.14) is satisfied.

To describe the approach we first focus on equality constrained optimization problems,

i.e. we ignore bounds in (4.7). Computation of the step dk requires the solution of an

equality-constrained subproblem (ECSP). One potential difficulty that can arise when

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

44

4.3 Equality Constrained Optimization

solving ECSP is that the linearized constraint and the trust region constraint may not

intersect if ∆k is too small. Consequently, there will be no feasible region that satisfies both

constraints and ECSP will not have a solution in the trust region. In order to overcome this

difficulty, we follow the approach of Byrd and Omojokun [52] and decompose the ECSP

into two trust-region subproblems. The two underbraced terms in (4.13) correspond to

these trust-region subproblems. The first term is minimized in the tangential subproblem

while the second term is minimized in the normal subproblem. This allows us to compute

the composite step,

dk = nk + tk,

a combination of the normal step, nk and the tangential step, tk. The normal sub-problem

aims to attain feasibility of the constraints while the tangential sub-problem aims to

reduce the quadratic objective function in ECSP by maintaining linearized feasibility. By

splitting the step taken by ECSP, we write the resulting sub-problems as follows:

4.3.1 The Normal Subproblem

At each step of the algorithm we first solve the normal step nk which reduces the infea-

sibility of the linearized constraints by solving the following normal subproblem at the

current iterate xk

min
n∈Rn

‖ c(xk) + A(xk)n ‖2, s.t. ‖ n ‖≤ ∆k
1 (4.15)

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

45

4.3 Equality Constrained Optimization

This subproblem has a spherical trust region in R
n with a quadratic objective function.

The exact Cauchy step for (4.15) is given by

nC(xk) = −αC(xk)A(xk)T c(xk) (4.16)

where αC
k is the optimal solution of the problem

min
α≥0

‖ c(xk) − αA(xk)A(xk)T c(xk) ‖2

s.t. ‖ αA(xk)T c(xk) ‖≤ ∆k
1 (4.17)

Since we can evaluate A(xk)v and A(xk)T w for given v and w exactly, we are able to com-

pute the exact Cauchy step without evaluating the complete Jacobian, A(xk). However,

using the Cauchy step results in slow convergence [51]. To accelerate the convergence

rate, we also use the Newton step. The exact Newton step of (4.15) is given by

nN(xk) = −A(xk)+c(xk) = −A(xk)T (A(xk)A(xk)T)−1c(xk) (4.18)

However, it is expensive to compute (A(xk)A(xk)T)−1c(xk) exactly. Using the QR factor-

ization and its orthonormal properties, an approximation

nN(xk) = −A(xk)T (Ak(Ak)T)−1c(xk) (4.19)

of the exact Newton step (4.18) can be computed easily. In combination with the exact

Cauchy step, we define an inexact dogleg step by setting

nD(xk) = η̃nN (xk) + (1 − η̃)nC(xk) (4.20)

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

46

4.3 Equality Constrained Optimization

with η̃ = 1 if ‖ n ‖≤ ∆k
1. Otherwise η̃ ∈ [0, 1] would be adjusted such that the length of

nD is equal to ∆k
1. The choice nk is governed by

nk =

nD(xk) if npredk(nD(xk)) ≥ γnnpredk(nC(xk))

nC(xk) otherwise

(4.21)

for some constant γn > 0 and the normal predicted reduction is given by,

npredk(n) =‖ c(xk) ‖ − ‖ c(xk) + A(xk)n ‖ (4.22)

The normal step nk provides sufficient normal Cauchy decrease (i.e., one may use the

exact Cauchy step as a normal step) and also fulfills the range space condition i.e., the

normal steps nD, nC and a linear combination of nD and nC are of the form AT (xk)vk.

Hence, working with the inexact constraint Jacobian, Ak does not hinder the computation

of a reasonable normal step [74].

4.3.2 The Tangential Subproblem

Given the normal step, the tangential step is used to reduce a suitable model within the

trust region by maintaining linearized infeasibility. The tangential step, tk = ZkpZ is

obtained by solving the following subproblem

min
pZ∈Rn−m

(∇f(xk) + B(xk)nk)T ZkpZ +
1

2
pT

Z(Zk)T B(xk)ZkpZ

s.t. ‖ ZkpZ ‖≤ ∆k
2 (4.23)

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

47

4.3 Equality Constrained Optimization

This subproblem is a small NLP of size (n − m) with a quadratic objective function and

ellipsoidal trust-region constraint. The exact null space basis Z(xk) can be constructed

from the exact Jacobian A(xk) such that A(xk)Z(xk) = 0. This can be done by performing

QR factorization on A(xk), which may however be expensive for large-scale problems.

The steepest descent direction for this problem is given by

pC
Z(xk) = −(Zk)T (∇f(xk) + B(xk)nk) (4.24)

However, the steepest descent step for the tangential problem is inexact due to the inexact

null space term, Zk.

Figure 4.1: Steihaug CG algorithm: Handling convex/non-convex QP

Since the steepest descent results in only a linear convergence rate, we apply the

Steihaug conjugate gradient (CG) algorithm [66] to accelerate the convergence rate. Three

possibilities might arise for the solution of (4.23) which are handled efficiently in the

Steihaug algorithm as shown in Figure 4.1. First, if B(xk) is positive definite and the

trust region constraint is inactive, this algorithm reduces to a CG computation of the

Newton step and converges to a convex interior solution (Figure 4.1(a)). Secondly, if

negative curvature is encountered, the algorithm finds a useful point on the trust region

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

48

4.3 Equality Constrained Optimization

boundary (Figure 4.1(c)). Finally, if the model is convex and the solution lies outside

the trust region, the algorithm terminates where the path crosses the trust region (Figure

4.1(b)). Steihaug proved that the objective function of the subproblem (4.23) decreases

monotonically with each step and that each step moves farther away from the initial point,

in the sense that ‖ pCG
Z (xj+1) ‖>‖ pCG

Z (xj) ‖. These two properties imply that stopping

the iteration as soon as the trust region is encountered is a sensible strategy. The Hessian-

vector product in the Cauchy step (4.24) and the conjugate step computations is computed

exactly using sensitivities and AD.

The composite trust-region step from (4.15) and (4.23) is:

dk = nk + ZkpZ (4.25)

and we set

xk+1 = xk + dk

if we obtain a sufficient reduction (4.14) in the merit function (4.10). Otherwise, the trust

region is reduced and a new trial step is computed.

The inexact algorithm represents a Byrd-Omojokun trust-region approach that takes

the inexactness of the Jacobian and its null-space representation into account. The global

convergence of the algorithm to first-order critical points is ensured by the theoretical

results presented in [74]. In the inexact setting, the normal step (4.15) and the tangential

step (4.23) are calculated based on the approximate Jacobian Ak and its null space Zk

(with (Ak)T Zk = 0). The matrix Zk only approximates the null space Z(xk) of the exact

Jacobian, A(xk). Therefore, in the inexact setting the tangential step may not maintain

the feasibility of the combined step, dk = nk + tk with respect to the linearized constraints

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

49

4.3 Equality Constrained Optimization

and hence the identity A(xk)dk = A(xk)nk is not necessarily valid. The resulting effects

on the composite step, dk are illustrated in Figure 4.2.

Z(xk) = exact null space Zk = inexact null space

A(xk)(nk + tk) = A(xk)nk A(xk)(nk + tk) = A(xk)nk+?

Figure 4.2: Computation of tangential step for exact and inexact null space representa-
tions

Hence, one has to safeguard the approximation Zk by controlling the inexactness.

The quality of the approximated constraint Jacobian can be adjusted by bounding the

influence of the error in Zk on the predicted reduction of the function mk given by

predk(dk) = −∇f(xk)T (nk + tk) −
1

2
(nk + tk)T B(xk)(nk + tk)

+νk(‖ c(xk) ‖ − ‖ c(xk) + A(xk)(nk + tk) ‖)

= tpredk(tk) + νknpredk(nk) + χk + errk(dk, νk),

where

χk = −∇f(xk)T nk −
1

2
(nk)T B(xk)nk

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

50

4.4 Treatment of Bounds

errk(dk, νk) = νk(‖ c(xk) + A(xk)nk ‖ − ‖ c(xk) + A(xk)dk ‖).

To ensure that the trust-region algorithm is globally convergent, it has been shown in [74]

that if

−errk(dk, νk) <

(
1 − η̄

2

)

ipredk(dk) (4.26)

where

ipredk(dk) = tpredk(tk) + νknpredk(nk) + χk

holds for a constant η̄ ∈ (0, 1), then we have predk(dk) non-negative as long as the inexact

predicted reduction, ipredk(dk) ≥ 0. As can be seen, errk(dk) is a measure of the error

in Zk and it becomes zero if we work with exact null space Z(xk). In the inexact setting,

this inequality can be easily tested by evaluating two Jacobian-vector products during

the optimization process. If it is not satisfied at the current step, the inexact null space

Zk needs to be updated and the normal step, nk and the tangential step, tk has to be

recomputed. As a result, the inexact algorithm avoids forming an exact Jacobian at every

iteration and hence reduces the computation time for optimization, as compared to the

exact Byrd-Omojokun algorithm.

4.4 Treatment of Bounds

To handle bounds on the decision variables, x1 in (4.7), we calculate the inexact null-

space Zk based on coordinate decomposition [10] instead of the QR decomposition. Here

we partition the approximate constraint Jacobian into sub-matrices with m and n − m

columns, respectively, Ak = [A1 | A2] and define Y k = [0 | I]T and Zk = [I | −

AT
1 (A2)

−T]T . The coordinate basis is less expensive to compute and allows the normal

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

51

4.4 Treatment of Bounds

step to be calculated independently of the bound constraints.

In the presence of bounds, the inexact tangential problem now becomes,

min
pZ∈Rn−m

(∇f(xk) + B(xk)nk)T ZkpZ +
1

2
pT

Z(Zk)T B(xk)Zk)pZ

s.t. ‖ ZkpZ ‖≤ ∆k
2

xL
1 ≤ xk

1 + pZ ≤ xU
1 (4.27)

Assuming inactive bounds, the first-order Karush-Kuhn-Tucker (KKT) conditions for

(4.27) are:

((Zk)⊤B(xk)Zk + αkI)pZ = −(Zk)⊤(∇f(xk) + B(xk)nk), (4.28)

αk = 0 if ||ZkpZ|| < ∆k
2 and αk > 0 if ||ZkpZ || = ∆k

2. (4.29)

Here αk is the Marquardt parameter, which is just the Lagrange multiplier associated

with the trust-region constraint. This algorithm provides an attractive way to deal with

negative curvature. If the QP (4.27) is convex, the Newton step (4.28) may either lie

within the trust-region (αk = 0) or on the boundary of the trust-region (αk > 0) and if

the QP is nonconvex, the Newton step must lie on the trust-region boundary (αk > 0).

In the case when αk is non-zero, αk is calculated by solving:

1

||((Zk)⊤B(xk)Zk + αkI)−1((Zk)⊤(∇fk + B(xk)nk))
−

1

∆k
2

= 0, (4.30)

This equation is solved by Newton’s method. For a more detailed discussion on the

solution to this problem, refer to [29]. The step pZ calculated above may not satisfy the

bounds. It is thus adjusted it to satisfy the bounds in a manner analogous to [30]. The

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

52

4.5 Calculation of Lagrange multipliers

most violated bound is identified and made active. Then, a sub-space minimization of the

objective function of (4.27) with respect to the remaining components of pZ is carried out.

After each such minimization, the most violated bound is identified, made active, and a

sub-space minimization is carried out again until the final step lies within the bounds

or exceeds the radius of the trust-region in length when the step calculated previously

is sufficiently smaller than the trust-region radius. For a more detailed discussion on

handling bounds, the interested reader is referred to [30, 5] whose codes have been used

for the solution of (4.27). Similar to the equality constrained case, the accuracy of the

tangential step is checked by verifying inequality (4.26).

4.5 Calculation of Lagrange multipliers

Lagrange multipliers are only used to evaluate the exact Hessian of the Lagrangian (4.8)

times an arbitrary vector. An estimate of the Lagrange multipliers associated with the

nonlinear equality constraints in (4.1) at every new iterate xk+1 is given by the solution

of the linear system

(Ak+1Y k+1)T λk+1 = −(Y k+1)T∇fk+1 (4.31)

Since it is expensive to evaluate the exact Jacobian A(xk+1), this linear system is solved

using the factorization of the inexact Jacobian Ak+1.

In order to limit the inexactness of Zk+1 to a certain amount in the direction λk+1 i.e.

maintain sufficient quality of the Lagrange multipliers, we use the test from [75] given by

‖ ((Zk+1)T A(xk+1)T λk+1)I ‖≤ ω ‖ ((Zk+1)T∇fk+1)I ‖ ω ∈ (0,
1

2
) (4.32)

to check whether the approximation of the null space Zk+1 is good enough. We use the

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

53

4.6 Update of Penalty Parameter and TR Radius

subscript I to indicate subvectors with elements that correspond to xk+1 strictly between

its bounds. As can be seen, this test is satisfied if we work with exact null space, Z(xk).

In the inexact setting, this inequality can be easily verified by evaluating an exact vector-

Jacobian product at every iteration. If this test fails at the current step, the inexact null

space Zk+1 needs to be updated.

4.6 Update of Penalty Parameter and TR Radius

In this trust region algorithm, the goodness of the computed step dk is measured by the

l2 merit function (4.10). A step dk is accepted if xk + dk yields a reasonable decrease in

merit function. Then, the step dk is accepted if

aredk

ipredk
> η, where 0 ≤ η ≤ 1 (4.33)

where is the aredk actual reduction in merit function from xk to xk + dk which is given

by (4.12). Since this algorithm deals with inexact Jacobian Ak, the usual identity of the

predicted reduction is not valid, we use the inexact predicted reduction (4.27) by omitting

the error term in (4.13). ipredk is the inexact predicted reduction in the quadratic model

which is a sum of two terms: the predicted reduction in the model for the tangential step

(tpred) and the predicted reduction in the model for the normal step (npred).

In order to ensure that the inexact predicted reduction, ipredk due to a nonzero step dk

is positive and the penalty parameter in merit function (4.10) is monotonically increasing

i.e. νk+1 ≥ νk for all k, ν is updated based on the following rule:

νk+1 = max

[

νk,
−χk

(1 − ρ)npredk

]

(4.34)

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

54

4.7 Termination Criteria

where νk is the penalty parameter at the previous iteration and ρ ∈ (0, 1).

Also, it may become necessary to increase or decrease the radius of trust region at

some iteration k. An increase in trust region radius may be beneficial if the current step

dk yields a sufficient reduction in the merit function and trust region constraint is nearly

active i.e. η is close to unity. On the other hand, the trust region radius is decreased if

the model subproblem does not model the original problem accurately enough i.e. η is

close to zero. In this work, the expansion and contraction of the trust region is based on

the updating rules in [5].

Furthermore, we need to adjust trust-region radius of both the subproblems to enforce

‖ZkpZ + nk‖ ≤ ∆k where ∆k is the size of the overall trust-region. For the solution of

the overall problem (4.1), we use coordinate basis to compute Zk and Y k, the normal

step nk and the tangential step ZkpZ are non-orthogonal. As a consequence, this may

allow the normal step to significantly increase the objective function and hence the merit

function (4.10). In order to allow the tangential step to cut back this significant increase

in objective function, we impose ∆2 = M∆1, M > 2.

4.7 Termination Criteria

The algorithm is terminated if the first order necessary conditions for problem (4.1) are

satisfied. We define the following termination conditions depending on if bounds are

present or not. If bounds are absent in constrained problems or they are inactive at the

solution, then the problem is said to have converged if

max{||(Zk)⊤∇fk||2, ||ck||2} ≤ ǫ (4.35)

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

55

4.8 Overall Optimization Algorithm

and for constrained problems with bounds, the convergence criteria is as follows:

((Zk)⊤∇fk)i =

≥ 0 if xi = xL

≤ 0 if xi = xU

= 0 otherwise

and ‖ck‖2 ≤ ǫ (4.36)

where 0 < ǫ << 1 is some tolerance defined by the user and (Zk)T∇fk is the reduced

gradient at iteration k.

4.8 Overall Optimization Algorithm

The previous discussion has presented the Byrd-Omojokun algorithm to solve general non-

linear programming problems of the form (4.1) with inexactness in Jacobian accounted

for. Below is the step by step description of the overall algorithm:

Composite step trust region algorithm with inexact Jacobians:

Start: Set initial values x0, λ0, ν−1, A0, Z0, ∆0, ϑ ∈ (0, 1), η ∈ (0, 1), ǫ > 0 and

ω ∈ (0, 1
2
).

for k = 0, 1...

1. Compute a normal step, nk according to (4.15).

2. Compute a tangential step, tk according to (4.27) and the total step, dk =

nk + tk.

3. Compute the smallest value ν̃ such that

ipredk(dk) = tpredk(tk) + ν̃npredk(nk) + χk ≥ ϑν̃npredk(nk).

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

56

4.9 Implementation and Numerical Results

If ν̃ ≤ νk−1, set νk = νk−1. Otherwise set νk = max{ν̃, 1.5νk−1}.

4. If (4.26) is not fulfilled, update Ak and Zk and go to step 1.

5. If

aredk(dk) < η ipredk(dk) (4.37)

decrease ∆k by a constant factor and go to step 1.

6. Set xk+1 = xk + dk and choose ∆k+1 such that ∆k+1 ≥ ∆k

7. Update Ak+1, Zk+1, and compute Lagrange multipliers according to (4.31)

8. If (4.32) is not fulfilled, update Ak and Zk and go to step 7.

9. If the KKT conditions are satisfied to a given tolerance (Section 4.7), stop.

Else set k = k + 1.

As can be seen, this algorithm reduces to the algorithm in [5] if an exact Jacobian and

its null space is computed at every iteration.

4.9 Implementation and Numerical Results

In order to demonstrate the performance of the algorithm, we present and analyze numer-

ous numerical results in this section. We performed numerical tests on dynamic optimiza-

tion problems related to PAPs, namely the simulated moving bed (SMB) and vacuum

swing adsorption (VSA) systems.

The nonlinear programming algorithm described in the previous section has been im-

plemented in C/C++. In all of the results presented below, the Jacobian A0 at the initial

guess x0 is computed exactly. Also, if either of the tests (4.26) or (4.32) fails, we update

Ak and Zk by generating the exact Jacobian A(xk) and an exact null space representation

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

57

4.9 Implementation and Numerical Results

Z(xk) and then we set Ak = A(xk), Zk = Z(xk). Routines from LAPACK are used to

generate the LU factors and the corresponding orthonormal factors are calculated based

on QR factorization. All the numerical experiments are performed on a Pentium IV/2.80

GHz machine with 1 GB memory.

To judge the performance of the algorithm, optimization was also performed with an

exact Jacobian computed at each optimization iteration. All the runs were also performed

using the reduced Hessian SQP approach [10] as in [38, 39]. This rSQP code is based on

line-search globalization strategy and works with approximate second-order information

using BFGS quasi-Newton method. For the inexact approach, we report the number of

failures of the criteria (4.26) and (4.32). The total number of Jacobian evaluations of the

inexact algorithm is equal to the number of failures due to (4.26) in Step 4 and (4.32) in

Step 8, plus the one due to initialization with the exact Jacobian.

4.9.1 Dynamic Optimization Problems

We consider the dynamic optimization problems of two periodic adsorption processes,

namely, a simple six bed simulated moving bed process and a single bed 3-step O2 VSA

cycle. In this work, we solve the dynamic optimization problems using the sequential

approach shown in Figure 2.1. In this approach, the function evaluation requires a forward

simulation of the differential equations and the necessary derivative information in the

form of exact Jacobian-vector and Hessian-vector products (and any Jacobian required by

the NLP algorithm) is computed using sensitivity calculations. The continuous derivative

formulation uses the Automatic Differentiation (AD) tool, ADOL-C [32] to construct the

relevant system of equations required by the integration subroutines and we exploit the

efficient integration tool CVODES [59] to integrate the state and sensitivity systems.

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

58

4.9 Implementation and Numerical Results

Figure 4.3: SMB Process

4.9.1.1 Case Study 1: SMB Process

An SMB system consists of multiple columns connected to each other, making a circulation

loop (Fig. 4.3). SMB system consists of four zones, each fulfilling different functions. The

feed and desorbent are supplied continuously through the inlet ports and at the same

time extract and raffinate are withdrawn at the outlet ports. These six inlet/outlet ports

are switched in the direction of liquid flow at a regular interval, T . The same switching

operation is repeated for Ncol = 6 steps which constitutes a cycle. Since SMB repeats

the same operation for all columns, this symmetric operation can be exploited to reduce

the problem size by a single-step optimization formulation [25, 41]. Here, operation is

considered over only one step where the profiles at the beginning of a step are identical

to those of the downstream adjacent column at the end of the step. This ensures a CSS

condition at the end of a cycle. In this case study, we solve the small problem considered

in [25, 74].

The behavior of the chromatographic columns, identified by index n = 1 . . . Ncol is

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

59

4.9 Implementation and Numerical Results

described through an equilibrium assumption between the solid and liquid phases along

with a simple spatial discretization. Here, the mass balance in the liquid phase over time

t and space l is given by,

ǫB
∂Cn,i(l, t)

∂t
+ (1 − ǫB)

∂qn,i(l, t)

∂t
+

Qi(t)

Si

∂Cn,i(l, t)

∂l
= 0 i = A, B (4.38)

The equilibrium relationship between the solid and liquid phases is given by,

∂qn,i(l, t)

∂t
= Ki(Cn,i)Cn,i(l, t) (4.39)

where Cn,i is the concentration of component i in column n in the liquid phase; qn,i is the

concentration of component i in column n in the solid phase; Qn is the volumetric flow

rate in each zone n; S is the cross-sectional area of the bed and ǫB is the bed voidage. We

assume that the zone velocities are constant during a step and all the inlet/outlet ports

are switched simultaneously. Dividing the column into Ndis compartments and applying

a simple backward difference results in,

dCn,i,j

dt
= Ki(Cn,i,j)Ndis[Cn,i,j−1 − Cn,i,j] (4.40)

for j = 1 . . . Ndis; i = A, B (binary mixture); n = 1 . . . , Ncol. We define the state variables

for this system, Cn,i,j = zm(t), m = 1 . . . 12Ndis as the concentrations of A and B in the

jth compartment for the six columns where the index is ordered as: m = j + (n − 1)Ndis

for component A and m = j + 6Ndis + (n − 1)Ndis for component B. After spatial

discretization, the dynamic SMB model along with cyclic steady state conditions can be

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

60

4.9 Implementation and Numerical Results

described by the following DAEs,

dzm

dt
= gm(zm, t) m = 1, ...6Ndis

zm(0) − zm+Ndis
(T) = 0 m = 1, ...5Ndis (4.41)

zm(0) − zm−5Ndis
(T) = 0 m = 5Ndis + 1, ...6Ndis

The port switching time, T and the constant flows, [QI , QDe, QEx, QFe] as independent

decision variables while the remaining flows QII , QIII , QIV , QRa are determined from a

linear mass balance. zm(T) is obtained from the forward simulation of the ODE system

in (4.41) with 12Ndis states. In this case study, we consider the adsorption isotherm

KA =
4(1 + ᾱC2

A)

1 + (1 + ᾱCA)2
, KB =

2(1 + ᾱC2
B)

1 + (1 + ᾱCB)2

where ᾱ = 0 reduces the nonlinear isotherm to a linear isotherm.

Equality Constrained Case

The following equality constrained problem is considered in order to determine the decision

variables that lead to the desired profiles,

min
zm(0),q,T

f =

12Ndis∑

i=1

(zm(0) − z̄m(0))2 s.t. CSS constraints in (4.41) (4.42)

The data z̄m(0) are from the optimal solution obtained by solving a maximum throughput

problem with 95% purities of A and B in the raffinate and extract streams, respectively.

The problem has 12Ndis+5 variables and 12Ndis equality constraints. For all the numerical

tests, we choose the initial state to be equal to zero and the termination criteria set to

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

61

4.9 Implementation and Numerical Results

|f | < 10−5 and ‖ c(x) ‖< 10−5. For this objective function, it can be seen that these

criteria are compatible with the KKT conditions in step 9.

We present optimization results using the orthogonal (QR) and coordinate basis for

the linear (ᾱ = 0) and nonlinear isotherm with ᾱ = 1. Firstly, we show the results

in Table 4.1 in which the derivatives are obtained by the “discretize then differentiate”

strategy. Table 4.1 show the corresponding iteration counts and the number of exact

Jacobian evaluations for the inexact and exact approaches and also the number of failures

in (4.26) and (4.32) for the inexact case. In this case, an explicit Runge-Kutta method

is used to discretize the state equations and Automatic Differentiation is applied to the

discretized equations to obtain the discrete derivative information.

We then compare the above results with those in Tables 4.2 and 4.3 obtained by the

“differentiate then discretize” strategy as described in Chapter 3. Table 4.2 and 4.3 show

the corresponding iteration counts and the number of exact Jacobian evaluations for the

inexact, exact and rSQP approaches and also the number of failures in (4.26) and (4.32)

for the inexact case. We observe that the number of iterations and the number of Jacobian

Table 4.1: Optimization results for equality constrained SMB problem with orthogonal
null space: discrete derivatives

evaluation of full A(xk)
inexact exact

iteration count fail. in fail. in
Ndis ᾱ n m inexact exact (4.26) (4.32) total total

10 0 125 120 19 15 7 2 10 13
20 0 245 240 24 11 13 2 16 12
30 0 365 360 11 11 4 3 8 11
40 0 485 480 9 15 0 3 4 12
10 1 125 120 5 15 0 3 4 14
20 1 245 240 18 5 1 9 11 6
30 1 365 360 7 21 0 5 6 17
40 1 485 480 13 21 5 5 11 19

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

62

4.9 Implementation and Numerical Results

Table 4.2: Optimization results for equality constrained SMB problem with orthogonal
null space

evaluation of full A(xk)
inexact exact rSQP

iteration count (CPU min.) fail. in fail. in
Ndis ᾱ n m inexact exact rSQP (4.26) (4.32) total total total

10 0 125 120 7 (0.7) 6 (1.2) 28 (4.4) 0 3 4 7 28

20 0 245 240 6 (6.3) 6 (7.5) 23 (27) 1 3 5 7 23

30 0 365 360 8 (15) 7 (29.3) 33 (122.2) 0 3 4 8 33

40 0 485 480 7 (28) 6 (67.5) 35 (314.5) 0 2 3 7 35

10 1 125 120 8 (2.1) 6 (1.7) 27 (8.6) 0 3 4 7 27

20 1 245 240 7 (14) 6 (12.4) 32 (58.7) 0 4 5 7 32

30 1 365 360 9 (24.1) 6 (29.3) 32 (131.3) 1 3 5 7 32

40 1 485 480 7 (37) 7 (70.5) 34 (295.8) 1 2 4 8 34

Table 4.3: Optimization results for equality constrained SMB problem with coordinate
basis

evaluation of full A(xk)
inexact exact rSQP

iteration count (CPU min.) fail. in fail. in
Ndis ᾱ n m inexact exact rSQP (4.26) (4.32) total total total

10 0 125 120 6 (0.54) 6 (0.86) 28 (4.4) 0 4 5 7 28

20 0 245 240 8 (7.2) 7 (8.5) 23 (27) 0 5 6 8 23

30 0 365 360 7 (44) 7 (57.6) 33 (122.2) 0 5 6 8 33

40 0 485 480 8 (64) 8 (82) 35 (314.5) 0 6 7 9 35

10 1 125 120 6 (1.8) 6 (2.5) 27 (8.6) 0 4 5 7 27

20 1 245 240 7 (8.2) 7 (15.4) 32 (58.7) 0 4 5 8 32

30 1 365 360 8 (25.1) 7 (36) 32 (131.3) 0 5 6 8 32

40 1 485 480 7 (41) 7 (65.4) 34 (295.8) 0 5 6 8 34

evaluations in “differentiate then discretize” are fewer compared to the “discretize then

differentiate” strategy.

As can be seen in Tables 4.2 and 4.3, the inexact and exact methods take far fewer

iterations than rSQP and the dominant computational cost (shown in bold) is significantly

lower. The inexact trust region approach is at least 3 times faster than rSQP and up to 2.4

times faster than the exact approach. This performance improvement is due to providing

exact second order information in the proposed algorithm, as opposed to the approximate

second order information provided by BFGS [51] updates in rSQP. On the other hand,

rSQP computes an exact Jacobian at every NLP iteration and hence, takes many more

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

63

4.9 Implementation and Numerical Results

Jacobian evaluations than the inexact and exact methods. Even though the inexact

method takes almost the same number of iterations as the exact method in most of the

cases, the number of exact Jacobian evaluations, which is the dominant computational

cost during the entire optimization process, is less than with the exact method. Hence

we obtain significant savings in CPU time over the exact and rSQP methods. Also, the

algorithm converges to local solution even from poor starting points i.e. with an initial

guess far away from the optimum.

Bound Constrained Case

We now solve the following optimization problem in order to maximize the feed throughput

subject to specifications on the purities of species A and B in the raffinate and extract

streams, respectively.

max
zm(0),q,T

QFe

s.t. (dzm

dt
= gm(zm, t) m = 1, ...6Ndis, solved implicitly.)

zm(0) − zm+Ndis
(T) = 0 m = 1, ...5Ndis (4.43)

zm(0) − zm−5Ndis
(T) = 0 m = 5Ndis + 1, ...6Ndis

PurityRa ≥ 0.95

PurityEx ≥ 0.95

0 ≤ q ≤ Qmax

The problem has 12Ndis + 8 variables, 12Ndis equality constraints, two inequality con-

straints and upper and lower bounds on feed flow-rates in each section of SMB. In this

case study, we set the bound on flow rate Qmax = 2. In order to avoid concentrations

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

64

4.9 Implementation and Numerical Results

Table 4.4: Optimization results for general constrained SMB problem with coordinate
basis

evaluation of full A(xk)
inexact exact rSQP

iteration count (CPU min.) fail. in fail. in
Ndis ᾱ n m inexact exact rSQP (4.26) (4.32) total total total

10 0 128 123 15 (1.8) 12 (2.75) 22 (6.5) 2 8 11 13 22

20 0 248 243 17 (14.4) 24 (28.5) 26 (34.3) 0 11 12 25 26

30 0 368 363 15 (32.8) 14 (61.5) 30 (127.7) 0 9 10 15 30

10 0.1 128 123 18 (1.2) 20 (2) 25 (5.3) 0 13 14 21 25

10 1 128 123 14 (2) 10 (1.2) 27 (12) 0 10 11 11 27

20 0.1 248 243 16 (14) 18 (22.1) 30 (33.4) 0 9 10 19 30

20 1 248 243 15 (26) 20 (38.5) 33 (56.3) 0 11 12 21 33

becoming negative, which would result in failure of the state and sensitivity integration,

we lump all the constraints into one inequality constraint using the KS function (4.2).

To accommodate the non-negative bounds on slack variables resulting from the two pu-

rity constraints and the KS function, we move the feed flow rate, QFe, extract flow rate,

QEx and the step time, T into the set of dependent variables. This choice has been

made by solving the design problem by fixing the independent variables as described in

Section 4.1.1

Table 4.4 presents results of the general constrained case with both the linear and

nonlinear isotherm. As in the equality constrained case, the inexact and exact methods

take fewer iterations compared to rSQP and the inexact method requires fewer Jacobian

evaluations to converge to the same solution. Here the dominant computational cost

(shown in bold) is significantly lower. In the table we see that the inexact trust region

approach is up to six times as fast as rSQP and up to twice as fast as the exact approach.

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

65

4.9 Implementation and Numerical Results

Make product

Evacuation

Repressurization

F1

F2

F3

Cv

Tank

Figure 4.4: VSA Process

4.9.1.2 Case Study 2: VSA Process

In this case study, we consider a single-bed three step non-isothermal cycle as shown in

Figure 4.4. This process is used to separate O2 from air using a zeolite molecular sieve as

the adsorbent. The cycle is operated in three steps: (1) adsorption (2) evacuation and (3)

re-pressurization. In contrast to the SMB case study, in this example the PDAE model

is given by the following equations:

Component mass balance

ǫB
∂ρi

∂t
+ ρs

∂ni

∂t
+

∂(ρiν)

∂l
= 0 i = 1, 2, ..., Nc

Linear driving-force equation

∂ni

∂t
=

ki

RPV T
(Pi − P ∗

i) i = 1, 2, ..., Nc

Energy balance

(

ǫB

Nc∑

i=1

ρi(c
i
p − RE) + ρscs + ρs

Nc∑

i=1

nic
i
p

)

∂T

∂t
− ρs

Nc∑

i=1

qi
∂ni

∂t
+

∂(νh)

∂l
= 0

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

66

4.9 Implementation and Numerical Results

Steady-state momentum balance (Ergun equation)

−
∂P

∂l
= 150

µν

d2
p

(1 − ǫB)2

ǫ3
B

+ 1.75
ρMν2

dp

1 − ǫB

ǫ3
B

Adsorption isotherm

ni = m1
biP

∗
i

1 +
Nc∑

i=1

bjP
∗
j

i = 1, 2, ..., Nc

Ideal gas law

ρ =
P

RPV T

Enthalpy

h =
Nc∑

i=1

ρi(aT + bT 2 + cT 3 + dT 4)

Molecular weight

M =
Nc∑

i=1

yiM0,i where yi = ρi/ρ

Fluid viscosity

µ =
Nc∑

i=1

µiyi where µi = µ0,i + µ1,iT

Here, Pi is the component partial pressure in the gas phase; P ∗
i is the component equilib-

rium partial pressure in the gas phase; ni is the solid phase loading; n∗
i is the component

equilibrium loading; yi is the mole fraction of the component in gas phase; ρi is the com-

ponent molar density; ki is the component mass transfer coefficient; ci
p is the component

heat capacity; T is the temperature; P is the total pressure in the bed; h is the mixture

enthalpy; M is the molecular weight; b is the affinity parameter of the adsorbent; ν is the

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

67

4.9 Implementation and Numerical Results

superficial velocity of the gas; µ is the viscosity of the gas; cs is the heat capacity of the

adsorbent; dp is the particle diameter; mi is the saturation capacity of the adsorbent; qi is

the component heat of adsorption; ǫB is the inter-particle void volume of the adsorbent;

ǫT is the total void volume of the adsorbent; ρs is the bulk density of the adsorbent. The

equation for flow through the valve is given by

ν =

CvPH

√
1−(PL/PH)2

MT
if PH/PL < Pcrit

CvPH

√
1−P−2

crit

MT
if otherwise

(4.44)

Here, ν is the flow rate, Cv is the valve constant, M is the molecular weight of the gas

mixture, γ is the ratio of constant pressure and constant volume heat capacities (e.g.

γ = 1.4 for ideal gas, PH is the inlet pressure, PL is the outlet pressure from the valve

and Pcrit = (2
1+γ

)
γ

1−γ is the critical pressure ratio.

We use the method of lines to spatially discretize the PDAEs into a set of differential

algebraic equations. Because first and second-order finite difference or finite-element

methods in space introduce oscillations near the steep adsorption fronts and also do not

preserve the mass and energy balance in the spatial direction, we apply a high resolution

finite-volume method along with the flux limiter scheme outlined in [38]. The resulting

DAEs are then integrated using an ODE solver (CVODES) with the algebraic equations

solved using a Newton solver in an inner loop. In addition, due to non-isothermal and

steep adsorption fronts, the bed model can be so nonlinear and ill-conditioned that the

integration may fail. In this work, we decide by inspection which variables need to rescaled

to avoid these failures.

The adsorption bed is discretized into Ndis nodes and each node has five differential

equations, which are densities and loadings for two components and one temperature

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

68

4.9 Implementation and Numerical Results

Table 4.5: Boundary conditions for the PSA cycle
Step Beginning of bed End of bed

Step 1 Constant flow Determined by valve equation
Step 2 Constant flow (reverse direction) Velocity is zero
Step 3 Constant flow Velocity is zero

variable. Therefore, the number of state variables for the DAE model is 5Ndis. The

boundary conditions are given in Table 4.5. The data for the physical parameters are

taken from Jiang et al. [38].

In this case study, we solve the following general constrained problem to maximize

O2 recovery subject to the cyclic steady state constraints and design specification on

the purity. Here, we adjust the step times of the evacuation and re-pressurization steps

(T2, T3) with the valve constant (Cv) as the dependent variable to accommodate the purity

constraint.

max
Cv,T2,T3

O2 Recovery

s.t. (dzm

dt
= gm(zm, t) m = 1, ...5Ndis, solved implicitly.)

zm(0) − zNdis
(T) = 0 m = 1, ...5Ndis

O2 Purity = 0.35 (4.45)

0 ≤ T2 ≤ 100

0 ≤ T3 ≤ 150

A better assessment of the algorithm’s performance can be clearly seen in this case

study (Table 4.6). The total number of iterations are significantly reduced with the

proposed inexact algorithm. Furthermore, the savings in the number of times an exact

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

69

4.10 Concluding Remarks

Table 4.6: Optimization results for the VSA problem with coordinate basis
evaluation of full A(xk)
inexact exact rSQP

iteration count (CPU time, min) fail. in fail. in
Ndis n m inexact exact rSQP (4.26) (4.32) total total total

10 53 51 11 (8.7) 16 (21.5) 46 (55.2) 3 1 5 14 46

20 123 121 12 (42) 24 (127) 32 (213) 2 2 5 21 32

30 153 151 22 (212) 24 (541) 53 (1227) 1 8 10 25 53

Table 4.7: Optimization variables and objective at the solution of the VSA problem
T2(s)/T3(s)/Cv/f

Ndis inexact exact rSQP

10 100/86.17/1079.516/0.912 100/86.18/1079.516/0.912 100/86.22/1079.83/0.912
20 100/106.738/869.685/0.9118 100/106.738/869.685/0.9118 100/106.740/869.72/0.9118
30 100/98.28/912.746/0.9124 100/98.28/912.735/0.9124 100/98.26/912.786/0.9124

Jacobian is computed, which is the dominant computational cost (shown in bold), are

also significant. Here the inexact trust region approach is at least 5 times faster than

rSQP and up to 3 times as fast as the exact approach.

Figure 4.5 shows the O2 mole fraction profiles of the adsorption step at the optimum

of the inexact method for Ndis = 10. The O2 mole fraction profiles of the exact and the

rSQP method are very similar to the profiles of the inexact method which means that all

three methods converged to essentially the same solution for a given value of Ndis. This

can also be seen from the results in Table 4.7, where the objective function achieves a

91.2 % O2 recovery at the required purity for all cases in Table 4.6.

4.10 Concluding Remarks

In this chapter, we focus on the solution of dynamic optimization problems related to

periodic adsorption processes. Because these result in dense constraint Jacobians, the

time required for the computation of the Jacobian and its factorization dominates the

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

70

4.10 Concluding Remarks

0
2

4
6

8
10

0

2

4

6

8

10
0

0.2

0.4

0.6

0.8

1

Bed lengthTime

m
ol

e
fr

ac
tio

n
of

 o
xy

ge
n

Figure 4.5: O2 mole fraction profiles of the adsorption step at the solution

overall optimization process. To avoid these dense calculations, we developed and imple-

mented an inexact trust region SQP algorithm based on Byrd-Omojokun approach that

approximates the constraint Jacobian using TR1 updates. Furthermore, the specialized

algorithm works with exact first and second order derivative information in the form of

exact Jacobian-vector, vector-Jacobian and Hessian-vector which are efficiently calculated

using sensitivities and Automatic Differentiation.

The performance of the algorithm is tested on equality and bound constrained op-

timization problems for simulated moving bed and vacuum swing adsorption systems.

In comparisons with rSQP and exact trust region methods, the inexact method gener-

ally requires far fewer Jacobian evaluations. Since Jacobian evaluation is the dominant

computational cost, we obtain significant savings in CPU time.

The proposed algorithm has a limitation of handling general inequality constraints i.e.

only (n − m) variables can have bounds. In order to overcome this drawback, the next

chapter focuses on handling inequality constraints using an interior point trust-region

method.

Chapter 4. SQP Trust-Region Algorithm

with Inexact Jacobians

71

Chapter 5

Interior Point Trust-Region

Algorithm with

Inexact Jacobians

Synopsis

In this chapter, a class of trust-region algorithms is developed and analyzed for the solution

of minimization problems with nonlinear inequality constraints. Based on composite-step

trust region methods with barrier functions, the resulting algorithm also does not require

the computation of exact Jacobians; only Jacobian vector products are used along with

approximate Jacobian matrices. As demonstrated on small numerical examples, this

feature has significant potential benefits for problems where Jacobian calculations are

expensive.

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

72

5.1 Introduction

5.1 Introduction

We consider an inequality constrained nonlinear program given by:

min
x∈RN

f(x) subject to g(x) ≤ 0, (5.1)

where the objective f : R
N → R and the vector of the constraints g : R

N → R
M with

N ≥ M are given smooth functions. Following the strategy of interior point methods, we

introduce nonnegative slack variables s ∈ R
M yielding the modified constraint g(x)+ s =

0, s ≥ 0, and form the barrier problem from (5.1) in x and s given by

min
x∈RN

f(x) − µ
M∑

i=1

ln si subject to

g(x) + s = 0 (s > 0)

(5.2)

with s ∈ R
M implicitly assumed to be positive and a barrier parameter µ > 0.

We define the constraint Jacobians as

A(x) = (∇g1(x), . . . ,∇gM(x))⊤ ∈ R
M×N

and allow these matrices A(x) to be approximated in the algorithm. Hence, the algorithm

that we propose, allows inexactness in the Jacobian itself. Note that the constraint

Jacobian may be dense, i.e., we do not assume that A(x) has any structure. There

are several papers dealing with inexactness in the equality-constrained case, see, e.g.,

[35, 74, 72]. However, in the case of inequality constraints only a few results are available,

see, e.g., [24, 72]. Curtis et. al. [24] focused on inexactness arising due to iterative

system solves. They assume that the Jacobian can be obtained at low cost and focus

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

73

5.1 Introduction

only on the efficient solution of the linear system. More recently, Vetukuri et al. [72]

developed an inexact SQP algorithm for solving general optimization problems which

avoids forming and factoring the dense Jacobian by working with exact Jacobian-vector

and Hessian-vector products. A five-fold reduction in computation is demonstrated with

our algorithm for two PAP optimization problems. However, the algorithm can handle

bounds only on (N − M) optimization variables.

To begin, we note that the first order optimality condition for the barrier problem

(5.2) are given by:

L(x, s, λ) = f(x) − µ
M∑

i=1

ln si + λ(g(x) + s)

∇xL(x, s, λ) = ∇f(x) + A(x)⊤λ = 0

∇sL(x, s, λ) = −µS−1e + λ = 0

∇λL(x, s, λ) = g(x) + s = 0

where

S = diag(s1, . . . , sM) ∈ R
M×M and e = (1, . . . , 1)⊤ ∈ R

M .

As can be seen from (5.2), the solution of this barrier problem coincides with a solution

of the original problem (5.1) if µ = 0. Therefore, we compute a solution of the original

optimization problem (5.1) in a nested way. An outer algorithm reduces the barrier

parameter µ step by step in an appropriate way to ensure convergence as discussed later

in Sec. 5.6. An inner algorithm is used to compute a solution for the current barrier

problem. This will be done by a composite-step trust-region method analogous to the

equality constrained algorithm in Chapter 4, the convergence of which is the subject of

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

74

5.2 Notation and Assumptions

the Secs. 5.3–5.5. Hence, the overall layout of the proposed solution procedure is given

by

Algorithm 5.1.1.

1. Outer iteration: Stopping criterion

If (5.1) is solved to the required accuracy, stop.

2. Outer iteration: Solution of barrier problem

(a) Initialization: ∆0, ξ ∈ (0, 1), δ > 0

(b) Inner iteration:

i. Stopping criterion: If (5.2) is solved to the required accuracy, stop.

ii. Computation of normal step

iii. Computation of tangential step

iv. Tests on inexactness and termination

3. Outer iteration: Reduction of barrier parameter µ, go to 2

5.2 Notation and Assumptions

For the analysis of the inner iteration, we define the following terms:

z =

x

s

 , ϕ(z) = f(x) − µ

M∑

i=1

ln si, c(z) = g(x) + s, (with s > 0).

Then the barrier problem (5.2) becomes:

min
z∈RN+M

ϕ(z) subject to c(z) = 0 (5.3)

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

75

5.2 Notation and Assumptions

with z⊤ = [x⊤s⊤]. To solve the barrier problem we apply an SQP trust-region algorithm

and approximately solve the trust region subproblem at the kth iteration:

min
d∈RN+M

∇ϕ(zk)
⊤d + 1

2
d⊤

Bk 0

0 µS2
k

 d

subject to g(xk) + sk + A(xk)dx + ds = 0 (5.4)

‖dx, S
−1
k ds‖ ≤ ∆k, ds ≥ −τsk

to compute a new step dk for a given iterate zk and Lagrange multipliers λk. For this

purpose, we will use a trust region algorithm discussed in detail below. Here, we introduce

the scaling S−1
k in the trust region constraint in (5.4) that penalizes ds near the boundary

of the feasible region and hence avoids the slack variables approach zero prematurely.

The additional parameter τ ∈ (0, 1) is chosen close to 1 to impose the well-known fraction

to the boundary rule [79] which ensures that the slack variables remain positive. As Bk

one may use the exact second-order information ∇2
xxL(xk, sk, λk). Then, the functions

f(·) and c(·) are assumed to be twice continuously differentiable. Alternatively, one may

employ a symmetric matrix approximating the Hessian information. Finally, ‖ · ‖ denotes

the Euclidean norm ‖ · ‖2.

Since the trust region problem (5.4) may have no feasible solution, we consider a

composite-step method. Following the approach of Byrd and Omojokun, we define the

merit function

φ(z; ν) = f(x) − µ

M∑

i=1

ln si + ν‖g(x) + s‖ ≡ ϕ(z) + ν‖g(x) + s‖

with the penalty parameter ν > 0 to judge the progress toward the solution. This merit

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

76

5.2 Notation and Assumptions

function is exact but non-differentiable due to the Euclidean norm in the second term. A

model of φ(·; νk) around an iterate xk is given by the function

mk(d) =f(xk) + ∇f(xk)
⊤dx +

1

2
d⊤

x Bkdx + νk‖g(xk) + sk + A(xk)dx + ds‖

− µ

(
M∑

i=0

ln si
k + e⊤S−1

k ds −
1

2
d⊤

s S−2
k ds

)

.

For measuring the progress of our algorithm, we define, for a given iterate zk and a step

d, the actual reduction in the merit function as

aredk(d) = φ(zk; νk) − φ(zk + d; νk). (5.5)

The predicted reduction in the merit function is defined as the change of the model mk

caused by a step d, i.e.,

predk(d) = mk(0) − mk(d)

= −∇f(xk)
⊤dx −

1

2
d⊤

x Bkdx

+ νk(‖g(xk) + sk‖ − ‖g(xk) + sk + A(xk)dx + ds‖)

+ µ

(

e⊤S−1
k ds −

1

2
d⊤

s S−2
k ds

)

.

(5.6)

We suppose that for each iteration k one can provide an approximation Ak of the exact

Jacobian A(xk) of the inequality constraints. Furthermore, we define an exact null space

basis of Â(z) = [A(xk) I] as

Z(xk)
⊤ = [I − A(xk)

⊤] (5.7)

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

77

5.2 Notation and Assumptions

with Â(zk)Z(xk) = 0 and ÂkZk = 0 as the corresponding approximation with Z⊤
k =

[I − A⊤
k].

The approximation of the derivative matrices using quasi-Newton update formulas

fits into this setting. For this purpose, one may employ the well-known symmetric rank

one (SR1) update formula to approximate the Hessian ∇2
xxL(xk, sk, λk). This approach is

examined for unconstrained optimization in [20]. The two-sided rank one (TR1) update

formula (4.9) as proposed in [33] can be used to approximate the constraint Jacobian.

It has been studied for equality constrained problems in [75, 72]. Another possibility

would be to compute the required Hessian-vector products exactly employing, for example,

automatic differentiation (AD). For the first-order information, the exact information

A(xk) could be computed for the iterate k and used for the following iterates as long as the

restrictions on the inexactness are fulfilled. This is a promising approach since the iterates

converge frequently in a tangential way toward the optimal solution. This observation

holds when the Hessian is approximated for example by a quasi-Newton formula and the

exact Jacobian of the constraints is used.

To prove the convergence results presented, we make the following assumptions:

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

78

5.2 Notation and Assumptions

(AS1) The functions f(·) and c(·) are twice continuously differentiable on an

open convex set X containing all iterates.

(AS2) The sequence {f(xk)} is bounded below. The sequences {∇f(xk)},

{c(xk)}, {A(xk)}, and {Bk} are bounded.

(AS3) The functions ∇f(·), c(·), and A(·) are Lipschitz continuous on an open

convex set X containing all iterates.

(AS4) The gradients ∇f(x), ∇xL(x, s, λ), the gradient-vector product

∇f(x)⊤d and the products A(x)v, w⊤A(x) can be evaluated exactly.

(AS5) For fixed xk, the approximation Ak can be improved in a finite number

of steps such that an exact Jacobian A(xk) is obtained.

Assumptions (AS1) - (AS3) are standard assumptions required also for the global conver-

gence analysis in other papers.

To provide the exact gradients, Jacobian×vector and vector×Jacobian products re-

quired in (AS4), one may apply for example automatic differentiation [31] or even direct

sensitivity and adjoint differential equations if the NLP description (5.1) is based on

differential equations (Chapter 3).

In (AS5), we assume that we can improve the approximation Ak such that it becomes

A(xk) after a finite number of improvement steps. This is possible, for example, for the

TR1 approach by performing M rank one updates without changing the current iterate

xk since the TR1 update procedure yields the exact Jacobian A(xk) for fixed xk after at

most M updates as shown in [75]. If one freezes the Jacobian and null space information

as proposed above, one can evaluate new exact Jacobian information if the restrictions

on the inexactness are not valid anymore. This approach ensures that assumption (AS5)

holds. Hence, one can use the approximation Zk = Zk−1 and improve the approximation

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

79

5.3 A Jacobian-free Trust-Region Method

of the null space if required.

5.3 A Jacobian-free Trust-Region Method

To apply a composite step trust-region method as proposed by Byrd and Omojokun,

we first compute a normal step n that lies well inside the trust-region radius and that

attempts to satisfy the linear constraints in (5.4). Subsequently, we take a tangential step

t toward optimality. Putting both steps together, we obtain the total step d = n + t.

5.3.1 The Normal Subproblem

For the current iterate z⊤k = [x⊤
k , s⊤k], we compute a normal step nk = (nx,k, ns,k) that

best satisfies the linearized constraints by solving the normal subproblem

min
n

‖g(xk) + sk + A(xk)nx + ns‖
2

subject to ‖(nx, S
−1
k ns)‖ ≤ ∆̃k

ns ≥ −ξτsk

(5.8)

with ∆̃k = ξ∆k and ξ ∈ (0, 1). This optimization problem may have infinitely many

solutions. To simplify the constraints we define ñ = (nx, ñs) = (nx, S
−1ns) and Â(xk) =

[A(xk) Sk] The exact steepest descent direction for the unconstrained problem of (5.8) is

given by (see [13])

ñC
k = −

A(xk)
⊤

Sk

 (g(xk) + sk). = Â(xk)

⊤(g(xk) + sk) (5.9)

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

80

5.3 A Jacobian-free Trust-Region Method

Note that with assumption (AS4) we can evaluate A(xk)v and A(xk)
⊤w for given v and w

exactly, so we are able to compute the exact steepest descent direction. Then, the exact

Cauchy step for (5.8) is given by αC
k ñC

k , where αC
k is the optimal solution of the problem:

min
α≥0

‖g(xk) + sk + α(A(xk)n
C
x,k + SñC

s,k)‖
2

subject to ‖α(nC
x,k, ñ

C
s,k)‖ ≤ ∆̃k.

αñC
s,k ≥ −ξτ

(5.10)

Nevertheless, employing only the Cauchy step may yield very slow convergence [51]. To

accelerate the optimization process, one could use in addition also the exact Newton step

or approximations thereof. The exact Newton step of (4.15) is given by

ñN (xk) = −Â(xk)
+(g(xk) + sk) = −Â(xk)

T (Â(xk)Â(xk)
T)−1(g(xk) + sk) (5.11)

However, it is expensive to compute (Â(xk)Â(xk)
T)−1(g(xk) + sk) exactly. Using the QR

factorization and its orthonormal properties, an approximation

ñN (xk) = −Â(xk)
T (Âk(Âk)

T)−1(g(xk) + sk) (5.12)

of the exact Newton step (5.11) can be computed easily. In combination with the exact

Cauchy step, we define an inexact dogleg step by setting

ñD(xk) = η̃ñN (xk) + (1 − η̃)ñC(xk) (5.13)

with η̃ = 1 if ‖ ñN ‖≤ ∆̃k. Otherwise η̃ ∈ [0, 1] would be adjusted such that the length of

ñD is equal to ∆̃k. Because of the bounds on the slack variables in (5.8), the Cauchy and

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

81

5.3 A Jacobian-free Trust-Region Method

Newton steps are truncated such that θ̃CñC and θ̃N ñN are feasible where θ̃C , θ̃N ∈ (0, 1].

The choice ñk is governed by

ñk =

ñD(xk) if npredk(ñ
D(xk)) ≥ γnnpredk(θ̃

C ñC(xk))

θ̃CñC(xk) otherwise

(5.14)

for some constant γn > 0, and the normal predicted reduction is given by,

npredk(ñ) = ‖g(xk) + sk‖ − ‖g(xk) + sk + A(xk)nx + Sñs‖ (5.15)

Finally, we transform ñ into the original space of variable to obtain the normal step

n = (nx, Sñs).

To allow more freedom in the choice of the direction guaranteeing convergence, one

has to analyze the reduction in the linearized constraints caused by the normal step. For

that purpose, we define the normal predicted reduction for a vector n as

npredk(n) = ‖g(xk) + sk‖ − ‖g(xk) + sk + A(xk)nx + ns‖ (5.16)

and require that the normal step nk computed in the kth iteration satisfies the following

condition:

Normal Cauchy Decrease Condition. An approximate solution nk of the normal

subproblem (5.8) must satisfy

npredk(nk) ≥ γnnpredk(α
C
k nC

k), (5.17)

for some constant γn > 0.

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

82

5.3 A Jacobian-free Trust-Region Method

For our convergence analysis, the normal steps nk additionally have to fulfill the range

space condition

∃ vk ∈ R
M such that nk =

A(xk)
⊤

S2
k

 vk. (5.18)

Note that the Cauchy step nC
k is of this form.

Since α = 0 is feasible for the optimization problem (5.10), it follows from (5.17) that

npredk(nk) ≥ 0 (5.19)

holds. One can improve the bound on the normal predicted reduction as shown for

example in [23, Lemma 15.4.17] and [13, Lemma 2]. The main ingredient of the proofs

is the normal Cauchy decrease condition. Since the inexactness of the Jacobian does not

influence the derivation of the result, we skip the proof of the following lemma. It can be

proved along the lines of Lemma 2 in [13].

Lemma 5.3.1. Suppose that sk > 0 and that nk be an approximate solution of the normal

subproblem (5.8) such that (5.17) holds. Then

‖g(xk) + sk‖npredk(nk) ≥

γn

2

∥
∥
∥
∥
∥
∥
∥

A(xk)
⊤

Sk

 (g(xk)+sk)

∥
∥
∥
∥
∥
∥
∥

min

∆̃k, ξτ,

∥
∥
∥
∥
∥
∥
∥

A(xk)
⊤

Sk

 (g(xk) + sk)

∥
∥
∥
∥
∥
∥
∥

∥
∥
∥
∥
∥
∥
∥

A(xk)
⊤

Sk

∥
∥
∥
∥
∥
∥
∥

2

.

(5.20)

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

83

5.3 A Jacobian-free Trust-Region Method

5.3.2 The Tangential Subproblem

Given a current iterate zk, next we compute the tangential step towards optimality. Usu-

ally, one tries to maintain linearized feasibility, i.e., the exact tangential step t(zk) =

Z(zk)pk should be in the exact null space of the constraints. Since we may be using an

approximation Zk of the exact null space Z(xk), we will have to safeguard the computa-

tion of the tangential step tk = Zkpk = [I −Ak]
⊤p by limiting the amount of inexactness.

On the other hand, since we have Z(xk)
⊤ = [I −A(xk)

⊤], we will be able to compute at

least an exact tangential Cauchy step.

We first concentrate on computing an approximate solution of the inexact tangential

subproblem

min
p

(∇f(xk) + Bknk)
⊤Zx,kp +

1

2
p⊤Z⊤

x,kBkZx,kp

−µ
(
e⊤S−1

k Zs,kp − n⊤
s,kS

−2
k Zs,kp −

1

2
p⊤Z⊤

s,kS
−2
k Zs,kp

)

subject to ‖(Zx,kp, S
−1
k Zs,kp)‖ ≤ ∆̂k

S−1
k (ns + Zs,kp) ≥ −τe

(5.21)

with ∆̂k =
(
∆2

k − ‖(nx,k, S
−1
k ns,k)‖

2
)1/2

.

The steepest descent direction in the null space basis variables for this optimization

problem is given by

pC
k = −(∇f(xk) + Bknx,k) − µA(xk)

⊤(S−1
k e − S−2

k ns,k), (5.22)

see, e.g., [13, 35]. In the inequality-constrained case, one can evaluate the product Z(xk)p
C
k

exactly due to the representation (5.7) of the null space and Assumption (AS4). This dif-

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

84

5.3 A Jacobian-free Trust-Region Method

fers significantly from the equality-constrained case and simplifies the proof of convergence

considerably.

Once more, the pure steepest descent direction pC
k may yield poor convergence. For this

reason, also alternative tangential steps may be employed. To evaluate the improvement

provided by the tangential step, we define the tangential predicted reduction produced by

a tangential step t = Zkp as change in the objective function of the tangential subproblem.

Hence, we have

tpredk(t) = − (∇f(xk) + Bknx,k)
⊤tx −

1

2
t⊤x Bktx

+ µ

(

e⊤S−1
k ts − ns,kS

−2
k ts −

1

2
t⊤s S−2

k ts

)

.

To ensure global convergence of the trust-region algorithm applied in the inner iteration,

we will impose the following condition on the tangential step.

Tangential Cauchy Decrease Condition. An approximate solution tk = Zkpk of the

tangential subproblem (5.21) must satisfy

tpredk(tk) ≥ γt tpredk(θ
C
k Z(xk)p

C
k), (5.23)

for some constant γt > 0, where θC
k solves the problem

min
θ≥0

[
−tpredk(θZ(xk)p

C
k)
]

subject to

‖θ(pC
k ,−S−1

k A(xk)p
C
k)‖ ≤ ∆̂k S−1

k (ns,k − A(xk)p
C
k) ≥ −τe.

(5.24)

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

85

5.3 A Jacobian-free Trust-Region Method

Since θ = 0 is feasible for the optimization problem (5.24), it follows that

tpredk(tk) ≥ 0. (5.25)

As with the normal step, we use the tangential Cauchy decrease condition to provide a

bound on sufficient decrease for the solution of the tangential subproblem. As long as

this condition is satisfied, this does not require an exact null space representation for the

tangential subproblem (5.21). Lemma 5.3.2 provides this condition and is the tangential

analog of Lemma 5.3.1 for the normal step.

Lemma 5.3.2. Suppose that sk > 0 and let tk be an approximate solution of the tangential

subproblem (5.21) that satisfies (5.23). Then

tpredk(tk) ≥
γt

2
‖pC

k ‖M̂ with

M̂ = min

{

min{∆̂k, (1 − ξ)τ}

‖I + A(xk)⊤S−2
k A(xk)‖

1

2

,
‖pC

k ‖

‖Bk +µA(xk)⊤S−2
k A(xk)‖

1

2

}

.

(5.26)

The proof of this lemma follows exactly along the lines of Lemma 3 in [13]. It is based

on the Cauchy decrease for tpred(θCZ(xk)p
C) and the result follows from application of

(5.23).

To accelerate the convergence rate, one should not use the steepest descent direction given

by (5.22) but an approximation of the Newton step. For this purpose, we can apply the

Steihaug CG algorithm, see, e.g., [23, 51], or a direct solve if the corresponding system is

small enough as long as (5.23) is fulfilled for the tangential step tk.

Nevertheless, we note that the matrix Ak only approximates A(xk), so additional care

is needed to make sure that (5.23) holds. Fortunately, with sufficient updates of Ak,

Assumption (AS5) guarantees that this condition is satisfied.

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

86

5.3 A Jacobian-free Trust-Region Method

On the other hand, one has for the combined step dk = nk + tk that the identity

Â(zk)dk = Â(zk)nk is not necessarily valid. Therefore, we obtain for the predicted reduc-

tion (5.6) of the function mk the equation

predk(dk) = −∇f(xk)
⊤(nx,k + tx,k) −

1

2
(nx,k + tx,k)

⊤Bk(nx,k + tx,k)

+ νk(‖g(xk) + sk‖

− ‖g(xk) + sk + A(xk)(nx,k + tx,k) + (ns,k + ts,k)‖)

+ µ

(

e⊤S−1
k (ns,k + ts,k) −

1

2
(ns,k + ts,k)

⊤S−2
k (ns,k + ts,k)

)

.

= tpred(tk) + νknpred(nk) + χk + errk(dk),

where

χk = −∇f(xk)
⊤nx,k −

1

2
n⊤

x,kBknx,k + µ

(

e⊤S−1
k ns,k −

1

2
n⊤

s,kS
−2
k ns,k

)

(5.27)

as defined in [13], and the remaining error terms:

errk(dk) = νk(‖g(xk) + sk + A(xk)(nx,k + tx,k) + (ns,k + ts,k)‖

− ‖g(xk) + sk + A(xk)nx,k + ns,k‖).

As can be seen, errk(dk) is a measure for the error in Zk in approximating Z(xk). Since

the usual identity for the predicted reduction is not valid, we define as in [74] an inexact

predicted reduction:

ipredk(dk) = tpred(tk) + νknpred(nk) + χk (5.28)

that omits the error term. However, to ensure well-posedness and convergence of our

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

87

5.3 A Jacobian-free Trust-Region Method

trust-region method, we impose a bound on the error term errk(dk). Obviously, one can

derive that

|errk(dk)| = νk

∣
∣‖g(xk) + sk + A(xk)nx,k + ns,k‖

− ‖g(xk) + sk + A(xk)dx,k + ds,k‖
∣
∣

≤ νk‖A(xk)tx,k + ts,k‖ ≤ νk γ∆2
k.

Hence, one may use a criterion like

‖A(xk)tx,k + ts,k‖ ≤ γ∆2
k (5.29)

for a constant γ > 0 to bound the inexactness that is due to the tangential step. This

inequality can be easily verified by evaluating one Jacobian-vector product. However,

with (5.29) predk(dk) may still become negative if errk(dk) is large relative to ipredk(dk).

For this reason, we will use the direct criterion:

−errk(dk) ≤
(1 − η)

2
ipredk(dk) (5.30)

for a constant η ∈ (0, 1) similar to the equality constraint case studied in [74]. This

inequality can be used to control the error in the inexact predicted reduction and therefore

helps to ensure well-posedness of the algorithm. Note that one only has to bound a

negative errk(dk) since a positive error leads to an even larger predk(dk). If (5.30) holds,

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

88

5.3 A Jacobian-free Trust-Region Method

one has

predk(dk) = ipredk(dk) + errk(dk)

≥ ipredk(dk) −
(1 − η)

2
ipredk(dk) (5.31)

≥
(η + 1)

2
ipredk(dk) ≥ 0

if ipredk(dk) ≥ 0. Once more, (5.30) can be easily verified by evaluating two Jacobian-

vector products.

This lower bound (5.31) allows us now to work directly with ipredk(dk) (and npredk(dk)

and tpredk(dk)) instead of with predk, which contains the additional error terms.

5.3.3 The Trust-Region Algorithm

After specifying the computation of the normal and tangential step, we can now state the

algorithm for solving the barrier problem (5.2) for a fixed value of barrier parameter µ:

Algorithm 5.3.3 (Inner trust-region algorithm).

Start: Set initial values z⊤0 = [x⊤
0 , s⊤0] with s0 > 0, λ0, ν−1 > 0, A0,

∆0, ρ ∈ (0, 1), η ∈ (0, 1)

for k = 0, 1, . . .

1. Compute a normal step nk such that (5.17) and (5.18) hold.

2. Compute a tangential step tk such that (5.23) holds.

Compute the total step dk = nk + tk.

3. Compute the smallest value ν̃k such that

ipredk(dk) = tpred(tk) + ν̃knpred(nk) + χk ≥ ρ ν̃k npredk(nk). (5.32)

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

89

5.3 A Jacobian-free Trust-Region Method

If ν̃k ≤ νk−1, set νk = νk−1, otherwise set νk = max{ν̃k, 1.5νk−1}.

4. If (5.30) does not hold, update Ak and go to step 1.

5. If

aredk(dk) < η ipredk(dk)

decrease ∆k by a constant factor and go to 1.

6. Set xk+1 = xk + dx,k, sk+1 = max{sk + ds,k,−g(xk+1)}, and choose

∆k+1 such that ∆k+1 ≥ ∆k

7. Compute new Ak+1 and Lagrange multipliers λk+1 = µS−1
k+1e.

8. If ∇f(xk+1) + A(xk+1)
⊤λk+1 = 0 and g(xk+1) ≤ 0, stop.

Else increase k by 1 and go to 1.

Algorithm 5.3.3 represents a Byrd-Omojokun trust-region algorithm that takes the inex-

actness of the Jacobian and its null space representation into account. Here, the computa-

tion of a normal direction in Step 1 is identical to a standard approach where the normal

Cauchy decrease condition has to be fulfilled. Note that the inexactness of the Jacobian

may enter into the normal direction due to the choice of the normal step. The tangential

direction computed in Step 2 has to fulfill the tangential Cauchy decrease condition. Both

are standard requirements for the Byrd-Omojokun algorithm.

In Step 3, χk can be of any sign. Furthermore, we have that npredk(nk) and tpredk(tk)

are nonnegative due to (5.19) and (5.25). Hence, if npredk(nk) > 0 holds it follows that

ipredk(dk) ≥ ρ νk npredk(nk) is valid when

νk ≥
−χk

(1 − ρ)npredk(nk)
.

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

90

5.4 Well-posedness of Algorithm 5.3.3

This lower bound is a sufficient condition, but not necessary, as condition (5.32) may hold

also for smaller values of νk. If npredk(nk) = 0 one can conclude from Lemma 5.3.1 and

sk > 0 that g(xk) + sk = 0. Therefore, n = 0 solves the normal subproblem (5.8). Since

sk > 0, the squared objective of the normal subproblem (5.8) is positive definite on the

range space of Â(xk). Hence, n = 0 is the unique minimizer in the range space. It follows

for npredk(nk) = 0 that nk = 0, χk = 0, and that (5.32) is satisfied for any value of νk.

The additional test on (5.30) in Step 4 ensures that the inexactness of the Jacobian

and its null space representation does not harm the tangential direction too much. Due

to assumption (AS5), we need only a finite number of improvement steps for fixed xk to

obtain an exact Zk = Z(xk) such that (5.30) is fulfilled.

Steps 5 and 6 are standard update procedures of a trust-region algorithm, except that

ipred(dk) is not equal to the predicted reduction pred(dk) due to the inexactness.

In Step 7, we compute an approximation Ak+1 to the Jacobian as well as multipliers

λk+1 based on the values of the slack variables. Finally, in Step 8 we check whether xk+1

is a stationary point of the inexact problem, i.e., whether the equations

∇f(xk+1) + µA(xk+1)
⊤S−1

k+1e = 0, g(xk+1) ≤ 0

hold. This can easily be checked through a vector×Jacobian product.

5.4 Well-posedness of Algorithm 5.3.3

An important property of a trust-region algorithm is well-posedness. Here, one has to

show that the trust-region radius cannot shrink to zero if an iterate xk is not a stationary

point of the NLP (5.1). For this purpose, we analyze the relation of the actual and

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

91

5.4 Well-posedness of Algorithm 5.3.3

predicted reduction. We will employ ideas used in the proof of Lemma 4 in [13]. In

addition, we must take the inexactness of the Jacobian and its null space representation

into account. That is, we have to ensure that the error term errk(dk) does not dominate

the model. In Step 4 of Algorithm 5.3.3, we require that (5.30) holds. Employing this

inequality, we can prove the following result that is related to Lemma 4 in [13].

Lemma 5.4.1. Let the assumptions (AS2), (AS3), and (AS5) hold on the open convex

set X containing all iterates. Then there exists a positive constant ζ such that for any

iterate zk and any step dk = nk + tk generated by Algorithm 5.3.3 with [xk, xk +dx,k] ⊂ X ,

ds,k ≥ −τsk, and aredk(dk) ≤ η ipredk(dk), it follows that

0 ≤ ηipredk(dk) − aredk(dk) ≤ ζ(1 + νk)∆
2
k (5.33)

Proof. The proof is adapted from Lemma 4 in [13] and is given in Walther et al. [76].

Next, we show that Algorithm 5.3.3 can not generate an infinite cycling between Steps 1

and 5.

Lemma 5.4.2. Let the assumptions (AS2), (AS3), and (AS5) hold on the open convex

set X containing all iterates. Suppose that sk > 0 and that (xk, sk) is not a stationary

point of the barrier problem (5.2). Then there exists a ∆0
k such that

aredk(dk) ≥ η ipredk(dk)

for any ∆ ∈ (0, ∆0
k).

Proof. This proof follows along the lines of the proof of Proposition in [13] and is given

in [76].

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

92

5.5 Convergence Analysis

5.5 Convergence Analysis

We define the scaled merit function

φ̃(z; ν) ≡
1

ν
φ(z; µ) =

1

ν

(

f(x) − µ

M∑

i=1

ln si

)

+ ‖g(x) + s‖.

Then, we can deduce from Step 4 of Algorithm 5.3.3 that

φ̃(zk−1, νk−1)−
η ipredk−1(dk−1)

νk−1

≥ φ̃(zk, νk−1)

= φ̃(zk, νk) +

(
1

ν k−1
−

1

νk

)(

f(xk) − µ
M∑

i=1

ln si
k

)

−
η ipredk−1(dk−1)

νk−1
.

For the derivation of the next result, it is not required to take the inexactness of Ak into

account. It can be proved exactly along the lines of [13, Lemma 5 and Lemma 6] by

substituting pred by ipred. Therefore, we skip the proofs here.

Lemma 5.5.1 (Boundedness of the slack variables and the steps). Assume that (AS1)

and (AS2) hold. Then one has that:

• The sequence {sk} is bounded.

• ‖zk+1 − zk‖ ≤ γ0∆k

This lemma also shows that the modified merit function φ̃(zk−1, νk−1) is bounded

below, a result that is required to prove Lemma 5.5.2. For the derivation of this result,

it is again not required to handle the inexactness of Ak directly. The inexact first-order

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

93

5.5 Convergence Analysis

information are taken into account by Lemma 5.4.1 which is used to prove lemma. The

proof is adapted from [13, Lemma 7] and is given in [76].

Lemma 5.5.2 (Stationarity of all limit points). Assume that (AS1), (AS2), and (AS3)

hold. Then, we have

lim
k→∞

Ak

Sk

s

(g(xk) + sk) = 0.

Lemma 5.5.2 shows that A(xk)(g(xk)+ sk) → 0 and Sk(xk)(g(xk)+ sk) → 0. Hence, if

[A(xk) Sk] has full rank, which has not been assumed so far, it follows that g(xk)+sk → 0,

i.e., the iterates converge to a feasible point. If the full rank property is not fulfilled, then

[A(xk) Sk] converges to a degenerate matrix. Due to Step 6. in Algorithm 5.3.3, one has

g(xk) + sk ≥ g(xk)
+ ≥ 0,

where g(xk)
+ = (max{g(xk)

i, 0}). Using this property it is possible to show the following

result exactly along the lines of [13, Lemma 8], for which we skip the proof.

Lemma 5.5.3. Assume that (AS1), (AS2), and (AS3) hold. Then, we have

A(xk)
⊤g(xk)

+ → 0 k → ∞

Furthermore, if g(xk)
+ 6→ 0 then the penalty parameters νk tend to infinity.

From now on, we assume that the matrix (A(xk) Sk) and its approximation (Ak Sk) have

full rank:

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

94

5.5 Convergence Analysis

(AS6) (A(xk) Sk) has full row rank for all iterates zk with

σD((A(xk) Sk)) ≥ σ̂ > 0, where σD((A(xk) Sk)) denotes

the smallest singular value of A(xk).

(AS7) (Ak Sk) has full row rank for all iterations with

σD((Ak Sk)) ≥ σ̃ > 0.

With Assumption (AS6), we obtain from Lemma 5.2, that all limit points are feasible. To

prove also the first-order optimality of all limit points, we need that the normal step can

be bounded by the normal predicted reduction and that the penalty factor νk eventually

becomes constant. For that purpose, we state the next two lemmas. For the proofs of the

following two results, it is not necessary to handle the inexactness of Ak directly, so the

proofs are given in [13].

Lemma 5.5.4 (Upper bound on normal step). Let assumptions (AS1) – (AS7) hold.

Then there exist positive constants γ1 and γ2 such that if ‖g(xk) + sk‖ ≤ γ1 then

‖(nx,k, S
−1
k ns,k)‖ ≤ γ2 npredk(nk) (5.34)

Lemma 5.5.5 (Bound on tpred and constant νk for k ≥ k1). Suppose that the as-

sumptions (AS1) – (AS7) are satisfied. Then the sequence of penalty parameters {νk}

is bounded. Furthermore, there exist an index k1 and positive constants ν̄ and γ3, such

that νk = ν̄ holds for all k ≥ k1 and

ipredk(dk) ≥ γ3tpredk(tk). (5.35)

The main result of this chapter deals with global convergence for the inner trust-region

method given by Algorithm 5.3.3.

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

95

5.5 Convergence Analysis

Theorem 5.5.6 (All limit points are first-order optimal). Suppose that (AS1) – (AS7)

hold. Then, it follows that

lim
k→∞

∇xL(xk, λk) = lim
k→∞

(∇f(xk) + A(xk)
⊤λk)

= lim
k→∞

(∇f(xk) + µA(xk)
⊤S−1

k e) = 0,

{sk} is bounded away from zero and g(xk) is negative for all large k.

Proof. Step 7 of Algorithm 5.3.3 ensures that

tpredk(tk) ≥
γt

2
‖pC

k ‖M̂ with

M̂ = min

{

min{∆̂k, (1 − ξ)τ}

‖I + A(xk)⊤S−2
k A(xk)‖

1

2

,
‖pC

k ‖

‖Bk +µA(xk)⊤S−2
k A(xk)‖

1

2

}

.

for γt > 0 and where pC
k = −(∇f(xk)+Bknx,k)+µA(x,k)⊤(S−1

k e−S−2
k ns,k). Because the

sequences {A(xk)} and Bk are bounded, tpred can be rewritten as:

tpredk(tk) ≥ γ′
1‖p

C
k ‖min(1, ∆̃k, ‖p

C
k ‖). (5.36)

for some positive constant γ′
1. We further define the quantity

qk = ∇f(xk) + µA(xk)
⊤S−1

k e (5.37)

and by the boundedness of A(xk) we can define:

‖pC
k ‖ ≥ γ′

2‖qk‖ − γ′
3‖nk‖. (5.38)

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

96

5.6 Convergence of the Barrier Algorithm

The rest of the proof follows as in Lemma 12 in [13]. It shows, by contradiction that

the sequence {qk} → 0 under the above assumptions and the fact that nk → 0.

5.6 Convergence of the Barrier Algorithm

For overall convergence, the convergence of the outer barrier algorithm must be shown.

For this purpose, we state the algorithm in more detail:

Algorithm 5.6.1 (Outer Barrier Algorithm).

Start: Set initial values x0, s0 a barrier parameter µ0 > 0, a reduction

factor α ∈ (0, 1) and a sequence {εl} that tends to zero

for l = 0, 1, . . .

1. Apply Algorithm 5.3.3 to compute a point (xl, sl) for the given

(xl−1, sl−1) such that

‖g(xl) + sl‖ ≤ εl (5.39)

‖∇f(xl) + λ⊤
l A(xl)‖ ≤ εl (5.40)

where λl = µlS
−1
k+1e

2. Choose µl+1 ∈ (0, αµl)

Hence, the (xl, sl) denote only the iterates of the outer iteration. With respect to

convergence, one can show the following results:

Theorem 5.6.2 (Convergence of the outer barrier algorithm). Let the iterates (xl, sl) be

generated by Algorithm 5.6.1. Suppose that the assumptions (AS1) – (AS7) hold. Then it

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

97

5.7 Numerical Results

follows that each inner iteration finds a (xl, sl) satisfying (5.39) and (5.40). Furthermore

the first order optimality conditions hold at each limit point x∗ of {xl, sl} that satisfies the

linear independence constraint qualification. That is, there exists λ ∈ R
M such that

∇f(x∗) + λ⊤
∗ A(x∗) = 0, g(x∗) ≤ 0, λ∗ ≥ 0, g(x∗)

⊤λ∗ = 0.

Proof. Due to the above assumptions, Algorithm 5.3.3 at iteration l always converges to

a limit point {xl, sl} such that (5.39) and (5.40) hold as shown in Sec. 5.5. Let {xlk} be a

subsequence that converges to x∗. One has that g(xkl
) + skl

→ 0 and skl
> 0. Therefore

x∗ is feasible. Furthermore, x∗ satisfies the linear independence constraint qualification.

With I = {i : gi(x∗) = 0}, it follows for i /∈ I that gi(x∗) < 0 and si,kl
> 0. This yields

λi,kl
= µkl

/si,kl
→ 0 due to the definition of λ in Algorithm 5.3.3. Combining this with

∇f(xkl
) + λ⊤

l A(xkl
) → 0, one obtains

∇f(xkl
) +

∑

i∈I

λi,kl
∇gi(xkl

) → 0.

Since the vectors {∇gi(x∗)} are linearly independent, the positive sequence {λkl
} con-

verges to a limit point λ∗ ≥ 0. Taking the limit yields ∇f(x∗) + λ⊤
∗ A(x∗) = 0 and

g(x∗)
⊤λ∗ = 0.

5.7 Numerical Results

The barrier algorithm with inexact Jacobians was implemented in C, and the AD tool

ADOL-C [32] provided the required exact matrix-vector products of the first and second

derivatives. The Jacobian is approximated using the Two-sided Rank One (TR1) up-

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

98

5.7 Numerical Results

date. The initial Jacobian, A0 at the initial guess, x0 is computed exactly and an exact

Jacobian is also computed using AD when (5.30) fails. In addition to the Cauchy step

computations in the inner normal and tangential problems, we also compute the dogleg

step for the normal subproblem and use the preconditioned Steihaug conjugate gradient

method for the tangential problem in order to accelerate the convergence rate. Also, for

the outer iterations, we use the same barrier update strategy and tuning parameters that

are reported in [73].

A comprehensive numerical study is beyond the scope of this chapter, as there are

many aspects of a barrier code (including update of the barrier parameter, various ap-

proximation and restarting strategies, and a number of tuning parameters) that require a

separate study. Instead, we focus on the performance of the inexact algorithm and com-

pare it to its exact Jacobian counterpart. Here, we report the iteration counts and exact

Jacobian evaluations for a set of small problems from the CUTEr collection as shown in

Table 5.1. This set contains problems with linear or nonlinear objective functions and

inequality constraints which are linear, nonlinear or just simple bounds. In this table N

denotes the number of variables and M denotes the total number of constraints, including

general inequalities and bounds.

To judge the performance of the inexact algorithm, optimization was also performed

with an exact Jacobian computed in each optimization step with AD. Table 5.1 states

the iteration counts of the outer problem and the number of Jacobian evaluations for

the optimization runs. For the inexact approach, we also report the number of failures

of (5.30). The total number of Jacobian evaluations for the inexact problem is equal to

the number of failures in (5.30) plus one due to the initialization of A0 with the exact

Jacobian. The number of Jacobian evaluations for the exact problem gives an estimate of

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

99

5.8 Concluding Remarks

the number of iterations for the inner trust-region problem. It is important to note that

the results presented in the Table 5.1 can be improved by tuning the parameters of the

algorithm like initial trust-region radius, penalty parameter, updating barrier parameter

etc. To keep it consistent, we just compare the results of the inexact algorithm with exact

method.

As can be seen in Table 5.1, the inexact algorithm compares very well to its exact

counterpart and the iteration count is reasonable for all problems. Moreover, the number

of times the test (5.30) fails is relatively rare and hence a new exact Jacobian computation

is seldom required. In particular, comparing the evaluation count for full Jacobians in

the next to last column of Table 5.1 with the full Jacobian evaluations for the exact

approach as given in the last column, one observes significant savings can be obtained for

this collection of test problems.

5.8 Concluding Remarks

In this chapter, we have proposed and analyzed a class of trust-region methods for in-

equality constrained nonlinear optimization problems based only on inexact information

on the constraint Jacobian, without any assumption on the method to approximate these

matrices. We prove global first-order convergence for the presented algorithm under mild

conditions. Moreover, numerical results on small examples demonstrate significant po-

tential advantages of this approach.

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

100

5.8 Concluding Remarks

Table 5.1: Optimization details for CUTEr problems
evaluation of full A(xk)

inexact exact
Outer iterations fail. in

problem N M inexact exact (5.30) total total

twobars 2 6 5 5 123 124 232
cb2 3 3 6 6 111 112 162
camel6 2 4 5 5 0 1 7
cantilvr 5 6 6 6 1 2 51
hatfldb 4 5 6 5 0 1 18
hatfldc 4 8 5 5 0 1 20
hs001 2 1 4 4 0 1 39
hs002 2 1 5 5 0 1 48
hs003 2 1 4 4 0 1 27
hs005 2 4 6 6 0 1 15
hs010 2 1 6 5 5 6 125
hs011 2 1 5 5 7 8 28
hs012 2 1 5 5 9 10 59
hs022 2 2 5 5 0 1 53
hs033 3 6 6 6 185 186 267
hs043 4 3 6 6 123 125 183
hs064 3 4 5 5 15 16 42
prob1 2 2 6 6 6 7 191
womflet 3 3 6 6 423 424 983

Chapter 5. Interior Point Trust-Region Algorithm with

Inexact Jacobians

101

Chapter 6

PSA Superstructure for

Pre-combustion CO2 Capture

Synopsis

PSA is a potential capture technology candidate for CO2 capture from effluent stream

of shift converter. However, most of the PSA cycles available in literature are based on

purifying the light component, H2 and consider the heavy product, CO2 as a waste stream.

In this chapter, we present a systematic optimization-based formulation for the synthesis

and design of novel PSA cycles for pre-combustion CO2 capture which can simultaneously

produce H2 and CO2 at a high purity. Here, we use a superstructure-based approach to

simultaneously determine optimal cycle configurations and design parameters for PSA

units. This approach is illustrated for two case studies. The first case study deals with

obtaining optimal PSA cycle which maximizes CO2 recovery by maintaining a desired

purity level of CO2 and H2 purity. The second case study deals with minimizing the

power consumption by maintaining a desired purity and recovery level of CO2.

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

102

6.1 Introduction

6.1 Introduction

Almost one-third of industrial CO2 emissions are from energy conversion [36]. Since

CO2 accumulation of green-house gases may seriously affect the global climate, efficient

capture and storage of carbon dioxide is very important. The purpose of CO2 capture is

to produce a concentrated stream to around 90 to 95 vol% that can be readily transported

to a CO2 storage site. One of the potential capture systems that has gained popularity

in recent years is the pre-combustion capture system. Pre-combustion capture involves

partial oxidation (gasification) of coal to produce syngas (or fuel gas) composed mainly of

carbon monoxide and hydrogen. The carbon monoxide is reacted in a shift converter to

increase carbon dioxide and hydrogen yield. CO2 is then concentrated from this H2/CO2

mixture, resulting in a hydrogen-rich fuel and a CO2-rich stream available for storage.

Compared to post-combustion capture, a pre-combustion system is preferable for CO2

capture because the fuel gas from the shift converter has a higher CO2 concentration in

the range 30-60%, and is also typically at a higher pressure, thus offering cost-effective

means for CO2 capture [60].

Among the capture technology candidates like absorption, adsorption, cryogenic distil-

lation and membrane technology, pressure/vacuum swing adsorption (PSA/VSA) technol-

ogy offers significant advantages for pre-combustion CO2 capture in terms of performance,

low energy requirements and operating costs. PSA processes achieve gas separation using

principles of adsorption and desorption, and therefore operate at near ambient condi-

tions in a solvent-free manner. Moreover, only feed compression and vacuum generation

constitute the key energy requirements for the process, which can be substantially lower

for pre-combustion capture because feed is available for separation at high pressure; this

leads to reduced compression requirements. This is a well established technology for not

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

103

6.1 Introduction

only removing trace components from a mixture, but also for extracting bulk products at

extremely high purity [67, 56, 82, 63].

Most of the commercial PSA cycles have been developed [7, 81, 78, 39, 37, 54] to

recover H2 (light-product) at an extremely high purity, and do not focus on enriching the

strongly adsorbed CO2 (heavy-product). For example, Jiang et al. [39] studied a 5-bed

11-step PSA cycle to obtain a high purity H2 from reformer gas. However, heavy product

CO2 is considered as a waste product. Thus, a major limitation exists with the use of these

conventional PSA cycles for high purity CO2 capture because the light-product purge step

(or the light reflux step) in these cycles uses a portion of the light-product for purge. This

necessarily dilutes the heavy component in the heavy-product stream. Therefore, a pure

light component is easy to attain from such cycles, but not a pure heavy component.

However, for CO2 sequestration, it is necessary to concentrate CO2 to a high purity. Very

few cycles are available in literature that are designed to concentrate CO2. The 5-bed

5-step PSA process developed in [64, 62] extracts methane and carbon dioxide both at

a high purity from a feed mixture having 40-60% CO2 and CH4. A pure CO2 rinse step

was used in the process to obtain a CO2 product containing 99.8-99% CO2. Schell et

al. [57] suggested a dual-reflux PSA process with a stripping and a rectifying section to

obtain both light and heavy product at high purities. Xiao et al. [80] studied single-stage

and dual-stage 2-bed 8-step VSA processes which could recover more than 90% of CO2,

at 95% purity, from a feed mixture having 21.5% CO2 and 76.8% H2. Air Products and

Chemicals, Inc. have developed the Gemini process to simultaneously produce H2 and

CO2 at high purities and recoveries [61]. Most of these PSA cycle configurations are based

on heuristics and it is not clear why a particular configuration is preferred over others.

In this chapter, we address the challenge of systematically synthesizing novel PSA cycles

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

104

6.2 PSA Superstructure

and obtaining an optimal sequence of operating steps without making any assumption on

the kinds of steps that should be included within the cycle.

In this chapter, we propose a systematic optimization-based framework to design

and optimize new PSA cycles, and apply this approach to obtain PSA cycles for pre-

combustion capture that produce both H2 and CO2 at a high purity and recovery. As

discussed in the next section, optimal designs are generated from a 2-bed PSA superstruc-

ture after solving an optimal control problem. We consider a detailed partial differential

algebraic equation (PDAE) based mathematical model, with the cyclic steady state con-

dition, for the optimal control problem (OCP). This study is an extension to the earlier

work by Agarwal et al. [3]. Agarwal et al. solved the OCP using a full discretization,

where the PDAE model is fully discretized in the spatial and temporal domain resulting

in a large number of algebraic constraints. Since the current implementation of the si-

multaneous approach has difficulties with solving large PSA problems, we use a partial

discretization approach, that discretizes the PDAE model only in the spatial domain and

the periodic operation of the PSA process is enforced as a set of equality constraints.

6.2 PSA Superstructure

The 2-bed PSA superstructure shown in Figure 6.1 consists of two beds, a co-current bed

(CoB) and a counter-current bed (CnB) that determine co-current and counter-current

operating steps in the cycle, respectively. The superstructure is designed with only two

beds for two main reasons. Firstly, it maintains the flow to be always uni-directional i.e.,

co-current for CoB and counter-current for CnB. Secondly, a 2-bed formulation suffices

since most PSA cycles in literature have at most 2 beds interacting at any given time.

The superstructure is designed to get the light product from the upper end (light

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

105

6.2 PSA Superstructure

Figure 6.1: A 2-bed PSA Superstructure [3]

end) of CoB and heavy product from the lower end (heavy end) of CnB. The beds are

connected with time dependent variables, top reflux β(t) and a bottom reflux stream,

α(t). β(t) and α(t) determine the fraction of the light product and the heavy product

streams that go in the top and the bottom reflux, respectively. In addition, the time

dependent feed fraction, φ(t), determines the fraction of feed that is fed to CoB. The fuel

gas at pressure Pfeed, is further compressed, if required, and is then fed to the co-current

bed. For CoB, pressure is specified at the light end by Pads, while the pressure at the

other end of the bed Pa is determined from the pressure drop in this bed. The velocity va,

concentration for ith component Ca,i, and temperature Ta at the light end of the co-current

bed are determined from the outlet flux. Similarly for CnB bed, pressure is specified at

the heavy end by Pdes, while Cd,i, Td and vd at this end are obtained from the output

flux of this bed. Pd at the other end is obtained from the pressure drop in the counter-

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

106

6.2 PSA Superstructure

current bed. The superstructure also incorporates compressors and valves to account for

different pressure levels in the beds. The heavy reflux is compressed to the inlet pressure

Pfeed with the help of the heavy reflux compressor, while the feed and the heavy reflux

together are then compressed by the feed compressor. Since the main focus of this work

is to develop cycles that concentrate heavy product, a vacuum generator is also included

in the superstructure to extract the strongly-adsorbed component with a high recovery.

Furthermore, this helps to avoid discrete variables and uses only continuous variables for

the optimization problem

The superstructure generates a wide variety of different operating steps of a PSA

process by varying the control variables α(t), β(t), φ(t), Pads(t) and Pdes(t). Since we

have two beds in the superstructure, half of the operating steps are realized from the co-

current bed CoB and half from the counter-current bed CnB. In an actual 2-bed PSA unit,

the co-current bed after performing its steps will follow the steps of the counter-current

bed and vice-versa. However, in the mathematical framework, this is realized by giving

final conditions of the co-current bed as the initial conditions for the counter-current

bed and vice-versa, thus modeling the true 2-bed behavior. This multi-bed approach is

described in detail in Jiang et al. [39].

Although the optimal PSA cycle configurations based on the 2-bed superstructure

are constructed from the solution of the control profiles of α(t), β(t), φ(t), Pads(t) and

Pdes(t), multi-bed cycles follow immediately from these solutions. These are generated

by stacking the optimal 2-bed configurations in parallel to ensure a continuous product

withdrawal or feed step happens at all points in time.

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

107

6.3 Optimization Problem

6.3 Optimization Problem

We obtain an optimal PSA configuration by solving an optimal control problem for a

specified objective function. The optimal profiles for the control variables α(t), β(t),

φ(t), Pads(t) and Pdes(t) along with other decision variables, individual step times and

bed dimensions, can be obtained by solving the following optimization problem:

min Φ(z(x, tf), u(tf), z0, p)

s.t. F

(
∂z

∂t
,
∂z

∂x
, z(x, t), u(t), z0, p

)

= 0

zCoB(x, 0) = zCnB(x, tf)

zCnB(x, 0) = zCoB(x, tf)

g(z(x, t), u(t), p) ≤ 0

0 ≤ (α(t), β(t), φ(t)) ≤ 1

bL ≤ (Pads(t), Pdes(t), p) ≤ bU

u(t) = [α(t), β(t), φ(t), Pads(t), Pdes(t)]

Here Φ is the objective function which can be overall power consumption, product purity

or recovery. F (.) corresponds to the partial different equation based model for the PSA

system with initial conditions z0. The second and third equality constraints correspond

to the cyclic steady state (CSS) condition which is enforced by giving final conditions

of the co-current bed as the initial condition for the counter-current bed and vice versa.

Inequalities constraints g can correspond to maintain the product purity or recovery.

Finally, we impose bounds on the control variables, u(t) and the design parameter, p.

The control variables α(t), β(t) and φ(t) are fractions bounded between 0 and 1. Other

control variables, Pads(t) and Pdes(t), and decision variables p are bounded between their

respective bounds bL and bU .

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

108

6.4 PSA model and Solution Strategies

6.4 PSA model and Solution Strategies

6.4.1 Model Equations

The conservation equations and models for the isotherm, equations of state, equilibrium,

thermodynamic and transport properties, bed connection equations in the superstructure

are listed in Table 6.1. The model is based on the following assumptions:

1. Gases follows the ideal gas behavior.

2. There are no radial variations in temperature, pressure and concentrations of the

gases in the solid and the gas phase.

3. Pressure drop along the bed is calculated by the Ergun equation.

4. Adsorption equilibrium is described by dual site Langmuir isotherm.

5. The adsorption rate is approximated by the linear driving force (LDF) expression.

. The following equations are used to evaluate the performance variables,

purityL =

∫

(1 − β(t))va(t)Ca,L(t) dt
∫

(1 − β(t))va(t)
∑

i

Ca,i(t) dt

(6.1a)

purityH =

∫

(1 − α(t))(−vd(t))Cd,H(t) dt
∫

(1 − α(t))(−vd(t))
∑

i

Cd,i(t) dt
(6.1b)

recoveryL =

∫

(1 − β(t))va(t)Ca,L(t) dt

Qfeed,L

(6.1c)

recoveryH =

∫

(1 − α(t))(−vd(t))Cd,H(t) dt

Qfeed,H

(6.1d)

Qfeed,i =

∫

φ(t)vfeedCfeed,i dt i ∈ {L, H} (6.1e)

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

109

6.4 PSA model and Solution Strategies

Here Qfeed is the feed flux. The total power consumption, given by the following equations,

is the sum of the work done by the compressors and the vacuum generator.

Wtotal =

∫
γRTd

γ − 1

[∑

i (φ(t)vfeedCfeed,i + α(t)(−vd)Cd,i)

ηc

((
Pa

Pfeed

) γ−1

γ

− 1

)

+

∑

i α(t)(−vd)Cd,i

ηh

(

min

{(
Pfeed

Patm

) γ−1

γ

,

(
Pfeed

Pdes

) γ−1

γ

}

− 1

)

+

∑

i(−vd)Cd,i

ηv
max

{

0,

((
Patm

Pdes

) γ−1

γ

− 1

)}]

+
γ

γ − 1

φ(t)vfeedPfeed

ηfg

((
Pfeed

Pinlet

) γ−1

γ

− 1

)

dt (6.2a)

Power/mole CO2 =
Wtotal

∫

(1 − α(t))vd(t)Cd,H(t) dt

(6.2b)

Here, the max function ensures that the work done by the vacuum generator is zero

when Pdes is more than the atmospheric pressure Patm. Similarly, since the vacuum

generator discharges heavy reflux at Patm, the min function ensures a proper upstream

pressure for the heavy product compressor. Since min and max functions introduce non-

differentiability, the following smoothing approximations are adopted [6]. A value of 0.01

is used for ǫ in the following equations.

min(f1(x), f2(x)) = f1(x) − max(0, f1(x) − f2(x)) (6.3a)

max(0, f(x)) = 0.5
(

f(x) +
√

f(x)2 + ǫ2
)

(6.3b)

6.4.2 Solution Methodology

In a previous study [3], (6.1) is solved using a complete discretization approach where

the PDAEs are turned into a set of algebraic equations by discretizing the state and the

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

110

6.4 PSA model and Solution Strategies

Table 6.1: PSA Model Equations [3]

Component mass balance

ǫb
∂Ci

∂t
+ (1 − ǫb)ρs

∂qi

∂t
+

∂(vCi)

∂x
= 0 i ∈ {L, H} (6.4)

LDF equation

∂qi

∂t
= ki(q

∗
i − qi) i ∈ {L, H} (6.5)

Energy balance
(

ǫt

∑

i

Ci(C
i
pg − R) + ρsCps

)

∂T

∂t
− ρs

∑

i

∆Hads
i

∂qi

∂t
+

∂(vh)

∂x
+ UA(T − Tw) = 0 (6.6)

Ci
pg = ai

c + bi
cT + ci

cT
2 + di

cT
3 i ∈ {L, H}

h =
∑

i

(

Ci

∫

Ci
pg dT

)

Dual-site Langmuir Isotherm

q∗i =
qs
1ib1iCiRT

1 +
∑

j

b1jCjRT
+

qs
2ib2iCiRT

1 +
∑

j

b2jCjRT
i ∈ {L, H} (6.7)

qs
mi = k1

mi + k2
miT bmi = k3

miexp(
k4

mi

T
) i ∈ {L, H} m = 1, 2

Ergun equation

−
∂P

∂x
=

150µ(1 − ǫb)
2

d2
pǫ

3
b

v +
1.75

dp

(
1 − ǫb

ǫ3
b

)(
∑

i

M i
wCi

)

v|v| (6.8)

Ideal gas equation

P = RT
∑

i

Ci (6.9)

Bed connection equations (see Figure 6.1)

Fi(t) = φ(t)vfeedCfeed,i + α(t)(−vd(t))Ci,d(t) i ∈ {L, H} (6.10)

TRi(t) = β(t)va(t)Ca,i(t) i ∈ {L, H} (6.11)

LPi(t) = (1 − β(t))va(t)Ca,i(t) i ∈ {L, H} (6.12)

BRi(t) = α(t)(−vd(t))Cd,i(t) i ∈ {L, H} (6.13)

HPi(t) = (1 − α(t))(−vd(t))Cd,i(t) i ∈ {L, H} (6.14)

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

111

6.4 PSA model and Solution Strategies

control variables both in space and time. As a result, the PDAE-constrained optimal

control problem (Equation (6.1)) gets converted into a large-scale nonlinear programming

(NLP) problem. The authors use an efficient NLP solver, IPOPT [73] to solve the resulting

large scale NLP problem. However, a complete discretization scheme can lead to a very

large set of algebraic equations, which can be expensive to solve. Hence, the work was

limited to only 10 spatial nodes for the optimization problem and the accuracy of the

solution is checked by performing dynamic simulations in MATLAB [1] at the optimal

values of the decision variables obtained from IPOPT, and further compare the profiles

and the performance variables.

The drawbacks of the complete-discretization approach is that if the concentration pro-

files are steep, a finer finite element discretization is required, resulting in creating large

number of variables in the optimization problem. The number may blow up when the

superstructure contains more beds and multicomponent feed mixtures. Ko et al. [43] re-

ported that in their optimization scheme of PSA processes using a complete-discretization

approach, the solution is dependent on the number of spatial nodes. In order to overcome

these drawbacks, we use a partial discretization approach (see Figure 2.1) to solve (6.1).

In this approach, the PDAEs are discretized only in spatial domain resulting in a set of

differential-algebraic equations (DAEs). Here, the solution of the optimization problem

is decoupled from the solution of the embedded dynamic system thus exploiting the full

advantages of the state-of-the-art integration and NLP tools. As a result, the partially

discretized PDAEs are integrated outside the optimization problem using sophisticated

DAE solvers which are able to capture the steep temporal adsorption fronts with high

accuracy and also the optimization problem is relatively smaller in size.

In this work, the PDAE model is discretized in the spatial domain using a conservative

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

112

6.4 PSA model and Solution Strategies

Figure 6.2: Discretization of control variable

finite volume method which results in a system of differential-algebraic equations (DAEs).

The modified second-order Van Leer flux limiter[46] is used to mitigate numerical error

and avoid physically unrealistic smearing oscillations near the adsorption fronts. The

discretized model is solved repeatedly by varying the initial and boundary conditions that

define the various steps in the 2-bed PSA superstructure. We use a reduced Sequential

Quadratic Programming (rSQP [10]) algorithm as Non-linear programming (NLP) solver.

The solver searches for both the optimal operating parameters and concentration profiles

simultaneously. The control variables α(t), β(t), φ(t), Pads(t), and Pdes(t) are discretized

in a piecewise constant manner and added as parameters in the optimization problem.

The discretized concentration nodes at the beginning of a cycle are treated as part of

decision variables. For the computation of the first derivatives with respect to the decision

variables, sensitivity equations are integrated along with DAEs by using a variable-step

variable-order integrator, CVODES [59] and letting the integrator adapt the step-size in

the temporal domain. Since the DAEs are integrated at every NLP iteration, the accuracy

test of the results at the solution used in [3] can be skipped.

As mentioned earlier, the control variables u(t) are discretized in a piecewise constant

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

113

6.5 Case Studies

manner (Figure 6.2). Some of the cycles reported [3] have steps with a very short duration

when feed is supplied. Such small step times can lead to a large number of parallel beds in

the realization of continuous operation, which is expensive to implement in practice. To

avoid these kinds of steps, the step times can be constrained to avoid an overly complicated

cycle. To handle this, in this work we use a slot-based formulation in which we allow the

step times to be integer multiples of each other.

6.5 Case Studies

In the case studies, we consider the feed to be a syngas mixture having 55% H2 and 45%

CO2, coming at a temperature of 310 K after a single shift conversion in an IGCC [48].

The feed mixture also consists of negligible amounts of CO, CH4, Ar and N2, besides H2

and CO2. However, hydrogen and carbon dioxide together constitute around 97-99% of

the mixture [48]. Therefore, we consider a binary feed mixture for the case studies. The

bed length is fixed and is assumed to be 10 meters. For all the case studies, we also assume

an efficiency of 72% for all compressors and the vacuum generator in the superstructure.

Activated carbon is chosen as the adsorbent, especially to extract CO2. The adsorbent

properties and other model parameters are taken from [39, 3]. In this work, we consider

two different case studies. The first case involves superstructure optimization to obtain

an optimal PSA configuration which maximizes CO2 recovery for a given lower bound

on both CO2 and H2 purity, while the second case involves generating optimal cycle that

minimizes overall power consumption for a given lower bound on CO2 purity and recovery.

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

114

6.5 Case Studies

6.5.1 Case I: Cycle synthesis to maximize CO2 recovery

In this case study, we solve the discretized form of the optimal control problem (6.1) to

obtain an optimal cycle that maximizes CO2 recovery subject to a lower bound of 90%

on both H2 and CO2 purity. Optimal control problem after spatial discretization is given

below

max CO2 recovery

s.t. (dzm

dt
= fm(zm, t) m = 1, ..10Ndis, solved implicitly.)

css
m = 0 m = 1, ...10Ndis

H2 Purity ≥ 0.9 (6.15)

CO2 Purity ≥ 0.9

LB ≤ ui, tslot ≤ UB i = 1, ...Nslot

where Ndis is the number of finite volume and Nslot is number of equally spaced control

discretization elements. In this case study, we choose Ndis = 20 and Nslot = 10. The

optimization problem is solved using rSQP solver. At the solution, the cycle time is given

by tcycle = tslotNslot.

The optimal profiles for the control variables α(t), β(t), φ(t), Pads(t) and Pdes(t) are

shown in Figure 6.3. They are drawn against the cycle time normalized between 0 and

1. These profiles translate into a 2-bed 8-step cycle as illustrated in Figure 6.4. The

cycle starts with α = 1, β = 0 and φ = 1 which suggests that there is heavy reflux

stream, no light reflux and feed streams. The CoB undergoes the heavy reflux and the

CnB undergoes desorption at 200 kPa. The heavy reflux enriches the CO2 concentrations

towards the heavy end of CoB with the CO2 coming from the CnB. In the next two steps,

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

115

6.5 Case Studies

Figure 6.3: Case I: Optimal control profiles

the CoB undergoes feed pressurization with adsorption as can be seen from the pressure

profiles and the CnB undergoes desorption at atmospheric and vacuum. During these two

steps, pure H2 and CO2 are collected simultaneously from CoB and CnB respectively. In

the last step, there is no feed to CoB and a recirculation of components occurs within the

system. We call this the total reflux step. During this step, the heavy end of the CoB

gets enriched with CO2 and the light end of CnB with H2 which results in high purity of

both the components. Figure 6.5 shows the gas-phase CO2 concentration profiles for the

4 steps of the CoB. As can be seen, the heavy end of the CoB gets enriched with CO2

and the cycle stops just before CO2 breaks through the CoB.

The optimization results at the solution are given in Table 6.2. The problem has 200

differential equations and 21 degrees of freedom which took around 2 hours to converge on

an Intel 2.8 GHz machine with 8 GB RAM. An optimum CO2 recovery of 94% at a purity

of 90% was obtained. Also, a reasonably high hydrogen purity of 95% and a recovery of

91% was obtained simultaneously with a power consumption of 135.53 kWh/tonne CO2

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

116

6.5 Case Studies

Figure 6.4: Case I: Optimal configuration

Figure 6.5: Case I: Gas-phase CO2 concentration profiles of CoB

captured.

Figure 6.6 shows a trade-off curve between CO2 purity and recovery. The curve is

constructed by varying the lower bound on CO2 purity and solving the superstructure

NLP repeatedly. The curve shows that a high CO2 recovery can be obtained at the

expense of low CO2 purity for the given process conditions and with activated carbon as

the adsorbent.

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

117

6.5 Case Studies

Table 6.2: Case I: Optimization results

No. of state variables 200
Degrees of freedom 51
CPU time 2 h
Optimal cycle time 150.48 sec
CO2 recovery 93.91%
CO2 purity 90%
H2 recovery 91.46%
H2 purity 94.84%
Feed flux 52.65 gmol m−2 h−1

Power consumption 135.53 kWh/tonne CO2 captured

Figure 6.6: Case I: Purity-recovery trade-off curve

6.5.2 Case II: Cycle synthesis to minimize power consumption

Here, we minimize the power consumption subject to a lower bound of 90% on CO2 purity

and recovery. The optimal control problem after spatial discretization is given below

min Power/mole of CO2

s.t. (dzm

dt
= fm(zm, t) m = 1, ..10Ndis, solved implicitly.)

css
m = 0 m = 1, ...10Ndis

CO2 recovery ≥ 0.9 (6.16)

CO2 purity ≥ 0.9

LB ≤ ui, tslot ≤ UB i = 1, ...Nslot

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

118

6.5 Case Studies

Figure 6.7: Case II: Optimal control profiles

As in the previous case study, we choose Ndis = 20 and Nslot = 10 and solve the opti-

mization problem using rSQP solver.

The optimal control profiles obtained for α(t), β(t), φ(t), Pads(t) and Pdes(t) are shown

in Figure 6.7. These profiles translate to a 2-bed 10-step cycle as shown in Figure 6.8.

In this cycle, the CoB starts with adsorption at feed pressure with heavy reflux and the

CnB undergoes counter-current depressurization. During this step (Step 2 and 7), CO2

from the CnB enriches the heavy end of CoB. In the next step, CoB undergoes feed

pressurization along with adsorption and the CnB undergoes desorption at atmospheric

pressure. In Step 8, more CO2 is removed with CnB undergoing desorption at vacuum.

There is continuous removal of both pure H2 and CO2 during steps 2 and 7 and steps

3 and 8. In steps 4 and 9, the pressure in the CoB decreases to feed pressure and CnB

increases to atmospheric pressure. This step is called the pressure equalization step, which

is responsible for decreasing the power consumption. The last step is more like the total

reflux step, when the heavy end of CoB gets enriched with CO2 and the light end of CnB

gets enriched with H2. As a result, during the next half of the cycle high purity of both

components are obtained. Figure 6.9 shows the gas-phase CO2 concentration profiles for

the 5 steps of the CoB. As can be seen, CO2 gets enriched at the heavy end of CoB and

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

119

6.5 Case Studies

Figure 6.8: Case II: Optimal configuration

in step 5 CO2 almost breaks through the bed when the cycle is stopped. After step 5, the

cycle is repeated with the CoB undergoing the steps of CnB and vice-versa.

The optimization results at the solution are given in Table 6.3. As in the previous case

study, this problem also has 200 differential equations and 21 degrees of freedom which

took 8.5 hours to converge on an Intel 2.8 GHz machine with 8 GB RAM. An optimum

CO2 recovery of 92% at a purity of 90% was obtained. Also, a reasonably high hydrogen

purity of 93.4% and a recovery of 92% was obtained simultaneously with a lower power

consumption of 85.79 kWh/tonne CO2 captured. The reason for lower power consumption

compared to the previous case study is mainly because of the pressure equalization step.

Figure 6.10 shows a trade-off curve between CO2 purity and power consumption per

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

120

6.5 Case Studies

Figure 6.9: Case II: Gas-phase CO2 concentration profiles of CoB

tonne of CO2 captured. The curve is constructed by varying the lower bound on CO2

purity and solving the superstructure NLP repeatedly. The curve shows that a high CO2

purity can be obtained at the expense of low CO2 purity for the given process conditions

and with activated carbon as the adsorbent. The power consumption for obtaining CO2

at a high purity of 96 % is lower than the power required for the optimal cycle in the

max. recovery case study.

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

121

6.6 Concluding Remarks

Table 6.3: Case II: Optimization results

No. of state variables 200
Degrees of freedom 51
CPU time 8.5 h
Optimal cycle time 225 sec
CO2 recovery 92.08%
CO2 purity 90%
H2 recovery 91.6%
H2 purity 93.4%
Feed flux 43.46 gmol m−2 h−1

Power consumption 85.79 kWh/tonne CO2 captured

6.6 Concluding Remarks

Most conventional PSA cycles for high purity CO2 capture are designed to recover only

the light product, H2 at an extremely high purity, and consider the heavy product, CO2 as

a waste stream. In this work, we propose a systematic optimization-based methodology

to design PSA cycles which simultaneously produce H2 and CO2 at a high purity. We

formulate a 2-bed PSA superstructure which can predict a wide variety of different PSA

operating steps. Different operating steps are realized by manipulating the bed connec-

tions with the help of time dependent control variables such as fractions of feed stream,

top and bottom reflux, and bed pressures.

This approach is illustrated for two different case studies of pre-combustion CO2 cap-

ture using only activated carbon as the sorbent. The first case study deals with obtaining

optimal PSA cycle which maximizes CO2 recovery by maintaining a desired purity level

of CO2 and H2 purity. Superstructure optimization for this case results in a 2-bed 8-step

cycle which can produce both H2 and CO2 at a substantially high purity of 95% and 90%,

respectively with a significantly high CO2 recovery of 94% is achieved. The second case

study deals with minimizing the power consumption by maintaining a desired purity and

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

122

6.6 Concluding Remarks

0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96
80

85

90

95

100

105

110

115

120

125

130

CO
2
 purity (%)

P
ow

er
 c

on
su

m
pt

io
n

(k
W

h/
to

nn
e

of
 C

O
2)

Figure 6.10: Case II: Purity-power consumption trade-off curve

recovery level of CO2. This case study results in a 2-bed 10-step cycle which can produce

CO2 at a purity of 90% and a recovery of 92% with a low power consumption of 85.79

kWh/tonne CO2 captured.

Our superstructure based methodology, is quite generic and can be extended to many

other PSA applications. Moreover, the superstructure can also be used to evaluate differ-

ent kinds of adsorbents for the same feedstock and process conditions.

Chapter 6. PSA Superstructure for

Pre-combustion CO2 Capture

123

Chapter 7

Conclusions and Future Work

Synopsis

Periodic Adsorption Processes have gained increasing commercial acceptance as an ef-

ficient separation technique for a wide range of applications. However, despite a vast

growth in the practical application of PAPs, the design and optimization of PAPs still

largely remains computationally challenging with the current methods. In order to ad-

dress this problem, this work focuses on developing new optimization algorithms based

on trust-region methods. Moreover, this thesis also presents a systematic methodology

using the superstructure approach to synthesize novel PSA cycles for CO2 capture. This

chapter summarizes all these contributions and directions for future work.

Chapter 7. Conclusions and Future Work 124

7.1 Thesis Summary and Contributions

7.1 Thesis Summary and Contributions

The main motivation of this thesis arises due to the optimization problems related to

Periodic Adsorption Processes (PAPs). Although there have been many sophisticated

optimization strategies that have been developed and applied for design and operation of

PAP systems, these methods have limitations with respect to convergence, computation

time and problem size. Even the most efficient and reliable simultaneous tailored approach

for the optimization of moderately sized PAP problems suffers from large computation

times arising from the direct sensitivity calculations required to form the constraint Ja-

cobian. In order to overcome these limitations, this thesis focuses on developing faster

algorithms that do not require explicit calculation of the Jacobian through sensitivity

calculations. Furthermore, we also explore a superstructure approach for optimal design

of PSA cycles for pre-combustion CO2 capture. We discuss our contributions separately

for both these works in the subsequent sections.

Inexact NLP algorithms

In Chapter 4, we develop a SQP trust-region algorithm for the solution of minimization

problems with both nonlinear equality and inequality constraints. Instead of forming

and factoring the dense constraint Jacobian, this algorithm approximates the Jacobian of

equality constraints with a specialized quasi-Newton method. Moreover, the algorithm

uses exact second order information and hence results in faster convergence. This algo-

rithm is tested on small scale PAP applications which resulted in a five-fold reduction in

computation time compared to exact methods.

In Chapter 5, we develop a composite-step trust region methods with barrier functions

for the solution of minimization problems with nonlinear inequality constraints. The re-

Chapter 7. Conclusions and Future Work 125

7.1 Thesis Summary and Contributions

sulting algorithm also does not require the computation of exact Jacobians; only Jacobian

vector products are used along with approximate Jacobian matrices. As demonstrated

on small numerical examples, this feature has significant potential benefits for problems

where Jacobian calculations are expensive.

Specific contributions for this part of the dissertation:

• Developed SQP and interior point trust region algorithms for solving general opti-

mization problems with dense constraint Jacobians.

• Quasi-Newton approximation of the Jacobian avoids the high computation cost

associated with the calculation of Jacobian.

• Implemented the algorithm in C programming language and interfaced it with stan-

dard integrators and automatic differentiation tools

• Evaluation of exact first-order and second-order information calculation in the form

of Jacobian-vector and Hessian-vector products using adjoint sensitivities and Au-

tomatic Differentiation. As a result, the integration of direct sensitivity equations

to form the dense Jacobian is avoided.

• The results presented in Chapters 4 and 5 are promising and encouraging to use the

algorithms for large scale problems.

PSA Superstructure

In Chapter 6, we present a new PSA superstructure idea to design new PSA cycles for

pre-combustion CO2 capture. Different operating steps are realized by varying the time-

dependent control variables that define the interconnections between the beds. An optimal

control problem is solved using the partial discretization approach to obtain the optimal

Chapter 7. Conclusions and Future Work 126

7.2 Directions for Future Work

profile of the control variables and design parameters. To avoid steps with short duration,

we use a slot-based formulation for discretizing the control variables.

This approach is illustrated for two different case studies. When CO2 recovery is maxi-

mized, superstructure optimization results in a 2-bed 8-step cycle which can produce both

H2 and CO2 at a substantially high purity of 95% and 90% respectively, with a signifi-

cantly high CO2 recovery of 94%. When power is minimized, superstructure optimization

results in a 2-bed 10-step cycle which can produce CO2 at a purity of 90% and a recovery

of 92% with a low power consumption of 85.79 kWh/tonne CO2 captured.

To summarize our contributions for this part of the dissertation:

• PSA cycle synthesis for pre-combustion CO2 capture. The new cycles designed

obtain CO2 and H2 at high purity and recovery with low power consumption. This

superstructure idea suggests novel operating steps for high purity CO2 capture.

• The proposed superstructure framework is quite generic and can be extended to

many other PSA applications. Besides developing optimal cycles, the framework

can be used to evaluate different kinds of adsorbents for the same feedstock and

process conditions.

7.2 Directions for Future Work

Algorithmic Improvements

• Better recovery strategies

In the inexact algorithms, we evaluate an exact Jacobian when the tests on the

quality of Jacobian fail. However for large-scale problems, the computation of a

single Jacobian may take as long as 5 h or more. These time-consuming evaluations

Chapter 7. Conclusions and Future Work 127

7.2 Directions for Future Work

of Jacobian and null-space matrices may be a bottle-neck when the process is to

be optimized in real time. Therefore, better recovery strategies can be developed

to avoid forming the Jacobian when the tests fail. For example, we aim to exploit

the special feature of the two-sided rank-one update. The exact Jacobian, A(xk)

can be reconstructed with up to m TR1 updates along independent vectors for

a fixed iterate xk [75]. The computational cost involved is relatively cheap since

the update requires only matrix-vector and vector-matrix products which can be

obtained efficiently using sensitivities and Automatic Differentiation.

• Extending interior point algorithm to general optimization problems

The inexact interior point method developed in this work can handle only inequality

constrained problems. In the future, the algorithm can be extended to solve general

optimization problems and development of the corresponding theory. Furthermore,

algorithmic parameters should be well-tuned for better performance.

PSA Superstructure

• The superstructure can be modified to include products tanks and flow valves. Prod-

uct tanks can help obtain operating steps that involve a pure product purge, which

is not possible with the current superstructure.

• In addition to incorporating valves in the superstructure, the PDE models have to

be modified to handle dynamics in the valve equations. This is important because

valves would naturally have limits on how fast they can be tuned.

• The partial discretization approach can be extended to applications that involve

multi-component feed mixtures. Moreover, multiple layers of adsorbents can also

Chapter 7. Conclusions and Future Work 128

7.2 Directions for Future Work

be incorporated in CoB and CnB for efficient separation [39].

• In the preliminary numerical tests using the inexact algorithm, we have considered

small scale simulated moving bed and pressure swing adsorption processes for the

separation of binary feed mixtures. With the proposed algorithm, significant savings

in computational time are obtained due to fewer Jacobian evaluations during the op-

timization process. The proposed algorithms can be extended to solve optimization

problems of large-Scale PSA processes with multi-component feed mixtures.

Chapter 7. Conclusions and Future Work 129

Bibliography

[1] MATLAB User’s Guide. The Mathworks, Inc., 1994-2005.

[2] gPROMS User’s Manual. PSE Limited, London, UK, 2000.

[3] A. Agarwal, L. T. Biegler, and S. E. Zitney. Superstructure-Based Optimal Synthesis
of Pressure Swing Adsorption Cycles for Precombustion CO2 Capture. Ind. Eng.
Chem. Res., 49(11):5066–5079, 2010.

[4] A. Agarwal, L. T. Biegler, and S. E. Zitney. Superstructure-Based Optimal Synthesis
of PSA cycles for Post-Combustion CO2 Capture. AIChE J., 56(7):1813–1828, 2010.

[5] N. Arora and L. T. Biegler. A Trust Region SQP Algorithm for Equality Con-
strained Parameter Estimation with Simple Parameter Bounds. Comput. Optim.
Appl., 28(1):51–86, 2004.

[6] S. Balakrishna and L. T. Biegler. Targeting Strategies for the Synthesis and Energy
Integration of Nonisothermal Reactor Networks. Ind. Eng. Chem. Res., 31(9):2152–
2164, 1992.

[7] C. Benkmann. System for Treatment of Plural Crude Gases in Single Adsorption
Plant. US Patent 4402712, 1983.

[8] J. T. Betts. Practical Methods for Optimal Control Using Nonlinear Programming,
Ad- vances in Design and Control. SIAM, 2001.

[9] L. T. Biegler, L. Jiang, and V. G. Fox. Recent Advances in Simulation and Optimal
Design of Pressure Swing Adsorption Systems. Sep. Purif. Rev., 33(1):1–39, 2005.

[10] L. T. Biegler, J. Nocedal, and C. Schmid. A Reduced Hessian Method for Large-Scale
Constrained Optimization. SIAM Journal on Optimization, 5:314–347, 1995.

[11] K. F. Bloss, L. T. Biegler, and W. E. Schiesser. Dynamic Process Optimization
through Adjoint Formulations and Constraint Aggregation. Ind. Eng. Chem. Res.,
38(2):421 – 432, 1999.

[12] A. E. Bryson and Y. C. Ho. Applied Optimal Control. John Wiley & Sons, 1975.

[13] R. Byrd, J. Gilbert, and J. Nocedal. A Trust Region Method based on Interior Point
Techniques for Nonlinear Programming. Math. Program., 89A:149–185, 2000.

BIBLIOGRAPHY 130

BIBLIOGRAPHY

[14] R. Byrd, R. B. Schnabel, and G. Schultz. A Trust Region Algorithm for Nonlinearly
Constrained Optimization. SIAM J. Numer. Anal., 24:1152–1170, 1987.

[15] R. H. Byrd, F. E. Curtis, and J. Nocedal. An Inexact SQP Method for Equality
Constrained Optimization. SIAM J. on Optimization, 19(1):351–369, 2008.

[16] R. H. Byrd, M. E. Hribar, and J. Nocedal. An Interior Point Algorithm for Large
Scale Nonlinear Programming. Technical report, Optimization Technology Center,
Northwestern University, 1997.

[17] R. H. Byrd and J. Nocedal. An Analysis of Reduced Hessian Methods for Constrained
Optimization. Technical report, University of Colorado at Boulder, Department of
Computer Science, 1988.

[18] Y. Cao, S. Li, L. Petzold, and R. Serban. Adjoint Sensitivity Analysis for Differential
Algebraic Equations: The Adjoint DAE System and its Numerical Solution. SIAM
J. Sci. Comput, 24:1076–1089, 2000.

[19] T. F. Coleman and Y. Li. An interior trust region approach for nonlinear minimiza-
tion subject to bounds. SIAM J. Optim., 6:418, 1996.

[20] A. Conn, N. Gould, and P. Toint. Convergence of quasi-Newton Matrices Generated
by the Symmetric Rank One Update. Math. Program., 50A(2):177–196, 1991.

[21] A. R. Conn, N. I. M. Gould, and P. L. Toint. A Globally Convergent Augmented La-
grangian Algorithm for Optimization with General Constraints and Simple Bounds.
SIAM J. Numer. Anal., 28:545–572, 1991.

[22] A. R. Conn, N. I. M. Gould, and P. L. Toint. LANCELOT: A Fortran Package for
Large-Scale Nonlinear Optimization (Release A). Springer Series in Computational
Mathematics 17, Berlin, 1992.

[23] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

[24] F. Curtis, O. Schenk, and A. Wächter. An Interior-Point Algorithm for Large-Scale
Nonlinear Optimization with Inexact Step Computations. SIAM Journal on Scientific
Computing, 2010.

[25] M. Diehl and A. Walther. A test problem for Periodic Optimal Control problems.
Technical report, TU Dresden, 2006.

[26] W. F. Feehery, J. E. Tolsma, and P. I. Barton. Efficient Sensitivity Analysis of
Large-Scale Differential-Algebraic Systems. Appl. Numer. Math., 25(1):41–54, 1997.

[27] R. Fletcher. Numerical Experiments with an Exact Penalty l1 Function Method, pages
99–129. New York: Academic Press, 1981.

[28] R. Fletcher. Practical Methods of Optimization. Wiley Publications, 1987.

BIBLIOGRAPHY 131

BIBLIOGRAPHY

[29] D. M. Gay. Computing Optimal Locally Constrained Steps. SIAM J. Sci. Stat.
Comput., 2(2):186, 1981.

[30] D. M. Gay. A Trust-Region Approach to Linearly Constrained Optimization. Nu-
merical Analysis Proceedings (Dundee, 1983), D.F. Griffiths, Ed, Springer-Verlag:72,
1983.

[31] A. Griewank. Evaluating Derivatives: Principles and Techniques of Algorithmic Dif-
ferentiation. Number 19 in Frontiers in Appl. Math. SIAM, 2000.

[32] A. Griewank, D. Juedes, and J. Utke. ADOL-C: A Package for the Automatic Differ-
entiation of Algorithms written in C/C++. ACM Trans. Math. Software, 22:131–167,
1996.

[33] A. Griewank and A. Walther. On Constrained Optimization by Adjoint-based Quasi-
Newton methods. Optim. Methods. Softw., 17:869–889, 2002.

[34] A. Griewank, A. Walther, and M. Korzec. Maintaining factorized KKT Systems
subject to Rank-one Updates of Hessians and Jacobians. Optimization Methods and
Software, 22(2):279 – 295, 2007.

[35] M. Heinkenschloss and L. N. Vicente. Analysis of Inexact Trust-Region SQP Algo-
rithms. SIAM J. on Optimization, 12(2):283–302, 2002.

[36] IEA/WEO. World Energy Outlook 2006. Technical report, International Energy
Agency, Paris, France, 2006.

[37] J.-G. Jee, M.-B. Kim, and C.-H. Lee. Adsorption Characteristics of Hydrogen Mix-
tures in a Layered Bed: Binary, Ternary, and Five-Component Mixtures. Ind. Eng.
Chem. Res., 40(3):868–878, 2001.

[38] L. Jiang, L. T. Biegler, and V. G. Fox. Simulation and Optimization of Pressure-
Swing Adsorption Systems for Air Separation. AIChE Journal, 49(5):1140–1157,
2003.

[39] L. Jiang, V. G. Fox, and L. T. Biegler. Simulation and Optimal Design of Multiple-
Bed Pressure Swing Adsorption Systems. AIChE Journal, 50(11):2904–2917, 2004.

[40] S. Kameswaran and L. T. Biegler. Convergence Rates for Direct Transcription of
Optimal Control Problems using Collocation at Radau points. Comput. Optim. Appl.,
41(1):81–126, 2008.

[41] Y. Kawajiri and L. T. Biegler. Optimization Strategies for Simulated Moving Bed
and PowerFeed Processes. AIChE Journal, 52(4):1343–1350, 2006.

[42] D. Ko and I. L. Moon. Multiobjective Optimization of Cyclic Adsorption Processes.
Ind. Eng. Chem. Res., 41(1):93–104, 2002.

[43] D. Ko, R. Siriwardane, and L. T. Biegler. Optimization of Pressure Swing Adsorption
Process using Zeolite 13X for CO2 Sequestration. Ind. Eng. Chem. Res., 42(2):339–
348, 2003.

BIBLIOGRAPHY 132

BIBLIOGRAPHY

[44] R. Kumar, V. G. Fox, D. Hartzog, R. E. Larson, C. Y. C., P. Houghton, and T. Na-
heiri. A Versatile Process Simulator for Adsorptive Separations. Chem. Eng. Sci.,
49:3115–3125, 1994.

[45] M. Lalee, J. Nocedal, and T. Plantenga. On The Implementation Of An Algorithm
For Large-Scale Equality Constrained Optimization. SIAM Journal on Optimization,
8:682–706, 1998.

[46] R. J. LeVeque. Numerical Methods for Conservation Laws. Birkhäuser, 1992.

[47] S. Li, L. Petzold, and W. Zhu. Sensitivity Analysis of DifferentialAlgebraic equations:
A Comparison of Methods on a Special Problem. Applied Numerical Mathematics,
32:161–174, 2000.

[48] NETL/DOE. The Cost and Performance Baseline for Fossil Energy Power Plants
study, Volume 1: Bituminous Coal and Natural Gas to Electricity. Technical report,
National Energy Technology Laboratory, Department of Energy, USA, May, 2007.

[49] D. Nikolic̀, A. Giovanoglou, M. C. Georgiadis, and E. S. Kikkinides. Generic Mod-
eling Framework for Gas Separations Using Multibed Pressure Swing Adsorption
Processes. Ind. Eng. Chem. Res., 47(9):3156–3169, 2008.

[50] S. Nilchan and C. C. Pantelides. On the Optimisation of Periodic Adsorption Pro-
cesses. Adsorption, 4(2):113–147, 1998.

[51] J. Nocedal and S. Wright. Numerical Optimization. Springer Series, 1999.

[52] E. O. Omojokun. Trust Region Algorithms for Optimization with Nonlinear Equality
and Inequality Constraints. PhD thesis, University of Colorado, Boulder, 1989.

[53] D. B. Özyurt and P. I. Barton. Cheap Second Order Directional Derivatives of Stiff
ODE Embedded Functionals. SIAM J. Sci. Comput., 26(5):1725–1743, 2005.

[54] J. A. Ritter and A. D. Ebner. State-of-the-Art Adsorption and Membrane Separation
Processes for Hydrogen Production in the Chemical and Petrochemical Industries.
Separ. Sci. Technol., 42(6):1123–1193, 2007.

[55] D. M. Ruthven. Principles of Adsorption and Adsorption Processes. John Wiley-
Interscience: New York, NY, 1984.

[56] D. M. Ruthven, S. Farooq, and K. S. Knaebel. Pressure Swing Adsorption. VCH
Publishers: New York, NY, 1994.

[57] J. Schell, N. Casas, and M. Mazzotti. Pre-combustion CO2 Capture for IGCC Plants
by an Adsorption Process. Energ. Procedia, 1:655–660, 2009.

[58] W. E. Schiesser. The Numerical Method of Lines Integration of Partial Differential
Equations. Academic Press: San Diego, CA, 1991.

[59] R. Serban and A. Hindmarsh. CVODES: the Sensitivity-Enabled ODE Solver in
SUNDIALS. Proceedings of IDETC/CIE, 2005.

BIBLIOGRAPHY 133

BIBLIOGRAPHY

[60] R. E. H. Sims, H.-H. Rogner, and K. Gregory. Carbon emission and mitigation cost
comparisons between fossil fuel, nuclear and renewable energy resources for electricity
generation. Energ. Policy, 31(13):1315–1326, 2003.

[61] S. Sircar. Separation of Multicomponent Gas Mixtures. US Patent 4171206, 1979.

[62] S. Sircar. Separation of Methane and Carbon Dioxide Gas Mixtures by Pressure
Swing Adsorption. Separ. Sci. Technol., 23(6):519–529, 1988.

[63] S. Sircar. Pressure Swing Adsorption: Commentaries. Ind. Eng. Chem. Res.,
41(6):1389–1392, 2002.

[64] S. Sircar and J. W. Zondlo. Hydrogen Purification by Selective Adsorption. US
Patent 4077779, 1978.

[65] P. Stange, A. Griewank, and M. Bollhöfer. On the Efficient Update of Rectangular
LU-factorizations subject to Low Rank Modifications. Electronic Trans. on Numer-
ical Analysis, 26:161–177, 2007.

[66] T. Steihaug. The Conjugate Gradient Method and Trust Regions in Large Scale
Optimization. SIAM Journal on Numerical Analysis, 20(3):626–637, 1983.

[67] M. Suzuki. Adsorption Engineering. Kondasha Ltd.: Tokyo, and Elsevier Science
Publishers: Amsterdam, 1990.

[68] A. Toumi, F. Hanisch, and S. Engell. Optimal Operation of Continuous Chromato-
graphic Processes: Mathematical Optimization of the VARICOL Process. IECR
Journal, (5):4328–4337, 2002.

[69] A. Vardi. A Trust Region Algorithm for Equality Constrained Minimization: Con-
vergence Properties and Implementation. SIAM J. Numer. Anal., 22:575–591, 1985.

[70] V. S. Vassiliadis. Computational Solution of Dynamic Optimization Problems with
general Differential-Algebraic Constraints. PhD thesis, University of London, Lon-
don, 1993.

[71] V. S. Vassiliadis, E. B. Canto, and J. R. Banga. Second-Order Sensitivities of Gen-
eral Dynamic Systems with Application to Optimal Control Problems. Chemical
Engineering Science, 54(17):3851 – 3860, 1999.

[72] S. R. R. Vetukuri, L. T. Biegler, and A. Walther. An Inexact Trust-Region Algorithm
for the Optimization of Periodic Adsorption Processes. Industrial & Engineering
Chemistry Research, 49(23):12004–12013, 2010.

[73] A. Wächter and L. Biegler. On the Implementation of a Primal-Dual Interior Point
Filter Line Search Algorithm for Large-Scale Nonlinear Programming. Math. Pro-
gram., 106 (1):25–57, 2006.

[74] A. Walther. A First-Order Convergence Analysis of Trust-Region Methods with
Inexact Jacobians. SIAM J. on Optimization, 19(1):307–325, 2008.

BIBLIOGRAPHY 134

BIBLIOGRAPHY

[75] A. Walther and L. T. Biegler. Numerical Experiments with an Inexact Jacobian
Trust-Region Algorithm. Computational Optimization and Applications, published
on-line(DOI 10.1007/s10589-009-9247-4), 2009.

[76] A. Walther, S. R. R. Vetukuri, and L. T. Biegler. A First-Order Convergence Anal-
ysis of Trust-Region Methods with Inexact Jacobians and Inequality Constraints .
Optimization Methods and Software, Submitted, 2010.

[77] P. A. Webley. Optimization of PSA Systems for Air Separation. Fundamentals of
Adsorption Conference, 1998.

[78] M. Whysall and L. J. M. Wagemans. Very Large-scale Pressure Swing Adsorption
Processes. US Patent 6210466, 2001.

[79] M. H. Wright. Interior Methods for Constrained Optimization. Acta Numerica, pages
341–407, 1992.

[80] P. Xiao, S. Wilson, G. Xiao, R. Singh, and P. Webley. Novel Adsorption Processes
for Carbon Dioxide Capture within an IGCC Process. Energy Procedia, 1:631–638,
2009.

[81] T. Yamaguchi and K. Yasushi. Gas Separation Process. US Patent 5250088, 1993.

[82] R. T. Yang. Gas Separation by Adsorption Processes. Butterworths: Boston, MA,
1997.

BIBLIOGRAPHY 135

